Sample records for pollinator visits leaf

  1. The pollination biology of a pavement plain: pollinator visitation patterns.

    PubMed

    O'Brien, Mary H

    1980-01-01

    The pollination biology of the 20 plant species of a treeless, pavement plain in the San Bernardino Mountains of southern California was studied throughout one flowering season.Several patterns of pollinator activity recorded during the season underline the necessity for noting the activity of all insect pollinators whether specialized, non-specialized, regular, or occasional: 1) Occasional insect visitors were a feature of the visitation to nine of the twelve entomophilous plant species and were the sole pollinators for three of these twelve species. 2) The eight entomophilous plant species which had open, generalized flower morphologies received the heaviest pollinator visitation, while three of the four entomophilous species with specialized flower morphologies received little visitation. 3) Most regular flower visitors, whether bees, flies, or wasps, appeared to be similar with respect to number of plant species visited regularly, purity of pollen load, length of residence and localization of activity on the site. The question is raised as to whether such similarity of behavior as pollen vectors is a function of the low plant diversity or a feature commonly found when the pollen loads and behavior of different pollinator types are actually monitored.

  2. Pollination success following loss of a frequent pollinator: the role of compensatory visitation by other effective pollinators

    PubMed Central

    Hallett, Allysa C.; Mitchell, Randall J.; Chamberlain, Evan R.

    2017-01-01

    Abstract Pollinator abundance is declining worldwide and may lower the quantity and quality of pollination services to flowering plant populations. Loss of an important pollinator is often assumed to reduce the amount of pollen received by stigmas of a focal species (pollination success), yet this assumption has rarely been tested experimentally. The magnitude of the effect, if any, may depend on the relative efficiency of the remaining pollinators, and on whether the loss of one pollinator leads to changes in visitation patterns by other pollinators. To explore how a change in pollinator composition influences pollination of Asclepias verticillata, we excluded bumble bees from plots in large and small populations of this milkweed species. We then quantified pollinator visitation rates, pollen export and pollen receipt for control plots and for plots where bumble bees were experimentally excluded. We found that exclusion of bumble bees did not reduce pollen receipt by A. verticillata flowers. Visitation by Polistes wasps increased markedly following bumble bee exclusion, both in small populations (186 % increase) and in large populations (400 % increase). Because Polistes wasps were as efficient as bumble bees at pollen transfer, increased wasp visitation offset lost bumble bee pollination services. Thus, loss of a frequent pollinator will not necessarily lead to a decline in pollination success. When pollinator loss is followed by a shift in the composition and abundance of remaining pollinators, pollination success will depend on the net change in the quantity and quality of pollination services. PMID:28798863

  3. Fire Promotes Pollinator Visitation: Implications for Ameliorating Declines of Pollination Services

    PubMed Central

    Van Nuland, Michael E.; Haag, Elliot N.; Bryant, Jessica A. M.; Read, Quentin D.; Klein, Robert N.; Douglas, Morgan J.; Gorman, Courtney E.; Greenwell, Trey D.; Busby, Mark W.; Collins, Jonathan; LeRoy, Joseph T.; Schuchmann, George; Schweitzer, Jennifer A.; Bailey, Joseph K.

    2013-01-01

    Pollinators serve critical roles for the functioning of terrestrial ecosystems, and have an estimated annual value of over $150 billion for global agriculture. Mounting evidence from agricultural systems reveals that pollinators are declining in many regions of the world, and with a lack of information on whether pollinator communities in natural systems are following similar trends, identifying factors which support pollinator visitation and services are important for ameliorating the effects of the current global pollinator crisis. We investigated how fire affects resource structure and how that variation influences floral pollinator communities by comparing burn versus control treatments in a southeastern USA old-field system. We hypothesized and found a positive relationship between fire and plant density of a native forb, Verbesina alternifolia, as well as a significant difference in floral visitation of V. alternifolia between burn and control treatments. V. alternifolia density was 44% greater and floral visitation was 54% greater in burned treatments relative to control sites. When the density of V. alternifolia was experimentally reduced in the burn sites to equivalent densities observed in control sites, floral visitation in burned sites declined to rates found in control sites. Our results indicate that plant density is a proximal mechanism by which an imposed fire regime can indirectly impact floral visitation, suggesting its usefulness as a tool for management of pollination services. Although concerns surround the negative impacts of management, indirect positive effects may provide an important direction to explore for managing future ecological and conservation issues. Studies examining the interaction among resource concentration, plant apparency, and how fire affects the evolutionary consequences of altered patterns of floral visitation are overdue. PMID:24265787

  4. Pollinators visit related plant species across 29 plant–pollinator networks

    PubMed Central

    Vamosi, Jana C; Moray, Clea M; Garcha, Navdeep K; Chamberlain, Scott A; Mooers, Arne Ø

    2014-01-01

    Understanding the evolution of specialization in host plant use by pollinators is often complicated by variability in the ecological context of specialization. Flowering communities offer their pollinators varying numbers and proportions of floral resources, and the uniformity observed in these floral resources is, to some degree, due to shared ancestry. Here, we find that pollinators visit related plant species more so than expected by chance throughout 29 plant–pollinator networks of varying sizes, with “clade specialization” increasing with community size. As predicted, less versatile pollinators showed more clade specialization overall. We then asked whether this clade specialization varied with the ratio of pollinator species to plant species such that pollinators were changing their behavior when there was increased competition (and presumably a forced narrowing of the realized niche) by examining pollinators that were present in at least three of the networks. Surprisingly, we found little evidence that variation in clade specialization is caused by pollinator species changing their behavior in different community contexts, suggesting that clade specialization is observed when pollinators are either restricted in their floral choices due to morphological constraints or innate preferences. The resulting pollinator sharing between closely related plant species could result in selection for greater pollinator specialization. PMID:25360269

  5. Experimental evidence that wildflower strips increase pollinator visits to crops.

    PubMed

    Feltham, Hannah; Park, Kirsty; Minderman, Jeroen; Goulson, Dave

    2015-08-01

    Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination-dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time.

  6. Experimental evidence that wildflower strips increase pollinator visits to crops

    PubMed Central

    Feltham, Hannah; Park, Kirsty; Minderman, Jeroen; Goulson, Dave

    2015-01-01

    Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination-dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time

  7. Does the invasive Lupinus polyphyllus increase pollinator visitation to a native herb through effects on pollinator population sizes?

    PubMed

    Jakobsson, Anna; Padrón, Benigno

    2014-01-01

    Invasive plants may compete with native species for abiotic factors as light, space and nutrients, and have also been shown to affect native pollination interactions. Studies have mainly focused on how invasive plants affect pollinator behaviour, i.e. attraction of pollinators to or away from native flowers. However, when an invasive plant provides resources utilized by native pollinators this could increase pollinator population sizes and thereby pollination success in natives. Effects mediated through changes in pollinator population sizes have been largely ignored in previous studies, and the dominance of negative interactions suggested by meta-analyses may therefore be biased. We investigated the impact of the invasive Lupinus polyphyllus on pollination in the native Lotus corniculatus using a study design comparing invaded and uninvaded sites before and after the flowering period of the invasive. We monitored wild bee abundance in transects, and visit rate and seed production of potted Lotus plants. Bumblebee abundance increased 3.9 times in invaded sites during the study period, whereas it was unaltered in uninvaded sites. Total visit rate per Lotus plant increased 2.1 times in invaded sites and decreased 4.4 times in uninvaded sites. No corresponding change in seed production of Lotus was found. The increase in visit rate to Lotus was driven by an increase in solitary bee visitation, whereas mainly bumblebees were observed to visit the invasive Lupinus. The mechanism by which the invasive increases pollinator visit rates to Lotus could be increased availability of other flower resources for solitary bees when bumblebees forage on Lupinus.

  8. Pollinator visitation in populations of tristylous Eichhornia paniculata in northeastern Brazil.

    PubMed

    Husband, Brian C; Barrett, Spencer C H

    1992-03-01

    The frequencies of floral morphs in populations of tristylous Eichhornia paniculata often deviate from the theoretical expectation of equality. This variation is associated with the breakdown of tristyly and the evolution of self-fertilization. Differences in morph frequencies could result from selection pressures due to variable levels of insect visitation to populations and contrasting foraging behavior among the floral morphs. We estimated pollinator densities in 16 populations and quantified visitation sequences to morphs in five populations of E. paniculata in northeastern Brazil. Foraging behavior among floral morphs was measured as the frequency of visits to morphs relative to their frequency in the population (preference) and number of flights between inflorescences of the same versus different morphs (constancy). Pollinator density (number/m 2 /minute) was not correlated with population size, plant density or morph diversity. Pollinator densities varied most among populations of less than 200 plants. Whether pollinators discriminated among the morphs, depended on whether they primarily collected nectar or pollen. In four populations, nectar-feeding bees (Ancyloscelis and Florilegus spp.) and butterflies showed no consistent preference or constancy among the morphs. In contrast, pollen-collecting bees (Trigona sp.) visited a lower proportion of longstyled inflorescences than expected and tended to visit more mid-and short-styled inflorescences in succession, once they were encountered. Pollinator constancy for morphs did not result from differences in inflorescence production or spatial patchiness among the morphs. Although non-random pollinator visitation to morphs in heterostylous populations could potentially affect mating and hence morph frequencies, the observed visitation patterns in this study do not provide evidence that pollinators play a major role in influencing floral morph frequencies.

  9. Interactions for pollinator visitation and their consequences for reproduction in a plant community

    NASA Astrophysics Data System (ADS)

    Hegland, Stein Joar; Totland, Ørjan

    2012-08-01

    Competition and facilitation in species interactions attract much attention in ecology, but their relative importance has seldom been evaluated in a community context. We assessed competitive and facilitative interactions for pollinator visitation among co-flowering species in a plant community, investigated the subsequent consequences for plant reproduction, and investigated whether effects could be trait-based. We removed the flowers of two species attractive to pollinators, in two separate experiments and assessed the effects on pollinator visitation rates and components of reproductive success in 11 co-flowering focal herb species. Overall, most focal species appear not to interact with the removal species with respect to pollinator visitation and subsequent reproduction (neutral interactions). Three focal species in the community had significantly higher reproductive responses (fruit production and seed weight) in the presence of the attractive removal species (facilitative interactions), but species interaction effects were less pronounced in species' flower visitation rates. A community-wide meta-analysis demonstrated that the two experiments did not have a significant effect on either facilitation or competition, and that there was no overall correlation between effect sizes for visitation and reproduction. Based on species-specific responses, it seems likely that floral traits such as similar flower colors contribute to interspecific facilitation of pollinator visitation and, in particular, that high pollinator dependence for plant reproduction, and associated pollen limitation, may contribute to subsequent interaction effects on reproduction in the focal species.

  10. Inbreeding in Mimulus guttatus Reduces Visitation by Bumble Bee Pollinators

    PubMed Central

    Carr, David E.; Roulston, T’ai H.; Hart, Haley

    2014-01-01

    Inbreeding in plants typically reduces individual fitness but may also alter ecological interactions. This study examined the effect of inbreeding in the mixed-mating annual Mimulus guttatus on visitation by pollinators (Bombus impatiens) in greenhouse experiments. Previous studies of M. guttatus have shown that inbreeding reduced corolla size, flower number, and pollen quantity and quality. Using controlled crosses, we produced inbred and outbred families from three different M. guttatus populations. We recorded the plant genotypes that bees visited and the number of flowers probed per visit. In our first experiment, bees were 31% more likely to visit outbred plants than those selfed for one generation and 43% more likely to visit outbred plants than those selfed for two generations. Inbreeding had only a small effect on the number of flowers probed once bees arrived at a genotype. These differences were explained partially by differences in mean floral display and mean flower size, but even when these variables were controlled statistically, the effect of inbreeding remained large and significant. In a second experiment we quantified pollen viability from inbred and self plants. Bees were 37–54% more likely to visit outbred plants, depending on the population, even when controlling for floral display size. Pollen viability proved to be as important as floral display in predicting pollinator visitation in one population, but the overall explanatory power of a multiple regression model was weak. Our data suggested that bees use cues in addition to display size, flower size, and pollen reward quality in their discrimination of inbred plants. Discrimination against inbred plants could have effects on plant fitness and thereby reinforce selection for outcrossing. Inbreeding in plant populations could also reduce resource quality for pollinators, potentially resulting in negative effects on pollinator populations. PMID:25036035

  11. Leaf herbivory imposes fitness costs mediated by hummingbird and insect pollinators

    PubMed Central

    Whitehead, Susan; Amaya-Márquez, Marisol; Poveda, Katja

    2017-01-01

    Plant responses induced by herbivore damage can provide fitness benefits, but can also have important costs due to altered interactions with mutualist pollinators. We examined the effects of plant responses to herbivory in a hummingbird-pollinated distylous shrub, Palicourea angustifolia. Through a series of field experiments we investigated whether damage from foliar herbivores leads to a reduction in fruit set, influences floral visitation, or alters floral traits that may influence pollinator preference or pollinator efficiency. Foliar herbivory by a generalist grasshopper led to reduced fruit set in branches that were directly damaged as well as in adjacent undamaged branches on the same plant. Furthermore, herbivory resulted in reduced floral visitation from two common hummingbird species and two bee species. An investigation into the potential mechanisms behind reduced floral visitation in induced plants showed that foliar herbivore damage resulted in shorter styles and lower nectar volumes. This reduction in style length could reduce pollen deposition between different floral morphs that is required for optimal pollination in a distylous plant. We did not detect any differences in the volatile blends released by damaged and undamaged branches, suggesting that foliar herbivore-induced changes in floral morphology and rewards, and not volatile blends, are the primary mechanism mediating changes in visitation. Our results provide novel mechanisms for how plant responses induced by foliar herbivores can lead to ecological costs. PMID:29211805

  12. Reproductive success through high pollinator visitation rates despite self incompatibility in an endangered wallflower.

    PubMed

    Melen, Miranda K; Herman, Julie A; Lucas, Jessica; O'Malley, Rachel E; Parker, Ingrid M; Thom, Aaron M; Whittall, Justen B

    2016-11-01

    Self incompatibility (SI) in rare plants presents a unique challenge-SI protects plants from inbreeding depression, but requires a sufficient number of mates and xenogamous pollination. Does SI persist in an endangered polyploid? Is pollinator visitation sufficient to ensure reproductive success? Is there evidence of inbreeding/outbreeding depression? We characterized the mating system, primary pollinators, pollen limitation, and inbreeding/outbreeding depression in Erysimum teretifolium to guide conservation efforts. We compared seed production following self pollination and within- and between-population crosses. Pollen tubes were visualized after self pollinations and between-population pollinations. Pollen limitation was tested in the field. Pollinator observations were quantified using digital video. Inbreeding/outbreeding depression was assessed in progeny from self and outcross pollinations at early and later developmental stages. Self-pollination reduced seed set by 6.5× and quadrupled reproductive failure compared with outcross pollination. Pollen tubes of some self pollinations were arrested at the stigmatic surface. Seed-set data indicated strong SI, and fruit-set data suggested partial SI. Pollinator diversity and visitation rates were high, and there was no evidence of pollen limitation. Inbreeding depression (δ) was weak for early developmental stages and strong for later developmental stages, with no evidence of outbreeding depression. The rare hexaploid E. teretifolium is largely self incompatible and suffers from late-acting inbreeding depression. Reproductive success in natural populations was accomplished through high pollinator visitation rates consistent with a lack of pollen limitation. Future reproductive health for this species will require large population sizes with sufficient mates and a robust pollinator community. © 2016 Melen et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons

  13. Wildflower plantings do not compete with neighboring almond orchards for pollinator visits

    USDA-ARS?s Scientific Manuscript database

    The engineering of flowering agricultural field borders has emerged as a research and policy priority to mitigate threats to pollinators. Studies have, however, rarely addressed the potential that flowering field borders might compete with neighboring crops for pollinator visits if they both are in ...

  14. Wildflower Plantings Do Not Compete With Neighboring Almond Orchards for Pollinator Visits.

    PubMed

    Lundin, Ola; Ward, Kimiora L; Artz, Derek R; Boyle, Natalie K; Pitts-Singer, Theresa L; Williams, Neal M

    2017-06-01

    The engineering of flowering agricultural field borders has emerged as a research and policy priority to mitigate threats to pollinators. Studies have, however, rarely addressed the potential that flowering field borders might compete with neighboring crops for pollinator visits if they both are in bloom at the same time, despite this being a concern expressed by growers. We evaluated how wildflower plantings added to orchard borders in a large (512 ha) commercial almond orchard affected honey bee and wild bee visitation to orchard borders and the crop. The study was conducted over two consecutive seasons using three large (0.48 ha) wildflower plantings paired with control orchard borders in a highly simplified agricultural landscape in California. Honey bee (Apis mellifera L.) and wild bee visitation to wildflower plots were at least an order of magnitude higher than to control plots, but increased honey bee visitation to wildflower plots did not lead to any detectable shifts in honey bee visitation to almond flowers in the neighboring orchard. Wild bees were rarely observed visiting almond flowers irrespective of border treatment, indicating a limited short-term potential for augmenting crop pollination using wild bees in highly simplified agricultural landscapes. Although further studies are warranted on bee visitation and crop yield from spatially independent orchards, this study indicates that growers can support bees with alternative forage in almond orchards without risking competition between the wildflower plantings and the crop. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    PubMed

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life

  16. Pollination crisis in the butterfly-pollinated wild carnation Dianthus carthusianorum?

    PubMed

    Bloch, Daniel; Werdenberg, Niels; Erhardt, Andreas

    2006-01-01

    Knowledge of pollination services provided by flower visitors is a prerequisite for understanding (co)evolutionary processes between plants and their pollinators, for evaluating the degree of specialization in the pollination system, and for assessing threats from a potential pollination crisis. This study examined pollination efficiency and visitation frequency of pollinators--key traits of pollinator-mediated fecundity--in a natural population of the wild carnation Dianthus carthusianorum. The five lepidopteran pollinator species observed differed in pollination efficiency and visitation frequency. Pollinator importance, the product of pollination efficiency and visitation frequency, was determined by the pollinator's visitation frequency. Pollination of D. carthusianorum depended essentially on only two of the five recorded pollinator species. Seed set was pollen-limited and followed a saturating dose-response function with a threshold of c. 50 deposited pollen grains for fruit development. Our results confirm that D. carthusianorum is specialized to lepidopteran pollinators, but is not particularly adapted to the two main pollinator species identified. The local persistence of D. carthusianorum is likely to be at risk as its reproduction depends essentially on only two of the locally abundant, but generally vulnerable, butterfly species.

  17. Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects.

    PubMed

    Baldock, Katherine C R; Goddard, Mark A; Hicks, Damien M; Kunin, William E; Mitschunas, Nadine; Osgathorpe, Lynne M; Potts, Simon G; Robertson, Kirsty M; Scott, Anna V; Stone, Graham N; Vaughan, Ian P; Memmott, Jane

    2015-03-22

    Insect pollinators provide a crucial ecosystem service, but are under threat. Urban areas could be important for pollinators, though their value relative to other habitats is poorly known. We compared pollinator communities using quantified flower-visitation networks in 36 sites (each 1 km(2)) in three landscapes: urban, farmland and nature reserves. Overall, flower-visitor abundance and species richness did not differ significantly between the three landscape types. Bee abundance did not differ between landscapes, but bee species richness was higher in urban areas than farmland. Hoverfly abundance was higher in farmland and nature reserves than urban sites, but species richness did not differ significantly. While urban pollinator assemblages were more homogeneous across space than those in farmland or nature reserves, there was no significant difference in the numbers of rarer species between the three landscapes. Network-level specialization was higher in farmland than urban sites. Relative to other habitats, urban visitors foraged from a greater number of plant species (higher generality) but also visited a lower proportion of available plant species (higher specialization), both possibly driven by higher urban plant richness. Urban areas are growing, and improving their value for pollinators should be part of any national strategy to conserve and restore pollinators.

  18. Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects

    PubMed Central

    Baldock, Katherine C. R.; Goddard, Mark A.; Hicks, Damien M.; Kunin, William E.; Mitschunas, Nadine; Osgathorpe, Lynne M.; Potts, Simon G.; Robertson, Kirsty M.; Scott, Anna V.; Stone, Graham N.; Vaughan, Ian P.; Memmott, Jane

    2015-01-01

    Insect pollinators provide a crucial ecosystem service, but are under threat. Urban areas could be important for pollinators, though their value relative to other habitats is poorly known. We compared pollinator communities using quantified flower-visitation networks in 36 sites (each 1 km2) in three landscapes: urban, farmland and nature reserves. Overall, flower-visitor abundance and species richness did not differ significantly between the three landscape types. Bee abundance did not differ between landscapes, but bee species richness was higher in urban areas than farmland. Hoverfly abundance was higher in farmland and nature reserves than urban sites, but species richness did not differ significantly. While urban pollinator assemblages were more homogeneous across space than those in farmland or nature reserves, there was no significant difference in the numbers of rarer species between the three landscapes. Network-level specialization was higher in farmland than urban sites. Relative to other habitats, urban visitors foraged from a greater number of plant species (higher generality) but also visited a lower proportion of available plant species (higher specialization), both possibly driven by higher urban plant richness. Urban areas are growing, and improving their value for pollinators should be part of any national strategy to conserve and restore pollinators. PMID:25673686

  19. Pollination services enhanced with urbanization despite increasing pollinator parasitism

    PubMed Central

    Radzevičiūtė, Rita; Murray, Tomás E.

    2016-01-01

    Animal-mediated pollination is required for the reproduction of the majority of angiosperms, and pollinators are therefore essential for ecosystem functioning and the economy. Two major threats to insect pollinators are anthropogenic land-use change and the spread of pathogens, whose effects may interact to impact pollination. Here, we investigated the relative effects on the ecosystem service of pollination of (i) land-use change brought on by agriculture and urbanization as well as (ii) the prevalence of pollinator parasites, using experimental insect pollinator-dependent plant species in natural pollinator communities. We found that pollinator habitat (i.e. availability of nesting resources for ground-nesting bees and local flower richness) was strongly related to flower visitation rates at the local scale and indirectly influenced plant pollination success. At the landscape scale, pollination was positively related to urbanization, both directly and indirectly via elevated visitation rates. Bumblebees were the most abundant pollinator group visiting experimental flowers. Prevalence of trypanosomatids, such as the common bumblebee parasite Crithidia bombi, was higher in urban compared with agricultural areas, a relationship which was mediated through higher Bombus abundance. Yet, we did not find any top-down, negative effects of bumblebee parasitism on pollination. We conclude that urban areas can be places of high transmission of both pollen and pathogens. PMID:27335419

  20. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation

    Treesearch

    William R. Glenny; Justin B. Runyon; Laura A. Burkle

    2018-01-01

    Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were...

  1. Pollination Services of Mango Flower Pollinators

    PubMed Central

    Huda, A. Nurul; Salmah, M. R. Che; Hassan, A. Abu; Hamdan, A.; Razak, M. N. Abdul

    2015-01-01

    Measuring wild pollinator services in agricultural production is very important in the context of sustainable management. In this study, we estimated the contribution of native pollinators to mango fruit set production of two mango cultivars Mangifera indica (L). cv. ‘Sala’ and ‘Chok Anan’. Visitation rates of pollinators on mango flowers and number of pollen grains adhering to their bodies determined pollinator efficiency for reproductive success of the crop. Chok Anan failed to produce any fruit set in the absence of pollinators. In natural condition, we found that Sala produced 4.8% fruit set per hermaphrodite flower while Chok Anan produced 3.1% per flower. Hand pollination tremendously increased fruit set of naturally pollinated flower for Sala (>100%), but only 33% for Chok Anan. Pollinator contribution to mango fruit set was estimated at 53% of total fruit set production. Our results highlighted the importance of insect pollinations in mango production. Large size flies Eristalinus spp. and Chrysomya spp. were found to be effective pollen carriers and visited more mango flowers compared with other flower visitors. PMID:26246439

  2. Effects of model-mimic frequency on insect visitation and plant reproduction in a self-mimicry pollination system

    PubMed Central

    Oleques, Suiane Santos; Marciniak, Brisa; Ribeiro, José Ricardo I

    2017-01-01

    Abstract The proportion of mimics and models is a key parameter in mimetic systems. In monoecious plants with self-mimicry pollination systems, the mimic-model ratio is determined by the floral sex ratio. While an equal sex ratio (1:1) could provide the perfect balance between pollen donors and stigma surfaces able to receive the pollen, an unequal ratio could increase pollination by production of a greater number of rewarding, model flowers. The aim of the present study is to test the differences in visitation frequency and reproductive rates of different mimic and model flower arrays in order to assess the efficacy of the mimetic system in a Begonia cucullata population. The frequencies of visitors to groups of flowers with three distinctive sex ratio arrays (male-biased, female-biased and equal ratio) were compared using a Bayesian approach. The reproductive outcomes were compared in order to detect advantages of particular sex ratios. Low visitation frequency was recorded in all arrays. Pollinators showed similar behaviour regardless of sex ratio; they tended to avoid female, rewardless flowers. Pollination quality was highest in the equal sex ratio array. The current study shows that sex ratio plays a critical role in the pollination of B. cucullata and that the efficacy of the self-mimicry system appears to be doubtful. Visitation frequency may be associated with visual or chemical cues that allow pollinators to recognize models and mimics, regardless of their frequency in the population. PMID:29255587

  3. Effects of model-mimic frequency on insect visitation and plant reproduction in a self-mimicry pollination system.

    PubMed

    de Avila, Rubem Samuel; Oleques, Suiane Santos; Marciniak, Brisa; Ribeiro, José Ricardo I

    2017-11-01

    The proportion of mimics and models is a key parameter in mimetic systems. In monoecious plants with self-mimicry pollination systems, the mimic-model ratio is determined by the floral sex ratio. While an equal sex ratio (1:1) could provide the perfect balance between pollen donors and stigma surfaces able to receive the pollen, an unequal ratio could increase pollination by production of a greater number of rewarding, model flowers. The aim of the present study is to test the differences in visitation frequency and reproductive rates of different mimic and model flower arrays in order to assess the efficacy of the mimetic system in a Begonia cucullata population. The frequencies of visitors to groups of flowers with three distinctive sex ratio arrays (male-biased, female-biased and equal ratio) were compared using a Bayesian approach. The reproductive outcomes were compared in order to detect advantages of particular sex ratios. Low visitation frequency was recorded in all arrays. Pollinators showed similar behaviour regardless of sex ratio; they tended to avoid female, rewardless flowers. Pollination quality was highest in the equal sex ratio array. The current study shows that sex ratio plays a critical role in the pollination of B. cucullata and that the efficacy of the self-mimicry system appears to be doubtful. Visitation frequency may be associated with visual or chemical cues that allow pollinators to recognize models and mimics, regardless of their frequency in the population.

  4. Pollination services enhanced with urbanization despite increasing pollinator parasitism.

    PubMed

    Theodorou, Panagiotis; Radzevičiūtė, Rita; Settele, Josef; Schweiger, Oliver; Murray, Tomás E; Paxton, Robert J

    2016-06-29

    Animal-mediated pollination is required for the reproduction of the majority of angiosperms, and pollinators are therefore essential for ecosystem functioning and the economy. Two major threats to insect pollinators are anthropogenic land-use change and the spread of pathogens, whose effects may interact to impact pollination. Here, we investigated the relative effects on the ecosystem service of pollination of (i) land-use change brought on by agriculture and urbanization as well as (ii) the prevalence of pollinator parasites, using experimental insect pollinator-dependent plant species in natural pollinator communities. We found that pollinator habitat (i.e. availability of nesting resources for ground-nesting bees and local flower richness) was strongly related to flower visitation rates at the local scale and indirectly influenced plant pollination success. At the landscape scale, pollination was positively related to urbanization, both directly and indirectly via elevated visitation rates. Bumblebees were the most abundant pollinator group visiting experimental flowers. Prevalence of trypanosomatids, such as the common bumblebee parasite Crithidia bombi, was higher in urban compared with agricultural areas, a relationship which was mediated through higher Bombus abundance. Yet, we did not find any top-down, negative effects of bumblebee parasitism on pollination. We conclude that urban areas can be places of high transmission of both pollen and pathogens. © 2016 The Author(s).

  5. Floral visitation by the Argentine ant reduces pollinator visitation and seed set in the coast barrel cactus, Ferocactus viridescens.

    PubMed

    LeVan, Katherine E; Hung, Keng-Lou James; McCann, Kyle R; Ludka, John T; Holway, David A

    2014-01-01

    Mounting evidence indicates that trade-offs between plant defense and reproduction arise not only from resource allocation but also from interactions among mutualists. Indirect costs of plant defense by ants, for example, can outweigh benefits if ants deter pollinators. Plants can dissuade ants from occupying flowers, but such arrangements may break down when novel ant partners infiltrate mutualisms. Here, we examine how floral visitation by ants affects pollination services when the invasive Argentine ant (Linepithema humile) replaces a native ant species in a food-for-protection mutualism with the coast barrel cactus (Ferocactus viridescens), which, like certain other barrel cacti, produces extrafloral nectar. We compared the effects of floral visitation by the Argentine ant with those of the most prevalent native ant species (Crematogaster californica). Compared to C. californica, the Argentine ant was present in higher numbers in flowers. Cactus bees (Diadasia spp.), the key pollinators in this system, spent less time in flowers when cacti were occupied by the Argentine ant compared to when cacti were occupied by C. californica. Presumably as a consequence of decreased duration of floral visits by Diadasia, cacti occupied by L. humile set fewer seeds per fruit and produced fewer seeds overall compared to cacti occupied by C. californica. These data illustrate the importance of mutualist identity in cases where plants balance multiple mutualisms. Moreover, as habitats become increasingly infiltrated by introduced species, the loss of native mutualists and their replacement by non-native species may alter the shape of trade-offs between plant defense and reproduction.

  6. Use of video surveillance to measure the influences of habitat management and landscape composition on pollinator visitation and pollen deposition in pumpkin (Cucurbita pepo) agroecosystems

    PubMed Central

    Phillips, Benjamin W.

    2015-01-01

    Pumpkin (Cucurbita pepo) production relies on insect-mediated pollination, which is provided by managed and wild pollinators. The goals of this study were to measure the visitation frequency, longevity and temporal activity patterns of pumpkin pollinators and to determine if local habitat management and landscape composition affected this pollination service. We used video surveillance to monitor bee acitivty within male and female pumpkin flowers in 2011 and 2012 across a pollination window of 0600–1200 h. We also quantified the amount of pollen deposited in female flowers across this time period. In 2011, A. mellifera made significantly more floral visits than other bees, and in 2012 Bombus spp. was the dominant pumpkin pollinator. We found variation in visitation among male and female pumpkin flowers, with A. mellifera visiting female flowers more often and spending longer per visit within them than male flowers in both 2011 and 2012. The squash bee P. pruinosa visited male flowers more frequently in 2012, but individuals spent equal time in both flower sexes. We did not find variation in the timing of flower visitation among species across the observed pollination window. In both 2011 and 2012 we found that the majority of pollen deposition occurred within the first two hours (0600–0800 h) of observation; there was no difference between the pollen deposited during this two-hour period and full pollination window (0600–1200 h). Local additions of sweet alyssum floral strips or a field buffer strip of native wildflowers did not have an effect on the foraging activity of bees or pollen deposition. However, semi-natural and urban habitats in the surrounding landscape were positively correlated with the frequency of flower visitation by wild pollinators and the amount of pollen deposited within female flowers. PMID:26587337

  7. Use of video surveillance to measure the influences of habitat management and landscape composition on pollinator visitation and pollen deposition in pumpkin (Cucurbita pepo) agroecosystems.

    PubMed

    Phillips, Benjamin W; Gardiner, Mary M

    2015-01-01

    Pumpkin (Cucurbita pepo) production relies on insect-mediated pollination, which is provided by managed and wild pollinators. The goals of this study were to measure the visitation frequency, longevity and temporal activity patterns of pumpkin pollinators and to determine if local habitat management and landscape composition affected this pollination service. We used video surveillance to monitor bee acitivty within male and female pumpkin flowers in 2011 and 2012 across a pollination window of 0600-1200 h. We also quantified the amount of pollen deposited in female flowers across this time period. In 2011, A. mellifera made significantly more floral visits than other bees, and in 2012 Bombus spp. was the dominant pumpkin pollinator. We found variation in visitation among male and female pumpkin flowers, with A. mellifera visiting female flowers more often and spending longer per visit within them than male flowers in both 2011 and 2012. The squash bee P. pruinosa visited male flowers more frequently in 2012, but individuals spent equal time in both flower sexes. We did not find variation in the timing of flower visitation among species across the observed pollination window. In both 2011 and 2012 we found that the majority of pollen deposition occurred within the first two hours (0600-0800 h) of observation; there was no difference between the pollen deposited during this two-hour period and full pollination window (0600-1200 h). Local additions of sweet alyssum floral strips or a field buffer strip of native wildflowers did not have an effect on the foraging activity of bees or pollen deposition. However, semi-natural and urban habitats in the surrounding landscape were positively correlated with the frequency of flower visitation by wild pollinators and the amount of pollen deposited within female flowers.

  8. Circadian rhythm of a Silene species favours nocturnal pollination and constrains diurnal visitation

    PubMed Central

    Prieto-Benítez, Samuel; Dötterl, Stefan; Giménez-Benavides, Luis

    2016-01-01

    Background and Aims Traits related to flower advertisement and reward sometimes vary in a circadian way, reflecting phenotypic specialization. However, specialized flowers are not necessarily restricted to specialized pollinators. This is the case of most Silene species, typically associated with diurnal or nocturnal syndromes of pollination but usually showing complex suites of pollinators. Methods A Silene species with mixed floral features between diurnal and nocturnal syndromes was used to test how petal opening, nectar production, scent emission and pollination success correlate in a circadian rhythm, and whether this is influenced by environmental conditions. The effect of diurnal and nocturnal visitation rates on plant reproductive success is also explored in three populations, including the effect of the pollinating seed predator Hadena sancta. Key Results The result showed that repeated petal opening at dusk was correlated with nectar secretion and higher scent production during the night. However, depending on environmental conditions, petals remain opened for a while in the morning, when nectar and pollen still were available. Pollen deposition was similarly effective at night and in the morning, but less effective in the afternoon. These results were consistent with field studies. Conclusions The circadian rhythm regulating floral attractiveness and reward in S. colorata is predominantly adapted to nocturnal flower visitors. However, favourable environmental conditions lengthen the optimal daily period of flower attraction and pollination towards morning. This allows the complementarity of day and night pollination. Diurnal pollination may help to compensate the plant reproductive success when nocturnal pollinators are scarce and when the net outcome of H. sancta shifts from mutualism to parasitism. These results suggest a functional mechanism explaining why the supposed nocturnal syndrome of many Silene species does not successfully predict their

  9. Pollination ecology of Silene acutifolia (Caryophyllaceae): floral traits variation and pollinator attraction.

    PubMed

    Buide, María Luisa

    2006-02-01

    The floral display influences the composition of pollinators interacting with a plant species. Geographic and temporal variation in pollinator composition complicates the understanding of the evolutionary consequences of floral display variation. This paper analyses the relationships between Silene acutifolia, a hermaphroditic perennial herb, and its pollinators, based on field studies in the north-west of Spain. Studies were conducted over three years (1997-1999). Firstly, the main pollinators of this species were determined for two years in one population. Secondly, pollen limitation in fruit and seed production was analysed by supplementary hand pollinations, and counting the pollen grains and tubes growing in styles for two different-sized populations. Finally, the effect of flower size and number on the rate of visitation and total seed number was examined for 15 marked plants. The primary pollinators were long-tongued insects, including Hymenoptera, Lepidoptera and Diptera, but the composition and visitation frequencies differed between years. Pollen limitation occurred in one of the years of study. There was between-population variation in the number of pollen grains and pollen tubes found in styles, suggesting pollen limitation in one population. Overall, pollinators visited plants with more open flowers more frequently, and pollinated more flowers within these plants. Conversely, petal and calyx sizes had no effect on insect visitation. Plants with higher rates of visits produced higher number of seeds, suggesting that pollinator-mediated limitation of seed and fruit production may be important in some years.

  10. Pollinator specialization and pollination syndromes of three related North American Silene.

    PubMed

    Reynolds, Richard J; Westbrook, M Jody; Rohde, Alexandra S; Cridland, Julie M; Fenster, Charles B; Dudash, Michele R

    2009-08-01

    Community and biogeographic surveys often conclude that plant-pollinator interactions are highly generalized. Thus, a central implication of the pollination syndrome concept, that floral trait evolution occurs primarily via specialized interactions of plants with their pollinators, has been questioned. However, broad surveys may not distinguish whether flower visitors are actual pollen vectors and hence lack power to assess the relationship between syndrome traits and the pollinators responsible for their evolution. Here we address whether the floral traits of three closely related hermaphroditic Silene spp. native to eastern North America (S. caroliniana, S. virginica, and S. stellata) correspond to predicted specialized pollination based on floral differences among the three species and the congruence of these floral features with recognized pollination syndromes. A nocturnal/diurnal pollinator exclusion experiment demonstrated that all three Silene spp. have diurnal pollinators, and only S. stellata has nocturnal pollinators. Multiyear studies of visitation rates demonstrated that large bees, hummingbirds, and nocturnal moths were the most frequent pollinators of S. caroliniana, S. virginica, and S. stellata, respectively. Estimates of pollen grains deposited and removed per visit generally corroborated the visitation rate results for all three species. However, the relatively infrequent diurnal hawkmoth pollinators of S. caroliniana were equally effective and more efficient than the most frequent large bee visitors. Pollinator importance (visitation X deposition) of each of the animal visitors to each species was estimated and demonstrated that in most years large bees and nocturnal moths were the most important pollinators of S. caroliniana and S. stellata, respectively. By quantifying comprehensive aspects of the pollination process we determined that S. virginica and S. stellata were specialized on hummingbirds and nocturnal moths, respectively, and S

  11. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention

    PubMed Central

    Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention. PMID:28973044

  12. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.

    PubMed

    Wu, Liancheng; Li, Mingna; Tian, Lei; Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping; Chen, Yanhui

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.

  13. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees

    PubMed Central

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-01-01

    Background and Aims Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Methods Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Key Results Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Conclusions Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in

  14. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees.

    PubMed

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-06-01

    Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.

  15. Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity

    PubMed Central

    Garratt, M. P. D.; Breeze, T. D.; Boreux, V.; Coston, D. J.; Jenner, N.; Dean, R.; Westbury, D. B.; Biesmeijer, J. C.; Potts, S. G.

    2016-01-01

    Insect pollination underpins apple production but the extent to which different pollinator guilds supply this service, particularly across different apple varieties, is unknown. Such information is essential if appropriate orchard management practices are to be targeted and proportional to the potential benefits pollinator species may provide. Here we use a novel combination of pollinator effectiveness assays (floral visit effectiveness), orchard field surveys (flower visitation rate) and pollinator dependence manipulations (pollinator exclusion experiments) to quantify the supply of pollination services provided by four different pollinator guilds to the production of four commercial varieties of apple. We show that not all pollinators are equally effective at pollinating apples, with hoverflies being less effective than solitary bees and bumblebees, and the relative abundance of different pollinator guilds visiting apple flowers of different varieties varies significantly. Based on this, the taxa specific economic benefits to UK apple production have been established. The contribution of insect pollinators to the economic output in all varieties was estimated to be £92.1M across the UK, with contributions varying widely across taxa: solitary bees (£51.4M), honeybees (£21.4M), bumblebees (£18.6M) and hoverflies (£0.7M). This research highlights the differences in the economic benefits of four insect pollinator guilds to four major apple varieties in the UK. This information is essential to underpin appropriate investment in pollination services management and provides a model that can be used in other entomolophilous crops to improve our understanding of crop pollination ecology. PMID:27152628

  16. Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity.

    PubMed

    Garratt, M P D; Breeze, T D; Boreux, V; Fountain, M T; McKerchar, M; Webber, S M; Coston, D J; Jenner, N; Dean, R; Westbury, D B; Biesmeijer, J C; Potts, S G

    2016-01-01

    Insect pollination underpins apple production but the extent to which different pollinator guilds supply this service, particularly across different apple varieties, is unknown. Such information is essential if appropriate orchard management practices are to be targeted and proportional to the potential benefits pollinator species may provide. Here we use a novel combination of pollinator effectiveness assays (floral visit effectiveness), orchard field surveys (flower visitation rate) and pollinator dependence manipulations (pollinator exclusion experiments) to quantify the supply of pollination services provided by four different pollinator guilds to the production of four commercial varieties of apple. We show that not all pollinators are equally effective at pollinating apples, with hoverflies being less effective than solitary bees and bumblebees, and the relative abundance of different pollinator guilds visiting apple flowers of different varieties varies significantly. Based on this, the taxa specific economic benefits to UK apple production have been established. The contribution of insect pollinators to the economic output in all varieties was estimated to be £92.1M across the UK, with contributions varying widely across taxa: solitary bees (£51.4M), honeybees (£21.4M), bumblebees (£18.6M) and hoverflies (£0.7M). This research highlights the differences in the economic benefits of four insect pollinator guilds to four major apple varieties in the UK. This information is essential to underpin appropriate investment in pollination services management and provides a model that can be used in other entomolophilous crops to improve our understanding of crop pollination ecology.

  17. Linking pollinator efficiency to patterns of pollen limitation: small bees exploit the plant-pollinator mutualism.

    PubMed

    Koski, Matthew H; Ison, Jennifer L; Padilla, Ashley; Pham, Angela Q; Galloway, Laura F

    2018-06-13

    Seemingly mutualistic relationships can be exploited, in some cases reducing fitness of the exploited species. In plants, the insufficient receipt of pollen limits reproduction. While infrequent pollination commonly underlies pollen limitation (PL), frequent interactions with low-efficiency, exploitative pollinators may also cause PL. In the widespread protandrous herb Campanula americana , visitation by three pollinators explained 63% of the variation in PL among populations spanning the range. Bumblebees and the medium-sized Megachile campanulae enhanced reproductive success, but small solitary bees exacerbated PL. To dissect mechanisms behind these relationships, we scored sex-specific floral visitation, and the contributions of each pollinator to plant fitness using single flower visits. Small bees and M. campanulae overvisited male-phase flowers, but bumblebees frequently visited female-phase flowers. Fewer bumblebee visits were required to saturate seed set compared to other bees. Scaling pollinator efficiency metrics to populations, small bees deplete large amounts of pollen due to highly male-biased flower visitation and infrequent pollen deposition. Thus, small bees reduce plant reproduction by limiting pollen available for transfer by efficient pollinators, and appear to exploit the plant-pollinator mutualism, acting as functional parasites to C. americana It is therefore unlikely that small bees will compensate for reproductive failure in C. americana when bumblebees are scarce. © 2018 The Author(s).

  18. The genetic architecture of reproductive isolation in Louisiana irises: pollination syndromes and pollinator preferences.

    PubMed

    Martin, Noland H; Sapir, Yuval; Arnold, Michael L

    2008-04-01

    In animal-pollinated plants, pollinator preferences for divergent floral forms can lead to partial reproductive isolation. We describe regions of plant genomes that affect pollinator preferences for two species of Louisiana Irises, Iris brevicaulis and Iris fulva, and their artificial hybrids. Iris brevicaulis and I. fulva possess bee and bird-pollination syndromes, respectively. Hummingbirds preferred I. fulva and under-visited both I. brevicaulis and backcrosses toward this species. Lepidopterans preferred I. fulva and backcrosses toward I. fulva, but also under-visited I. brevicaulis and I. brevicaulis backcrosses. Bumblebees preferred I. brevicaulis and F1 hybrids and rarely visited I. fulva. Although all three pollen vectors preferred one or the other species, these preferences did not prevent visitation to other hybrid/parental classes. Quantitative trait locus (QTL) mapping, in reciprocal BC1 mapping populations, defined the genetic architecture of loci that affected pollinator behavior. We detected six and nine QTLs that affected pollinator visitation rates in the BCIb and BCIf mapping populations, respectively, with as many as three QTLs detected for each trait. Overall, this study reflects the possible role of quantitative genetic factors in determining (1) reproductive isolation, (2) the pattern of pollinator-mediated genetic exchange, and thus (3) hybrid zone evolution.

  19. Pollination biology of fruit-bearing hedgerow plants and the role of flower-visiting insects in fruit-set.

    PubMed

    Jacobs, Jennifer H; Clark, Suzanne J; Denholm, Ian; Goulson, Dave; Stoate, Chris; Osborne, Juliet L

    2009-12-01

    In the UK, the flowers of fruit-bearing hedgerow plants provide a succession of pollen and nectar for flower-visiting insects for much of the year. The fruits of hedgerow plants are a source of winter food for frugivorous birds on farmland. It is unclear whether recent declines in pollinator populations are likely to threaten fruit-set and hence food supply for birds. The present study investigates the pollination biology of five common hedgerow plants: blackthorn (Prunus spinosa), hawthorn (Crataegus monogyna), dog rose (Rosa canina), bramble (Rubus fruticosus) and ivy (Hedera helix). The requirement for insect pollination was investigated initially by excluding insects from flowers by using mesh bags and comparing immature and mature fruit-set with those of open-pollinated flowers. Those plants that showed a requirement for insect pollination were then tested to compare fruit-set under two additional pollination service scenarios: (1) reduced pollination, with insects excluded from flowers bagged for part of the flowering period, and (2) supplemental pollination, with flowers hand cross-pollinated to test for pollen limitation. The proportions of flowers setting fruit in blackthorn, hawthorn and ivy were significantly reduced when insects were excluded from flowers by using mesh bags, whereas fruit-set in bramble and dog rose were unaffected. Restricting the exposure of flowers to pollinators had no significant effect on fruit-set. However, blackthorn and hawthorn were found to be pollen-limited, suggesting that the pollination service was inadequate in the study area. Ensuring strong populations of insect pollinators may be essential to guarantee a winter fruit supply for birds in UK hedgerows.

  20. Florivore impacts on plant reproductive success and pollinator mortality in an obligate pollination mutualism.

    PubMed

    Althoff, David M; Xiao, Wei; Sumoski, Sarah; Segraves, Kari A

    2013-12-01

    Florivores are present in many pollination systems and can have direct and indirect effects on both plants and pollinators. Although the impact of florivores are commonly examined in facultative pollination mutualisms, their effects on obligate mutualism remain relatively unstudied. Here, we used experimental manipulations and surveys of naturally occurring plants to assess the effect of florivory on the obligate pollination mutualism between yuccas and yucca moths. Yucca filamentosa (Agavaceae) is pollinated by the moth Tegeticula cassandra (Lepidoptera: Prodoxidae), and the mutualism also attracts two florivores: a generalist, the leaf-footed bug Leptoglossus phyllopus (Hemiptera: Coreidae), and a specialist, the beetle Hymenorus densus (Coleoptera: Tenebrionidae). Experimental manipulations of leaf-footed bug densities on side branches of Y. filamentosa inflorescences demonstrated that feeding causes floral abscission but does not reduce pollen or seed production in the remaining flowers. Similar to the leaf-footed bugs, experimental manipulations of beetle densities within individual flowers demonstrated that beetle feeding also causes floral abscission, but, in addition, the beetles also cause a significant reduction in pollen availability. Path analyses of phenotypic selection based on surveys of naturally occurring plants revealed temporal variation in the plant traits important to plant fitness and the effects of the florivores on fitness. Leaf-footed bugs negatively impacted fitness when fewer plants were flowering and leaf-footed bug density was high, whereas beetles had a positive effect on fitness when there were many plants flowering and their densities were low. This positive effect was likely due to adult beetles consuming yucca moth eggs while having a negligible effect on floral abscission. Together, the actions of both florivores either augmented the relationship of plant traits and fitness or slightly weakened the relationship. Overall, the

  1. Pollination biology of fruit-bearing hedgerow plants and the role of flower-visiting insects in fruit-set

    PubMed Central

    Jacobs, Jennifer H.; Clark, Suzanne J.; Denholm, Ian; Goulson, Dave; Stoate, Chris; Osborne, Juliet L.

    2009-01-01

    Background and Aims In the UK, the flowers of fruit-bearing hedgerow plants provide a succession of pollen and nectar for flower-visiting insects for much of the year. The fruits of hedgerow plants are a source of winter food for frugivorous birds on farmland. It is unclear whether recent declines in pollinator populations are likely to threaten fruit-set and hence food supply for birds. The present study investigates the pollination biology of five common hedgerow plants: blackthorn (Prunus spinosa), hawthorn (Crataegus monogyna), dog rose (Rosa canina), bramble (Rubus fruticosus) and ivy (Hedera helix). Methods The requirement for insect pollination was investigated initially by excluding insects from flowers by using mesh bags and comparing immature and mature fruit-set with those of open-pollinated flowers. Those plants that showed a requirement for insect pollination were then tested to compare fruit-set under two additional pollination service scenarios: (1) reduced pollination, with insects excluded from flowers bagged for part of the flowering period, and (2) supplemental pollination, with flowers hand cross-pollinated to test for pollen limitation. Key Results The proportions of flowers setting fruit in blackthorn, hawthorn and ivy were significantly reduced when insects were excluded from flowers by using mesh bags, whereas fruit-set in bramble and dog rose were unaffected. Restricting the exposure of flowers to pollinators had no significant effect on fruit-set. However, blackthorn and hawthorn were found to be pollen-limited, suggesting that the pollination service was inadequate in the study area. Conclusions Ensuring strong populations of insect pollinators may be essential to guarantee a winter fruit supply for birds in UK hedgerows. PMID:19770165

  2. Pollinators' mating rendezvous and the evolution of floral advertisement.

    PubMed

    Fishman, Michael A; Hadany, Lilach

    2013-01-07

    Successful cross-fertilization in plant species that rely on animal pollinators depends not just on the number of pollinator visits, but also on these visits' duration. Furthermore, in non-deceptive pollination, a visit's duration depends on the magnitude of the reward provided to the pollinator. Accordingly, plants that rely on biotic pollination have to partition their investment in cross-fertilization assurance between attracting pollinator visits - advertisement, and rewarding visitors to assure that the visit is of productive duration. Here we analyze these processes by a combination of optimality methods and game theoretical modeling. Our results indicate that the optimality in such allocation of resources depends on the types of reward offered to the pollinators. More precisely, we show that plants that offer both food reward and mating rendezvous to pollinators will evolve to allocate a higher proportion of their cross-fertilization assurance budget to advertisement than plants that offer only food reward. That is, our results indicate that pollinators' mating habits may play a role in floral evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Contrasting effects of invasive plants in plant-pollinator networks.

    PubMed

    Bartomeus, Ignasi; Vilà, Montserrat; Santamaría, Luís

    2008-04-01

    The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotus affine acinaciformis and Opuntia stricta) affect the structure of Mediterranean plant-pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant-pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant-pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant-pollinator network.

  4. Shifts in water availability mediate plant-pollinator interactions.

    PubMed

    Gallagher, M Kate; Campbell, Diane R

    2017-07-01

    Altered precipitation patterns associated with anthropogenic climate change are expected to have many effects on plants and insect pollinators, but it is unknown if effects on pollination are mediated by changes in water availability. We tested the hypothesis that impacts of climate on plant-pollinator interactions operate through changes in water availability, and specifically that such effects occur through alteration of floral attractants. We manipulated water availability in two naturally occurring Mertensia ciliata (Boraginaceae) populations using water addition, water reduction and control plots and measured effects on vegetative and floral traits, pollinator visitation and seed set. While most floral trait values, including corolla size and nectar, increased linearly with increasing water availability, in this bumblebee-pollinated species, pollinator visitation peaked at intermediate water levels. Visitation also peaked at an intermediate corolla length, while its relationship to corolla width varied across sites. Seed set, however, increased linearly with water. These results demonstrate the potential for changes in water availability to impact plant-pollinator interactions through pollinator responses to differences in floral attractants, and that the effects of water on pollinator visitation can be nonlinear. Plant responses to changes in resource availability may be an important mechanism by which climate change will affect species interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Diversity of wild bees supports pollination services in an urbanized landscape.

    PubMed

    Lowenstein, David M; Matteson, Kevin C; Minor, Emily S

    2015-11-01

    Plantings in residential neighborhoods can support wild pollinators. However, it is unknown how effectively wild pollinators maintain pollination services in small, urban gardens with diverse floral resources. We used a 'mobile garden' experimental design, whereby potted plants of cucumber, eggplant, and purple coneflower were brought to 30 residential yards in Chicago, IL, USA, to enable direct assessment of pollination services provided by wild pollinator communities. We measured fruit and seed set and investigated the effect of within-yard characteristics and adjacent floral resources on plant pollination. Increased pollinator visitation and taxonomic richness generally led to increases in fruit and seed set for all focal plants. Furthermore, fruit and seed set were correlated across the three species, suggesting that pollination services vary across the landscape in ways that are consistent among different plant species. Plant species varied in terms of which pollinator groups provided the most visits and benefit for pollination. Cucumber pollination was linked to visitation by small sweat bees (Lasioglossum spp.), whereas eggplant pollination was linked to visits by bumble bees. Purple coneflower was visited by the most diverse group of pollinators and, perhaps due to this phenomenon, was more effectively pollinated in florally-rich gardens. Our results demonstrate how a diversity of wild bees supports pollination of multiple plant species, highlighting the importance of pollinator conservation within cities. Non-crop resources should continue to be planted in urban gardens, as these resources have a neutral and potentially positive effect on crop pollination.

  6. Is floral diversification associated with pollinator divergence? Flower shape, flower colour and pollinator preference in Chilean Mimulus.

    PubMed

    Cooley, A M; Carvallo, G; Willis, J H

    2008-04-01

    Adaptation to different pollinators is thought to drive divergence in flower colour and morphology, and may lead to interspecific reproductive isolation. Floral diversity was tested for association with divergent pollinator preferences in a group of four closely related wildflower species: the yellow-flowered Mimulus luteus var. luteus and the red-pigmented M. l. variegatus, M. naiandinus and M. cupreus. Patterns of pollinator visitation were evaluated in natural plant populations in central Chile, including both single-species and mixed-species sites. Floral anthocyanin pigments were identified, and floral morphology and nectar variation were quantified in a common garden experiment using seeds collected from the study sites. Mimulus l. luteus, M. l. variegatus and M. naiandinus are morphologically similar and share a single generalist bumblebee pollinator, Bombus dahlbomii. Mimulus cupreus differs significantly from the first three taxa in corolla shape as well as nectar characteristics, and had far fewer pollinator visits. This system shows limited potential for pollinator-mediated restriction of gene flow as a function of flower colour, and no evidence of transition to a novel pollinator. Mimulus cupreus may experience reduced interspecific gene flow due to a lack of bumblebee visitation, but not because of its red pigmentation: rare yellow morphs are equally undervisited by pollinators. Overall, the results suggest that factors other than pollinator shifts may contribute to the maintenance of floral diversity in these Chilean Mimulus species.

  7. [Mechanisms that limit pollinator range in Ericaceae].

    PubMed

    Dlusskiĭ, G M; Glazunova, K P; Perfil'eva, K S

    2005-01-01

    Studies were conducted in 2001-2003 at Valdai National Park (Novgorod region) and at the Zvenigorod biological station of Moscow State University. The morphology of flowers, flowering dynamics and composition of insect visiting flowers of Ericaceae species: Andromeda polifolia, Chamaedaphne calyculata, Ledum palustre, Oxycoccus palustris, Vaccinium myrtillus, V. uliginosum, and V. vitis-idaea L. were studied. Some species of insects visiting flowers were excluded from the list of pollinators on the basis of observation on their behavior. L. palustre was visited mainly by flies where as other investigated species were visited mainly by bumblebees. In some cases bumblebees were the only visitors of the investigated plants. Mechanisms that protect flowers from flies and short-tongued solitary bees visits and ensure a best pollination by bumblebees are various among different species of Ericaceae. Efficiency of nectary protection also differs among different plant species and is defined by particularities of their habitats and flowering phenology. As far as all species of this family during the flowering are dominants in typical habitats, a competition for the pollination with species of other families in most cases is megligible. Flowering periods of V. vitis-idaea and V. myrtillus in forest ecosystems overlapped weakly. Moreover, V. myrtillus is pollinated mainly by bumblebee queens where as pollinators of V. vitis-idaea are bumblebee workers, solitary bees and horse flies. The other investigated plant species inhabit only oligotrophic peat bogs. Thery are pollinated by bumblebees but periods of flowering are not overlapped and consequently follow one after another. L. palustre and V. uliginosum flower simultaneosly but they are pollinated by different pollinators.

  8. Beetle pollination and flowering rhythm of Annona coriacea Mart. (Annonaceae) in Brazilian cerrado: Behavioral features of its principal pollinators.

    PubMed

    Costa, Marilza Silva; Silva, Ricardo José; Paulino-Neto, Hipólito Ferreira; Pereira, Mônica Josene Barbosa

    2017-01-01

    The conservation and sustainable management of Annona coriacea requires knowledge of its floral and reproductive biology, and of its main pollinators and their life cycles. In this work, we analyzed these aspects in detail. Floral biology was assessed by observing flowers from the beginning of anthesis to senescence. The visiting hours and behavior of floral visitors in the floral chamber were recorded, as were the sites of oviposition. Excavations were undertaken around specimens of A. coriacea to determine the location of immature pollinators. Anthesis was nocturnal, starting at sunset, and lasted for 52-56 h. The flowers were bisexual, protogynous and emitted a strong scent similar to the plant´s own ripe fruit. There was pronounced synchrony among all floral events (the period and duration of stigmatic receptivity, release of odor, pollen release and drooping flowers) in different individuals, but no synchrony in the same individuals. All of the flowers monitored were visited by beetle species of the genera Cyclocephala and Arriguttia. Beetles arrived at the flowers with their bodies covered in pollen and these pollen grains were transferred to the stigmata while foraging on nutritious tissues at the base of the petals. With dehiscence of the stamens and retention within the floral chamber, the bodies of the floral visitors were again covered with pollen which they carried to newly opened flowers, thus promoting the cycle of pollination. After leaving the flowers, female beetles often excavated holes in the soil to lay eggs. Larvae were found between the leaf litter and the first layer of soil under specimens of A. coriacea. Cyclocephala beetles were the main pollinators of A. coriacea, but Arriguttia brevissima was also considered a pollinator and is the first species of this genus to be observed in Annonaceae flowers. Annona coriacea was found to be self-compatible with a low reproductive efficiency in the area studied. The results of this investigation

  9. Beetle pollination and flowering rhythm of Annona coriacea Mart. (Annonaceae) in Brazilian cerrado: Behavioral features of its principal pollinators

    PubMed Central

    Pereira, Mônica Josene Barbosa

    2017-01-01

    The conservation and sustainable management of Annona coriacea requires knowledge of its floral and reproductive biology, and of its main pollinators and their life cycles. In this work, we analyzed these aspects in detail. Floral biology was assessed by observing flowers from the beginning of anthesis to senescence. The visiting hours and behavior of floral visitors in the floral chamber were recorded, as were the sites of oviposition. Excavations were undertaken around specimens of A. coriacea to determine the location of immature pollinators. Anthesis was nocturnal, starting at sunset, and lasted for 52–56 h. The flowers were bisexual, protogynous and emitted a strong scent similar to the plant´s own ripe fruit. There was pronounced synchrony among all floral events (the period and duration of stigmatic receptivity, release of odor, pollen release and drooping flowers) in different individuals, but no synchrony in the same individuals. All of the flowers monitored were visited by beetle species of the genera Cyclocephala and Arriguttia. Beetles arrived at the flowers with their bodies covered in pollen and these pollen grains were transferred to the stigmata while foraging on nutritious tissues at the base of the petals. With dehiscence of the stamens and retention within the floral chamber, the bodies of the floral visitors were again covered with pollen which they carried to newly opened flowers, thus promoting the cycle of pollination. After leaving the flowers, female beetles often excavated holes in the soil to lay eggs. Larvae were found between the leaf litter and the first layer of soil under specimens of A. coriacea. Cyclocephala beetles were the main pollinators of A. coriacea, but Arriguttia brevissima was also considered a pollinator and is the first species of this genus to be observed in Annonaceae flowers. Annona coriacea was found to be self-compatible with a low reproductive efficiency in the area studied. The results of this investigation

  10. Orchid–pollinator interactions and potential vulnerability to biological invasion

    PubMed Central

    Chupp, Adam D.; Battaglia, Loretta L.; Schauber, Eric M.; Sipes, Sedonia D.

    2015-01-01

    Mutualistic relationships between plants and their pollinators have played a major role in the evolution of biodiversity. While the vulnerability of these relationships to environmental change is a major concern, studies often lack a framework for predicting impacts from emerging threats (e.g. biological invasions). The objective of this study was to determine the reliance of Platanthera ciliaris (orange-fringed orchid) on Papilio palamedes (Palamedes swallowtail butterfly) for pollination and the relative availability of alternative pollinators. Recent declines of P. palamedes larval host plants due to laurel wilt disease (LWD) could endanger P. ciliaris populations that rely heavily on this butterfly for pollination. We monitored pollinator visitation and fruit set and measured nectar spur lengths of P. ciliaris flowers and proboscis lengths of its floral visitors in Jackson County, MS, USA. Papilio palamedes was the primary visitor with minimal visitation by Phoebis sennae (cloudless sulfur butterfly). Lengths of P. ciliaris nectar spurs were similar to proboscis lengths of both pollinator species. Fruit set was moderate with access to pollinators (55 ± 10.8 %), yet failed (0 %) when pollinators were excluded. Visitation increased with inflorescence size, but there was no such pattern in fruit set, indicating that fruit set was not limited by pollinator visitation within the range of visitation rates we observed. Our results are supported by historical data that suggest P. palamedes and P. sennae are important pollinators of P. ciliaris. Although P. sennae may provide supplemental pollination service, this is likely constrained by habitat preferences that do not always overlap with those of P. cilaris. Observed declines of P. palamedes due to LWD could severely limit the reproductive success and persistence of P. ciliaris and similar orchid species populations. This empirical-based prediction is among the first to document exotic forest pests and pathogens as

  11. Point and interval estimation of pollinator importance: a study using pollination data of Silene caroliniana.

    PubMed

    Reynolds, Richard J; Fenster, Charles B

    2008-05-01

    Pollinator importance, the product of visitation rate and pollinator effectiveness, is a descriptive parameter of the ecology and evolution of plant-pollinator interactions. Naturally, sources of its variation should be investigated, but the SE of pollinator importance has never been properly reported. Here, a Monte Carlo simulation study and a result from mathematical statistics on the variance of the product of two random variables are used to estimate the mean and confidence limits of pollinator importance for three visitor species of the wildflower, Silene caroliniana. Both methods provided similar estimates of mean pollinator importance and its interval if the sample size of the visitation and effectiveness datasets were comparatively large. These approaches allowed us to determine that bumblebee importance was significantly greater than clearwing hawkmoth, which was significantly greater than beefly. The methods could be used to statistically quantify temporal and spatial variation in pollinator importance of particular visitor species. The approaches may be extended for estimating the variance of more than two random variables. However, unless the distribution function of the resulting statistic is known, the simulation approach is preferable for calculating the parameter's confidence limits.

  12. Contribution of Pollinators to Seed Production as Revealed by Differential Pollinator Exclusion in Clerodendrum trichotomum (Lamiaceae)

    PubMed Central

    Sakamoto, Ryota L.; Ito, Motomi; Kawakubo, Nobumitsu

    2012-01-01

    A diverse assemblage of pollinators, such as bees, beetles, flies, and butterflies, will often visit a single plant species. However, evaluating the effect of several insects on fruit and seed production is difficult in plants visited by a variety of insects. Here, we analyzed the effect of three types of pollinators, Papilio spp., Macroglossum pyrrhosticta, and Xylocopa appendiculata on fruit and seed production in Clerodendrum trichotomum by using a flower visitor barrier experiment with nets of specific mesh sizes. As a result, fruit/flower and seed/ovule ratios were significantly lower under Papilio exclusion than under natural conditions. On the other hand, ratios were not significantly different between Papilio excluded and both Papilio and M. pyrrhosticta excluded treatments. Therefore, Papilio and X. appendiculata are effective pollinators, whereas M. pyrrhosticta, which was the most frequent visitor, of C. trichotomum, is not. From our observations of visiting behaviors, we believe that because M. pyrrhosticta probably promotes self- pollination, this species is a non-effective pollinator. This is the first study to separate and compare the contribution of various visitors to the reproductive success of a plant. PMID:22442724

  13. Orchid-pollinator interactions and potential vulnerability to biological invasion.

    PubMed

    Chupp, Adam D; Battaglia, Loretta L; Schauber, Eric M; Sipes, Sedonia D

    2015-08-17

    Mutualistic relationships between plants and their pollinators have played a major role in the evolution of biodiversity. While the vulnerability of these relationships to environmental change is a major concern, studies often lack a framework for predicting impacts from emerging threats (e.g. biological invasions). The objective of this study was to determine the reliance of Platanthera ciliaris (orange-fringed orchid) on Papilio palamedes (Palamedes swallowtail butterfly) for pollination and the relative availability of alternative pollinators. Recent declines of P. palamedes larval host plants due to laurel wilt disease (LWD) could endanger P. ciliaris populations that rely heavily on this butterfly for pollination. We monitored pollinator visitation and fruit set and measured nectar spur lengths of P. ciliaris flowers and proboscis lengths of its floral visitors in Jackson County, MS, USA. Papilio palamedes was the primary visitor with minimal visitation by Phoebis sennae (cloudless sulfur butterfly). Lengths of P. ciliaris nectar spurs were similar to proboscis lengths of both pollinator species. Fruit set was moderate with access to pollinators (55 ± 10.8 %), yet failed (0 %) when pollinators were excluded. Visitation increased with inflorescence size, but there was no such pattern in fruit set, indicating that fruit set was not limited by pollinator visitation within the range of visitation rates we observed. Our results are supported by historical data that suggest P. palamedes and P. sennae are important pollinators of P. ciliaris. Although P. sennae may provide supplemental pollination service, this is likely constrained by habitat preferences that do not always overlap with those of P. cilaris. Observed declines of P. palamedes due to LWD could severely limit the reproductive success and persistence of P. ciliaris and similar orchid species populations. This empirical-based prediction is among the first to document exotic forest pests and pathogens as

  14. Drought, pollen and nectar availability, and pollination success.

    PubMed

    Waser, Nickolas M; Price, Mary V

    2016-06-01

    Pollination success of animal-pollinated flowers depends on rate of pollinator visits and on pollen deposition per visit, both of which should vary with the pollen and nectar "neighborhoods" of a plant, i.e., with pollen and nectar availability in nearby plants. One determinant of these neighborhoods is per-flower production of pollen and nectar, which is likely to respond to environmental influences. In this study, we explored environmental effects on pollen and nectar production and on pollination success in order to follow up a surprising result from a previous study: flowers of Ipomopsis aggregata received less pollen in years of high visitation by their hummingbird pollinators. A new analysis of the earlier data indicated that high bird visitation corresponded to drought years. We hypothesized that drought might contribute to the enigmatic prior result if it decreases both nectar and pollen production: in dry years, low nectar availability could cause hummingbirds to visit flowers at a higher rate, and low pollen availability could cause them to deposit less pollen per visit. A greenhouse experiment demonstrated that drought does reduce both pollen and nectar production by I. aggregata flowers. This result was corroborated across 6 yr of variable precipitation and soil moisture in four unmanipulated field populations. In addition, experimental removal of pollen from flowers reduced the pollen received by nearby flowers. We conclude that there is much to learn about how abiotic and biotic environmental drivers jointly affect pollen and nectar production and availability, and how this contributes to pollen and nectar neighborhoods and thus influences pollination success.

  15. Seasonal and annual variations in the pollination efficiency of a pollinator community of Dictamnus albus L.

    PubMed

    Fisogni, A; Rossi, M; Sgolastra, F; Bortolotti, L; Bogo, G; de Manincor, N; Quaranta, M; Galloni, M

    2016-05-01

    The interplay between insect and plant traits outlines the patterns of pollen transfer and the subsequent plant reproductive fitness. We studied the factors that affect the pollination efficiency of a pollinator community of Dictamnus albus L. by evaluating insect behaviour and morphological characteristics in relation to flowering phenology. In order to extrapolate the pollinator importance of single taxa and of the whole pollinator guild, we calculated an index distinguishing between potential (PPI) and realized (RPI) pollinator importance. Although the pollinator species spectrum appeared rather constant, we found high intra- and inter-annual variability of pollinator frequency and importance within the insect community. Flower visitation rate strictly depended on insect abundance and on the overlap between their flying period and flower blooming. All the pollinators visited flowers from the bottom to the top of the racemes, excluding intra-plant geitonogamous pollination, and most of them showed high pollen fidelity. Only medium large-sized bees could contact the upward bending stiles while feeding on nectar, highlighting a specialisation of the plant towards bigger pollinators. Moreover, we found evidence of functional specialisation, since all pollinators were restricted to a single taxonomic group (order: Hymenoptera; superfamily: Apoidea). Both the PPI and RPI indices indicate Habropoda tarsata as the most important pollinator of D. albus. Following hand cross-pollination experiments we revealed the presence of pollination limitation in 1 of the 3 years of field study. We discuss this result in relation to flowering abundance and to possible mismatches of phenological periods between plants and insects. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Pollinator Behaviour on a Food-Deceptive Orchid Calypso bulbosa and Coflowering Species

    PubMed Central

    Tuomi, Juha; Lämsä, Juho; Wannas, Lauri; Abeli, Thomas; Jäkäläniemi, Anne

    2015-01-01

    Food deception as a pollination strategy has inspired many studies over the last few decades. Pollinator deception has evolved in many orchids possibly to enhance outcrossing. Food-deceptive orchids usually have low pollinator visitation rates as compared to rewarding species. They may benefit in visitations from the presence (magnet-species hypothesis) or, alternatively, absence of coflowering rewarding species (competition hypothesis). We present data on pollinator visitations on a deceptive, terrestrial orchid Calypso bulbosa, a species with a single flower per plant and whose flowering period partly overlaps with rewarding, early flowering willows (Salix sp.) and later-flowering bilberry (Vaccinium myrtillus). When surveying inactive bumblebee queens on willows in cool weather, about 7% of them carried Calypso pollinia. Most common bumblebee species appeared to visit and thus pollinate Calypso. Bumblebees typically visited one to three Calypso flowers before flying away, providing some support for the outcrossing hypothesis. We conclude that, regarding the pollinations strategy, both magnet-species and competition hypotheses have a role in the pollination of Calypso, but on different spatial scales. On a large scale rewarding species are important for attracting pollinators to a given region, but on a small scale absence of competition ensures sufficient pollination rate for the deceptive orchid. PMID:25861675

  17. Two invasive acacia species secure generalist pollinators in invaded communities

    NASA Astrophysics Data System (ADS)

    Montesinos, Daniel; Castro, Sílvia; Rodríguez-Echeverría, Susana

    2016-07-01

    Exotic entomophilous plants need to establish effective pollinator interactions in order to succeed after being introduced into a new community, particularly if they are obligatory outbreeders. By establishing these novel interactions in the new non-native range, invasive plants are hypothesised to drive changes in the composition and functioning of the native pollinator community, with potential impacts on the pollination biology of native co-flowering plants. We used two different sites in Portugal, each invaded by a different acacia species, to assess whether two native Australian trees, Acacia dealbata and Acacia longifolia, were able to recruit pollinators in Portugal, and whether the pollinator community visiting acacia trees differed from the pollinator communities interacting with native co-flowering plants. Our results indicate that in the invaded range of Portugal both acacia species were able to establish novel mutualistic interactions, predominantly with generalist pollinators. For each of the two studied sites, only two other co-occurring native plant species presented partially overlapping phenologies. We observed significant differences in pollinator richness and visitation rates among native and non-native plant species, although the study of β diversity indicated that only the native plant Lithodora fruticosa presented a differentiated set of pollinator species. Acacias experienced a large number of visits by numerous pollinator species, but massive acacia flowering resulted in flower visitation rates frequently lower than those of the native co-flowering species. We conclude that the establishment of mutualisms in Portugal likely contributes to the effective and profuse production of acacia seeds in Portugal. Despite the massive flowering of A. dealbata and A. longifolia, native plant species attained similar or higher visitation rates than acacias.

  18. Nectary tracks as pollinator manipulators: The pollination ecology of Swertia bimaculata (Gentianaceae).

    PubMed

    Wang, Shuai; Fu, Wen-Long; Du, Wei; Zhang, Qi; Li, Ya; Lyu, Yu-Shu; Wang, Xiao-Fan

    2018-03-01

    Floral nectaries are closely associated with biotic pollination, and the nectar produced by corolla nectaries is generally enclosed in floral structures. Although some Swertia spp. (Gentianaceae), including S. bimaculata , evolved a peculiar form of corolla nectaries (known as "gland patches") arranged in a conspicuous ring on the rotate corolla and that completely expose their nectar, little is known about the pollination of these plants. Two hypotheses were made concerning the possible effects of gland patches: visual attraction and visitor manipulation. The floral traits, mating system, and insect pollination of S. bimaculata were examined, and the pollination effects of gland patches were evaluated. A comparative study was made using Swertia kouitchensis , a species with fimbriate nectaries. Swertia bimaculata flowers were protandrous, with obvious stamen movement leading to herkogamy in the female phase and to a significant reduction in nectary-anther distance. The species is strongly entomophilous and facultatively xenogamous. The daily reward provided per flower decreased significantly after the male phase. The most effective pollinators were large dipterans, and the visiting proportion of Diptera was significantly higher in S. bimaculata than in S. kouitchensis . Most visitors performed "circling behavior" in S. bimaculata flowers. Removing or blocking the nectaries caused no reduction in visiting frequency but a significant reduction in visit duration, interrupting the circling behavior. The circling behavior was encouraged by nectar abundance and promoted pollen dispersal. Visitor species with small body size had little chance to contact the anthers or stigma, revealing a filtration effect exerted by the floral design. These results rejected the "visual attraction" hypothesis and supported the "visitor manipulation" hypothesis. The nectary whorl within a flower acted like a ring-shaped track that urged nectar foragers to circle on the corolla, making

  19. The most effective pollinator principle applies to new invasive pollinators.

    PubMed

    Medel, Rodrigo; González-Browne, Catalina; Salazar, Daniela; Ferrer, Pedro; Ehrenfeld, Mildred

    2018-06-01

    G. L. Stebbins' most effective pollinator principle states that when pollinators are not limiting, plants are expected to specialize and adapt to the most abundant and effective pollinator species available. In this study, we quantify the effectiveness of bees, hummingbirds and hawkmoths in a Chilean population of Erythranthe lutea (Phrymaceae), and examine whether flower traits are subject to pollinator-mediated selection by the most effective pollinator species during two consecutive years. Unlike most species in the pollinator community, the visitation rate of the recently arrived Bombus terrestris did not change substantially between years, which together with its high and stable pollen delivery to flower stigmas made this species the most important in the pollinator assemblage, followed by the solitary bee Centris nigerrima Flower traits were under significant selection in the direction expected for short-tongue bees, suggesting that E. lutea is in the initial steps of adaptation to the highly effective exotic bumblebee . Our results illustrate the applicability of Stebbins' principle for new invasive pollinators, and stress their importance in driving flower adaptation of native plant species, a critical issue in the face of biotic exchange and homogenization. © 2018 The Author(s).

  20. Competition for pollinators and intra-communal spectral dissimilarity of flowers.

    PubMed

    van der Kooi, C J; Pen, I; Staal, M; Stavenga, D G; Elzenga, J T M

    2016-01-01

    Competition for pollinators occurs when, in a community of flowering plants, several simultaneously flowering plant species depend on the same pollinator. Competition for pollinators increases interspecific pollen transfer rates, thereby reducing the number of viable offspring. In order to decrease interspecific pollen transfer, plant species can distinguish themselves from competitors by having a divergent phenotype. Floral colour is an important signalling cue to attract potential pollinators and thus a major aspect of the flower phenotype. In this study, we analysed the amount of spectral dissimilarity of flowers among pollinator-competing plants in a Dutch nature reserve. We expected pollinator-competing plants to exhibit more spectral dissimilarity than non-competing plants. Using flower visitation data of 2 years, we determined the amount of competition for pollinators by different plant species. Plant species that were visited by the same pollinator were considered specialist and competing for that pollinator, whereas plant species visited by a broad array of pollinators were considered non-competing generalists. We used principal components analysis to quantify floral reflectance, and found evidence for enhanced spectral dissimilarity among plant species within specialist pollinator guilds (i.e. groups of plant species competing for the same pollinator). This is the first study that examined intra-communal dissimilarity in floral reflectance with a focus on the pollination system. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Pollination Requirements of Almond (Prunus dulcis): Combining Laboratory and Field Experiments.

    PubMed

    Henselek, Yuki; Eilers, Elisabeth J; Kremen, Claire; Hendrix, Stephen D; Klein, Alexandra-Maria

    2018-05-28

    Almond (Prunus dulcis (Mill.) D. A. Webb; Rosales: Rosaceae) is a cash crop with an estimated global value of over seven billion U.S. dollars annually and commercial varieties are highly dependent on insect pollination. Therefore, the understanding of basic pollination requirements of the main varieties including pollination efficiency of honey bees (Apis mellifera, Linnaeus, Hymenoptera: Apidae) and wild pollinators is essential for almond production. We first conducted two lab experiments to examine the threshold number of pollen grains needed for successful pollination and to determine if varietal identity or diversity promotes fruit set and weight. Further, we examined stigma and ovules of flowers visited by Apis and non-Apis pollinators in the field to study the proportion of almond to non-almond pollen grains deposited, visitation time per flower visit, and tube set. Results indicate that the threshold for successful fertilization is around 60 pollen grains, but pollen can be from any compatible variety as neither pollen varietal identity nor diversity enhanced fruit set or weight. Andrena cerasifolii Cockerell (Hymenoptera: Andrenidae) was a more effective pollinator on a per single visit basis than Apis and syrphid flies. Nevertheless, Apis was more efficient than A. cerasifolii and syrphid flies as they spent less time on a flower during a single visit. Hence, planting with two compatible varieties and managing for both Apis and non-Apis pollinators is likely to be an optimal strategy for farmers to secure high and stable pollination success.

  2. Using Nonmetric Multidimensional Scaling to Analyze Bee Visitation in East Tennessee Crops as an Indicator of Pollination Services Provided by Honey Bees (Apis mellifera L.) and Native Bees.

    PubMed

    Wilson, Michael E; Skinner, John A; Wszelaki, Annette L; Drummond, Frank

    2016-04-01

    This study investigated bee visitation on 10 agricultural crops grown on diverse small farms in Tennessee to determine the abundance of native bees and honey bees and the partitioning of visitation among crops. Summaries for each crop are used to generate mean proportions of bee visitation by categories of bees. This shows that native bee visits often occur as frequently, or in greater proportions than non-native honey bee visits. Visitation across multiple crops is then analyzed together with nonmetric multidimensional scaling to show how communities of bees that provide crop pollination change depending on the crop. Within squash and pumpkin plantings, continuous and discrete factors, such as "time of day" and "organic practices," further explain shifts in the community composition of flower visitors. Results from this study show that native bees frequently visit flowers on various crops, indicating that they are likely contributing to pollination services in addition to honey bees. Furthermore, the community of bees visiting flowers changes based on crop type, phenology, and spatial-temporal factors. Results suggest that developing pollinator conservation for farms that grow a wide variety of crops will likely require multiple conservation strategies. Farms that concentrate on a single crop may be able to tailor conservation practices toward the most important bees in their system and geographic locale. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Stingless Bees as Alternative Pollinators of Canola.

    PubMed

    Witter, Sidia; Nunes-Silva, Patrícia; Lisboa, Bruno B; Tirelli, Flavia P; Sattler, Aroni; Both Hilgert-Moreira, Suzane; Blochtein, Betina

    2015-06-01

    Alternative pollinators can ensure pollination services if the availability of the managed or most common pollinator is compromised. In this study, the behavior and pollination efficiency of Apis mellifera L. and two species of stingless bees, Plebeia emerina Friese and Tetragonisca fiebrigi Schwarz, were evaluated and compared in flowers of Brassica napus L. 'Hyola 61'. A. mellifera was an efficient pollinator when collecting nectar because it effectively touched the reproductive organs of the flower. In contrast, stingless bees were efficient pollinators only when collecting pollen. The number of pollen grains deposited on the stigma after a single visit by worker bees of the three species was greater than the number of grains resulting from pollination without the bee visits. On average, the three species deposited enough pollen grains to fertilize all of the flower ovules. A. mellifera and P. emerina had similar pollination efficiency because no significant differences were observed in the characteristics of the siliques produced. Although T. fiebrigi is also an effective pollinator, the seed mass produced by their pollination was lower. Native bees promoted similar rates of fruit set compared with A. mellifera. Thus, P. emerina has potential to be used for pollination in canola crops. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Pollination of Granadilla (Passiflora ligularis) Benefits From Large Wild Insects.

    PubMed

    Gutiérrez-Chacón, Catalina; Fornoff, Felix; Ospina-Torres, Rodulfo; Klein, Alexandra-Maria

    2018-05-15

    The contribution of wild pollinators to food production has recently been assessed for many crops, although it remains unclear for several tropical crops. Granadilla (Passiflora ligularis Juss), a crop native to the tropical Andes, is one such crop where a gap exists regarding comprehensive knowledge about its pollination system. In a field experiment in the Colombian Andes, we 1) describe flower visitors in terms of visit quantity (visitation rate) and quality (touches of flower-reproductive structures), 2) assess the pollination system by comparing fruit set and fruit weight per flower in three pollination treatments: pollinator exclusion, open pollination, and supplementary pollination, and 3) evaluate pollination deficits (difference between open and supplementary pollination) in relation to pollinator density. We observed 12 bee species visiting granadilla flowers, with Apis mellifera Linnaeus being the most frequent species. However, large bees such as Xylocopa lachnea Moure and Epicharis rustica Olivier touched stigmata and anthers more often. Fruit set and fruit weight per flower were significantly lower in the pollinator exclusion treatment compared to open and supplementary pollination, while the latter treatments showed nonsignificant differences. Pollination deficit significantly decreased with the increasing density of large bees and wasps. Our results illustrate the high dependency of granadilla on wild pollinating insects and highlight the crucial role of large insects to granadilla production. This stresses the need to maintain or increase the density of large pollinators in granadilla production areas, which in turn will necessitate better knowledge on their ecological requirements to inform landscape planning and population-management programs.

  5. Floral traits driving reproductive isolation of two co-flowering taxa that share vertebrate pollinators

    PubMed Central

    Queiroz, Joel A.; Quirino, Zelma G. M.; Machado, Isabel C.

    2015-01-01

    Floral attributes evolve in response to frequent and efficient pollinators, which are potentially important drivers of floral diversification and reproductive isolation. In this context, we asked, how do flowers evolve in a bat–hummingbird pollination system? Hence, we investigated the pollination ecology of two co-flowering Ipomoea taxa (I. marcellia and I. aff. marcellia) pollinated by bats and hummingbirds, and factors favouring reproductive isolation and pollinator sharing in these plants. To identify the most important drivers of reproductive isolation, we compared the flowers of the two Ipomoea taxa in terms of morphometry, anthesis and nectar production. Pollinator services were assessed using frequency of visits, fruit set and the number of seeds per fruit after visits. The studied Ipomoea taxa differed in corolla size and width, beginning and duration of anthesis, and nectar attributes. However, they shared the same diurnal and nocturnal visitors. The hummingbird Heliomaster squamosus was more frequent in I. marcellia (1.90 visits h−1) than in I. aff. marcellia (0.57 visits h−1), whereas glossophagine bats showed similar visit rates in both taxa (I. marcellia: 0.57 visits h−1 and I. aff. marcellia: 0.64 visits h−1). Bat pollination was more efficient in I. aff. marcellia, whereas pollination by hummingbirds was more efficient in I. marcellia. Differences in floral attributes between Ipomoea taxa, especially related to the anthesis period, length of floral parts and floral arrangement in the inflorescence, favour reproductive isolation from congeners through differential pollen placement on pollinators. This bat–hummingbird pollination system seems to be advantageous in the study area, where the availability of pollinators and floral resources changes considerably throughout the year, mainly as a result of rainfall seasonality. This interaction is beneficial for both sides, as it maximizes the number of potential pollen vectors for plants and

  6. Non-bee insects are important contributors to global crop pollination.

    PubMed

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal

    2016-01-05

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

  7. Non-bee insects are important contributors to global crop pollination

    PubMed Central

    Bartomeus, Ignasi; Garibaldi, Lucas A.; Garratt, Michael P. D.; Howlett, Brad G.; Winfree, Rachael; Cunningham, Saul A.; Mayfield, Margaret M.; Arthur, Anthony D.; Andersson, Georg K. S.; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G.; Chacoff, Natacha P.; Entling, Martin H.; Foully, Benjamin; Freitas, Breno M.; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R.; Gross, Caroline L.; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q.; Lindström, Sandra A. M.; Mandelik, Yael; Monteiro, Victor M.; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E.; de O. Pereira, Natália; Pisanty, Gideon; Potts, Simon G.; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S.; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G.; Stanley, Dara A.; Stout, Jane C.; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H.; Viana, Blandina F.; Woyciechowski, Michal

    2016-01-01

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines. PMID:26621730

  8. Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae)

    PubMed Central

    Drummond, F. A.; Hoshide, A. K.; Dibble, A. C.; Stack, L. B.

    2017-01-01

    Abstract Pollinator-dependent agriculture heavily relies upon a single pollinator—the honey bee. To diversify pollination strategies, growers are turning to alternatives. Densely planted reservoirs of pollen- and nectar-rich flowers (pollination reservoirs, hereafter “PRs”) may improve pollination services provided by wild bees. Our focal agroecosystem, lowbush blueberry (Vaccinium angustifolium Aiton), exists in a simple landscape uniquely positioned to benefit from PRs. First, we contrast bee visitation rates and use of three types of PR. We consider the effects of PRs on wild bee diversity and the composition of bumble bee pollen loads. We contrast field-level crop pollination services between PRs and controls four years postestablishment. Last, we calculate the time to pay for PR investment. Social bees preferentially used clover plantings; solitary bees preferentially used wildflower plantings. On average, bumble bee pollen loads in treatment fields contained 37% PR pollen. PRs significantly increased visitation rates to the crop in year 4, and exerted a marginally significant positive influence on fruit set. The annualized costs of PRs were covered by the fourth year using the measured increase in pollination services. Our findings provide evidence of the positive impact of PRs on crop pollination services. PMID:28069631

  9. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production.

    PubMed

    Gibbs, Jason; Elle, Elizabeth; Bobiwash, Kyle; Haapalainen, Tiia; Isaacs, Rufus

    2016-01-01

    Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial 'Bluecrop' blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0-39.5 hives per ha) to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in the same crop can

  10. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production

    PubMed Central

    Gibbs, Jason; Elle, Elizabeth; Bobiwash, Kyle; Haapalainen, Tiia; Isaacs, Rufus

    2016-01-01

    Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial ‘Bluecrop’ blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0–39.5 hives per ha) to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in the same crop

  11. Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae).

    PubMed

    Venturini, E M; Drummond, F A; Hoshide, A K; Dibble, A C; Stack, L B

    2017-04-01

    Pollinator-dependent agriculture heavily relies upon a single pollinator-the honey bee. To diversify pollination strategies, growers are turning to alternatives. Densely planted reservoirs of pollen- and nectar-rich flowers (pollination reservoirs, hereafter "PRs") may improve pollination services provided by wild bees. Our focal agroecosystem, lowbush blueberry (Vaccinium angustifolium Aiton), exists in a simple landscape uniquely positioned to benefit from PRs. First, we contrast bee visitation rates and use of three types of PR. We consider the effects of PRs on wild bee diversity and the composition of bumble bee pollen loads. We contrast field-level crop pollination services between PRs and controls four years postestablishment. Last, we calculate the time to pay for PR investment. Social bees preferentially used clover plantings; solitary bees preferentially used wildflower plantings. On average, bumble bee pollen loads in treatment fields contained 37% PR pollen. PRs significantly increased visitation rates to the crop in year 4, and exerted a marginally significant positive influence on fruit set. The annualized costs of PRs were covered by the fourth year using the measured increase in pollination services. Our findings provide evidence of the positive impact of PRs on crop pollination services. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  12. Disentangling multiple drivers of pollination in a landscape-scale experiment

    PubMed Central

    Schüepp, Christof; Herzog, Felix; Entling, Martin H.

    2014-01-01

    Animal pollination is essential for the reproductive success of many wild and crop plants. Loss and isolation of (semi-)natural habitats in agricultural landscapes can cause declines of plants and pollinators and endanger pollination services. We investigated the independent effects of these drivers on pollination of young cherry trees in a landscape-scale experiment. We included (i) isolation of study trees from other cherry trees (up to 350 m), (ii) the amount of cherry trees in the landscape, (iii) the isolation from other woody habitats (up to 200 m) and (iv) the amount of woody habitats providing nesting and floral resources for pollinators. At the local scale, we considered effects of (v) cherry flower density and (vi) heterospecific flower density. Pollinators visited flowers more often in landscapes with high amount of woody habitat and at sites with lower isolation from the next cherry tree. Fruit set was reduced by isolation from the next cherry tree and by a high local density of heterospecific flowers but did not directly depend on pollinator visitation. These results reveal the importance of considering the plant's need for conspecific pollen and its pollen competition with co-flowering species rather than focusing only on pollinators’ habitat requirements and flower visitation. It proved to be important to disentangle habitat isolation from habitat loss, local from landscape-scale effects, and direct effects of pollen availability on fruit set from indirect effects via pollinator visitation to understand the delivery of an agriculturally important ecosystem service. PMID:24225465

  13. Selection by pollinators on floral traits in generalized Trollius ranunculoides (Ranunculaceae) along altitudinal gradients.

    PubMed

    Zhao, Zhi-Gang; Wang, Yi-Ke

    2015-01-01

    Abundance and visitation of pollinator assemblages tend to decrease with altitude, leading to an increase in pollen limitation. Thus increased competition for pollinators may generate stronger selection on attractive traits of flowers at high elevations and cause floral adaptive evolution. Few studies have related geographically variable selection from pollinators and intraspecific floral differentiation. We investigated the variation of Trollius ranunculoides flowers and its pollinators along an altitudinal gradient on the eastern Qinghai-Tibet Plateau, and measured phenotypic selection by pollinators on floral traits across populations. The results showed significant decline of visitation rate of bees along altitudinal gradients, while flies was unchanged. When fitness is estimated by the visitation rate rather than the seed number per plant, phenotypic selection on the sepal length and width shows a significant correlation between the selection strength and the altitude, with stronger selection at higher altitudes. However, significant decreases in the sepal length and width of T. ranunculoides along the altitudinal gradient did not correspond to stronger selection of pollinators. In contrast to the pollinator visitation, mean annual precipitation negatively affected the sepal length and width, and contributed more to geographical variation in measured floral traits than the visitation rate of pollinators. Therefore, the sepal size may have been influenced by conflicting selection pressures from biotic and abiotic selective agents. This study supports the hypothesis that lower pollinator availability at high altitude can intensify selection on flower attractive traits, but abiotic selection is preventing a response to selection from pollinators.

  14. Mechanisms and evolution of deceptive pollination in orchids.

    PubMed

    Jersáková, Jana; Johnson, Steven D; Kindlmann, Pavel

    2006-05-01

    The orchid family is renowned for its enormous diversity of pollination mechanisms and unusually high occurrence of non-rewarding flowers compared to other plant families. The mechanisms of deception in orchids include generalized food deception, food-deceptive floral mimicry, brood-site imitation, shelter imitation, pseudoantagonism, rendezvous attraction and sexual deception. Generalized food deception is the most common mechanism (reported in 38 genera) followed by sexual deception (18 genera). Floral deception in orchids has been intensively studied since Darwin, but the evolution of non-rewarding flowers still presents a major puzzle for evolutionary biology. The two principal hypotheses as to how deception could increase fitness in plants are (i) reallocation of resources associated with reward production to flowering and seed production, and (ii) higher levels of cross-pollination due to pollinators visiting fewer flowers on non-rewarding plants, resulting in more outcrossed progeny and more efficient pollen export. Biologists have also tried to explain why deception is overrepresented in the orchid family. These explanations include: (i) efficient removal and deposition of pollinaria from orchid flowers in a single pollinator visit, thus obviating the need for rewards to entice multiple visits from pollinators; (ii) efficient transport of orchid pollen, thus requiring less reward-induced pollinator constancy; (iii) low-density populations in many orchids, thus limiting the learning of associations of floral phenotypes and rewards by pollinators; (iv) packaging of pollen in pollinaria with limited carry-over from flower to flower, thus increasing the risks of geitonogamous self-pollination when pollinators visit many flowers on rewarding plants. All of these general and orchid-specific hypotheses are difficult to reconcile with the well-established pattern for rewardlessness to result in low pollinator visitation rates and consequently low levels of fruit

  15. Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees.

    PubMed

    Pfister, Sonja C; Eckerter, Philipp W; Schirmel, Jens; Cresswell, James E; Entling, Martin H

    2017-05-01

    The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees.

  16. Shift from bird to butterfly pollination in Clivia (Amaryllidaceae).

    PubMed

    Kiepiel, Ian; Johnson, Steven D

    2014-01-01

    Pollinator shifts have been implicated as a driver of divergence in angiosperms. We tested the hypothesis that there was a transition from bird- to butterfly pollination in the African genus Clivia (Amaryllidaceae) and investigated how floral traits may have been either modified or retained during this transition. We identified pollinators using field observations, correlations between lepidopteran wing scales and pollen on stigmas, and single-visit and selective exclusion experiments. We also quantified floral rewards and advertising traits. The upright trumpet-shaped flowers of C. miniata were found to be pollinated effectively by swallowtail butterflies during both nectar-feeding and brush visits. These butterflies transfer pollen on their wings, as evidenced by positive correlations between wing scales and pollen loads on stigmas. All other Clivia species have narrow pendulous flowers that are visited by sunbirds. Selective exclusion of birds and large butterflies from flowers of two Clivia species resulted in a significant decline in seed production. From the distribution of pollination systems on available phylogenies, it is apparent that a shift took place from bird- to butterfly pollination in Clivia. This shift was accompanied by the evolution of trumpet-shaped flowers, smaller nectar volume, and emission of scent, while flower color and nectar chemistry do not appear to have been substantially modified. These results are consistent with the idea that pollinator shifts can explain major floral modifications during plant diversification.

  17. Bird pollination of Canary Island endemic plants

    NASA Astrophysics Data System (ADS)

    Ollerton, Jeff; Cranmer, Louise; Stelzer, Ralph J.; Sullivan, Steve; Chittka, Lars

    2009-02-01

    The Canary Islands are home to a guild of endemic, threatened bird-pollinated plants. Previous work has suggested that these plants evolved floral traits as adaptations to pollination by flower specialist sunbirds, but subsequently, they appear to have co-opted generalist passerine birds as sub-optimal pollinators. To test this idea, we carried out a quantitative study of the pollination biology of three of the bird-pollinated plants, Canarina canariensis (Campanulaceae), Isoplexis canariensis (Veronicaceae) and Lotus berthelotii (Fabaceae), on the island of Tenerife. Using colour vision models, we predicted the detectability of flowers to bird and bee pollinators. We measured pollinator visitation rates, nectar standing crops as well as seed-set and pollen removal and deposition. These data showed that the plants are effectively pollinated by non-flower specialist passerine birds that only occasionally visit flowers. The large nectar standing crops and extended flower longevities (>10 days) of Canarina and Isoplexis suggests that they have evolved a bird pollination system that effectively exploits these low frequency non-specialist pollen vectors and is in no way sub-optimal. Seed set in two of the three species was high and was significantly reduced or zero in flowers where pollinator access was restricted. In L. berthelotii, however, no fruit set was observed, probably because the plants were self-incompatible horticultural clones of a single genet. We also show that, while all three species are easily detectable for birds, the orange Canarina and the red Lotus (but less so the yellow-orange Isoplexis) should be difficult to detect for insect pollinators without specialised red receptors, such as bumblebees. Contrary to expectations if we accept that the flowers are primarily adapted to sunbird pollination, the chiffchaff ( Phylloscopus canariensis) was an effective pollinator of these species.

  18. Low abundance of long-tongued pollinators leads to pollen limitation in four specialized hawkmoth-pollinated plants in the Atlantic Rain forest, Brazil

    NASA Astrophysics Data System (ADS)

    Amorim, Felipe W.; Wyatt, Graham E.; Sazima, Marlies

    2014-11-01

    Long-tubed hawkmoth-pollinated species present some of the most remarkable examples of floral specialization depending exclusively on long-tongued hawkmoths for sexual reproduction. Nonetheless, long-tongued hawkmoths do not rely exclusively on specialized plants as nectar sources, which may limit sexual reproduction through pollen limitation. However, very few studies have quantified the level of pollen limitation in plants with highly specialized floral traits in tropical regions. In this context, we studied four sympatric hawkmoth-pollinated species in a highland Atlantic Rain forest and assessed pollen limitation and their dependence on pollinators by analyzing the floral biology, breeding system, pollination mechanisms, and abundance of long-tongued pollinators. We showed that the four species are self-compatible, but are completely dependent on long-tongued hawkmoths to set fruits, and that flower visitation was infrequent in all plant species. Pollen limitation indices ranged from 0.53 to 0.96 showing that fruit set is highly limited by pollen receipt. Long-tongued moths are much less abundant and comprise only one sixth of the hawkmoth fauna. Pollen analyses of 578 sampled moths revealed that hawkmoths visited ca. 80 plant species in the community, but only two of the four species studied. Visited plants included a long-tubed hawkmoth-pollinated species endemic to the lowland forest ca. 15-20 km away from the study site. Specialization index ( H 2 ' = 0.20) showed that community-level interactions between hawkmoths and plants are generalized. We suggest that sexual reproduction of these highly specialized hawkmoth-pollinated species is impaired by competition among plants for pollinators, in conjunction with the low abundance and diversity of long-tongued pollinators.

  19. A meta-analysis of predation risk effects on pollinator behaviour.

    PubMed

    Romero, Gustavo Q; Antiqueira, Pablo A P; Koricheva, Julia

    2011-01-01

    Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36%) and time spent on flowers (by 51%) by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters) nor on pollinator lifestyle (social vs. solitary). However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres), suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.

  20. Selection by Pollinators on Floral Traits in Generalized Trollius ranunculoides (Ranunculaceae) along Altitudinal Gradients

    PubMed Central

    Zhao, Zhi-Gang; Wang, Yi-Ke

    2015-01-01

    Abundance and visitation of pollinator assemblages tend to decrease with altitude, leading to an increase in pollen limitation. Thus increased competition for pollinators may generate stronger selection on attractive traits of flowers at high elevations and cause floral adaptive evolution. Few studies have related geographically variable selection from pollinators and intraspecific floral differentiation. We investigated the variation of Trollius ranunculoides flowers and its pollinators along an altitudinal gradient on the eastern Qinghai-Tibet Plateau, and measured phenotypic selection by pollinators on floral traits across populations. The results showed significant decline of visitation rate of bees along altitudinal gradients, while flies was unchanged. When fitness is estimated by the visitation rate rather than the seed number per plant, phenotypic selection on the sepal length and width shows a significant correlation between the selection strength and the altitude, with stronger selection at higher altitudes. However, significant decreases in the sepal length and width of T. ranunculoides along the altitudinal gradient did not correspond to stronger selection of pollinators. In contrast to the pollinator visitation, mean annual precipitation negatively affected the sepal length and width, and contributed more to geographical variation in measured floral traits than the visitation rate of pollinators. Therefore, the sepal size may have been influenced by conflicting selection pressures from biotic and abiotic selective agents. This study supports the hypothesis that lower pollinator availability at high altitude can intensify selection on flower attractive traits, but abiotic selection is preventing a response to selection from pollinators. PMID:25692295

  1. Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees

    PubMed Central

    Eckerter, Philipp W.; Schirmel, Jens; Cresswell, James E.; Entling, Martin H.

    2017-01-01

    The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees. PMID:28573019

  2. Effects of small-scale clustering of flowers on pollinator foraging behaviour and flower visitation rate.

    PubMed

    Akter, Asma; Biella, Paolo; Klecka, Jan

    2017-01-01

    Plants often grow in clusters of various sizes and have a variable number of flowers per inflorescence. This small-scale spatial clustering affects insect foraging strategies and plant reproductive success. In our study, we aimed to determine how visitation rate and foraging behaviour of pollinators depend on the number of flowers per plant and on the size of clusters of multiple plants using Dracocephalum moldavica (Lamiaceae) as a target species. We measured flower visitation rate by observations of insects visiting single plants and clusters of plants with different numbers of flowers. Detailed data on foraging behaviour within clusters of different sizes were gathered for honeybees, Apis mellifera, the most abundant visitor of Dracocephalum in the experiments. We found that the total number of flower visitors increased with the increasing number of flowers on individual plants and in larger clusters, but less then proportionally. Although individual honeybees visited more flowers in larger clusters, they visited a smaller proportion of flowers, as has been previously observed. Consequently, visitation rate per flower and unit time peaked in clusters with an intermediate number of flowers. These patterns do not conform to expectations based on optimal foraging theory and the ideal free distribution model. We attribute this discrepancy to incomplete information about the distribution of resources. Detailed observations and video recordings of individual honeybees also showed that the number of flowers had no effect on handling time of flowers by honeybees. We evaluated the implications of these patterns for insect foraging biology and plant reproduction.

  3. Effects of small-scale clustering of flowers on pollinator foraging behaviour and flower visitation rate

    PubMed Central

    2017-01-01

    Plants often grow in clusters of various sizes and have a variable number of flowers per inflorescence. This small-scale spatial clustering affects insect foraging strategies and plant reproductive success. In our study, we aimed to determine how visitation rate and foraging behaviour of pollinators depend on the number of flowers per plant and on the size of clusters of multiple plants using Dracocephalum moldavica (Lamiaceae) as a target species. We measured flower visitation rate by observations of insects visiting single plants and clusters of plants with different numbers of flowers. Detailed data on foraging behaviour within clusters of different sizes were gathered for honeybees, Apis mellifera, the most abundant visitor of Dracocephalum in the experiments. We found that the total number of flower visitors increased with the increasing number of flowers on individual plants and in larger clusters, but less then proportionally. Although individual honeybees visited more flowers in larger clusters, they visited a smaller proportion of flowers, as has been previously observed. Consequently, visitation rate per flower and unit time peaked in clusters with an intermediate number of flowers. These patterns do not conform to expectations based on optimal foraging theory and the ideal free distribution model. We attribute this discrepancy to incomplete information about the distribution of resources. Detailed observations and video recordings of individual honeybees also showed that the number of flowers had no effect on handling time of flowers by honeybees. We evaluated the implications of these patterns for insect foraging biology and plant reproduction. PMID:29136042

  4. Reproductive biology and nectar secretion dynamics of Penstemon gentianoides (Plantaginaceae): a perennial herb with a mixed pollination system?

    PubMed Central

    Salas-Arcos, Lucía; Ornelas, Juan Francisco

    2017-01-01

    Background In many plant species, pollination syndromes predict the most effective pollinator. However, other floral visitors may also offer effective pollination services and promote mixed pollination systems. Several species of the species-rich Penstemon (Plantaginaceae) exhibit a suite of floral traits that suggest adaptation for pollination by both hymenopterans and hummingbirds. Transitions from the ancestral hymenopteran pollination syndrome to more derived hummingbird pollination syndrome may be promoted if the quantity or quality of visits by hummingbirds is increased and if the ancestral pollinator group performs less efficiently. The quantification of such shifts in pollination systems in the group is still limited. We aimed to investigate floral traits linked to this pollination syndrome in Penstemon gentianoides with flowers visited by bumblebees and hummingbirds. Methods We investigated the floral biology, pollinator assemblages, breeding system and nectar production patterns ofP. gentianoides inhabiting a temperate montane forest in central Mexico. Pollination experiments were also conducted to assess the pollinator effectiveness of bumblebees and hummingbirds. Results P. gentianoides flowers are protandrous, with 8-d male phase (staminate) flowers, followed by the ∼1–7 d female phase (pistillate phase). Flowers display traits associated with hymenopteran pollination, including purple flowers abruptly ampliate-ventricose to a broad throat with anthers and stigmas included, and long lifespans. However, the nectar available in the morning hours was abundant and dilute, traits linked to flowers with a hummingbird pollination syndrome. Two hummingbird species made most of the visits to flowers, Selasphorus platycercus (30.3% of all visits), followed by Archilochus colubris (11.3%). Bumblebees (Bombus ephippiatus, B. huntii and B. weisi) accounted for 51.8% of all recorded visits, but their foraging activity was restricted to the warmer hours

  5. The worldwide importance of honey bees as pollinators in natural habitats.

    PubMed

    Hung, Keng-Lou James; Kingston, Jennifer M; Albrecht, Matthias; Holway, David A; Kohn, Joshua R

    2018-01-10

    The western honey bee ( Apis mellifera ) is the most frequent floral visitor of crops worldwide, but quantitative knowledge of its role as a pollinator outside of managed habitats is largely lacking. Here we use a global dataset of 80 published plant-pollinator interaction networks as well as pollinator effectiveness measures from 34 plant species to assess the importance of A. mellifera in natural habitats. Apis mellifera is the most frequent floral visitor in natural habitats worldwide, averaging 13% of floral visits across all networks (range 0-85%), with 5% of plant species recorded as being exclusively visited by A. mellifera For 33% of the networks and 49% of plant species, however, A. mellifera visitation was never observed, illustrating that many flowering plant taxa and assemblages remain dependent on non- A. mellifera visitors for pollination. Apis mellifera visitation was higher in warmer, less variable climates and on mainland rather than island sites, but did not differ between its native and introduced ranges. With respect to single-visit pollination effectiveness, A. mellifera did not differ from the average non- A. mellifera floral visitor, though it was generally less effective than the most effective non- A. mellifera visitor. Our results argue for a deeper understanding of how A. mellifera , and potential future changes in its range and abundance, shape the ecology, evolution, and conservation of plants, pollinators, and their interactions in natural habitats. © 2018 The Author(s).

  6. The dilemma of being a fragrant flower: the major floral volatile attracts pollinators and florivores in the euglossine-pollinated orchid Dichaea pendula.

    PubMed

    Nunes, Carlos E P; Peñaflor, Maria Fernanda G V; Bento, José Maurício S; Salvador, Marcos José; Sazima, Marlies

    2016-12-01

    Volatile organic compounds (VOCs) mediate both mutualistic and antagonistic plant-animal interactions; thus, the attraction of mutualists and antagonists by floral VOCs constitutes an important trade-off in the evolutionary ecology of angiosperms. Here, we evaluate the role of VOCs in mediating communication between the plant and its mutualist and antagonist floral visitors. To assess the evolutionary consequences of VOC-mediated signalling to distinct floral visitors, we studied the reproductive ecology of Dichaea pendula, assessing the effects of florivores on fruit set, the pollination efficiency of pollinators and florivores, the floral scent composition and the attractiveness of the major VOC to pollinators and florivores. The orchid depends entirely on orchid-bees for sexual reproduction, and the major florivores, the weevils, feed on corollas causing self-pollination, triggering abortion of 26.4 % of the flowers. Floral scent was composed of approximately 99 % 2-methoxy-4-vinylphenol, an unusual floral VOC attractive to pollinators and florivores. The low fruit set from natural pollination (5.6 %) compared to hand cross-pollination (45.5 %) and low level of pollinator visitation [0.02 visits (flower hour) -1 ] represent the limitations to pollination. Our research found that 2-methoxy-4-vinylphenol mediates both mutualistic and antagonistic interactions, which could result in contrary evolutionary pressures on novo-emission. The scarcity of pollinators, not florivory, was the major constraint to fruit set. Our results suggest that, rather than anti-florivory adaptations, adaptations to enhance pollinator attraction and cross-pollination might be the primary drivers of the evolution of VOC emission in euglossine-pollinated flowers.

  7. Indirect Effects of Field Management on Pollination Service and Seed Set in Hybrid Onion Seed Production.

    PubMed

    Gillespie, Sandra; Long, Rachael; Williams, Neal

    2015-12-01

    Pollination in crops, as in native ecosystems, is a stepwise process that can be disrupted at any stage. Healthy pollinator populations are critical for adequate visitation, but pollination still might fail if crop management interferes with the attraction and retention of pollinators. Farmers must balance the direct benefits of applying insecticide and managing irrigation rates against their potential to indirectly interfere with the pollination process. We investigated these issues in hybrid onion seed production, where previous research has shown that high insecticide use reduces pollinator attraction. We conducted field surveys of soil moisture, nectar production, pollinator visitation, pollen-stigma interactions, and seed set at multiple commercial fields across 2 yr. We then examined how management actions, such as irrigation rate (approximated by soil moisture), or insecticide use could affect the pollination process. Onions produced maximum nectar at intermediate soil moisture, and high nectar production attracted more pollinators. Insecticide use weakly affected pollinator visitation, but when applied close to bloom reduced pollen germination and pollen tube growth. Ultimately, neither soil moisture nor insecticide use directly affected seed set, but the high correlation between pollinator visitation and seed set suggests that crop management will ultimately affect yields via indirect effects on the pollination process. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Wind-dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination.

    PubMed

    Qu, Rongming; Li, Xiaojie; Luo, Yibo; Dong, Ming; Xu, Huanli; Chen, Xuan; Dafni, Amots

    2007-12-01

    Delayed self-pollination is a mechanism that allows animal-pollinated plants to outcross while ensuring seed production in the absence of pollinators. This study aims to explore a new mechanism of delayed self-pollination facilitated by wind-driven corolla abscission in Incarvillea sinensis var. sinensis. Floral morphology and development, and the process of delayed self-pollination were surveyed. Experiments dealing with pollinator and wind exclusion, pollination manipulations, and pollinator observations were conducted in the field. Delayed self-pollination occurs when the abscising corolla driven by wind drags the adherent epipetalous stamens, thus leading to contact of anthers with stigma in late anthesis. There is no dichogamy and self-incompatibility in this species. The significantly higher proportion of abscised corolla under natural conditions as compared with that in wind-excluding tents indicates the importance of wind in corolla abscission. When pollinators were excluded, corolla abscission significantly increased the number of pollen grains deposited on the stigma and, as a result, the fruit and seed set. Only half of the flowers in plots were visited by pollinators, and the fruit set of emasculated flowers was significantly lower than that of untreated flowers in open pollination. This species has a sensitive stigma, and its two open stigmatic lobes closed soon after being touched by a pollinator, but always reopened if no or only little pollen was deposited. This delayed self-pollination, which involved the movement of floral parts, the active participation of the wind and sensitive stigma, is quite different from that reported previously. This mechanism provides reproductive assurance for this species. The sensitive stigma contributes to ensuring seed production and reducing the interference of selfing with outcrossing. The pollination pattern, which combines actions by bees with indirect participation by wind, is also a new addition to ambophily.

  9. Wind-Dragged Corolla Enhances Self-Pollination: A New Mechanism of Delayed Self-Pollination

    PubMed Central

    Qu, Rongming; Li, Xiaojie; Luo, Yibo; Dong, Ming; Xu, Huanli; Chen, Xuan; Dafni, Amots

    2007-01-01

    Background and Aims Delayed self-pollination is a mechanism that allows animal-pollinated plants to outcross while ensuring seed production in the absence of pollinators. This study aims to explore a new mechanism of delayed self-pollination facilitated by wind-driven corolla abscission in Incarvillea sinensis var. sinensis. Methods Floral morphology and development, and the process of delayed self-pollination were surveyed. Experiments dealing with pollinator and wind exclusion, pollination manipulations, and pollinator observations were conducted in the field. Key Results Delayed self-pollination occurs when the abscising corolla driven by wind drags the adherent epipetalous stamens, thus leading to contact of anthers with stigma in late anthesis. There is no dichogamy and self-incompatibility in this species. The significantly higher proportion of abscised corolla under natural conditions as compared with that in wind-excluding tents indicates the importance of wind in corolla abscission. When pollinators were excluded, corolla abscission significantly increased the number of pollen grains deposited on the stigma and, as a result, the fruit and seed set. Only half of the flowers in plots were visited by pollinators, and the fruit set of emasculated flowers was significantly lower than that of untreated flowers in open pollination. This species has a sensitive stigma, and its two open stigmatic lobes closed soon after being touched by a pollinator, but always reopened if no or only little pollen was deposited. Conclusions This delayed self-pollination, which involved the movement of floral parts, the active participation of the wind and sensitive stigma, is quite different from that reported previously. This mechanism provides reproductive assurance for this species. The sensitive stigma contributes to ensuring seed production and reducing the interference of selfing with outcrossing. The pollination pattern, which combines actions by bees with indirect

  10. Total Control – Pollen Presentation and Floral Longevity in Loasaceae (Blazing Star Family) Are Modulated by Light, Temperature and Pollinator Visitation Rates

    PubMed Central

    Henning, Tilo; Weigend, Maximilian

    2012-01-01

    Stamen movements can be understood as a mechanism influencing pollen presentation and increasing outbreeding success of hermaphroditic flowers via optimized male function. In this study we experimentally analyzed the factors regulating autonomous and thigmonastic (triggered by flower visitors) stamen movements in eight species of Loasaceae. Both types of stamen movements are positively influenced by light and temperature and come to a virtual standstill in the dark and at low temperatures (12°C). Pollen presentation is thus discontinued during periods where pollinators are not active. Overall stamen presentation increases with increasing flower age. Contrary to expectation, no geometrical correlation between the floral scale stimulated and the stamen fascicle reacting exists, indicating that the stimulus is transmitted over the receptacle and stamen maturation dictates which and how many stamens react. Thigmonastic stamen presentation is dramatically accelerated compared to autonomous movement (3–37 times), indicating that the rate of stamen maturation can be adjusted to different visitation schedules. Flowers can react relatively uniformly down to stimulation intervals of 10–15 min., consistently presenting comparable numbers of stamens in the flower c. 5 min. after the stimulus and can thus keep the amount of pollen presented relatively constant even under very high visitation frequencies of 4–6 visits/h. Thigmonastic pollen presentation dramatically reduces the overall duration of the staminate phase (to 1/3rd in Nasa macrothyrsa). Similarly, the carpellate phase is dramatically reduced after pollination, down to 1 d from 4 d. Overall flower longevity is reduced by more than 2/3rds under high visitation rates (<3 d versus 10 d under visitor exclusion) and depleted and pollinated flowers are rapidly removed from the pool. Complex floral behaviour in Loasaceae thus permits a near-total control over pollen dispensation schedules and floral longevity of the

  11. Lilies at the limit: Variation in plant-pollinator interactions across an elevational range.

    PubMed

    Theobald, Elli J; Gabrielyan, Hrach; HilleRisLambers, Janneke

    2016-02-01

    Many studies assume climatic factors are paramount in determining species' distributions, however, biotic interactions may also play a role. For example, pollinators may limit species' ranges if floral abundance or floral attractiveness is reduced at range margins, thus causing lower pollinator visitation and reduced reproductive output. To test if pollinators influence the altitudinal distribution of Erythronium montanum (Liliaceae) at Mount Rainier National Park, we asked whether (1) seed production in this species relies on pollinators, (2) seed production and pollen limitation is greatest at range limits, and (3) pollinator visitation rates (either overall or by individual taxonomic groups) reflect patterns of seed production and pollen limitation. From this three-year study, we established that this plant does rely on pollinators for fruit set and we found that pollen limitation trended toward being higher at the upper range limit in some years, but not consistently year to year. Insect visitation rates did not mirror spatial patterns of pollen limitation, but annually variable pollinator composition suggested differential importance of some pollinator taxonomic groups (specifically, bumblebees may be better pollinators than syrphid flies). Overall, these results suggest that while pollinators are critical for the reproductive success of this high mountain wildflower, plant-pollinator interactions do not obviously drive the distribution of this species. Nonetheless, high spatio-temporal variability in range-wide plant-pollinator dynamics may complicate responses to climate change. © 2016 Botanical Society of America.

  12. Floral function: effects of traits on pollinators, male and female pollination success, and female fitness across three species of milkweeds (Asclepias).

    PubMed

    La Rosa, Raffica J; Conner, Jeffrey K

    2017-01-01

    Central questions in plant reproductive ecology are whether the functions of floral traits in hermaphrodites create conflict between sexes that could slow evolution, and whether individual floral traits function in pollinator attraction, efficiency, or both. We studied how floral traits affect pollinator visitation and efficiency, and how they affect male and female function and female fitness within and across three Asclepias species that differ in floral morphology. Using separate multiple regressions, we regressed pollen removal, deposition, and fruit number onto six floral traits. We also used path analyses integrating these variables with pollinator visitation data for two of the species to further explore floral function and its effects on fruit production. Most traits affected male pollination success only, and these effects often differed between species. The exception was increased slit length, which increased pollinia insertion in two of the species. There were no interspecific differences in the effects of the traits on female pollination success. All traits except horn reach affected pollination efficiency in at least one species, and horn reach and two hood dimensions were the only traits to affect pollinator attraction, but in just one species. Traits tended to function in only one sex, and more traits affected function through pollinator efficiency than through attraction. There was no significant link between female pollination success and female fitness in any of the three species; this pattern is consistent with fruit production not being limited by pollen deposition. © 2017 Botanical Society of America.

  13. Pollinator Interactions with Yellow Starthistle (Centaurea solstitialis) across Urban, Agricultural, and Natural Landscapes

    PubMed Central

    Leong, Misha; Kremen, Claire; Roderick, George K.

    2014-01-01

    Pollinator-plant relationships are found to be particularly vulnerable to land use change. Yet despite extensive research in agricultural and natural systems, less attention has focused on these interactions in neighboring urban areas and its impact on pollination services. We investigated pollinator-plant interactions in a peri-urban landscape on the outskirts of the San Francisco Bay Area, California, where urban, agricultural, and natural land use types interface. We made standardized observations of floral visitation and measured seed set of yellow starthistle (Centaurea solstitialis), a common grassland invasive, to test the hypotheses that increasing urbanization decreases 1) rates of bee visitation, 2) viable seed set, and 3) the efficiency of pollination (relationship between bee visitation and seed set). We unexpectedly found that bee visitation was highest in urban and agricultural land use contexts, but in contrast, seed set rates in these human-altered landscapes were lower than in natural sites. An explanation for the discrepancy between floral visitation and seed set is that higher plant diversity in urban and agricultural areas, as a result of more introduced species, decreases pollinator efficiency. If these patterns are consistent across other plant species, the novel plant communities created in these managed landscapes and the generalist bee species that are favored by human-altered environments will reduce pollination services. PMID:24466050

  14. The effect of habitat modification on plant-pollinator network

    NASA Astrophysics Data System (ADS)

    Aminatun, Tien; Putra, Nugroho Susetya

    2017-08-01

    The research aimed to determine; (1) the mutualism interaction pattern of plant-pollinator on several habitat modifications; and (2) the habitat modification which showed the most stable pattern of interaction. The study was conducted in one planting season with 20 plots which each plot had 2x2 m2 width and 2 m spacing among plots, and each plot was planted with the same variety of tomato plants, i.e. "intan". Nitrogen manipulation treatment was conducted with four kinds of fertilizers, i.e. NPK (code PU), compost (code PKM), vermicompost (code PC), and manure (code PK). Each treatment had 5 plot replications. We observed the growth of tomato plants, weed and arthropod populationstwo weekly while pollinator visitation twice a week during tomato plant flowering with counting population and visitation frequence of each pollinator on each sample of tomato plants. The nectar of tomato plant flower of each treatment was tested in laboratory to see its reducing sugar and sucrose. Oganic matter and nitrogen of the soil samples of each treatment were tested in laboratory in the beginning and the end of this research. We analized the plant-pollinator network with bipartite program in R-statistics, and the abiotic and other biotic factors with descriptive analysis. The results of the research were; (1) the mutualism interaction pattern of plant-pollinator network of four treatments were varied, and (2) The pattern of plant-pollinator network of NPK fertilizer treatment showed the more stable interaction based on analysis of interaction evenness, Shannon diversity, frequency and longevity of pollinator visitation.

  15. Evolution of polyploidy and the diversification of plant-pollinator interactions.

    PubMed

    Thompson, John N; Merg, Kurt F

    2008-08-01

    One of the major mechanisms of plant diversification has been the evolution of polyploid populations that differ from their diploid progenitors in morphology, physiology, and environmental tolerances. Recent studies have indicated that polyploidy may also have major effects on ecological interactions with herbivores and pollinators. We evaluated pollination of sympatric diploid and tetraploid plants of the rhizomatous herb Heuchera grossulariifolia (Saxifragaceae) along the Selway and Salmon Rivers of northern Idaho, USA, during four consecutive years. Previous molecular and ecological analyses had indicated that the tetraploid populations along these two river systems are independently derived and differ from each other in multiple traits. In each region, we evaluated floral visitation rate by all insect visitors, pollination efficacy of all major visitors, and relative contribution of all major pollinators to seed set. In both regions, diploid and tetraploid plants attracted different suites of floral visitors. Most pollination was attributable to several bee species and the moth Greya politella. Lasioglossum bees preferentially visited diploid plants at Lower Salmon but not at Upper Selway, queen Bombus centralis preferentially visited tetraploids at both sites, and worker B. centralis differed between sites in their cytotype preference. Hence, diploid and autotetraploid H. grossulariifolia plants act essentially as separate ecological species and may experience partial reproductive isolation through differential visitation and pollination by their major floral visitors. Overall the results, together with recent results from other studies, suggest that the repeated evolution of polyploidy in plants may contribute importantly to the structure and diversification of ecological interactions in terrestrial communities.

  16. Artificial light at night as a new threat to pollination.

    PubMed

    Knop, Eva; Zoller, Leana; Ryser, Remo; Gerpe, Christopher; Hörler, Maurin; Fontaine, Colin

    2017-08-10

    Pollinators are declining worldwide and this has raised concerns for a parallel decline in the essential pollination service they provide to both crops and wild plants. Anthropogenic drivers linked to this decline include habitat changes, intensive agriculture, pesticides, invasive alien species, spread of pathogens and climate change. Recently, the rapid global increase in artificial light at night has been proposed to be a new threat to terrestrial ecosystems; the consequences of this increase for ecosystem function are mostly unknown. Here we show that artificial light at night disrupts nocturnal pollination networks and has negative consequences for plant reproductive success. In artificially illuminated plant-pollinator communities, nocturnal visits to plants were reduced by 62% compared to dark areas. Notably, this resulted in an overall 13% reduction in fruit set of a focal plant even though the plant also received numerous visits by diurnal pollinators. Furthermore, by merging diurnal and nocturnal pollination sub-networks, we show that the structure of these combined networks tends to facilitate the spread of the negative consequences of disrupted nocturnal pollination to daytime pollinator communities. Our findings demonstrate that artificial light at night is a threat to pollination and that the negative effects of artificial light at night on nocturnal pollination are predicted to propagate to the diurnal community, thereby aggravating the decline of the diurnal community. We provide perspectives on the functioning of plant-pollinator communities, showing that nocturnal pollinators are not redundant to diurnal communities and increasing our understanding of the human-induced decline in pollinators and their ecosystem service.

  17. Functional group diversity of bee pollinators increases crop yield

    PubMed Central

    Hoehn, Patrick; Tscharntke, Teja; Tylianakis, Jason M; Steffan-Dewenter, Ingolf

    2008-01-01

    Niche complementarity is a commonly invoked mechanism underlying the positive relationship between biodiversity and ecosystem functioning, but little empirical evidence exists for complementarity among pollinator species. This study related differences in three functional traits of pollinating bees (flower height preference, daily time of flower visitation and within-flower behaviour) to the seed set of the obligate cross-pollinated pumpkin Cucurbita moschata Duch. ex Poir. across a land-use intensity gradient from tropical rainforest and agroforests to grassland in Indonesia. Bee richness and abundance changed with habitat variables and we used this natural variation to test whether complementary resource use by the diverse pollinator community enhanced final yield. We found that pollinator diversity, but not abundance, was positively related to seed set of pumpkins. Bees showed species-specific spatial and temporal variation in flower visitation traits and within-flower behaviour, allowing for classification into functional guilds. Diversity of functional groups explained even more of the variance in seed set (r2=45%) than did species richness (r2=32%) highlighting the role of functional complementarity. Even though we do not provide experimental, but rather correlative evidence, we can link spatial and temporal complementarity in highly diverse pollinator communities to pollination success in the field, leading to enhanced crop yield without any managed honeybees. PMID:18595841

  18. Plant-pollinator interactions in a biodiverse meadow are rather stable and tight for 3 consecutive years.

    PubMed

    Fang, Qiang; Huang, Shuangquan

    2016-05-01

    Plant-pollinator interactions can be highly variable across years in natural communities. Although variation in the species composition and its basic structure has been investigated to understand the dynamic nature of pollination networks, little is known about the temporal dynamic of interaction strength between the same plant and pollinator species in any natural community. Pollinator-mediated selection on the evolution of floral traits could be diminished if plant-pollinator interactions vary temporally. To quantify the temporal variation in plant-pollinator interactions and the interaction strength (observed visits), we compared weighted networks between plants and pollinators in a biodiverse alpine meadow in Shangri-La, southwest China for 3 consecutive years. Although plant-pollinator interactions were highly dynamic such that identical interactions only accounted for 10.7% of the total between pair years, the diversity of interactions was stable. These identical interactions contributed 41.2% of total visits and were similar in strength and weighted nestedness. For plant species, 72.6% of species were visited by identical pollinator species between pair years, accounting for over half of the total visits and three-quarters at the functional group level. More generalized pollinators contributed more connectiveness and were more central in networks across years. However, there was no similar or even opposite trend for plant species, which suggested that specialized plant species may also be central in pollinator networks. The variation in pollinator composition decreased as pollinator species numbers increased, suggesting that generalized plants experienced stable pollinator partition. The stable, tight interactions between generalized pollinators and specialized plants represent cornerstones of the studied community. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  19. Ginger and the beetle: Evidence of primitive pollination system in a Himalayan endemic alpine ginger (Roscoea alpina, Zingiberaceae)

    PubMed Central

    Shrestha, Mani; Dyer, Adrian G.; Li, Qing-Jun

    2017-01-01

    The Himalayan endemic alpine genus Roscoea, like other members of ginger family, exhibits the combination of floral traits that would fit pollination by long distant foragers such as bees, birds or flies. We studied the pollination biology of Roscoea alpina, observed potential floral visitors and determined their foraging behaviour, visitation frequency and pollination efficiency, to seek evidence in support of the pollination syndrome hypothesis. We also measured the floral spectra of R. alpina flowers to evaluate if signals fit with the currently known framework for observed floral visitors. We found that R. alpina have autonomous selfing and pollinator-mediated crossing, but lack apomixis. We observed that a beetle (Mylabris sp.), and a moth (Macroglossum nycteris) visit the flowers of R. alpina for pollen and nectar feeding respectively. Our field observations, the stigmatic pollen count and fruit set data indicated that the visit by the beetle was legitimate, while that of the moth was illegitimate. Emasculated flowers visited by beetles set as many fruits and seeds/fruit as auto-selfed and naturally pollinated flowers, while emasculated flowers excluded from beetle visits did not set fruit and seed; indicating that a single visit of a beetle to the flowers of R. alpina can facilitate pollination. We found that flower spectral signal of R. alpina does not fit typical spectra previously reported for beetle or bee-visited flowers. Our results suggest that, to ensure reproductive success in alpine habitat, R. alpina has evolved autonomous selfing as a predominant mode of reproduction, while beetle pollination would promote genetic diversity of this plant species. The visitation of beetles to the flowers of R. alpina, despite floral signal mismatch with the classically associated beetle vision, suggests that a different visual processing may operate in this plant-pollinator interaction at high altitudes. PMID:28723912

  20. Ginger and the beetle: Evidence of primitive pollination system in a Himalayan endemic alpine ginger (Roscoea alpina, Zingiberaceae).

    PubMed

    Paudel, Babu Ram; Shrestha, Mani; Dyer, Adrian G; Li, Qing-Jun

    2017-01-01

    The Himalayan endemic alpine genus Roscoea, like other members of ginger family, exhibits the combination of floral traits that would fit pollination by long distant foragers such as bees, birds or flies. We studied the pollination biology of Roscoea alpina, observed potential floral visitors and determined their foraging behaviour, visitation frequency and pollination efficiency, to seek evidence in support of the pollination syndrome hypothesis. We also measured the floral spectra of R. alpina flowers to evaluate if signals fit with the currently known framework for observed floral visitors. We found that R. alpina have autonomous selfing and pollinator-mediated crossing, but lack apomixis. We observed that a beetle (Mylabris sp.), and a moth (Macroglossum nycteris) visit the flowers of R. alpina for pollen and nectar feeding respectively. Our field observations, the stigmatic pollen count and fruit set data indicated that the visit by the beetle was legitimate, while that of the moth was illegitimate. Emasculated flowers visited by beetles set as many fruits and seeds/fruit as auto-selfed and naturally pollinated flowers, while emasculated flowers excluded from beetle visits did not set fruit and seed; indicating that a single visit of a beetle to the flowers of R. alpina can facilitate pollination. We found that flower spectral signal of R. alpina does not fit typical spectra previously reported for beetle or bee-visited flowers. Our results suggest that, to ensure reproductive success in alpine habitat, R. alpina has evolved autonomous selfing as a predominant mode of reproduction, while beetle pollination would promote genetic diversity of this plant species. The visitation of beetles to the flowers of R. alpina, despite floral signal mismatch with the classically associated beetle vision, suggests that a different visual processing may operate in this plant-pollinator interaction at high altitudes.

  1. Floral thermogenesis: An adaptive strategy of pollination biology in Magnoliaceae

    PubMed Central

    Wang, Ruohan; Zhang, Zhixiang

    2015-01-01

    Floral thermogenesis plays a crucial role in pollination biology, especially in plant–pollinator interactions. We have recently explored how thermogenesis is related to pollinator activity and odour release in Magnolia sprengeri. By analyzing flower temperatures, emission of volatiles, and insect visitation, we found that floral blends released during pistillate and staminate stages were similar and coincided with sap beetle visitation. Thus, odour mimicry of staminate-stage flowers may occur during the pistillate stage and may be an adaptive strategy of Magnolia species to attract pollinators during both stages, ensuring successful pollination. In addition to the biological significance of floral thermogenesis in Magnolia species, we explored the underlying regulatory mechanisms via profiling miRNA expression in M. denudata flowers during thermogenic and non-thermogenic stages. We identified 17 miRNAs that may play regulatory roles in floral thermogenesis. Functional annotation of their target genes indicated that these miRNAs regulate floral thermogenesis by influencing cellular respiration and light reactions. These findings increase our understanding of plant–pollinator interactions and the regulatory mechanisms in thermogenic plants. PMID:26844867

  2. Pollination ecology of Disterigma stereophyllum (Ericaceae) in south-western Colombia.

    PubMed

    Navarro, L; Guitián, P; Ayensa, G

    2008-07-01

    Several authors have recently expressed doubts that the 'pollination syndromes' as usually expressed are an adequate description of correlated suites of floral characters, or that they adequately describe evolutionary or ecological associations of plants with pollinators. Disterigma stereophyllum is a neotropical Ericaceae with floral characteristics intermediate between the 'entomophilous' syndrome and the 'ornithophilous' syndrome: the corolla is short, white and urceolate, but flowers produce large amounts of dilute nectar. We studied the pollination ecology of this species in south-western Colombia, and found it to be pollinated almost exclusively by hummingbirds at our study site. Two hummingbird species were responsible for about 75 of visits. Despite the fact that nectar standing crop remained more or less constant throughout the day, visit frequencies were highest in the morning and declined throughout the day. Pollinator efficiency, measured as the number of pollen grains deposited on a virgin stigma by each visitor after one visit, did not differ among the species of hummingbirds, but was lower for a nectar-robbing bird, Diglossa albilatera. This species does not contact the surface of the stigma during nectar robbing, but can produce some self-pollination indirectly because it shakes branches vigorously while piercing the flower. These findings indicate a need for further studies of neotropical Ericaceae in order to elucidate whether floral visitors of species like D. stereophyllum fluctuate through time or space, and whether floral characteristics reflect a compromise between such different visitors, or a transitional stage between pollination syndromes, or some other possibility.

  3. Generalization versus Specialization in Pollination Systems: Visitors, Thieves, and Pollinators of Hypoestes aristata (Acanthaceae)

    PubMed Central

    Padyšáková, Eliška; Bartoš, Michael; Tropek, Robert; Janeček, Štěpán

    2013-01-01

    Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of Hypoestes aristata in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on H. aristata’s reproductive success. We found that (i) this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii) the carpenter bee Xylocopa cf. inconstans was both the most frequent and the most effective pollinator; (iii) the honey bee Apis mellifera acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv) the close relationship between H. aristata and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses. PMID:23593135

  4. Generalization versus specialization in pollination systems: visitors, thieves, and pollinators of Hypoestes aristata (Acanthaceae).

    PubMed

    Padyšáková, Eliška; Bartoš, Michael; Tropek, Robert; Janeček, Stěpán

    2013-01-01

    Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of Hypoestes aristata in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on H. aristata's reproductive success. We found that (i) this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii) the carpenter bee Xylocopa cf. inconstans was both the most frequent and the most effective pollinator; (iii) the honey bee Apis mellifera acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv) the close relationship between H. aristata and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses.

  5. First record of bat-pollination in the species-rich genus Tillandsia (Bromeliaceae).

    PubMed

    Aguilar-Rodríguez, Pedro Adrián; MacSwiney G, M Cristina; Krömer, Thorsten; García-Franco, José G; Knauer, Anina; Kessler, Michael

    2014-05-01

    Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico. The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined. Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae). This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats.

  6. First record of bat-pollination in the species-rich genus Tillandsia (Bromeliaceae)

    PubMed Central

    Aguilar-Rodríguez, Pedro Adrián; MacSwiney G., M. Cristina; Krömer, Thorsten; García-Franco, José G.; Knauer, Anina; Kessler, Michael

    2014-01-01

    Background and Aims Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico. Methods The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined. Key Results Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae). Conclusions This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats. PMID:24651370

  7. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    PubMed Central

    Potts, Simon G.; Steffan-Dewenter, Ingolf; Vaissière, Bernard E.; Woyciechowski, Michal; Krewenka, Kristin M.; Tscheulin, Thomas; Roberts, Stuart P.M.; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  8. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    PubMed

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  9. Tracing impacts of partner abundance in facultative pollination mutualisms: from individuals to populations.

    PubMed

    Geib, Jennifer C; Galen, Candace

    2012-07-01

    Partner abundance affects costs and benefits in obligate mutualisms, but its role in facultative partnerships is less clear. We address this gap in a pollination web consisting of two clovers (Trifolium) that differ in specialization on a bumble bee pollinator Bombus balteatus. We examine how pollination niche breadth affects plant responses to pollinator abundance, comparing early-flowering (specialized) and late-flowering (generalized) cohorts of T. parryi and early T. parryi to T. dasyphyllum, a pollination generalist. Co-pollinators disrupt the link between B. halteatus visitation and pollination rate for both clovers. Only for early-flowering T. parryi do visitation, pollination, and seed set increase with density of B. balteatus. Bumble bee density also alters timing of seed germination in T. parryi, with seeds from plants receiving augmented B. balteatus germinating sooner than seeds of open-pollinated counterparts. Benefits saturate at intermediate bumble bee densities. Despite strong effects of B. balteatus density on individual plant fitness components, population models suggest little impact of B. balteatus density on lamda in T. parryi or T. dasyphyllum. Findings show that functional redundancy in a pollinator guild mediates host-plant responses to partner density. Unexpected effects of pollinator density on life history schedule have implications for recruitment under pollinator decline.

  10. The relative contribution of diurnal and nocturnal pollinators to plant female fitness in a specialized nursery pollination system.

    PubMed

    Scopece, Giovanni; Campese, Lucia; Duffy, Karl J; Cozzolino, Salvatore

    2018-02-01

    Plants involved in specialized pollinator interactions, such as nursery pollination, may experience trade-offs in their female fitness, as the larvae of their pollinators may also consume seeds produced by the flowers they pollinate. These interactions could potentially shift between mutualism and parasitism, depending on the presence and abundance of both the nursery pollinator and of other pollinators. We investigated the fitness trade-off in a Mediterranean plant ( Silene latifolia ), which has a specialist nocturnal nursery pollinator moth ( Hadena bicruris ) and is also visited by several diurnal pollinators. We estimated the pollination rates and fecundity of S. latifolia in both natural and experimental populations in the Mediterranean. We estimated natural pollination rates in different flowering times and with presence/absence of the H. bicruis moth. Then by exposing plants to each pollinator group either during the day or at night, we quantified the contribution of other diurnal pollinators and the specialized nocturnal nursery pollinator to plant female fitness. We found no difference in plant fruit set mediated by diurnal versus nocturnal pollinators, indicating that non-specialist pollinators contribute to plant female fitness. However, in both natural and experimental populations, H. bicruris was the most efficient pollinator in terms of seeds produced per fruit. These results suggest that the female fitness costs generated by nursery pollination can be overcome through higher fertilization rates relative to predation rates, even in the presence of co-pollinators. Quantifying such interactions is important for our understanding of the selective pressures that promote highly specialized mutualisms, such as nursery pollination, in the Mediterranean region, a centre of diversification of the carnation family.

  11. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum).

    PubMed

    Benjamin, Faye E; Winfree, Rachael

    2014-12-01

    Modern agriculture relies on domesticated pollinators such as the honey bee (Apis mellifera L.), and to a lesser extent on native pollinators, for the production of animal-pollinated crops. There is growing concern that pollinator availability may not keep pace with increasing agricultural production. However, whether crop production is in fact pollen-limited at the field scale has rarely been studied. Here, we ask whether commercial highbush blueberry (Vaccinium corymbosum L.) production in New Jersey is limited by a lack of pollination even when growers provide honey bees at recommended densities. We studied two varieties of blueberry over 3 yr to determine whether blueberry crop production is pollen-limited and to measure the relative contributions of honey bees and native bees to blueberry pollination. We found two lines of evidence for pollen limitation. First, berries receiving supplemental hand-pollination were generally heavier than berries receiving ambient pollination. Second, mean berry mass increased significantly and nonasymptotically with honey bee flower visitation rate. While honey bees provided 86% of pollination and thus drove the findings reported above, native bees still contributed 14% of total pollination even in our conventionally managed, high-input agricultural system. Honey bees and native bees were also similarly efficient as pollinators on a per-visit basis. Overall, our study shows that pollination can be a limiting factor in commercial fruit production. Yields might increase with increased honey bee stocking rates and improved dispersal of hives within crop fields, and with habitat restoration to increase pollination provided by native bees.

  12. Evaluating pollination deficits in pumpkin production in New York.

    PubMed

    Petersen, J D; Huseth, A S; Nault, B A

    2014-10-01

    Potential decreases in crop yield from reductions in bee-mediated pollination services threaten food production demands of a growing population. Many fruit and vegetable growers supplement their fields with bee colonies during crop bloom. The extent to which crop production requires supplementary pollination services beyond those provided by wild bees is not well documented. Pumpkin, Cucurbita pepo L., requires bee-mediated pollination for fruit development. Previous research identified the common eastern bumble bee, Bombus impatiens (Cresson), as the most efficient pumpkin pollinator. Two concomitant studies were conducted to examine pollination deficits in New York pumpkin fields from 2011 to 2013. In the first study, fruit weight, seed set, and B. impatiens visits to pumpkin flowers were compared across fields supplemented with B. impatiens colonies at a recommended stocking density of five colonies per hectare, a high density of 15 colonies per hectare, or not supplemented with bees. In the second study, fruit weight and seed set of pumpkins that received supplemental pollen through hand-pollination were compared with those that were open-pollinated by wild bees. Results indicated that supplementing pumpkin fields with B. impatiens colonies, regardless of stocking density, did not increase fruit weight, seed set, or B. impatiens visits to pumpkin flowers. Fruit weight and seed set did not differ between hand- and open-pollinated treatments. In general, we conclude that pumpkin production in central New York is not limited by inadequate pollination services provided by wild bees and that on average, supplementation with B. impatiens colonies did not improve pumpkin yield.

  13. Floral advertisement and the competition for pollination services.

    PubMed

    Fishman, Michael A; Hadany, Lilach

    2015-06-01

    Flowering plants are a major component of terrestrial ecosystems, and most of them depend on animal pollinators for reproduction. Thus, the mutualism between flowering plants and their pollinators is a keystone ecological relationship in both natural and agricultural ecosystems. Though plant-pollinator interactions have received considerable amount of attention, there are still many unanswered questions. In this paper, we use methods of evolutionary game theory to investigate the co-evolution of floral advertisement and pollinator preferences Our results indicate that competition for pollination services among plant species can in some cases lead to specialization of the pollinator population to a single plant species (oligolecty). However, collecting pollen from multiple plants - at least at the population level - is evolutionarily stable under a wider parameter range. Finally, we show that, in the presence of pollinators, plants that optimize their investment in attracting vs. rewarding visiting pollinators outcompete plants that do not. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Obligate pollination mutualism in Breynia (Phyllanthaceae): further documentation of pollination mutualism involving Epicephala moths (Gracillariidae).

    PubMed

    Kawakita, Atsushi; Kato, Makoto

    2004-09-01

    This paper reports obligate seed-parasitic pollination mutualisms in Breynia vitis-idea and B. fruticosa (Phyllanthaceae). The genus Breynia is closely related to Glochidion and Gomphidium (a subgenus of Phyllanthus), in which pollination by species-specific, seed-parasitic Epicephala moths (Gracillariidae) have been previously reported. At night, female Epicephala moths carrying numerous pollen grains on their proboscises visited female flowers of B. vitis-idea, actively pollinated flowers, and each subsequently laid an egg. Examination of field-collected flowers indicated that pollinated flowers of B. vitis-idea and B. fruticosa almost invariably had Epicephala eggs, suggesting that these moths are the primary pollinators of the two species. Single Epicephala larvae consumed a fraction of seeds within developing fruit in B. vitis-idea and all seeds in B. fruticosa. However, some of the fruits were left untouched, and many of these had indication of moth oviposition, suggesting that egg/larval mortality of Epicephala moths is an important factor assuring seed set in these plants. The overall similarity of the specialized floral structure among Breynia species may indicate that this pollination system is fairly widespread within the genus.

  15. Using metabarcoding to reveal and quantify plant-pollinator interactions

    PubMed Central

    Pornon, André; Escaravage, Nathalie; Burrus, Monique; Holota, Hélène; Khimoun, Aurélie; Mariette, Jérome; Pellizzari, Charlène; Iribar, Amaia; Etienne, Roselyne; Taberlet, Pierre; Vidal, Marie; Winterton, Peter; Zinger, Lucie; Andalo, Christophe

    2016-01-01

    Given the ongoing decline of both pollinators and plants, it is crucial to implement effective methods to describe complex pollination networks across time and space in a comprehensive and high-throughput way. Here we tested if metabarcoding may circumvent the limits of conventional methodologies in detecting and quantifying plant-pollinator interactions. Metabarcoding experiments on pollen DNA mixtures described a positive relationship between the amounts of DNA from focal species and the number of trnL and ITS1 sequences yielded. The study of pollen loads of insects captured in plant communities revealed that as compared to the observation of visits, metabarcoding revealed 2.5 times more plant species involved in plant-pollinator interactions. We further observed a tight positive relationship between the pollen-carrying capacities of insect taxa and the number of trnL and ITS1 sequences. The number of visits received per plant species also positively correlated to the number of their ITS1 and trnL sequences in insect pollen loads. By revealing interactions hard to observe otherwise, metabarcoding significantly enlarges the spatiotemporal observation window of pollination interactions. By providing new qualitative and quantitative information, metabarcoding holds great promise for investigating diverse facets of interactions and will provide a new perception of pollination networks as a whole. PMID:27255732

  16. The role of pollinator diversity in the evolution of corolla-shape integration in a pollination-generalist plant clade

    PubMed Central

    Gómez, José María; Perfectti, Francisco; Klingenberg, Christian Peter

    2014-01-01

    Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. PMID:25002702

  17. Multilevel Spatial Structure Impacts on the Pollination Services of Comarum palustre (Rosaceae)

    PubMed Central

    Somme, Laurent; Mayer, Carolin; Jacquemart, Anne-Laure

    2014-01-01

    Habitat destruction and fragmentation accelerate pollinator decline, consequently disrupting ecosystem processes such as pollination. To date, the impacts of multilevel spatial structure on pollination services have rarely been addressed. We focused on the effects of population spatial structure on the pollination services of Comarum palustre at three levels (i.e. within-population, between-populations and landscape). For three years, we investigated 14 Belgian populations, which differed in their within-population flower density, population surface, closure (i.e. proportion of the population edge that consisted of woody elements) and isolation (i.e. percentage of woody area cover within a 500 m radius from the population centre). We tested whether these spatial characteristics impact on pollinator abundance and visitation rate and thus, reproductive success of C. palustre. Insects were observed in 15 randomly-chosen plots in each population. We tested for pollen limitation with supplemental hand-cross pollination. Bumble bees and solitary bees were the major pollinators through all populations. Within populations, plots with high flower densities attracted high numbers of bumble bees and other insects. High bumble bee and solitary bee abundance was observed in populations presenting high proportions of woody edges and in populations within landscapes presenting high proportions of woody areas. Seed set resulting from open pollination varied with bumble bee and solitary bee visitation rate, leading to increased pollen limitation when pollinators were scarce. Since the reproductive success depended on the visitation rate of the main pollinators, which depended on multilevel spatial structure, wetland management plans should pay special attention to favour a mosaic of biotopes, including nesting sites and food resources for insects. This study particularly supports the relevance of a mix wetlands and woody habitats to bees. PMID:24915450

  18. Multilevel spatial structure impacts on the pollination services of Comarum palustre (Rosaceae).

    PubMed

    Somme, Laurent; Mayer, Carolin; Jacquemart, Anne-Laure

    2014-01-01

    Habitat destruction and fragmentation accelerate pollinator decline, consequently disrupting ecosystem processes such as pollination. To date, the impacts of multilevel spatial structure on pollination services have rarely been addressed. We focused on the effects of population spatial structure on the pollination services of Comarum palustre at three levels (i.e. within-population, between-populations and landscape). For three years, we investigated 14 Belgian populations, which differed in their within-population flower density, population surface, closure (i.e. proportion of the population edge that consisted of woody elements) and isolation (i.e. percentage of woody area cover within a 500 m radius from the population centre). We tested whether these spatial characteristics impact on pollinator abundance and visitation rate and thus, reproductive success of C. palustre. Insects were observed in 15 randomly-chosen plots in each population. We tested for pollen limitation with supplemental hand-cross pollination. Bumble bees and solitary bees were the major pollinators through all populations. Within populations, plots with high flower densities attracted high numbers of bumble bees and other insects. High bumble bee and solitary bee abundance was observed in populations presenting high proportions of woody edges and in populations within landscapes presenting high proportions of woody areas. Seed set resulting from open pollination varied with bumble bee and solitary bee visitation rate, leading to increased pollen limitation when pollinators were scarce. Since the reproductive success depended on the visitation rate of the main pollinators, which depended on multilevel spatial structure, wetland management plans should pay special attention to favour a mosaic of biotopes, including nesting sites and food resources for insects. This study particularly supports the relevance of a mix wetlands and woody habitats to bees.

  19. Shades of red: bird-pollinated flowers target the specific colour discrimination abilities of avian vision.

    PubMed

    Shrestha, Mani; Dyer, Adrian G; Boyd-Gerny, Skye; Wong, Bob B M; Burd, Martin

    2013-04-01

    Colour signals are a major cue in putative pollination syndromes. There is evidence that the reflectance spectra of many flowers target the distinctive visual discrimination abilities of hymenopteran insects, but far less is known about bird-pollinated flowers. Birds are hypothesized to exert different selective pressures on floral colour compared with hymenopterans because of differences in their visual systems. We measured the floral reflectance spectra of 206 Australian angiosperm species whose floral visitors are known from direct observation rather than inferred from floral characteristics. We quantified the match between these spectra and the hue discrimination abilities of hymenopteran and avian vision, and analysed these metrics in a phylogenetically informed comparison of flowers in different pollination groups. We show that bird-visited flowers and insect-visited flowers differ significantly from each other in the chromatic cues they provide, and that the differences are concentrated near wavelengths of optimal colour discrimination by whichever class of pollinator visits the flowers. Our results indicate that angiosperms have evolved the spectral signals most likely to reinforce their pollinators' floral constancy (the tendency of individual pollinators to visit flowers of the same species) in communities of similarly coloured floral competitors. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  20. Extremely Long-Lived Stigmas Allow Extended Cross-Pollination Opportunities in a High Andean Plant

    PubMed Central

    Torres-Díaz, Cristian; Gómez-González, Susana; Stotz, Gisela C.; Torres-Morales, Patricio; Paredes, Brayam; Pérez-Millaqueo, Matías; Gianoli, Ernesto

    2011-01-01

    High-elevation ecosystems are traditionally viewed as environments in which predominantly autogamous breeding systems should be selected because of the limited pollinator availability. Chaetanthera renifolia (Asteraceae) is an endemic monocarpic triennial herb restricted to a narrow altitudinal range within the high Andes of central Chile (3300–3500 m a.s.l.), just below the vegetation limit. This species displays one of the larger capitulum within the genus. Under the reproductive assurance hypothesis, and considering its short longevity (monocarpic triennial), an autogamous breeding system and low levels of pollen limitation would be predicted for C. renifolia. In contrast, considering its large floral size, a xenogamous breeding system, and significant levels of pollen limitation could be expected. In addition, the increased pollination probability hypothesis predicts prolonged stigma longevity for high alpine plants. We tested these alternative predictions by performing experimental crossings in the field to establish the breeding system and to measure the magnitude of pollen limitation in two populations of C. renifolia. In addition, we measured the stigma longevity in unpollinated and open pollinated capitula, and pollinator visitation rates in the field. We found low levels of self-compatibility and significant levels of pollen limitation in C. renifolia. Pollinator visitation rates were moderate (0.047–0.079 visits per capitulum per 30 min). Although pollinator visitation rate significantly differed between populations, they were not translated into differences in achene output. Finally, C. renifolia stigma longevity of unpollinated plants was extremely long and significantly higher than that of open pollinated plants (26.3±2.8 days vs. 10.1±2.2, respectively), which gives support to the increased pollination probability hypothesis for high-elevation flowering plants. Our results add to a growing number of studies that show that xenogamous breeding

  1. Phenological change in a spring ephemeral: implications for pollination and plant reproduction.

    PubMed

    Gezon, Zachariah J; Inouye, David W; Irwin, Rebecca E

    2016-05-01

    Climate change has had numerous ecological effects, including species range shifts and altered phenology. Altering flowering phenology often affects plant reproduction, but the mechanisms behind these changes are not well-understood. To investigate why altering flowering phenology affects plant reproduction, we manipulated flowering phenology of the spring herb Claytonia lanceolata (Portulacaceae) using two methods: in 2011-2013 by altering snow pack (snow-removal vs. control treatments), and in 2013 by inducing flowering in a greenhouse before placing plants in experimental outdoor arrays (early, control, and late treatments). We measured flowering phenology, pollinator visitation, plant reproduction (fruit and seed set), and pollen limitation. Flowering occurred approx. 10 days earlier in snow-removal than control plots during all years of snow manipulation. Pollinator visitation patterns and strength of pollen limitation varied with snow treatments, and among years. Plants in the snow removal treatment were more likely to experience frost damage, and frost-damaged plants suffered low reproduction despite lack of pollen limitation. Plants in the snow removal treatment that escaped frost damage had higher pollinator visitation rates and reproduction than controls. The results of the array experiment supported the results of the snow manipulations. Plants in the early and late treatments suffered very low reproduction due either to severe frost damage (early treatment) or low pollinator visitation (late treatment) relative to control plants. Thus, plants face tradeoffs with advanced flowering time. While early-flowering plants can reap the benefits of enhanced pollination services, they do so at the cost of increased susceptibility to frost damage that can overwhelm any benefit of flowering early. In contrast, delayed flowering results in dramatic reductions in plant reproduction through reduced pollination. Our results suggest that climate change may constrain the

  2. The Manú Gradient as a study system for bird pollination.

    PubMed

    Boehm, Mannfred Ma; Scholer, Micah N; Kennedy, Jeremiah Jc; Heavyside, Julian M; Daza, Aniceto; Guevara-Apaza, David; Jankowski, Jill E

    2018-01-01

    This study establishes an altiudinal gradient, spanning from the highland Andes (2400 m) to lowland Amazon, as a productive region for the study of bird pollination in Southeastern Peru. The 'Manú Gradient' has a rich history of ornithological research, the published data and resources from which lay the groundwork for analyses of plant-bird interactions. In this preliminary expedition we documented 44 plants exhibting aspects of the bird pollination syndrome, and made field observations of hummingbird visits at three sites spanning the Manú Gradient: 2800 m (Wayqecha), 1400 m (San Pedro), and 400 m (Pantiacolla). Some of the documented plant taxa are underrepresented in the bird pollination literature and could be promising avenues for future analyses of their pollination biology. The Manú Gradient is currently the focus of a concerted, international effort to describe and study the birds in the region; we propose that this region of Southeastern Peru is a productive and perhaps underestimated system to gain insight into the ecology and evolution of bird pollination. Observations were made on 11, 19, and 14 putatively bird pollinated plant species found at the high-, mid- and low-elevation sites along the gradient, respectively. Hummingbirds visited 18 of these plant species, with some plant species being visited by multiple hummingbird species or the same hummingbird species on differing occasions. Morphometric data is presented for putatively bird-pollinated plants, along with bill measurements from hummingbirds captured at each of three sites. Voucher specimens from this study are deposited in the herbaria of the Universidad Nacional de Agraria de La Molina (MOL), Peru and the University of British Columbia (UBC), Canada. The specimens collected represent a 'snapshot' of the diversity of bird-pollinated flora as observed over 10 day sampling windows (per site) during the breeding season for hummingbirds of Manú .

  3. Flower-Visiting Butterflies Avoid Predatory Stimuli and Larger Resident Butterflies: Testing in a Butterfly Pavilion.

    PubMed

    Fukano, Yuya; Tanaka, Yosuke; Farkhary, Sayed Ibrahim; Kurachi, Takuma

    2016-01-01

    The flower-visiting behaviors of pollinator species are affected not only by flower traits but also by cues of predators and resident pollinators. There is extensive research into the effects of predator cues and resident pollinators on the flower-visiting behaviors of bee pollinators. However, there is relatively little research into their effects on butterfly pollinators probably because of the difficulty in observing a large number of butterfly pollination events. We conducted a dual choice experiment using artificial flowers under semi-natural conditions in the butterfly pavilion at Tama Zoological Park to examine the effects of the presence of a dead mantis and resident butterflies have on the flower-visiting behavior of several butterfly species. From 173 hours of recorded video, we observed 3235 visitations by 16 butterfly species. Statistical analysis showed that (1) butterflies avoided visiting flowers occupied by a dead mantis, (2) butterflies avoided resident butterflies that were larger than the visitor, and (3) butterflies showed greater avoidance of a predator when the predator was present together with the resident butterfly than when the predator was located on the opposite flower of the resident. Finally, we discuss the similarities and differences in behavioral responses of butterfly pollinators and bees.

  4. Flower-Visiting Butterflies Avoid Predatory Stimuli and Larger Resident Butterflies: Testing in a Butterfly Pavilion

    PubMed Central

    Fukano, Yuya; Tanaka, Yosuke; Farkhary, Sayed Ibrahim; Kurachi, Takuma

    2016-01-01

    The flower-visiting behaviors of pollinator species are affected not only by flower traits but also by cues of predators and resident pollinators. There is extensive research into the effects of predator cues and resident pollinators on the flower-visiting behaviors of bee pollinators. However, there is relatively little research into their effects on butterfly pollinators probably because of the difficulty in observing a large number of butterfly pollination events. We conducted a dual choice experiment using artificial flowers under semi-natural conditions in the butterfly pavilion at Tama Zoological Park to examine the effects of the presence of a dead mantis and resident butterflies have on the flower-visiting behavior of several butterfly species. From 173 hours of recorded video, we observed 3235 visitations by 16 butterfly species. Statistical analysis showed that (1) butterflies avoided visiting flowers occupied by a dead mantis, (2) butterflies avoided resident butterflies that were larger than the visitor, and (3) butterflies showed greater avoidance of a predator when the predator was present together with the resident butterfly than when the predator was located on the opposite flower of the resident. Finally, we discuss the similarities and differences in behavioral responses of butterfly pollinators and bees. PMID:27846252

  5. Benefit and cost curves for typical pollination mutualisms.

    PubMed

    Morris, William F; Vázquez, Diego P; Chacoff, Natacha P

    2010-05-01

    Mutualisms provide benefits to interacting species, but they also involve costs. If costs come to exceed benefits as population density or the frequency of encounters between species increases, the interaction will no longer be mutualistic. Thus curves that represent benefits and costs as functions of interaction frequency are important tools for predicting when a mutualism will tip over into antagonism. Currently, most of what we know about benefit and cost curves in pollination mutualisms comes from highly specialized pollinating seed-consumer mutualisms, such as the yucca moth-yucca interaction. There, benefits to female reproduction saturate as the number of visits to a flower increases (because the amount of pollen needed to fertilize all the flower's ovules is finite), but costs continue to increase (because pollinator offspring consume developing seeds), leading to a peak in seed production at an intermediate number of visits. But for most plant-pollinator mutualisms, costs to the plant are more subtle than consumption of seeds, and how such costs scale with interaction frequency remains largely unknown. Here, we present reasonable benefit and cost curves that are appropriate for typical pollinator-plant interactions, and we show how they can result in a wide diversity of relationships between net benefit (benefit minus cost) and interaction frequency. We then use maximum-likelihood methods to fit net-benefit curves to measures of female reproductive success for three typical pollination mutualisms from two continents, and for each system we chose the most parsimonious model using information-criterion statistics. We discuss the implications of the shape of the net-benefit curve for the ecology and evolution of plant-pollinator mutualisms, as well as the challenges that lie ahead for disentangling the underlying benefit and cost curves for typical pollination mutualisms.

  6. The reproductive strategy of a pollinator-limited Himalayan plant, Incarvillea mairei (Bignoniaceae)

    PubMed Central

    2013-01-01

    Background Plants may adapt to alpine habitats by specialization in the reproductive strategy and functional aspects of their flowers and pollination systems. Alpine habitats reduce the opportunities for cross-pollination in a relatively high proportion of alpine plant species, and self-pollination may be favored in these adverse conditions. Here, we investigated the mating system and pollination of Incarvillea mairei, a perennial Himalayan herb typically found at altitudes between 3000 and 4500 m. Results Analyses of floral morphology, observation of plant-pollinator interactions, and hand pollination experiments were conducted in three natural populations. Outcrossing rates and effective numbers of pollen donors were assessed in 45 open-pollinated families by using progeny analysis based on seven microsatellite markers. Incarvillea mairei displayed a set of apparently specialized floral traits, the stigma is sensitive to touch and close immediately and its reopening allows a second opportunity for the receipt of pollen. The species is fully self-compatible but employs a predominantly outcrossing mating system according to parentage analysis (tm > 0.9). Fruit set was low (26.3%), whereas seed set was high (67.2%), indicating that this species suffers pollinator limitation. Its main effective pollinator was Halictus sp., and visitation frequency was low. Conclusions Floral features such as having a sensitive stigma and anther-prongs, in conjunction with pollinator behavior, function together contributing to a set of unique reproductive adaptations that enhance outcrossing success. The increased floral longevity and high pollination efficiency operated as compensatory mechanisms to counteract low pollinator visitation frequency. PMID:24289097

  7. The role of pollinator diversity in the evolution of corolla-shape integration in a pollination-generalist plant clade.

    PubMed

    Gómez, José María; Perfectti, Francisco; Klingenberg, Christian Peter

    2014-08-19

    Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Differential pollinator effectiveness and importance in a milkweed (Asclepias, Apocynaceae) hybrid zone.

    PubMed

    Stoepler, Teresa M; Edge, Andrea; Steel, Anna; O'Quinn, Robin L; Fishbein, Mark

    2012-03-01

    Exceptions to the ideal of complete reproductive isolation between species are commonly encountered in diverse plant, animal, and fungal groups, but often the causative ecological processes are poorly understood. In flowering plants, the outcome of hybridization depends in part on the effectiveness of pollinators in interspecific pollen transport. In the Asclepias exaltata and A. syriaca (Apocynaceae) hybrid zone in Shenandoah National Park, Virginia, extensive introgression has been documented. The objectives of this study were to (1) determine the extent of pollinator overlap among A. exaltata, A. syriaca, and their hybrids and (2) identify the insect taxa responsible for hybridization and introgression. We observed focal plants of parental species and hybrids to measure visitation rate, visit duration, and per-visit pollinia removal and deposition, and we calculated pollinator effectiveness and importance. Visitation rates varied significantly between the 2 yr of the study. Overall, Apis mellifera, Bombus sp., and Epargyreus clarus were the most important pollinators. However, Bombus sp. was the only visitor that was observed to both remove and insert pollinia for both parent species as well as hybrids. We conclude that Bombus may be a key agent of hybridization and introgression in these sympatric milkweed populations, and hybrids are neither preferred nor selected against by pollinators. Thus, we have identified a potential mechanism for how hybrids act as bridges to gene flow between A. exaltata and A. syriaca. These results provide insights into the breakdown of prezygotic isolating mechanisms.

  9. Direct and Pollinator-Mediated Effects of Herbivory on Strawberry and the Potential for Improved Resistance

    PubMed Central

    Muola, Anne; Weber, Daniela; Malm, Lisa E.; Egan, Paul A.; Glinwood, Robert; Parachnowitsch, Amy L.; Stenberg, Johan A.

    2017-01-01

    The global decline in pollinators has partly been blamed on pesticides, leading some to propose pesticide-free farming as an option to improve pollination. However, herbivores are likely to be more prevalent in pesticide-free environments, requiring knowledge of their effects on pollinators, and alternative crop protection strategies to mitigate any potential pollination reduction. Strawberry leaf beetles (SLB) Galerucella spp. are important strawberry pests in Northern Europe and Russia. Given that SLB attack both leaf and flower tissue, we hypothesized pollinators would discriminate against SLB-damaged strawberry plants (Fragaria vesca, cultivar ‘Rügen’), leading to lower pollination success and yield. In addition we screened the most common commercial cultivar ‘Rügen’ and wild Swedish F. vesca genotypes for SLB resistance to assess the potential for inverse breeding to restore high SLB resistance in cultivated strawberry. Behavioral observations in a controlled experiment revealed that the local pollinator fauna avoided strawberry flowers with SLB-damaged petals. Low pollination, in turn, resulted in smaller more deformed fruits. Furthermore, SLB-damaged flowers produced smaller fruits even when they were hand pollinated, showing herbivore damage also had direct effects on yield, independent of indirect effects on pollination. We found variable resistance in wild woodland strawberry to SLB and more resistant plant genotypes than the cultivar ‘Rügen’ were identified. Efficient integrated pest management strategies should be employed to mitigate both direct and indirect effects of herbivory for cultivated strawberry, including high intrinsic plant resistance. PMID:28572811

  10. Differences in pollination success between local and foreign flower color phenotypes: a translocation experiment with Gentiana lutea (Gentianaceae).

    PubMed

    Guitián, Javier A; Sobral, Mar; Veiga, Tania; Losada, María; Guitián, Pablo; Guitián, José M

    2017-01-01

    The adaptive maintenance of flower color variation is frequently attributed to pollinators partly because they preferentially visit certain flower phenotypes. We tested whether Gentiana lutea -which shows a flower color variation (from orange to yellow) in the Cantabrian Mountains range (north of Spain)-is locally adapted to the pollinator community. We transplanted orange-flowering individuals to a population with yellow-flowering individuals and vice versa, in order to assess whether there is a pollination advantage in the local morph by comparing its visitation rate with the foreign morph. Our reciprocal transplant experiment did not show clear local morph advantage in overall visitation rate: local orange flowers received more visits than foreign yellow flowers in the orange population, while both local and foreign flowers received the same visits in the yellow population; thus, there is no evidence of local adaptation in Gentiana lutea to the pollinator assemblage. However, some floral visitor groups (such as Bombus pratorum , B. soroensis ancaricus and B. lapidarius decipiens ) consistently preferred the local morph to the foreign morph whereas others (such as Bombus terrestris ) consistently preferred the foreign morph. We concluded that there is no evidence of local adaptation to the pollinator community in each of the two G. lutea populations studied. The consequences for local adaptation to pollinator on G. lutea flower color would depend on the variation along the Cantabrian Mountains range in morph frequency and pollinator community composition.

  11. Differences in pollination success between local and foreign flower color phenotypes: a translocation experiment with Gentiana lutea (Gentianaceae)

    PubMed Central

    Sobral, Mar; Veiga, Tania; Guitián, Pablo; Guitián, José M.

    2017-01-01

    Background The adaptive maintenance of flower color variation is frequently attributed to pollinators partly because they preferentially visit certain flower phenotypes. We tested whether Gentiana lutea—which shows a flower color variation (from orange to yellow) in the Cantabrian Mountains range (north of Spain)—is locally adapted to the pollinator community. Methods We transplanted orange-flowering individuals to a population with yellow-flowering individuals and vice versa, in order to assess whether there is a pollination advantage in the local morph by comparing its visitation rate with the foreign morph. Results Our reciprocal transplant experiment did not show clear local morph advantage in overall visitation rate: local orange flowers received more visits than foreign yellow flowers in the orange population, while both local and foreign flowers received the same visits in the yellow population; thus, there is no evidence of local adaptation in Gentiana lutea to the pollinator assemblage. However, some floral visitor groups (such as Bombus pratorum, B. soroensis ancaricus and B. lapidarius decipiens) consistently preferred the local morph to the foreign morph whereas others (such as Bombus terrestris) consistently preferred the foreign morph. Discussion We concluded that there is no evidence of local adaptation to the pollinator community in each of the two G. lutea populations studied. The consequences for local adaptation to pollinator on G. lutea flower color would depend on the variation along the Cantabrian Mountains range in morph frequency and pollinator community composition. PMID:28194308

  12. Pollinators of the Rocky Mountain columbine: temporal variation, functional groups and associations with floral traits

    PubMed Central

    Brunet, Johanne

    2009-01-01

    Background and Aims Pollinators together with other biotic and some abiotic factors can select for floral traits. However, variation in pollinator abundance over time and space can weaken such selection. In the present study, the variation in pollinator abundance over time and space was examined in populations of the Rocky Mountain columbine. The variation in three floral traits is described and correlations between pollinator type, functional pollinator groups or altitude and floral traits are examined. Methods Pollinator observations took place in six Aquilegia coerulea populations over 1–4 years and spur length, flower colour and sepal length were measured in 12 populations. Pollinator abundance, measured as visits per flower per hour, was compared among populations and years. Pollinators were grouped into two functional groups: pollen or nectar collectors. The following associations were examined: annual presence of hawkmoths and whiter flowers with longer spurs; the presence of Sphinx vashti and longer spurs; and higher altitudes and whiter flowers. The study looked at whether an increase in the proportion of hawkmoths in a population was associated with whiter and larger flowers with longer spurs. Key Results The abundance of different pollinator groups varied over time and space. Floral traits varied among populations. Higher altitude was correlated with bluer flowers. Whiter flowers were associated with the annual presence of hawkmoths. Populations visited by Sphinx vashti had longer spurs than populations visited only by Hyles lineata. Populations with greater percentage of nectar-collecting pollinators did not have whiter, larger flowers with longer spurs. Conclusions Despite the large variation in pollinator abundance over time and space, one species of bumble-bee or hawkmoth tended to predominate in each population each year. Future studies of Aquilegia coerulea should examine the specific influences of pollinators and the environment on flower colour

  13. Floral advertisement scent in a changing plant-pollinators market.

    PubMed

    Filella, Iolanda; Primante, Clara; Llusià, Joan; Martín González, Ana M; Seco, Roger; Farré-Armengol, Gerard; Rodrigo, Anselm; Bosch, Jordi; Peñuelas, Josep

    2013-12-05

    Plant-pollinator systems may be considered as biological markets in which pollinators choose between different flowers that advertise their nectar/pollen rewards. Although expected to play a major role in structuring plant-pollinator interactions, community-wide patterns of flower scent signals remain largely unexplored. Here we show for the first time that scent advertisement is higher in plant species that bloom early in the flowering period when pollinators are scarce relative to flowers than in species blooming later in the season when there is a surplus of pollinators relative to flowers. We also show that less abundant flowering species that may compete with dominant species for pollinator visitation early in the flowering period emit much higher proportions of the generalist attractant β-ocimene. Overall, we provide a first community-wide description of the key role of seasonal dynamics of plant-specific flower scent emissions, and reveal the coexistence of contrasting plant signaling strategies in a plant-pollinator market.

  14. High specialisation in the pollination system of Mandevilla tenuifolia (J.C. Mikan) Woodson (Apocynaceae) drives the effectiveness of butterflies as pollinators.

    PubMed

    de Araújo, L D A; Quirino, Z G M; Machado, I C

    2014-09-01

    Butterfly pollination in the tropics is considered somewhat effective or solely effective in a few plant species. In the present study, we tested the hypothesis that Mandevilla tenuifolia (Apocynaceae), which has floral attributes associated with psychophily, has strategies adapted to pollination by butterflies, restricting other floral visitors and making these insects act as efficient pollinators. We analysed the floral and reproductive biology of M. tenuifolia, as well as the frequency and efficiency of its flower visitors. M. tenuifolia is an herb whose flowers have strong herkogamy and secondary pollen presentation on the style head, which corresponds to 60.4% of pollen on the anthers. Flower longevity and the long period of receptivity of the stigmatic region associated with the large amount of pollen removed in the first visits suggest that flowers remain functionally female during part of anthesis. Butterflies, mainly of the families Nymphalidae and Pieridae, are the only pollinators of M. tenuifolia. Despite being self-compatible, M. tenuifolia depends on biotic vectors for fruit production. A non-significant difference in fruit set between controlled treatments and natural conditions suggests that the pollinators are efficient. The inclination resulting from the landing of butterflies on flowers, together with flower morphology, guiding the insect proboscis inside the floral tube, as well as the frequency and efficiency of butterfly visits, are evidence of the close relationship between butterflies and M. tenuifolia, and also of the efficiency of these insects as pollinators. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Pollination biology of Eulophia alta (Orchidaceae) in Amazonia: effects of pollinator composition on reproductive success in different populations

    PubMed Central

    Jürgens, Andreas; Bosch, Simone R.; Webber, Antonio C.; Witt, Taina; Frame, Dawn; Gottsberger, Gerhard

    2009-01-01

    Background and Aims Spatial variation in pollinator composition and abundance is a well-recognized phenomenon. However, a weakness of many studies claiming specificity of plant–pollinator interactions is that they are often restricted to a single locality. The aim of the present study was to investigate pollinator effectiveness of the different flower visitors to the terrestrial orchid Eulophia alta at three different localities and to analyse whether differences in pollinator abundance and composition effect this plant's reproductive success. Methods Natural pollination was observed in vivo, and manipulative experiments were used to study the pollination biology and breeding system of E. alta at three sites near Manaus, Brazil. To gain a better understanding of the underlying mechanisms of pollinator attraction, nectar composition and secretion patterns were also studied, floral scent composition was analysed and a bioassay was conducted. Key Results Flower visitors, pollinator composition, pollinia transfer efficiency of particular pollinator species and natural fruit set differed among the investigated populations of E. alta. Flowers were self-compatible, partially autogamous and effectively pollinated by five bee species (four Centris species and Xylocopa muscaria). Visiting insects appeared to imbibe small amounts of hexose-rich nectar. Nectar sugar content was highest on the third day after flower opening. Floral fragrance analyses revealed 42 compounds, of which monoterpenes and benzenoids predominated. A bioassay using floral parts revealed that only floral tissue from the labellum chamber and labellum tip was attractive to flower visitors. Conclusions The data suggest that observed differences in reproductive success in the three populations cannot be explained by absolute abundance of pollinators alone. Due to behavioural patterns such as disturbance of effective pollinators on flowers by male Centris varia bees defending territory, pollinia transfer

  16. Pollinator community structure and sources of spatial variation in plant--pollinator interactions in Clarkia xantiana ssp. xantiana.

    PubMed

    Moeller, David A

    2005-01-01

    The structure of diverse floral visitor assemblages and the nature of spatial variation in plant-pollinator interactions have important consequences for floral evolution and reproductive interactions among pollinator-sharing plant species. In this study, I use surveys of floral visitor communities across the geographic range of Clarkia xantiana ssp. xantiana (hereafter C. x. xantiana) (Onagraceae) to examine the structure of visitor communities, the specificity of the pollination system, and the role of variation in the abiotic vs. biotic environment in contributing to spatial variation in pollinator abundance and community composition. Although the assemblage of bee visitors to C. x. xantiana is very diverse (49 species), few were regular visitors and likely to act as pollinators. Seventy-four percent of visitor species accounted for only 11% of total visitor abundance and 69% were collected in three or fewer plant populations (of ten). Of the few reliable visitors, Clarkia pollen specialist bees were the most frequent visitors, carried more Clarkia pollen compared to generalist foragers, and were less likely to harbor foreign pollen. Overall, the core group of pollinators was obscured by high numbers of incidental visitors that are unlikely to contribute to pollination. In a geographic context, the composition of specialist pollinator assemblages varied considerably along the abiotic gradient spanning the subspecies' range. However, the overall abundance of specialist pollinators in plant populations was not influenced by the broad-scale abiotic gradient but strongly affected by local plant community associations. C. x. xantiana populations sympatric with pollinator-sharing congeners were visited twice as often by specialists compared to populations occurring alone. These positive indirect interactions among plant species may promote population persistence and species coexistence by enhancing individual reproductive success.

  17. Pollinator-mediated competition between two co-flowering Neotropical mangrove species, Avicennia germinans (Avicenniaceae) and Laguncularia racemosa (Combretaceae)

    PubMed Central

    Landry, C. L.

    2013-01-01

    Background and Aims Three ecological relationships are possible between co-flowering plant species; they may have no effect on one another, compete for pollination services, or facilitate one another by attracting more pollinators to the area. In this study, the pollinator-mediated relationship between two mangrove species with overlapping flowering phenologies was investigated in one south Florida community. Methods Pollinator observations were recorded between 0900 h and 1700 h during June and July, 2008–2010. Insect visitation rates to Avicennia germinans and Laguncularia racemosa were estimated from 522 observation intervals of 10 min during three phenological time periods, when each species flowered alone and when they co-flowered. The number of timed intervals varied between years due to differences in flowering phenology, from four to 42 for A. germinans and from nine to 94 for L. racemosa. Key Results Avicennia germinans began flowering first in all years, and insect visitation rates were significantly greater to A. germinans than to L. racemosa (P<0·001). Flowers of both species received visits from bees, wasps, flies and butterflies; Apis mellifera was the most common floral visitor to both species. Visitation rates to L. racemosa increased significantly when A. germinans stopped flowering (P<0·001). However, there was no significant change in visitation rates to A. germinans after L. racemosa began flowering (P=0·628). Conclusions When they co-flowered, A. germinans outcompeted L. racemosa for pollinators. Laguncularia racemosa hermaphrodites self-pollinate autogamously when not visited by insects, so reduced visitation to L. racemosa flowers reduced the frequency of outcrossing and increased the frequency of selfing. Reduced outcrossing limits male reproductive success in this androdioecious species, which could lead to changes in the breeding system. The degree of overlap in flowering phenologies varied between years, so the effect on the mating

  18. Sterile flowers increase pollinator attraction and promote female success in the Mediterranean herb Leopoldia comosa

    PubMed Central

    Morales, Carolina L.; Traveset, Anna; Harder, Lawrence D.

    2013-01-01

    Background and Aims Large floral displays have opposing consequences for animal-pollinated angiosperms: they attract more pollinators but also enable elevated among-flower self-pollination (geitonogamy). The presence of sterile flowers as pollinator signals may enhance attraction while allowing displays of fewer open fertile flowers, limiting geitonogamy. The simultaneous contributions of fertile and non-fertile display components to pollinator attraction and reproductive output remain undetermined. Methods The simultaneous effects of the presence of sterile flowers and fertile-flower display size in two populations of Leopoldia comosa were experimentally assessed. Pollinator behaviour, pollen removal and deposition, and fruit and seed production were compared between intact plants and plants with sterile flowers removed. Key Results The presence of sterile flowers almost tripled pollinator attraction, supplementing the positive effect of the number of fertile flowers on the number of bees approaching inflorescences. Although attracted bees visited more flowers on larger inflorescences, the number visited did not additionally depend on the presence of sterile flowers. The presence of sterile flowers improved all aspects of plant performance, the magnitude of plant benefit being context dependent. During weather favourable to pollinators, the presence of sterile flowers increased pollen deposition on stigmas of young flowers, but this difference was not evident in older flowers, probably because of autonomous self-pollination in poorly visited flowers. Total pollen receipt per stigma decreased with increasing fertile display size. In the population with more pollinators, the presence of sterile flowers increased fruit number but not seed set or mass, whereas in the other population sterile flowers enhanced seeds per fruit, but not fruit production. These contrasts are consistent with dissimilar cross-pollination and autonomous self-pollination, coupled with the

  19. The evolution of bat pollination: a phylogenetic perspective

    PubMed Central

    Fleming, Theodore H.; Geiselman, Cullen; Kress, W. John

    2009-01-01

    Background Most tropical and subtropical plants are biotically pollinated, and insects are the major pollinators. A small but ecologically and economically important group of plants classified in 28 orders, 67 families and about 528 species of angiosperms are pollinated by nectar-feeding bats. From a phylogenetic perspective this is a derived pollination mode involving a relatively large and energetically expensive pollinator. Here its ecological and evolutionary consequences are explored. Scope and Conclusions This review summarizes adaptations in bats and plants that facilitate this interaction and discusses the evolution of bat pollination from a plant phylogenetic perspective. Two families of bats contain specialized flower visitors, one in the Old World and one in the New World. Adaptation to pollination by bats has evolved independently many times from a variety of ancestral conditions, including insect-, bird- and non-volant mammal-pollination. Bat pollination predominates in very few families but is relatively common in certain angiosperm subfamilies and tribes. We propose that flower-visiting bats provide two important benefits to plants: they deposit large amounts of pollen and a variety of pollen genotypes on plant stigmas and, compared with many other pollinators, they are long-distance pollen dispersers. Bat pollination tends to occur in plants that occur in low densities and in lineages producing large flowers. In highly fragmented tropical habitats, nectar bats play an important role in maintaining the genetic continuity of plant populations and thus have considerable conservation value. PMID:19789175

  20. Reproductive biology of Cyrtopodium polyphyllum (Orchidaceae): a Cyrtopodiinae pollinated by deceit.

    PubMed

    Pansarin, L M; Pansarin, E R; Sazima, M

    2008-09-01

    The genus Cyrtopodium comprises about 42 species distributed from southern Florida to northern Argentina. Cyrtopodium polyphyllum occurs on rocks or in sandy soils, in restinga vegetation along the Brazilian coast. It flowers during the wet season and its inflorescences produce a high number of resupinate yellow flowers. Cyrtopodium polyphyllum offers no rewards to its pollinators, but mimics the yellow, reward-producing flowers of nearby growing Stigmaphyllon arenicola (oil) and Crotalaria vitellina (nectar) individuals. Several species of bee visit flowers of C. polyphyllum, but only two species of Centris (Centris tarsata and Centris labrosa) act as pollinators. Visits to flowers of C. polyphyllum were scarce and, as a consequence, low-fruit set was recorded under natural conditions. Such low-fruit production contrasts with the number of fruits each plant bears after manual pollination, suggesting deficient pollen transfer among plants. C. polyphyllum is self-compatible and has a high-fruit set in both manual self- and cross-pollinated flowers. Furthermore, fruits (2%) are formed by self-pollination assisted by rain. This facultative self-pollination mechanism is an important strategy to provide reproductive assurance to C. polyphyllum as rainfall restricts the foraging activity of its pollinating bees. Fruits derived from treatments and under natural conditions had a similar high rate of potentially viable seed. Moreover, these seeds had a low polyembryony rate, which did not exceed 5%. C. polyphyllum acts by deceit involving optical signals and exploits other yellow-flowered species within its habitat by attracting their pollinators. The low capsule production under natural conditions was expected, but its reproductive success is assured through self-pollination by rain and high seed viability.

  1. Flowering dynamics and pollinator visitation of oilseed echium (Echium plantagineum)

    USDA-ARS?s Scientific Manuscript database

    Echium (Echium plantagineum L.) is an alternative oilseed crop in summer-wet temperate regions that provides floral resources to pollinators. Its seed oil is rich in omega-3 fatty acids, such as stearidonic acid, which is desired highly by the cosmetic industry. We examined flowering dynamics, polli...

  2. Floral volatile alleles can contribute to pollinator-mediated reproductive isolation in monkeyflowers (Mimulus)

    PubMed Central

    Byers, Kelsey J.R.P.; Vela, James P.; Peng, Foen; Riffell, Jeffrey A.; Bradshaw, H.D.

    2014-01-01

    Summary Pollinator-mediated reproductive isolation is a major factor in driving the diversification of flowering plants. Studies of floral traits involved in reproductive isolation have focused nearly exclusively on visual signals, such as flower color. The role of less obvious signals, such as floral scent, has been studied only recently. In particular, the genetics of floral volatiles involved in mediating differential pollinator visitation remains unknown. The bumblebee-pollinated Mimulus lewisii and hummingbird-pollinated M. cardinalis are a model system for studying reproductive isolation via pollinator preference. We have shown that these two species differ in three floral terpenoid volatiles - D-limonene, β-myrcene, and E-β-ocimene - that are attractive to bumblebee pollinators. By genetic mapping and in vitro enzyme activity analysis we demonstrate that these interspecific differences are consistent with allelic variation at two loci – LIMONENE-MYRCENE SYNTHASE (LMS) and OCIMENE SYNTHASE (OS). M. lewisii LMS (MlLMS) and OS (MlOS) are expressed most strongly in floral tissue in the last stages of floral development. M. cardinalis LMS (McLMS) is weakly expressed and has a nonsense mutation in exon 3. M. cardinalis OS (McOS) is expressed similarly to MlOS, but the encoded McOS enzyme produces no E-β-ocimene. Recapitulating the M. cardinalis phenotype by reducing the expression of MlLMS by RNAi in transgenic M. lewisii produces no behavioral difference in pollinating bumblebees; however, reducing MlOS expression produces a 6% decrease in visitation. Allelic variation at the OCIMENE SYNTHASE locus likely contributes to differential pollinator visitation, and thus promotes reproductive isolation between M. lewisii and M. cardinalis. OCIMENE SYNTHASE joins a growing list of “speciation genes” (“barrier genes”) in flowering plants. PMID:25319242

  3. The effects of plant density and nectar reward on bee visitation to the endangered orchid Spiranthes romanzoffiana

    NASA Astrophysics Data System (ADS)

    Duffy, Karl J.; Stout, Jane C.

    2008-09-01

    Density can affect attraction of pollinators, with rare plants receiving fewer pollinating visits compared with more common co-flowering species. However, if a locally rare species is very attractive in terms of the rewards it offers pollinators, it may be preferentially visited. Spiranthes romanzoffiana is a nectar rewarding, geographically rare, endangered orchid species which forms small populations in Ireland, co-flowering with more common, florally rewarding species. We examined visitation rates to S. romanzoffiana and two nectar rewarding co-flowering species ( Mentha aquatica and Prunella vulgaris) in the west of Ireland. These three plant species were visited by three bee species ( Bombus pascuorum, B. hortorum and Apis mellifera). B. pascuorum was the most common visitor, while A. mellifera was least common. Our results suggest that individual S. romanzoffiana inflorescences compete intraspecifically for visitation from pollinators at high densities. The relationship between visitation to S. romanzoffiana and total floral density appeared to be positive, suggesting interspecific facilitation of pollinator visitation at high densities. Nectar standing crop varied through the season, among species and between open and bagged flowers. Nectar standing crop was not correlated with visitation in S. romanzoffiana. Despite relatively high visitation, S. romanzoffiana produced no mature fruit during this flowering season. The lack of fruit maturation in this species may be a major factor causing its rarity in Europe.

  4. Conspecific and Heterospecific Plant Densities at Small-Scale Can Drive Plant-Pollinator Interactions

    PubMed Central

    Janovský, Zdeněk; Mikát, Michael; Hadrava, Jiří; Horčičková, Eva; Kmecová, Kateřina; Požárová, Doubravka; Smyčka, Jan; Herben, Tomáš

    2013-01-01

    Generalist pollinators are important in many habitats, but little research has been done on small-scale spatial variation in interactions between them and the plants that they visit. Here, using a spatially explicit approach, we examined whether multiple species of flowering plants occurring within a single meadow showed spatial structure in their generalist pollinator assemblages. We report the results for eight plant species for which at least 200 individual visits were recorded. We found that for all of these species, the proportions of their general pollinator assemblages accounted for by particular functional groups showed spatial heterogeneity at the scale of tens of metres. This heterogeneity was connected either with no or only subtle changes of vegetation and flowering species composition. In five of these species, differences in conspecific plant density influenced the pollinator communities (with greater dominance of main pollinators at low-conspecific plant densities). The density of heterospecific plant individuals influenced the pollinator spectrum in one case. Our results indicate that the picture of plant-pollinator interactions provided by averaging data within large plots may be misleading and that within-site spatial heterogeneity should be accounted for in terms of sampling effort allocation and analysis. Moreover, spatially structured plant-pollinator interactions may have important ecological and evolutionary consequences, especially for plant population biology. PMID:24204818

  5. Breeding system and pollination of a narrowly endemic herb of the Lower Florida Keys: impacts of the urban-wildland interface.

    PubMed

    Liu, Hong; Koptur, Suzanne

    2003-08-01

    We examined the breeding system and pollination of Chamaecrista keyensis Pennell (Fabaceae: Caesalpinioideae) and the effects of urban edge and mosquito control on reproduction of this rare endemic herb of the Lower Florida Keys. Controlled hand-pollination treatments were applied to plants in the field. Although C. keyensis flowers are self-compatible, they are not capable of automatic selfing. Inbreeding depression was observed in both seed set and percentage seed germination. Bees of seven genera were observed visiting C. keyensis flowers during the peak flowering season (June to July). Only Xylocopa micans and Melissodes spp. may be effective pollinators for C. keyensis, as they were the only bees that "buzz pollinate" this species, which has poricidal anther dehiscence. Chamaecrista keyensis received substantially more visits by X. micans, but fewer visits from Melissodes spp. in urban-edge vs. forest sites. Aerial mosquito spraying may exacerbate the existing pollinator limitation suffered by C. keyensis by reducing the number of visits by the buzz-pollinating bees. Individuals of C. keyensis at urban edges produced fewer seeds per fruit than did individuals in a pristine forest mainly because of greater insect seed predation.

  6. Pseudocopulatory pollination in lepanthes (orchidaceae: pleurothallidinae) by fungus gnats.

    PubMed

    Blanco, Mario A; Barboza, Gabriel

    2005-04-01

    Lepanthes is one of the largest angiosperm genera (>800 species). Their non-rewarding, tiny and colourful flowers are structurally complex. Their pollination mechanism has hitherto remained unknown, but has been subject of ample speculation; the function of the minuscule labellum appendix is especially puzzling. Here, the pollination of L. glicensteinii by sexually deceived male fungus gnats is described and illustrated. Visitors to flowers of L. glicensteinii were photographed and their behaviour documented; some were captured for identification. Occasional visits to flowers of L. helleri, L. stenorhyncha and L. turialvae were also observed. Structural features of flowers and pollinators were studied with SEM. Sexually aroused males of the fungus gnat Bradysia floribunda (Diptera: Sciaridae) were the only visitors and pollinators of L. glicensteinii. The initial long-distance attractant seems to be olfactory. Upon finding a flower, the fly curls his abdomen under the labellum and grabs the appendix with his genitalic claspers, then dismounts the flower and turns around to face away from it. The pollinarium attaches to his abdomen during this pivoting manoeuvre. Pollinia are deposited on the stigma during a subsequent flower visit. The flies appear to ejaculate during pseudocopulation. The visitors of L. helleri, L. stenorhyncha and L. turialvae are different species of fungus gnats that display a similar behaviour. Lepanthes glicensteinii has genitalic pseudocopulatory pollination, the first case reported outside of the Australian orchid genus Cryptostylis. Since most species of Lepanthes have the same unusual flower structure, it is predicted that pollination by sexual deception is prevalent in the genus. Several morphological and phenological traits in Lepanthes seem well suited for exploiting male fungus gnats as pollinators. Correspondingly, some demographic trends common in Lepanthes are consistent with patterns of male sciarid behaviour.

  7. Pseudocopulatory Pollination in Lepanthes (Orchidaceae: Pleurothallidinae) by Fungus Gnats

    PubMed Central

    BLANCO, MARIO A.; BARBOZA, GABRIEL

    2005-01-01

    • Background and Aims Lepanthes is one of the largest angiosperm genera (>800 species). Their non-rewarding, tiny and colourful flowers are structurally complex. Their pollination mechanism has hitherto remained unknown, but has been subject of ample speculation; the function of the minuscule labellum appendix is especially puzzling. Here, the pollination of L. glicensteinii by sexually deceived male fungus gnats is described and illustrated. • Methods Visitors to flowers of L. glicensteinii were photographed and their behaviour documented; some were captured for identification. Occasional visits to flowers of L. helleri, L. stenorhyncha and L. turialvae were also observed. Structural features of flowers and pollinators were studied with SEM. • Key Results Sexually aroused males of the fungus gnat Bradysia floribunda (Diptera: Sciaridae) were the only visitors and pollinators of L. glicensteinii. The initial long-distance attractant seems to be olfactory. Upon finding a flower, the fly curls his abdomen under the labellum and grabs the appendix with his genitalic claspers, then dismounts the flower and turns around to face away from it. The pollinarium attaches to his abdomen during this pivoting manoeuvre. Pollinia are deposited on the stigma during a subsequent flower visit. The flies appear to ejaculate during pseudocopulation. The visitors of L. helleri, L. stenorhyncha and L. turialvae are different species of fungus gnats that display a similar behaviour. • Conclusions Lepanthes glicensteinii has genitalic pseudocopulatory pollination, the first case reported outside of the Australian orchid genus Cryptostylis. Since most species of Lepanthes have the same unusual flower structure, it is predicted that pollination by sexual deception is prevalent in the genus. Several morphological and phenological traits in Lepanthes seem well suited for exploiting male fungus gnats as pollinators. Correspondingly, some demographic trends common in Lepanthes are

  8. Pollination of a native plant changes with distance and density of invasive plants in a simulated biological invasion.

    PubMed

    Bruckman, Daniela; Campbell, Diane R

    2016-08-01

    Effects of an exotic plant on pollination may change as the invasive increases in density. Quantity of pollinator visits to a native may increase, decrease, or change nonlinearly, while visit quality is likely to decrease with greater interspecific pollen movement. How visit quantity and quality contribute to the effect on reproductive success at each invasion stage has not been measured. We simulated four stages of invasion by Brassica nigra by manipulating the neighborhood of potted plants of the native Phacelia parryi in a field experiment. Stages were far from the invasion, near the invasion, intermixed with the invasive at low density, and intermixed at high density. We measured pollinator visitation, conspecific and invasive pollen deposition, and seed set for P. parryi at each stage. Native individuals near invasive plants and within areas of low invasive density showed greatest seed production, as expected from concurrent changes in conspecific and invasive pollen deposition. Those plants experienced facilitation of visits and received more conspecific pollen relative to plants farther from invasives. Native individuals within high invasive density also received frequent visits by many pollinators (although not honeybees), but the larger receipt of invasive pollen predicted interference with pollen tubes that matched patterns in seed set. Pollinator visitation was highest when exotic plants were nearby. Detrimental effects of heterospecific pollen deposition were highest at high exotic density. Our study quantified how reproduction benefits from near proximity to a showy invasive, but is still vulnerable when the invasive reaches high density. © 2016 Botanical Society of America.

  9. Flower-visiting behavior of male bees is triggered by nectar-feeding insects.

    PubMed

    Sugiura, Shinji; Abe, Tetsuto; Yamaura, Yuichi; Makino, Shun'ichi

    2007-08-01

    Bees are important pollinators for many flowering plants. Female bees are thought to be more effective pollinators than male bees because they carry much more pollen than males. Males of some solitary bee species are known to patrol near flowers that females visit. Because patrolling males visit flowers to mate or defend their territories, they may function as pollinators. However, the significance of patrolling males to pollination has not been studied. We studied males of a solitary bee, Heriades fulvohispidus (Megachilidae), patrolling near flowers and visiting flowers that attracted nectar-feeding insects, including conspecifics, on the Ogasawara (Bonin) Islands. To test the hypothesis that patrolling male bees may function as pollen vectors, we compared the frequency of visits by H. fulvohispidus to flowers of an endemic plant, Schima mertensiana (Theaceae); comparisons were made among flowers with a dead H. fulvohispidus, a dead beetle, a piece of plastic, and nothing (control flowers). Patrolling H. fulvohispidus more frequently visited flowers with a dead conspecific, a dead beetle, or a piece of plastic than the control flowers. Our experiment demonstrates that nectar-feeding insects (including conspecifics and other insects) enhance the flower-visiting frequency of patrolling H. fulvohispidus males on S. mertensiana flowers. Furthermore, we observed S. mertensiana pollen on patrolling males as well as females, suggesting that male bees may also function as pollen vectors.

  10. Flower-visiting behavior of male bees is triggered by nectar-feeding insects

    NASA Astrophysics Data System (ADS)

    Sugiura, Shinji; Abe, Tetsuto; Yamaura, Yuichi; Makino, Shun'ichi

    2007-08-01

    Bees are important pollinators for many flowering plants. Female bees are thought to be more effective pollinators than male bees because they carry much more pollen than males. Males of some solitary bee species are known to patrol near flowers that females visit. Because patrolling males visit flowers to mate or defend their territories, they may function as pollinators. However, the significance of patrolling males to pollination has not been studied. We studied males of a solitary bee, Heriades fulvohispidus (Megachilidae), patrolling near flowers and visiting flowers that attracted nectar-feeding insects, including conspecifics, on the Ogasawara (Bonin) Islands. To test the hypothesis that patrolling male bees may function as pollen vectors, we compared the frequency of visits by H. fulvohispidus to flowers of an endemic plant, Schima mertensiana (Theaceae); comparisons were made among flowers with a dead H. fulvohispidus, a dead beetle, a piece of plastic, and nothing (control flowers). Patrolling H. fulvohispidus more frequently visited flowers with a dead conspecific, a dead beetle, or a piece of plastic than the control flowers. Our experiment demonstrates that nectar-feeding insects (including conspecifics and other insects) enhance the flower-visiting frequency of patrolling H. fulvohispidus males on S. mertensiana flowers. Furthermore, we observed S. mertensiana pollen on patrolling males as well as females, suggesting that male bees may also function as pollen vectors.

  11. Selection of trait combinations through bee and fly visitation to flowers of Polemonium foliosissimum.

    PubMed

    Campbell, D R; Forster, M; Bischoff, M

    2014-02-01

    Pollinators are known to exert natural selection on floral traits, but the extent to which combinations of floral traits are subject to correlational selection (nonadditive effects of two traits on fitness) is not well understood. Over two years, we used phenotypic manipulations of plant traits to test for effects of flower colour, flower shape and their interaction on rates of pollinator visitation to Polemonium foliosissimum. We also tested for correlational selection based on weighting visitation by the amount of conspecific pollen delivered per visit by each category of insect visitor. Although bumblebees were the presumed pollinators, solitary bees and flies contributed substantially (42%) to pollination. In manipulations of one trait at a time, insects visited flowers presenting the natural colour and shape over flowers manipulated to present artificial mutants with either paler colour or a more open or more tubular flower. When both colour and shape were manipulated in combination, selection on both traits arose, with bumblebees responding mainly to colour and flies responding mainly to shape. Despite selection on both floral traits, in a year with many bumblebees, we saw no evidence for correlational selection of these traits. In a year when flies predominated, fly visitation showed a pattern of correlational selection, but not favouring the natural phenotype, and correlational selection was still not detected for expected pollen receipt. These results show that flower colour and shape are subject to pollinator-mediated selection and that correlational selection can be generated based on pollinator visitation alone, but provide no evidence for correlational selection specifically for the current phenotype. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  12. Pollination and floral ecology of Arundina graminifolia (Orchidaceae) at the northern border of the species' natural distribution.

    PubMed

    Sugiura, Naoto

    2014-01-01

    Arundina graminifolia is an early successional plant on Iriomote Island, the Ryukyus, Japan, where it is endangered. Populations flower for more than half a year, and many inflorescences bloom for one to several months. The nectarless gullet flowers, which open for up to six days, are self-compatible but cannot self-pollinate spontaneously; thus they rely on pollinating agents for capsule production. Field observations at two habitats identified at least six species of bees and wasps, primarily mate-seeking males of Megachile yaeyamaensis and Thyreus takaonis, as legitimate pollinators. Thus, this orchid is a pollinator generalist, probably owing to its long blooming period and simple flower morphology. Carpenter bees, which were previously reported to pollinate this orchid, frequently visited flowers but were too large to crawl into the labellum chamber and never pollinated the flowers. Extrafloral nectaries on inflorescences attracted approximately 40 insect taxa but were not involved with pollination. Fruit-set ratios at the population level varied spatiotemporally but were generally low (5.2-12.4 %), presumably owing to infrequent flower visits by mate-seeking pollinators and the lack of food rewards to pollinators.

  13. Reproductive success in varying light environments: direct and indirect effects of light on plants and pollinators.

    PubMed

    Kilkenny, Francis F; Galloway, Laura F

    2008-03-01

    Plant populations often exist in spatially heterogeneous environments. Light level can directly affect plant reproductive success through resource availability or by altering pollinator behavior. It can also indirectly influence reproductive success by determining floral display size which may in turn influence pollinator attraction. We evaluated direct and indirect effects of light availability and measured phenotypic selection on phenological traits that may enhance pollen receipt in the insect-pollinated herb Campanulastrum americanum. In a natural population, plants in the sun had larger displays and received 7 times more visits than plants in the shade. Using experimental arrays to separate the direct effects of irradiance on insects from their response to display size, we found more visits to plants in the sun than in the shade, but no association between number of visits each flower received and display size. Plants in the sun were not pollen limited but pollen-augmented shade flowers produced 50% more seeds than open-pollinated flowers. Phenological traits, which may influence pollen receipt, were not under direct selection in the sun. However, earlier initiation and a longer duration of flowering were favored in the shade, which may enhance visitation in this pollen-limited habitat.

  14. Plant-pollinator interactions in New Caledonia influenced by introduced honey bees.

    PubMed

    Kato, Makoto; Kawakita, Atsushi

    2004-11-01

    The flora of New Caledonia is characterized by remarkably high species diversity, high endemicity, and an unusual abundance of archaic plant taxa. To investigate community-level pollination mutualism in this endemic ecosystem, we observed flower visitors on 99 plant species in 42 families of various types of vegetation. Among the 95 native plant species, the most dominant pollination system was melittophily (bee-pollinated, 46.3%), followed by phalaenophily (moth-pollinated, 20.0%), ornithophily (bird-pollinated, 11.6%), cantharophily (beetle-pollinated, 8.4%), myophily (fly-pollinated, 3.2%), chiropterophily (bat-pollinated, 3.2%), and anemophily (wind-pollinated, 3.2%). The prevalence of ornithophily by honeyeaters shows an ecological link to pollination mutualism in Australia. The relative dominance of phalaenophily is unique to New Caledonia, and is proposed to be related to the low diversity of the original bee fauna and the absence of long-tongued bees. Although some archaic plants maintain archaic plant-pollinator interactions, e.g., Zygogynum pollinated by micropterigid moths, or Hedycarya pollinated by thrips and staphylinid beetles, the most dominant organism observed on flowers was the introduced honey bee, Apis mellifera. The plant species now visited by honey bees are thought to have originally been pollinated by native solitary short-tongued bees. Our data suggest that the unique systems of pollination mutualism in New Caledonia are now endangered by the establishment of highly invasive honey bees.

  15. Low flower-size variation in bilaterally symmetrical flowers: Support for the pollination precision hypothesis.

    PubMed

    Nikkeshi, Aoi; Kurimoto, Daiki; Ushimaru, Atushi

    2015-12-01

    The evolutionary shift from radial to bilateral symmetry in flowers is generally associated with the evolution of low flower-size variation. This phenomenon supports the hypothesis that the lower size variation in bilateral flowers can be attributed to low pollinator diversity. In this study, we propose two other hypotheses to explain low flower-size variation in bilateral symmetrical flowers. To test the three hypotheses, we examined the relative importance of pollinator diversity, composition, and bilateral symmetry itself as selective forces on low flower-size variation. We examined pollinator diversity and composition and flower-size variation for 36 species in a seminatural ecosystem with high bee richness and frequent lepidopteran visitation. Bilateral flowers were more frequently visited than radial flowers by larger bees, but functional-group diversity of the pollinators did not differ between symmetry types. Although bilateral flowers had significantly lower flower-size variation than radial flowers, flower-size variation did not vary with pollinator diversity and composition but was instead related to bilateral symmetry. Our results suggest that the lower size variation in bilateral flowers might have evolved under selection favoring the control of pollinator behavior on flowers to enhance the accurate placement of pollen on the body of the pollinator, independent of pollinator type. Because of the limited research on this issue, future work should be conducted in various types of plant-pollinator communities worldwide to further clarify the issue. © 2015 Botanical Society of America.

  16. Predicting plant attractiveness to pollinators with passive crowdsourcing

    DOE PAGES

    Bahlai, Christie A.; Landis, Douglas A.

    2016-06-01

    Global concern regarding pollinator decline has intensified interest in enhancing pollinator resources in managed landscapes. These efforts frequently emphasize restoration or planting of flowering plants to provide pollen and nectar resources that are highly attractive to the desired pollinators. However, determining exactly which plant species should be used to enhance a landscape is difficult. Empirical screening of plants for such purposes is logistically daunting, but could be streamlined by crowdsourcing data to create lists of plants most probable to attract the desired pollinator taxa. People frequently photograph plants in bloom and the Internet has become a vast repository of suchmore » images. A proportion of these images also capture floral visitation by arthropods. Here, we test the hypothesis that the abundance of floral images containing identifiable pollinator and other beneficial insects is positively associated with the observed attractiveness of the same species in controlled field trials from previously published studies. We used Google Image searches to determine the correlation of pollinator visitation captured by photographs on the Internet relative to the attractiveness of the same species in common-garden field trials for 43 plant species. From the first 30 photographs, which successfully identified the plant, we recorded the number of Apis (managed honeybees), non-Apis (exclusively wild bees) and the number of bee-mimicking syrphid flies. We used these observations from search hits as well as bloom period (BP) as predictor variables in Generalized Linear Models (GLMs) for field-observed abundances of each of these groups. We found that non-Apis bees observed in controlled field trials were positively associated with observations of these taxa in Google Image searches (pseudo-R 2 of 0.668). Syrphid fly observations in the field were also associated with the frequency they were observed in images, but this relationship was weak. Apis bee

  17. Predicting plant attractiveness to pollinators with passive crowdsourcing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahlai, Christie A.; Landis, Douglas A.

    Global concern regarding pollinator decline has intensified interest in enhancing pollinator resources in managed landscapes. These efforts frequently emphasize restoration or planting of flowering plants to provide pollen and nectar resources that are highly attractive to the desired pollinators. However, determining exactly which plant species should be used to enhance a landscape is difficult. Empirical screening of plants for such purposes is logistically daunting, but could be streamlined by crowdsourcing data to create lists of plants most probable to attract the desired pollinator taxa. People frequently photograph plants in bloom and the Internet has become a vast repository of suchmore » images. A proportion of these images also capture floral visitation by arthropods. Here, we test the hypothesis that the abundance of floral images containing identifiable pollinator and other beneficial insects is positively associated with the observed attractiveness of the same species in controlled field trials from previously published studies. We used Google Image searches to determine the correlation of pollinator visitation captured by photographs on the Internet relative to the attractiveness of the same species in common-garden field trials for 43 plant species. From the first 30 photographs, which successfully identified the plant, we recorded the number of Apis (managed honeybees), non-Apis (exclusively wild bees) and the number of bee-mimicking syrphid flies. We used these observations from search hits as well as bloom period (BP) as predictor variables in Generalized Linear Models (GLMs) for field-observed abundances of each of these groups. We found that non-Apis bees observed in controlled field trials were positively associated with observations of these taxa in Google Image searches (pseudo-R 2 of 0.668). Syrphid fly observations in the field were also associated with the frequency they were observed in images, but this relationship was weak. Apis bee

  18. Predicting plant attractiveness to pollinators with passive crowdsourcing.

    PubMed

    Bahlai, Christie A; Landis, Douglas A

    2016-06-01

    Global concern regarding pollinator decline has intensified interest in enhancing pollinator resources in managed landscapes. These efforts frequently emphasize restoration or planting of flowering plants to provide pollen and nectar resources that are highly attractive to the desired pollinators. However, determining exactly which plant species should be used to enhance a landscape is difficult. Empirical screening of plants for such purposes is logistically daunting, but could be streamlined by crowdsourcing data to create lists of plants most probable to attract the desired pollinator taxa. People frequently photograph plants in bloom and the Internet has become a vast repository of such images. A proportion of these images also capture floral visitation by arthropods. Here, we test the hypothesis that the abundance of floral images containing identifiable pollinator and other beneficial insects is positively associated with the observed attractiveness of the same species in controlled field trials from previously published studies. We used Google Image searches to determine the correlation of pollinator visitation captured by photographs on the Internet relative to the attractiveness of the same species in common-garden field trials for 43 plant species. From the first 30 photographs, which successfully identified the plant, we recorded the number of Apis (managed honeybees), non-Apis (exclusively wild bees) and the number of bee-mimicking syrphid flies. We used these observations from search hits as well as bloom period (BP) as predictor variables in Generalized Linear Models (GLMs) for field-observed abundances of each of these groups. We found that non-Apis bees observed in controlled field trials were positively associated with observations of these taxa in Google Image searches (pseudo-R (2) of 0.668). Syrphid fly observations in the field were also associated with the frequency they were observed in images, but this relationship was weak. Apis bee

  19. Predicting plant attractiveness to pollinators with passive crowdsourcing

    PubMed Central

    Bahlai, Christie A.; Landis, Douglas A.

    2016-01-01

    Global concern regarding pollinator decline has intensified interest in enhancing pollinator resources in managed landscapes. These efforts frequently emphasize restoration or planting of flowering plants to provide pollen and nectar resources that are highly attractive to the desired pollinators. However, determining exactly which plant species should be used to enhance a landscape is difficult. Empirical screening of plants for such purposes is logistically daunting, but could be streamlined by crowdsourcing data to create lists of plants most probable to attract the desired pollinator taxa. People frequently photograph plants in bloom and the Internet has become a vast repository of such images. A proportion of these images also capture floral visitation by arthropods. Here, we test the hypothesis that the abundance of floral images containing identifiable pollinator and other beneficial insects is positively associated with the observed attractiveness of the same species in controlled field trials from previously published studies. We used Google Image searches to determine the correlation of pollinator visitation captured by photographs on the Internet relative to the attractiveness of the same species in common-garden field trials for 43 plant species. From the first 30 photographs, which successfully identified the plant, we recorded the number of Apis (managed honeybees), non-Apis (exclusively wild bees) and the number of bee-mimicking syrphid flies. We used these observations from search hits as well as bloom period (BP) as predictor variables in Generalized Linear Models (GLMs) for field-observed abundances of each of these groups. We found that non-Apis bees observed in controlled field trials were positively associated with observations of these taxa in Google Image searches (pseudo-R2 of 0.668). Syrphid fly observations in the field were also associated with the frequency they were observed in images, but this relationship was weak. Apis bee

  20. Pollination and protection against herbivory of Nepalese Coelogyninae (Orchidaceae).

    PubMed

    Subedi, Abishkar; Chaudhary, Ram P; van Achterberg, Cees; Heijerman, Theodoor; Lens, Frederic; Van Dooren, Tom J M; Gravendeel, Barbara

    2011-07-01

    Although many species in the orchid genus Coelogyne are horticulturally popular, hardly anything is known about their pollination. Pollinators of three species were observed in the field in Nepal. This information is urgently needed because many orchid species in Nepal are endangered. Whether the exudates produced by extrafloral nectaries played a role in protection against herbivory was also investigated. Pollinators of C. flaccida, C. nitida, and Otochilus albus were filmed, captured, and identified. Ant surveys and exclusion experiments were carried out. To investigate whether pollinators are needed for fruit set, plants were wrapped in mesh wire bags. Inflorescence stems were examined with microscopy. Fehling's reagent was used to detect sugars in extrafloral exudates. Coelogyne flaccida and C. nitida need pollinators to set fruit and are pollinated by wild bees identified as Apis cerana. Otochilus albus was found to be pollinated by Bombus kashmirensis. Extrafloral nectar was found to be exuded by nectary-modified stomata and contained high amounts of sugars. Different species of ants were observed collecting these exudates. A significant difference was found in damage inflicted by flower and leaf-eating beetles between C. nitida plants living in trees with ant nests and those in ant-free trees. Floral syndromes include scented and colored trap flowers without reward to their pollinators. All orchids investigated exude extrafloral nectar by nectary-modified stomata. This nectar was found to flow from the phloem to the stomata through intercellular spaces in the outer parenchymatous layer of the inflorescence.

  1. Geographic variation in resistance to nectar robbing and consequences for pollination.

    PubMed

    Adler, Lynn S; Leege, Lissa M; Irwin, Rebecca E

    2016-10-01

    Floral evolution is frequently ascribed to selection by pollinators, but may also be shaped by antagonists. However, remarkably few studies have examined geographic mosaics in resistance to floral antagonists or the consequences for other floral interactions. Gelsemium sempervirens experiences frequent nectar robbing in northern Georgia, but rarely in southern Georgia. We conducted common-garden experiments in both locations using genotypes from each region and measured robbing, pollinator attraction, floral attractive and defensive traits, and plant reproduction. Nectar robbing was more than four times higher in the north vs. south, and pollinator visits did not differ between gardens. Across both gardens, northern genotypes were half as likely to be nectar-robbed but received half as many pollinator visits as southern genotypes, suggesting evolution of resistance to robbing at a cost of reduced pollinator attraction. Plant-level traits, such as height and number of flowers, were more closely associated with resistance to robbing than floral size, shape, or chemistry. Northern genotypes had lower female and estimated male reproduction compared to southern genotypes at both locations, which could be due to costs of resistance to nectar robbing, or costs of adaptations to other biotic or abiotic differences between regions. Our study indicates that geographic variation can play a strong role structuring interactions with floral antagonists and mutualists and provides evidence consistent with the hypothesis that local resistance to nectar robbing imposes costs in terms of decreased pollinator attraction and reproduction. © 2016 Botanical Society of America.

  2. Generalised pollination systems for three invasive milkweeds in Australia.

    PubMed

    Ward, M; Johnson, S D

    2013-05-01

    Because most plants require pollinator visits for seed production, the ability of an introduced plant species to establish pollinator relationships in a new ecosystem may have a central role in determining its success or failure as an invader. We investigated the pollination ecology of three milkweed species - Asclepias curassavica, Gomphocarpus fruticosus and G. physocarpus - in their invaded range in southeast Queensland, Australia. The complex floral morphology of milkweeds has often been interpreted as a general trend towards specialised pollination requirements. Based on this interpretation, invasion by milkweeds contradicts the expectation than plant species with specialised pollination systems are less likely to become invasive that those with more generalised pollination requirements. However, observations of flower visitors in natural populations of the three study species revealed that their pollination systems are essentially specialised at the taxonomic level of the order, but generalised at the species level. Specifically, pollinators of the two Gomphocarpus species included various species of Hymenoptera (particularly vespid wasps), while pollinators of A. curassavica were primarily Lepidoptera (particularly nymphalid butterflies). Pollinators of all three species are rewarded with copious amounts of highly concentrated nectar. It is likely that successful invasion by these three milkweed species is attributable, at least in part, to their generalised pollinator requirements. The results of this study are discussed in terms of how data from the native range may be useful in predicting pollination success of species in a new environment. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Pollination syndromes ignored: importance of non-ornithophilous flowers to Neotropical savanna hummingbirds

    NASA Astrophysics Data System (ADS)

    Maruyama, Pietro K.; Oliveira, Genilda M.; Ferreira, Carolina; Dalsgaard, Bo; Oliveira, Paulo E.

    2013-11-01

    Generalization prevails in flower-animal interactions, and although animal visitors are not equally effective pollinators, most interactions likely represent an important energy intake for the animal visitor. Hummingbirds are nectar-feeding specialists, and many tropical plants are specialized toward hummingbird-pollination. In spite of this, especially in dry and seasonal tropical habitats, hummingbirds may often rely on non-ornithophilous plants to meet their energy requirements. However, quantitative studies evaluating the relative importance of ornithophilous vs. non-ornithophilous plants for hummingbirds in these areas are scarce. We here studied the availability and use of floral resources by hummingbirds in two different areas of the Cerrado, the seasonal savannas in Central Brazil. Roughly half the hummingbird visited plant species were non-ornithophilous, and these contributed greatly to increase the overall nectar availability. We showed that mean nectar offer, at the transect scale, was the only parameter related to hummingbird visitation frequency, more so than nectar offer at single flowers and at the plant scale, or pollination syndrome. Centrality indices, calculated using hummingbird-plant networks, showed that ornithophilous and non-ornithophilous plants have similar importance for network cohesion. How this foraging behaviour affects reproduction of non-ornithophilous plants remains largely unexplored and is probably case specific, however, we suggest that the additional energy provided by non-ornithophilous plants may facilitate reproduction of truly ornithophilous flowers by attracting and maintaining hummingbirds in the area. This may promote asymmetric hummingbird-plant associations, i.e., pollination depends on floral traits adapted to hummingbird morphology, but hummingbird visitation is determined more by the energetic "reward" than by pollination syndromes.

  4. Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants.

    PubMed

    Ohashi, Kazuharu; Thomson, James D

    2009-06-01

    Trapline foraging (repeated sequential visits to a series of feeding locations) has been often observed in pollinators collecting nectar or pollen from flowers. Although field studies on bumble-bees and hummingbirds have clarified fundamental aspects of this behaviour, trapline foraging still poses several difficult questions from the perspectives of both animals and plants. These questions include whether and how traplining improves foraging performance, how animals develop traplines with accumulating foraging experience, and how traplining affects pollen flow or plant reproduction. First, we review our previous work performed by using computer simulations and indoor flight-cage experiments with bumble-bees foraging from arrays of automated feeders. Our findings include the following: (1) traplining benefits foragers that are competing for resources that replenish in a decelerating way, (2) traplining is a learned behaviour that develops over a period of hours and (3) the establishment of traplines could be hampered by spatial configuration of plants such as zigzags. Second, using a simulation model linking pollinator movement and pollen transfer, we consider how service by pollinators with different foraging patterns (searchers or trapliners) would affect pollen flow. Traplining increases mating distance and mate diversity, and reduces 'iterogamy' (self-pollination caused by return visits) at the population level. Furthermore, increased visitation rates can have opposite effects on the reproductive success of a plant, depending on whether the visitors are traplining or searching. Finally, we discuss possible consequences of traplining for plants in the light of new experimental work and modelling. We suggest that trapline foraging by pollinators increases variation among plant populations in genetic diversity, inbreeding depression and contributions of floral traits to plant fitness, which should in turn affect the rates and directions of floral evolution. More

  5. Anther Cap Retention Prevents Self-pollination by Elaterid Beetles in the South African Orchid Eulophia foliosa

    PubMed Central

    PETER, CRAIG I.; JOHNSON, STEVEN D.

    2006-01-01

    • Background and Aims Pollination by insects that spend long periods visiting many flowers on a plant may impose a higher risk of facilitated self-pollination. Orchids and asclepiads are particularly at risk as their pollen is packaged as pollinia and so can be deposited on self-stigmas en masse. Many orchids and asclepiads have adaptations to limit self-deposition of pollinia, including gradual reconfiguration of pollinaria following removal. Here an unusual mechanism—anther cap retention—that appears to prevent self-pollination in the South African orchid Eulophia foliosa is examined. • Methods Visits to inflorescences in the field were observed and pollinators collected. Visitation rates to transplanted inflorescences were compared between a site where putative pollinators were abundant and a site where they were rare. Anther cap retention times were determined for removed pollinaria and atmospheric vapour pressure deficit was recorded concurrently. Anther cap anatomy was examined using light microscopy. • Key Results Eulophia foliosa is pollinated almost exclusively by Cardiophorus obliquemaculatus (Elateridae) beetles, which remain on the deceptive inflorescences for on average 301 s (n = 18). The anther cap that covers the pollinarium is retained for an average of 512 s (n = 24) after pollinarium removal by beetles. In all populations measured, anther cap dimensions are greater than those of the stigmatic cavity, thus precluding the deposition of self-pollinia until after the anther cap has dropped. An anatomical investigation of this mechanism suggests that differential water loss from regions of the anther cap results in opening of the anther cap flaps. This is supported by observations that as atmospheric vapour pressure deficits increased, the duration of anther cap retention was reduced. • Conclusions Flowers of E. foliosa are specialized for pollination by elaterid beetles. Retention of anther caps for a period exceeding average visit times

  6. Effects of heterospecific pollen from a wind-pollinated and pesticide-treated plant on reproductive success of an insect-pollinated species.

    PubMed

    Arceo-Gómez, Gerardo; Jameel, Mohammad I; Ashman, Tia-Lynn

    2018-05-01

    Studies on the effects of heterospecific pollen (HP) transfer have been focused mainly on insect-pollinated species, despite evidence of insect visitation to wind-pollinated species and transfer of their pollen onto stigmas of insect-pollinated plants. Thus, the potential consequences of HP transfer from wind-pollinated species remain largely unknown. Furthermore, accumulation of pesticide residues in pollen of wind-pollinated crops has been documented, but its potential effects on wild plant species via HP transfer have not been tested. We evaluated the effect of wind-dispersed Zea mays pollen on pollen tube growth of the insect-pollinated Mimulus nudatus via hand pollinations. We further evaluated whether pesticide-contaminated Z. mays pollen has larger effects on M. nudatus pollen success than non-contaminated Z. mays pollen. We found a significant negative effect of Z. mays pollen on M. nudatus pollen tube growth even when deposited in small amounts. However, we did not observe any difference in the magnitude of this effect between pesticide-laden Z. mays pollen and non-contaminated Z. mays pollen. Our results suggest that wind-pollinated species can have negative effects as HP donors on insect-pollinated recipients. Thus, their role in shaping co-flowering interactions for wind- and insect-pollinated species deserves more attention. Although we did not find evidence that pesticide contamination increased HP effects, we cannot fully rule out the existence of such an effect, because pollen load and thus the pesticide dose applied to stigmas was low. This result should be confirmed using other HP donors and across a range of HP loads, pesticide types, and concentrations. © 2018 Botanical Society of America.

  7. Pollination value of male bees: the specialist bee Peponapis pruinosa (Apidae) at summer squash (Cucurbita pepo).

    PubMed

    Cane, James H; Sampson, Blair J; Miller, Stephanie A

    2011-06-01

    Male bees can be abundant at flowers, particularly floral hosts of those bee species whose females are taxonomic pollen specialists (oligolecty). Contributions of male bees to host pollination are rarely studied directly despite their prevalence in a number of pollination guilds, including those of some crop plants. In this study, males of the oligolectic bee, Peponapis pruinosa Say, were shown to be effective pollinators of summer squash, Cucurbita pepo L. Seven sequential visits from male P. pruinosa maximized squash fruit set and growth. This number of male visits accumulated during the first hour of their foraging and mate searching at flowers soon after sunrise. Pollination efficacy of male P. pruinosa and their abundances at squash flowers were sufficient to account for most summer squash production at our study sites, and by extrapolation, to two-thirds of all 87 North American farms and market gardens growing squashes that were surveyed for pollinators by collaborators in the Squash Pollinators of the Americas Survey. We posit that the substantial pollination value of male Peponapis bees is a consequence of their species' oligolecty, their mate seeking strategy, and some extreme traits of Cucurbita flowers (massive rewards, flower size, phenology).

  8. Pollinators shift to nectar robbers when florivory occurs, with effects on reproductive success in Iris bulleyana (Iridaceae).

    PubMed

    Ye, Z-M; Jin, X-F; Wang, Q-F; Yang, C-F; Inouye, D W

    2017-09-01

    Studies have indicated that florivory and nectar robbing may reduce reproductive success of host plants. However, whether and how these effects might interact when plants are simultaneously attacked by both florivores and nectar robbers still needs further investigation. We used Iris bulleyana to detect the interactions among florivory, nectar robbing and pollination, and moreover, their effects on plant reproductive success. Field investigations and hand-pollination treatments were conducted on two experimental plots from a natural population, in which Experimental plot was protected from florivores and Control plot was not manipulated. The flower calyx was bitten by sawflies to consume the nectary, and three bumblebee species were pollinators. In addition, the short-tongued pollinator, Bombus friseanus, was the only robber when there was a hole made by a sawfly. The bumblebee had significantly shortened flower handling time when robbing, as compared to legitimate visits. Pollinator visitation and seed production decreased significantly in damaged flowers. However, seed production per flower after supplementary hand-pollination did not differ significantly between damaged and undamaged flowers. Compared to the Experimental plot, bumblebees visited fewer flowers per plant in a foraging bout in the Control plot. The flowers damaged by florivory allowed B. friseanus to shift to a nectar robber. Florivory and nectar robbing collectively decreased plant reproductive success by consuming nectar resources, which may reduce attractiveness to pollinators of the damaged flowers. However, the changes in pollinator behaviour might be beneficial to the plant by reducing the risk of geitonogamous mating. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Evaluation of Nasonov Pheromone Dispensers for Pollinator Attraction in Apple, Blueberry, and Cherry.

    PubMed

    Williamson, J; Adams, C G; Isaacs, R; Gut, L J

    2018-04-23

    Declines in the number of commercial honey bees (Apis mellifera L.) (Hymenoptera: Apidae) and some wild bee species around the world threaten fruit, nut, and vegetable production and have prompted interest in developing methods for gaining efficiencies in pollination services. One possible approach would be to deploy attractants within the target crop to increase the number of floral visits. In this study, we evaluate two new pollinator attractants, Polynate and SPLAT Bloom, for their ability to increase pollinator visitation and fruit set in apple (Malus pumila Mill.), highbush blueberry (Vaccinium sp. L.), and tart cherry (Prunus cerasus L.). Polynate is a plastic twin-tube dispenser loaded with a mixture of floral scent and Nasonov pheromone. SPLAT Bloom contains the same chemical formula as Polynate, but is applied as a 3 g wax dollop directly onto the tree or bush. The objectives of this study were to determine if Polynate and SPLAT Bloom increase the number of honey bee foragers and fruit set in apples, highbush blueberries, and tart cherries. We conducted replicated evaluations of 32 fields or orchards with and without putative attractants over three growing seasons. Both products failed to provide a measurable increase in pollinator visits or fruit set in these crops, indicating no return on investment for either product.

  10. Pollinator effectiveness varies with experimental shifts in flowering time.

    PubMed

    Rafferty, Nicole E; Ives, Anthony R

    2012-04-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches.

  11. The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.).

    PubMed

    Xu, Wending; Lu, Guining; Wang, Rui; Guo, Chuling; Liao, Changjun; Yi, Xiaoyun; Dang, Zhi

    2015-01-01

    A pot experiment was conducted to investigate the effects of pollination on cadmium (Cd) phytoextraction from soil by mature maize plants. The results showed that the unpollinated maize plants accumulated 50% more Cd than that of the pollinated plants, even though the dry weight of the former plants was 15% less than that of the latter plants. The Cd accumulation in root and leaf of the unpollinated maize plant was 0.47 and 0.89 times higher than that of the pollinated plant, respectively. The Cd concentration in the cob was significantly decreased because of pollination. Preventing pollination is a promising approach for enhancing the effectiveness of phytoextraction in Cd-contaminated soils by maize. This study suggested that in low Cd-contaminated soil pollination should be encouraged because accumulation of Cd in maize grains is very little and maize seeds can bring farmers economic benefits, while in high Cd-contaminated soil, inhibition of pollination can be applied to enhance phytoextraction of Cd from soil by maize plant.

  12. Identifying pollination service hotspots and coldspots using citizen science data from the Great Sunflower Project

    NASA Astrophysics Data System (ADS)

    LeBuhn, G.; Schmucki, R.

    2016-12-01

    Identifying the spatial patterns of pollinator visitation rates is key to identifying the drivers of differences in pollination service and the areas where pollinator conservation will provide the highest return on investment. However, gathering pollinator abundance data at the appropriate regional and national scales is untenable. As a surrogate, habitat models have been developed to identify areas of pollinator losses but these models have been developed using expert opinion based on foraging and nesting requirements. Thousands of citizen scientists across the United States participating in The Great Sunflower Project (www.GreatSunflower.org) contribute timed counts of pollinator visits to a focal sunflower variety planted in local gardens and green spaces. While these data provide a more direct measure of pollination service to a standardized plant and include a measure of effort, the data are complicated. Each location is sampled at different dates, times and frequencies as well as different points across the local flight season. To overcome this complication, we have used a generalized additive model to generate regional flight curves to calibrate each individual data point and to attain better estimates of pollination service at each site. Using these flight season corrected data, we identify hotspots and cold spots in pollinator service across the United States, evaluate the drivers shaping the spatial patterns and observe how these data align with the results obtained from predictive models that are based on expert knowledge on foraging and nesting habitats.

  13. From dusk till dawn: nocturnal and diurnal pollination in the epiphyte Tillandsia heterophylla (Bromeliaceae).

    PubMed

    Aguilar-Rodríguez, P A; Krömer, T; García-Franco, J G; MacSwiney G, M C

    2016-01-01

    In order to compare the effectiveness of diurnal and nocturnal pollinators, we studied the reproductive biology and pollinators of Tillandsia heterophylla E. Morren, an epiphytic tank bromeliad endemic to southeastern Mexico. Since anthesis in T. heterophylla is predominantly nocturnal but lasts until the following day, we hypothesised that this bromeliad would receive visits from both diurnal and nocturnal visitors, but that nocturnal visitors would be the most effective pollinators, since they arrive first to the receptive flower, and that bats would be the most frequent nocturnal visitors, given the characteristics of the nectar. Flowering of T. heterophylla began in May and lasted until July. The species is fully self-compatible, with an anthesis that lasts for ca. 15-16 h. Mean volume of nectar produced per flower was 82.21 μl, with a mean sugar concentration of 6.33%. The highest volume and concentration of nectar were found at 20:00 h, with a subsequent decline in both to almost zero over the following 12-h period. T. heterophylla has a generalist pollination system, since at least four different morphospecies of visitors pollinate its flowers: bats, moths, hummingbirds and bees. Most of the pollinating visits corresponded to bats and took place in the early evening, when stigma receptivity had already begun; making bats the probable pollinator on most occasions. However, diurnal pollinators may be important as a 'fail-safe' system by which to guarantee the pollination of T. heterophylla. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Pollinator Partnership | Pollinator.org

    Science.gov Websites

    about us Pollinator Partnership's mission is to promote the health of pollinators, critical to food and three bites of food. They also sustain our ecosystems and produce our natural resources by helping plants reproduce. Without the actions of pollinators agricultural economies, our food supply, and

  15. Localization of production and emission of pollinator attractant on whole leaves of Chamaerops humilis (Arecaceae).

    PubMed

    Caissard, Jean-Claude; Meekijjironenroj, Aroonrat; Baudino, Sylvie; Anstett, Marie-Charlotte

    2004-08-01

    Volatile compounds, which frequently play important roles in plant-insect interaction, can be produced either by flowers to attract pollinators or by leaves to deter herbivores. The specialized structures associated with odor production differ in these two organs. The European dwarf palm Chamaerops humilis represents a unique intermediate between these two. In previous work, its leaves were shown to produce volatile organic compounds (VOCs) that attract pollinators only during flowering. Because the leaf sinuses look like a gland, the sinus was examined histologically and with environmental scanning electron microscopy (ESEM) for evidence that the sinus emits VOCs. Volatile compounds emitted by the different parts of the leaf were extracted by washes and headspace then analyzed by gas chromatograph-mass spectrometer (GC-MS). The sinus does not have the expected gland-like structure; the VOCs are actually produced by the whole leaf, even if the composition of the VOCs emitted by the sinus slightly differs. Thus, attraction of pollinators does not result from specialized secreting cells in leaves of flowering European dwarf palms. The results are discussed in the context of a convergent evolution of leaves toward petals.

  16. Nectar replenishment maintains the neutral effects of nectar robbing on female reproductive success of Salvia przewalskii (Lamiaceae), a plant pollinated and robbed by bumble bees

    PubMed Central

    Ye, Zhong-Ming; Jin, Xiao-Fang; Inouye, David W.

    2017-01-01

    Background and Aims It has been suggested that the dynamics of nectar replenishment could differ for flowers after being nectar robbed or visited legitimately, but further experimental work is needed to investigate this hypothesis. This study aimed to assess the role of nectar replenishment in mediating the effects of nectar robbing on pollinator behaviour and plant reproduction. Methods Plant–robber–pollinator interactions in an alpine plant, Salvia przewalskii, were studied. It is pollinated by long-tongued Bombus religiosus and short-tongued B. friseanus, but robbed by B. friseanus. Nectar production rates for flowers after they were either robbed or legitimately visited were compared, and three levels of nectar robbing were created to detect the effects of nectar robbing on pollinator behaviour and plant reproduction. Key Results Nectar replenishment did not differ between flowers that had been robbed or legitimately visited. Neither fruit set nor seed set was significantly affected by nectar robbing. In addition, nectar robbing did not significantly affect visitation rate, flowers visited within a plant per foraging bout, or flower handling time of the legitimate pollinators. However, a tendency for a decrease in relative abundance of the pollinator B. religiosus with an increase of nectar robbing was found. Conclusions Nectar robbing did not affect female reproductive success because nectar replenishment ensures that pollinators maintain their visiting activity to nectar-robbed flowers. Nectar replenishment might be a defence mechanism against nectar robbing to enhance reproductive fitness by maintaining attractiveness to pollinators. Further studies are needed to reveal the potential for interference competition among bumble bees foraging as robbers and legitimate visitors, and to investigate variation of nectar robbing in communities with different bumble bee species composition. PMID:28158409

  17. Pollination Services Provided by Bees in Pumpkin Fields Supplemented with Either Apis mellifera or Bombus impatiens or Not Supplemented

    PubMed Central

    Petersen, Jessica D.; Reiners, Stephen; Nault, Brian A.

    2013-01-01

    Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system. PMID:23894544

  18. Pollination services provided by bees in pumpkin fields supplemented with either Apis mellifera or Bombus impatiens or not supplemented.

    PubMed

    Petersen, Jessica D; Reiners, Stephen; Nault, Brian A

    2013-01-01

    Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system.

  19. High species richness of native pollinators in Brazilian tomato crops.

    PubMed

    Silva-Neto, C M; Bergamini, L L; Elias, M A S; Moreira, G L; Morais, J M; Bergamini, B A R; Franceschinelli, E V

    2017-01-01

    Pollinators provide an essential service to natural ecosystems and agriculture. In tomatoes flowers, anthers are poricidal, pollen may drop from their pore when flowers are shaken by the wind. However, bees that vibrate these anthers increase pollen load on the stigma and in fruit production. The present study aimed to identify the pollinator richness of tomato flowers and investigate their morphological and functional traits related to the plant-pollinator interaction in plantations of Central Brazil. The time of anthesis, flower duration, and the number and viability of pollen grains and ovules were recorded. Floral visitors were observed and collected. Flower buds opened around 6h30 and closed around 18h00. They reopened on the following day at the same time in the morning, lasting on average 48 hours. The highest pollen availability occurred during the first hours of anthesis. Afterwards, the number of pollen grains declined, especially between 10h00 to 12h00, which is consistent with the pollinator visitation pattern. Forty bee species were found in the tomato fields, 30 of which were considered pollinators. We found that during the flowering period, plants offered an enormous amount of pollen to their visitors. These may explain the high richness and amount of bees that visit the tomato flowers in the study areas. The period of pollen availability and depletion throughout the day overlapped with the bees foraging period, suggesting that bees are highly effective in removing pollen grains from anthers. Many of these grains probably land on the stigma of the same flower, leading to self-pollination and subsequent fruit development. Native bees (Exomalopsis spp.) are effective pollinators of tomato flowers and are likely to contribute to increasing crop productivity. On the other hand, here tomato flowers offer large amounts of pollen resource to a high richness and amount of bees, showing a strong plant-pollinator interaction in the study agroecosystem.

  20. Orchid pollination by sexual deception: pollinator perspectives.

    PubMed

    Gaskett, A C

    2011-02-01

    The extraordinary taxonomic and morphological diversity of orchids is accompanied by a remarkable range of pollinators and pollination systems. Sexually deceptive orchids are adapted to attract specific male insects that are fooled into attempting to mate with orchid flowers and inadvertently acting as pollinators. This review summarises current knowledge, explores new hypotheses in the literature, and introduces some new approaches to understanding sexual deception from the perspective of the duped pollinator. Four main topics are addressed: (1) global patterns in sexual deception, (2) pollinator identities, mating systems and behaviours, (3) pollinator perception of orchid deceptive signals, and (4) the evolutionary implications of pollinator responses to orchid deception, including potential costs imposed on pollinators by orchids. A global list of known and putative sexually deceptive orchids and their pollinators is provided and methods for incorporating pollinator perspectives into sexual deception research are provided and reviewed. At present, almost all known sexually deceptive orchid taxa are from Australia or Europe. A few sexually deceptive species and genera are reported for New Zealand and South Africa. In Central and Southern America, Asia, and the Pacific many more species are likely to be identified in the future. Despite the great diversity of sexually deceptive orchid genera in Australia, pollination rates reported in the literature are similar between Australian and European species. The typical pollinator of a sexually deceptive orchid is a male insect of a species that is polygynous, monandrous, haplodiploid, and solitary rather than social. Insect behaviours involved in the pollination of sexually deceptive orchids include pre-copulatory gripping of flowers, brief entrapment, mating, and very rarely, ejaculation. Pollinator behaviour varies within and among pollinator species. Deception involving orchid mimicry of insect scent signals is

  1. Pollinator effectiveness varies with experimental shifts in flowering time

    PubMed Central

    Rafferty, Nicole E.; Ives, Anthony R.

    2013-01-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches. PMID:22690631

  2. Ants and ant scent reduce bumblebee pollination of artificial flowers.

    PubMed

    Cembrowski, Adam R; Tan, Marcus G; Thomson, James D; Frederickson, Megan E

    2014-01-01

    Ants on flowers can disrupt pollination by consuming rewards or harassing pollinators, but it is difficult to disentangle the effects of these exploitative and interference forms of competition on pollinator behavior. Using highly rewarding and quickly replenishing artificial flowers that simulate male or female function, we allowed bumblebees (Bombus impatiens) to forage (1) on flowers with or without ants (Myrmica rubra) and (2) on flowers with or without ant scent cues. Bumblebees transferred significantly more pollen analogue both to and from ant-free flowers, demonstrating that interference competition with ants is sufficient to modify pollinator foraging behavior. Bees also removed significantly less pollen analogue from ant-scented flowers than from controls, making this the first study to show that bees can use ant scent to avoid harassment at flowers. Ant effects on pollinator behavior, possibly in addition to their effects on pollen viability, may contribute to the evolution of floral traits minimizing ant visitation.

  3. Plant pollinator networks along a gradient of urbanisation.

    PubMed

    Geslin, Benoît; Gauzens, Benoit; Thébault, Elisa; Dajoz, Isabelle

    2013-01-01

    Habitat loss is one of the principal causes of the current pollinator decline. With agricultural intensification, increasing urbanisation is among the main drivers of habitat loss. Consequently studies focusing on pollinator community structure along urbanisation gradients have increased in recent years. However, few studies have investigated how urbanisation affects plant-pollinator interaction networks. Here we assessed modifications of plant-pollinator interactions along an urbanisation gradient based on the study of their morphological relationships. Along an urbanisation gradient comprising four types of landscape contexts (semi-natural, agricultural, suburban, urban), we set up experimental plant communities containing two plant functional groups differing in their morphological traits ("open flowers" and "tubular flowers"). Insect visitations on these communities were recorded to build plant-pollinator networks. A total of 17 857 interactions were recorded between experimental plant communities and flower-visitors. The number of interactions performed by flower-visitors was significantly lower in urban landscape context than in semi-natural and agricultural ones. In particular, insects such as Syrphidae and solitary bees that mostly visited the open flower functional group were significantly impacted by urbanisation, which was not the case for bumblebees. Urbanisation also impacted the generalism of flower-visitors and we detected higher interaction evenness in urban landscape context than in agricultural and suburban ones. Finally, in urban context, these modifications lowered the potential reproductive success of the open flowers functional group. Our findings show that open flower plant species and their specific flower-visitors are especially sensitive to increasing urbanisation. These results provide new clues to improve conservation measures within urbanised areas in favour of specialist flower-visitors. To complete this functional approach, studies

  4. Plant Pollinator Networks along a Gradient of Urbanisation

    PubMed Central

    Geslin, Benoît; Gauzens, Benoit; Thébault, Elisa; Dajoz, Isabelle

    2013-01-01

    Background Habitat loss is one of the principal causes of the current pollinator decline. With agricultural intensification, increasing urbanisation is among the main drivers of habitat loss. Consequently studies focusing on pollinator community structure along urbanisation gradients have increased in recent years. However, few studies have investigated how urbanisation affects plant-pollinator interaction networks. Here we assessed modifications of plant-pollinator interactions along an urbanisation gradient based on the study of their morphological relationships. Methodology/Principal Findings Along an urbanisation gradient comprising four types of landscape contexts (semi-natural, agricultural, suburban, urban), we set up experimental plant communities containing two plant functional groups differing in their morphological traits (“open flowers” and “tubular flowers”). Insect visitations on these communities were recorded to build plant-pollinator networks. A total of 17 857 interactions were recorded between experimental plant communities and flower-visitors. The number of interactions performed by flower-visitors was significantly lower in urban landscape context than in semi-natural and agricultural ones. In particular, insects such as Syrphidae and solitary bees that mostly visited the open flower functional group were significantly impacted by urbanisation, which was not the case for bumblebees. Urbanisation also impacted the generalism of flower-visitors and we detected higher interaction evenness in urban landscape context than in agricultural and suburban ones. Finally, in urban context, these modifications lowered the potential reproductive success of the open flowers functional group. Conclusions/Significance Our findings show that open flower plant species and their specific flower-visitors are especially sensitive to increasing urbanisation. These results provide new clues to improve conservation measures within urbanised areas in favour of

  5. Synergistic effects of non-Apis bees and honey bees for pollination services

    PubMed Central

    Brittain, Claire; Williams, Neal; Kremen, Claire; Klein, Alexandra-Maria

    2013-01-01

    In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orchards with simple (honey bee only) and diverse (non-Apis bees present) bee communities. In orchards with non-Apis bees, the foraging behaviour of honey bees changed and the pollination effectiveness of a single honey bee visit was greater than in orchards where non-Apis bees were absent. This change translated to a greater proportion of fruit set in these orchards. Our field experiments show that increased pollinator diversity can synergistically increase pollination service, through species interactions that alter the behaviour and resulting functional quality of a dominant pollinator species. These results of functional synergy between species were supported by an additional controlled cage experiment with Osmia lignaria and Apis mellifera. Our findings highlight a largely unexplored facilitative component of the benefit of biodiversity to ecosystem services, and represent a way to improve pollinator-dependent crop yields in a sustainable manner. PMID:23303545

  6. Threatened pollination systems in native flora of the Ogasawara (Bonin) Islands.

    PubMed

    Abe, Tetsuto

    2006-08-01

    Various alien species have been introduced to the Ogasawara Islands (Japan). A survey was made investigating whether the native pollination systems fit an 'island syndrome' (biasing the flora to dioecy, with subdued, inconspicuous flowers) and whether alien species have disrupted the native pollination network. Flower visitors and floral traits were determined in the field (12 islands) and from the literature. Associations among floral traits such as sexual expression, flower colour and flower shape were tested. Among the 269 native flowering plants, 74.7 % are hermaphroditic, 13.0 % are dioecious and 7.1 % are monoecious. Classification by flower colour revealed that 36.0 % were white, 21.6 % green and 13.8 % yellow. Woody species (trees and shrubs) comprised 36.5 % of the flora and were associated with dioecy and white flowers. Solitary, endemic small bees were the dominant flower visitors and visited 66.7 % of the observed species on satellite islands where the native pollination networks are preserved. In contrast to the situation on the satellite islands, introduced honeybees were the most dominant pollinator (visiting 60.1 % of observed species) on the two main islands, Chichi-jima and Haha-jima, and had spread to satellite islands near Chichi-jima Island. The island syndrome for pollination systems in the Ogasawara Islands was evident in a high percentage of dioecious species, the subdued colour of the native flora and solitary flower visitors on satellite islands. The shape and colour adaptations of several flowers suggested native pollination niches for long-proboscis moths and carpenter bees. However, the domination and expansion of introduced honeybees have the potential for disruption of the native pollination network in the two main, and several satellite, islands of the Ogasawara Islands.

  7. Where have all the blue flowers gone: pollinator responses and selection on flower colour in New Zealand Wahlenbergia albomarginata.

    PubMed

    Campbell, D R; Bischoff, M; Lord, J M; Robertson, A W

    2012-02-01

    Although pollinators are thought to select on flower colour, few studies have experimentally decoupled effects of colour from correlated traits on pollinator visitation and pollen transfer. We combined selection analysis and phenotypic manipulations to measure the effect of petal colour on visitation and pollen export at two spatial scales in Wahlenbergia albomarginata. This species is representative of many New Zealand alpine herbs that have secondarily evolved white or pale flowers. The major pollinators, solitary bees, exerted phenotypic selection on flower size but not colour, quantified by bee vision. When presented with manipulated flowers, bees visited flowers painted blue to resemble a congener over white flowers in large, but not small, experimental arrays. Pollen export was higher for blue flowers in large arrays. Pollinator preference does not explain the pale colouration of W. albomarginata, as commonly hypothesized. Absence of bright blue could be driven instead by indirect selection of correlated characters. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  8. Nectar replenishment maintains the neutral effects of nectar robbing on female reproductive success of Salvia przewalskii (Lamiaceae), a plant pollinated and robbed by bumble bees.

    PubMed

    Ye, Zhong-Ming; Jin, Xiao-Fang; Wang, Qing-Feng; Yang, Chun-Feng; Inouye, David W

    2017-04-01

    It has been suggested that the dynamics of nectar replenishment could differ for flowers after being nectar robbed or visited legitimately, but further experimental work is needed to investigate this hypothesis. This study aimed to assess the role of nectar replenishment in mediating the effects of nectar robbing on pollinator behaviour and plant reproduction. Plant-robber-pollinator interactions in an alpine plant, Salvia przewalskii , were studied. It is pollinated by long-tongued Bombus religiosus and short-tongued B. friseanus , but robbed by B. friseanus . Nectar production rates for flowers after they were either robbed or legitimately visited were compared, and three levels of nectar robbing were created to detect the effects of nectar robbing on pollinator behaviour and plant reproduction. Nectar replenishment did not differ between flowers that had been robbed or legitimately visited. Neither fruit set nor seed set was significantly affected by nectar robbing. In addition, nectar robbing did not significantly affect visitation rate, flowers visited within a plant per foraging bout, or flower handling time of the legitimate pollinators. However, a tendency for a decrease in relative abundance of the pollinator B. religiosus with an increase of nectar robbing was found. Nectar robbing did not affect female reproductive success because nectar replenishment ensures that pollinators maintain their visiting activity to nectar-robbed flowers. Nectar replenishment might be a defence mechanism against nectar robbing to enhance reproductive fitness by maintaining attractiveness to pollinators. Further studies are needed to reveal the potential for interference competition among bumble bees foraging as robbers and legitimate visitors, and to investigate variation of nectar robbing in communities with different bumble bee species composition. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For

  9. Floral traits mediate the vulnerability of aloes to pollen theft and inefficient pollination by bees

    PubMed Central

    Hargreaves, Anna L.; Harder, Lawrence D.; Johnson, Steven D.

    2012-01-01

    Background and Aims Pollen-collecting bees are among the most important pollinators globally, but are also the most common pollen thieves and can significantly reduce plant reproduction. The pollination efficiency of pollen collectors depends on the frequency of their visits to female(-phase) flowers, contact with stigmas and deposition of pollen of sufficient quantity and quality to fertilize ovules. Here we investigate the relative importance of these components, and the hypothesis that floral and inflorescence characteristics mediate the pollination role of pollen collection by bees. Methods For ten Aloe species that differ extensively in floral and inflorescence traits, we experimentally excluded potential bird pollinators to quantify the contributions of insect visitors to pollen removal, pollen deposition and seed production. We measured corolla width and depth to determine nectar accessibility, and the phenology of anther dehiscence and stigma receptivity to quantify herkogamy and dichogamy. Further, we compiled all published bird-exclusion studies of aloes, and compared insect pollination success with floral morphology. Key Results Species varied from exclusively insect pollinated, to exclusively bird pollinated but subject to extensive pollen theft by insects. Nectar inaccessibility and strong dichogamy inhibited pollination by pollen-collecting bees by discouraging visits to female-phase (i.e. pollenless) flowers. For species with large inflorescences of pollen-rich flowers, pollen collectors successfully deposited pollen, but of such low quality (probably self-pollen) that they made almost no contribution to seed set. Indeed, considering all published bird-exclusion studies (17 species in total), insect pollination efficiency varied significantly with floral shape. Conclusions Species-specific floral and inflorescence characteristics, especially nectar accessibility and dichogamy, control the efficiency of pollen-collecting bees as pollinators of aloes

  10. Defining the Insect Pollinator Community Found in Iowa Corn and Soybean Fields: Implications for Pollinator Conservation.

    PubMed

    Wheelock, M J; Rey, K P; O'Neal, M E

    2016-10-01

    Although corn (Zea mays L.) and soybeans (Glycine max L.) do not require pollination, they offer floral resources used by insect pollinators. We asked if a similar community of insect pollinators visits these crops in central Iowa, a landscape dominated by corn and soybean production. We used modified pan traps (i.e., bee bowls) in both corn and soybean fields during anthesis and used nonmetric multidimensional scaling (NMS) to compare the communities found in the two crops. Summed across both crops, 6,704 individual insects were captured representing at least 60 species, morphospecies, or higher-level taxa. Thirty-four species were collected in both crops, 19 collected only in corn and seven were collected only in soybean. The most abundant taxa were Lasioglossum [Dialictus] spp., Agapostemon virescens Cresson, Melissodes bimaculata (Lepeletier), and Toxomerus marginatus (Say), which accounted for 65% of the insect pollinators collected from both crops. Although social bees (Apis mellifera L. and Bombus spp.) were found in both crops, they accounted for only 0.5% of all insects captured. The NMS analysis revealed a shared community of pollinators composed of mostly solitary, ground nesting bees. Many of these species have been found in other crop fields throughout North America. Although corn and soybean are grown in landscapes that are often highly disturbed, these data suggest that a community of pollinators can persist within them. We suggest approaches to conserving this community based on partnering with activities that aim to lessen the environmental impact of annual crop production. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. POLLINATOR-MEDIATED COMPETITION, REPRODUCTIVE CHARACTER DISPLACEMENT, AND THE EVOLUTION OF SELFING IN ARENARIA UNIFLORA (CARYOPHYLLACEAE).

    PubMed

    Fishman, Lila; Wyatt, Robert

    1999-12-01

    Ecological factors that reduce the effectiveness of cross-pollination are likely to play a role in the frequent evolution of routine self-fertilization in flowering plants. However, we lack empirical evidence linking the reproductive assurance value of selfing in poor pollination environments to evolutionary shifts in mating system. Here, we investigated the adaptive significance of prior selfing in the polymorphic annual plant Arenaria uniflora (Caryophyllaceae), in which selfer populations occur only in areas of range overlap with congener A. glabra. To examine the hypothesis that secondary contact between the two species contributed to the evolution and maintenance of selfing, we used field competition experiments and controlled hand-pollinations to measure the female fitness consequences of pollinator-mediated interspecific interactions. Uniformly high fruit set by selfers in the naturally pollinated field arrays confirmed the reproductive assurance value of selfing, whereas substantial reductions in outcrosser fruit set (15%) and total seed production (20-35%) in the presence of A. glabra demonstrated that pollinator-mediated interactions can provide strong selection for self-pollination. Heterospecific pollen transfer, rather than competition for pollinator service, appears to be the primary mechanism of pollinator-mediated competition in Arenaria. Premating barriers to hybridization between outcrossers and A. glabra are extremely weak. The production of a few inviable hybrid seeds after heterospecific pollination and intermediate seed set after mixed pollinations indicates that A. glabra pollen can usurp A. uniflora ovules. Thus, any visit to A. uniflora by shared pollinators carries a potential female fitness cost. Moreover, patterns of fruit set and seed set in the competition arrays relative to controls were consistent with the receipt of mixed pollen loads, rather than a lack of pollinator visits. Competition through pollen transfer favors preemptive

  12. Weak trophic links between a crab-spider and the effective pollinators of a rewardless orchid

    NASA Astrophysics Data System (ADS)

    Quintero, Carolina; Corley, Juan C.; Aizen, Marcelo A.

    2015-01-01

    Sit and wait predators hunting on flowers are considered to be exploiters of plant-pollinator mutualisms. Several studies have shown that plant-pollinator interactions can be highly susceptible to the impact of a third trophic level, via consumptive (direct) and non-consumptive (indirect) effects that alter pollinator behavior and, ultimately, plant fitness. However, most flowering plants attract a wide array of flower visitors, from which only a subset will be effective pollinators. Hence, a negative effect of an ambush predator on plant fitness should be expected only when: (i) the effective pollinators are part of the predators' diet and/or (ii) the non-consumptive effects of predator presence (e.g. dead prey) alter the behavior of effective pollinators and pollen movement among individual plants. We analyzed the direct and indirect effects of a crab-spider (Misumenops pallidus), on the pollination and reproductive success of Chloraea alpina, a Patagonian rewardless orchid. Our results indicate that most of the flower visitors do not behave as effective pollinators and most effective pollinators were not observed as prey for the crab-spider. In terms of non-consumptive effects, inflorescences with and without spiders and/or dead-prey did not vary the frequency of flower visitors, nor pollinia removal or deposition. Hence, it is not surprising that M. pallidus has a neutral effect on pollinia removal and deposition as well as on fruit and seed set. Similar to other rewardless orchids, the low reproductive success of C. alpina (∼6% fruit set) was associated with the limited number of visits by effective pollinators. Negative top-down effects of a flower-visitor predator on plant pollination may not be anticipated without studying the direct and indirect effects of this predator on the effective pollinators. In pollination systems where effective pollinators visited flowers erratically, such as in deceptive orchids, we expect weak or no effect of predators on

  13. Extreme divergence in floral scent among woodland star species (Lithophragma spp.) pollinated by floral parasites

    PubMed Central

    Friberg, Magne; Schwind, Christopher; Raguso, Robert A.; Thompson, John N.

    2013-01-01

    Backgrounds and Aims A current challenge in coevolutionary biology is to understand how suites of traits vary as coevolving lineages diverge. Floral scent is often a complex, variable trait that attracts a suite of generalized pollinators, but may be highly specific in plants specialized on attracting coevolved pollinating floral parasites. In this study, floral scent variation was investigated in four species of woodland stars (Lithophragma spp.) that share the same major pollinator (the moth Greya politella, a floral parasite). Three specific hypotheses were tested: (1) sharing the same specific major pollinator favours conservation of floral scent among close relatives; (2) selection favours ‘private channels’ of rare compounds particularly aimed at the specialist pollinator; or (3) selection from rare, less-specialized co-pollinators mitigates the conservation of floral scent and occurrence of private channels. Methods Dynamic headspace sampling and solid-phase microextraction were applied to greenhouse-grown plants from a common garden as well as to field samples from natural populations in a series of experiments aiming to disentangle the genetic and environmental basis of floral scent variation. Key Results Striking floral scent divergence was discovered among species. Only one of 69 compounds was shared among all four species. Scent variation was largely genetically based, because it was consistent across field and greenhouse treatments, and was not affected by visits from the pollinating floral parasite. Conclusions The strong divergence in floral scents among Lithophragma species contrasts with the pattern of conserved floral scent composition found in other plant genera involved in mutualisms with pollinating floral parasites. Unlike some of these other obligate pollination mutualisms, Lithophragma plants in some populations are occasionally visited by generalist pollinators from other insect taxa. This additional complexity may contribute to the

  14. Long-Proboscid Flies as Pollinators of Cretaceous Gymnosperms.

    PubMed

    Peñalver, Enrique; Arillo, Antonio; Pérez-de la Fuente, Ricardo; Riccio, Mark L; Delclòs, Xavier; Barrón, Eduardo; Grimaldi, David A

    2015-07-20

    The great evolutionary success of angiosperms has traditionally been explained, in part, by the partnership of these plants with insect pollinators. The main approach to understanding the origins of this pervasive relationship has been study of the pollinators of living cycads, gnetaleans, and basal angiosperms. Among the most morphologically specialized living pollinators are diverse, long-proboscid flies. Early such flies include the brachyceran family Zhangsolvidae, previously known only as compression fossils from the Early Cretaceous of China and Brazil. It belongs to the infraorder Stratiomyomorpha, a group that includes the flower-visiting families Xylomyidae and Stratiomyidae. New zhangsolvid specimens in amber from Spain (ca. 105 mega-annum [Ma]) and Myanmar (100 Ma) reveal a detailed proboscis structure adapted to nectivory. Pollen clumped on a specimen from Spain is Exesipollenites, attributed to a Mesozoic gymnosperm, most likely the Bennettitales. Late Mesozoic scorpionflies with a long proboscis have been proposed as specialized pollinators of various extinct gymnosperms, but pollen has never been observed on or in their bodies. The new discovery is a very rare co-occurrence of pollen with its insect vector and provides substantiating evidence that other long-proboscid Mesozoic insects were gymnosperm pollinators. Evidence is thus now gathering that visitors and probable pollinators of early anthophytes, or seed plants, involved some insects with highly specialized morphological adaptations, which has consequences for interpreting the reproductive modes of Mesozoic gymnosperms and the significance of insect pollination in angiosperm success. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast.

    PubMed

    Stökl, Johannes; Strutz, Antonia; Dafni, Amots; Svatos, Ales; Doubsky, Jan; Knaden, Markus; Sachse, Silke; Hansson, Bill S; Stensmyr, Marcus C

    2010-10-26

    In deceptive pollination, insects are bamboozled into performing nonrewarded pollination. A prerequisite for the evolutionary stability in such systems is that the plants manage to generate a perfect sensory impression of a desirable object in the insect nervous system [1]. The study of these plants can provide important insights into sensory preference of their visiting insects. Here, we present the first description of a deceptive pollination system that specifically targets drosophilid flies. We show that the examined plant (Arum palaestinum) accomplishes its deception through olfactory mimicry of fermentation, a strategy that represents a novel pollination syndrome. The lily odor is composed of volatiles characteristic of yeast, and produces in Drosophila melanogaster an antennal detection pattern similar to that elicited by a range of fermentation products. By functional imaging, we show that the lily odors target a specific subset of odorant receptors (ORs), which include the most conserved OR genes in the drosophilid olfactome. Furthermore, seven of eight visiting drosophilid species show a congruent olfactory response pattern to the lily, in spite of comprising species pairs separated by ∼40 million years [2], showing that the lily targets a basal function of the fly nose, shared by species with similar ecological preference. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Nectar secretion dynamic links pollinator behavior to consequences for plant reproductive success in the ornithophilous mistletoe Psittacanthus robustus.

    PubMed

    Guerra, T J; Galetto, L; Silva, W R

    2014-09-01

    The mistletoe Psittacanthus robustus was studied as a model to link flower phenology and nectar secretion strategy to pollinator behaviour and the reproductive consequences for the plant. The bright-coloured flowers presented diurnal anthesis, opened asynchronously throughout the rainy season and produced copious dilute nectar as the main reward for pollinators. Most nectar was secreted just after flower opening, with little sugar replenishment after experimental removals. During the second day of anthesis in bagged flowers, the flowers quickly reabsorbed the offered nectar. Low values of nectar standing crop recorded in open flowers can be linked with high visitation rates by bird pollinators. Eight hummingbirds and two passerines were observed as potential pollinators. The most frequent flower visitors were the hummingbirds Eupetomena macroura and Colibri serrirostris, which actively defended flowering mistletoes. The spatial separation between anthers, stigma and nectar chamber promotes pollen deposition on flapping wings of hovering hummingbirds that usually probe many flowers per visit. Seed set did not differ between hand-, self- and cross-pollinated flowers, but these treatments set significantly more seeds than flowers naturally exposed to flower visitors. We suggest that the limitation observed in the reproductive success of this plant is not related to pollinator scarcity, but probably to the extreme frequency of visitation by territorial hummingbirds. We conclude that the costs and benefits of plant reproduction depend on the interaction strength between flowers and pollinators, and the assessment of nectar secretion dynamics, pollinator behaviour and plant breeding system allows clarification of the complexity of such associations. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. More than euglossines: the diverse pollinators and floral scents of Zygopetalinae orchids.

    PubMed

    Nunes, Carlos E P; Wolowski, Marina; Pansarin, Emerson Ricardo; Gerlach, Günter; Aximoff, Izar; Vereecken, Nicolas J; Salvador, Marcos José; Sazima, Marlies

    2017-10-13

    Floral volatile organic compounds (VOCs) play important roles in plant-pollinator interactions. We investigated the reproductive ecology and floral VOCs of Zygopetalinae orchids to understand the relationship between floral scents and pollinators. We performed focal observations, phenological censuses and breeding system experiments in eight species in southeast Brazil. Floral scents were collected and analysed using SPME/GC-MS. We performed multivariate analyses to group species according to affinities of their VOCs and define compounds associated to each plant. Dichaea cogniauxiana was pollinated by weevils which use their developing ovules, while D. pendula was pollinated by the same weevils and perfume-collecting male euglossine bees. The other species were deceit-pollinated by bees. Zygopetalum crinitum was pollinated by carpenter bees, while W. warreana, Z. mackayi and Z. maxillare were bumblebee-pollinated. The latter was also pollinated by Centris confusa. Breeding system varied widely with no association to any pollinator group. Most VOCs are common to other floral scents. Zygopetalum crinitum presented an exclusive blend of VOCs, mainly composed of benzenoids. The scents of Pabstia jugosa, Promenaea xanthina and the Zygopetalum spp. were similar. The bumblebee-pollinated species have flowering periods partially overlapped, thus neither phenology nor pollinators constitute hybridization barriers among these species. Euglossines are not the only pollinators of Zygopetalinae. Different VOCs, size and lifespan of flowers are associated with distinct pollinators. A distinctive VOC bouquet may determine specialisation in carpenter bees or male euglossines within bee-pollinated flowers. Finally, visitation of deceit-pollinated flowers by perfume-collecting euglossines allows us to hypothesise how pollination by this group of bees had evolved.

  18. Indirect interactions between invasive and native plants via pollinators

    NASA Astrophysics Data System (ADS)

    Kaiser-Bunbury, Christopher N.; Müller, Christine B.

    2009-03-01

    In generalised pollination systems, the presence of alien plant species may change the foraging behaviour of pollinators on native plant species, which could result in reduced reproductive success of native plant species. We tested this idea of indirect interactions on a small spatial and temporal scale in a field study in Mauritius, where the invasive strawberry guava, Psidium cattleianum, provides additional floral resources for insect pollinators. We predicted that the presence of flowering guava would indirectly and negatively affect the reproductive success of the endemic plant Bertiera zaluzania, which has similar flowers, by diverting shared pollinators. We removed P. cattleianum flowers within a 5-m radius from around half the B. zaluzania target plants (treatment) and left P. cattleianum flowers intact around the other half (control). By far, the most abundant and shared pollinator was the introduced honey bee, Apis mellifera, but its visitation rates to treatment and control plants were similar. Likewise, fruit and seed set and fruit size and weight of B. zaluzania were not influenced by the presence of P. cattleianum flowers. Although other studies have shown small-scale effects of alien plant species on neighbouring natives, we found no evidence for such negative indirect interactions in our system. The dominance of introduced, established A. mellifera indicates their replacement of native insect flower visitors and their function as pollinators of native plant species. However, the pollination effectiveness of A. mellifera in comparison to native pollinators is unknown.

  19. Minimal Effects of an Invasive Flowering Shrub on the Pollinator Community of Native Forbs

    PubMed Central

    Chung, Y. Anny; Burkle, Laura A.; Knight, Tiffany M.

    2014-01-01

    Biological invasions can strongly influence species interactions such as pollination. Most of the documented effects of exotic plant species on plant-pollinator interactions have been observational studies using single pairs of native and exotic plants, and have focused on dominant exotic plant species. We know little about how exotic plants alter interactions in entire communities of plants and pollinators, especially at low to medium invader densities. In this study, we began to address these gaps by experimentally removing the flowers of a showy invasive shrub, Rosa multiflora, and evaluating its effects on the frequency, richness, and composition of bee visitors to co-flowering native plants. We found that while R. multiflora increased plot-level richness of bee visitors to co-flowering native plant species at some sites, its presence had no significant effects on bee visitation rate, visitor richness, bee community composition, or abundance overall. In addition, we found that compared to co-flowering natives, R. multiflora was a generalist plant that primarily received visits from generalist bee species shared with native plant species. Our results suggest that exotic plants such as R. multiflora may facilitate native plant pollination in a community context by attracting a more diverse assemblage of pollinators, but have limited and idiosyncratic effects on the resident plant-pollinator network in general. PMID:25343718

  20. Breeding system and bumblebee drone pollination of an explosively pollen-releasing plant, Meliosma tenuis (Sabiaceae).

    PubMed

    Wong Sato, A A; Kato, M

    2018-05-01

    Explosive pollen release is a mechanism used by some angiosperms that serves to attach pollen to a pollinator's body. It is usually adopted by species with zygomorphic tubular flowers and pollinated by birds and bees. The tree genus Meliosma (Sabiaceae, Proteales) has unique disc-like flowers that are externally actinomorphic, but internally zygomorphic, and release pollen explosively. To elucidate the adaptive significance of explosive pollen release, we observed flowering behaviour, the breeding system and pollinator visits to flowers of the Japanese species Meliosma tenuis in a temperate forest. Flowers bloomed in June and were nectariferous and protandrous. Explosive pollen release was triggered by slight tactile stimuli to anther filaments or staminodes in male-stage flowers. Because pollen cannot come into contact with the pistils enclosed by staminodes, M. tenuis is functionally protandrous. Artificial pollination treatments revealed that M. tenuis is allogamous. The dominant flower visitors were nectar-seeking drones of the bumblebee species Bombus ardens (Apidae). The drones' behaviour, pollen attachment on their bodies and fruit set of visit-restricted flowers suggest that they are the only agent triggering the explosive pollen release mechanism, and are the main pollinator of M. tenuis. The finding that bumblebee workers rarely visit these flowers suggests that the explosive pollen release has another function, namely to discourage pollen-harvesting bumblebee workers. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  1. Diel Patterns of Activity for Insect Pollinators of Two Oil Palm Species (Arecales : Arecaceae)

    PubMed Central

    Frérot, Brigitte; Poveda, Roberto; Louise, Claude; Beaudoin-Ollivier, Laurence

    2017-01-01

    The pollination of two oil palm species, Elaeis guineensis Jacquin and Elaeis oleifera Cortés (Arecales: Arecaceae), depends on a mutualistic relation with insects, which use male inflorescences as a brood site, and visits female inflorescences lured by the emitted odor, which is similar to that of males. Although the activity of visiting the inflorescences by these insects is critical for the adequate natural pollination of the host plant, their activity is poorly documented. In the present study, we determine the diel activity of two specialized pollinator weevils (Coleoptera: Curculionidae) on inflorescences of their respective host-palm: Elaeidobius kamerunicus Faust specialized on E. guineensis, and Grasidius hybridus O’Brien and Beserra specialized on E. oleifera. The average timing of activity was studied by using passive interception traps. Then the pattern and the duration were refined by using aspiration trapping within the active period for each insect species at the male and female inflorescences. All the experiments were conducted in an Ecuadorian oil palm plantation, located close to Amazonian forest. El. kamerunicus and G. hybridus were found to be the pollinators of E. guineensis and E. oleifera, respectively. The two species differed in their diel pattern of activity: E. kamerunicus was active in the morning and G. hybridus during a short period at dusk. For both palm species, insect visits were synchronous on both male and female inflorescences. The synchronicity is discussed as a strategy to maintain the relation mutualistic between partners. These findings increase our understanding of the oil palm pollination system. PMID:28365767

  2. Nectar Yeasts in the Tall Larkspur Delphinium barbeyi (Ranunculaceae) and Effects on Components of Pollinator Foraging Behavior

    PubMed Central

    Schaeffer, Robert N.; Phillips, Cody R.; Duryea, M. Catherine; Andicoechea, Jonathan; Irwin, Rebecca E.

    2014-01-01

    Microorganisms frequently colonize the nectar of angiosperm species. Though capable of altering a suite of traits important for pollinator attraction, few studies exist that test the degree to which they mediate pollinator foraging behavior. The objective of our study was to fill this gap by assessing the abundance and diversity of yeasts associated with the perennial larkspur Delphinium barbeyi (Ranunculaceae) and testing whether their presence affected components of pollinator foraging behavior. Yeasts frequently colonized D. barbeyi nectar, populating 54–77% of flowers examined depending on site. Though common, the yeast community was species-poor, represented by a single species, Metschnikowia reukaufii. Female-phase flowers of D. barbeyi were more likely to have higher densities of yeasts in comparison to male-phase flowers. Pollinators were likely vectors of yeasts, as virgin (unvisited) flowers rarely contained yeasts compared to flowers open to pollinator visitation, which were frequently colonized. Finally, pollinators responded positively to the presence of yeasts. Bombus foragers both visited and probed more flowers inoculated with yeasts in comparison to uninoculated controls. Taken together, our results suggest that variation in the occurrence and density of nectar-inhabiting yeasts have the potential to alter components of pollinator foraging behavior linked to pollen transfer and plant fitness. PMID:25272164

  3. Pollination of Cambessedesia wurdackii in Brazilian campo rupestre vegetation, with special reference to crepuscular bees.

    PubMed

    Franco, Emanuella Lopes; Gimenes, Miriam

    2011-01-01

    Cambessedesia wurdackii Martins (Myrtales: Melastomataceae) is presumably endemic to the Chapada Diamantina, Bahia State, Brazil. A majority of the species of this family are pollinated by diurnal bees that buzz the floral anthers to collect pollen. The present work examined the interactions between C. wurdackii and visiting bees, focusing on temporal, morphological, and behavioral features, especially in regards to the crepuscular bees Megalopta sodalis (Vachal) (Hymenoptera: Halictidae) and Ptiloglossa off. dubia Moure (Hymenoptera: Colletidae). The study was undertaken in an area of campo rupestre montane savanna vegetation located in the Chapada Diamantina Mountains of Bahia State, Brazil, between August/2007 and July/2008. Flowering in C. wurdackii occurred from April through July, with a peak in May. A total of 592 visits by diurnal and crepuscular bees to the flowers of C. wurdackii were recorded, with a majority of the visits made by M. sodalis and P. dubia (92%) near sunrise and sunset. The anthers of C. wurdackii are arranged in two tiers, which favors cross pollination. The morphological, temporal and behavioral characteristics of M. sodalis and P. dubia indicated that they were potential pollinators of C. wurdackii, in spite of the fact that the colorful and showy flowers of this species are more typical of a diurnal melittophilous pollination syndrome.

  4. Pollination of Cambessedesia wurdackii in Brazilian Campo Rupestre Vegetation, with Special Reference to Crepuscular Bees

    PubMed Central

    Franco, Emanuella Lopes; Gimenes, Miriam

    2011-01-01

    Cambessedesia wurdackii Martins (Myrtales: Melastomataceae) is presumably endemic to the Chapada Diamantina, Bahia State, Brazil. A majority of the species of this family are pollinated by diurnal bees that buzz the floral anthers to collect pollen. The present work examined the interactions between C. wurdackii and visiting bees, focusing on temporal, morphological, and behavioral features, especially in regards to the crepuscular bees Megalopta sodalis (Vachal) (Hymenoptera: Halictidae) and Ptiloglossa off. dubia Moure (Hymenoptera: Colletidae). The study was undertaken in an area of campo rupestre montane savanna vegetation located in the Chapada Diamantina Mountains of Bahia State, Brazil, between August/2007 and July/2008. Flowering in C. wurdackii occurred from April through July, with a peak in May. A total of 592 visits by diurnal and crepuscular bees to the flowers of C. wurdackii were recorded, with a majority of the visits made by M. sodalis and P. dubia (92%) near sunrise and sunset. The anthers of C. wurdackii are arranged in two tiers, which favors cross pollination. The morphological, temporal and behavioral characteristics of M. sodalis and P. dubia indicated that they were potential pollinators of C. wurdackii, in spite of the fact that the colorful and showy flowers of this species are more typical of a diurnal melittophilous pollination syndrome. PMID:22208813

  5. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides

    PubMed Central

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-01-01

    ABSTRACT Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral

  6. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides.

    PubMed

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-03-15

    Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect

  7. Multitasking in a plant-ant interaction: how does Acacia myrtifolia manage both ants and pollinators?

    PubMed

    Martínez-Bauer, Angélica E; Martínez, Gerardo Cerón; Murphy, Daniel J; Burd, Martin

    2015-06-01

    Plant associations with protective ants are widespread among angiosperms, but carry the risk that ants will deter pollinators as well as herbivores. Such conflict, and adaptations to ameliorate or prevent the conflict, have been documented in African and neotropical acacias. Ant-acacia associations occur in Australia, but little is known of their ecology. Moreover, recent phylogenetic evidence indicates that Australian acacias are only distantly related to African and American acacias, providing an intercontinental natural experiment in the management of ant-pollinator conflict. We examined four populations of Acacia myrtifolia over a 400-km environmental gradient in southeastern Australia using ant and pollinator exclusion as well as direct observation of ants and pollinators to assess the potential for ant-pollinator conflict to affect seed set. Native bees were the only group of floral visitors whose visitation rates were a significant predictor of fruiting success, although beetles and wasps may play an important role as "insurance" pollinators. We found no increase in pollinator visitation or fruiting success following ant exclusion, even with large sample sizes and effective exclusion. Because ants are facultative visitors to A. myrtifolia plants, their presence may be insufficient to interfere greatly with floral visitors. It is also likely that the morphological location of extrafloral nectaries tends to draw ants away from reproductive parts, although we commonly observed ants on inflorescences, so the spatial separation is not strict. A. myrtifolia appears to maintain a generalized mutualism over a wide geographic range without the need for elaborate adaptations to resolve ant-pollinator conflict.

  8. Enhancing pollination by attracting & retaining leaf cutting bees (Megachile rotundata) in alfalfa seed production fields

    USDA-ARS?s Scientific Manuscript database

    The alfalfa leafcutting bee, Megachile rotundata (F.), has become an important managed pollinator of alfalfa, Medicago sativa L. One problem when using alfalfa leafcutting bees as managed pollinator, is the dispersal of many females upon release, even when adequate nesting sites are present. While d...

  9. Experimental evidence of pollination in marine flowers by invertebrate fauna

    PubMed Central

    van Tussenbroek, Brigitta I.; Villamil, Nora; Márquez-Guzmán, Judith; Wong, Ricardo; Monroy-Velázquez, L. Verónica; Solis-Weiss, Vivianne

    2016-01-01

    Pollen transport by water-flow (hydrophily) is a typical, and almost exclusive, adaptation of plants to life in the marine environment. It is thought that, unlike terrestrial environments, animals are not involved in pollination in the sea. The male flowers of the tropical marine angiosperm Thalassia testudinum open-up and release pollen in mucilage at night when invertebrate fauna is active. Here we present experimental evidence that, in the absence of water-flow, these invertebrates visit the flowers, carry and transfer mucilage mass with embedded pollen from the male flowers to the stigmas of the female flowers. Pollen tubes are formed on the stigmas, indicating that pollination is successful. Thus, T. testudinum has mixed abiotic–biotic pollination. We propose a zoobenthophilous pollination syndrome (pollen transfer in the benthic zone by invertebrate animals) which shares many characteristics with hydrophily, but flowers are expected to open-up during the night. PMID:27680661

  10. Pollinator directionality as a response to nectar gradient: promoting outcrossing while avoiding geitonogamy.

    PubMed

    Fisogni, A; Cristofolini, G; Rossi, M; Galloni, M

    2011-11-01

    Plants with multiple flowers could be prone to autonomous self-pollination and insect-mediated geitonogamy, but physiological and ecological features have evolved preventing costs related to autogamy. We studied the rare perennial herb Dictamnus albus as a model plant, with the aim of describing the plant-pollinator system from both plant and pollinator perspectives and analysing features that promote outcrossing in an entomophilous species. The breeding system and reproductive success of D. albus were investigated in experimental and natural conditions, showing that it is potentially self-compatible, but only intra-inflorescence insect-mediated selfing is possible. Nectar analysis showed gender-biased production towards the female phase, which follows the male phase, and during flowering, full blooming is found in flowers at the bottom of the raceme. Among a wide spectrum of insect visitors, three genera (Bombus, Apis, Megachile) were found to be principal pollinators. A study of insect behaviour showed a tendency towards bottom-to-top flights for the most important pollinators Bombus spp. and Apis mellifera: upward movements on the racemes could be explained by foraging behaviour, from more to less rewarding flowers. In accordance with the 'declining reward hypothesis', bumblebees and honeybees leave the plant when gain of reward is low, after which few flowers are visited, reducing the chance of self-pollen transfer among flowers. Intra-flower self-pollination is prevented in D. albus by protandry and herkogamy, while the nectar-induced sequential pattern of pollinator visits avoids geitonogamy and tends to maximise pollen export, promoting outcrossing. All these features for preventing selfing benefit plant fitness and population genetic structure. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Effective pollinators of Asian sacred lotus (Nelumbo nucifera): contemporary pollinators may not reflect the historical pollination syndrome

    PubMed Central

    Li, Jiao-Kun; Huang, Shuang-Quan

    2009-01-01

    Background and Aims If stabilizing selection by pollinators is a prerequisite for pollinator-mediated floral evolution, spatiotemporal variation in the pollinator assemblage may confuse the plant–pollinator interaction in a given species. Here, effective pollinators in a living fossil plant Nelumbo nucifera (Nelumbonaceae) were examined to test whether beetles are major pollinators as predicted by its pollination syndrome. Methods Pollinators of N. nucifera were investigated in 11 wild populations and one cultivated population, and pollination experiments were conducted to examine the pollinating role of two major pollinators (bees and beetles) in three populations. Key Results Lotus flowers are protogynous, bowl shaped and without nectar. The fragrant flowers can be self-heating during anthesis and produce around 1 million pollen grains per flower. It was found that bees and flies were the most frequent flower visitors in wild populations, contributing on average 87·9 and 49·4 % of seed set in Mishan and Lantian, respectively. Beetles were only found in one wild population and in the cultivated population, but the pollinator exclusion experiments showed that beetles were effective pollinators of Asian sacred lotus. Conclusions This study indicated that in their pollinating role, beetles, probable pollinators for this thermoregulating plant, had been replaced by some generalist insects in the wild. This finding implies that contemporary pollinators may not reflect the pollination syndrome. PMID:19617594

  12. Flight of the bumble bee: Buzzes predict pollination services.

    PubMed

    Miller-Struttmann, Nicole E; Heise, David; Schul, Johannes; Geib, Jennifer C; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee

  13. Flight of the bumble bee: Buzzes predict pollination services

    PubMed Central

    Heise, David; Schul, Johannes; Geib, Jennifer C.; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30–52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to

  14. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

    PubMed Central

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P.D.; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Westphal, Catrin; Potts, Simon G

    2015-01-01

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. PMID:26079893

  15. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.

    PubMed

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P D; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Ward, Kimiora L; Westphal, Catrin; Potts, Simon G

    2015-06-16

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.

  16. [Importance of competition for pollination in formation of the entomophylous plants complex structure].

    PubMed

    Dlusskiĭ, G M

    2013-01-01

    Many species of entomophylous plants have a wide range of pollinators, and the same insects visit flowers of many plants. The competition for pollination leads to decreasing in seed production of competing species. However, there exists a variety of adaptations that allow plants to reduce the intensity of competition. A comparative analysis of pollinators spectra has allowed to designate groups (subcomplexes) of plants with regard to dominance of various groups of pollinators: myiophylous (flies from the superfamily Muscomorha dominate), syphidophylous (flies from the family Syrphidae dominate), psychophylous (butterflies dominate), cantharophylous (beetles dominate), nonspecialized and specialized melittophylous (Apidae, mainly bumblebees, dominate). The belonging of plants to a specific subcomplex is defined mainly by the structure of flowers and inflorescences. Modes of mechanical and attractive isolation are discussed that lead to restriction of pollinators composition. Competition abatement between species with similar spectra of pollinators and belonging to the same subcomplex is achieved mainly by spatial (ecological) and temporal (different timing of flowering) isolation.

  17. Morphology, nectar characteristics and avian pollinators in five Andean Puya species (Bromeliaceae)

    NASA Astrophysics Data System (ADS)

    Hornung-Leoni, C. T.; González-Gómez, P. L.; Troncoso, A. J.

    2013-08-01

    Five Andean Puya species (Puya alpestris, Puya chilensis, Puya coerulea, Puya raimondii and Puya venusta) were studied to determine the relationship between their avian visitors, and plant morphology and nectar characteristics. Our results showed a significant relationship between nectar concentration, presence of sterile apex and avian pollinators's species. In contrast, nectar composition was not related to the frequency of avian visits. We found that Puya species were mainly visited by specialist nectarivorous birds such as hummingbirds (i.e., P. coerulea and P. venusta), lacked a sterile apex and produced high nectar concentration in low volumes. In contrast, species mainly visited by generalist passerines (i.e., P. chilensis and P. alpestris) were characterized by the presence of a sterile apex and production of highly diluted nectar in large volumes. In a mono-specific group we found that P. raimondii produces highly concentrated nectar in large volumes, and its flowers were visited by hummingbirds and passerine birds. We found no effect of nectar composition on bird's visits. Our study highlights the interplay between morphological traits, nectar characteristics and the ecological framework to explain specialized and generalized birds pollination systems.

  18. Functional morphology and wasp pollination of two South American asclepiads (Asclepiadoideae-Apocynaceae).

    PubMed

    Wiemer, A P; Sérsic, A N; Marino, S; Simões, A O; Cocucci, A A

    2012-01-01

    BACKGROUND AND AIMS The extreme complexity of asclepiad flowers (Asclepiadoideae-Apocynaceae) has generated particular interest in the pollination biology of this group of plants especially in the mechanisms involved in the pollination processes. This study compares two South American species, Morrenia odorata and Morrenia brachystephana, with respect to morphology and anatomy of flower structures, dynamic aspects of the pollination mechanism, diversity of visitors and effectiveness of pollinators. Floral structure was studied with fresh and fixed flowers following classical techniques. The pollination mechanism was studied by visiting fresh flowers in the laboratory with artificial pollinator body parts created with an eyelash. Morphometric and nectar measurements were also taken. Pollen transfer efficiency in the flowers was calculated by recording the frequency of removed and inserted pollinia. Visitor activity was recorded in the field, and floral visitors were captured for subsequent analysis of pollen loads. Finally, pollinator effectiveness was calculated with an index. The detailed structure of the flowers revealed a complex system of guide rails and chambers precisely arranged in order to achieve effective pollinaria transport. Morrenia odorata is functionally specialized for wasp pollination, and M. brachystephana for wasp and bee pollination. Pollinators transport chains of pollinaria adhered to their mouthparts. Morrenia odorata and M. brachystephana present differences in the morphology and size of their corona, gynostegium and pollinaria, which explain the differences in details of the functioning of the general pollination mechanism. Pollination is performed by different groups of highly effective pollinators. Morrenia species are specialized for pollination mainly by several species of wasps, a specialized pollination which has been poorly studied. In particular, pompilid wasps are reported as important pollinators in other regions outside South

  19. Functional morphology and wasp pollination of two South American asclepiads (Asclepiadoideae–Apocynaceae)

    PubMed Central

    Wiemer, A. P.; Sérsic, A. N.; Marino, S.; Simões, A. O.; Cocucci, A. A.

    2012-01-01

    Background and Aims The extreme complexity of asclepiad flowers (Asclepiadoideae–Apocynaceae) has generated particular interest in the pollination biology of this group of plants especially in the mechanisms involved in the pollination processes. This study compares two South American species, Morrenia odorata and Morrenia brachystephana, with respect to morphology and anatomy of flower structures, dynamic aspects of the pollination mechanism, diversity of visitors and effectiveness of pollinators. Methods Floral structure was studied with fresh and fixed flowers following classical techniques. The pollination mechanism was studied by visiting fresh flowers in the laboratory with artificial pollinator body parts created with an eyelash. Morphometric and nectar measurements were also taken. Pollen transfer efficiency in the flowers was calculated by recording the frequency of removed and inserted pollinia. Visitor activity was recorded in the field, and floral visitors were captured for subsequent analysis of pollen loads. Finally, pollinator effectiveness was calculated with an index. Key Results The detailed structure of the flowers revealed a complex system of guide rails and chambers precisely arranged in order to achieve effective pollinaria transport. Morrenia odorata is functionally specialized for wasp pollination, and M. brachystephana for wasp and bee pollination. Pollinators transport chains of pollinaria adhered to their mouthparts. Conclusions Morrenia odorata and M. brachystephana present differences in the morphology and size of their corona, gynostegium and pollinaria, which explain the differences in details of the functioning of the general pollination mechanism. Pollination is performed by different groups of highly effective pollinators. Morrenia species are specialized for pollination mainly by several species of wasps, a specialized pollination which has been poorly studied. In particular, pompilid wasps are reported as important pollinators

  20. Nectar, Floral Morphology and Pollination Syndrome in Loasaceae subfam. Loasoideae (Cornales)

    PubMed Central

    ACKERMANN, MARKUS; WEIGEND, MAXIMILIAN

    2006-01-01

    • Background and Aims Loasaceae subfam. Loasoideae are mostly distributed in South America (sea level to over 4500 m) with a wide range of animals documented as pollinators. The aim was to investigate correlations between nectar parameters, flower morphology, pollination syndrome and phylogeny. • Methods Nectar was collected from 29 species from seven genera in the subfamily. Concentration and volumes were measured and the amount of sugar calculated. Correlations of nectar data were plotted on a ternary graph and nectar characteristics compared with flower visitors, floral morphology and phylogenetic data. • Key Results Sugar concentrations are generally higher than reported for most plant families in the literature. The species investigated can be roughly grouped as follows. Group I: plants with approx. 1·5(–3·5) µL nectar with (40–)60–80 % sugar and 0·19–2 mg sugar flower−1; with small, white, star-shaped corollas, pollinated by short-tongued bees. Groups II, III and IV: plants with mostly orange, balloon-, saucer-, bowl- or bell-shaped corollas. Group II: plants with approx. 9–14 µL nectar with 40–60 % sugar and 4–10 mg sugar flower−1; mostly visited by long-tongued bees and/or hummingbirds. Group III: plants with 40–100 µL nectar with 30–40 % sugar and 14–36 mg sugar flower–1, mostly visited by hummingbirds. Group IV: geoflorous plants with 80–90 µL with 10–15 % sugar and 8·5–12 mg sugar flower–1, presumably visited by small mammals. Groups II and III include species visited by bees and/or hummingbirds. • Conclusions Pollinator switches from short-tongued bees via long-tongued bees to hummingbirds appear to have taken place repeatedly in the genera Nasa, Loasa and Caiophora. Changes in nectar amount and concentration appear to evolve rapidly with little phylogenetic constraint. PMID:16820408

  1. "Hummingbird" floral traits interact synergistically to discourage visitation by bumble bee foragers.

    PubMed

    Gegear, Robert J; Burns, Rebecca; Swoboda-Bhattarai, Katharine A

    2017-02-01

    Pollination syndromes are suites of floral traits presumed to reflect adaptations to attract and utilize a "primary" type of animal pollinator. However, syndrome traits may also function to deter "secondary" flower visitors that reduce plant fitness through their foraging activities. Here we use the hummingbird-pollinated plant species Mimulus cardinalis as a model to investigate the potential deterrent effects of classic bird syndrome traits on bumble bee foragers. To establish that M. cardinalis flowers elicit an avoidance response in bees, we assessed the choice behavior of individual foragers on a mixed experimental array of M. cardinalis and its bee-pollinated sister species M. lewisii. As expected, bees showed a strong preference against M. cardinalis flowers (only 22% of total bee visits were to M. cardinalis), but surprisingly also showed a high degree of individual specialization (95.2% of total plant transitions were between conspecifics). To determine M. cardinalis floral traits that discourage bee visitation, we then assessed foraging responses of individuals to M. cardinalis-like and M. lewisii-like floral models differing in color, orientation, reward, and combinations thereof. Across experiments, M. cardinalis-like trait combinations consistently produced a higher degree of flower avoidance behavior and individual specialization than expected based on bee responses to each trait in isolation. We then conducted a series of flower discrimination experiments to assess the ability of bees to utilize traits and trait combinations associated with each species. Relative to M. lewisii-like alternatives, M. cardinalis-like traits alone had a minimal effect on bee foraging proficiency but together increased the time bees spent searching for rewarding flowers from 1.49 to 2.65 s per visit. Collectively, our results show that M. cardinalis flowers impose foraging costs on bumble bees sufficient to discourage visitation and remarkably, generate such

  2. Insects, birds and lizards as pollinators of the largest-flowered Scrophularia of Europe and Macaronesia.

    PubMed

    Ortega-Olivencia, Ana; Rodríguez-Riaño, Tomás; Pérez-Bote, José L; López, Josefa; Mayo, Carlos; Valtueña, Francisco J; Navarro-Pérez, Marisa

    2012-01-01

    It has traditionally been considered that the flowers of Scrophularia are mainly pollinated by wasps. We studied the pollination system of four species which stand out for their large and showy flowers: S. sambucifolia and S. grandiflora (endemics of the western Mediterranean region), S. trifoliata (an endemic of the Tyrrhenian islands) and S. calliantha (an endemic of the Canary Islands). Our principal aim was to test whether these species were pollinated by birds or showed a mixed pollination system between insects and birds. Censuses and captures of insects and birds were performed to obtain pollen load transported and deposited on the stigmas. Also, a qualitative and quantitative analysis of the flowers and inflorescences was carried out. Flowers were visited by Hymenoptera and by passerine birds. The Canarian species was the most visited by birds, especially by Phylloscopus canariensis, and its flowers were also accessed by juveniles of the lizard Gallotia stehlini. The most important birds in the other three species were Sylvia melanocephala and S. atricapilla. The most important insect-functional groups in the mixed pollination system were: honey-bees and wasps in S. sambucifolia; bumble-bees and wasps in S. grandiflora; wasps in S. trifoliata; and a small bee in S. calliantha. The species studied show a mixed pollination system between insects and passerine birds. In S. calliantha there is, in addition, a third agent (juveniles of Gallotia stehlini). The participation of birds in this mixed pollination system presents varying degrees of importance because, while in S. calliantha they are the main pollinators, in the other species they interact to complement the insects which are the main pollinators. A review of different florae showed that the large showy floral morphotypes of Scrophularia are concentrated in the western and central Mediterranean region, Macaronesia and USA (New Mexico).

  3. Insects, birds and lizards as pollinators of the largest-flowered Scrophularia of Europe and Macaronesia

    PubMed Central

    Ortega-Olivencia, Ana; Rodríguez-Riaño, Tomás; Pérez-Bote, José L.; López, Josefa; Mayo, Carlos; Valtueña, Francisco J.; Navarro-Pérez, Marisa

    2012-01-01

    Background and Aims It has traditionally been considered that the flowers of Scrophularia are mainly pollinated by wasps. We studied the pollination system of four species which stand out for their large and showy flowers: S. sambucifolia and S. grandiflora (endemics of the western Mediterranean region), S. trifoliata (an endemic of the Tyrrhenian islands) and S. calliantha (an endemic of the Canary Islands). Our principal aim was to test whether these species were pollinated by birds or showed a mixed pollination system between insects and birds. Methods Censuses and captures of insects and birds were performed to obtain pollen load transported and deposited on the stigmas. Also, a qualitative and quantitative analysis of the flowers and inflorescences was carried out. Key Results Flowers were visited by Hymenoptera and by passerine birds. The Canarian species was the most visited by birds, especially by Phylloscopus canariensis, and its flowers were also accessed by juveniles of the lizard Gallotia stehlini. The most important birds in the other three species were Sylvia melanocephala and S. atricapilla. The most important insect-functional groups in the mixed pollination system were: honey-bees and wasps in S. sambucifolia; bumble-bees and wasps in S. grandiflora; wasps in S. trifoliata; and a small bee in S. calliantha. Conclusions The species studied show a mixed pollination system between insects and passerine birds. In S. calliantha there is, in addition, a third agent (juveniles of Gallotia stehlini). The participation of birds in this mixed pollination system presents varying degrees of importance because, while in S. calliantha they are the main pollinators, in the other species they interact to complement the insects which are the main pollinators. A review of different florae showed that the large showy floral morphotypes of Scrophularia are concentrated in the western and central Mediterranean region, Macaronesia and USA (New Mexico). PMID:22021816

  4. Threatened Pollination Systems in Native Flora of the Ogasawara (Bonin) Islands

    PubMed Central

    ABE, TETSUTO

    2006-01-01

    • Background and Aims Various alien species have been introduced to the Ogasawara Islands (Japan). A survey was made investigating whether the native pollination systems fit an ‘island syndrome’ (biasing the flora to dioecy, with subdued, inconspicuous flowers) and whether alien species have disrupted the native pollination network. • Methods Flower visitors and floral traits were determined in the field (12 islands) and from the literature. Associations among floral traits such as sexual expression, flower colour and flower shape were tested. • Key Results Among the 269 native flowering plants, 74·7 % are hermaphroditic, 13·0 % are dioecious and 7·1 % are monoecious. Classification by flower colour revealed that 36·0 % were white, 21·6 % green and 13·8 % yellow. Woody species (trees and shrubs) comprised 36·5 % of the flora and were associated with dioecy and white flowers. Solitary, endemic small bees were the dominant flower visitors and visited 66·7 % of the observed species on satellite islands where the native pollination networks are preserved. In contrast to the situation on the satellite islands, introduced honeybees were the most dominant pollinator (visiting 60·1 % of observed species) on the two main islands, Chichi-jima and Haha-jima, and had spread to satellite islands near Chichi-jima Island. • Conclusions The island syndrome for pollination systems in the Ogasawara Islands was evident in a high percentage of dioecious species, the subdued colour of the native flora and solitary flower visitors on satellite islands. The shape and colour adaptations of several flowers suggested native pollination niches for long-proboscis moths and carpenter bees. However, the domination and expansion of introduced honeybees have the potential for disruption of the native pollination network in the two main, and several satellite, islands of the Ogasawara Islands. PMID:16790463

  5. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees

    NASA Astrophysics Data System (ADS)

    Stanley, Dara A.; Garratt, Michael P. D.; Wickens, Jennifer B.; Wickens, Victoria J.; Potts, Simon G.; Raine, Nigel E.

    2015-12-01

    Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sublethal effects on bees, affecting their foraging behaviour, homing ability and reproductive success. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants, but until now research on pesticide effects has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence to our knowledge that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Bumblebee colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly, these pesticide-exposed colonies produced apples containing fewer seeds, demonstrating a reduced delivery of pollination services. Our results also indicate that reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour, but most likely due to effects at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the functioning of natural ecosystems.

  6. Morphofunctional Traits and Pollination Mechanisms of Coronilla emerus L. Flowers (Fabaceae)

    PubMed Central

    Aronne, Giovanna; Giovanetti, Manuela; De Micco, Veronica

    2012-01-01

    It is accepted that the papilionaceous corolla of the Fabaceae evolved under the selective pressure of bee pollinators. Morphology and function of different parts of Coronilla emerus L. flowers were related to their role in the pollination mechanism. The corolla has a vexillum with red nectar lines, a keel hiding stamens and pistil, and two wing petals fasten to the keel with two notched folds. Pollinators land on the complex of keel and wings, trigger the protrusion of pollen and finally of the stigma from the keel tip. Data on pollen viability and stigma receptivity prove that flowers are proterandrous. The results of hand-pollination experiments confirmed that insects are fundamental to set seed. Interaction with pollinators allows not only the transport of pollen but also the rupture of the stigmatic cuticle, necessary to achieve both allogamy and autogamy. Field observations showed that Hymenoptera, Lepidoptera, and Diptera visited the flowers. Only some of the Hymenoptera landed on the flowers from the front and elicited pollination mechanisms. Most of the insects sucked the nectar from the back without any pollen transfer. Finally, morphological and functional characteristics of C. emerus flowers are discussed in terms of floral larceny and reduction in pollination efficiency. PMID:22666114

  7. Breeding system and pollination of two closely related bamboo species.

    PubMed

    Chen, Ling-Na; Cui, Yong-Zhong; Wong, Khoon-Meng; Li, De-Zhu; Yang, Han-Qi

    2017-05-01

    An understanding of the breeding systems and pollination of agriculturally important plants is critical to germplasm improvement. Breeding system characteristics greatly influence the amount and spatial distribution of genetic variation within and amongst populations and influence the rarity and extinction vulnerability of plant species. Many woody bamboos have a long vegetative period (20-150 years) followed by gregarious monocarpy. Relatively, little is known about their pollination and breeding systems. We studied these characteristics in wild Dendrocalamus membranaceus populations and cultivated Dendrocalamus sinicus populations distributed in the Yunnan Province of China. Floral morphology, flower visitors and breeding system were studied from 2013 to 2015. Both bamboos were protogynous, but flowering periods of florets overlapped providing opportunities for self-pollination amongst florets, especially in D. membranaceus . There was no agamospermy in either species. Seed set of D. sinicus was low (0.42 ± 0.42 %) under natural pollination but higher (8.89 ± 2.55 %) after artificial xenogamy. Seed set of D. membranaceus was higher (7.49 ± 0.82 %) in mass flowering populations and 2.14 ± 0.25 % in sporadically flowering populations. The Asian honeybee Apis cerana could provide cross-pollination of D. membranaceus and D. sinicus , and flower visitation peaked at 1000-1200 h. Pollination limitation due to lack of pollinators or pollen was detected in the cultivated populations of D. sinicus and sporadically flowering populations of D. membranaceus . Pollination limitation was not obvious within mass flowering populations. Hand pollination could significantly increase seed set of these two bamboo species. Dendrocalamus membranaceus and D. sinicus were self-compatible and have a mixed-mating system with outcrossing being pre-dominant. Their seed production was limited by the quantity of pollen and pollinator activity. Honeybees were

  8. Pollen loads and specificity of native pollinators of lowbush blueberry.

    PubMed

    Moisan-Deserres, J; Girard, M; Chagnon, M; Fournier, V

    2014-06-01

    The reproduction of lowbush blueberry (Vaccinium angustifolium Aiton) is closely tied to insect pollination, owing to self-incompatibility. Many species are known to have greater pollination efficiency than the introduced Apis mellifera L., commonly used for commercial purposes. In this study, we measured the pollen loads of several antophilous insect species, mostly Apoidea and Syrphidae, present in four lowbush blueberry fields in Lac-St-Jean, Québec. To measure pollen loads and species specificity toward V. angustifolium, we net-collected 627 specimens of pollinators, retrieved their pollen loads, identified pollen taxa, and counted pollen grains. We found that the sizes of pollen loads were highly variable among species, ranging from a few hundred to more than 118,000 pollen grains per individual. Bombus and Andrena species in particular carried large amounts of Vaccinium pollen and thus may have greater pollination efficiency. Also, two species (Andrena bradleyi Viereck and Andrena carolina Viereck) showed nearly monolectic behavior toward lowbush blueberry. Finally, we identified alternative forage plants visited by native pollinators, notably species of Acer, Rubus, Ilex mucronata, Ledum groenlandicum, and Taraxacum. Protecting these flowering plants should be part of management practices to maintain healthy pollinator communities in a lowbush blueberry agroecosystem.

  9. The pollination ecology of an assemblage of grassland asclepiads in South Africa.

    PubMed

    Ollerton, Jeff; Johnson, Steven D; Cranmer, Louise; Kellie, Sam

    2003-12-01

    The KwaZulu-Natal region of South Africa hosts a large diversity of asclepiads (Apocynaceae: Asclepiadoideae), many of which are endemic to the area. The asclepiads are of particular interest because of their characteristically highly evolved floral morphology. During 3 months of fieldwork (November 2000 to January 2001) the flower visitors and pollinators to an assemblage of nine asclepiads at an upland grassland site were studied. These observations were augmented by laboratory studies of flower morphology (including scanning electron microscopy) and flower colour (using a spectrometer). Two of the specialized pollination systems that were documented are new to the asclepiads: fruit chafer pollination and pompilid wasp pollination. The latter is almost unique in the angiosperms. Taxa possessing these specific pollination systems cluster together in multidimensional phenotype space, suggesting that there has been convergent evolution in response to similar selection to attract identical pollinators. Pollination niche breadth varied from the very specialized species, with only one pollinator, to the more generalized, with up to ten pollinators. Pollinator sharing by the specialized taxa does not appear to have resulted in niche differentiation in terms of the temporal or spatial dimensions, or with regards to placement of pollinaria. Nestedness analysis of the data set showed that there was predictability and structure to the pattern of plant-pollinator interactions, with generalist insects visiting specialized plants and vice versa. The research has shown that there is still much to be learned about plant-pollinator interactions in areas of high plant diversity such as South Africa.

  10. Floral scent in bird- and beetle-pollinated Protea species (Proteaceae): chemistry, emission rates and function.

    PubMed

    Steenhuisen, S-L; Raguso, R A; Johnson, S D

    2012-12-01

    Evolutionary shifts between pollination systems are often accompanied by modifications of floral traits, including olfactory cues. We investigated the implications of a shift from passerine bird to beetle pollination in Protea for floral scent chemistry, and also explored the functional significance of Protea scent for pollinator attraction. Using headspace sampling and gas chromatography-mass spectrometry, we found distinct differences in the emission rates and chemical composition of floral scents between eight bird- and four beetle-pollinated species. The amount of scent emitted from inflorescences of beetle-pollinated species was, on average, about 10-fold greater than that of bird-pollinated species. Floral scent of bird-pollinated species consists mainly of small amounts of "green-leaf volatiles" and benzenoid compounds, including benzaldehyde, anisole and benzyl alcohol. The floral scent of beetle-pollinated species is dominated by emissions of linalool, a wide variety of other monoterpenes and the benzenoid methyl benzoate, which imparts a fruity odour to the human nose. The number of compounds recorded in the scent of beetle-pollinated species was, on average, greater than in bird-pollinated species (45 versus 29 compounds, respectively). Choice experiments using a Y-maze showed that a primary pollinator of Protea species, the cetoniine beetle Atrichelaphinis tigrina, strongly preferred the scent of inflorescences of the beetle-pollinated Protea simplex over those of the bird-pollinated sympatric congener, Protea roupelliae. This study shows that a shift from passerine bird- to insect-pollination can be associated with marked up-regulation and compositional changes in floral scent emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Asymmetrical nature of the Trollius-Chiastocheta interaction: insights into the evolution of nursery pollination systems.

    PubMed

    Suchan, Tomasz; Beauverd, Mélanie; Trim, Naïké; Alvarez, Nadir

    2015-11-01

    The mutualistic versus antagonistic nature of an interaction is defined by costs and benefits of each partner, which may vary depending on the environment. Contrasting with this dynamic view, several pollination interactions are considered as strictly obligate and mutualistic. Here, we focus on the interaction between Trollius europaeus and Chiastocheta flies, considered as a specialized and obligate nursery pollination system - the flies are thought to be exclusive pollinators of the plant and their larvae develop only in T. europaeus fruits. In this system, features such as the globelike flower shape are claimed to have evolved in a coevolutionary context. We examine the specificity of this pollination system and measure traits related to offspring fitness in isolated T. europaeus populations, in some of which Chiastocheta flies have gone extinct. We hypothesize that if this interaction is specific and obligate, the plant should experience dramatic drop in its relative fitness in the absence of Chiastocheta. Contrasting with this hypothesis, T. europaeus populations without flies demonstrate a similar relative fitness to those with the flies present, contradicting the putative obligatory nature of this pollination system. It also agrees with our observation that many other insects also visit and carry pollen among T. europaeus flowers. We propose that the interaction could have evolved through maximization of by-product benefits of the Chiastocheta visits, through the male flower function, and selection on floral traits by the most effective pollinator. We argue this mechanism is also central in the evolution of other nursery pollination systems.

  12. A pollinators' eye view of a shelter mimicry system.

    PubMed

    Vereecken, Nicolas J; Dorchin, Achik; Dafni, Amots; Hötling, Susann; Schulz, Stefan; Watts, Stella

    2013-06-01

    'Human-red' flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown. Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography-mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis). Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent. The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic ('bee-black') protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or

  13. Insect visitation and pollen deposition in an invaded prairie plant community

    USGS Publications Warehouse

    Larson, D.L.; Royer, R.A.; Royer, M.R.

    2006-01-01

    Invasive plants with large flowering displays have been shown to compete with native plants for pollinator services, often to the detriment of native plant fitness. In this study, we compare the pollinator communities and pollen deposited on stigmas of native plant species within and away from stands of the invasive alien plant, leafy spurge (Euphorbia esula) at a large natural area in North Dakota, USA. Specifically, we ask if infestation influences (1) visitation rates and taxonomic composition of visitors to native flowers, and (2) the amount of conspecific pollen, number of pollen species, and proportion of heterospecific pollen on stigmas of native plants. We observed visits to selected native species during May and June 2000 and 2001. Stigmas were collected from a subsample of the flowers within these plots, squashed, and the pollen identified and counted under a light microscope. Visitation varied between years and among species of native plants: infestation had mixed effects in 2000 but visitation, especially by halictids was always lower within infestations in 2001. Despite differences in visitation between years, we found significantly less conspecific pollen on stigmas from infested plots in six of eight cases; we never found significantly more conspecific pollen on stigmas from within infestations. Our results emphasize the temporal variability in plant-pollinator relations and the added complexity imposed by an invasive species that will always make prediction of effects difficult. Nonetheless, the consistently lower conspecific pollen counts on native stigmas within infestations, regardless of visitation, suggest the likelihood of negative effects. ?? 2005 Elsevier Ltd. All rights reserved.

  14. Effects of habitat isolation on pollinator communities and seed set.

    PubMed

    Steffan-Dewenter, I; Tscharntke, Teja

    1999-11-01

    Destruction and fragmentation of natural habitats is the major reason for the decreasing biodiversity in the agricultural landscape. Loss of populations may negatively affect biotic interactions and ecosystem stability. Here we tested the hypothesis that habitat fragmentation affects bee populations and thereby disrupts plant-pollinator interactions. We experimentally established small "habitat islands" of two self-incompatible, annual crucifers on eight calcareous grasslands and in the intensively managed agricultural landscape at increasing distances (up to 1000 m) from these species-rich grasslands to measure effects of isolation on both pollinator guilds and seed set, independently from patch size and density, resource availability and genetic erosion of plant populations. Each habitat island consisted of four pots each with one plant of mustard (Sinapis arvensis) and radish (Raphanus sativus). Increasing isolation of the small habitat islands resulted in both decreased abundance and species richness of flower-visiting bees (Hymenoptera: Apoidea). Mean body size of flower-visiting wild bees was larger on isolated than on nonisolated habitat islands emphasizing the positive correlation of body size and foraging distance. Abundance of flower-visiting honeybees depended on the distance from the nearest apiary. Abundance of other flower visitors such as hover flies did not change with increasing isolation. Number of seeds per fruit and per plant decreased significantly with increasing distance from the nearest grassland for both mustard and radish. Mean seed set per plant was halved at a distance of approximately 1000 m for mustard and at 250 m for radish. In accordance with expectations, seed set per plant was positively correlated with the number of flower-visiting bees. We found no evidence for resource limitation in the case of mustard and only marginal effects for radish. We conclude that habitat connectivity is essential to maintain not only abundant and

  15. Evolution of pollination niches and floral divergence in the generalist plant Erysimum mediohispanicum

    PubMed Central

    Gómez, J. M.; Muñoz-Pajares, A. J.; Abdelaziz, M.; Lorite, J.; Perfectti, F.

    2014-01-01

    Background and Aims How generalist plants diverge in response to pollinator selection without becoming specialized is still unknown. This study explores this question, focusing on the evolution of the pollination system in the pollination generalist Erysimum mediohispanicum (Brassicaceae). Methods Pollinator assemblages were surveyed from 2001 to 2010 in 48 geo-referenced populations covering the entire geographic distribution of E. mediohispanicum. Bipartite modularity, a complex network tool, was used to find the pollination niche of each population. Evolution of the pollination niches and the correlated evolution of floral traits and pollination niches were explored using within-species comparative analyses. Key Results Despite being generalists, the E. mediohispanicum populations studied can be classified into five pollination niches. The boundaries between niches were not sharp, the niches differing among them in the relative frequencies of the floral visitor functional groups. The absence of spatial autocorrelation and phylogenetic signal indicates that the niches were distributed in a phylogeographic mosaic. The ancestral E. mediohispanicum populations presumably belonged to the niche defined by a high number of beetle and ant visits. A correlated evolution was found between pollination niches and some floral traits, suggesting the existence of generalist pollination ecotypes. Conclusions It is conjectured that the geographic variation in pollination niches has contributed to the observed floral divergence in E. mediohispanicum. The process mediating this floral divergence presumably has been adaptive wandering, but the adaptation to the local pollinator faunas has been not universal. The outcome is a landscape where a few populations locally adapted to their pollination environment (generalist pollination ecotypes) coexist with many populations where this local adaptation has failed and where the plant phenotype is not primarily shaped by pollinators. PMID

  16. In situ modeling of multimodal floral cues attracting wild pollinators across environments

    PubMed Central

    Dahlbom, Josefin; Ghosh, Suhrid; Olsson, Amadeus; Dyakova, Olga; Suresh, Shravanti Krishna

    2017-01-01

    With more than 80% of flowering plant species specialized for animal pollination, understanding how wild pollinators utilize resources across environments can encourage efficient planting and maintenance strategies to maximize pollination and establish resilience in the face of environmental change. A fundamental question is how generalist pollinators recognize “flower objects” in vastly different ecologies and environments. On one hand, pollinators could employ a specific set of floral cues regardless of environment. Alternatively, wild pollinators could recognize an exclusive signature of cues unique to each environment or flower species. Hoverflies, which are found across the globe, are one of the most ecologically important alternative pollinators after bees and bumblebees. Here, we have exploited their cosmopolitan status to understand how wild pollinator preferences change across different continents. Without employing any a priori assumptions concerning the floral cues, we measured, predicted, and finally artificially recreated multimodal cues from individual flowers visited by hoverflies in three different environments (hemiboreal, alpine, and tropical) using a field-based methodology. We found that although “flower signatures” were unique for each environment, some multimodal lures were ubiquitously attractive, despite not carrying any reward, or resembling real flowers. While it was unexpected that cue combinations found in real flowers were not necessary, the robustness of our lures across insect species and ecologies could reflect a general strategy of resource identification for generalist pollinators. Our results provide insights into how cosmopolitan pollinators such as hoverflies identify flowers and offer specific ecologically based cues and strategies for attracting pollinators across diverse environments. PMID:29180408

  17. Complex pollination of a tropical Asian rainforest canopy tree by flower-feeding thrips and thrips-feeding predators.

    PubMed

    Kondo, Toshiaki; Nishimura, Sen; Tani, Naoki; Ng, Kevin Kit Siong; Lee, Soon Leong; Muhammad, Norwati; Okuda, Toshinori; Tsumura, Yoshihiko; Isagi, Yuji

    2016-11-01

    In tropical rainforests of Southeast Asia, a highly fecund thrips (Thrips spp.) responds rapidly to the mass flowering at multiple-year intervals characteristic of certain species such as the canopy tree studied here, Shorea acuminata, by feeding on flower resources. However, past DNA analyses of pollen adherent to thrips bodies revealed that the thrips promoted a very high level of self-pollination. Here, we identified the pollinator that contributes to cross-pollination and discuss ways that the pollination system has adapted to mass flowering. By comparing the patterns of floral visitation and levels of genetic diversity in adherent pollen loads among floral visitors, we evaluated the contribution of each flower visitor to pollination. The big-eyed bug, Geocoris sp., a major thrips predator, was an inadvertent pollinator, and importantly contributed to cross-pollination. The total outcross pollen adhering to thrips was approximately 30% that on the big-eyed bugs. Similarly, 63% of alleles examined in S. acuminata seeds and seedlings occurred in pollen adhering to big-eyed bugs; about 30% was shared with pollen from thrips. During mass flowering, big-eyed bugs likely travel among flowering S. acuminata trees, attracted by the abundant thrips. Floral visitation patterns of big-eyed bugs vs. other insects suggest that these bugs can maintain their population size between flowering by preying upon another thrips (Haplothrips sp.) that inhabits stipules of S. acuminata throughout the year and quickly respond to mass flowering. Thus, thrips and big-eyed bugs are essential components in the pollination of S. acuminata. © 2016 Botanical Society of America.

  18. Effect of habitat disturbance on pollination biology of the columnar cactus Stenocereus quevedonis at landscape-level in central Mexico.

    PubMed

    Rodríguez-Oseguera, A G; Casas, A; Herrerías-Diego, Y; Pérez-Negrón, E

    2013-05-01

    Stenocereus quevedonis ('pitire') is a columnar cactus endemic to central Mexico, grown for its edible fruit. Phenology, pollination biology and behaviour of flower visitors of this species were compared in six conserved and disturbed sites, hypothesising that: (i) pitire pollination is self-incompatible, requiring animal vectors; (ii) higher incidence of radiation on plants in cleared forest may lead to a higher number of flowers per pitire plant and longer blooming season, and disturbing and differential spatial availability of flower resources may determine differential attraction of pollinators to conserved and disturbed areas; (iii) if pitire pollination system is specialised, reproductive success would decrease with pollinator scarcity, or other species may substitute for main pollinators. In all sites, pitire reproduction started in January, flowering peak occurring in April, anthesis duration was 15 h and predominantly nocturnal (9 h), pollen was released at 23:00 h, nectar was produced throughout anthesis, and breeding system was self-incompatible. Flower production per plant was similar in disturbed and conserved sites, but flower availability was higher (because of higher tree density) and longer in disturbed sites. Pollination is nocturnal, the most frequent legitimate pollinator being the bat Leptonycteris yerbabuenae; diurnal pollination is rare but possible, carried out by bee species. Fruit and seed set in control and nocturnal pollination treatments at disturbed sites were higher than in conserved sites. Frequency of L. yerbabuenae visits was similar among site types, but more visits of complementary nocturnal and diurnal pollinators were recorded in disturbed sites, which could explain differences in reproductive success. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta.

    PubMed

    Fenske, Myles P; Nguyen, LeAnn P; Horn, Erin K; Riffell, Jeffrey A; Imaizumi, Takato

    2018-02-12

    Most plant-pollinator interactions occur during specific periods during the day. To facilitate these interactions, many flowers are known to display their attractive qualities, such as scent emission and petal opening, in a daily rhythmic fashion. However, less is known about how the internal timing mechanisms (the circadian clocks) of plants and animals influence their daily interactions. We examine the role of the circadian clock in modulating the interaction between Petunia and one of its pollinators, the hawkmoth Manduca sexta. We find that desynchronization of the Petunia circadian clock affects moth visitation preference for Petunia flowers. Similarly, moths with circadian time aligned to plants show stronger flower-foraging activities than moths that lack this alignment. Moth locomotor activity is circadian clock-regulated, although it is also strongly repressed by light. Moths show a time-dependent burst increase in flight activity during subjective night. In addition, moth antennal responsiveness to the floral scent compounds exhibits a 24-hour rhythm in both continuous light and dark conditions. This study highlights the importance of the circadian clocks in both plants and animals as a crucial factor in initiating specialized plant-pollinator relationships.

  20. Reproductive biology and pollination of the carnivorous Genlisea violacea (Lentibulariaceae).

    PubMed

    Aranguren, Y; Płachno, B J; Stpiczyńska, M; Miranda, V F O

    2018-05-01

    Genlisea violacea is a Brazilian endemic carnivorous plant species distributed in the cerrado biome, mainly in humid environments, on sandy and oligotrophic soil or wet rocks. Studies on reproductive biology or pollination in the Lentibulariaceae are notably scarce; regarding the genus Genlisea, the current study is the first to show systematic and standardised research on reproductive biology from field studies to describe the foraging of visiting insects and determine the effective pollinators of Genlisea. We studied two populations of G. violacea through the observation of flower visitors for 4 months of the rainy and dry seasons. Stigmatic receptivity, pollen viability, and breeding system were evaluated together with histochemistry and morphological analyses of flowers. The flowers showed stigmatic receptivity of 100% in open buds and mature flowers, reducing to 80% for senescent flowers. Nearly 80% of pollen grains are viable, decreasing to 40-45% after 48 h. Nectar is produced by glandular trichomes inside the spur. Two bee species are effective pollinators: one of the genus Lasioglossum (subgenus Dialictus: Halictidae) and the other of the genus Ceratina (subgenus Ceratinula: family Apidae). Moreover, bee-like flies of the Syrphidae family may also be additional pollinators. Genlisea violacea is an allogamous and self-compatible species. The differences in flower-visiting fauna for both populations can be attributed to factors such as climate, anthropogenic effect, seasonal factors related to insects and plants, as well as the morphological variation of flowers in both populations. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  1. Invasion of a dominant floral resource: effects on the floral community and pollination of native plants.

    PubMed

    Goodell, Karen; Parker, Ingrid M

    2017-01-01

    Through competition for pollinators, invasive plants may suppress native flora. Community-level studies provide an integrative assessment of invasion impacts and insights into factors that influence the vulnerability of different native species. We investigated effects of the nonnative herb Lythrum salicaria on pollination of native species in 14 fens of the eastern United States. We compared visitors per flower for 122 native plant species in invaded and uninvaded fens and incorporated a landscape-scale experiment, removing L. salicaria flowers from three of the invaded fens. Total flower densities were more than three times higher in invaded than uninvaded or removal sites when L. salicaria was blooming. Despite an increase in number of visitors with number of flowers per area, visitors per native flower declined with increasing numbers of flowers. Therefore, L. salicaria invasion depressed visitation to native flowers. In removal sites, visitation to native flowers was similar to uninvaded sites, confirming the observational results and also suggesting that invasion had not generated a persistent build-up of visitor populations. To study species-level impacts, we examined effects of invasion on visitors per flower for the 36 plant species flowering in both invaded and uninvaded fens. On average, the effect of invasion represented about a 20% reduction in visits per flower. We measured the influence of plant traits on vulnerability to L. salicaria invasion using meta-analysis. Bilaterally symmetrical flowers experienced stronger impacts on visitation, and similarity in flower color to L. salicaria weakly intensified competition with the invader for visitors. Finally, we assessed the reproductive consequences of competition with the invader in a dominant flowering shrub, Dasiphora fruticosa. Despite the negative effect of invasion on pollinator visitation in this species, pollen limitation of seed production was not stronger in invaded than in uninvaded

  2. Potential pollinators of Comolia ovalifolia DC Triana (Melastomataceae) and Chamaecrista ramosa (Vog.) H.S. Irwin and Barneby var. ramosa (Leguminosae-Caesalpinioideae), in restinga, Bahia, Brazil.

    PubMed

    Oliveira-Rebouças, P; Gimenes, M

    2011-05-01

    Comolia ovalifolia DC Triana (Melastomataceae) and Chamaecrista ramosa (Vog.) H.S. Irwin and Barneby var. ramosa (Leguminosae-Caesalpinioideae) are tropical plant species found in restinga (herbaceous-shrubby, sandy costal ecosystems). They have flowers with poricidal anthers and are pollinated by bees. The study sought to analyse potential pollinators of both plants during visits to their flowers in a restinga area in Bahia. The flowering displayed by both species was considered continuous and long duration, constantly providing pollen to floral visitors. C. ovalifolia was visited by 17 species of bees and C. ramosa by 16 species, predominantly from the Apidae family (with a similarity index of 74%). The behavior displayed by these visiting bees was of vibrating anthers. The small-sized Euglossa sp. Latreille, 1802 and Florilegus similis Urban, 1970 bees played less of a role as pollinators, since they rarely touched the flower stigma during harvests and were thus considered opportunist visitors or casual pollinators. Centris decolorata Lepetier, 1841 (= C. leprieuri) and Xylocopa subcyanea Perez, 1901 are large bees and were considered efficient pollinators of C. ovalifolia and C. ramosa because of the higher frequency and constancy of their visits, and their favourable behaviour and size for pollen transfer between flowers, which guarantees the survival of these native restinga plant species.

  3. How to cheat when you cannot lie? Deceit pollination in Begonia gracilis.

    PubMed

    Castillo, Reyna A; Caballero, Helga; Boege, Karina; Fornoni, Juan; Domínguez, César A

    2012-07-01

    Mimicry between rewarding and non-rewarding flowers within individuals has been accepted as a strategy favored by selection to deceive pollinators. It has been proposed that this mechanism relies on the exploitation of pollinator's sensory biases, but field evidence is still scarce. In this study, we describe the mechanism of deceit pollination in the monoecious herb Begonia gracilis, a species with exposed rewarding structures (pollen) and intersexual mimicry. Specifically, we test the role of mimicry and exploitation of sensory biases on the reproductive success of male (pollination visitation) and female flowers (probability of setting fruits). We show that pollinators' perception of the amount of reward provided by male flowers is influenced by the independent variation in the sizes of the androecium and the perianth. Large rewarding structures and small perianths were preferred by pollinators, suggesting a central role of the relative size of the rewarding structure on pollinators' foraging decisions. Hence, rewarding male flowers cheat pollinators by exploiting their sensory biases, a strategy followed by non-rewarding female flowers. We suggest that intersexual mimicry operates through the functional resemblance of male flowers' deceit strategy. Artificial manipulation of the flowers supports our findings in natural conditions. Overall, we propose that the continuous and independent variation in the size of the perianth and the reproductive organs among male and female flowers could itself be adaptive.

  4. Pollination Ecology of Four Epiphytic Orchids of New Zealand

    PubMed Central

    LEHNEBACH, CARLOS A.; ROBERTSON, ALASTAIR W

    2004-01-01

    • Background and Aims In New Zealand epiphytic orchids are represented by four genera and eight species. The genera Earina (three species) and Winika (one species) are the most conspicuous and widespread. These are likely to be some of the southernmost distributed genera of epiphytic orchids in the world. • Methods To identify the pollination strategies that have evolved in these orchids, hand‐pollination treatments were done and floral visitors were observed in several wild populations at two areas of southern North Island (approx. 40°S). Pollen : ovule ratio and osmophores were also studied and the total carbohydrate content of the nectar produced by each species was measured. • Key results Earina autumnalis and Earina mucronata are self‐compatible, whereas Earina aestivalis and Winika cunninghamii appear to be partially self‐incompatible. All four orchids are incapable of autonomous selfing and therefore completely dependent on pollinators to set fruits. Floral visitors observed in the genus Earina belong to Diptera, Coleoptera and Hymenoptera and to Diptera and Hymenoptera in W. cunninghamii. • Conclusions Contrary to many epiphytic orchids in the tropics, the orchid–pollinator relationship in these orchids is unspecialized and flowers are visited by a wide range of insects. Putative pollinators are flies of the families Bibionidae, Calliphoridae, Syrphidae and Tachinidae. All four orchids display anthecological adaptations to a myophilous pollination system such as simple flowers, well‐exposed reproductive structures, easily accessed nectar and high pollen : ovule ratios. PMID:15113741

  5. Feeding the enemy: loss of nectar and nectaries to herbivores reduces tepal damage and increases pollinator attraction in Iris bulleyana.

    PubMed

    Zhu, Ya-Ru; Yang, Min; Vamosi, Jana C; Armbruster, W Scott; Wan, Tao; Gong, Yan-Bing

    2017-08-01

    Floral nectar usually functions as a pollinator reward, yet it may also attract herbivores. However, the effects of herbivore consumption of nectar or nectaries on pollination have rarely been tested. We investigated Iris bulleyana , an alpine plant that has showy tepals and abundant nectar, in the Hengduan Mountains of SW China. In this region, flowers are visited mainly by pollen-collecting pollinators and nectarivorous herbivores. We tested the hypothesis that, in I. bulleyana , sacrificing nectar and nectaries to herbivores protects tepals and thus enhances pollinator attraction. We compared rates of pollination and herbivory on different floral tissues in plants with flowers protected from nectar and nectary consumption with rates in unprotected control plants. We found that nectar and nectaries suffered more herbivore damage than did tepals in natural conditions. However, the amount of tepal damage was significantly greater in the flowers with protected nectaries than in the controls; this resulted in significant differences in pollinator visitation rates. These results provide the first evidence that floral nectar and nectaries may be 'sacrificed' to herbivores, leading to reduced damage to other floral tissues that are more important for reproduction. © 2017 The Author(s).

  6. Species traits and network structure predict the success and impacts of pollinator invasions.

    PubMed

    Valdovinos, Fernanda S; Berlow, Eric L; Moisset de Espanés, Pablo; Ramos-Jiliberto, Rodrigo; Vázquez, Diego P; Martinez, Neo D

    2018-05-31

    Species invasions constitute a major and poorly understood threat to plant-pollinator systems. General theory predicting which factors drive species invasion success and subsequent effects on native ecosystems is particularly lacking. We address this problem using a consumer-resource model of adaptive behavior and population dynamics to evaluate the invasion success of alien pollinators into plant-pollinator networks and their impact on native species. We introduce pollinator species with different foraging traits into network models with different levels of species richness, connectance, and nestedness. Among 31 factors tested, including network and alien properties, we find that aliens with high foraging efficiency are the most successful invaders. Networks exhibiting high alien-native diet overlap, fraction of alien-visited plant species, most-generalist plant connectivity, and number of specialist pollinator species are the most impacted by invaders. Our results mimic several disparate observations conducted in the field and potentially elucidate the mechanisms responsible for their variability.

  7. An invasive plant alters pollinator-mediated phenotypic selection on a native congener.

    PubMed

    Beans, Carolyn M; Roach, Deborah A

    2015-01-01

    • Recent studies suggest that invasive plants compete reproductively with native plants by reducing the quantity or quality of pollinator visits. Although these studies have revealed ecological consequences of pollinator-mediated competition between invasive and native plants, the evolutionary outcomes of these interactions remain largely unexplored.• We studied the ecological and evolutionary impact of pollinator-mediated competition with an invasive jewelweed, Impatiens glandulifera, on a co-occurring native congener, I. capensis. Using a pollinator choice experiment, a hand pollination experiment, and a selection analysis, we addressed the following questions: (1) Do native pollinators show preference for the invasive or native jewelweed, and do they move between the two species? (2) Does invasive jewelweed pollen inhibit seed production in the native plant? (3) Does the invasive jewelweed alter phenotypic selection on the native plant's floral traits?• The pollinator choice experiment showed that pollinators strongly preferred the invasive jewelweed. The hand pollination experiment demonstrated that invasive pollen inhibited seed production in the native plant. The selection analysis showed that the presence of the invasive jewelweed altered phenotypic selection on corolla height in the native plant.• Invasive plants have the potential to alter phenotypic selection on floral traits in native plant populations. If native plants can evolve in response to this altered selection pressure, the evolution of floral traits may play an important role in permitting long-term coexistence of native and invasive plants. © 2015 Botanical Society of America, Inc.

  8. Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae)

    PubMed Central

    Barfod, Anders S.; Hagen, Melanie; Borchsenius, Finn

    2011-01-01

    Background With more than 90 published studies of pollination mechanisms, the palm family is one of the better studied tropical families of angiosperms. Understanding palm–pollinator interactions has implications for tropical silviculture, agroforestry and horticulture, as well as for our understanding of palm evolution and diversification. We review the rich literature on pollination mechanisms in palms that has appeared since the last review of palm pollination studies was published 25 years ago. Scope and Conclusions Visitors to palm inflorescences are attracted by rewards such as food, shelter and oviposition sites. The interaction between the palm and its visiting fauna represents a trade-off between the services provided by the potential pollinators and the antagonistic activities of other insect visitors. Evidence suggests that beetles constitute the most important group of pollinators in palms, followed by bees and flies. Occasional pollinators include mammals (e.g. bats and marsupials) and even crabs. Comparative studies of palm–pollinator interactions in closely related palm species document transitions in floral morphology, phenology and anatomy correlated with shifts in pollination vectors. Synecological studies show that asynchronous flowering and partitioning of pollinator guilds may be important regulators of gene flow between closely related sympatric taxa and potential drivers of speciation processes. Studies of larger plant–pollinator networks point out the importance of competition for pollinators between palms and other flowering plants and document how the insect communities in tropical forest canopies probably influence the reproductive success of palms. However, published studies have a strong geographical bias towards the South American region and a taxonomic bias towards the tribe Cocoseae. Future studies should try to correct this imbalance to provide a more representative picture of pollination mechanisms and their evolutionary

  9. The good, the bad and the flexible: plant interactions with pollinators and herbivores over space and time are moderated by plant compensatory responses

    PubMed Central

    Lay, C. R.; Linhart, Y. B.; Diggle, P. K.

    2011-01-01

    Background and Aims Plants are sessile organisms that face selection by both herbivores and pollinators. Herbivores and pollinators may select on the same traits and/or mediate each others' effects. Erysimum capitatum (Brassicaceae) is a widespread and variable plant species with generalized pollination that is attacked by a number of herbivores. The following questions were addressed. (a) Are pollinators and herbivores attracted by similar plant traits? (b) Does herbivory affect pollinator preferences? (c) Do pollinators and/or herbivores affect fitness and select on plant traits? (d) Do plant compensatory responses affect the outcome of interactions among plants, pollinators and herbivores? (e) Do interactions among E. capitatum and its pollinators and herbivores differ among sites and years? Methods In 2005 and 2006, observational and experimental studies were combined in four populations at different elevations to examine selection by pollinators and herbivores on floral traits of E. capitatum. Key Results Pollinator and herbivore assemblages varied spatially and temporally, as did their effects on plant fitness and selection. Both pollinators and herbivores preferred plants with more flowers, and herbivory sometimes reduced pollinator visitation. Pollinators did not select on plant traits in any year or population and E. capitatum was not pollen limited; however, supplemental pollen resulted in altered plant resource allocation. Herbivores reduced fitness and selected for plant traits in some populations, and these effects were mediated by plant compensatory responses. Conclusions Individuals of Erysimum capitatum are visited by diverse groups of pollinators and herbivores that shift in abundance and importance in time and space. Compensatory reproductive mechanisms mediate interactions with both pollinators and herbivores and may allow E. capitatum to succeed in this complex selective environment. PMID:21724655

  10. A reassessment of the function of floral nectar in Croton suberosus (Euphorbiaceae): A reward for plant defenders and pollinators.

    PubMed

    Narbona, Eduardo; Dirzo, Rodolfo

    2010-04-01

    Typically, plant-pollinator interactions are recognized as mutualistic relationships. Flower visitors, however, can potentially play multiple roles. The floral nectar in Croton suberosus has been proposed to operate as a reward for predators, especially the wasp Polistes instabilis (Vespidae), which kills herbivorous insects, while the plant has been thought to be mainly wind-pollinated. In this study, we reassessed the pollination mode of C. suberosus and the possible role of its flower visitors. Pollinator exclusion experiments demonstrated that C. suberosus should be considered a strictly entomophilous species. Inflorescences of C. suberosus were visited by a diverse entomofauna involving 28 taxa belonging to six orders; however, wasps and bees were the only visitors that carried C. suberosus pollen. The visitation rate of wasps was approximately four times that of bees. This observation, combined with the fact that the small size of bees makes effective contact of their bodies with the stigma difficult, strongly suggests that large wasps are responsible for most of the effective pollination of C. suberosus. Among the wasp visitors, P. instabilis seems to be one of the most important. These findings expose an unusual plant-insect interaction, in which the plant provides nectar and wasps pollinate and defend the plant.

  11. Unsuccessful introduced biocontrol agents can act as pollinators of invasive weeds: Bitou Bush (Chrysanthemoides monilifera ssp. rotundata) as an example.

    PubMed

    Gross, Caroline L; Whitehead, Joshua D; Silveira de Souza, Camila; Mackay, David

    2017-10-01

    The extent of self-compatibility and reliance on pollinators for seed set are critical determinants of reproductive success in invasive plant species. Seed herbivores are commonly used as biocontrol agents but may also act as flower visitors, potentially resulting in pollination. However, such contrasting or potentially counterproductive interaction effects are rarely considered or evaluated for biological control programs. We investigated the breeding system and pollinators of Bitou Bush ( Chrysanthemoides monilifera ssp. rotundata ), an invasive species in Australia that has been the subject of biocontrol programs since 1987. We found the species to be obligate outcrossing in all six populations tested. From 150 video hours, we found 21 species of potential pollinators, including Mesoclanis polana , the Bitou Seedfly, native to South Africa and released in Australia as a biocontrol agent in 1996. Mesoclanis polana transferred pollen to stigmas and was the most common pollinator (52% of pollinator visits), followed by the syrphid fly Simosyrphus grandicornis (9%) and introduced honeybee, Apis mellifera (6.5%). Fruit-to-flower ratios ranged from 0.12 to 0.45 and were highest in the population with the greatest proportion of Mesoclanis polana visits. In an experimental trial, outside the naturalized range, the native bee Homalictus sphecodoides and the native syrphid Melangyna viridiceps were the primary pollinators, and fruit-to-flower ratios were 0.35, indicating that Bitou Bush would have ready pollinators if its range expanded inland. Synthesis . Invasive Bitou Bush requires pollinators, and this is effected by a range of generalist pollinators in eastern Australia including the Bitou Seedfly, introduced as a biocontrol agent, and the major pollinator detected in this study. Fruit-to-flower ratios were highest when the Bitou Seedfly was in high abundance. This study underscores the importance of evaluating the pollination biology of invasive species in their

  12. Efficiency of local Indonesia honey bees (Apis cerana L.) and stingless bee (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination.

    PubMed

    Putra, Ramadhani Eka; Kinasih, Ida

    2014-01-01

    Tomato (Lycopersicon esculentum Mill.) is considered as one of major agricultural commodity of Indonesia farming. However, monthly production is unstable due to lack of pollination services. Common pollinator agent of tomatoes is bumblebees which is unsuitable for tropical climate of Indonesia and the possibility of alteration of local wild plant interaction with their pollinator. Indonesia is rich with wild bees and some of the species already domesticated for years with prospect as pollinating agent for tomatoes. This research aimed to assess the efficiency of local honey bee (Apis cerana L.) and stingless bee (Trigona iridipennis), as pollinator of tomato. During this research, total visitation rate and total numbers of pollinated flowers by honey bee and stingless bee were compared between them with bagged flowers as control. Total fruit production, average weight and size also measured in order to correlated pollination efficiency with quantity and quality of fruit produced. Result of this research showed that A. cerana has slightly higher rate of visitation (p>0.05) and significantly shorter handling time (p < 0.05) than T. iridipennis due to their larger colony demand and low reward provide by tomato flowers. However, honey bee pollinated tomato flowers more efficient pollinator than stingless bee (80.3 and 70.2% efficiency, respectively; p < 0.05) even though the average weight and size of tomatoes were similar (p>0.05). Based on the results, it is concluded that the use of Apis cerana and Trigona spp., for pollinating tomatoes in tropical climates could be an alternative to the use of non-native Apis mellifera and bumblebees (Bombus spp.). However, more researches are needed to evaluate the cost/benefit on large-scale farming and greenhouse pollination using both bees against other bee species and pollination methods.

  13. Leaf Fertilizers Affect Survival and Behavior of the Neotropical Stingless Bee Friesella schrottkyi (Meliponini: Apidae: Hymenoptera).

    PubMed

    Rodrigues, Cleiton G; Krüger, Alexandra P; Barbosa, Wagner F; Guedes, Raul Narciso C

    2016-04-11

    The ongoing concern about bee decline has largely focused on honey bees and neonicotinoid insecticides, while native pollinators such as Neotropical stingless bees and agrochemicals such as other insecticide groups, pesticides in general, and fertilizers-especially leaf fertilizers-remain neglected as potential contributors to pollination decline. In an effort to explore this knowledge gap, we assessed the lethal and sublethal behavioral impact of heavy metal-containing leaf fertilizers in a native pollinator of ecological importance in the Neotropics: the stingless beeFriesella schrottkyi(Friese). Two leaf fertilizers-copper sulfate (24% Cu) and a micronutrient mix (Arrank L: 5% S, 5% Zn, 3% Mn, 0.6% Cu, 0.5% B, and 0.06% Mo)-were used in oral and contact exposure bioassays. The biopesticide spinosad and water were used as positive and negative controls, respectively. Copper sulfate compromised the survival of stingless bee workers, particularly with oral exposure, although less than spinosad under contact exposure. Sublethal exposure to both leaf fertilizers at their field rates also caused significant effects in exposed workers. Copper sulfate enhanced flight take-off on stingless bee workers, unlike workers exposed to the micronutrient mix. There was no significant effect of leaf fertilizers on the overall activity and walking behavior of worker bees. No significant effect was observed for the respiration rate of worker bees under contact exposure, but workers orally exposed to the micronutrient mix exhibited a reduced respiration rate. Therefore, leaf fertilizers do affectF. schrottkyi, what may also occur with other stingless bees, potentially compromising their pollination activity deserving attention. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Effects of invasive plant species on pollinator service and reproduction in native plants at Acadia National Park

    USGS Publications Warehouse

    Stubbs, C.J.; Drummond, F.; Ginsberg, H.

    2007-01-01

    Invasive plant species can have profound negative effects on natural communities by competively excluding native species. Berberis thunbergii (Japanese barberry), Frangula alnus (glossy or alder buckthorn) and Lythrum salicaria (purple loosestrife) are invasive species known to reduce native plant diversity and are thus of great concern to Acadia National Park. Pollinators visit them for nectar and pollen. The effects of invasive plant species on pollinator behavior were investigated by comparing pollinator visitation to co-flowering native and invasive species with visitation to native species growing alone. The effect of invasives on pollination of native plants was studied by comparing fruit set in patches of the native species growing near invasives with patches far from invasive species in Acadia National Park. The coflowering pairs were as follows: in the spring native Vaccinium angustifolium (lowbush blueberry) was paired with B. thunbergii; in early summer native Viburnum nudum (wild raisin) was paired with F. alnus ; in late summer native Spiraea alba (meadowsweet) was paired with L. salicaria. We investigated whether these invasives competed with native plants for pollinators in Acadia and thus negatively affected native plant reproduction. Our objectives were to determine: 1) the influence, if any, of each invasive on pollinator visitation to a co-flowering native species, 2) factors that might affect visitation, 3) invasive pollen transfer to native plants, and 4) whether invasives influence native plant reproduction (fruit set). Our findings indicate that at times the number of flower visitors to natives was lower or the species composition of visitors different when invasives were present, that invasives sometimes attracted more pollinators, that generally the invasives were more rewarding as far as nectar and pollen availability for pollinators, and that generally native plant fruit set and seed set was not significantly lowered in the presence of

  15. The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities.

    PubMed

    Lázaro, Amparo; Hegland, Stein Joar; Totland, Orjan

    2008-08-01

    The pollination syndrome hypothesis has provided a major conceptual framework for how plants and pollinators interact. However, the assumption of specialization in pollination systems and the reliability of floral traits in predicting the main pollinators have been questioned recently. In addition, the relationship between ecological and evolutionary specialization in pollination interactions is still poorly understood. We used data of 62 plant species from three communities across southern Norway to test: (1) the relationships between floral traits and the identity of pollinators, (2) the association between floral traits (evolutionary specialization) and ecological generalization, and (3) the consistency of both relationships across communities. Floral traits significantly affected the identity of pollinators in the three communities in a way consistent with the predictions derived from the pollination syndrome concept. However, hover flies and butterflies visited flowers with different shapes in different communities, which we mainly attribute to among-community variation in pollinator assemblages. Interestingly, ecological generalization depended more on the community-context (i.e. the plant and pollinator assemblages in the communities) than on specific floral traits. While open yellow and white flowers were the most generalist in two communities, they were the most specialist in the alpine community. Our results warn against the use of single measures of ecological generalization to question the pollination syndrome concept, and highlight the importance of community comparisons to assess the pollination syndromes, and to understand the relationships between ecological and evolutionary specialization in plant-pollinator interactions.

  16. A pollinators' eye view of a shelter mimicry system

    PubMed Central

    Vereecken, Nicolas J.; Dorchin, Achik; Dafni, Amots; Hötling, Susann; Schulz, Stefan; Watts, Stella

    2013-01-01

    Background and Aims ‘Human-red’ flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown. Methods Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography–mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis). Key Results Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent. Conclusions The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic (‘bee-black’) protective shelters used preferentially by male solitary bees, and that pollinator visits are

  17. Pollinator Protection

    EPA Pesticide Factsheets

    What the EPA is doing to protect bees and other pollinators from pesticides; including addressing the issue of Colony Collapse Disorder (CCD), risk assessment, decline in pollinator health in general, and why pollinators are important.

  18. Floral features, pollination biology and breeding system of Chloraea membranacea Lindl. (Orchidaceae: Chloraeinae).

    PubMed

    Sanguinetti, Agustin; Buzatto, Cristiano Roberto; Pedron, Marcelo; Davies, Kevin L; Ferreira, Pedro Maria de Abreu; Maldonado, Sara; Singer, Rodrigo B

    2012-12-01

    The pollination biology of very few Chloraeinae orchids has been studied to date, and most of these studies have focused on breeding systems and fruiting success. Chloraea membranacea Lindl. is one of the few non-Andean species in this group, and the aim of the present contribution is to elucidate the pollination biology, functional floral morphology and breeding system in native populations of this species from Argentina (Buenos Aires) and Brazil (Rio Grande do Sul State). Floral features were examined using light microscopy, and scanning and transmission electron microscopy. The breeding system was studied by means of controlled pollinations applied to plants, either bagged in the field or cultivated in a glasshouse. Pollination observations were made on natural populations, and pollinator behaviour was recorded by means of photography and video. Both Argentinean and Brazilian plants were very consistent regarding all studied features. Flowers are nectarless but scented and anatomical analysis indicates that the dark, clavate projections on the adaxial labellar surface are osmophores (scent-producing glands). The plants are self-compatible but pollinator-dependent. The fruit-set obtained through cross-pollination and manual self-pollination was almost identical. The main pollinators are male and female Halictidae bees that withdraw the pollinarium when leaving the flower. Remarkably, the bees tend to visit more than one flower per inflorescence, thus promoting self-pollination (geitonogamy). Fruiting success in Brazilian plants reached 60·78 % in 2010 and 46 % in 2011. Some pollinarium-laden female bees were observed transferring pollen from the carried pollinarium to their hind legs. The use of pollen by pollinators is a rare record for Orchidaceae in general. Chloraea membrancea is pollinated by deceit. Together, self-compatibility, pollinarium texture, pollinator abundance and behaviour may account for the observed high fruiting success. It is suggested that

  19. Using publicly available data to quantify plant–pollinator interactions and evaluate conservation seeding mixes in the Northern Great Plains

    USGS Publications Warehouse

    Otto, Clint R.; O'Dell, Samuel; Bryant, R. B.; Euliss, Ned H. Jr.; Bush, Rachel; Smart, Matthew

    2017-01-01

    Concern over declining pollinators has led to multiple conservation initiatives for improving forage for bees in agroecosystems. Using data available through the Pollinator Library (npwrc.usgs.gov/pollinator/), we summarize plant–pollinator interaction data collected from 2012–2015 on lands managed by the U.S. Fish and Wildlife Service and private lands enrolled in U.S. Department of Agriculture conservation programs in eastern North Dakota (ND). Furthermore, we demonstrate how plant–pollinator interaction data from the Pollinator Library and seed cost information can be used to evaluate hypothetical seeding mixes for pollinator habitat enhancements. We summarize records of 314 wild bee and 849 honey bee (Apis mellifera L.) interactions detected on 63 different plant species. The wild bee observations consisted of 46 species, 15 genera, and 5 families. Over 54% of all wild bee observations were represented by three genera―Bombus, Lassioglossum, and Melissodes. The most commonly visited forbs by wild bees were Monarda fistulosa, Sonchus arvensis, and Zizia aurea. The most commonly visited forbs by A. mellifera were Cirsium arvense, Melilotus officinalis, and Medicago sativa. Among all interactions, 13% of A. mellifera and 77% of wild bee observations were made on plants native to ND. Our seed mix evaluation shows that mixes may often need to be tailored to meet the unique needs of wild bees and managed honey bees in agricultural landscapes. Our evaluation also demonstrates the importance of incorporating both biologic and economic information when attempting to design cost-effective seeding mixes for supporting pollinators in a critically important part of the United States.

  20. Biocommunication between Plants and Pollinating Insects through Fluorescence of Pollen and Anthers.

    PubMed

    Mori, Shinnosuke; Fukui, Hiroshi; Oishi, Masanori; Sakuma, Masayuki; Kawakami, Mari; Tsukioka, Junko; Goto, Katsumi; Hirai, Nobuhiro

    2018-06-01

    Flowering plants attract pollinators via various stimuli such as odor, color, and shape. Factors determining the foraging behavior of pollinators remain a major theme in ecological and evolutionary research, although the floral traits and cognitive ability of pollinators have been investigated for centuries. Here we show that the autofluorescence emitted from pollen and anthers under UV irradiation may act as another attractant for flower-visiting insects. We have identified fluorescent compounds from pollen and anthers of five plant species as hydroxycinnamoyl derivatives. The fluorescent compounds are also shown to quench UV energy and exhibit antioxidant activity, indicating a function as protectants of pollen genes from UV-induced damage. A two-choice assay using honeybees in the field demonstrated that they perceived the blue fluorescence emitted from the fluorescent compounds and were attracted to it. This result suggested that the fluorescence from pollen and anthers serves as a visual cue to attract pollinators under sunlight.

  1. Fly pollination in Ceropegia (Apocynaceae: Asclepiadoideae): biogeographic and phylogenetic perspectives.

    PubMed

    Ollerton, Jeff; Masinde, Siro; Meve, Ulrich; Picker, Mike; Whittington, Andrew

    2009-06-01

    Ceropegia (Apocynaceae subfamily Asclepiadoideae) is a large, Old World genus of >180 species, all of which possess distinctive flask-shaped flowers that temporarily trap pollinators. The taxonomic diversity of pollinators, biogeographic and phylogenetic patterns of pollinator exploitation, and the level of specificity of interactions were assessed in order to begin to understand the role of pollinators in promoting diversification within the genus. Flower visitor and pollinator data for approx. 60 Ceropegia taxa were analysed with reference to the main centres of diversity of the genus and to a cpDNA-nrDNA molecular phylogeny of the genus. Ceropegia spp. interact with flower-visiting Diptera from at least 26 genera in 20 families, of which 11 genera and 11 families are pollinators. Size range of flies was 0.5-4.0 mm and approx. 94 % were females. Ceropegia from particular regions do not use specific fly genera or families, though Arabian Peninsula species are pollinated by a wider range of Diptera families than those in other regions. The basal-most clade interacts with the highest diversity of Diptera families and genera, largely due to one hyper-generalist taxon, C. aristolochioides subsp. deflersiana. Species in the more-derived clades interact with a smaller diversity of Diptera. Approximately 60 % of taxa are so far recorded as interacting with only a single genus of pollinators, the remaining 40 % being less conservative in their interactions. Ceropegia spp. can therefore be ecological specialists or generalists. The genus Ceropegia has largely radiated without evolutionary shifts in pollinator functional specialization, maintaining its interactions with small Diptera. Intriguing biogeographic and phylogenetic patterns may reflect processes of regional dispersal, diversification and subsequent specialization onto a narrower range of pollinators, though some of the findings may be caused by inconsistent sampling. Comparisons are made with other plant genera

  2. Invasive species management restores a plant-pollinator mutualism in Hawaii

    USGS Publications Warehouse

    Hanna, Cause; Foote, David; Kremen, Claire

    2013-01-01

    1.The management and removal of invasive species may give rise to unanticipated changes in plant–pollinator mutualisms because they can alter the composition and functioning of plant–pollinator interactions in a variety of ways. To utilize a functional approach for invasive species management, we examined the restoration of plant–pollinator mutualisms following the large-scale removal of an invasive nectar thief and arthropod predator, Vespula pensylvanica. 2.We reduced V. pensylvanica populations in large plots managed over multiple years to examine the response of plant–pollinator mutualisms and the fruit production of a functionally important endemic Hawaiian tree species, Metrosideros polymorpha. To integrate knowledge of the invader's behaviour and the plant's mating system, we determined the efficacy of V. pensylvanica as a pollinator of M. polymorpha and quantified the dependence of M. polymorpha on animal pollination (e.g. level of self-compatibility and pollen limitation). 3.The reduction of V. pensylvanica in managed sites, when compared to unmanaged sites, resulted in a significant increase in the visitation rates of effective bee pollinators (e.g. introduced Apis mellifera and native Hylaeus spp.) and in the fruit production of M. polymorpha. 4.Apis mellifera, following the management of V. pensylvanica, appears to be acting as a substitute pollinator for M. polymorpha, replacing extinct or threatened bird and bee species in our study system. 5.Synthesis and applications. Fruit production of the native M. polymorpha was increased after management of the invasive pollinator predator V. pensylvanica; however, the main pollinators were no longer native but introduced. This research thus demonstrates the diverse impacts of introduced species on ecological function and the ambiguous role they play in restoration. We recommend incorporating ecological function and context into invasive species management as this approach may enable conservation

  3. Potential pollinators of tomato, Lycopersicon esculentum (Solanaceae), in open crops and the effect of a solitary bee in fruit set and quality.

    PubMed

    Santos, A O R; Bartelli, B F; Nogueira-Ferreira, F H

    2014-06-01

    We identified native bees that are floral visitors and potential pollinators of tomato in Cerrado areas, described the foraging behavior of these species, and verified the influence of the visitation of a solitary bee on the quantity and quality of fruits. Three areas of tomato crops, located in Minas Gerais, Brazil, were sampled between March and November 2012. We collected 185 bees belonging to 13 species. Exomalopsis (Exomalopsis) analis Spinola, 1853 (Hymenoptera: Apidae) was the most abundant. Ten species performed buzz pollination. Apis mellifera L. 1758 (Hymenoptera: Apidae) and Paratrigona lineata (Lepeletier, 1836) (Hymenoptera: Apidae) could also act as pollinators. The fruit set and number of seeds obtained from the pollination treatment by E. analis were higher than those in the control group. Our results allowed the identification of potential tomato pollinators in Cerrado areas and also contributed information regarding the impact of a single species (E. analis) on fruit set and quality. Although most of the visiting bees show the ability for tomato pollination, there is an absence of adequate management techniques, and its usage is difficult with the aim of increasing the crop production, which is the case for E. analis. Species such as Melipona quinquefasciata, P. lineata, and A. mellifera, which are easy to handle, are not used for pollination services. Finally, it is suggested that a combination of different bee species that are able to pollinate the tomato is necessary to prevent the super-exploitation of only a single species for pollination services and to guarantee the occurrence of potential pollinators in the crop area.

  4. Pollination in Brazilian Syngonanthus (Eriocaulaceae) Species: Evidence for Entomophily Instead of Anemophily

    PubMed Central

    RAMOS, CARLIANNE O. C.; BORBA, EDUARDO L.; FUNCH, LÍGIA S.

    2005-01-01

    • Background and Aims The reproductive biology of Syngonanthus mucugensis and S. curralensis (Eriocaulaceae) was studied in areas of ‘campo rupestre’ vegetation in the Chapada Diamantina, north-eastern Brazil. These species are herbaceous and the individuals have a grouped distribution. Their leaves are united in a rosette, and their inflorescence is monoecious, of the capitulum type. The staminate and pistillate rings mature in a centripetal manner on the capitulum. • Methods A field study was conducted, including observations concerning the morphology and biology of the flowers, fruit development, insect visits and anemophily, in both S. mucugensis and S. curralensis. Experimental pollinations were also carried out to study the mating systems of S. mucugensis. • Key Results Both species flower from June to August. The staminate cycle lasts approx. 7 d, and the pistillate cycle from 3 to 4 d, with no temporal overlap between them on the same capitulum. The pollen viability of S. mucugensis was 88·6%, and 92·5% for S. curralensis. The inflorescences of both species demonstrated ultraviolet absorbance, and a sweet odour was detected during both the staminate and pistillate phases. No nectar production was ever noted, although nectaries are present. Both species were visited by numerous groups of insects, with the Diptera being the principal pollinators, especially the species of Syrphidae and Bombyliidae. There were secondary pollinators among species of Coleoptera and Hymenoptera. There was no evidence of wind pollination. Syngonanthus mucugensis is a self-compatible species, and forms fruits by agamospermy at low frequencies. • Conclusions This is apparently the first report for pollination biology and mating systems of Eriocaulaceae. Conversely to that stated by some authors, entomophily, mainly effected by species of Diptera but also by species of Coleoptera and Hymenoptera, is probably the only pollination system in these species. In spite of

  5. Effects of prescribed fire and fire surrogates on floral visiting insects of the blue ridge province in North Carolina

    Treesearch

    J.W. Campbell; J.L. Hanula; T.A. Waldrop

    2007-01-01

    Pollination by insects in forests is an extremely important process that should be conserved. Not only do pollinating insects help to maintain a diversity of plants within forests, but they also aid in pollinating crops found near forested land. Currently, the effects of various forest management practices on floral visiting insect abundance or diversity is unknown, so...

  6. Hidden floral adaptation to nocturnal moths in an apparently bee-pollinated flower, Adenophora triphylla var. japonica (Campanulaceae).

    PubMed

    Funamoto, D; Ohashi, K

    2017-09-01

    The discrepancy between observed flower visitors and those predicted based on floral phenotype has often cast doubt on the pollination syndrome concept. Here we show that this paradox may be alleviated by gaining better knowledge of the contributions of different flower visitors to pollination and the effects of floral traits that cannot be readily perceived by humans in Adenophora triphylla var. japonica. The blue, bell-shaped and pendant flowers of A. triphylla appear to fit a bee pollination syndrome. In contrast to this expectation, recent studies show that these flowers are frequented by nocturnal moths. We compared the flower visitor fauna, their visitation frequency and their relative contributions to seed set between day and night in two field populations of A. triphylla in Japan. We also determined the floral traits associated with temporal changes in the visitor assemblage, i.e. the timing of anthesis, the timing of changes in the sexual phase and the diel pattern of nectar production. While A. triphylla flowers were visited by both diurnal and nocturnal insects, the results from pollination experiments demonstrate that their primary pollinators are nocturnal settling-moths. Moreover, the flowers opened just after sunset, changed from staminate to pistillate phase in successive evenings and produced nectar only during the night, which all conform to the activity of nocturnal/crepuscular moths. Our study illustrates that the tradition of stereotyping the pollinators of a flower based on its appearance can be misleading and that it should be improved with empirical evidence of pollination performance and sufficient trait matching. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    PubMed

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  8. Transition from wind pollination to insect pollination in sedges: experimental evidence and functional traits.

    PubMed

    Wragg, Peter D; Johnson, Steven D

    2011-09-01

    Transitions from wind pollination to insect pollination were pivotal to the radiation of land plants, yet only a handful are known and the trait shifts required are poorly understood. We tested the hypothesis that a transition to insect pollination took place in the ancestrally wind-pollinated sedges (Cyperaceae) and that floral traits modified during this transition have functional significance. We paired putatively insect-pollinated Cyperus obtusiflorus and Cyperus sphaerocephalus with related, co-flowering, co-occurring wind-pollinated species, and compared pairs in terms of pollination mode and functional roles of floral traits. Experimentally excluding insects reduced seed set by 56-89% in putatively insect-pollinated species but not in intermingled wind-pollinated species. The pollen of putatively insect-pollinated species was less motile in a wind tunnel than that of wind-pollinated species. Bees, beetles and flies preferred inflorescences, and color-matched white or yellow models, of putatively insect-pollinated species over inflorescences, or color-matched brown models, of wind-pollinated species. Floral scents of putatively insect-pollinated species were chemically consistent with those of other insect-pollinated plants, and attracted pollinators; wind-pollinated species were unscented. These results show that a transition from wind pollination to insect pollination occurred in sedges and shed new light on the function of traits involved in this important transition. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  9. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems

    PubMed Central

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity. PMID:26765140

  10. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    PubMed

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  11. Pollinator-independent orchid attracts biotic pollinators due the production of lipoidal substances.

    PubMed

    Pansarin, E R; Bergamo, P J; Ferreira-Caliman, M J

    2018-03-01

    Flowering plants often depend on the attraction of biotic pollinators for sexual reproduction. Consequently, the emergence and maintenance of selected floral attributes related to pollinator attraction and rewarding are driven by pollinator pressure. In this paper we explore the effect of pollinators, rainfall, temperature and air humidity on the reproduction of a Brazilian terrestrial orchid, Cranichis candida based on data of phenology, flower resources, olfactory and visual attraction cues, pollinators and breeding system. The flowers of C. candida are strongly protandrous and pollinated by workers of the social native bee Tetragonisca angustula. The bees collect labellar lipoidal substances (wax scales), which are transported to the nest. The lipoidal substance is composed of sterols, hydrocarbons and terpenes. The last presumably protects the bees and their nests against pathogens and other arthropods. C. candida sets fruits through biotic self- and cross-pollination, and spontaneously due the action of raindrops on flowers. Our results indicate that in C. candida, although rain-mediated spontaneous self-pollination happens, fructification mediated by biotic pollinations also occurs, which may result in fruit set by cross-pollination. A mixed pollination system must result in higher genetic variability when compared to species whose fruits are produced entirely by self-pollination. On the other hand, autogamy is a form of reproductive assurance, and has commonly evolved where pollination services are rare or absent. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  12. Different pollinator assemblages ensure reproductive success of Cleisostoma linearilobatum (Orchidaceae) in fragmented holy hill forest and traditional tea garden.

    PubMed

    Zhou, Xiang; Liu, Qiang; Han, Jessie Yc; Gao, JiangYun

    2016-02-24

    Orchids are generally recognized to have specialist pollination systems and low fruit set is often thought to be characteristic of the family. In this study, we investigated the reproductive ecology of Cleisostoma linearilobatum, an epiphytic tropical orchid, in a holy hill forest fragment and a traditional tea garden in SW China using comparable methods. C. linearilobatum is self-compatible and dependent on insects for pollination. Fruit production in natural conditions was both pollinator- and resource-limited. However, the natural fruit set remained stable over multiple years at both sites. Pollination observations showed that C. linearilobatum has a generalized pollination system and seven insect species were observed as legitimate pollinators. Although the visit frequencies of different pollinators were different in the two sites, the pollinator assemblages ensured reproductive success of C. linearilobatum in both study sites over multiple years. The results partly explain why C. linearilobatum is so successful in the area, and also suggest that holy hill forest fragments and traditional tea gardens in Xishuangbanna are important in preserving orchids, especially those with generalist pollination.

  13. Different pollinator assemblages ensure reproductive success of Cleisostoma linearilobatum (Orchidaceae) in fragmented holy hill forest and traditional tea garden

    PubMed Central

    Zhou, Xiang; Liu, Qiang; Han, Jessie Yc; Gao, JiangYun

    2016-01-01

    Orchids are generally recognized to have specialist pollination systems and low fruit set is often thought to be characteristic of the family. In this study, we investigated the reproductive ecology of Cleisostoma linearilobatum, an epiphytic tropical orchid, in a holy hill forest fragment and a traditional tea garden in SW China using comparable methods. C. linearilobatum is self-compatible and dependent on insects for pollination. Fruit production in natural conditions was both pollinator- and resource-limited. However, the natural fruit set remained stable over multiple years at both sites. Pollination observations showed that C. linearilobatum has a generalized pollination system and seven insect species were observed as legitimate pollinators. Although the visit frequencies of different pollinators were different in the two sites, the pollinator assemblages ensured reproductive success of C. linearilobatum in both study sites over multiple years. The results partly explain why C. linearilobatum is so successful in the area, and also suggest that holy hill forest fragments and traditional tea gardens in Xishuangbanna are important in preserving orchids, especially those with generalist pollination. PMID:26907369

  14. Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species.

    PubMed

    Gong, W-C; Chen, G; Vereecken, N J; Dunn, B L; Ma, Y-P; Sun, W-B

    2015-01-01

    Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC-MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species-specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant-pollinator interactions in these Asian Buddleja species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Night life on the beach: selfing to avoid pollinator competition between two sympatric Silene species.

    PubMed

    Buide, M Luisa; del Valle, José Carlos; Pissatto, Mônica; Narbona, Eduardo

    2015-08-01

    Evolution of autonomous selfing may be advantageous because it allows for reproductive assurance. In co-flowering plants competing for pollinators, the least common and/or attractive could suffer pollen limitations. Silene niceensis and S. ramosissima are taxonomically related species sharing the same habitat, although S. ramosissima is less abundant and has a more restricted distribution. They also have the same a priori nocturnal pollinator syndrome, and show an overlapping flowering phenology. The aim of this study was to investigate whether a selfing strategy in S. ramosissima allows it to avoid pollinator competition and/or interspecific pollen transfer with S. niceensis, which would thus enable both species to reach high levels of fruit and seed set. The breeding system, petal colour, flower life span and degree of overlap between male and female phases, floral visitor abundance and visitation rates were analysed in two sympatric populations of S. niceensis and S. ramosissima in southern Spain. Autonomous selfing in S. ramosissima produced very high fruit and seed set, which was also similar to open-pollinated plants. Silene niceensis showed minimum levels of autonomous selfing, and pollen/ovule ratios were within the range expected for the breeding system. In contrast to S. niceensis, flower life span was much shorter in S. ramosissima, and male and female organs completely overlapped in space and time. Upper surface petals of both species showed differing brightness, chroma and hue. Flowers of S. niceensis were actively visited by moths, hawkmoths and syrphids, whereas those of S. ramosissima were almost never visited. The findings show that different breeding strategies exist between the sympatric co-flowering S. niceensis and S. ramosissima, the former specializing in crepuscular-nocturnal pollination and the latter mainly based on autonomous selfing. These two strategies allow both species to share the restricted dune habitat in which they exist, with a

  16. Evaluation of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera: Apidae) as pollinator of greenhouse tomatoes.

    PubMed

    Del Sarto, M C L; Peruquetti, R C; Campos, L A O

    2005-04-01

    The Neotropical stingless bee Melipona quadrifasciata Lepeletier was evaluated for pollinating tomatoes (variety Rodas; long-life hybrid) in greenhouses under plastic and with a hydroponic system and "organic concepts" in Minas Gerais State, Brazil. Flowers not pollinated did not set any fruit. Pollination by bees plus manual pollination did not differ from either bee or manual pollination. Maximum fruit diameter, fruit height, and roundness (quotient between maximum fruit diameter and fruit height) were not significantly different between treatments, but fruit visited by M. quadrifasciata had 10.8% less seeds (dry mass) than manual pollination. This apparently low efficiency of M. quadrifasciata pollination was attributed to the overlap of only 30 min between highest bee foraging activity and highest flower stigma receptivity. Thus, it was concluded that M. quadrifasciata is a feasible pollinator of greenhouse tomatoes because of 1) the observed increase in fruit quality with lower mechanical injury than traditional manual pollination, 2) no significant decrease in fruit size, and 3) high price of such product in the market. Some considerations for sustainable use of M. quadrifasciata as greenhouse pollinator are presented. Although techniques for keeping captive colonies of M. quadrifasciata are currently available, the sole current method for acquiring new colonies is removing them from the forest, and if demand was created for large numbers of colonies for commercial use, techniques for captive rearing must be developed to prevent serious declines in wild populations.

  17. Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space.

    PubMed

    Carstensen, Daniel W; Sabatino, Malena; Morellato, Leonor Patricia C

    2016-05-01

    Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where flowers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant-pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defining pollination systems as corresponding groups of flower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifically we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and finally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confirm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not find a significant effect of pollination systems on the spatial consistency of

  18. Evaluation of common methods for sampling invertebrate pollinator assemblages: net sampling out-perform pan traps.

    PubMed

    Popic, Tony J; Davila, Yvonne C; Wardle, Glenda M

    2013-01-01

    Methods for sampling ecological assemblages strive to be efficient, repeatable, and representative. Unknowingly, common methods may be limited in terms of revealing species function and so of less value for comparative studies. The global decline in pollination services has stimulated surveys of flower-visiting invertebrates, using pan traps and net sampling. We explore the relative merits of these two methods in terms of species discovery, quantifying abundance, function, and composition, and responses of species to changing floral resources. Using a spatially-nested design we sampled across a 5000 km(2) area of arid grasslands, including 432 hours of net sampling and 1296 pan trap-days, between June 2010 and July 2011. Net sampling yielded 22% more species and 30% higher abundance than pan traps, and better reflected the spatio-temporal variation of floral resources. Species composition differed significantly between methods; from 436 total species, 25% were sampled by both methods, 50% only by nets, and the remaining 25% only by pans. Apart from being less comprehensive, if pan traps do not sample flower-visitors, the link to pollination is questionable. By contrast, net sampling functionally linked species to pollination through behavioural observations of flower-visitation interaction frequency. Netted specimens are also necessary for evidence of pollen transport. Benefits of net-based sampling outweighed minor differences in overall sampling effort. As pan traps and net sampling methods are not equivalent for sampling invertebrate-flower interactions, we recommend net sampling of invertebrate pollinator assemblages, especially if datasets are intended to document declines in pollination and guide measures to retain this important ecosystem service.

  19. Evaluation of Common Methods for Sampling Invertebrate Pollinator Assemblages: Net Sampling Out-Perform Pan Traps

    PubMed Central

    Popic, Tony J.; Davila, Yvonne C.; Wardle, Glenda M.

    2013-01-01

    Methods for sampling ecological assemblages strive to be efficient, repeatable, and representative. Unknowingly, common methods may be limited in terms of revealing species function and so of less value for comparative studies. The global decline in pollination services has stimulated surveys of flower-visiting invertebrates, using pan traps and net sampling. We explore the relative merits of these two methods in terms of species discovery, quantifying abundance, function, and composition, and responses of species to changing floral resources. Using a spatially-nested design we sampled across a 5000 km2 area of arid grasslands, including 432 hours of net sampling and 1296 pan trap-days, between June 2010 and July 2011. Net sampling yielded 22% more species and 30% higher abundance than pan traps, and better reflected the spatio-temporal variation of floral resources. Species composition differed significantly between methods; from 436 total species, 25% were sampled by both methods, 50% only by nets, and the remaining 25% only by pans. Apart from being less comprehensive, if pan traps do not sample flower-visitors, the link to pollination is questionable. By contrast, net sampling functionally linked species to pollination through behavioural observations of flower-visitation interaction frequency. Netted specimens are also necessary for evidence of pollen transport. Benefits of net-based sampling outweighed minor differences in overall sampling effort. As pan traps and net sampling methods are not equivalent for sampling invertebrate-flower interactions, we recommend net sampling of invertebrate pollinator assemblages, especially if datasets are intended to document declines in pollination and guide measures to retain this important ecosystem service. PMID:23799127

  20. Indirect competition for pollinators is weak compared to direct resource competition: pollination and performance in the face of an invader.

    PubMed

    Palladini, Jennifer D; Maron, John L

    2013-08-01

    Invasive plants have the potential to reduce native plant abundance through both direct and indirect interactions. Direct interactions, such as competition for soil resources, and indirect interactions, such as competition for shared pollinators, have been shown to influence native plant performance; however, we know much less about how these interactions influence native plant abundance in the field. While direct competitive interactions are often assumed to drive declines in native abundance, an evaluation of their influence relative to indirect mechanisms is needed to more fully understand invasive plant impacts. We quantified the direct effects of resource competition by the invasive perennial forb, Euphorbia esula (Euphorbiaceae), on the recruitment, subsequent performance, and ultimate adult abundance of the native annual, Clarkia pulchella (Onagraceae). We contrast these direct effects with those that indirectly resulted from competition for shared pollinators. Although E. esula dramatically reduced pollinator visitation to C. pulchella, plants were only weakly pollen-limited. Pollen supplementation increased the number of seeds per fruit from 41.28 to 46.38. Seed addition experiments revealed that the impacts of ameliorating pollen limitation only increased potential recruitment by 12.3 %. In contrast, seed addition experiments that ameliorated direct competition with E. esula resulted in an increase in potential future recruitment of 574 %. Our results show that, while the indirect effects of competition for pollinators can influence plant abundance, its effects are dwarfed by the magnitude of direct effects of competition for resources.

  1. Floral features, pollination biology and breeding system of Chloraea membranacea Lindl. (Orchidaceae: Chloraeinae)

    PubMed Central

    Sanguinetti, Agustin; Buzatto, Cristiano Roberto; Pedron, Marcelo; Davies, Kevin L.; Ferreira, Pedro Maria de Abreu; Maldonado, Sara; Singer, Rodrigo B.

    2012-01-01

    Background and Aims The pollination biology of very few Chloraeinae orchids has been studied to date, and most of these studies have focused on breeding systems and fruiting success. Chloraea membranacea Lindl. is one of the few non-Andean species in this group, and the aim of the present contribution is to elucidate the pollination biology, functional floral morphology and breeding system in native populations of this species from Argentina (Buenos Aires) and Brazil (Rio Grande do Sul State). Methods Floral features were examined using light microscopy, and scanning and transmission electron microscopy. The breeding system was studied by means of controlled pollinations applied to plants, either bagged in the field or cultivated in a glasshouse. Pollination observations were made on natural populations, and pollinator behaviour was recorded by means of photography and video. Key Results Both Argentinean and Brazilian plants were very consistent regarding all studied features. Flowers are nectarless but scented and anatomical analysis indicates that the dark, clavate projections on the adaxial labellar surface are osmophores (scent-producing glands). The plants are self-compatible but pollinator-dependent. The fruit-set obtained through cross-pollination and manual self-pollination was almost identical. The main pollinators are male and female Halictidae bees that withdraw the pollinarium when leaving the flower. Remarkably, the bees tend to visit more than one flower per inflorescence, thus promoting self-pollination (geitonogamy). Fruiting success in Brazilian plants reached 60·78 % in 2010 and 46 % in 2011. Some pollinarium-laden female bees were observed transferring pollen from the carried pollinarium to their hind legs. The use of pollen by pollinators is a rare record for Orchidaceae in general. Conclusions Chloraea membrancea is pollinated by deceit. Together, self-compatibility, pollinarium texture, pollinator abundance and behaviour may account for the

  2. Fruit Set and Single Visit Stigma Pollen Deposition by Managed Bumble Bees and Wild Bees in Citrullus lanatus (Cucurbitales: Cucurbitaceae).

    PubMed

    Campbell, Joshua W; Daniels, Jaret C; Ellis, James D

    2018-04-02

    Pollinators provide essential services for watermelon, Citrullus lanatus (Thunb.; Cucurbitales: Cucurbitaceae). Managed bumble bees, Bombus impatiens (Cresson; Hymenoptera: Apidae), have been shown to be a useful watermelon pollinator in some areas. However, the exact contribution bumble bees make to watermelon pollination and how their contribution compares to that of other bees is unclear. We used large cages (5.4 × 2.5 × 2.4 m) to confine bumble bee hives to watermelon plants and compared fruit set in those cages to cages containing watermelons but no pollinators, and to open areas of field next to cages (allows all pollinators). We also collected data on single visit pollen deposition onto watermelon stigmas by managed bumble bees, honey bees, and wild bees. Overall, more fruit formed within the open cages than in cages of the other two treatment groups. B. impatiens and Melissodes spp. deposited the most pollen onto watermelon stigmas per visit, but all bee species observed visiting watermelon flowers were capable of depositing ample pollen to watermelon stigmas. Although B. impatiens did deposit large quantities of pollen to stigmas, they were not common within the field (i.e., outside the cages) as they were readily drawn to flowering plants outside of the watermelon field. Overall, bumble bees can successfully pollinate watermelon, but may be useful in greenhouses or high tunnels where watermelon flowers have no competition from other flowering plants that could draw bumble bees away from watermelon.

  3. Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators.

    PubMed

    Gómez, José M; Bosch, Jordi; Perfectti, Francisco; Fernández, J D; Abdelaziz, Mohamed; Camacho, J P M

    2008-10-07

    An adaptive role of corolla shape has been often asserted without an empirical demonstration of how natural selection acts on this trait. In generalist plants, in which flowers are visited by diverse pollinator fauna that commonly vary spatially, detecting pollinator-mediated selection on corolla shape is even more difficult. In this study, we explore the mechanisms promoting selection on corolla shape in the generalist crucifer Erysimum mediohispanicum Polatschek (Brassicaceae). We found that the main pollinators of E. mediohispanicum (large bees, small bees and bee flies) discriminate between different corolla shapes when offered artificial flowers without reward. Importantly, different pollinators prefer different shapes: bees prefer flowers with narrow petals, whereas bee flies prefer flowers with rounded overlapping petals. We also found that flowers with narrow petals (those preferred by bees) produce both more pollen and nectar than those with rounded petals. Finally, different plant populations were visited by different faunas. As a result, we found spatial variation in the selection acting on corolla shape. Selection favoured flowers with narrow petals in the populations where large or small bees are the most abundant pollinator groups. Our study suggests that pollinators, by preferring flowers with high reward, exert strong selection on the E. mediohispanicum corolla shape. The geographical variation in the pollinator-mediated selection on E. mediohispanicum corolla shape suggests that phenotypic evolution and diversification can occur in this complex floral trait even without specialization.

  4. The importance of plant diversity in maintaining the pollinator bee, Eulaema nigrita (Hymenoptera: Apidae) in sweet passion fruit fields.

    PubMed

    da Silva, Cláudia Inês; Bordon, Natali Gomes; da Rocha Filho, Léo Correia; Garófalo, Carlos Alberto

    2012-12-01

    The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P. alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees' body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee's body in the course of the flowering period of P. alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P. alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production.

  5. Evaluating the Interacting Influences of Pollination, Seed Predation, Invasive Species and Isolation on Reproductive Success in a Threatened Alpine Plant

    PubMed Central

    Krushelnycky, Paul D.

    2014-01-01

    Reproduction in rare plants may be influenced and limited by a complex combination of factors. External threats such as invasive species and landscape characteristics such as isolation may impinge on both pollination and seed predation dynamics, which in turn can strongly affect reproduction. I assessed how patterns in floral visitation, seed predation, invasive ant presence, and plant isolation influenced one another and ultimately affected viable seed production in Haleakalā silverswords (Argyroxiphium sandwicense subsp. macrocephalum) of Hawai’i. Floral visitation was dominated by endemic Hylaeus bees, and patterns of visitation were influenced by floral display size and number of plants clustered together, but not by floral herbivory or nearest flowering neighbor distance. There was also some indication that Argentine ant presence impacted floral visitation, but contradictory evidence and limitations of the study design make this result uncertain. Degree of seed predation was associated only with plant isolation, with the two main herbivores partitioning resources such that one preferentially attacked isolated plants while the other attacked clumped plants; total seed predation was greater in more isolated plants. Net viable seed production was highly variable among individuals (0–55% seed set), and was affected mainly by nearest neighbor distance, apparently owing to low cross-pollination among plants separated by even short distances (>10–20 m). This isolation effect dominated net seed set, with no apparent influence from floral visitation rates, percent seed predation, or invasive ant presence. The measured steep decline in seed set with isolation distance may not be typical of the entire silversword range, and may indicate that pollinators in addition to Hylaeus bees could be important for greater gene flow. Management aimed at maintaining or maximizing silversword reproduction should focus on the spatial context of field populations and outplanting

  6. Evaluating the interacting influences of pollination, seed predation, invasive species and isolation on reproductive success in a threatened alpine plant.

    PubMed

    Krushelnycky, Paul D

    2014-01-01

    Reproduction in rare plants may be influenced and limited by a complex combination of factors. External threats such as invasive species and landscape characteristics such as isolation may impinge on both pollination and seed predation dynamics, which in turn can strongly affect reproduction. I assessed how patterns in floral visitation, seed predation, invasive ant presence, and plant isolation influenced one another and ultimately affected viable seed production in Haleakalā silverswords (Argyroxiphium sandwicense subsp. macrocephalum) of Hawai'i. Floral visitation was dominated by endemic Hylaeus bees, and patterns of visitation were influenced by floral display size and number of plants clustered together, but not by floral herbivory or nearest flowering neighbor distance. There was also some indication that Argentine ant presence impacted floral visitation, but contradictory evidence and limitations of the study design make this result uncertain. Degree of seed predation was associated only with plant isolation, with the two main herbivores partitioning resources such that one preferentially attacked isolated plants while the other attacked clumped plants; total seed predation was greater in more isolated plants. Net viable seed production was highly variable among individuals (0-55% seed set), and was affected mainly by nearest neighbor distance, apparently owing to low cross-pollination among plants separated by even short distances (>10-20 m). This isolation effect dominated net seed set, with no apparent influence from floral visitation rates, percent seed predation, or invasive ant presence. The measured steep decline in seed set with isolation distance may not be typical of the entire silversword range, and may indicate that pollinators in addition to Hylaeus bees could be important for greater gene flow. Management aimed at maintaining or maximizing silversword reproduction should focus on the spatial context of field populations and outplanting

  7. The evolution of floral scent and olfactory preferences in pollinators: coevolution or pre-existing bias?

    PubMed

    Schiestl, Florian P; Dötterl, Stefan

    2012-07-01

    Coevolution is thought to be a major factor in shaping plant-pollinator interactions. Alternatively, plants may have evolved traits that fitted pre-existing preferences or morphologies in the pollinators. Here, we test these two scenarios in the plant family of Araceae and scarab beetles (Coleoptera, Scarabaeidae) as pollinators. We focused on floral volatile organic compounds (VOCs) and production/detection of VOCs by scarab beetles. We found phylogenetic structure in the production/detection of methoxylated aromatics in scarabs, but not plants. Within the plants, most of the compounds showed a well-supported pattern of correlated evolution with scarab-beetle pollination. In contrast, the scarabs showed no correlation between VOC production/detection and visitation to Araceae flowers, with the exception of the VOC skatole. Moreover, many VOCs were found in nonpollinating beetle groups (e.g., Melolonthinae) that are ancestors of pollinating scarabs. Importantly, none of the tested VOCs were found to have originated in pollinating taxa. Our analysis indicates a Jurassic origin of VOC production/detection in scarabs, but a Cretaceous/Paleocene origin of floral VOCs in plants. Therefore, we argue against coevolution, instead supporting the scenario of sequential evolution of floral VOCs in Araceae driven by pre-existing bias of pollinators. © 2012 The Author(s).

  8. Florally rich habitats reduce insect pollination and the reproductive success of isolated plants.

    PubMed

    Evans, Tracie M; Cavers, Stephen; Ennos, Richard; Vanbergen, Adam J; Heard, Matthew S

    2017-08-01

    Landscape heterogeneity in floral communities has the potential to modify pollinator behavior. Pollinator foraging varies with the diversity, abundance, and spatial configuration of floral resources. However, the implications of this variation for pollen transfer and ultimately the reproductive success of insect pollinated plants remains unclear, especially for species which are rare or isolated in the landscape. We used a landscape-scale experiment, coupled with microsatellite genotyping, to explore how the floral richness of habitats affected pollinator behavior and pollination effectiveness. Small arrays of the partially self-compatible plant Californian poppy ( Eschscholzia californica) were introduced across a landscape gradient to simulate rare, spatially isolated populations. The effects on pollinator activity, outcrossing, and plant reproduction were measured. In florally rich habitats, we found reduced pollen movement between plants, leading to fewer long-distance pollination events, lower plant outcrossing, and a higher incidence of pollen limitation. This pattern indicates a potential reduction in per capita pollinator visitation, as suggested by the lower activity densities and richness of pollinators observed within florally rich habitats. In addition, seed production reduced by a factor of 1.8 in plants within florally rich habitats and progeny germination reduced by a factor of 1.2. We show this to be a consequence of self-fertilization within the partially self-compatible plant, E. californica . These findings indicate that locally rare plants are at a competitive disadvantage within florally rich habitats because neighboring plant species disrupt conspecific mating by co-opting pollinators. Ultimately, this Allee effect may play an important role in determining the long-term persistence of rarer plants in the landscape, both in terms of seed production and viability. Community context therefore requires consideration when designing and

  9. A horizon scan of future threats and opportunities for pollinators and pollination.

    PubMed

    Brown, Mark J F; Dicks, Lynn V; Paxton, Robert J; Baldock, Katherine C R; Barron, Andrew B; Chauzat, Marie-Pierre; Freitas, Breno M; Goulson, Dave; Jepsen, Sarina; Kremen, Claire; Li, Jilian; Neumann, Peter; Pattemore, David E; Potts, Simon G; Schweiger, Oliver; Seymour, Colleen L; Stout, Jane C

    2016-01-01

    Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations.

  10. A horizon scan of future threats and opportunities for pollinators and pollination

    PubMed Central

    Dicks, Lynn V.; Paxton, Robert J.; Baldock, Katherine C.R.; Barron, Andrew B.; Chauzat, Marie-Pierre; Freitas, Breno M.; Goulson, Dave; Jepsen, Sarina; Kremen, Claire; Li, Jilian; Neumann, Peter; Pattemore, David E.; Potts, Simon G.; Schweiger, Oliver; Seymour, Colleen L.; Stout, Jane C.

    2016-01-01

    Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations. PMID:27602260

  11. Competition with wind-pollinated plant species alters floral traits of insect-pollinated plant species

    PubMed Central

    Flacher, Floriane; Raynaud, Xavier; Hansart, Amandine; Motard, Eric; Dajoz, Isabelle

    2015-01-01

    Plant traits related to attractiveness to pollinators (e.g. flowers and nectar) can be sensitive to abiotic or biotic conditions. Soil nutrient availability, as well as interactions among insect-pollinated plants species, can induce changes in flower and nectar production. However, further investigations are needed to determine the impact of interactions between insect-pollinated species and abiotically pollinated species on such floral traits, especially floral rewards. We carried out a pot experiment in which three insect-pollinated plant species were grown in binary mixtures with four wind-pollinated plant species, differing in their competitive ability. Along the flowering period, we measured floral traits of the insect-pollinated species involved in attractiveness to pollinators (i.e. floral display size, flower size, daily and total 1) flower production, 2) nectar volume, 3) amount of sucrose allocated to nectar). Final plant biomass was measured to quantify competitive interactions. For two out of three insect-pollinated species, we found that the presence of a wind-pollinated species can negatively impact floral traits involved in attractiveness to pollinators. This effect was stronger with wind-pollinated species that induced stronger competitive interactions. These results stress the importance of studying the whole plant community (and not just the insect-pollinated plant community) when working on plant-pollinator interactions. PMID:26335409

  12. Buzz in Paris: flower production and plant-pollinator interactions in plants from contrasted urban and rural origins.

    PubMed

    Desaegher, James; Nadot, Sophie; Dajoz, Isabelle; Colas, Bruno

    2017-12-01

    Urbanisation, associated with habitat fragmentation, affects pollinator communities and insect foraging behaviour. These biotic changes are likely to select for modified traits in insect-pollinated plants from urban populations compared to rural populations. To test this hypothesis, we conducted an experiment involving four plant species commonly found in both urban and rural landscapes of the Île-de-France region (France): Cymbalaria muralis, Geranium robertianum, Geum urbanum and Prunella vulgaris. The four species were grown in four urban and four rural experimental sites in 2015. For each species and each experimental site, plants were grown from seeds collected in five urban and five rural locations. During flowering, we observed flower production and insect-flower interactions during 14 weeks and tested for the effects of experimental site location and plant origin on flower production and on the number of floral visits. The study species had various flower morphology and hence were visited by different floral visitors. The effect of experimental sites and seed origin also varied among study species. We found that (1) insect visits on P. vulgaris were more frequent in rural than in urban sites; (2) for C. muralis, the slope relating the number of pollinator visits to the number of flowers per individual was steeper in urban versus rural sites, suggesting a greater benefit in allocating resources to flower production in urban conditions; (3) as a likely consequence, C. muralis tended to produce more flowers in plants from urban versus rural origin.

  13. Managing honey bees (Hymenoptera: Apidae) for greenhouse tomato pollination.

    PubMed

    Sabara, Holly A; Winston, Mark L

    2003-06-01

    Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.

  14. Using Publicly Available Data to Quantify Plant-Pollinator Interactions and Evaluate Conservation Seeding Mixes in the Northern Great Plains.

    PubMed

    Otto, C R V; O'Dell, S; Bryant, R B; Euliss, N H; Bush, R M; Smart, M D

    2017-06-01

    Concern over declining pollinators has led to multiple conservation initiatives for improving forage for bees in agroecosystems. Using data available through the Pollinator Library (npwrc.usgs.gov/pollinator/), we summarize plant-pollinator interaction data collected from 2012-2015 on lands managed by the U.S. Fish and Wildlife Service and private lands enrolled in U.S. Department of Agriculture conservation programs in eastern North Dakota (ND). Furthermore, we demonstrate how plant-pollinator interaction data from the Pollinator Library and seed cost information can be used to evaluate hypothetical seeding mixes for pollinator habitat enhancements. We summarize records of 314 wild bee and 849 honey bee (Apis mellifera L.) interactions detected on 63 different plant species. The wild bee observations consisted of 46 species, 15 genera, and 5 families. Over 54% of all wild bee observations were represented by three genera-Bombus, Lassioglossum, and Melissodes. The most commonly visited forbs by wild bees were Monarda fistulosa, Sonchus arvensis, and Zizia aurea. The most commonly visited forbs by A. mellifera were Cirsium arvense, Melilotus officinalis, and Medicago sativa. Among all interactions, 13% of A. mellifera and 77% of wild bee observations were made on plants native to ND. Our seed mix evaluation shows that mixes may often need to be tailored to meet the unique needs of wild bees and managed honey bees in agricultural landscapes. Our evaluation also demonstrates the importance of incorporating both biologic and economic information when attempting to design cost-effective seeding mixes for supporting pollinators in a critically important part of the United States. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  15. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    PubMed

    Papiorek, Sarah; Junker, Robert R; Lunau, Klaus

    2014-01-01

    Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of flower-visitors.

  16. Caladium bicolor (Araceae) and Cyclocephala celata (Coleoptera, Dynastinae): a well-established pollination system in the Northern Atlantic rainforest of Pernambuco, Brazil.

    PubMed

    Maia, A C D; Schlindwein, C

    2006-07-01

    Flowering, pollination ecology, and floral thermogenesis of Caladium bicolor were studied in the Atlantic Rainforest of Pernambuco, NE Brazil. Inflorescences of this species are adapted to the characteristic pollination syndrome performed by Cyclocephalini beetles. They bear nutritious rewards inside well-developed floral chambers and exhibit a thermogenic cycle which is synchronized to the activity period of visiting beetles. Heating intervals of the spadix were observed during consecutive evenings corresponding to the beginning of the female and male phases of anthesis. Highest temperatures were recorded during the longer-lasting female phase. An intense sweet odour was volatized on both evenings. Beetles of a single species, Cyclocephala celata, were attracted to odoriferous inflorescences of C. bicolor and are reported for the first time as Araceae visitors. All the inflorescences visited by C. celata developed into infructescences, whereas unvisited inflorescences showed no fruit development. Findings of previous studies in the Amazon basin of Surinam indicated that Cyclocephala rustica is a likely pollinator of C. bicolor. This leads to the assumption that locally abundant Cyclocephalini species are involved in the pollination of this species.

  17. Pollination and breeding system of the enigmatic South African parasitic plant Mystropetalon thomii (Mystropetalaceae): rodents welcome, but not needed.

    PubMed

    Hobbhahn, N; Steenhuisen, S-L; Olsen, T; Midgley, J J; Johnson, S D

    2017-09-01

    Unrelated plants adapted to particular pollinator types tend to exhibit convergent evolution in floral traits. However, inferences about likely pollinators from 'pollination syndromes' can be problematic due to trait overlap among some syndromes and unusual floral architecture in some lineages. An example is the rare South African parasitic plant Mystropetalon thomii (Mystropetalaceae), which has highly unusual brush-like inflorescences that exhibit features of both bird and rodent pollination syndromes. We used camera traps to record flower visitors, quantified floral spectral reflectance and nectar and scent production, experimentally determined self-compatibility and breeding system, and studied pollen dispersal using fluorescent dyes. The dark-red inflorescences are usually monoecious, with female flowers maturing before male flowers, but some inflorescences are purely female (gynoecious). Inflorescences were visited intensively by several rodent species that carried large pollen loads, while visits by birds were extremely rare. Rodents prefer male- over female-phase inflorescences, likely because of the male flowers' higher nectar and scent production. The floral scent contains several compounds known to attract rodents. Despite the obvious pollen transfer by rodents, we found that flowers on both monoecious and gynoecious inflorescences readily set seed in the absence of rodents and even when all flower visitors are excluded. Our findings suggest that seed production occurs at least partially through apomixis and that M. thomii is not ecologically dependent on its rodent pollinators. Our study adds another species and family to the growing list of rodent-pollinated plants, thus contributing to our understanding of the floral traits associated with pollination by non-flying mammals. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. The evolution of signal–reward correlations in bee- and hummingbird-pollinated species of Salvia

    PubMed Central

    Benitez-Vieyra, Santiago; Fornoni, Juan; Pérez-Alquicira, Jessica; Boege, Karina; Domínguez, César A.

    2014-01-01

    Within-individual variation in floral advertising and reward traits is a feature experienced by pollinators that visit different flowers of the same plant. Pollinators can use advertising traits to gather information about the quality and amount of rewards, leading to the evolution of signal–reward correlations. As long as plants differ in the reliability of their signals and pollinators base their foraging decisions on this information, natural selection should act on within-individual correlations between signals and rewards. Because birds and bees differ in their cognitive capabilities, and use different floral traits as signals, we tested the occurrence of adaptive divergence of the within-individual signal–reward correlations among Salvia species that are pollinated either by bees or by hummingbirds. They are expected to use different floral advertising traits: frontal traits in the case of bees and side traits in the case of hummingbirds. We confirmed this expectation as bee- and hummingbird-pollinated species differed in which specific traits are predominantly associated with nectar reward at the within-individual level. Our findings highlight the adaptive value of within-individual variation and covariation patterns, commonly disregarded as ‘environmental noise’, and are consistent with the hypothesis that pollinator-mediated selection affects the correlation pattern among floral traits. PMID:24648219

  19. The evolution of signal-reward correlations in bee- and hummingbird-pollinated species of Salvia.

    PubMed

    Benitez-Vieyra, Santiago; Fornoni, Juan; Pérez-Alquicira, Jessica; Boege, Karina; Domínguez, César A

    2014-05-07

    Within-individual variation in floral advertising and reward traits is a feature experienced by pollinators that visit different flowers of the same plant. Pollinators can use advertising traits to gather information about the quality and amount of rewards, leading to the evolution of signal-reward correlations. As long as plants differ in the reliability of their signals and pollinators base their foraging decisions on this information, natural selection should act on within-individual correlations between signals and rewards. Because birds and bees differ in their cognitive capabilities, and use different floral traits as signals, we tested the occurrence of adaptive divergence of the within-individual signal-reward correlations among Salvia species that are pollinated either by bees or by hummingbirds. They are expected to use different floral advertising traits: frontal traits in the case of bees and side traits in the case of hummingbirds. We confirmed this expectation as bee- and hummingbird-pollinated species differed in which specific traits are predominantly associated with nectar reward at the within-individual level. Our findings highlight the adaptive value of within-individual variation and covariation patterns, commonly disregarded as 'environmental noise', and are consistent with the hypothesis that pollinator-mediated selection affects the correlation pattern among floral traits.

  20. Habitat fragmentation leads to reduced pollinator visitation, fruit production and recruitment in urban mangrove forests.

    PubMed

    Hermansen, Tyge D; Minchinton, Todd E; Ayre, David J

    2017-10-01

    Mangrove forests worldwide undergo anthropogenic fragmentation that may threaten their existence, and yet there have been few tests of the effects of fragmentation on demographic processes critical for mangrove regeneration. Predicting the effects of habitat fragmentation on mangroves is problematic as pollinators may move more freely across water than terrestrial habitat, and propagules can be widely dispersed by water. Here, within each of two estuaries, we compared pollinator diversity and activity, reproductive effort and output, and rates of recruitment for sets of three large (>1500 trees), medium (300-500) and small (<50) stands. As predicted, most measures of reproductive activity and success were inversely related to stand size with large stands typically producing significantly more and larger fruit, and significantly more seedlings. Most strikingly, we found the effect of fragmentation on the abundance of pollinators (honeybees), the production and quality of fruit and the survival rate of seedlings to be similar, showing significant reduction of recruitment in small stands. This study provides the first rigorous evidence that recruitment of mangroves, like for many terrestrial plants, is negatively impacted by habitat fragmentation. From a management perspective, we argue that in the short term our data imply the importance of conserving the largest possible stands. However, additional work is needed to determine (1) the proportion of recruits within small stands that originate within large stands, (2) how seedling performance varies with fruit size and genotype, and (3) how seedling size and performance vary with the abundance and diversity of pollen.

  1. Is there a missing link? Effects of root herbivory on plant-pollinator interactions and reproductive output in a monocarpic species.

    PubMed

    Ghyselen, C; Bonte, D; Brys, R

    2016-01-01

    Herbivores can have a major influence on plant fitness. The direct impact of herbivory on plant reproductive output has long been studied, and recently also indirect effects of herbivory on plant traits and pollinator attraction have received increasing attention. However, the link between these direct and indirect effects has seldom been studied. In this study, we investigated effects of root herbivory on plant and floral traits, pollination success and reproductive outcome in the monocarpic perennial Cynoglossum officinale. We exposed 119 C. officinale plants to a range of root herbivore damage by its specialist herbivore Mogulones cruciger. We assessed the effect of herbivory on several plant traits, pollinator foraging behaviour and reproductive output, and to elucidate the link between these last two we also quantified pollen deposition and pollen tube growth and applied a pollination experiment to test whether seed set was pollen-limited. Larval root herbivory induced significant changes in plant traits and had a negative impact on pollinator visitation. Infested plants were reduced in size, had fewer flowers and received fewer pollinator visits at plant and flower level than non-infested plants. Also, seed set was negatively affected by root herbivory, but this could not be attributed to pollen limitation since neither stigmatic pollen loads and pollen tube growth nor the results of the hand-pollination experiment differed between infested and non-infested plants. Our observations demonstrate that although herbivory may induce significant changes in flowering behaviour and resulting plant-pollinator interactions, it does not necessarily translate into higher rates of pollen limitation. The observed reductions in reproductive output following infection can mainly be attributed to higher resource limitation compared to non-infested plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Evolutionary relationships among pollinators and repeated pollinator sharing in sexually deceptive orchids.

    PubMed

    Phillips, R D; Brown, G R; Dixon, K W; Hayes, C; Linde, C C; Peakall, R

    2017-09-01

    The mechanism of pollinator attraction is predicted to strongly influence both plant diversification and the extent of pollinator sharing between species. Sexually deceptive orchids rely on mimicry of species-specific sex pheromones to attract their insect pollinators. Given that sex pheromones tend to be conserved among related species, we predicted that in sexually deceptive orchids, (i) pollinator sharing is rare, (ii) closely related orchids use closely related pollinators and (iii) there is strong bias in the wasp lineages exploited by orchids. We focused on species that are pollinated by sexual deception of thynnine wasps in the distantly related genera Caladenia and Drakaea, including new field observations for 45 species of Caladenia. Specialization was extreme with most orchids using a single pollinator species. Unexpectedly, seven cases of pollinator sharing were found, including two between Caladenia and Drakaea, which exhibit strikingly different floral morphology. Phylogenetic analysis of pollinators using four nuclear sequence loci demonstrated that although orchids within major clades primarily use closely related pollinator species, up to 17% of orchids within these clades are pollinated by a member of a phylogenetically distant wasp genus. Further, compared to the total diversity of thynnine wasps within the study region, orchids show a strong bias towards exploiting certain genera. Although these patterns may arise through conservatism in the chemical classes used in sex pheromones, apparent switches between wasp clades suggest unexpected flexibility in floral semiochemical production. Alternatively, wasp sex pheromones within lineages may exhibit greater chemical diversity than currently appreciated. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  3. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators

    PubMed Central

    Reverté, Sara; Retana, Javier; Gómez, José M.; Bosch, Jordi

    2016-01-01

    Background and aims Colour is one of the main floral traits used by pollinators to locate flowers. Although pollinators show innate colour preferences, the view that the colour of a flower may be considered an important predictor of its main pollinators is highly controversial because flower choice is highly context-dependent, and initial innate preferences may be overridden by subsequent associative learning. Our objective is to establish whether there is a relationship between flower colour and pollinator composition in natural communities. Methods We measured the flower reflectance spectrum and pollinator composition in four plant communities (85 plant species represented by 109 populations, and 32 305 plant–pollinator interactions in total). Pollinators were divided into six taxonomic groups: bees, ants, wasps, coleopterans, dipterans and lepidopterans. Key Results We found consistent associations between pollinator groups and certain colours. These associations matched innate preferences experimentally established for several pollinators and predictions of the pollination syndrome theory. However, flowers with similar colours did not attract similar pollinator assemblages. Conclusions The explanation for this paradoxical result is that most flower species are pollination generalists. We conclude that although pollinator colour preferences seem to condition plant–pollinator interactions, the selective force behind these preferences has not been strong enough to mediate the appearance and maintenance of tight colour-based plant–pollinator associations. PMID:27325897

  4. Large pollen loads of a South African asclepiad do not interfere with the foraging behaviour or efficiency of pollinating honey bees

    NASA Astrophysics Data System (ADS)

    Coombs, G.; Dold, A. P.; Brassine, E. I.; Peter, C. I.

    2012-07-01

    The pollen of asclepiads (Asclepiadoideae, Apocynaceae) and most orchids (Orchidaceae) are packaged as large aggregations known as pollinaria that are removed as entire units by pollinators. In some instances, individual pollinators may accumulate large loads of these pollinaria. We found that the primary pollinator of Cynanchum ellipticum (Apocynaceae—Asclepiadoideae), the honey bee Apis mellifera, accumulate very large agglomerations of pollinaria on their mouthparts when foraging on this species. We tested whether large pollinarium loads negatively affected the foraging behaviour and foraging efficiency of honey bees by slowing foraging speeds or causing honey bees to visit fewer flowers, and found no evidence to suggest that large pollinarium loads altered foraging behaviour. C. ellipticum displayed consistently high levels of pollination success and pollen transfer efficiency (PTE). This may be a consequence of efficiently loading large numbers of pollinaria onto pollinators even when primary points of attachment on pollinators are already occupied and doing so in a manner that does not impact the foraging behaviour of pollinating insects.

  5. Telipogon peruvianus (Orchidaceae) Flowers Elicit Pre-Mating Behaviour in Eudejeania (Tachinidae) Males for Pollination.

    PubMed

    Martel, Carlos; Cairampoma, Lianka; Stauffer, Fred W; Ayasse, Manfred

    2016-01-01

    Several neotropical orchid genera have been proposed as being sexually deceptive; however, this has been carefully tested in only a few cases. The genus Telipogon has long been assumed to be pollinated by male tachinid flies during pseudocopulatory events but no detailed confirmatory reports are available. Here, we have used an array of methods to elucidate the pollination mechanism in Telipogon peruvianus. The species presents flowers that have a mean floral longevity of 33 days and that are self-compatible, although spontaneous self-pollination does not occur. The flowers attract males of four tachinid species but only the males of an undescribed Eudejeania (Eudejeania aff. browni; Tachinidae) species are specific pollinators. Males visit the flowers during the first few hours of the day and the pollination success is very high (42% in one patch) compared with other sexually deceptive species. Female-seeking males are attracted to the flowers but do not attempt copulation with the flowers, as is usually described in sexually deceptive species. Nevertheless, morphological analysis and behavioural tests have shown an imperfect mimicry between flowers and females suggesting that the attractant stimulus is not based only on visual cues, as long thought. Challenging previous conclusions, our chemical analysis has confirmed that flowers of Telipogon release volatile compounds; however, the role of these volatiles in pollinator behaviour remains to be established. Pollinator behaviour and histological analyses indicate that Telipogon flowers possess scent-producing structures throughout the corolla. Our study provides the first confirmed case of (i) a sexually deceptive species in the Onciidinae, (ii) pollination by pre-copulatory behaviour and (iii) pollination by sexual deception involving tachinid flies.

  6. Telipogon peruvianus (Orchidaceae) Flowers Elicit Pre-Mating Behaviour in Eudejeania (Tachinidae) Males for Pollination

    PubMed Central

    Cairampoma, Lianka; Stauffer, Fred W.; Ayasse, Manfred

    2016-01-01

    Several neotropical orchid genera have been proposed as being sexually deceptive; however, this has been carefully tested in only a few cases. The genus Telipogon has long been assumed to be pollinated by male tachinid flies during pseudocopulatory events but no detailed confirmatory reports are available. Here, we have used an array of methods to elucidate the pollination mechanism in Telipogon peruvianus. The species presents flowers that have a mean floral longevity of 33 days and that are self-compatible, although spontaneous self-pollination does not occur. The flowers attract males of four tachinid species but only the males of an undescribed Eudejeania (Eudejeania aff. browni; Tachinidae) species are specific pollinators. Males visit the flowers during the first few hours of the day and the pollination success is very high (42% in one patch) compared with other sexually deceptive species. Female-seeking males are attracted to the flowers but do not attempt copulation with the flowers, as is usually described in sexually deceptive species. Nevertheless, morphological analysis and behavioural tests have shown an imperfect mimicry between flowers and females suggesting that the attractant stimulus is not based only on visual cues, as long thought. Challenging previous conclusions, our chemical analysis has confirmed that flowers of Telipogon release volatile compounds; however, the role of these volatiles in pollinator behaviour remains to be established. Pollinator behaviour and histological analyses indicate that Telipogon flowers possess scent-producing structures throughout the corolla. Our study provides the first confirmed case of (i) a sexually deceptive species in the Onciidinae, (ii) pollination by pre-copulatory behaviour and (iii) pollination by sexual deception involving tachinid flies. PMID:27812201

  7. Effects of non-native Melilotus albus on pollination and reproduction in two boreal shrubs.

    PubMed

    Spellman, Katie V; Schneller, Laura C; Mulder, Christa P H; Carlson, Matthew L

    2015-10-01

    The establishment of abundantly flowered, highly rewarding non-native plant species is expected to have strong consequences for native plants through altered pollination services, particularly in boreal forest where the flowering season is short and the pollinator pool is small. In 18 boreal forest sites, we added flowering Melilotus albus to some sites and left some sites as controls in 2 different years to test if the invasive plant influences the pollination and reproductive success of two co-flowering ericaceous species: Vaccinium vitis-idaea and Rhododendron groenlandicum. We found that M. albus increased the pollinator diversity and tended to increase visitation rates to the focal native plant species compared to control sites. Melilotus albus facilitated greater seed production per berry in V. vitis-idaea when we added 120 plants compared to when we added 40 plants or in control sites. In R. groenlandicum, increasing numbers of M. albus inflorescences lowered conspecific pollen loads and percentage of flowers pollinated; however, no differences in fruit set were detected. The number of M. albus inflorescences had greater importance in explaining R. groenlandicum pollination compared to other environmental variables such as weather and number of native flowers, and had greater importance in lower quality black spruce sites than in mixed deciduous and white spruce sites for explaining the percentage of V. vitis-idaea flowers pollinated. Our data suggest that the identity of new pollinators attracted to the invaded sites, degree of shared pollinators between invasive and native species, and variation in resource limitation among sites are likely determining factors in the reproductive responses of boreal native plants in the presence of an invasive.

  8. Plant-pollinator interactions and floral convergence in two species of Heliconia from the Caribbean Islands.

    PubMed

    Martén-Rodríguez, Silvana; Kress, W John; Temeles, Ethan J; Meléndez-Ackerman, Elvia

    2011-12-01

    Variation in interspecific interactions across geographic space is a potential driver of diversification and local adaptation. This study quantitatively examined variation in floral phenotypes and pollinator service of Heliconia bihai and H. caribaea across three Antillean islands. The prediction was that floral characters would correspond to the major pollinators of these species on each island. Analysis of floral phenotypes revealed convergence among species and populations of Heliconia from the Greater Antilles. All populations of H. caribaea were similar, characterized by long nectar chambers and short corolla tubes. In contrast, H. bihai populations were strongly divergent: on Dominica, H. bihai had flowers with short nectar chambers and long corollas, whereas on Hispaniola, H. bihai flowers resembled those of H. caribaea with longer nectar chambers and shorter corolla tubes. Morphological variation in floral traits corresponded with geographic differences or similarities in the major pollinators on each island. The Hispaniolan mango, Anthracothorax dominicus, is the principal pollinator of both H. bihai and H. caribaea on Hispaniola; thus, the similarity of floral phenotypes between Heliconia species suggests parallel selective regimes imposed by the principal pollinator. Likewise, divergence between H. bihai populations from Dominica and Hispaniola corresponded with differences in the pollinators visiting this species on the two islands. The study highlights the putative importance of pollinator-mediated selection as driving floral convergence and the evolution of locally-adapted plant variants across a geographic mosaic of pollinator species.

  9. Neither protogynous nor obligatory out-crossed: pollination biology and breeding system of the European Red List Fritillaria meleagris L. (Liliaceae).

    PubMed

    Zych, M; Stpiczyńska, M

    2012-03-01

    For 4 years we studied pollination biology and breeding system of the critically endangered, Red List plant Fritillaria meleagris L. (Liliaceae), in the larger of the two remaining populations of the plant in SE Poland. Our observations indicated that, contrary to literature data, the species is not dichogamous nor is it obligatorily out-crossing. Selfing, although rare in natural populations, results in fully developed seeds. Flowers are visited by several insect species, mostly social and solitary bees. In spite of extremely low visitation rates to this early spring-flowering plant, the species is not pollen limited. Although the largest pollen loads are transferred by solitary bees, the key pollinators are bumblebees (mostly the most common species, Bombus terrestris and B. lapidarius) due to their seasonal and floral constancy, and tolerance of bad weather conditions. The current decline of the studied population seems not to be related to the species' pollination or breeding systems but to plant habitat loss. It is suggested, however, that in smaller populations, the species' dependence on generally rare pollinators and largely out-crossed breeding system may accelerate local extinction. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators.

    PubMed

    Reverté, Sara; Retana, Javier; Gómez, José M; Bosch, Jordi

    2016-08-01

    Colour is one of the main floral traits used by pollinators to locate flowers. Although pollinators show innate colour preferences, the view that the colour of a flower may be considered an important predictor of its main pollinators is highly controversial because flower choice is highly context-dependent, and initial innate preferences may be overridden by subsequent associative learning. Our objective is to establish whether there is a relationship between flower colour and pollinator composition in natural communities. We measured the flower reflectance spectrum and pollinator composition in four plant communities (85 plant species represented by 109 populations, and 32 305 plant-pollinator interactions in total). Pollinators were divided into six taxonomic groups: bees, ants, wasps, coleopterans, dipterans and lepidopterans. We found consistent associations between pollinator groups and certain colours. These associations matched innate preferences experimentally established for several pollinators and predictions of the pollination syndrome theory. However, flowers with similar colours did not attract similar pollinator assemblages. The explanation for this paradoxical result is that most flower species are pollination generalists. We conclude that although pollinator colour preferences seem to condition plant-pollinator interactions, the selective force behind these preferences has not been strong enough to mediate the appearance and maintenance of tight colour-based plant-pollinator associations. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. The Robustness of Plant-Pollinator Assemblages: Linking Plant Interaction Patterns and Sensitivity to Pollinator Loss

    PubMed Central

    Astegiano, Julia; Massol, François; Vidal, Mariana Morais; Cheptou, Pierre-Olivier; Guimarães, Paulo R.

    2015-01-01

    Most flowering plants depend on pollinators to reproduce. Thus, evaluating the robustness of plant-pollinator assemblages to species loss is a major concern. How species interaction patterns are related to species sensitivity to partner loss may influence the robustness of plant-pollinator assemblages. In plants, both reproductive dependence on pollinators (breeding system) and dispersal ability may modulate plant sensitivity to pollinator loss. For instance, species with strong dependence (e.g. dioecious species) and low dispersal (e.g. seeds dispersed by gravity) may be the most sensitive to pollinator loss. We compared the interaction patterns of plants differing in dependence on pollinators and dispersal ability in a meta-dataset comprising 192 plant species from 13 plant-pollinator networks. In addition, network robustness was compared under different scenarios representing sequences of plant extinctions associated with plant sensitivity to pollinator loss. Species with different dependence on pollinators and dispersal ability showed similar levels of generalization. Although plants with low dispersal ability interacted with more generalized pollinators, low-dispersal plants with strong dependence on pollinators (i.e. the most sensitive to pollinator loss) interacted with more particular sets of pollinators (i.e. shared a low proportion of pollinators with other plants). Only two assemblages showed lower robustness under the scenario considering plant generalization, dependence on pollinators and dispersal ability than under the scenario where extinction sequences only depended on plant generalization (i.e. where higher generalization level was associated with lower probability of extinction). Overall, our results support the idea that species generalization and network topology may be good predictors of assemblage robustness to species loss, independently of plant dispersal ability and breeding system. In contrast, since ecological specialization among

  12. Pollinator-mediated competition between two congeners, Limnanthes douglasii subsp. rosea and L. alba (Limnanthaceae).

    PubMed

    Briscoe Runquist, Ryan D

    2012-07-01

    Pollinator visits are essential for reproduction in many plants, yet interspecific movements of pollinators can also lead to competitive interactions between coflowering species. Pollination-mediated reductions in fertility could potentially lead to exclusion of competing plant species, and may generate spatial variation in the associations among coflowering species across a landscape. I documented the potential for heterospecific pollen transfer to cause competitive interactions between two annual grassland species native to California, Limnanthes douglasii subsp. rosea and L. alba, two reproductively incompatible species that have broadly overlapping geographic ranges in the foothills of the Sierra Nevada. I observed pollinator movement in constructed arrays and controlled crosses in the greenhouse and field to investigate the consequences of heterospecific pollen transfer. Pollinators move readily between species when they are presented together in experimental arrays. In the greenhouse, deposition of heterospecific pollen decreased fertility in both species. The decrease in seeds produced per flower was much more pronounced in L. d. rosea (90.6% reduction) than in L. alba (40.8% reduction). In field experiments, L. d. rosea plants that received pollen from heterospecific neighbors first showed >50% reduction in per-flower fertility. Under natural pollination conditions, heterospecific pollen transfer has the ability to decrease the fertility of L. d. rosea when it occurs at low frequency in mixed stands. Accordingly, pollinator-mediated competition may contribute to the locally disjunct distributions of these two species. It may also influence important restoration decisions in vernal pool habitats.

  13. The role of pollinators in the evolution of corolla shape variation, disparity and integration in a highly diversified plant family with a conserved floral bauplan

    PubMed Central

    Gómez, José M.; Torices, Ruben; Lorite, Juan; Klingenberg, Christian Peter; Perfectti, Francisco

    2016-01-01

    Background and Aims Brassicaceae is one of the most diversified families in the angiosperms. However, most species from this family exhibit a very similar floral bauplan. In this study, we explore the Brassicaceae floral morphospace, examining how corolla shape variation (an estimation of developmental robustness), integration and disparity vary among phylogenetically related species. Our aim is to check whether these floral attributes have evolved in this family despite its apparent morphological conservation, and to test the role of pollinators in driving this evolution. Methods Using geometric morphometric tools, we calculated the phenotypic variation, disparity and integration of the corolla shape of 111 Brassicaceae taxa. We subsequently inferred the phylogenetic relationships of these taxa and explored the evolutionary lability of corolla shape. Finally, we sampled the pollinator assemblages of every taxon included in this study, and determined their pollination niches using a modularity algorithm. We explore the relationship between pollination niche and the attributes of corolla shape. Key Results Phylogenetic signal was weak for all corolla shape attributes. All taxa had generalized pollination systems. Nevertheless, they belong to different pollination niches. There were significant differences in corolla shape among pollination niches even after controlling for the phylogenetic relationship of the plant taxa. Corolla shape variation and disparity was significantly higher in those taxa visited mostly by nocturnal moths, indicating that this pollination niche is associated with a lack of developmental robustness. Corolla integration was higher in those taxa visited mostly by hovering long-tongued flies and long-tongued large bees. Conclusions Corolla variation, integration and disparity were evolutionarily labile and evolved very recently in the evolutionary history of the Brassicaceae. These floral attributes were strongly related to the pollination niche

  14. Diversity of pollination ecology in the Schismatoglottis Calyptrata Complex Clade (Araceae).

    PubMed

    Hoe, Y C; Gibernau, M; Wong, S Y

    2018-05-01

    Field studies integrating pollination investigations with an assessment of floral scent composition and thermogenesis in tropical aroids are rather few. Thus, this study aimed to investigate the pollination biology of nine species belonging to Schismatoglottis Calyptrata Complex Clade. The flowering mechanism, visiting insect activities, reproductive system, thermogenesis and floral scent composition were examined. Anthesis for all species started at dawn and lasted 25-29 h. Colocasiomyia (Diptera, Drosophilidae) are considered the main pollinators for all the investigated species. Cycreon (Coleoptera, Hydrophilidae) are considered secondary pollinators as they are only present in seven of the nine host plants, despite the fact that they are the most effective pollen carrier, carrying up to 15 times more pollen grains than Colocasiomyia flies. However, the number of Colocasiomyia individuals was six times higher than Cycreon beetles. Chaloenus (Chrysomelidae, Galeuricinae) appeared to be an inadvertent pollinator. Atheta (Coleoptera, Staphylinidae) is considered a floral visitor in most investigated species of the Calyptrata Complex Clade in Sarawak, but a possible pollinator in S. muluensis. Chironomidae midges and pteromalid wasps are considered visitors in S. calyptrata. Thermogenesis in a biphasic pattern was observed in inflorescences of S. adducta, S. calyptrata, S. giamensis, S. pseudoniahensis and S. roh. The first peak occurred during pistillate anthesis; the second peak during staminate anthesis. Inflorescences of all investigated species of Calyptrata Complex Clade emitted four types of ester compound, with methyl ester-3-methyl-3-butenoic acid as a single major VOC (volatile organic compound). The appendix, pistillate zone, staminate zone and spathe emitted all these compounds. A mixed fly-beetle pollination system is considered an ancestral trait in the Calyptrata Complex Clade, persisting in Sarawak taxa, whereas the marked reduction of

  15. Floral polymorphism and the fitness implications of attracting pollinating and florivorous insects.

    PubMed

    de Jager, Marinus L; Ellis, Allan G

    2014-01-01

    Floral polymorphism is frequently attributed to pollinator-mediated selection. Multiple studies, however, have revealed the importance of non-pollinating visitors in floral evolution. Using the polymorphic annual daisy Ursinia calenduliflora, this study investigated the importance of different insect visitors, and their effects on fitness, in the maintenance of floral polymorphism. The spatial structure of a discrete floral polymorphism was characterized based on the presence/absence of anthocyanin floret spots in U. calenduliflora. A 3-year observational study was then conducted in polymorphic populations to investigate differences in visitation rates of dominant visitors to floral morphs. Experiments were performed to explore the floral preference of male and female Megapalpus capensis (the dominant insect visitor) and their effectiveness as pollinators. Next, floral damage by antagonistic florivores and the reproductive success of the two floral morphs were surveyed in multiple populations and years. Floral polymorphism in U. calenduliflora was structured spatially, as were insect visitation patterns. Megapalpus capensis males were the dominant visitors and exhibited strong preference for the spotted morph in natural and experimental observations. While this may indicate potential fitness benefits for the spotted morph, female fitness did not differ between floral morphs. However, as M. capensis males are very efficient at exporting U. calenduliflora pollen, their preference may likely increase the reproductive fitness of the spotted morph through male fitness components. The spotted morph, however, also suffered significantly greater costs due to ovule predation by florivores than the spotless morph. The results suggest that pollinators and florivores may potentially exert antagonistic selection that could contribute to the maintenance of floral polymorphism across the range of U. calenduliflora. The relative strength of selection imposed by each agent is

  16. Poor correlation between the removal or deposition of pollen grains and frequency of pollinator contact with sex organs

    NASA Astrophysics Data System (ADS)

    Sakamoto, Ryota L.; Morinaga, Shin-Ichi

    2013-09-01

    Pollinators deposit pollen grains on stigmas and remove pollen grains from anthers. The mechanics of these transfers can now be quantified with the use of high-speed video. We videoed hawkmoths, carpenter bees, and swallowtail butterflies pollinating Clerodendrum trichotomum. The number of grains deposited on stigmas did not vary significantly with the number of times pollinators contacted stigmas. In contrast, pollen removal from the anthers increased significantly with the number of contacts to anthers. Pollen removal varied among the three types of pollinators. Also, the three types carried pollen on different parts of their bodies. In hawkmoths and carpenter bees, a large number of contacted body part with anthers differed significantly from the body part that attached a large number of pollen grains. Our results indicate that a large number of contacts by pollinators does not increase either the male or female reproductive success of plants compared to a small number of contacts during a visit.

  17. Direct and Indirect Influence of Non-Native Neighbours on Pollination and Fruit Production of a Native Plant.

    PubMed

    Montero-Castaño, Ana; Vilà, Montserrat

    2015-01-01

    Entomophilous non-native plants can directly affect the pollination and reproductive success of native plant species and also indirectly, by altering the composition and abundance of floral resources in the invaded community. Separating direct from indirect effects is critical for understanding the mechanisms underlying the impacts of non-native species on recipient communities. Our aims are: (a) to explore both the direct effect of the non-native Hedysarum coronarium and its indirect effect, mediated by the alteration of floral diversity, on the pollinator visitation rate and fructification of the native Leopoldia comosa and (b) to distinguish whether the effects of the non-native species were due to its floral display or to its vegetative interactions. We conducted field observations within a flower removal experimental setup (i.e. non-native species present, absent and with its inflorescences removed) at the neighbourhood scale. Our study illustrates the complexity of mechanisms involved in the impacts of non-native species on native species. Overall, Hedysarum increased pollinator visitation rates to Leopoldia target plants as a result of direct and indirect effects acting in the same direction. Due to its floral display, Hedysarum exerted a direct magnet effect attracting visits to native target plants, especially those made by the honeybee. Indirectly, Hedysarum also increased the visitation rate of native target plants. Due to the competition for resources mediated by its vegetative parts, it decreased floral diversity in the neighbourhoods, which was negatively related to the visitation rate to native target plants. Hedysarum overall also increased the fructification of Leopoldia target plants, even though such an increase was the result of other indirect effects compensating for the observed negative indirect effect mediated by the decrease of floral diversity.

  18. Direct and Indirect Influence of Non-Native Neighbours on Pollination and Fruit Production of a Native Plant

    PubMed Central

    Montero-Castaño, Ana; Vilà, Montserrat

    2015-01-01

    Background Entomophilous non-native plants can directly affect the pollination and reproductive success of native plant species and also indirectly, by altering the composition and abundance of floral resources in the invaded community. Separating direct from indirect effects is critical for understanding the mechanisms underlying the impacts of non-native species on recipient communities. Objectives Our aims are: (a) to explore both the direct effect of the non-native Hedysarum coronarium and its indirect effect, mediated by the alteration of floral diversity, on the pollinator visitation rate and fructification of the native Leopoldia comosa and (b) to distinguish whether the effects of the non-native species were due to its floral display or to its vegetative interactions. Methods We conducted field observations within a flower removal experimental setup (i.e. non-native species present, absent and with its inflorescences removed) at the neighbourhood scale. Results Our study illustrates the complexity of mechanisms involved in the impacts of non-native species on native species. Overall, Hedysarum increased pollinator visitation rates to Leopoldia target plants as a result of direct and indirect effects acting in the same direction. Due to its floral display, Hedysarum exerted a direct magnet effect attracting visits to native target plants, especially those made by the honeybee. Indirectly, Hedysarum also increased the visitation rate of native target plants. Due to the competition for resources mediated by its vegetative parts, it decreased floral diversity in the neighbourhoods, which was negatively related to the visitation rate to native target plants. Hedysarum overall also increased the fructification of Leopoldia target plants, even though such an increase was the result of other indirect effects compensating for the observed negative indirect effect mediated by the decrease of floral diversity. PMID:26110630

  19. Do pollinator distributions underlie the evolution of pollination ecotypes in the Cape shrub Erica plukenetii?

    PubMed Central

    Van der Niet, Timotheüs; Pirie, Michael D.; Shuttleworth, Adam; Johnson, Steven D.; Midgley, Jeremy J.

    2014-01-01

    Background and Aims According to the Grant–Stebbins model of pollinator-driven divergence, plants that disperse beyond the range of their specialized pollinator may adapt to a new pollination system. Although this model provides a compelling explanation for pollination ecotype formation, few studies have directly tested its validity in nature. Here we investigate the distribution and pollination biology of several subspecies of the shrub Erica plukenetii from the Cape Floristic Region in South Africa. We analyse these data in a phylogenetic context and combine these results with information on pollinator ranges to test whether the evolution of pollination ecotypes is consistent with the Grant–Stebbins model. Methods and Key Results Pollinator observations showed that the most common form of E. plukenetii with intermediate corolla length is pollinated by short-billed Orange-breasted sunbirds. Populations at the northern fringe of the distribution are characterized by long corollas, and are mainly pollinated by long-billed Malachite sunbirds. A population with short corollas in the centre of the range was mainly pollinated by insects, particularly short-tongued noctuid moths. Bird exclusion in this population did not have an effect on fruit set, while insect exclusion reduced fruit set. An analysis of floral scent across the range, using coupled gas chromatography–mass spectrometry, showed that the scent bouquets of flowers from moth-pollinated populations are characterized by a larger number of scent compounds and higher emission rates than those in bird-pollinated populations. This was also reflected in clear separation of moth- and bird-pollinated populations in a two-dimensional phenotype space based on non-metric multidimensional scaling analysis of scent data. Phylogenetic analyses of chloroplast and nuclear DNA sequences strongly supported monophyly of E. plukenetii, but not of all the subspecies. Reconstruction of ancestral character states suggests two

  20. Annual Variation in Flowering Phenology, Pollination, Mating System, and Pollen Yield in Two Natural Populations of Schima wallichii (DC.) Korth

    PubMed Central

    Khanduri, Vinod Prasad; Sharma, C. M.; Kumar, K. S.; Ghildiyal, S. K.

    2013-01-01

    Background. Schima wallichii is a highly valuable tree of tropical forest in north-east Himalaya region that grows naturally in a wide range of altitudes between 750 and 2400 m asl with varying environments. Flowering phenology of tropical tree species at population level is generally ignored and therefore a detailed knowledge of flowering and fruiting patterns of important multipurpose tree species is critical to the successful management of forest genetic resources. Materials and Methods. The study was conducted at two different altitudes (i.e., 750 m and 900 m asl) in the tropical semideciduous forest of north-east Himalaya. The floral phenology including flowering synchrony in the populations, anthesis, anther dehiscence, stigma receptivity, pollinators visitation frequency, and mating system including index of self-incompatibility were worked out in Schima wallichii according to the ear-marked standard methods given by various scientists for each parameter. Results. The flowering period in Schima wallichii varied from 33 to 42 days with mean synchrony of 0.54 to 0.68 between the populations. The stigma was receptive up to 2.5 days only and showed slightly protandrous type of dichogamy. Average pollen production ranged between 6.90 × 107 pollen per tree in 2007 and 15.49 × 108 pollen per tree in 2011. A three-year masting cycle was noticed in this species. The frequency of visitation of honey bees was fairly high (5.2 ± 1.12 visits/flower/hour) as compared to other pollinators. The hand pollination revealed maximum fruit (74.2 ± 5.72%) and seed (70.8 ± 7.46%) settings. Conclusions. The variation in flowering phenology and pollen yield individually and annually along with temporal separation in anther dehiscence and pollinator's visitation cause pollen limited reproduction, which ultimately influences the reproductive success in Schima wallichii. PMID:24501577

  1. Pollination and seed dispersal of Melocactus ernestii Vaupel subsp. ernestii (Cactaceae) by lizards: an example of double mutualism.

    PubMed

    Gomes, V G N; Quirino, Z G M; Machado, I C

    2014-03-01

    Recent studies show that the mutualistic role of lizards as pollinators and seed dispersers has been underestimated, with several ecological factors promoting such plant-animal interactions, especially on oceanic islands. Our aim is to provide a quantitative assessment of pollination and seed dispersal mutualisms with lizards in continental xeric habitats. We carried out focal observations of natural populations of Melocactus ernestii (Cactaceae) in the Caatinga, a Brazilian semiarid ecosystem, in order to record the frequency of visits, kind of resource searched and behaviour of visiting animals towards flowers and/or fruits. We made a new record of the lizard Tropidurus semitaeniatus foraging on flowers and fruits of M. ernestii. During the search for nectar, T. semitaeniatus contacted the reproductive structures of the flowers and transported pollen attached to its snout. Nectar production started at 14:00 h, with an average volume of 24.4 μl and an average concentration of solutes of 33%. Approximately 80% of the seeds of M. ernestii found in the faeces of T. semitaeniatus germinated under natural conditions. The roles of T. semitaeniatus as pollinator and seed disperser for M. ernestii show a clear relationship of double mutualism between two endemic species, which may result from the environmental conditions to which both species are subject. Seasonality, low water availability and arthropod supply in the environment, high local lizard densities, continuous nectar production by the flower and fruits with juicy pulp may be influencing the visits and, consequently, pollination and seed dispersal by lizards in this cactus. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model

    PubMed Central

    Settele, Josef; Dormann, Carsten F.

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio

  3. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model.

    PubMed

    Everaars, Jeroen; Settele, Josef; Dormann, Carsten F

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio

  4. The potential indirect effects among plants via shared hummingbird pollinators are structured by phenotypic similarity.

    PubMed

    Bergamo, Pedro Joaquim; Wolowski, Marina; Maruyama, Pietro Kiyoshi; Vizentin-Bugoni, Jeferson; Carvalheiro, Luísa G; Sazima, Marlies

    2017-07-01

    Plant species within communities may overlap in pollinators' use and influence visitation patterns of shared pollinators, potentially engaging in indirect interactions (e.g., facilitation or competition). While several studies have explored the mechanisms regulating insect-pollination networks, there is a lack of studies on bird-pollination systems, particularly in species-rich tropical areas. Here, we evaluated if phenotypic similarity, resource availability (floral abundance), evolutionary relatedness and flowering phenology affect the potential for indirect effects via shared pollinators in hummingbird-pollinated plant species within four communities in the Brazilian Atlantic forest. Among the evaluated factors, phenotypic similarity (corolla length and anther height) was the most important variable, while resource availability (floral abundance) had a secondary importance. On the other hand, evolutionary relatedness and flowering phenology were less important, which altogether highlights the relevance of convergent evolution and that the contribution of a plant to the diet of the pollinators of another plant is independent of the level of temporal overlap in flowering in this tropical system. Interestingly, our findings contrast with results from multiple insect-pollinated plant communities, mostly from temperate regions, in which floral abundance was the most important driver, followed by evolutionary relatedness and phenotypic similarity. We propose that these contrasting results are due to high level of specialization inherent to tropical hummingbird-pollination systems. Moreover, our results demonstrated that factors defining linkage rules of plant-hummingbird networks also determinate plant-plant potential indirect effects. Future studies are needed to test if these findings can be generalized to other highly specialized systems. Overall, our results have important implications for the understanding of ecological processes due resource sharing in

  5. Emergence of ratio-dependent and predator-dependent functional responses for pollination mutualism and seed parasitism

    USGS Publications Warehouse

    DeAngelis, Donald L.; Holland, J. Nathaniel

    2006-01-01

    Prey (N) dependence [g(N)], predator (P) dependence [g(P) or g(N,P)], and ratio dependence [f(P/N)] are often seen as contrasting forms of the predator's functional response describing predator consumption rates on prey resources in predator–prey and parasitoid–host interactions. Analogously, prey-, predator-, and ratio-dependent functional responses are apparently alternative functional responses for other types of consumer–resource interactions. These include, for example, the fraction of flowers pollinated or seeds parasitized in pollination (pre-dispersal) seed-parasitism mutualisms, such as those between fig wasps and fig trees or yucca moths and yucca plants. Here we examine the appropriate functional responses for how the fraction of flowers pollinated and seeds parasitized vary with the density of pollinators (predator dependence) or the ratio of pollinator and flower densities (ratio dependence). We show that both types of functional responses can emerge from minor, but biologically important variations on a single model. An individual-based model was first used to describe plant–pollinator interactions. Conditional upon on whether the number of flowers visited by the pollinator was limited by factors other than search time (e.g., by the number of eggs it had to lay, if it was also a seed parasite), and on whether the pollinator could directly find flowers on a plant, or had to search, the simulation results lead to either a predator-dependent or a ratio-dependent functional response. An analytic model was then used to show mathematically how these two cases can arise.

  6. Butterfly pollination in Pteroglossa (Orchidaceae, Orchidoideae): a comparative study on the reproductive biology of two species of a Neotropical genus of Spiranthinae.

    PubMed

    Pansarin, Emerson R; Ferreira, Alessandro W C

    2015-05-01

    Spiranthinae orchids are known for being self-compatible and offering nectar as a reward. Although data on their pollinators are scarce, members of this tribe are mostly pollinated by bees, hummingbirds and moths. Some of them even reproduce through facultative self-pollination. Nothing is known about the pollinators and reproduction system in Pteroglossa. Based on records on flowering phenology, floral morphology, reward production, pollinators and breeding system, this paper aims to study the reproductive biology of two Pteroglossa spp. Both species offer nectar as a resource and are pollinated exclusively by diurnal Lepidoptera at the studied areas. Nectar is produced by two glandular nectaries, and is stored in a spur. Pollinaria possess a ventrally adhesive viscidium that is deposited on the basal portion of butterfly proboscides. Both species are self-compatible but pollinator-dependent. The reproductive success is low when compared to other Spiranthinae. Although no evident mechanical barrier to avoid self-pollination or geitonogamy was identified, the erratic behavior of the butterflies, with their infrequent visits to only one flower per inflorescence, contributes to an increased fruit set produced through cross-pollination. The presence of ventrally adhesive viscidia in Spiranthinae is responsible for greater pollinator diversity when compared to bee-pollinated Goodyerinae with dorsally adhesive viscidia, adapted to attach to bee mouthparts.

  7. Self-pollination rate and floral-display size in Asclepias syriaca (Common Milkweed) with regard to floral-visitor taxa

    PubMed Central

    2014-01-01

    Background Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Results Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Conclusions Apis mellifera’s high rate of self-pollination may have significant negative effects on both male

  8. Self-pollination rate and floral-display size in Asclepias syriaca (Common Milkweed) with regard to floral-visitor taxa.

    PubMed

    Howard, Aaron F; Barrows, Edward M

    2014-06-23

    Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Apis mellifera's high rate of self-pollination may have significant negative effects on both male and female reproductive successes

  9. Distribution of calcium oxalate crystals in floral organs of Araceae in relation to pollination strategy.

    PubMed

    Coté, Gary G; Gibernau, Marc

    2012-07-01

    Many flowers are pollinated by potentially hungry insects, yet flowers also contain gametes and embryos which must be protected from predation. Microscopic calcium oxalate crystals in plant tissues have been proposed to protect against herbivory. Aroids, which have an unusual diversity of such crystals, also exhibit diverse pollination strategies. Many species have pollinators that do not feed while visiting the flowers, while other species, especially those pollinated by beetles, offer sterile staminodia as food rewards. We examined flowers of 21 aroid species with various pollination strategies to test the hypothesis that crystals protect vital gametes and embryos while allowing consumption of food bribes. Aroid inflorescences collected from the field or from greenhouse material were sectioned, cleared, and examined by bright field and polarization microscopy. All species examined, regardless of pollination strategy, arrayed crystals around unshed pollen and ovules. Less vital tissues, such as odoriferous appendages, had few crystals. Staminodia offered as food to beetle pollinators, however, differed greatly between species in their crystal contents. Some had minimal crystals; some had crystals in patterns suggesting they limit beetle feeding; still others had abundant crystals in no obvious pattern. The results are consistent with crystals protecting against insect predation of gametes and embryos. However, the role of crystals in food-bribe staminodia is unclear. They may limit and direct feeding by beetles in some species, while in others they might have no protective role.

  10. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L.

    PubMed

    Ceulemans, Tobias; Hulsmans, Eva; Vanden Ende, Wim; Honnay, Olivier

    2017-01-01

    Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide.

  11. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L.

    PubMed Central

    Vanden Ende, Wim; Honnay, Olivier

    2017-01-01

    Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide. PMID:28406910

  12. Climate-driven spatial mismatches between British orchards and their pollinators: increased risks of pollination deficits

    PubMed Central

    Polce, Chiara; Garratt, Michael P; Termansen, Mette; Ramirez-Villegas, Julian; Challinor, Andrew J; Lappage, Martin G; Boatman, Nigel D; Crowe, Andrew; Endalew, Ayenew Melese; Potts, Simon G; Somerwill, Kate E; Biesmeijer, Jacobus C

    2014-01-01

    Understanding how climate change can affect crop-pollinator systems helps predict potential geographical mismatches between a crop and its pollinators, and therefore identify areas vulnerable to loss of pollination services. We examined the distribution of orchard species (apples, pears, plums and other top fruits) and their pollinators in Great Britain, for present and future climatic conditions projected for 2050 under the SRES A1B Emissions Scenario. We used a relative index of pollinator availability as a proxy for pollination service. At present, there is a large spatial overlap between orchards and their pollinators, but predictions for 2050 revealed that the most suitable areas for orchards corresponded to low pollinator availability. However, we found that pollinator availability may persist in areas currently used for fruit production, which are predicted to provide suboptimal environmental suitability for orchard species in the future. Our results may be used to identify mitigation options to safeguard orchard production against the risk of pollination failure in Great Britain over the next 50 years; for instance, choosing fruit tree varieties that are adapted to future climatic conditions, or boosting wild pollinators through improving landscape resources. Our approach can be readily applied to other regions and crop systems, and expanded to include different climatic scenarios. PMID:24638986

  13. DNA barcoding implicates 23 species and four orders as potential pollinators of Chinese knotweed (Persicaria chinensis) in Peninsular Malaysia.

    PubMed

    Wong, M-M; Lim, C-L; Wilson, J-J

    2015-08-01

    Chinese knotweed (Persicaria chinensis) is of ecological and economic importance as a high-risk invasive species and a traditional medicinal herb. However, the insects associated with P. chinensis pollination have received scant attention. As a widespread invasive plant we would expect P. chinensis to be associated with a diverse group of insect pollinators, but lack of taxonomic identification capacity is an impediment to confirm this expectation. In the present study we aimed to elucidate the insect pollinators of P. chinensis in peninsular Malaysia using DNA barcoding. Forty flower visitors, representing the range of morphological diversity observed, were captured at flowers at Ulu Kali, Pahang, Malaysia. Using Automated Barcode Gap Discovery, 17 morphospecies were assigned to 23 species representing at least ten families and four orders. Using the DNA barcode library (BOLD) 30% of the species could be assigned a species name, and 70% could be assigned a genus name. The insects visiting P. chinensis were broadly similar to those previously reported as visiting Persicaria japonica, including honey bees (Apis), droneflies (Eristalis), blowflies (Lucilia) and potter wasps (Eumedes), but also included thrips and ants.

  14. Phenotypic selection on flowering phenology and pollination efficiency traits between Primula populations with different pollinator assemblages.

    PubMed

    Wu, Yun; Li, Qing-Jun

    2017-10-01

    Floral traits have largely been attributed to phenotypic selection in plant-pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator-mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator-mediated selection explained most of the between-population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator-mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.

  15. Pollinator shifts and the evolution of spur length in the moth-pollinated orchid Platanthera bifolia.

    PubMed

    Boberg, Elin; Alexandersson, Ronny; Jonsson, Magdalena; Maad, Johanne; Ågren, Jon; Nilsson, L Anders

    2014-01-01

    Plant-pollinator interactions are thought to have shaped much of floral evolution. Yet the relative importance of pollinator shifts and coevolutionary interactions for among-population variation in floral traits in animal-pollinated species is poorly known. This study examined the adaptive significance of spur length in the moth-pollinated orchid Platanthera bifolia. Geographical variation in the length of the floral spur of P. bifolia was documented in relation to variation in the pollinator fauna across Scandinavia, and a reciprocal translocation experiment was conducted in south-east Sweden between a long-spurred woodland population and a short-spurred grassland population. Spur length and pollinator fauna varied among regions and habitats, and spur length was positively correlated with the proboscis length of local pollinators. In the reciprocal translocation experiment, long-spurred woodland plants had higher pollination success than short-spurred grassland plants at the woodland site, while no significant difference was observed at the grassland site. The results are consistent with the hypothesis that optimal floral phenotype varies with the morphology of the local pollinators, and that the evolution of spur length in P. bifolia has been largely driven by pollinator shifts.

  16. Pollinator shifts and the evolution of spur length in the moth-pollinated orchid Platanthera bifolia

    PubMed Central

    Boberg, Elin; Alexandersson, Ronny; Jonsson, Magdalena; Maad, Johanne; Ågren, Jon; Nilsson, L. Anders

    2014-01-01

    Background and Aims Plant–pollinator interactions are thought to have shaped much of floral evolution. Yet the relative importance of pollinator shifts and coevolutionary interactions for among-population variation in floral traits in animal-pollinated species is poorly known. This study examined the adaptive significance of spur length in the moth-pollinated orchid Platanthera bifolia. Methods Geographical variation in the length of the floral spur of P. bifolia was documented in relation to variation in the pollinator fauna across Scandinavia, and a reciprocal translocation experiment was conducted in south-east Sweden between a long-spurred woodland population and a short-spurred grassland population. Key Results Spur length and pollinator fauna varied among regions and habitats, and spur length was positively correlated with the proboscis length of local pollinators. In the reciprocal translocation experiment, long-spurred woodland plants had higher pollination success than short-spurred grassland plants at the woodland site, while no significant difference was observed at the grassland site. Conclusions The results are consistent with the hypothesis that optimal floral phenotype varies with the morphology of the local pollinators, and that the evolution of spur length in P. bifolia has been largely driven by pollinator shifts. PMID:24169591

  17. Flowering and floral visitation predict changes in community structure provided that mycorrhizas remain intact.

    PubMed

    Bennett, Jonathan A; Cahill, James F

    2018-06-01

    Pollination is critical for plant fitness and population dynamics, yet little attention is paid to the role of flowering and plant-pollinator interactions in structuring plant communities, including community responses to environmental change. Changes in arbuscular mycorrhizal fungi (AMF), nutrient abundances, and plant litter all affect plant access to different resources, and are known regulators of community structure. Each factor can also affect flowering and plant-pollinator interactions, potentially contributing to changes in community structure. To test whether AMF, nutrients, and litter influenced the relationship between pollination and community structure, we conducted a 5-yr field experiment applying fungicide, adding fertilizer, and removing plant litter in native grassland. We measured the distribution of flowers and floral visits among species in year three and linked these measures to changes in plant composition and species richness between years three and five. We hypothesized that an uneven distribution of flowers and visits among species would lead to greater community change, but that the treatments would disrupt this relationship by altering sexual allocation and recruitment. Consistent with our hypothesis, communities with uneven flower distributions exhibited greater changes in community composition and richness under ambient conditions. However, AMF suppression neutralized this relationship and regulated the other treatment effects, highlighting the potential importance of AMF for stabilizing recruitment dynamics. Combined, AMF suppression and nutrient addition caused species losses when few species flowered, likely by compounding stresses for those species. The treatment effects on the relationship between flowering and community composition were more nuanced, but were likely driven by increased competition and altered flowering among species. By contrast, community composition was more stable when visitation rates were uneven among species

  18. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination.

    PubMed

    Kovács-Hostyánszki, Anikó; Espíndola, Anahí; Vanbergen, Adam J; Settele, Josef; Kremen, Claire; Dicks, Lynn V

    2017-05-01

    Worldwide, human appropriation of ecosystems is disrupting plant-pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi-natural ecosystems while conventional land-use intensification (e.g. industrial management of large-scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm-level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  19. Number of conspecifics and reproduction in the invasive plant Eschscholzia californica (Papaveraceae): is there a pollinator-mediated Allee effect?

    PubMed

    Anic, V; Henríquez, C A; Abades, S R; Bustamante, R O

    2015-05-01

    The component Allee effect has been defined as 'a positive relationship between any measure of individual fitness and the number or density of conspecifics'. Larger plant populations or large patches have shown a higher pollinator visitation rate, which may give rise to an Allee effect in reproduction of the plants. We experimentally tested the effect of number of conspecifics on reproduction and pollinator visitation in Eschscholzia californica Cham., an invasive plant in Chile. We then built patches with two, eight and 16 flowering individuals of E. californica (11 replicates per treatment) in an area characterised by dominance of the study species. We found that E. californica exhibits a component Allee effect, as the number of individuals of this species has a positive effect on individual seed set. However, individual fruit production was not affected by the number of plants examined. Pollinator visitation rate was also independent of the number of plants, so this factor would not explain the Allee effect. This rate was positively correlated with the total number of flowers in the patches. We also found that the number of plants did not affect the seed mass or proportion of germinated seeds in the patches. Higher pollen availability in patches with 16 plants and pollination by wind could explain the Allee effect. The component Allee effect identified could lead to a weak demographic Allee effect that might reduce the rate of spread of E. californica. Knowledge of this would be useful for management of this invasive plant in Chile. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Viruses of commercialized insect pollinators.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2017-07-01

    Managed insect pollinators are indispensable in modern agriculture. They are used worldwide not only in the open field but also in greenhouses to enhance fruit set, seed production, and crop yield. Managed honey bee (Apis mellifera, Apis cerana) colonies provide the majority of commercial pollination although other members of the superfamily Apoidea are also exploited and commercialized as managed pollinators. In the recent past, it became more and more evident that viral diseases play a key role in devastating honey bee colony losses and it was also recognized that many viruses originally thought to be honey bee specific can also be detected in other pollinating insects. However, while research on viruses infecting honey bees started more than 50years ago and the knowledge on these viruses is growing ever since, little is known on virus diseases of other pollinating bee species. Recent virus surveys suggested that many of the viruses thought to be honey bee specific are actually circulating in the pollinator community and that pollinator management and commercialization of pollinators provide ample opportunity for viral diseases to spread. However, the direction of disease transmission is not always clear and the impact of these viral diseases on the different hosts remains elusive in many cases. With our review we want to provide an up-to-date overview on the viruses detected in different commercialized pollinators in order to encourage research in the field of pollinator virology that goes beyond molecular detection of viruses. A deeper understanding of this field of virology is urgently needed to be able to evaluate the impact of viruses on pollinator health and the role of different pollinators in spreading viral diseases and to be able to decide on appropriate measures to prevent virus-driven pollinator decline. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Can alternative sugar sources buffer pollinators from nectar shortages?

    PubMed

    Gardner-Gee, Robin; Dhami, Manpreet K; Paulin, Katherine J; Beggs, Jacqueline R

    2014-12-01

    Honeydew is abundant in many ecosystems and may provide an alternative food source (a buffer) for pollinators during periods of food shortage, but the impact of honeydew on pollination systems has received little attention to date. In New Zealand, kānuka trees (Myrtaceae: Kunzea ericoides (A. Rich) Joy Thompson) are often heavily infested by the endemic honeydew-producing scale insect Coelostomidia wairoensis (Maskell) (Hemiptera: Coelostomidiidae) and the period of high honeydew production can overlap with kānuka flowering. In this study, we quantified the sugar resources (honeydew and nectar) available on kānuka and recorded nocturnal insect activity on infested and uninfested kānuka during the flowering period. Insects were abundant on infested trees, but flowers on infested trees received fewer insect visitors than flowers on uninfested trees. There was little evidence that insects had switched directly from nectar-feeding to honeydew-feeding, but it is possible that some omnivores (e.g., cockroaches) were distracted by the other honeydew-associated resources on infested branches (e.g., sooty molds, prey). Additional sampling was carried out after kānuka flowering had finished to determine honeydew usage in the absence of adjacent nectar resources. Moths, which had fed almost exclusively on nectar earlier, were recorded feeding extensively on honeydew after flowering had ceased; hence, honeydew may provide an additional food source for potential pollinators. Our results show that honeydew resources can impact floral visitation patterns and suggest that future pollinator studies should consider the full range of sugar resources present in the study environment.

  2. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants.

    PubMed

    Friedman, Jannice; Barrett, Spencer C H

    2009-06-01

    The rich literature that characterizes the field of pollination biology has focused largely on animal-pollinated plants. At least 10 % of angiosperms are wind pollinated, and this mode of pollination has evolved on multiple occasions among unrelated lineages, and hence this discrepancy in research interest is surprising. Here, the evolution and functional ecology of pollination and mating in wind-pollinated plants are discussed, a theoretical framework for modelling the selection of wind pollination is outlined, and pollen capture and the occurrence of pollen limitation in diverse wind-pollinated herbs are investigated experimentally. Wind pollination may commonly evolve to provide reproductive assurance when pollinators are scarce. Evidence is presented that pollen limitation in wind-pollinated plants may not be as common as it is in animal-pollinated species. The studies of pollen capture in wind-pollinated herbs demonstrate that pollen transfer efficiency is not substantially lower than in animal-pollinated plants as is often assumed. These findings challenge the explanation that the evolution of few ovules in wind-pollinated flowers is associated with low pollen loads. Floral and inflorescence architecture is crucial to pollination and mating because of the aerodynamics of wind pollination. Evidence is provided for the importance of plant height, floral position, and stamen and stigma characteristics in promoting effective pollen dispersal and capture. Finally, it is proposed that geitonogamous selfing may alleviate pollen limitation in many wind-pollinated plants with unisexual flowers.

  3. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants

    PubMed Central

    Friedman, Jannice; Barrett, Spencer C. H.

    2009-01-01

    Background The rich literature that characterizes the field of pollination biology has focused largely on animal-pollinated plants. At least 10 % of angiosperms are wind pollinated, and this mode of pollination has evolved on multiple occasions among unrelated lineages, and hence this discrepancy in research interest is surprising. Here, the evolution and functional ecology of pollination and mating in wind-pollinated plants are discussed, a theoretical framework for modelling the selection of wind pollination is outlined, and pollen capture and the occurrence of pollen limitation in diverse wind-pollinated herbs are investigated experimentally. Scope and Conclusions Wind pollination may commonly evolve to provide reproductive assurance when pollinators are scarce. Evidence is presented that pollen limitation in wind-pollinated plants may not be as common as it is in animal-pollinated species. The studies of pollen capture in wind-pollinated herbs demonstrate that pollen transfer efficiency is not substantially lower than in animal-pollinated plants as is often assumed. These findings challenge the explanation that the evolution of few ovules in wind-pollinated flowers is associated with low pollen loads. Floral and inflorescence architecture is crucial to pollination and mating because of the aerodynamics of wind pollination. Evidence is provided for the importance of plant height, floral position, and stamen and stigma characteristics in promoting effective pollen dispersal and capture. Finally, it is proposed that geitonogamous selfing may alleviate pollen limitation in many wind-pollinated plants with unisexual flowers. PMID:19218583

  4. Flower specialisation: the occluded corolla of snapdragons (Antirrhinum) exhibits two pollinator niches of large long-tongued bees.

    PubMed

    Vargas, P; Liberal, I; Ornosa, C; Gómez, J M

    2017-09-01

    Flower specialisation of angiosperms includes the occluded corollas of snapdragons (Antirrhinum and some relatives), which have been postulated to be one of the most efficient structures to physical limit access to pollinators. The Iberian Peninsula harbours the highest number of species (18 Iberian of the 20 species of Antirrhinum) that potentially share similar pollinator fauna. Crossing experiments with 18 Iberian species from this study and literature revealed a general pattern of self-incompatibility (SI) - failure in this SI system has been also observed in a few plants - which indicates the need for pollinator agents in Antirrhinum pollination. Field surveys in natural conditions (304 h) found flower visitation (>85%) almost exclusively by 11 species of bee (Anthophora fulvitarsis, Anthophora plumipes, Anthidium sticticum, Apis mellifera, Bombus hortorum, Bombus pascuorum, Bombus ruderatus, Bombus terrestris, Chalicodoma lefebvrei, Chalicodoma pyrenaica and Xylocopa violacea). This result covering the majority of Antirrhinum species suggests that large bees of the two long-tongued bee families (Megachilidae, Apidae) are the major pollinators of Antirrhinum. A bipartite modularity analysis revealed two pollinator systems of long-tongued bees: (i) the long-studied system of bumblebees (Bombus spp.) associated with nine primarily northern species of Antirrhinum; and (ii) a newly proposed pollinator system involving other large bees associated with seven species primarily distributed in southern Mediterranean areas. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Caught in the act: pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae)

    PubMed Central

    Phillips, Ryan D.; Scaccabarozzi, Daniela; Retter, Bryony A.; Hayes, Christine; Brown, Graham R.; Dixon, Kingsley W.; Peakall, Rod

    2014-01-01

    Background and Aims Pterostylis is an Australasian terrestrial orchid genus of more than 400 species, most of which use a motile, touch-sensitive labellum to trap dipteran pollinators. Despite studies dating back to 1872, the mechanism of pollinator attraction has remained elusive. This study tested whether the fungus gnat-pollinated Pterostylis sanguinea secures pollination by sexual deception. Methods The literature was used to establish criteria for confirming sexual deception as a pollination strategy. Observations and video recordings allowed quantification of each step of the pollination process. Each floral visitor was sexed and DNA barcoding was used to evaluate the degree of pollinator specificity. Following observations that attraction to the flowers is by chemical cues, experimental dissection of flowers was used to determine the source of the sexual attractant and the effect of labellum orientation on sexual attraction. Fruit set was quantified for 19 populations to test for a relationship with plant density and population size. Key Results A single species of male gnat (Mycetophilidae) visited and pollinated the rewardless flowers. The gnats often showed probing copulatory behaviour on the labellum, leading to its triggering and the temporary entrapment of the gnat in the flower. Pollen deposition and removal occurred as the gnat escaped from the flower via the reproductive structures. The labellum was the sole source of the chemical attractant. Gnats always alighted on the labellum facing upwards, but when it was rotated 180 ° they attempted copulation less frequently. Pollination rate showed no relationship with orchid population size or plant density. Conclusions This study confirms for the first time that highly specific pollination by fungus gnats is achieved by sexual deception in Pterostylis. It is predicted that sexual deception will be widespread in the genus, although the diversity of floral forms suggests that other mechanisms may also

  6. Land-use change has no detectable effect on reproduction of a disturbance-adapted, hawkmoth-pollinated plant species.

    PubMed

    Skogen, Krissa A; Jogesh, Tania; Hilpman, Evan T; Todd, Sadie L; Rhodes, Matthew K; Still, Shannon M; Fant, Jeremie B

    2016-11-01

    Land-use change is cited as a primary driver of global biodiversity loss, with myriad consequences for species, populations, and ecosystems. However, few studies have examined its impact on species interactions, particularly pollination. Furthermore, when the effects of land-use change on pollination have been studied, the focus has largely been on species pollinated by diurnal pollinators, namely, bees and butterflies. Here, we focus on Oenothera harringtonii, a night-flowering, disturbance-adapted species that has experienced a range-wide gradient of land-use change. We tested the hypothesis that the negative impacts of land-use change are mitigated by long-distance pollination. Our study included both temporal (4 yr) and spatial (19 populations range-wide, and 1, 2, and 5 km from the population center) data, providing a comprehensive understanding of the role of land-use change on pollination biology and reproduction. We first confirmed that O. harringtonii is self-incompatible and reliant on pollinators for reproduction. We then showed that hawkmoths (primarily Hyles lineata) are highly reliable and effective pollinators in both space and time. Unlike other studies, we did not detect an effect of population size, increased isolation, or a reduction in suitable habitat in areas with evidence of land-use change on pollination (visitation, pollen removal and deposition). Furthermore, the proportion of suitable habitat and other fragmentation metrics examined were not associated with population size or density in this plant species. We conclude that nocturnal pollination of Oenothera harringtonii via hawkmoths is robust to the negative impacts of land-use change. © 2016 Skogen et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY).

  7. The role of pollinators in the evolution of corolla shape variation, disparity and integration in a highly diversified plant family with a conserved floral bauplan.

    PubMed

    Gómez, José M; Torices, Ruben; Lorite, Juan; Klingenberg, Christian Peter; Perfectti, Francisco

    2016-04-01

    Brassicaceae is one of the most diversified families in the angiosperms. However, most species from this family exhibit a very similar floral bauplan. In this study, we explore the Brassicaceae floral morphospace, examining how corolla shape variation (an estimation of developmental robustness), integration and disparity vary among phylogenetically related species. Our aim is to check whether these floral attributes have evolved in this family despite its apparent morphological conservation, and to test the role of pollinators in driving this evolution. Using geometric morphometric tools, we calculated the phenotypic variation, disparity and integration of the corolla shape of 111 Brassicaceae taxa. We subsequently inferred the phylogenetic relationships of these taxa and explored the evolutionary lability of corolla shape. Finally, we sampled the pollinator assemblages of every taxon included in this study, and determined their pollination niches using a modularity algorithm. We explore the relationship between pollination niche and the attributes of corolla shape. Phylogenetic signal was weak for all corolla shape attributes. All taxa had generalized pollination systems. Nevertheless, they belong to different pollination niches. There were significant differences in corolla shape among pollination niches even after controlling for the phylogenetic relationship of the plant taxa. Corolla shape variation and disparity was significantly higher in those taxa visited mostly by nocturnal moths, indicating that this pollination niche is associated with a lack of developmental robustness. Corolla integration was higher in those taxa visited mostly by hovering long-tongued flies and long-tongued large bees. Corolla variation, integration and disparity were evolutionarily labile and evolved very recently in the evolutionary history of the Brassicaceae. These floral attributes were strongly related to the pollination niche. Even in a plant clade having a very generalized

  8. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands.

    PubMed

    Biesmeijer, J C; Roberts, S P M; Reemer, M; Ohlemüller, R; Edwards, M; Peeters, T; Schaffers, A P; Potts, S G; Kleukers, R; Thomas, C D; Settele, J; Kunin, W E

    2006-07-21

    Despite widespread concern about declines in pollination services, little is known about the patterns of change in most pollinator assemblages. By studying bee and hoverfly assemblages in Britain and the Netherlands, we found evidence of declines (pre-versus post-1980) in local bee diversity in both countries; however, divergent trends were observed in hoverflies. Depending on the assemblage and location, pollinator declines were most frequent in habitat and flower specialists, in univoltine species, and/or in nonmigrants. In conjunction with this evidence, outcrossing plant species that are reliant on the declining pollinators have themselves declined relative to other plant species. Taken together, these findings strongly suggest a causal connection between local extinctions of functionally linked plant and pollinator species.

  9. Interaction intensity and pollinator-mediated selection.

    PubMed

    Trunschke, Judith; Sletvold, Nina; Ågren, Jon

    2017-05-01

    In animal-pollinated plants, the opportunity for selection and the strength of pollinator-mediated selection are expected to increase with the degree of pollen limitation. However, whether differences in pollen limitation can explain variation in pollinator-mediated and net selection among animal-pollinated species is poorly understood. In the present study, we quantified pollen limitation, variance in relative fitness and pollinator-mediated selection on five traits important for pollinator attraction (flowering start, plant height, flower number, flower size) and pollination efficiency (spur length) in natural populations of 12 orchid species. Pollinator-mediated selection was quantified by subtracting estimates of selection gradients for plants receiving supplemental hand-pollination from estimates obtained for open-pollinated control plants. Mean pollen limitation ranged from zero to 0.96. Opportunity for selection, pollinator-mediated selection and net selection were all positively related to pollen limitation, whereas nonpollinator-mediated selection was not. Opportunity for selection varied five-fold, strength of pollinator-mediated selection varied three-fold and net selection varied 1.5-fold among species. Supplemental hand-pollination reduced both opportunity for selection and selection on floral traits. The results show that the intensity of biotic interactions is an important determinant of the selection regime, and indicate that the potential for pollinator-mediated selection and divergence in floral traits is particularly high in species that are strongly pollen-limited. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Pollinators of the invasive plant, yellow starthistle (Centaurea solstitialis), in north-eastern Oregon, USA

    Treesearch

    James McIver; Robbin Thorp; Karen Erickson

    2009-01-01

    The potential pollinators of yellow starthistle (Centaurea solstitialis) were surveyed at six sites in north-eastern Oregon, USA, between May and September from 2000 to 2002. The objective of the study was to determine the species composition and relative abundance of the insects that visited yellow starthistle throughout the flowering season and...

  11. Ants contribute to pollination but not to reproduction in a rare calcareous grassland forb

    PubMed Central

    Bollmann, Felix; Saville, David; Riedel, Michael

    2018-01-01

    The number of plants pollinated by ants is surprisingly low given the abundance of ants and the fact that they are common visitors of angiosperms. Generally ants are considered as nectar robbers that do not provide pollination service. We studied the pollination system of the endangered dry grassland forb Euphorbia seguieriana and found two ant species to be the most frequent visitors of its flowers. Workers of Formica cunicularia carried five times more pollen than smaller Tapinoma erraticum individuals, but significantly more viable pollen was recovered from the latter. Overall, the viability of pollen on ant cuticles was significantly lower (p < 0.001)—presumably an antibiotic effect of the metapleural gland secretion. A marking experiment suggested that ants were unlikely to facilitate outcrossing as workers repeatedly returned to the same individual plant. In open pollinated plants and when access was given exclusively to flying insects, fruit set was nearly 100%. In plants visited by ants only, roughly one third of flowers set fruit, and almost none set fruit when all insects were excluded. The germination rate of seeds from flowers pollinated by flying insects was 31 ± 7% in contrast to 1 ± 1% resulting from ant pollination. We conclude that inbreeding depression may be responsible for the very low germination rate in ant pollinated flowers and that ants, although the most frequent visitors, play a negligible or even deleterious role in the reproduction of E. seguieriana. Our study reiterates the need to investigate plant fitness effects beyond seed set in order to confirm ant-plant mutualisms. PMID:29479496

  12. Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.

    PubMed

    Galen, Candace; Geib, Jennifer C

    2007-05-01

    positive over a wide range of ant abundance (20-80% of plants visited by ants daily). Although high cheater abundance reduces the fitness returns of bumble bee pollination, it does not completely eliminate selection for bumble bee attraction in P. viscosum.

  13. Frequent Insect Visitors Are Not Always Pollen Carriers in Hybrid Carrot Pollination.

    PubMed

    Gaffney, Ann; Bohman, Björn; Quarrell, Stephen R; Brown, Philip H; Allen, Geoff R

    2018-06-07

    Insect crop visitations do not necessarily translate to carriage or transfer of pollen. To evaluate the potential of the various insects visiting hybrid carrot flowers to facilitate pollen transfer, this study examines insect visitation rates to hybrid carrot seed crops in relation to weather, time of day and season, pollen carrying capacity, inter-row movement, and visitation frequency to male-fertile and male-sterile umbels. The highest pollen loads were carried by nectar scarabs, honey bees, and the hover fly Eristalis tenax (Linnaeus). Honey bees and muscoid flies were observed to forage mostly within the male fertile carrot row while nectar scarabs and E. tenax foraged across rows, carrying equal pollen loads regardless of their distance from the pollen source. All observed insect taxa were more frequently seen visiting male-fertile than male-sterile umbels. In contrast to other visiting insects, honey bees were abundant and frequent visitors and were observed carrying high pollen loads. Consequently, we suggest both optimizing honey bee management and improving the attraction of carrot lines to honey bees to improve pollination rates for hybrid carrot seed crops.

  14. Pollination of Specklinia by nectar-feeding Drosophila: the first reported case of a deceptive syndrome employing aggregation pheromones in Orchidaceae

    PubMed Central

    Karremans, Adam P.; Pupulin, Franco; Grimaldi, David; Beentjes, Kevin K.; Butôt, Roland; Fazzi, Gregorio E.; Kaspers, Karsten; Kruizinga, Jaco; Roessingh, Peter; Smets, Erik F.; Gravendeel, Barbara

    2015-01-01

    Background and Aims The first documented observation of pollination in Pleurothallidinae was that of Endrés, who noticed that the ‘viscid sepals’ of Specklinia endotrachys were visited by a ‘small fly’. Chase would later identify the visiting flies as being members of the genus Drosophila. This study documents and describes how species of the S. endotrachys complex are pollinated by different Drosophila species. Methods Specimens of Specklinia and Drosophila were collected in the field in Costa Rica and preserved in the JBL and L herbaria. Flies were photographed, filmed and observed for several days during a 2-year period and were identified by a combination of non-invasive DNA barcoding and anatomical surveys. Tissue samples of the sepals, petals and labellum of Specklinia species were observed and documented by SEM, LM and TEM. Electroantennogram experiments were carried out on Drosophila hydei using the known aggregation pheromones ethyl tiglate, methyl tiglate and isopropyl tiglate. Floral compounds were analysed by gas chromatography–mass spectometry using those same pheromones as standards. Key Results Flowers of S. endotrachys, S. pfavii, S. remotiflora and S. spectabilis are visited and pollinated by several different but closely related Drosophila species. The flies are arrested by aggregation pheromones, including ethyl tiglate, methyl tiglate and isopropyl tiglate, released by the flowers, and to which at least D. hydei is very sensitive. Visible nectar drops on the adaxial surface of sepals are secreted by nectar-secreting stomata, encouraging male and female Drosophila to linger on the flowers for several hours at a time. The flies frequently show courtship behaviour, occasionally copulating. Several different Drosophila species can be found on a single Specklinia species. Conclusions Species of the S. endotrachys group share a similar pollination syndrome. There seem to be no species-specific relationships between the orchids and the flies

  15. The influence of floral symmetry, dependence on pollinators and pollination generalization on flower size variation

    PubMed Central

    Lázaro, A.; Totland, Ø.

    2014-01-01

    Background and Aims The pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation. Methods Data on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species' dependence on pollinators. Key Results Contrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation. Conclusions The study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species' dependence on pollinators. PMID:24838838

  16. Courgette Production: Pollination Demand, Supply, and Value.

    PubMed

    Knapp, Jessica L; Osborne, Juliet L

    2017-10-01

    Courgette (Cucurbita pepo L.) production in the United Kingdom is estimated to be worth £6.7 million. However, little is known about this crop's requirement for insect-mediated pollination (pollinator dependence) and if pollinator populations in a landscape are able to fulfil its pollination needs (pollination deficit). Consequently, pollination experiments were conducted over 2 yr to explore pollinator dependence and pollination deficit in field-grown courgette in the United Kingdom. Results showed that pollination increased yield by 39% and there was no evidence of pollination limitation on crop yield. This was evidenced by a surprisingly low pollination deficit (of just 3%) and no statistical difference in yield (length grown, circumference, and weight) between open- and hand-pollinated crops. Nonetheless, the high economic value of courgettes means that reducing even the small pollination deficit could still increase profit by ∼£166/ha. Interestingly, 56% of fruit was able to reach marketable size and shape without any pollination. Understanding a crop's requirement for pollinators can aid growers in their decision-making about what varieties and sites should be used. In doing so, they may increase their agricultural resilience and further their economic advantage. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  17. Pollination syndromes in African Marantaceae.

    PubMed

    Ley, Alexandra C; Classen-Bockhoff, Regine

    2009-07-01

    The Marantaceae (550 spp.) is the most derived family in the order Zingiberales and exhibits a complex explosive pollination mechanism. To understand the evolutionary significance of this unique process of pollen transfer, comparative morphological and ecological studies were conducted in Gabon. During a total stay of 11 months, 31 species of Marantaceae were investigated at different sites in Gabon. The study included analyses of floral diversity, observations on the pollinator spectrum as well as ecological measurements (e.g. nectar sugar concentration and volume). Analyses reveal five flower types based on flower size and pigmentation, spatial arrangement of the floral tube and presence/absence of nectar guides and conspicuous outer staminodes. Each type is associated with a specific functional pollinator group leading to the description of distinct pollination syndromes. The 'small (horizontal)' flowers are predominantly pollinated by small bees (Thrinchostoma spp., Allodapula ornaticeps), the 'large (horizontal)' and 'medium-sized (horizontal)' flowers by medium-sized bees (Amegilla vivida, Thrinchostoma bicometes), the 'locked (horizontal)' flowers by large bees (Xylocopa nigrita, X. varipes) and the '(large) vertical' flowers by sunbirds. The longevity of Marantaceae individuals and the omnipresence of their pollinators allowed the specialization to a given functional pollinator group. Intermediate ecological values, however, make occasional pollinator overlaps possible, indicating potential pathways of pollinator shifts. Similar radiation tendencies observed on other continents hint at similar selective pressures and evolutionary constraints.

  18. Native Honey Bees Outperform Adventive Honey Bees in Increasing Pyrus bretschneideri (Rosales: Rosaceae) Pollination.

    PubMed

    Gemeda, Tolera Kumsa; Shao, Youquan; Wu, Wenqin; Yang, Huipeng; Huang, Jiaxing; Wu, Jie

    2017-12-05

    The foraging behavior of different bee species is a key factor influencing the pollination efficiency of different crops. Most pear species exhibit full self-incompatibility and thus depend entirely on cross-pollination. However, as little is known about the pear visitation preferences of native Apis cerana (Fabricius; Hymenoptera: Apidae) and adventive Apis mellifera (L.; Hymenoptera: Apidae) in China. A comparative analysis was performed to explore the pear-foraging differences of these species under the natural conditions of pear growing areas. The results show significant variability in the pollen-gathering tendency of these honey bees. Compared to A. mellifera, A. cerana begins foraging at an earlier time of day and gathers a larger amount of pollen in the morning. Based on pollen collection data, A. mellifera shows variable preferences: vigorously foraging on pear on the first day of observation but collecting pollen from non-target floral resources on other experimental days. Conversely, A. cerana persists in pear pollen collection, without shifting preference to other competitive flowers. Therefore, A. cerana outperforms adventive A. mellifera with regard to pear pollen collection under natural conditions, which may lead to increased pear pollination. This study supports arguments in favor of further multiplication and maintenance of A. cerana for pear and other native crop pollination. Moreover, it is essential to develop alternative pollination management techniques to utilize A. mellifera for pear pollination. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Fragmentation and Management of Ethiopian Moist Evergreen Forest Drive Compositional Shifts of Insect Communities Visiting Wild Arabica Coffee Flowers

    NASA Astrophysics Data System (ADS)

    Berecha, Gezahegn; Aerts, Raf; Muys, Bart; Honnay, Olivier

    2015-02-01

    Coffea arabica is an indigenous understorey shrub of the moist evergreen Afromontane forest of SW Ethiopia. Coffee cultivation here occurs under different forest management intensities, ranging from almost no intervention in the `forest coffee' system to far-reaching interventions that include the removal of competing shrubs and selective thinning of the upper canopy in the `semi-forest coffee' system. We investigated whether increasing forest management intensity and fragmentation result in impacts upon potential coffee pollination services through examining shifts in insect communities that visit coffee flowers. Overall, we netted 2,976 insect individuals on C. arabica flowers, belonging to sixteen taxonomic groups, comprising 10 insect orders. Taxonomic richness of the flower-visiting insects significantly decreased and pollinator community changed with increasing forest management intensity and fragmentation. The relative abundance of honey bees significantly increased with increasing forest management intensity and fragmentation, likely resulting from the introduction of bee hives in the most intensively managed forests. The impoverishment of the insect communities through increased forest management intensity and fragmentation potentially decreases the resilience of the coffee production system as pollination increasingly relies on honey bees alone. This may negatively affect coffee productivity in the long term as global pollination services by managed honey bees are expected to decline under current climate change scenarios. Coffee agroforestry management practices should urgently integrate pollinator conservation measures.

  20. Organic farming favours insect-pollinated over non-insect pollinated forbs in meadows and wheat fields.

    PubMed

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators.

  1. Organic Farming Favours Insect-Pollinated over Non-Insect Pollinated Forbs in Meadows and Wheat Fields

    PubMed Central

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F.; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators. PMID:23382979

  2. Moonlight pollination in the gymnosperm Ephedra (Gnetales).

    PubMed

    Rydin, Catarina; Bolinder, Kristina

    2015-04-01

    Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. The role of native flower visitors in pollinating Opuntia ficus-indica (L.) Mill., naturalized in Sicily

    NASA Astrophysics Data System (ADS)

    Lo Verde, Gabriella; La Mantia, Tommaso

    2011-09-01

    The role of insects in pollination and consequently in fruit set and quality was assessed in two commercial orchards of the cactus pear, Opuntia ficus-indica (L.) Mill., in Agrigento Province, Sicily. In 1997, insects visiting flowers were sampled during May-June (the first bloom) and July (the second bloom, induced by the "scozzolatura" practise). More than 50 insect species belonging to 10 orders were collected in May-June, while only five species of Hymenoptera Apoidea were collected in July. The quality of fruits arising from the second bloom showed that Hymenoptera alone were able to guarantee effective pollination. To verify the role of insects in pollination in 1996 (during only the second bloom), and in 1997 and 2009 (during both blooms), 60 single flowers were marked during each bloom; 30 of them covered with paper sleeves (which prevented natural pollination), while the others were not covered. After withering, fruits produced by marked flowers were analyzed in laboratory: in all years and blooms, the total number of seeds, the number of developed seeds, and the weight and the percentage of pulp were significantly lower for covered flowers than for non-covered flowers. The results are consistent with the hypothesis that native insects effectively carry out the pollination of cactus pear flowers.

  4. The influence of floral symmetry, dependence on pollinators and pollination generalization on flower size variation.

    PubMed

    Lázaro, A; Totland, O

    2014-07-01

    The pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation. Data on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species' dependence on pollinators. Contrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation. The study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species' dependence on pollinators. © The Author 2014. Published by Oxford University Press on behalf of the Annals of

  5. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    PubMed

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  6. Comparative study of the floral biology and of the response of productivity to insect visitation in two rapeseed cultivars (Brassica napus L.) in Rio Grande do Sul.

    PubMed

    Blochtein, B; Nunes-Silva, P; Halinski, R; Lopes, L A; Witter, S

    2014-11-01

    Planning the artificial pollination of agricultural crops requires knowledge of the floral biology and reproductive system of the crop in question. Many studies have shown that rapeseed (Brassica napus Linnaeus) is self-compatible and self-pollinated, but its productivity may be increased by insect visitation. In the present study, the floral biology and the response of productivity to insect visitation of two rapeseed cultivars (Hyola 420 and Hyola 61) were analyzed and compared in three regions of Rio Grande do Sul, Brazil. The rapeseed flowers presented three stages during anthesis, with the time periods varying between the cultivars. Both cultivars are self-compatible, but free visitation of insects increased productivity by 17% in the Hyola 420 cultivar and by approximately 30% in the Hyola 61 cultivar. Therefore, it is concluded that the cultivar Hyola 61 is more dependent on insect pollination than Hyola 420.

  7. Modelling pollination services across agricultural landscapes

    PubMed Central

    Lonsdorf, Eric; Kremen, Claire; Ricketts, Taylor; Winfree, Rachael; Williams, Neal; Greenleaf, Sarah

    2009-01-01

    Background and Aims Crop pollination by bees and other animals is an essential ecosystem service. Ensuring the maintenance of the service requires a full understanding of the contributions of landscape elements to pollinator populations and crop pollination. Here, the first quantitative model that predicts pollinator abundance on a landscape is described and tested. Methods Using information on pollinator nesting resources, floral resources and foraging distances, the model predicts the relative abundance of pollinators within nesting habitats. From these nesting areas, it then predicts relative abundances of pollinators on the farms requiring pollination services. Model outputs are compared with data from coffee in Costa Rica, watermelon and sunflower in California and watermelon in New Jersey–Pennsylvania (NJPA). Key Results Results from Costa Rica and California, comparing field estimates of pollinator abundance, richness or services with model estimates, are encouraging, explaining up to 80 % of variance among farms. However, the model did not predict observed pollinator abundances on NJPA, so continued model improvement and testing are necessary. The inability of the model to predict pollinator abundances in the NJPA landscape may be due to not accounting for fine-scale floral and nesting resources within the landscapes surrounding farms, rather than the logic of our model. Conclusions The importance of fine-scale resources for pollinator service delivery was supported by sensitivity analyses indicating that the model's predictions depend largely on estimates of nesting and floral resources within crops. Despite the need for more research at the finer-scale, the approach fills an important gap by providing quantitative and mechanistic model from which to evaluate policy decisions and develop land-use plans that promote pollination conservation and service delivery. PMID:19324897

  8. Ecological context of the evolution of self-pollination in Clarkia xantiana: population size, plant communities, and reproductive assurance.

    PubMed

    Moeller, David A; Geber, Monica A

    2005-04-01

    The repeated evolutionary transition from outcrossing to self-pollination in flowering plants has been suggested to occur because selfing provides reproductive assurance. Reports from biogeographical and ecological surveys indicate that selfing taxa are often associated with stressful and ephemeral environments, situations in which plant abundance is low (e.g., Baker's law) and with novel plant communities, however experimental tests of ecological hypotheses are few. In this study, we examined the ecological context of selection on mating system traits (herkogamy and protandry) in a California annual, Clarkia xantiana, where natural selfing populations differ from outcrossing populations in that they are often of small size or low density and occur mainly outside the range of pollinator-sharing congeners. We constructed artificial populations of plants with broad genetic variation in floral traits and manipulated two ecological factors, plant population size, and the presence versus absence of pollinator-sharing congeners, in the center of the geographic range of outcrossing populations. We found evidence for context-dependent selection on herkogamy and protandry via female fitness in which reduced traits, which promote autonomous selfing, were favored in small populations isolated from congeners whereas selection was comparatively weak in large populations or when congeners were present. In small, isolated populations, the fertility of plants with low herkogamy or protandry was elevated by 66% and 58%, respectively, compared to those with high herkogamy or protandry. The presence of pollinator-sharing congeners augmented bee visitation rates to C. xantiana flowers by 47% for all bees and by 93% for pollen specialists. By facilitating pollinator visitation, congeners mitigated selection on mating system traits in small populations, where outcross mating success is often low (the Allee effect). We also found support for the hypothesis that pollinator availability

  9. Pollination syndromes in African Marantaceae

    PubMed Central

    Ley, Alexandra C.; Claßen-Bockhoff, Regine

    2009-01-01

    Background and Aims The Marantaceae (550 spp.) is the most derived family in the order Zingiberales and exhibits a complex explosive pollination mechanism. To understand the evolutionary significance of this unique process of pollen transfer, comparative morphological and ecological studies were conducted in Gabon. Methods During a total stay of 11 months, 31 species of Marantaceae were investigated at different sites in Gabon. The study included analyses of floral diversity, observations on the pollinator spectrum as well as ecological measurements (e.g. nectar sugar concentration and volume). Key Results Analyses reveal five flower types based on flower size and pigmentation, spatial arrangement of the floral tube and presence/absence of nectar guides and conspicuous outer staminodes. Each type is associated with a specific functional pollinator group leading to the description of distinct pollination syndromes. The ‘small (horizontal)’ flowers are predominantly pollinated by small bees (Thrinchostoma spp., Allodapula ornaticeps), the ‘large (horizontal)’ and ‘medium-sized (horizontal)’ flowers by medium-sized bees (Amegilla vivida, Thrinchostoma bicometes), the ‘locked (horizontal)’ flowers by large bees (Xylocopa nigrita, X. varipes) and the ‘(large) vertical’ flowers by sunbirds. Conclusions The longevity of Marantaceae individuals and the omnipresence of their pollinators allowed the specialization to a given functional pollinator group. Intermediate ecological values, however, make occasional pollinator overlaps possible, indicating potential pathways of pollinator shifts. Similar radiation tendencies observed on other continents hint at similar selective pressures and evolutionary constraints. PMID:19443460

  10. Pollination

    PubMed Central

    Kühn, Nathalie; Arce-Johnson, Patricio

    2012-01-01

    Berry formation is the process of ovary conversion into a functional fruit, and is characterized by abrupt changes in the content of several phytohormones, associated with pollination and fertilization. Much effort has been made in order to improve our understanding of berry development, particularly from veraison to post-harvest time. However, the period of berry formation has been poorly investigated, despite its importance. Phytohormones are involved in the control of fruit formation; hence it is important to understand the regulation of their content at this stage. Grapevine is an excellent fleshy-fruit plant model since its fruits have particularities that differentiate them from those of commonly studied organisms. For instance, berries are prepared to cope with stress by producing several antioxidants and they are non-climacteric fruits. Also its genome is fully sequenced, which allows to identify genes involved in developmental processes. In grapevine, no link has been established between pollination and phytohormone biosynthesis, until recently. Here we highlight relevant findings regarding pollination effect on gene expression related to phytohormone biosynthesis, and present results showing how quickly this effect is achieved. PMID:22301957

  11. Focal Plant Observations as a Standardised Method for Pollinator Monitoring: Opportunities and Limitations for Mass Participation Citizen Science

    PubMed Central

    Roy, Helen E.; Baxter, Elizabeth; Saunders, Aoine; Pocock, Michael J. O.

    2016-01-01

    Background Recently there has been increasing focus on monitoring pollinating insects, due to concerns about their declines, and interest in the role of volunteers in monitoring pollinators, particularly bumblebees, via citizen science. Methodology / Principal Findings The Big Bumblebee Discovery was a one-year citizen science project run by a partnership of EDF Energy, the British Science Association and the Centre for Ecology & Hydrology which sought to assess the influence of the landscape at multiple scales on the diversity and abundance of bumblebees. Timed counts of bumblebees (Bombus spp.; identified to six colour groups) visiting focal plants of lavender (Lavendula spp.) were carried out by about 13 000 primary school children (7–11 years old) from over 4000 schools across the UK. 3948 reports were received totalling 26 868 bumblebees. We found that while the wider landscape type had no significant effect on reported bumblebee abundance, the local proximity to flowers had a significant effect (fewer bumblebees where other flowers were reported to be >5m away from the focal plant). However, the rate of mis-identifcation, revealed by photographs uploaded by participants and a photo-based quiz, was high. Conclusions / Significance Our citizen science results support recent research on the importance of local flocal resources on pollinator abundance. Timed counts of insects visiting a lure plant is potentially an effective approach for standardised pollinator monitoring, engaging a large number of participants with a simple protocol. However, the relatively high rate of mis-identifications (compared to reports from previous pollinator citizen science projects) highlights the importance of investing in resources to train volunteers. Also, to be a scientifically valid method for enquiry, citizen science data needs to be sufficiently high quality, so receiving supporting evidence (such as photographs) would allow this to be tested and for records to be verified

  12. Focal Plant Observations as a Standardised Method for Pollinator Monitoring: Opportunities and Limitations for Mass Participation Citizen Science.

    PubMed

    Roy, Helen E; Baxter, Elizabeth; Saunders, Aoine; Pocock, Michael J O

    2016-01-01

    Recently there has been increasing focus on monitoring pollinating insects, due to concerns about their declines, and interest in the role of volunteers in monitoring pollinators, particularly bumblebees, via citizen science. The Big Bumblebee Discovery was a one-year citizen science project run by a partnership of EDF Energy, the British Science Association and the Centre for Ecology & Hydrology which sought to assess the influence of the landscape at multiple scales on the diversity and abundance of bumblebees. Timed counts of bumblebees (Bombus spp.; identified to six colour groups) visiting focal plants of lavender (Lavendula spp.) were carried out by about 13 000 primary school children (7-11 years old) from over 4000 schools across the UK. 3948 reports were received totalling 26 868 bumblebees. We found that while the wider landscape type had no significant effect on reported bumblebee abundance, the local proximity to flowers had a significant effect (fewer bumblebees where other flowers were reported to be >5m away from the focal plant). However, the rate of mis-identifcation, revealed by photographs uploaded by participants and a photo-based quiz, was high. Our citizen science results support recent research on the importance of local flocal resources on pollinator abundance. Timed counts of insects visiting a lure plant is potentially an effective approach for standardised pollinator monitoring, engaging a large number of participants with a simple protocol. However, the relatively high rate of mis-identifications (compared to reports from previous pollinator citizen science projects) highlights the importance of investing in resources to train volunteers. Also, to be a scientifically valid method for enquiry, citizen science data needs to be sufficiently high quality, so receiving supporting evidence (such as photographs) would allow this to be tested and for records to be verified.

  13. The post-pollination ethylene burst and the continuation of floral advertisement are harbingers of non-random mate selection in Nicotiana attenuata.

    PubMed

    Bhattacharya, Samik; Baldwin, Ian T

    2012-08-01

    The self-compatible plant Nicotiana attenuata grows in genetically diverse populations after fires, and produces flowers that remain open for 3 days and are visited by assorted pollinators. To determine whether and when post-pollination non-random mate selection occurs among self and non-self pollen, seed paternity and semi-in vivo pollen tube growth were determined in controlled single/mixed pollinations. Despite all pollen sources being equally proficient in siring seeds in single-genotype pollinations, self pollen was consistently selected in mixed pollinations, irrespective of maternal genotype. However, clear patterns of mate discrimination occurred amongst non-self pollen when mixed pollinations were performed soon after corollas open, including selection against hygromycin B resistance (transformation selectable marker) in wild-type styles and for it in transformed styles. However, mate choice among pollen genotypes was completely shut down in plants transformed to be unable to produce (irACO) or perceive (ETR1) ethylene. The post-pollination ethylene burst, which originates primarily from the stigma and upper style, was strongly correlated with mate selection in single and mixed hand-pollinations using eight pollen donors in two maternal ecotypes. The post-pollination ethylene burst was also negatively correlated with the continuation of emission of benzylacetone, the most abundant pollinator-attracting corolla-derived floral volatile. We conclude that ethylene signaling plays a pivotal role in mate choice, and the post-pollination ethylene burst and the termination of benzylacetone release are accurate predictors, both qualitatively and quantitatively, of pre-zygotic mate selection and seed paternity. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  14. Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination

    PubMed Central

    Albrecht, Matthias

    2016-01-01

    Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. PMID:26865304

  15. Effects of tidal action on pollination and reproductive allocation in an estuarine emergent wetland plant-Sagittaria graminea (Alismataceae).

    PubMed

    Zhang, Yanwen; Zhang, Lihui; Zhao, Xingnan; Huang, Shengjun; Zhao, Jimin

    2013-01-01

    In estuarine wetlands, the daily periodic tidal activity has a profound effect on plant growth and reproduction. We studied the effects of tidal action on pollination and reproductive allocation of Sagittaria graminea. Results showed that the species had very different reproductive allocation in tidal and non-tidal habitats. In the tidal area, seed production was only 9.7% of that in non-tidal habitat, however, plants produced more male flowers and nearly twice the corms compared to those in non-tidal habitat. An experiment showed that the time available for effective pollination determined the pollination rate and pollen deposition in the tidal area. A control experiment suggested that low pollen deposition from low visitation frequency is not the main cause of very low seed sets or seed production in this plant in tidal habitat. The negative effects of tides (water) on pollen germination may surpass the influence of low pollen deposition from low visitation frequency. The length of time from pollen deposition to flower being submerged by water affected pollen germination rate on stigmas; more than three hours is necessary to allow pollen germination and complete fertilization to eliminate the risk of pollen grains being washed away by tidal water.

  16. Effects of Tidal Action on Pollination and Reproductive Allocation in an Estuarine Emergent Wetland Plant–Sagittaria graminea (Alismataceae)

    PubMed Central

    Zhang, Yanwen; Zhang, Lihui; Zhao, Xingnan; Huang, Shengjun; Zhao, Jimin

    2013-01-01

    In estuarine wetlands, the daily periodic tidal activity has a profound effect on plant growth and reproduction. We studied the effects of tidal action on pollination and reproductive allocation of Sagittaria graminea. Results showed that the species had very different reproductive allocation in tidal and non-tidal habitats. In the tidal area, seed production was only 9.7% of that in non-tidal habitat, however, plants produced more male flowers and nearly twice the corms compared to those in non-tidal habitat. An experiment showed that the time available for effective pollination determined the pollination rate and pollen deposition in the tidal area. A control experiment suggested that low pollen deposition from low visitation frequency is not the main cause of very low seed sets or seed production in this plant in tidal habitat. The negative effects of tides (water) on pollen germination may surpass the influence of low pollen deposition from low visitation frequency. The length of time from pollen deposition to flower being submerged by water affected pollen germination rate on stigmas; more than three hours is necessary to allow pollen germination and complete fertilization to eliminate the risk of pollen grains being washed away by tidal water. PMID:24244393

  17. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status

    PubMed Central

    Mogren, Christina L.; Lundgren, Jonathan G.

    2016-01-01

    Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pollinator strips were tested for clothianidin contamination in plant tissues, and the risks to honey bees assessed. An enzyme-linked immunosorbent assay (ELISA) quantified clothianidin in leaf, nectar, honey, and bee bread at organic and seed-treated farms. Total glycogen, lipids, and protein from honey bee workers were quantified. The proportion of plants testing positive for clothianidin were the same between treatments. Leaf tissue and honey had similar concentrations of clothianidin between organic and seed-treated farms. Honey (mean±SE: 6.61 ± 0.88 ppb clothianidin per hive) had seven times greater concentrations than nectar collected by bees (0.94 ± 0.09 ppb). Bee bread collected from organic sites (25.8 ± 3.0 ppb) had significantly less clothianidin than those at seed treated locations (41.6 ± 2.9 ppb). Increasing concentrations of clothianidin in bee bread were correlated with decreased glycogen, lipid, and protein in workers. This study shows that small, isolated areas set aside for conservation do not provide spatial or temporal relief from neonicotinoid exposures in agricultural regions where their use is largely prophylactic. PMID:27412495

  18. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status

    NASA Astrophysics Data System (ADS)

    Mogren, Christina L.; Lundgren, Jonathan G.

    2016-07-01

    Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pollinator strips were tested for clothianidin contamination in plant tissues, and the risks to honey bees assessed. An enzyme-linked immunosorbent assay (ELISA) quantified clothianidin in leaf, nectar, honey, and bee bread at organic and seed-treated farms. Total glycogen, lipids, and protein from honey bee workers were quantified. The proportion of plants testing positive for clothianidin were the same between treatments. Leaf tissue and honey had similar concentrations of clothianidin between organic and seed-treated farms. Honey (mean±SE: 6.61 ± 0.88 ppb clothianidin per hive) had seven times greater concentrations than nectar collected by bees (0.94 ± 0.09 ppb). Bee bread collected from organic sites (25.8 ± 3.0 ppb) had significantly less clothianidin than those at seed treated locations (41.6 ± 2.9 ppb). Increasing concentrations of clothianidin in bee bread were correlated with decreased glycogen, lipid, and protein in workers. This study shows that small, isolated areas set aside for conservation do not provide spatial or temporal relief from neonicotinoid exposures in agricultural regions where their use is largely prophylactic.

  19. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status.

    PubMed

    Mogren, Christina L; Lundgren, Jonathan G

    2016-07-14

    Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pollinator strips were tested for clothianidin contamination in plant tissues, and the risks to honey bees assessed. An enzyme-linked immunosorbent assay (ELISA) quantified clothianidin in leaf, nectar, honey, and bee bread at organic and seed-treated farms. Total glycogen, lipids, and protein from honey bee workers were quantified. The proportion of plants testing positive for clothianidin were the same between treatments. Leaf tissue and honey had similar concentrations of clothianidin between organic and seed-treated farms. Honey (mean±SE: 6.61 ± 0.88 ppb clothianidin per hive) had seven times greater concentrations than nectar collected by bees (0.94 ± 0.09 ppb). Bee bread collected from organic sites (25.8 ± 3.0 ppb) had significantly less clothianidin than those at seed treated locations (41.6 ± 2.9 ppb). Increasing concentrations of clothianidin in bee bread were correlated with decreased glycogen, lipid, and protein in workers. This study shows that small, isolated areas set aside for conservation do not provide spatial or temporal relief from neonicotinoid exposures in agricultural regions where their use is largely prophylactic.

  20. Dynamics of an ant-plant-pollinator model

    NASA Astrophysics Data System (ADS)

    Wang, Yuanshi; DeAngelis, Donald L.; Nathaniel Holland, J.

    2015-03-01

    In this paper, we consider plant-pollinator-ant systems in which plant-pollinator interaction and plant-ant interaction are both mutualistic, but there also exists interference of pollinators by ants. The plant-pollinator interaction can be described by a Beddington-DeAngelis formula, so we extend the formula to characterize plant-pollinator mutualisms, including the interference by ants, and form a plant-pollinator-ant model. Using dynamical systems theory, we show uniform persistence of the model. Moreover, we demonstrate conditions under which boundary equilibria are globally asymptotically stable. The dynamics exhibit mechanisms by which the three species could coexist when ants interfere with pollinators. We define a threshold in ant interference. When ant interference is strong, it can drive plant-pollinator mutualisms to extinction. Furthermore, if the ants depend on pollination mutualism for their persistence, then sufficiently strong ant interference could lead to their own extinction as well. Yet, when ant interference is weak, plant-ant and plant-pollinator mutualisms can promote the persistence of one another.

  1. Organic Farming Improves Pollination Success in Strawberries

    PubMed Central

    Andersson, Georg K. S.; Rundlöf, Maj; Smith, Henrik G.

    2012-01-01

    Pollination of insect pollinated crops has been found to be correlated to pollinator abundance and diversity. Since organic farming has the potential to mitigate negative effects of agricultural intensification on biodiversity, it may also benefit crop pollination, but direct evidence of this is scant. We evaluated the effect of organic farming on pollination of strawberry plants focusing on (1) if pollination success was higher on organic farms compared to conventional farms, and (2) if there was a time lag from conversion to organic farming until an effect was manifested. We found that pollination success and the proportion of fully pollinated berries were higher on organic compared to conventional farms and this difference was already evident 2–4 years after conversion to organic farming. Our results suggest that conversion to organic farming may rapidly increase pollination success and hence benefit the ecosystem service of crop pollination regarding both yield quantity and quality. PMID:22355380

  2. Frequency-dependent pollinator discrimination acts against female plants in the gynodioecious Geranium maculatum.

    PubMed

    Van Etten, Megan L; Chang, Shu-Mei

    2014-12-01

    Gynodioecy, the co-occurrence of female and hermaphroditic individuals, is thought to be an intermediate step between hermaphroditism and separate sexes, a major transition in flowering plants. Because retaining females in a population requires that they have increased seed fitness (to compensate for the lack of pollen fitness), factors that affect seed fitness are of great importance to the evolution of this mating system and have often been studied. However, factors negatively affecting female fitness are equally important and have been largely neglected. One such factor stems from female flowers being less attractive to insects than hermaphrodite flowers, thereby decreasing their relative fitness. To test the severity and consequences of this type of pollinator discrimination in Geranium maculatum, experimental populations with the range of sex ratios observed in nature were created, ranging from 13 % to 42 % females. Pollinators were observed in order to measure the strength of discrimination, and pollen deposition and seed production of both sexes were measured to determine the fitness consequences of this discrimination. Additionally a comparison was made across the sex ratios to determine whether discrimination was frequency-dependent. It was found that female flowers, on average, were visited at half of the rate of hermaphrodite flowers, which decreased their pollen receipt and seed production. Additionally, females were most discriminated against when rare, due to both changes in the pollinators' behaviour and a shift in pollinator composition. The results suggest that pollinator discrimination negatively affects females' relative fitness when they are rare. Thus, the initial spread of females in a population, the first step in the evolution of gynodioecy, may be made more difficult due to pollinator discrimination. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions

  3. Pollination and reproduction of an invasive plant inside and outside its ancestral range

    NASA Astrophysics Data System (ADS)

    Petanidou, Theodora; Price, Mary V.; Bronstein, Judith L.; Kantsa, Aphrodite; Tscheulin, Thomas; Kariyat, Rupesh; Krigas, Nikos; Mescher, Mark C.; De Moraes, Consuelo M.; Waser, Nickolas M.

    2018-05-01

    Comparing traits of invasive species within and beyond their ancestral range may improve our understanding of processes that promote aggressive spread. Solanum elaeagnifolium (silverleaf nightshade) is a noxious weed in its ancestral range in North America and is invasive on other continents. We compared investment in flowers and ovules, pollination success, and fruit and seed set in populations from Arizona, USA ("AZ") and Greece ("GR"). In both countries, the populations we sampled varied in size and types of present-day disturbance. Stature of plants increased with population size in AZ samples whereas GR plants were uniformly tall. Taller plants produced more flowers, and GR plants produced more flowers for a given stature and allocated more ovules per flower. Similar functional groups of native bees pollinated in AZ and GR populations, but visits to flowers decreased with population size and we observed no visits in the largest GR populations. As a result, plants in large GR populations were pollen-limited, and estimates of fecundity were lower on average in GR populations despite the larger allocation to flowers and ovules. These differences between plants in our AZ and GR populations suggest promising directions for further study. It would be useful to sample S. elaeagnifolium in Mediterranean climates within the ancestral range (e.g., in California, USA), to study asexual spread via rhizomes, and to use common gardens and genetic studies to explore the basis of variation in allocation patterns and of relationships between visitation and fruit set.

  4. Attraction of pollinators to atemoya (Magnoliales: Annonaceae) in Puerto Rico: A synergetic approach using multiple nitidulid lures

    USDA-ARS?s Scientific Manuscript database

    Atemoya, a cross between Annona squamosa and A. cherimola (Annonaceae), has the potential to be a major fruit crop in tropical and subtropical areas. A major setback to production throughout the world is low fruit-set due to inadequate visits by pollinators, typically beetles in the family Nitidulid...

  5. Evidence of red sensitive photoreceptors in Pygopleurus israelitus (Glaphyridae: Coleoptera) and its implications for beetle pollination in the southeast Mediterranean.

    PubMed

    Martínez-Harms, J; Vorobyev, M; Schorn, J; Shmida, A; Keasar, T; Homberg, U; Schmeling, F; Menzel, R

    2012-06-01

    A very well-documented case of flower-beetle interaction is the association in the Mediterranean region between red bowl-shaped flowers and beetles of the family Glaphyridae. The present study examines the visual mechanisms by which Pygopleurus israelitus (Glaphyridae: Scarabaeoidea: Coleoptera) would perceive the colors of flowers they visit by characterizing the spectral sensitivity of its photoreceptors. Our measurements revealed the presence of three types of photoreceptors, maximally sensitive in the UV, green and red areas of the spectrum. Using color vision space diagrams, we calculated the distribution of beetle-visited flower colors in the glaphyrid and honeybee color space and evaluated whether chromatic discrimination differs between the two types of pollinators. Respective color loci in the beetle color space are located on one side of the locus for green foliage background, whereas in the honeybee the flower color loci surround the locus occupied by green foliage. Our results represent the first evidence of a red sensitive photoreceptor in a flower-visiting coleopteran species, highlighting Glaphyridae as an interesting model group to study the role of pollinators in flower color evolution.

  6. Deep roots delay flowering and relax the impact of floral traits and associated pollinators in steppe plants

    PubMed Central

    Berrached, Rachda; Kadik, Leila; Ait Mouheb, Hocine; Prinzing, Andreas

    2017-01-01

    Strong seasonality in abiotic harshness and pollinator availability shape the reproductive success of plants. Plant species can avoid or can tolerate harsh abiotic conditions and can attract different pollinators, but it remains unknown (i) which of these capacities is most important for flowering phenology, (ii) whether tolerance/avoidance of abiotic harshness reinforces or relaxes the phenological differentiation of species attracting different pollinators. We assembled possibly the first functional trait database for a North African steppe covering 104 species. We inferred avoidance of harshness (drought) from dormancy, i.e. annual life-span and seed size. We inferred tolerance or resistance to harshness from small specific leaf area, small stature, deep roots and high dry matter content. We inferred the type of pollinators attracted from floral colour, shape and depth. We found that avoidance traits did not affect flowering phenology, and among tolerance traits only deep roots had an effect by delaying flowering. Flower colour (red or purple), and occasionally flower depth, delayed flowering. Dish, gullet and flag shape accelerated flowering. Interactive effects however were at least as important, inversing the mentioned relationship between floral characters and flowering phenology. Specifically, among drought-tolerant deep-rooted species, flowering phenologies converged among floral types attracting different pollinators, without becoming less variable overall. Direct and interactive effects of root depth and floral traits explained at least 45% of the variance in flowering phenology. Also, conclusions on interactive effects were highly consistent with and without including information on family identity or outliers. Overall, roots and floral syndromes strongly control flowering phenology, while many other traits do not. Surprisingly, floral syndromes and the related pollinators appear to constrain phenology mainly in shallow-rooted, abiotically little

  7. The role of beetle marks and flower colour on visitation by monkey beetles (hopliini) in the greater cape floral region, South Africa.

    PubMed

    Van Kleunen, Mark; Nänni, Ingrid; Donaldson, John S; Manning, John C

    2007-12-01

    A deviation from the classical beetle pollination syndrome of dull-coloured flowers with an unpleasant scent is found in the Greater Cape Floral Region of South Africa. Here, monkey beetles (Scarabaeidae) visit brightly coloured, odourless flowers with conspicuous dark spots and centres (beetle marks). The role of flower colour and markings in attracting monkey beetles is still poorly understood. Artificial model flowers with different marking patterns were used to test the effect of beetle marks on visitation by monkey beetles. To test whether monkey beetles are conditioned to the colour of the local matrix species, model flowers of different colours were placed in populations of three differently coloured species of Iridaceae. Among all three matrix species the presence of dark markings of some kind (either centres or spots) increased visitation rates but the different matrix species differed in whether the effect was due to a dark centre or to dark spots. Monkey beetles were not conditioned for the colour of the matrix species: model colour was not significant in the Hesperantha vaginata and in the Romulea monadelpha matrices, whereas yellow model flowers were preferred over orange ones in the orange-flowered Sparaxis elegans matrix. This study is the first to demonstrate that beetle marks attract pollinating monkey beetles in the Greater Cape Floral Region. In contrast to plants with the classical beetle pollination syndrome that use floral scent as the most important attractant of pollinating beetles, plants with the monkey beetle pollination syndrome rely on visual signals, and, in some areas at least, monkey beetles favour flowers with dark beetle markings over unmarked flowers.

  8. Nectar properties and the role of sunbirds as pollinators of the golden-flowered tea (Camellia petelotii).

    PubMed

    Sun, Shi-Guo; Huang, Zhi-Huan; Chen, Zhi-Bao; Huang, Shuang-Quan

    2017-03-01

    Properties of floral nectar have been used to predict if a plant species is pollinated by birds. To see whether winter-flowering plants evolve nectar properties corresponding to bird pollinators, nectar properties of several Camellia species (including the golden-flowered tea), as well as the role of floral visitors as effective pollinators, were examined. Potential pollinators of Camellia petelotii were identified at different times of day and under various weather conditions. A bird exclusion experiment was used to compare the pollination effectiveness of birds and insects. Nectar sugar components (fructose, glucose, and sucrose) from C. petelotii growing wild and another seven Camellia species and 22 additional cultivars (all in cultivation) were examined by high-performance liquid chromatography (HPLC). The sunbird Aethopyga siparaja and honeybees were the most frequent floral visitors to C. petelotii . Honeybee visits were significantly reduced in cloudy/rainy weather. The fruit and seed set of flowers with birds excluded were reduced by 64%, indicating that bird pollination is significant. For the wild populations of C. petelotii , a bagged flower could secrete 157 μL nectar; this nectar has a low sugar concentration (19%) and is sucrose-dominant (87%). The eight Camellia species and 22 cultivars had an average sugar concentration of around 30% and a sucrose concentration of 80%, demonstrating sucrose-dominant nectar in Camellia species. The nectar sugar composition of Camellia species was characterized by sucrose dominance. In addition, the large reduction in seed set when birds are excluded in the golden-flowered tea also supports the suggestion that these winter-flowering plants may have evolved with birds as significant pollinators. © 2017 Botanical Society of America.

  9. Pollinator Competition as a Driver of Floral Divergence: An Experimental Test.

    PubMed

    Temeles, Ethan J; Newman, Julia T; Newman, Jennifer H; Cho, Se Yeon; Mazzotta, Alexandra R; Kress, W John

    2016-01-01

    Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants.

  10. Pollinator Competition as a Driver of Floral Divergence: An Experimental Test

    PubMed Central

    Temeles, Ethan J.; Newman, Julia T.; Newman, Jennifer H.; Cho, Se Yeon; Mazzotta, Alexandra R.; Kress, W. John

    2016-01-01

    Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants. PMID:26814810

  11. Pollinator-mediated natural selection in Penstemon digitalis.

    PubMed

    Parachnowitsch, Amy; Kessler, André

    2010-12-01

    Measuring the agents of natural selection is important because it allows us to understand not only which traits are expected to evolve but also why they will evolve. Natural selection by pollinators on floral traits is often assumed because in outcrossing animal-pollinated plants flowers are generally thought to function as advertisements of rewards directed at pollinators. We tested the role of bee pollinators in selection on Penstemon digitalis and found that pollinators were driving selection for larger and more flowers. However, what makes our publication unique is the additional information we gained from reviewing the few other studies that also directly tested whether pollinators were agents of selection on floral traits. As we would expect if pollinators are important agents of selection, selection on floral traits was significantly stronger when pollinators were present than when they were experimentally removed. Taken together, these results suggest that pollinators can be important drivers of selection in contemporary populations.

  12. Thrips pollination of Mesozoic gymnosperms.

    PubMed

    Peñalver, Enrique; Labandeira, Conrad C; Barrón, Eduardo; Delclòs, Xavier; Nel, Patricia; Nel, André; Tafforeau, Paul; Soriano, Carmen

    2012-05-29

    Within modern gymnosperms, conifers and Ginkgo are exclusively wind pollinated whereas many gnetaleans and cycads are insect pollinated. For cycads, thrips are specialized pollinators. We report such a specialized pollination mode from Early Cretaceous amber of Spain, wherein four female thrips representing a genus and two species in the family Melanthripidae were covered by abundant Cycadopites pollen grains. These females bear unique ring setae interpreted as specialized structures for pollen grain collection, functionally equivalent to the hook-tipped sensilla and plumose setae on the bodies of bees. The most parsimonious explanation for this structure is parental food provisioning for larvae, indicating subsociality. This association provides direct evidence of specialized collection and transportation of pollen grains and likely gymnosperm pollination by 110-105 million years ago, possibly considerably earlier.

  13. Thrips pollination of Mesozoic gymnosperms

    PubMed Central

    Peñalver, Enrique; Labandeira, Conrad C.; Barrón, Eduardo; Delclòs, Xavier; Nel, Patricia; Nel, André; Tafforeau, Paul; Soriano, Carmen

    2012-01-01

    Within modern gymnosperms, conifers and Ginkgo are exclusively wind pollinated whereas many gnetaleans and cycads are insect pollinated. For cycads, thrips are specialized pollinators. We report such a specialized pollination mode from Early Cretaceous amber of Spain, wherein four female thrips representing a genus and two species in the family Melanthripidae were covered by abundant Cycadopites pollen grains. These females bear unique ring setae interpreted as specialized structures for pollen grain collection, functionally equivalent to the hook-tipped sensilla and plumose setae on the bodies of bees. The most parsimonious explanation for this structure is parental food provisioning for larvae, indicating subsociality. This association provides direct evidence of specialized collection and transportation of pollen grains and likely gymnosperm pollination by 110–105 million years ago, possibly considerably earlier. PMID:22615414

  14. Spatial and Temporal Trends of Global Pollination Benefit

    PubMed Central

    Lautenbach, Sven; Seppelt, Ralf; Liebscher, Juliane; Dormann, Carsten F.

    2012-01-01

    Pollination is a well-studied and at the same time a threatened ecosystem service. A significant part of global crop production depends on or profits from pollination by animals. Using detailed information on global crop yields of 60 pollination dependent or profiting crops, we provide a map of global pollination benefits on a 5′ by 5′ latitude-longitude grid. The current spatial pattern of pollination benefits is only partly correlated with climate variables and the distribution of cropland. The resulting map of pollination benefits identifies hot spots of pollination benefits at sufficient detail to guide political decisions on where to protect pollination services by investing in structural diversity of land use. Additionally, we investigated the vulnerability of the national economies with respect to potential decline of pollination services as the portion of the (agricultural) economy depending on pollination benefits. While the general dependency of the agricultural economy on pollination seems to be stable from 1993 until 2009, we see increases in producer prices for pollination dependent crops, which we interpret as an early warning signal for a conflict between pollination service and other land uses at the global scale. Our spatially explicit analysis of global pollination benefit points to hot spots for the generation of pollination benefits and can serve as a base for further planning of land use, protection sites and agricultural policies for maintaining pollination services. PMID:22563427

  15. Private channels in plant-pollinator mutualisms

    PubMed Central

    Chen, Chun; Hossaert-McKey, Martine

    2010-01-01

    Volatile compounds often mediate plant-pollinator interactions, and may promote specialization in plant-pollinator relationships, notably through private channels of unusual compounds. Nevertheless, the existence of private channels, i.e., the potential for exclusive communication via unique signals and receptors, is still debated in the literature. Interactions between figs and their pollinating wasps offer opportunities for exploring this concept. Several experiments have demonstrated that chemical mediation is crucial in ensuring the encounter between figs and their species-specific pollinators. Indeed, chemical messages emitted by figs are notably species- and developmental stage-specific, making them reliable cues for the pollinator. In most cases, the species-specificity of wasp attraction is unlikely to result from the presence of a single specific compound. Nevertheless, a recent paper on the role of scents in the interaction between Ficus semicordata and its pollinating wasp Ceratosolen gravelyi showed that a single compound, 4-methylanisole, is the main signal compound in the floral scent, and is sufficient by itself to attract the obligate pollinator. Mainly focusing on these results, we propose here that a floral scent can act as a private channel, attracting only the highly specific pollinator. PMID:20484975

  16. Behavior of bumble bee pollinators of Aralia hispida Vent. (Araliaceae).

    PubMed

    Thomson, James D; Maddison, Wayne P; Plowright, R C

    1982-09-01

    The andromonoecious plant Aralia hispida has a complicated blooming schedule involving alternations between male and female phases.Nectar and pollen are released gradually through the day. Plants vary considerably in number of flowers per umbel and number of umbels per plant. The major pollinators, bumble bees, show several characteristic behaviors in response to the plant's presentation. 1. Foraging bees preferentially visit umbels that bear large numbers of open, male-phase flowers. They also prefer shoots with large numbers of umbels. 2. If bees have received high nectar rewards at one umbel, they are more likely to visit a neighboring umbel rather than leaving the area. On drained umbels, bees probe more empty flowers before rejecting the umbel if they have been rewarded just previously. 3. Individual bees restrict their foraging to limited areas. Within these areas, they concentrate their visits on certain shoots which they tend to visit in repeatable sequences, or "traplines". It is inappropriate to consider these bees as "searching". 4. We discuss some of the implications of these data for two areas of current theoretical interest: plant reproductive strategies and optimal foraging.

  17. Stigma Sensitivity and the Duration of Temporary Closure Are Affected by Pollinator Identity in Mazus miquelii (Phrymaceae), a Species with Bilobed Stigma

    PubMed Central

    Jin, Xiao-Fang; Ye, Zhong-Ming; Amboka, Grace M.; Wang, Qing-Feng; Yang, Chun-Feng

    2017-01-01

    A sensitive bilobed stigma is thought to assure reproduction, avoid selfing and promote outcrossing. In addition, it may also play a role in pollinator selection since only pollinators with the appropriate body size can trigger this mechanism. However, no experimental study has investigated how the sensitive stigma responds to different pollinators and its potential effects on pollination. Mazus miquelii (Phrymaceae), a plant with a bilobed stigma was studied to investigate the relationship between stigma behaviors and its multiple insect pollinators. The reaction time of stigma closure after touched, duration of temporary closure, and factors determining permanent closure of the stigma were studied when flowers were exposed to different visitors and conducted with hand pollination. Manual stimulation was also used to detect the potential differences in stigmas when touched with different degrees of external forces. Results indicated that, compared to pollinators with a small body size, larger pollinators transferred more pollen grains to the stigma, causing a rapid stigma response and resulting in a higher percentage of permanent closures. Duration of temporary closure was negatively correlated with the speed of stigma closure; a stigma that closed more rapidly reopened more slowly. Manual stimulation showed that reaction time of stigma closure was likely a response to external mechanical forces. Hand pollination treatments revealed that the permanent closure of a stigma was determined by the size of stigmatic pollen load. For large pollinators, the speedy reaction of the stigma might help to reduce pollen loss, enhance pollen germination and avoid obstructing pollen export. Stigmas showed low sensitivity when touched by inferior pollinators, which may have increased the possibility of pollen deposition by subsequent visits. Therefore, the stigma behavior in M. miquelii is likely a mechanism of pollinator selection to maximize pollination success. PMID:28539934

  18. Stigma Sensitivity and the Duration of Temporary Closure Are Affected by Pollinator Identity in Mazus miquelii (Phrymaceae), a Species with Bilobed Stigma.

    PubMed

    Jin, Xiao-Fang; Ye, Zhong-Ming; Amboka, Grace M; Wang, Qing-Feng; Yang, Chun-Feng

    2017-01-01

    A sensitive bilobed stigma is thought to assure reproduction, avoid selfing and promote outcrossing. In addition, it may also play a role in pollinator selection since only pollinators with the appropriate body size can trigger this mechanism. However, no experimental study has investigated how the sensitive stigma responds to different pollinators and its potential effects on pollination. Mazus miquelii (Phrymaceae), a plant with a bilobed stigma was studied to investigate the relationship between stigma behaviors and its multiple insect pollinators. The reaction time of stigma closure after touched, duration of temporary closure, and factors determining permanent closure of the stigma were studied when flowers were exposed to different visitors and conducted with hand pollination. Manual stimulation was also used to detect the potential differences in stigmas when touched with different degrees of external forces. Results indicated that, compared to pollinators with a small body size, larger pollinators transferred more pollen grains to the stigma, causing a rapid stigma response and resulting in a higher percentage of permanent closures. Duration of temporary closure was negatively correlated with the speed of stigma closure; a stigma that closed more rapidly reopened more slowly. Manual stimulation showed that reaction time of stigma closure was likely a response to external mechanical forces. Hand pollination treatments revealed that the permanent closure of a stigma was determined by the size of stigmatic pollen load. For large pollinators, the speedy reaction of the stigma might help to reduce pollen loss, enhance pollen germination and avoid obstructing pollen export. Stigmas showed low sensitivity when touched by inferior pollinators, which may have increased the possibility of pollen deposition by subsequent visits. Therefore, the stigma behavior in M. miquelii is likely a mechanism of pollinator selection to maximize pollination success.

  19. Nectar supplementation changes pollinator behaviour and pollination mode in Pedicularis dichotoma: implications for evolutionary transitions.

    PubMed

    Tong, Ze-Yu; Wang, Xiang-Ping; Wu, Ling-Yun; Huang, Shuang-Quan

    2018-06-07

    Gain or loss of floral nectar, an innovation in floral traits, has occurred in diverse lineages of flowering plants, but the causes of reverse transitions (gain of nectar) remain unclear. Phylogenetic studies show multiple gains and losses of floral nectar in the species-rich genus Pedicularis. Here we explore how experimental addition of nectar to a supposedly nectarless species, P. dichotoma, influences pollinator foraging behaviour. The liquid (nectar) at the base of the corolla tube in P. dichotoma was investigated during anthesis. Sugar components were measured by high-performance liquid chromatography. To understand evolutionary transitions of nectar, artificial nectar was added to corolla tubes and the reactions of bumble-bee pollinators to extra nectar were examined. A quarter of unmanipulated P. dichotoma plants contained measurable nectar, with 0.01-0.49 μL per flower and sugar concentrations ranging from 4 to 39 %. The liquid surrounding the ovaries in the corolla tubes was sucrose-dominant nectar, as in two sympatric nectariferous Pedicularis species. Bumble-bees collected only pollen from control (unmanipulated) flowers of P. dichotoma, adopting a sternotribic pollination mode, but switched to foraging for nectar in manipulated (nectar-supplemented) flowers, adopting a nototribic pollination mode as in nectariferous species. This altered foraging behaviour did not place pollen on the ventral side of the bees, and sternotribic pollination also decreased. Our study is the first to quantify variation in nectar production in a supposedly 'nectarless' Pedicularis species. Flower manipulations by adding nectar suggested that gain (or loss) of nectar would quickly result in an adaptive behavioural shift in the pollinator, producing a new location for pollen deposition and stigma contact without a shift to other pollinators. Frequent gains of nectar in Pedicularis species would be beneficial by enhancing pollinator attraction in unpredictable pollination

  20. Valuing Insect Pollination Services with Cost of Replacement

    PubMed Central

    Allsopp, Mike H.; de Lange, Willem J.; Veldtman, Ruan

    2008-01-01

    Value estimates of ecosystem goods and services are useful to justify the allocation of resources towards conservation, but inconclusive estimates risk unsustainable resource allocations. Here we present replacement costs as a more accurate value estimate of insect pollination as an ecosystem service, although this method could also be applied to other services. The importance of insect pollination to agriculture is unequivocal. However, whether this service is largely provided by wild pollinators (genuine ecosystem service) or managed pollinators (commercial service), and which of these requires immediate action amidst reports of pollinator decline, remains contested. If crop pollination is used to argue for biodiversity conservation, clear distinction should be made between values of managed- and wild pollination services. Current methods either under-estimate or over-estimate the pollination service value, and make use of criticised general insect and managed pollinator dependence factors. We apply the theoretical concept of ascribing a value to a service by calculating the cost to replace it, as a novel way of valuing wild and managed pollination services. Adjusted insect and managed pollinator dependence factors were used to estimate the cost of replacing insect- and managed pollination services for the Western Cape deciduous fruit industry of South Africa. Using pollen dusting and hand pollination as suitable replacements, we value pollination services significantly higher than current market prices for commercial pollination, although lower than traditional proportional estimates. The complexity associated with inclusive value estimation of pollination services required several defendable assumptions, but made estimates more inclusive than previous attempts. Consequently this study provides the basis for continued improvement in context specific pollination service value estimates. PMID:18781196

  1. Pollination of Cypripedium plectrochilum (Orchidaceae) by Lasioglossum spp. (Halictidae): the roles of generalist attractants versus restrictive floral architecture.

    PubMed

    Li, P; Luo, Y; Bernhardt, P; Kou, Y; Perner, H

    2008-03-01

    The pollination of Cypripedium plectrochilum Franch. was studied in the Huanglong Nature Reserve, Sichuan, China. Although large bees (Bombus, Apis), small bees (Ceratina, Lasioglossum), ants (Formica sp.), true flies (Diptera) and a butterfly were all found to visit the flowers, only small bees, including three Lasioglossum spp. (L. viridiclaucum, L. sichuanense and L. sp.; Halictidae) and one Ceratina sp., carried the flower's pollen and contacted the receptive stigma. Measurements of floral architecture showed that interior floral dimensions best fit the exterior dimensions of Lasioglossum spp., leading to the consistent deposition and stigmatic reception of dorsally-placed, pollen smears. The floral fragrance was dominated by one ketone, 3-methyl-Decen-2-one. The conversion rate of flowers into capsules in open (insect) pollinated flowers at the site was more than 38%. We conclude that, while pigmentation patterns and floral fragrance attracted a wide variety of insect foragers, canalization of interior floral dimensions ultimately determined the spectrum of potential pollinators in this generalist, food-mimic flower. A review of the literature showed that the specialised mode of pollination-by-deceit in C. plectrochilum, limiting pollinators to a narrow and closely related guild of 'dupes' is typical for other members of this genus.

  2. An ultraviolet floral polymorphism associated with life history drives pollinator discrimination in Mimulus guttatus.

    PubMed

    Peterson, Megan L; Miller, Timothy J; Kay, Kathleen M

    2015-03-01

    • Ultraviolet (UV) floral patterns are common in angiosperms and mediate pollinator attraction, efficiency, and constancy. UV patterns may vary within species, yet are cryptic to human observers. Thus, few studies have explicitly described the distribution or ecological significance of intraspecific variation in UV floral patterning. Here, we describe the geographic distribution and pattern of inheritance of a UV polymorphism in the model plant species Mimulus guttatus (Phrymaceae). We then test whether naturally occurring UV phenotypes influence pollinator interactions within M. guttatus.• We document UV patterns in 18 annual and 19 perennial populations and test whether UV pattern is associated with life history. To examine the pattern of inheritance, we conducted crosses within and between UV phenotypes. Finally, we tested whether bee pollinators discriminate among naturally occurring UV phenotypes in two settings: wild bee communities and captive Bombus impatiens.• Within M. guttatus, perennial populations exhibit a small bulls-eye pattern, whereas a bilaterally symmetric runway pattern occurs mainly in annual populations. Inheritance of UV patterning is consistent with a single-locus Mendelian model in which the runway phenotype is dominant. Bee pollinators discriminate against unfamiliar UV patterns in both natural and controlled settings.• We describe a widespread UV polymorphism associated with life history divergence within Mimulus guttatus. UV pattern influences pollinator visitation and should be considered when estimating reproductive barriers between life history ecotypes. This work develops a new system to investigate the ecology and evolution of UV floral patterning in a species with extensive genomic resources. © 2015 Botanical Society of America, Inc.

  3. Pollination by sexual deception promotes outcrossing and mate diversity in self-compatible clonal orchids.

    PubMed

    Whitehead, M R; Linde, C C; Peakall, R

    2015-08-01

    The majority of flowering plants rely on animals as pollen vectors. Thus, plant mating systems and pollen dispersal are strongly influenced by pollinator behaviour. In Australian sexually deceptive orchids pollinated by male thynnine wasps, outcrossing and extensive pollen flow is predicted due to floral deception, which minimizes multiple flower visitations within patches, and the movement of pollinators under mate-search rather than foraging behaviours. This hypothesis was tested using microsatellite markers to reconstruct and infer paternity in two clonal, self-compatible orchids. Offspring from naturally pollinated Chiloglottis valida and C. aff. jeanesii were acquired through symbiotic culture of seeds collected over three seasons. In both species, outcrossing was extensive (tm  = 0.924-1.00) despite clone sizes up to 11 m wide. The median pollen flow distance based on paternity for both taxa combined was 14.5 m (n = 18, range 0-69 m), being larger than typically found by paternity analyses in other herbaceous plants. Unexpectedly for orchids, some capsules were sired by more than one father, with an average of 1.35 pollen donors per fruit. This is the first genetic confirmation of polyandry in orchid capsules. Further, we report a possible link between multiple paternity and increased seed fitness. Together, these results demonstrate that deceptive pollination by mate-searching wasps enhances offspring fitness by promoting both outcrossing and within-fruit paternal diversity. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  4. Pollinators: Downward Trends and Lofty Goals

    EPA Science Inventory

    Pollinators are essential to natural and managed landscapes. By providing critical pollination services, bees, birds, beetles, butterflies, bats and other animals enhance biodiversity and contribute to production of many nutritious foods. Honey bees alone pollinate 90 commercia...

  5. Can fine-scale post-pollination variation of fig volatile compounds explain some steps of the temporal succession of fig wasps associated with Ficus racemosa?

    NASA Astrophysics Data System (ADS)

    Proffit, Magali; Bessière, Jean-Marie; Schatz, Bertrand; Hossaert-McKey, Martine

    2018-07-01

    Volatile organic compounds (VOCs) emitted by flowers play an essential role in mediating the attraction of pollinators. However, they also attract other species exploiting resources associated with flowers. For instance, VOCs emitted by figs play a major role in encounters between Ficus spp., their mutualistic pollinating wasps, and all the members of the community of non-pollinating fig wasps (NPFWs) that exploit the mutualistic interaction. Because pollinators might be in limited supply for a tree bearing many inflorescences, the plant might maximize its individual reproductive success by reducing the attractiveness of inflorescences once they are pollinated, so that pollinators orient only towards the tree's unpollinated figs. Changes in VOCs emission that bring this about could represent an important cue for NPFWs that exploit particular stages of fig development. In this study, by monitoring precisely the presence of fig-associated wasps on figs of F. racemosa, a common widespread fig species, we demonstrated that 4-5 days and 15 days following pollination represent two critical transitional steps in the succession of different wasp species. Then, focusing on the first one of these transitional steps, by investigating the composition of fig VOCs at receptivity and from 1 to 5 days following pollination, we detected progressive quantitative and qualitative variation of floral scent following pollination. These changes are significant at 5 days following pollination. The qualitative changes are mainly due to an increase in the relative proportions of two monoterpenes (α-pinene and limonene). These variations of the floral VOCs following pollination could explain why pollinating wasps stop visiting figs very shortly after the first pollinators enter receptive figs. They also possibly explain the succession of non-pollinating wasps on the figs following pollination.

  6. Pollinator Foraging Adaptation and Coexistence of Competing Plants.

    PubMed

    Revilla, Tomás A; Křivan, Vlastimil

    2016-01-01

    We use the optimal foraging theory to study coexistence between two plant species and a generalist pollinator. We compare conditions for plant coexistence for non-adaptive vs. adaptive pollinators that adjust their foraging strategy to maximize fitness. When pollinators have fixed preferences, we show that plant coexistence typically requires both weak competition between plants for resources (e.g., space or nutrients) and pollinator preferences that are not too biased in favour of either plant. We also show how plant coexistence is promoted by indirect facilitation via the pollinator. When pollinators are adaptive foragers, pollinator's diet maximizes pollinator's fitness measured as the per capita population growth rate. Simulations show that this has two conflicting consequences for plant coexistence. On the one hand, when competition between pollinators is weak, adaptation favours pollinator specialization on the more profitable plant which increases asymmetries in plant competition and makes their coexistence less likely. On the other hand, when competition between pollinators is strong, adaptation promotes generalism, which facilitates plant coexistence. In addition, adaptive foraging allows pollinators to survive sudden loss of the preferred plant host, thus preventing further collapse of the entire community.

  7. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination

    PubMed Central

    Holzschuh, Andrea; Dormann, Carsten F.; Tscharntke, Teja; Steffan-Dewenter, Ingolf

    2011-01-01

    Agricultural land use results in direct biodiversity decline through loss of natural habitat, but may also cause indirect cross-habitat effects on conservation areas. We conducted three landscape-scale field studies on 67 sites to test the hypothesis that mass flowering of oilseed rape (Brassica napus) results in a transient dilution of bees in crop fields, and in increased competition between crop plants and grassland plants for pollinators. Abundances of bumble-bees, which are the main pollinators of the grassland plant Primula veris, but also pollinate oilseed rape (OSR), decreased with increasing amount of OSR. This landscape-scale dilution affected bumble-bee abundances strongly in OSR fields and marginally in grasslands, where bumble-bee abundances were generally low at the time of Primula flowering. Seed set of Primula veris, which flowers during OSR bloom, was reduced by 20 per cent when the amount of OSR within 1 km radius increased from 0 to 15 per cent. Hence, the current expansion of bee-attractive biofuel crops results in transient dilution of crop pollinators, which means an increased competition for pollinators between crops and wild plants. In conclusion, mass-flowering crops potentially threaten fitness of concurrently flowering wild plants in conservation areas, despite the fact that, in the long run, mass-flowering crops can enhance abundances of generalist pollinators and their pollination service. PMID:21471115

  8. The physics of pollinator attraction.

    PubMed

    Moyroud, Edwige; Glover, Beverley J

    2017-10-01

    Contents 350 I. 350 II. 350 III. 352 IV. 353 V. 353 353 References 354 SUMMARY: This Tansley Insight focuses on recent advances in our understanding of how flowers manipulate physical forces to attract animal pollinators and ensure reproductive success. Research has traditionally explored the role of chemical pigments and volatile organic compounds as cues for pollinators, but recent reports have demonstrated the importance of physical and structural means of pollinator attraction. Here we explore the role of petal microstructure in influencing floral light capture and optics, analysing colour, gloss and polarization effects. We discuss the interaction between flower, pollinator and gravity, and how petal surface structure can influence that interaction. Finally, we consider the role of electrostatic forces in pollen transfer and pollinator attraction. We conclude that this new interdisciplinary field is evolving rapidly. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination.

    PubMed

    Sutter, Louis; Albrecht, Matthias

    2016-02-10

    Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. © 2016 The Author(s).

  10. Ecology and evolution of plant–pollinator interactions

    PubMed Central

    Mitchell, Randall J.; Irwin, Rebecca E.; Flanagan, Rebecca J.; Karron, Jeffrey D.

    2009-01-01

    Background Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. Scope In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come. PMID:19482881

  11. Ecology and evolution of plant-pollinator interactions.

    PubMed

    Mitchell, Randall J; Irwin, Rebecca E; Flanagan, Rebecca J; Karron, Jeffrey D

    2009-06-01

    Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant-pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant-Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.

  12. Wild bees visiting cucumber on midwestern U.S. organic farms benefit from near-farm semi-natural areas.

    PubMed

    Smith, A A; Bentley, M; Reynolds, H L

    2013-02-01

    Wild bees that provide pollination services to vegetable crops depend on forage resources, nesting sites, and overwintering sites in the agricultural landscape. The scale at which crop-visiting bees use resources in the landscape can vary regionally, and has not been characterized in the Midwestern United States. We investigated the effects of seminatural land cover on wild bee visitation frequency to cucumber (Cucumis sativus L.) and on wild bee species richness on 10 organic farms in Indiana. We estimated the spatial scale at which the effects of land cover were strongest, and also examined the effects of nonlandscape factors on wild bees. The visitation frequency of wild bees to cucumber was positively related to the proportion of seminatural land in the surrounding landscape, and this relationship was strongest within 250 m of the cucumber patch. The species richness of wild cucumber visitors was not affected by land cover at any spatial scale, nor by any of the nonlandscape factors we considered. Our results indicate that wild, crop visiting bees benefit from seminatural areas in the agricultural landscape, and benefit most strongly from seminatural areas within 250 m of the crop field. This suggests that setting aside natural areas in the near vicinity of vegetable fields may be an effective way to support wild, crop-visiting bees and secure their pollination services.

  13. Pollinator diversity and reproductive success of Epipactis helleborine (L.) Crantz (Orchidaceae) in anthropogenic and natural habitats.

    PubMed

    Rewicz, Agnieszka; Jaskuła, Radomir; Rewicz, Tomasz; Tończyk, Grzegorz

    2017-01-01

    success of E. helleborine in the populations from anthropogenic habitats than in the populations from natural habitats may result from a higher number of visits by pollinators and their greater species diversity, but also from the larger size of plants growing in such habitats. Moreover, our data clearly show that E. helleborine is an opportunistic species with respect to pollinators, with a wide spectrum of pollinating insects. Summarising, E. helleborine is a rare example of orchid species whose current range is not declining. Its ability to make use of anthropogenically altered habitats has allowed its significant spatial range expansion, and even successful colonisation of North America.

  14. Persistence of pollination mutualisms in the presence of ants.

    PubMed

    Wang, Yuanshi; Wang, Shikun

    2015-01-01

    This paper considers plant-pollinator-ant systems in which the plant-pollinator interaction is mutualistic but ants have both positive and negative effects on plants. The ants also interfere with pollinators by preventing them from accessing plants. While a Beddington-DeAngelis (BD) formula can describe the plant-pollinator interaction, the formula is extended in this paper to characterize the pollination mutualism under the ant interference. Then, a plant-pollinator-ant system with the extended BD functional response is discussed, and global dynamics of the model demonstrate the mechanisms by which pollination mutualism can persist in the presence of ants. When the ant interference is strong, it can result in extinction of pollinators. Moreover, if the ants depend on pollination mutualism for survival, the strong interference could drive pollinators into extinction, which consequently lead to extinction of the ants themselves. When the ant interference is weak, a cooperation between plant-ant and plant-pollinator mutualisms could occur, which promotes survival of both ants and pollinators, especially in the case that ants (respectively, pollinators) cannot survive in the absence of pollinators (respectively, ants). Even when the level of ant interference remains invariant, varying ants' negative effect on plants can result in survival/extinction of both ants and pollinators. Therefore, our results provide an explanation for the persistence of pollination mutualism when there exist ants.

  15. Sticky snack for sengis: The Cape rock elephant-shrew, Elephantulus edwardii (Macroscelidea), as a pollinator of the Pagoda lily, Whiteheadia bifolia (Hyacinthaceae)

    NASA Astrophysics Data System (ADS)

    Wester, Petra

    2010-12-01

    Following the recent discovery of rodent pollination in the Pagoda lily, Whiteheadia bifolia (Hyacinthaceae) in South Africa, now the Cape rock elephant-shrew, Elephantulus edwardii (Macroscelidea, Afrotheria) is reported as an additional pollinator. Elephant-shrews, live-trapped near W. bifolia plants, were released in two terraria, containing the plants. The animals licked nectar with their long and slender tongues while being dusted with pollen and touching the stigmas of the flowers with their long and flexible noses. The captured elephant-shrews had W. bifolia pollen in their faeces, likely as a result of grooming their fur as they visited the flowers without eating or destroying them. The animals mostly preferred nectar over other food. This is the first record of pollination and nectar consumption in the primarily insectivorous E. edwardii, contributing to the very sparse knowledge about the behaviour of this unique clade of African mammals, as well as pollination by small mammals.

  16. Pollinator declines. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes.

    PubMed

    Ollerton, Jeff; Erenler, Hilary; Edwards, Mike; Crockett, Robin

    2014-12-12

    Pollinators are fundamental to maintaining both biodiversity and agricultural productivity, but habitat destruction, loss of flower resources, and increased use of pesticides are causing declines in their abundance and diversity. Using historical records, we assessed the rate of extinction of bee and flower-visiting wasp species in Britain from the mid-19th century to the present. The most rapid phase of extinction appears to be related to changes in agricultural policy and practice beginning in the 1920s, before the agricultural intensification prompted by the Second World War, often cited as the most important driver of biodiversity loss in Britain. Slowing of the extinction rate from the 1960s onward may be due to prior loss of the most sensitive species and/or effective conservation programs. Copyright © 2014, American Association for the Advancement of Science.

  17. Pollination: sexual mimicry abounds.

    PubMed

    Schiestl, Florian P

    2010-12-07

    Why do plants mimic female insects to attract males for pollination? A new study gives insights into the advantages of sexual mimicry and documents this pollination system for the first time outside the orchid family, in a South African daisy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Pollinator-mediated selection on floral morphology: evidence for transgressive evolution in a derived hybrid lineage.

    PubMed

    Anton, K A; Ward, J R; Cruzan, M B

    2013-03-01

    Hybridization between closely related lineages is a mechanism that might promote substantive changes in phenotypic traits of descendants, resulting in transgressive evolution. Interbreeding between divergent but morphologically similar lineages can produce exceptional phenotypes, but the potential for transgressive variation to facilitate long-term trait changes in derived hybrid lineages has received little attention. We compare pollinator-mediated selection on transgressive floral traits in both early-generation and derived hybrid lineages of the Piriqueta cistoides ssp. caroliniana complex. The bowl-shaped flowers of morphotypes in this complex have similar gross morphologies and attract a common suite of small insect pollinators. However, they are defined by significant differences in characters that generate pollinator interest and visitation, including floral area and petal separation. In common garden experiments, patterns of pollen deposition in early-generation recombinant hybrids indicate that Piriqueta's pollinators favour flowers with greater area and reduced petal separation. Changes in floral morphology in derived hybrid lineages are consistent with predictions from selection gradients, but the magnitude of change is limited relative to the range of transgressive variation. These results suggest that hybridization provides variation for evolution of divergent floral traits. However, the potential for extreme transgressive variants to contribute to phenotypic shifts may be limited due to reduced heritability, evolutionary constraints or fitness trade-offs. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  19. Pollination of Anthurium (Araceae) by derelomine flower weevils (Coleoptera: Curculionidae).

    PubMed

    Franz, Nico M

    2007-03-01

    Cyclanthura flower weevils (Coleoptera: Curculionidae: Derelomini) are identified for the first time as pollinators of multiple species of Anthurium (Araceae) in Costa Rica. The weevils are present on the inflorescences in small numbers during the pistillate and staminate phase of anthesis, and consume plant tissues and pollen. The individuals of one species of Cyclanthura can visit several Anthurium species within the same locality. They also engage in reproductive activities and are likely to oviposit into the flowers. The mating strategies suggest that sperm precedence selects males that are able to secure their position as the last partner prior to oviposition.

  20. Pollinator Foraging Adaptation and Coexistence of Competing Plants

    PubMed Central

    Revilla, Tomás A.; Křivan, Vlastimil

    2016-01-01

    We use the optimal foraging theory to study coexistence between two plant species and a generalist pollinator. We compare conditions for plant coexistence for non-adaptive vs. adaptive pollinators that adjust their foraging strategy to maximize fitness. When pollinators have fixed preferences, we show that plant coexistence typically requires both weak competition between plants for resources (e.g., space or nutrients) and pollinator preferences that are not too biased in favour of either plant. We also show how plant coexistence is promoted by indirect facilitation via the pollinator. When pollinators are adaptive foragers, pollinator’s diet maximizes pollinator’s fitness measured as the per capita population growth rate. Simulations show that this has two conflicting consequences for plant coexistence. On the one hand, when competition between pollinators is weak, adaptation favours pollinator specialization on the more profitable plant which increases asymmetries in plant competition and makes their coexistence less likely. On the other hand, when competition between pollinators is strong, adaptation promotes generalism, which facilitates plant coexistence. In addition, adaptive foraging allows pollinators to survive sudden loss of the preferred plant host, thus preventing further collapse of the entire community. PMID:27505254

  1. Uni-directional interaction and plant-pollinator-robber coexistence.

    PubMed

    Wang, Yuanshi; DeAngelis, Donald L; Holland, J Nathaniel

    2012-09-01

    A mathematical model for the plant-pollinator-robber interaction is studied to understand the factors leading to the widespread occurrence and stability of such interactions. In the interaction, a flowering plant provides resource for its pollinator and the pollinator has both positive and negative effects on the plant. A nectar robber acts as a plant predator, consuming a common resource with the pollinator, but with a different functional response. Using dynamical systems theory, mechanisms of species coexistence are investigated to show how a robber could invade the plant-pollinator system and persist stably with the pollinator. In addition, circumstances are demonstrated in which the pollinator's positive and negative effects on the plant could determine the robber's invasibility and the three-species coexistence.

  2. Pollinator diversity and reproductive success of Epipactis helleborine (L.) Crantz (Orchidaceae) in anthropogenic and natural habitats

    PubMed Central

    Jaskuła, Radomir; Rewicz, Tomasz; Tończyk, Grzegorz

    2017-01-01

    . Discussion We suggest that higher reproductive success of E. helleborine in the populations from anthropogenic habitats than in the populations from natural habitats may result from a higher number of visits by pollinators and their greater species diversity, but also from the larger size of plants growing in such habitats. Moreover, our data clearly show that E. helleborine is an opportunistic species with respect to pollinators, with a wide spectrum of pollinating insects. Summarising, E. helleborine is a rare example of orchid species whose current range is not declining. Its ability to make use of anthropogenically altered habitats has allowed its significant spatial range expansion, and even successful colonisation of North America. PMID:28439457

  3. Generalist bees pollinate red-flowered Penstemon eatonii: Duality in the hummingbird pollination syndrome

    Treesearch

    James H. Cane; Rick Dunne

    2014-01-01

    The red tubular flowers of Penstemon eatonii (Plantaginaceae) typify the classic pollination syndrome for hummingbirds. Bees are thought to diminish its seed siring potential, but we found that foraging female generalist bees (Apis, Anthophora) deposited substantial amounts of conspecific pollen on P. eatonii stigmas. In the absence of hummingbirds, bee pollination of...

  4. Flower constancy in insect pollinators

    PubMed Central

    Ratnieks, Francis L.W.

    2011-01-01

    As first noted by Aristotle in honeybee workers, many insect pollinators show a preference to visit flowers of just one species during a foraging trip. This “flower constancy” probably benefits plants, because pollen is more likely to be deposited on conspecific stigmas. But it is less clear why insects should ignore rewarding alternative flowers. Many researchers have argued that flower constancy is caused by constraints imposed by insect nervous systems rather than because flower constancy is itself an efficient foraging method. We argue that this view is unsatisfactory because it both fails to explain why foragers flexibly adjust the degree of flower constancy and does not explain why foragers of closely related species show different degrees of constancy. While limitations of the nervous system exist and are likely to influence flower constancy to some degree, the observed behavioural flexibility suggests that flower constancy is a successful foraging strategy given the insect’s own information about different foraging options. PMID:22446521

  5. Pollinator-mediated selection on flower color, flower scent and flower morphology of Hemerocallis: evidence from genotyping individual pollen grains on the stigma.

    PubMed

    Hirota, Shun K; Nitta, Kozue; Suyama, Yoshihisa; Kawakubo, Nobumitsu; Yasumoto, Akiko A; Yahara, Tetsukazu

    2013-01-01

    To trace the fate of individual pollen grains through pollination processes, we determined genotypes of single pollen grains deposited on Hemerocallis stigmas in an experimental mixed-species array. Hemerocallis fulva, pollinated by butterflies, has diurnal, reddish and unscented flowers, and H. citrina, pollinated by hawkmoths, has nocturnal, yellowish and sweet scent flowers. We observed pollinator visits to an experimental array of 24 H. fulva and 12 F2 hybrids between the two species (H. fulva and H. citrina) and collected stigmas after every trip bout of swallowtail butterflies or hawkmoths. We then measured selection by swallowtail butterflies or hawkmoths through male and female components of pollination success as determined by single pollen genotyping. As expected, swallowtail butterflies imposed selection on reddish color and weak scent: the number of outcross pollen grains acquired is a quadratic function of flower color with the maximum at reddish color, and the combined pollination success was maximal at weak scent (almost unrecognizable for human). This explains why H. fulva, with reddish flowers and no recognizable scent, is mainly pollinated by swallowtail butterflies. However, we found no evidence of hawkmoths-mediated selection on flower color or scent. Our findings do not support a hypothesis that yellow flower color and strong scent intensity, the distinctive floral characteristics of H. citrina, having evolved in adaptations to hawkmoths. We suggest that the key trait that triggers the evolution of nocturnal flowers is flowering time rather than flower color and scent.

  6. Pollinator-Mediated Selection on Flower Color, Flower Scent and Flower Morphology of Hemerocallis: Evidence from Genotyping Individual Pollen Grains On the Stigma

    PubMed Central

    Hirota, Shun K.; Nitta, Kozue; Suyama, Yoshihisa; Kawakubo, Nobumitsu; Yasumoto, Akiko A.; Yahara, Tetsukazu

    2013-01-01

    To trace the fate of individual pollen grains through pollination processes, we determined genotypes of single pollen grains deposited on Hemerocallis stigmas in an experimental mixed-species array. Hemerocallis fulva, pollinated by butterflies, has diurnal, reddish and unscented flowers, and H. citrina, pollinated by hawkmoths, has nocturnal, yellowish and sweet scent flowers. We observed pollinator visits to an experimental array of 24 H. fulva and 12 F2 hybrids between the two species (H. fulva and H. citrina) and collected stigmas after every trip bout of swallowtail butterflies or hawkmoths. We then measured selection by swallowtail butterflies or hawkmoths through male and female components of pollination success as determined by single pollen genotyping. As expected, swallowtail butterflies imposed selection on reddish color and weak scent: the number of outcross pollen grains acquired is a quadratic function of flower color with the maximum at reddish color, and the combined pollination success was maximal at weak scent (almost unrecognizable for human). This explains why H. fulva, with reddish flowers and no recognizable scent, is mainly pollinated by swallowtail butterflies. However, we found no evidence of hawkmoths-mediated selection on flower color or scent. Our findings do not support a hypothesis that yellow flower color and strong scent intensity, the distinctive floral characteristics of H. citrina, having evolved in adaptations to hawkmoths. We suggest that the key trait that triggers the evolution of nocturnal flowers is flowering time rather than flower color and scent. PMID:24376890

  7. Family differences in equations for predicting biomass and leaf area in Douglas-fir (Pseudotsuga menziesii var. menziesii).

    Treesearch

    J.B. St. Clair

    1993-01-01

    Logarithmic regression equations were developed to predict component biomass and leaf area for an 18-yr-old genetic test of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) based on stem diameter or cross-sectional sapwood area. Equations did not differ among open-pollinated families in slope, but intercepts...

  8. Buzz-pollination in Neotropical bees: genus-dependent frequencies and lack of optimal frequency for pollen release.

    PubMed

    Rosi-Denadai, Conrado Augusto; Araújo, Priscila Cássia Souza; Campos, Lucio Antônio de Oliveira; Cosme, Lirio; Guedes, Raul Narciso Carvalho

    2018-05-08

    Over 50 genera of bees release pollen from flower anthers using thoracic vibrations, a phenomenon known as buzz-pollination. The efficiency of this process is directly affected by the mechanical properties of the buzzes, namely the duration, amplitude, and frequency. Nonetheless, although the effects of the former two properties are well described, the role of buzz frequency on pollen release remains unclear. Furthermore, nearly all of the existing studies describing vibrational properties of natural buzz-pollination are limited to bumblebees (Bombus) and carpenter bees (Xylocopa) constraining our current understanding of this behavior and its evolution. Therefore, we attempted to minimize this shortcoming by testing whether flower anthers exhibit optimal frequency for pollen release and whether bees tune their buzzes to match these (optimal) frequencies. If true, certain frequencies will trigger more pollen release and lighter bees will reach buzz frequencies closer to this optimum to compensate their smaller buzz amplitudes. Two strategies were used to test these hypotheses: (i) the use of (artificial) vibrational playbacks in a broad range of buzz frequencies and amplitudes to assess pollen release by tomato plants (Solanum lycopersicum L.) and (ii) the recording of natural buzzes of Neotropical bees visiting tomato plants during pollination. The playback experiment indicates that although buzz frequency does affect pollen release, no optimal frequency exists for that. In addition, the recorded results of natural buzz-pollination reveal that buzz frequencies vary with bee genera and are not correlated with body size. Therefore, neither bees nor plants are tuned to optimal pollen release frequencies. Bee frequency of buzz-pollination is a likely consequence of the insect flight machinery adapted to reach higher accelerations, while flower plant response to buzz-pollination is the likely result of its pollen granular properties. © 2018 Institute of Zoology

  9. [Preliminary study on pollination biology of Tulipa edulis].

    PubMed

    Wu, Zhengjun; Zhu, Zaibiao; Guo, Qiaosheng; Xu, Hongjian; Ma, Hongliang; Miao, Yuanyuan

    2012-02-01

    Current study on the pollination biology of Tulipa edulis was conducted to investigate its pollination characteristics and to provide references for artificial domestication and breeding of T. edulis. Flowering dynamics, pollinators, morphology and structure of flower were observed. Different methods were adopted to evaluate the pollen vitality, and benzidine-H2O2 method was used for estimation of the stigma receptivity. Breeding system was evaluated based on out-crossing index (OCI) , pollen-ovule ratio (P/O) and the results of emasculation, bagging and artificial pollination studies. The flower of T. edulis showed typical characteristics of Liliaceae. The pollen remained viable to some extent during all the anthesis and peaked within three days after blossoming. Stigma acceptability peaked in the first day of blossom and dwindled away in the next four days. The type of breeding system of T. edulis was facultative xenogamy, three species of Halictus are the main pollination insects. The type of breeding system of T. edulis was facultative xenogamy, withal cross-pollination give priority to self-pollination, and the insects play a main role on the pollination of T. edulis, further validation are needed to judge if the wind is helpful to pollination.

  10. Global malnutrition overlaps with pollinator-dependent micronutrient production

    PubMed Central

    Chaplin-Kramer, Rebecca; Dombeck, Emily; Gerber, James; Knuth, Katherine A.; Mueller, Nathaniel D.; Mueller, Megan; Ziv, Guy; Klein, Alexandra-Maria

    2014-01-01

    Pollinators contribute around 10% of the economic value of crop production globally, but the contribution of these pollinators to human nutrition is potentially much higher. Crops vary in the degree to which they benefit from pollinators, and many of the most pollinator-dependent crops are also among the richest in micronutrients essential to human health. This study examines regional differences in the pollinator dependence of crop micronutrient content and reveals overlaps between this dependency and the severity of micronutrient deficiency in people around the world. As much as 50% of the production of plant-derived sources of vitamin A requires pollination throughout much of Southeast Asia, whereas other essential micronutrients such as iron and folate have lower dependencies, scattered throughout Africa, Asia and Central America. Micronutrient deficiencies are three times as likely to occur in areas of highest pollination dependence for vitamin A and iron, suggesting that disruptions in pollination could have serious implications for the accessibility of micronutrients for public health. These regions of high nutritional vulnerability are understudied in the pollination literature, and should be priority areas for research related to ecosystem services and human well-being. PMID:25232140

  11. Evolution of pollination niches in a generalist plant clade.

    PubMed

    Gómez, José María; Perfectti, Francisco; Abdelaziz, Mohamed; Lorite, Juan; Muñoz-Pajares, Antonio Jesús; Valverde, Javier

    2015-01-01

    It is widely assumed that floral diversification occurs by adaptive shifts between pollination niches. In contrast to specialized flowers, identifying pollination niches of generalist flowers is a challenge. Consequently, how generalist pollination niches evolve is largely unknown. We apply tools from network theory and comparative methods to investigate the evolution of pollination niches among generalist species belonging to the genus Erysimum. These species have similar flowers. We found that the studied species may be grouped in several multidimensional niches separated not by a shift of pollinators, but instead by quantitative variation in the relative abundance of pollinator functional groups. These pollination niches did not vary in generalization degree; we did not find any evolutionary trend toward specialization within the studied clade. Furthermore, the evolution of pollination niche fitted to a Brownian motion model without phylogenetic signal, and was characterized by frequent events of niche convergences and divergences. We presume that the evolution of Erysimum pollination niches has occurred mostly by recurrent shifts between slightly different generalized pollinator assemblages varying spatially as a mosaic and without any change in specialization degree. Most changes in pollination niches do not prompt floral divergence, a reason why adaptation to pollinators is uncommon in generalist plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. Choices and consequences of oviposition by a pollinating seed predator, Hadena ectypa (Noctuidae), on its host plant, Silene stellata (Caryophyllaceae).

    PubMed

    Kula, Abigail A R; Dudash, Michele R; Fenster, Charles B

    2013-06-01

    Pollinating seed predators are models for the study of mutualisms. These insects have dual effects on host-plant fitness, through pollination as adults and flower and fruit predation as larvae. A rarely examined question is whether pollinating seed-predator oviposition choices are influenced by plant floral and size traits and the potential consequences of oviposition for host-plant reproduction. • We quantified oviposition by a pollinating seed predator, Hadena ectypa, on its host, Silene stellata, to determine if oviposition was associated with specific plant traits and whether oviposition was significantly correlated with fruit initiation or flower and fruit predation over three years. We also quantified whether stigmatic pollen loads of flowers visited by Hadena that both fed on nectar and oviposited were greater than when Hadena only fed on nectar. • Hadena had significant preference for plants having flowers with long corolla tubes in all three years. Moth oviposition was correlated with other traits only in some years. Oviposition did not increase stigmatic pollen loads. We observed significant positive relationships between both oviposition and fruit initiation and oviposition and flower/fruit predation. • Hadena ectypa oviposition choices were based consistently on floral tube length differences among individuals, and the consequences of oviposition include both fruit initiation (due to pollination while feeding on nectar prior to oviposition) and larval flower/fruit predation. The positive association between oviposition and fruit initiation may explain the long-term maintenance of facultative pollinating seed-predator interactions.

  13. Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: a new nocturnal pollination system mediated by floral scent.

    PubMed

    Cordeiro, G D; Pinheiro, M; Dötterl, S; Alves-Dos-Santos, I

    2017-03-01

    Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci. We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents. The flowers of cambuci were self-incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds. This study describes the first scent-mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Changes in the Relative Abundance and Movement of Insect Pollinators During the Flowering Cycle of Brassica rapa Crops: Implications for Gene Flow

    PubMed Central

    Mesa, Laura A.; Howlett, Bradley G.; Grant, Jan E.; Didham, Raphael K.

    2013-01-01

    The potential movement of transgenes from genetically modified crops to non-genetically modified crops via insect-mediated pollen dispersal has been highlighted as one of the areas of greatest concern in regards to genetically modified crops. Pollen movement depends sensitively on spatial and temporal variation in the movement of insect pollinators between crop fields. This study tested the degree of variation in the diversity and relative abundance of flower-visiting insects entering versus leaving pak choi, Brassica rapa var. chinensis L. (Brassicales: Brassicaceae), crops throughout different stages of the flowering cycle. The relative abundance of flower-visiting insects varied significantly with Brassica crop phenology. Greater numbers of flower-visiting insects were captured inside rather than outside the crop fields, with the highest capture rates of flower-visitors coinciding with the peak of flowering in both spring-flowering and summer-flowering crops. Moreover, the ratio of flower-visiting insects entering versus leaving crop fields also varied considerably with changing crop phenology. Despite high variation in relative capture rates, the data strongly indicate non-random patterns of variation in insect movement in relation to crop phenology, with early-season aggregation of flower-visiting insects entering and remaining in the crop, and then mass emigration of flower-visiting insects leaving the crop late in the flowering season. Although pollen movement late in the flowering cycle might contribute relatively little to total seed set (and hence crop production), the findings here suggest that extensive late-season pollinator redistribution in the landscape could contribute disproportionately to long-distance gene movement between crops. PMID:23937538

  15. Effects of honey bee (Hymenoptera: Apidae) and bumble bee (Hymenoptera: Apidae) presence on cranberry (Ericales: Ericaceae) pollination.

    PubMed

    Evans, E C; Spivak, M

    2006-06-01

    Honey bees, Apis mellifera L., are frequently used to pollinate commercial cranberries, Vaccinium macrocarpon Ait., but information is lacking on the relative contribution of honey bees and native bees, the effects of surrounding vegetation on bee visitation, and on optimal timing for honey bee introduction. We begin with a descriptive study of numbers of honey bees, bumble bees, and other bees visiting cranberry blossoms, and their subsequent effect on cranberry yield, on three cranberry properties in 1999. The property surrounded by agricultural land, as opposed to wetlands and woodlands, had fewer numbers of all bee types. In 2000, one property did not introduce honey bee colonies, providing an opportunity to document the effect of lack of honey bees on yield. With no honey bees, plants along the edge of the bed had significantly higher berry weights compared with nonedge plants, suggesting that wild pollinators were only effective along the edge. Comparing the same bed between 1999, with three honey bee colonies per acre, and 2000, with no honey bees, we found a significant reduction in average berry size. In 2000, we compared stigma loading on properties with and without honey bees. Significantly more stigmas received the minimum number of tetrads required for fruit set on the property with honey bees. Significantly more tetrads were deposited during mid-bloom compared with early bloom, indicating that mid-bloom was the best time to have honey bees present. This study emphasizes the importance and effectiveness of honey bees as pollinators of commercial size cranberry plantings.

  16. The phylogenetic structure of plant-pollinator networks increases with habitat size and isolation.

    PubMed

    Aizen, Marcelo A; Gleiser, Gabriela; Sabatino, Malena; Gilarranz, Luis J; Bascompte, Jordi; Verdú, Miguel

    2016-01-01

    Similarity among species in traits related to ecological interactions is frequently associated with common ancestry. Thus, closely related species usually interact with ecologically similar partners, which can be reinforced by diverse co-evolutionary processes. The effect of habitat fragmentation on the phylogenetic signal in interspecific interactions and correspondence between plant and animal phylogenies is, however, unknown. Here, we address to what extent phylogenetic signal and co-phylogenetic congruence of plant-animal interactions depend on habitat size and isolation by analysing the phylogenetic structure of 12 pollination webs from isolated Pampean hills. Phylogenetic signal in interspecific interactions differed among webs, being stronger for flower-visiting insects than plants. Phylogenetic signal and overall co-phylogenetic congruence increased independently with hill size and isolation. We propose that habitat fragmentation would erode the phylogenetic structure of interaction webs. A decrease in phylogenetic signal and co-phylogenetic correspondence in plant-pollinator interactions could be associated with less reliable mutualism and erratic co-evolutionary change. © 2015 John Wiley & Sons Ltd/CNRS.

  17. Overlapping Leaves Covering Flowers in the Alpine Species Eriophyton wallichii (Lamiaceae): Key Driving Factors and Their Potential Impact on Pollination.

    PubMed

    Peng, De-Li; Song, Bo; Yang, Yang; Niu, Yang; Sun, Hang

    2016-01-01

    Extrafloral structures are supposed to have evolved to protect flowers from harsh physical environments but might have effects on pollination. Overlapping leaves cover flowers in Eriophyton wallichii, an alpine perennial endemic to the Himalaya-Hengduan Mountains. In previous study, it has showed that these extrafloral leaves can protect interior flowers from temperature fluctuations caused by drastic solar radiation fluctuations, but these leaves may also protect interior flowers from rain wash and UVB damage, and we do not know which one is the main function. In this study, we investigated whether rain and UVB protection are the main functions of overlapping leaves covering flowers and their potential impact on pollination. We first measured the intensities of UVB radiation in open air, beneath leaves and corollas, and then examined pollen susceptibility to different intensities of UVB and rain in the laboratory to estimate whether corollas per se protect interior pollen from UVB and rain damage. We also carried out pollination treatments and observed pollinator visitation of flowers with and without leaves in the field to assess whether the overlapping leaves covering flowers impair pollinator attraction. Our results showed that (1) water and strong UVB significantly decreased pollen germinability, but corollas per se could protect pollen from UVB and rain damage; (2) no autonomous self-pollination and apomixis occurred, and pollinators were essential for the reproduction of E. wallichii; however, flower coverage by overlapping leaves did not limit pollination. We suggested that rain and UVB protection was not the main function of overlapping leaves covered flowers, given that this protection can be provided by corollas per se. Alternatively, this extrafloral structure in E. wallichii may have evolved in response to extreme high temperatures associated with the strong solar radiation fluctuations. This indicates that, even in alpine plants, extreme high

  18. Overlapping Leaves Covering Flowers in the Alpine Species Eriophyton wallichii (Lamiaceae): Key Driving Factors and Their Potential Impact on Pollination

    PubMed Central

    Peng, De-Li; Song, Bo; Yang, Yang; Niu, Yang; Sun, Hang

    2016-01-01

    Extrafloral structures are supposed to have evolved to protect flowers from harsh physical environments but might have effects on pollination. Overlapping leaves cover flowers in Eriophyton wallichii, an alpine perennial endemic to the Himalaya-Hengduan Mountains. In previous study, it has showed that these extrafloral leaves can protect interior flowers from temperature fluctuations caused by drastic solar radiation fluctuations, but these leaves may also protect interior flowers from rain wash and UVB damage, and we do not know which one is the main function. In this study, we investigated whether rain and UVB protection are the main functions of overlapping leaves covering flowers and their potential impact on pollination. We first measured the intensities of UVB radiation in open air, beneath leaves and corollas, and then examined pollen susceptibility to different intensities of UVB and rain in the laboratory to estimate whether corollas per se protect interior pollen from UVB and rain damage. We also carried out pollination treatments and observed pollinator visitation of flowers with and without leaves in the field to assess whether the overlapping leaves covering flowers impair pollinator attraction. Our results showed that (1) water and strong UVB significantly decreased pollen germinability, but corollas per se could protect pollen from UVB and rain damage; (2) no autonomous self-pollination and apomixis occurred, and pollinators were essential for the reproduction of E. wallichii; however, flower coverage by overlapping leaves did not limit pollination. We suggested that rain and UVB protection was not the main function of overlapping leaves covered flowers, given that this protection can be provided by corollas per se. Alternatively, this extrafloral structure in E. wallichii may have evolved in response to extreme high temperatures associated with the strong solar radiation fluctuations. This indicates that, even in alpine plants, extreme high

  19. Real-time divergent evolution in plants driven by pollinators

    PubMed Central

    Gervasi, Daniel D. L.; Schiestl, Florian P

    2017-01-01

    Pollinator-driven diversification is thought to be a major source of floral variation in plants. Our knowledge of this process is, however, limited to indirect assessments of evolutionary changes. Here, we employ experimental evolution with fast cycling Brassica rapa plants to demonstrate adaptive evolution driven by different pollinators. Our study shows pollinator-driven divergent selection as well as divergent evolution in plant traits. Plants pollinated by bumblebees evolved taller size and more fragrant flowers with increased ultraviolet reflection. Bumblebees preferred bumblebee-pollinated plants over hoverfly-pollinated plants at the end of the experiment, showing that plants had adapted to the bumblebees' preferences. Plants with hoverfly pollination became shorter, had reduced emission of some floral volatiles, but increased fitness through augmented autonomous self-pollination. Our study demonstrates that changes in pollinator communities can have rapid consequences on the evolution of plant traits and mating system. PMID:28291771

  20. Attracting mutualists and antagonists: plant trait variation explains the distribution of specialist floral herbivores and pollinators on crops and wild gourds.

    PubMed

    Theis, Nina; Barber, Nicholas A; Gillespie, Sandra D; Hazzard, Ruth V; Adler, Lynn S

    2014-08-01

    • Floral traits play important roles in pollinator attraction and defense against floral herbivory. However, plants may experience trade-offs between conspicuousness to pollinators and herbivore attraction. Comparative studies provide an excellent framework to examine the role of multiple traits shaping mutualist and antagonist interactions.• To assess whether putative defensive and attractive traits predict species interactions, we grew 20 different Cucurbitaceae species and varieties in the field to measure interactions with pollinators and herbivores and in the greenhouse to assess trait variation. Cucurbits are characterized by the production of cucurbitacins, bitter nonvolatile terpenoids that are effective against generalist herbivores but can attract specialist beetles. We determined whether plant traits such as cucurbitacins predict herbivore resistance and pollinator attraction using an information-theoretic approach.• Mutualists and floral antagonists were attracted to the same cucurbit varieties once they flowered. However, rather than cucurbitacin concentration, we found that the size of the flower and volatile emissions of floral sesquiterpenoids explained both pollinator and floral herbivore visitation preference across cucurbit taxa. This pattern held across cucurbit taxa and within the Cucurbita genus.• Surprisingly, floral sesquiterpenoid volatiles, which are associated with direct defense, indirect defense, and attraction, rather than defense traits such as cucurbitacins, appeared to drive interactions with both pollinators and floral herbivores across cucurbit taxa. Identifying the relevant plant traits for attraction and deterrence is important in this economically valuable crop, particularly if pollinators and floral herbivores use the same plant traits as cues. © 2014 Botanical Society of America, Inc.

  1. Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem

    PubMed Central

    Barber, Nicholas A.; Kiers, E. Toby; Hazzard, Ruth V.; Adler, Lynn S.

    2013-01-01

    Plants interact with a variety of other community members that have the potential to indirectly influence each other through a shared host plant. Arbuscular mycorrhizal fungi (AMF) are generally considered plant mutualists because of their generally positive effects on plant nutrient status and growth. AMF may also have important indirect effects on plants by altering interactions with other community members. By influencing plant traits, AMF can modify aboveground interactions with both mutualists, such as pollinators, and antagonists, such as herbivores. Because herbivory and pollination can dramatically influence plant fitness, comprehensive assessment of plant–AMF interactions should include these indirect effects. To determine how AMF affect plant–insect interactions, we grew Cucumis sativus (Cucurbitaceae) under five AMF inoculum treatments and control. We measured plant growth, floral production, flower size, and foliar nutrient content of half the plants, and transferred the other half to a field setting to measure pollinator and herbivore preference of wild insects. Mycorrhizal treatment had no effect on plant biomass or floral traits but significantly affected leaf nutrients, pollinator behavior, and herbivore attack. Although total pollinator visitation did not vary with AMF treatment, pollinators exhibited taxon-specific responses, with honey bees, bumble bees, and Lepidoptera all responding differently to AMF treatments. Flower number and size were unaffected by treatments, suggesting that differences in pollinator preference were driven by other floral traits. Mycorrhizae influenced leaf K and Na, but these differences in leaf nutrients did not correspond to variation in herbivore attack. Overall, we found that AMF indirectly influence both antagonistic and mutualistic insects, but impacts depend on the identity of both the fungal partner and the interacting insect, underscoring the context-dependency of plant–AMF interactions. PMID:24046771

  2. How exotic plants integrate into pollination networks

    PubMed Central

    Stouffer, Daniel B; Cirtwill, Alyssa R; Bascompte, Jordi; Bartomeus, Ignasi

    2014-01-01

    Summary There is increasing world-wide concern about the impact of the introduction of exotic species on ecological communities. Since many exotic plants depend on native pollinators to successfully establish, it is of paramount importance that we understand precisely how exotic species integrate into existing plant–pollinator communities. In this manuscript, we have studied a global data base of empirical pollination networks to determine whether community, network, species or interaction characteristics can help identify invaded communities. We found that a limited number of community and network properties showed significant differences across the empirical data sets – namely networks with exotic plants present are characterized by greater total, plant and pollinator richness, as well as higher values of relative nestedness. We also observed significant differences in terms of the pollinators that interact with the exotic plants. In particular, we found that specialist pollinators that are also weak contributors to community nestedness are far more likely to interact with exotic plants than would be expected by chance alone. Synthesis. By virtue of their interactions, it appears that exotic plants may provide a key service to a community's specialist pollinators as well as fill otherwise vacant ‘coevolutionary niches’. PMID:25558089

  3. Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009

    PubMed Central

    Calderone, Nicholas W.

    2012-01-01

    In the US, the cultivated area (hectares) and production (tonnes) of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc.) increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare) remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD) decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc.) was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination. PMID:22629374

  4. Microorganisms transported by ants induce changes in floral nectar composition of an ant-pollinated plant.

    PubMed

    de Vega, Clara; Herrera, Carlos M

    2013-04-01

    Interactions between plants and ants abound in nature and have significant consequences for ecosystem functioning. Recently, it has been suggested that nectar-foraging ants transport microorganisms to flowers; more specifically, they transport yeasts, which can potentially consume sugars and alter nectar composition. Therefore, ants could indirectly change nectar sugar profile, an important floral feature involved in the plant-pollinator mutualism. But this novel role for ants has never been tested. We here investigate the effects of nectarivorous ants and their associated yeasts on the floral nectar sugar composition of an ant-pollinated plant. Differences in the nectar sugar composition of ant-excluded and ant-visited flowers were examined in 278 samples by using high-performance liquid-chromatography. The importance of the genetic identity and density of ant-transported basidiomycetous and ascomycetous yeasts on the variation of nectar traits was also evaluated. Ant visitation had significant effects on nectar sugar composition. The nectar of ant-visited flowers contained significantly more fructose, more glucose, and less sucrose than the nectar of ant-excluded flowers, but these effects were context dependent. Nectar changes were correlated with the density of yeast cells in nectar. The magnitude of the effects of ant-transported ascomycetes was much higher than that of basiodiomycetes. Ants and their associated yeasts induce changes in nectar sugar traits, reducing the chemical control of the plant over this important floral trait. The potential relevance of this new role for ants as indirect nectar modifiers is a rich topic for future research into the ecology of ant-flower interactions.

  5. How does climate warming affect plant-pollinator interactions?

    PubMed

    Hegland, Stein Joar; Nielsen, Anders; Lázaro, Amparo; Bjerknes, Anne-Line; Totland, Ørjan

    2009-02-01

    Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.

  6. Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: implications for pollinator-driven speciation.

    PubMed

    Peakall, Rod; Ebert, Daniel; Poldy, Jacqueline; Barrow, Russell A; Francke, Wittko; Bower, Colin C; Schiestl, Florian P

    2010-10-01

    • Sexually deceptive orchids are predicted to represent a special case of plant speciation where strong reproductive isolation may be achieved by differences in floral scent. • In this study of Australian sexually deceptive Chiloglottis orchids, we performed choice experiments to test for wasp pollinator specificity in the field; identified the compounds involved in pollinator attraction by gas chromatography with electroantennographic detection (GC-EAD), gas chromatography with mass selective detection (GC-MS), chemical synthesis and behavioural bioassays; and mapped our chemical findings on to a phylogeny of the orchids. • Field experiments confirmed pollination is a highly specific interaction, but also revealed a pool of nonpollinating 'minor responder' wasps. Six novel compounds, all 2,5-dialkylcyclohexan-1,3-diones, called 'chiloglottones', were discovered to be involved in pollinator attraction. Bioassays confirmed that pollinator specificity has a strong chemical basis, with specificity among sympatric orchids maintained by either different single compounds or a variation in a blend of two compounds. The phylogenetic overlay confirmed that speciation is always associated with pollinator switching and usually underpinned by chemical change. • If the chemical differences that control reproductive isolation in Chiloglottis have a strong genetic basis, and given the confirmed pool of potential pollinators, we conclude that pollinator-driven speciation appears highly plausible in this system. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  7. A heterogeneous landscape does not guarantee high crop pollination

    PubMed Central

    Hambäck, Peter A.; Lemessa, Debissa; Nemomissa, Sileshi; Hylander, Kristoffer

    2016-01-01

    The expansion of pollinator-dependent crops, especially in the developing world, together with reports of worldwide pollinator declines, raises concern of possible yield gaps. Farmers directly reliant on pollination services for food supply often live in regions where our knowledge of pollination services is poor. In a manipulative experiment replicated at 23 sites across an Ethiopian agricultural landscape, we found poor pollination services and severe pollen limitation in a common oil crop. With supplementary pollination, the yield increased on average by 91%. Despite the heterogeneous agricultural matrix, we found a low bee abundance, which may explain poor pollination services. The variation in pollen limitation was unrelated to surrounding forest cover, local bee richness and bee abundance. While practices that commonly increase pollinators (restricted pesticide use, flower strips) are an integral part of the landscape, these elements are apparently insufficient. Management to increase pollination services is therefore in need of urgent investigation. PMID:27629036

  8. Importance of pollinators in changing landscapes for world crops

    PubMed Central

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2006-01-01

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale. PMID:17164193

  9. Importance of pollinators in changing landscapes for world crops.

    PubMed

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2007-02-07

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.

  10. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators.

    PubMed

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-03-01

    The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal-low deposition pollinators, whereas honey-bees were high removal-low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are

  11. Pollination drop in Juniperus communis: response to deposited material.

    PubMed

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore

    2007-12-01

    The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal. These results suggest that the non-specific response

  12. Pollination Drop in Juniperus communis: Response to Deposited Material

    PubMed Central

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore

    2007-01-01

    Background and Aims The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Method Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. Key Results The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Conclusions Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal

  13. Flowering mechanisms, pollination strategies and floral scent analyses of syntopically co-flowering Homalomena spp. (Araceae) on Borneo.

    PubMed

    Hoe, Y C; Gibernau, M; Maia, A C D; Wong, S Y

    2016-07-01

    In this study, the flowering mechanisms and pollination strategies of seven species of the highly diverse genus Homalomena (Araceae) were investigated in native populations of West Sarawak, Borneo. The floral scent compositions were also recorded for six of these species. The selected taxa belong to three out of four complexes of the section Cyrtocladon (Hanneae, Giamensis and Borneensis). The species belonging to the Hanneae complex exhibited longer anthesis (53-62 h) than those of the Giamensis and Borneensis complexes (ca. 30 h). Species belonging to the Hanneae complex underwent two floral scent emission events in consecutive days, during the pistillate and staminate phases of anthesis. In species belonging to the Giamensis and Borneensis complexes, floral scent emission was only evident to the human nose during the pistillate phase. A total of 33 volatile organic compounds (VOCs) were detected in floral scent analyses of species belonging to the Hanneae complex, whereas 26 VOCs were found in samples of those belonging to the Giamensis complex. The floral scent blends contained uncommon compounds in high concentration, which could ensure pollinator discrimination. Our observations indicate that scarab beetles (Parastasia gestroi and P. nigripennis; Scarabaeidae, Rutelinae) are the pollinators of the investigated species of Homalomena, with Chaloenus schawalleri (Chrysomelidae, Galeuricinae) acting as a secondary pollinator. The pollinators utilise the inflorescence for food, mating opportunities and safe mating arena as rewards. Flower-breeding flies (Colocasiomyia nigricauda and C. aff. heterodonta; Diptera, Drosophilidae) and terrestrial hydrophilid beetles (Cycreon sp.; Coleoptera, Hydrophilidae) were also frequently recovered from inflorescences belonging to all studied species (except H. velutipedunculata), but they probably do not act as efficient pollinators. Future studies should investigate the post-mating isolating barriers among syntopically co

  14. How specialised is bird pollination in the Cactaceae?

    PubMed

    Gorostiague, P; Ortega-Baes, P

    2016-01-01

    Many cactus species produce 'bird' flowers; however, the reproductive biology of the majority of these species has not been studied. Here, we report on a study of the pollination of two species from the Cleistocactus genus, cited as an ornithophilous genus, in the context of the different ways in which they are specialised to bird pollination. In addition, we re-evaluate the level of specialisation of previous studies of cacti with bird pollination and evaluate how common phenotypic specialisation to birds is in this family. Both Cleistocactus species exhibited ornithophilous floral traits. Cleistocactus baumannii was pollinated by hummingbirds, whereas Cleistocactus smaragdiflorus was pollinated by hummingbirds and bees. Pollination by birds has been recorded in 27 cactus species, many of which exhibit ornithophilous traits; however, they show generalised pollination systems with bees, bats or moths in addition to birds being their floral visitors. Of all cactus species, 27% have reddish flowers. This trait is associated with diurnal anthesis and a tubular shape. Phenotypic specialisation to bird pollination is recognised in many cactus species; however, it is not predictive of functional and ecological specialisation in this family. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Honey bees are the dominant diurnal pollinator of native milkweed in a large urban park.

    PubMed

    MacIvor, James Scott; Roberto, Adriano N; Sodhi, Darwin S; Onuferko, Thomas M; Cadotte, Marc W

    2017-10-01

    In eastern North America, the field milkweed, Asclepias syriaca L. (Asclepiadaceae), is used in planting schemes to promote biodiversity conservation for numerous insects including the endangered monarch butterfly, Danaus plexippus (Linnaeus) (Nymphalidae). Less is known about its pollinators, and especially in urban habitats where it is planted often despite being under increasing pressure from invasive plant species, such as the related milkweed, the dog-strangling vine (DSV), Vincetoxicum rossicum (Kleopow) Barbar. (Asclepiadaceae). During the A. syriaca flowering period in July 2016, we surveyed bees in open habitats along a DSV invasion gradient and inspected 433 individuals of 25 bee species in 12 genera for pollinia: these were affixed to bees that visited A. syriaca for nectar and contain pollen packets that are vectored (e.g., transferred) between flowers. Of all bees sampled, pollinia were found only on the nonindigenous honeybee, Apis mellifera (43% of all bees identified), as well as one individual bumblebee, Bombus impatiens Cresson. Pollinia were recorded from 45.2% of all honeybees collected. We found no relationship between biomass of DSV and biomass of A. syriaca per site. There was a significant positive correlation between A. syriaca biomass and the number of pollinia, and the proportion vectored. No relationship with DSV biomass was detected for the number of pollinia collected by bees but the proportion of vectored pollinia declined with increasing DSV biomass. Although we find no evidence of DSV flowers attracting potential pollinators away from A. syriaca and other flowering plants, the impacts on native plant-pollinator mutualisms relate to its ability to outcompete native plants. As wild bees do not appear to visit DSV flowers, it could be altering the landscape to one which honeybees are more tolerant than native wild bees.

  16. Collapse of a pollination web in small conservation areas.

    PubMed

    Pauw, Anton

    2007-07-01

    A suspected global decline in pollinators has heightened interest in their ecological significance. In a worst-case scenario, the decline of generalist pollinators is predicted to trigger cascades of linked declines among the multiple specialist plant species to which they are linked, but this has not been documented. I studied a portion of a pollination web involving a generalist pollinator, the oil-collecting bee Rediviva peringueyi, and a community of oil-secreting plants. Across 27 established conservation areas located in the Cape Floral Region, I found substantial variation in the bees' occurrence in relation to soil type and the successional stage of the vegetation. Anthropogenic declines were detectable against this background of naturally occurring variation: R. peringueyi was absent from small conservation areas (< 385 ha) in an urban matrix. In the absence of the bee, seed set failed in six specialist plant species that are pollinated only by R. peringueyi but remained high in a pollination generalist, which had replacement pollinators. The findings are consistent with theoretical predictions of the importance of generalist pollinators in maintaining the structure of pollination webs.

  17. Reconstructing the pollinator community and predicting seed set from hydrocarbon footprints on flowers.

    PubMed

    Witjes, Sebastian; Witsch, Kristian; Eltz, Thomas

    2011-04-01

    The measurement of insect visits to flowers is essential for basic and applied pollination ecology, but is often fraught with difficulty. Floral visitation is highly variable and observational studies are limited in scope due to the considerable time needed to acquire reliable data. Our study investigates whether the analysis of hydrocarbon residues (footprints) deposited by insects during flower visits allows the reconstruction of the visitor community and the prediction of seed set for large numbers of plants. In three consecutive years we recorded bumblebee visitation to wild plants of comfrey, Symphytum officinale, and later used gas chromatography/mass spectrometry (GC/MS) to quantify bumblebee-derived unsaturated hydrocarbons (UHCs) extracted from flowers. The UHCs washed from corollae were most similar to the tarsal UHC profile of the most abundant bumblebee species, Bombus pascuorum, in all 3 years. The species compositions of the bumblebee communities estimated from UHCs on flowers were also similar to those actually observed. There was a significant positive correlation between the observed number of visits by each of three bumblebee species (contributing 3-68% of the flower visits) and the estimated number of visits based on UHC profiles. Furthermore, significant correlations were obtained separately for workers and drones of two species. Seed set of comfrey plants was positively correlated with overall bumblebee visitation and the total amount of UHCs on flowers, suggesting the potential for pollen limitation. We suggest that quantifying cumulative footprint hydrocarbons provides a novel way to assess floral visitation by insects, and that this method can be used to predict seed set in pollen-limited plants.

  18. Safeguarding pollinators and their values to human well-being.

    PubMed

    Potts, Simon G; Imperatriz-Fonseca, Vera; Ngo, Hien T; Aizen, Marcelo A; Biesmeijer, Jacobus C; Breeze, Thomas D; Dicks, Lynn V; Garibaldi, Lucas A; Hill, Rosemary; Settele, Josef; Vanbergen, Adam J

    2016-12-08

    Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change, pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.

  19. 78 FR 10167 - Pollinator Summit: Status of Ongoing Collaborative Efforts To Protect Pollinators; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... in activities to reduce potential acute exposure of honey bees and pollinators to pesticides. Invited... exposure of honey bees and pollinators to pesticides. This action is directed to the public in general, and... crops. While there are several factors affecting honey bee health, pesticides are among these variables...

  20. RAPID EVOLUTION CAUSED BY POLLINATOR LOSS IN MIMULUS GUTTATUS

    PubMed Central

    Bodbyl Roels, Sarah A.; Kelly, John K.

    2018-01-01

    Anthropogenic perturbations including habitat loss and emerging disease are changing pollinator communities and generating novel selection pressures on plant populations. Disruption of plant–pollinator relationships is predicted to cause plant mating system evolution, although this process has not been directly observed. This study demonstrates the immediate evolutionary effects of pollinator loss within experimental populations of a predominately outcrossing wildflower. Initially equivalent populations evolved for five generations within two pollination treatments: abundant bumblebee pollinators versus no pollinators. The populations without pollinators suffered greatly reduced fitness in early generations but rebounded as they evolved an improved ability to self-fertilize. All populations diverged in floral, developmental, and life-history traits, but only a subset of characters showed clear association with pollination treatment. Pronounced treatment effects were noted for anther–stigma separation and autogamous seed set. Dramatic allele frequency changes at two chromosomal polymorphisms occurred in the no pollinator populations, explaining a large fraction of divergence in pollen viability. The pattern of phenotypic and genetic changes in this experiment favors a sequential model for the evolution of the multitrait “selfing syndrome” observed throughout angiosperms. PMID:21884055

  1. Rapid evolution caused by pollinator loss in Mimulus guttatus.

    PubMed

    Roels, Sarah A Bodbyl; Kelly, John K

    2011-09-01

    Anthropogenic perturbations including habitat loss and emerging disease are changing pollinator communities and generating novel selection pressures on plant populations. Disruption of plant-pollinator relationships is predicted to cause plant mating system evolution, although this process has not been directly observed. This study demonstrates the immediate evolutionary effects of pollinator loss within experimental populations of a predominately outcrossing wildflower. Initially equivalent populations evolved for five generations within two pollination treatments: abundant bumblebee pollinators versus no pollinators. The populations without pollinators suffered greatly reduced fitness in early generations but rebounded as they evolved an improved ability to self-fertilize. All populations diverged in floral, developmental, and life-history traits, but only a subset of characters showed clear association with pollination treatment. Pronounced treatment effects were noted for anther-stigma separation and autogamous seed set. Dramatic allele frequency changes at two chromosomal polymorphisms occurred in the no pollinator populations, explaining a large fraction of divergence in pollen viability. The pattern of phenotypic and genetic changes in this experiment favors a sequential model for the evolution of the multitrait "selfing syndrome" observed throughout angiosperms. © 2011 The Author(s).

  2. Getting More Power from Your Flowers: Multi-Functional Flower Strips Enhance Pollinators and Pest Control Agents in Apple Orchards

    PubMed Central

    Wilby, Andrew; Sutton, Peter; Wäckers, Felix

    2017-01-01

    Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators (‘concealed-nectar plants’); (2) natural enemies (‘open-nectar plants’); or (3) both groups concurrently (i.e., ‘multi-functional’ mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that ‘multi-functional’ flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards. PMID:28930157

  3. Getting More Power from Your Flowers: Multi-Functional Flower Strips Enhance Pollinators and Pest Control Agents in Apple Orchards.

    PubMed

    Campbell, Alistair John; Wilby, Andrew; Sutton, Peter; Wäckers, Felix

    2017-09-20

    Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators ('concealed-nectar plants'); (2) natural enemies ('open-nectar plants'); or (3) both groups concurrently (i.e., 'multi-functional' mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that 'multi-functional' flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards.

  4. Rain pollination provides reproductive assurance in a deceptive orchid.

    PubMed

    Fan, Xu-Li; Barrett, Spencer C H; Lin, Hua; Chen, Ling-Ling; Zhou, Xiang; Gao, Jiang-Yun

    2012-10-01

    Abiotic pollination by wind or water is well established in flowering plants. In some species pollination by rain splashes, a condition known as ombrophily, has been proposed as a floral strategy. However, evidence for this type of abiotic pollination has remained controversial and many reported cases have subsequently been shown to be false. This study investigates ombrophily in the deceptive orchid Acampe rigida to determine the mechanism by which this species is able to maintain high fecundity, despite flowering during the rainy season in south-west China when pollinators are scarce. The floral mechanisms promoting rain pollination in A. rigida were observed and described in detail. Controlled pollination experiments and observations of floral visitors were conducted. A field experiment using rain shelters at 14 sites in Guangxi, south-west China, evaluated the contribution of rain pollination to fruit-set. During rainfall, raindrops physically flicked away the anther cap exposing the pollinarium. Raindrops then caused pollinia to be ejected upwards with the strap-like stipe pulling them back and causing them to fall into the stigmatic cavity, resulting in self-pollination. Neither flower nor pollen function were damaged by water. Although A. rigida is self-compatible, it is incapable of autonomous self-pollination without the assistance of rain splashes. The results of the rain-sheltering experiment indicated that rain pollination contributed substantially to increasing fruit-set, although there was variation among sites in the intensity of this effect. A. rigida flowers during the rainy season, when pollinators are scarce, and ombrophily functions to provide reproductive assurance without compromising opportunities for outcrossing.

  5. Nectar and pollination drops: how different are they?

    PubMed Central

    Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore

    2009-01-01

    Background Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as ‘reward’ for ants defending plants against herbivores (indirect defence). Scope Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a ‘reward’ for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Conclusions Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from

  6. Nectar and pollination drops: how different are they?

    PubMed

    Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore

    2009-08-01

    Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as 'reward' for ants defending plants against herbivores (indirect defence). Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a 'reward' for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from further proteomic studies of both

  7. Has pollination mode shaped the evolution of ficus pollen?

    PubMed

    Wang, Gang; Chen, Jin; Li, Zong-Bo; Zhang, Feng-Ping; Yang, Da-Rong

    2014-01-01

    The extent to which co-evolutionary processes shape morphological traits is one of the most fascinating topics in evolutionary biology. Both passive and active pollination modes coexist in the fig tree (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) mutualism. This classic obligate relationship that is about 75 million years old provides an ideal system to consider the role of pollination mode shifts on pollen evolution. Twenty-five fig species, which cover all six Ficus subgenera, and are native to the Xishuangbanna region of southwest China, were used to investigate pollen morphology with scanning electron microscope (SEM). Pollination mode was identified by the Anther/Ovule ratio in each species. Phylogenetic free regression and a correlated evolution test between binary traits were conducted based on a strong phylogenetic tree. Seventeen of the 25 fig species were actively pollinated and eight species were passively pollinated. Three pollen shape types and three kinds of exine ornamentation were recognized among these species. Pollen grains with ellipsoid shape and rugulate ornamentation were dominant. Ellipsoid pollen occurred in all 17 species of actively pollinated figs, while for the passively pollinated species, two obtuse end shapes were identified: cylinder and sphere shapes were identified in six of the eight species. All passively pollinated figs presented rugulate ornamentation, while for actively pollinated species, the smoother types - psilate and granulate-rugulate ornamentations - accounted for just five and two among the 17 species, respectively. The relationship between pollen shape and pollination mode was shown by both the phylogenetic free regression and the correlated evolution tests. Three pollen shape and ornamentation types were found in Ficus, which show characteristics related to passive or active pollination mode. Thus, the pollen shape is very likely shaped by pollination mode in this unique obligate mutualism.

  8. Has Pollination Mode Shaped the Evolution of Ficus Pollen?

    PubMed Central

    Wang, Gang; Chen, Jin; Li, Zong-Bo; Zhang, Feng-Ping; Yang, Da-Rong

    2014-01-01

    Background The extent to which co-evolutionary processes shape morphological traits is one of the most fascinating topics in evolutionary biology. Both passive and active pollination modes coexist in the fig tree (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) mutualism. This classic obligate relationship that is about 75 million years old provides an ideal system to consider the role of pollination mode shifts on pollen evolution. Methods and Main Findings Twenty-five fig species, which cover all six Ficus subgenera, and are native to the Xishuangbanna region of southwest China, were used to investigate pollen morphology with scanning electron microscope (SEM). Pollination mode was identified by the Anther/Ovule ratio in each species. Phylogenetic free regression and a correlated evolution test between binary traits were conducted based on a strong phylogenetic tree. Seventeen of the 25 fig species were actively pollinated and eight species were passively pollinated. Three pollen shape types and three kinds of exine ornamentation were recognized among these species. Pollen grains with ellipsoid shape and rugulate ornamentation were dominant. Ellipsoid pollen occurred in all 17 species of actively pollinated figs, while for the passively pollinated species, two obtuse end shapes were identified: cylinder and sphere shapes were identified in six of the eight species. All passively pollinated figs presented rugulate ornamentation, while for actively pollinated species, the smoother types - psilate and granulate-rugulate ornamentations - accounted for just five and two among the 17 species, respectively. The relationship between pollen shape and pollination mode was shown by both the phylogenetic free regression and the correlated evolution tests. Conclusions Three pollen shape and ornamentation types were found in Ficus, which show characteristics related to passive or active pollination mode. Thus, the pollen shape is very likely shaped by pollination mode

  9. Experimental defoliation affects male but not female reproductive performance of the tropical monoecious plant Croton suberosus (Euphorbiaceae).

    PubMed

    Narbona, Eduardo; Dirzo, Rodolfo

    2010-08-01

    Monoecious plants have the capacity to allocate resources separately to male and female functions more easily than hermaphrodites. This can be advantageous against environmental stresses such as leaf herbivory. However, studies showing effects of herbivory on male and female functions and on the interaction with the plant's pollinators are limited, particularly in tropical plants. Here, the effects of experimental defoliation were examined in the monoecious shrub Croton suberosus (Euphorbiaceae), a wasp-pollinated species from a Mexican tropical dry forest. Three defoliation treatments were applied: 0 % (control), 25 % (low) or 75 % (high) of plant leaf area removed. Vegetative (production of new leaves) and reproductive (pistillate and staminate flower production, pollen viability, nectar production, fruit set, and seed set) performance variables, and the abundance and activity of floral visitors were examined. Defoliated plants overcompensated for tissue loss by producing more new leaves than control plants. Production of staminate flowers gradually decreased with increasing defoliation and the floral sex ratio (staminate : pistillate flowers) was drastically reduced in high-defoliation plants. In contrast, female reproductive performance (pistillate flower production, fruit set and seed set) and pollinator visitation and abundance were not impacted by defoliation. The asymmetrical effects of defoliation on male and female traits of C. suberosus may be due to the temporal and spatial flexibility in the allocation of resources deployed by monoecious plants. We posit that this helps to maintain the plant's pollination success in the face of leaf herbivory stress.

  10. Degradation of soil fertility can cancel pollination benefits in sunflower.

    PubMed

    Tamburini, Giovanni; Berti, Antonio; Morari, Francesco; Marini, Lorenzo

    2016-02-01

    Pollination and soil fertility are important ecosystem services to agriculture but their relative roles and potential interactions are poorly understood. We explored the combined effects of pollination and soil fertility in sunflower using soils from a trial characterized by different long-term input management in order to recreate plausible levels of soil fertility. Pollinator exclusion was used as a proxy for a highly eroded pollination service. Pollination benefits to yield depended on soil fertility, i.e., insect pollination enhanced seed set and yield only under higher soil fertility indicating that limited nutrient availability may constrain pollination benefits. Our study provides evidence for interactions between above- and belowground ecosystem services, highlighting the crucial role of soil fertility in supporting agricultural production not only directly, but also indirectly through pollination. Management strategies aimed at enhancing pollination services might fail in increasing yield in landscapes characterized by high soil service degradation. Comprehensive knowledge about service interactions is therefore essential for the correct management of ecosystem services in agricultural landscapes.

  11. Learning in Insect Pollinators and Herbivores.

    PubMed

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  12. Pollinator-mediated assemblage processes in California wildflowers.

    PubMed

    Briscoe Runquist, R; Grossenbacher, D; Porter, S; Kay, K; Smith, J

    2016-05-01

    Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator-mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co-occurrence patterns to determine the role of pollinator-mediated processes in structuring plant communities dominated by congeners. We surveyed three species-rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co-flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44-48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co-occurrence. Together, it appears that pollinators influence community assemblage in these three clades. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  13. Some pollinators are more equal than others: Factors influencing pollen loads and seed set capacity of two actively and passively pollinating fig wasps

    NASA Astrophysics Data System (ADS)

    Kjellberg, Finn; Suleman, Nazia; Raja, Shazia; Tayou, Abelouahad; Hossaert-McKey, Martine; Compton, Stephen G.

    2014-05-01

    The nursery pollination system of fig trees (Ficus) results in the plants providing resources for pollinator fig wasp larvae as part of their male reproductive investment, with selection determining relative investment into pollinating wasps and the pollen they carry. The small size of Ficus pollen suggests that the quantities of pollen transported by individual wasps often limits male reproductive success. We assessed variation in fig wasp pollen loads and its influence on seed production in actively pollinated (Ficus montana) and passively pollinated (Ficus carica) dioecious fig trees.

  14. Rain pollination provides reproductive assurance in a deceptive orchid

    PubMed Central

    Fan, Xu-Li; Barrett, Spencer C. H.; Lin, Hua; Chen, Ling-Ling; Zhou, Xiang; Gao, Jiang-Yun

    2012-01-01

    Background and Aims Abiotic pollination by wind or water is well established in flowering plants. In some species pollination by rain splashes, a condition known as ombrophily, has been proposed as a floral strategy. However, evidence for this type of abiotic pollination has remained controversial and many reported cases have subsequently been shown to be false. This study investigates ombrophily in the deceptive orchid Acampe rigida to determine the mechanism by which this species is able to maintain high fecundity, despite flowering during the rainy season in south-west China when pollinators are scarce. Methods The floral mechanisms promoting rain pollination in A. rigida were observed and described in detail. Controlled pollination experiments and observations of floral visitors were conducted. A field experiment using rain shelters at 14 sites in Guangxi, south-west China, evaluated the contribution of rain pollination to fruit-set. Key Results During rainfall, raindrops physically flicked away the anther cap exposing the pollinarium. Raindrops then caused pollinia to be ejected upwards with the strap-like stipe pulling them back and causing them to fall into the stigmatic cavity, resulting in self-pollination. Neither flower nor pollen function were damaged by water. Although A. rigida is self-compatible, it is incapable of autonomous self-pollination without the assistance of rain splashes. The results of the rain-sheltering experiment indicated that rain pollination contributed substantially to increasing fruit-set, although there was variation among sites in the intensity of this effect. Conclusions A. rigida flowers during the rainy season, when pollinators are scarce, and ombrophily functions to provide reproductive assurance without compromising opportunities for outcrossing. PMID:22851311

  15. Population dynamics and the ecological stability of obligate pollination mutualisms

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2001-01-01

    Mutualistic interactions almost always produce both costs and benefits for each of the interacting species. It is the difference between gross benefits and costs that determines the net benefit and the per-capita effect on each of the interacting populations. For example, the net benefit of obligate pollinators, such as yucca and senita moths, to plants is determined by the difference between the number of ovules fertilized from moth pollination and the number of ovules eaten by the pollinator's larvae. It is clear that if pollinator populations are large, then, because many eggs are laid, costs to plants are large, whereas, if pollinator populations are small, gross benefits are low due to lack of pollination. Even though the size and dynamics of the pollinator population are likely to be crucial, their importance has been neglected in the investigation of mechanisms, such as selective fruit abortion, that can limit costs and increase net benefits. Here, we suggest that both the population size and dynamics of pollinators are important in determining the net benefits to plants, and that fruit abortion can significantly affect these. We develop a model of mutualism between populations of plants and their pollinating seed-predators to explore the ecological consequences of fruit abortion on pollinator population dynamics and the net effect on plants. We demonstrate that the benefit to a plant population is unimodal as a function of pollinator abundance, relative to the abundance of flowers. Both selective abortion of fruit with eggs and random abortion of fruit, without reference to whether they have eggs or not, can limit pollinator population size. This can increase the net benefits to the plant population by limiting the number of eggs laid, if the pollination rate remains high. However, fruit abortion can possibly destabilize the pollinator population, with negative consequences for the plant population.

  16. Radiation of pollination systems in the Iridaceae of sub-Saharan Africa.

    PubMed

    Goldblatt, Peter; Manning, John C

    2006-03-01

    Seventeen distinct pollination systems are known for genera of sub-Saharan African Iridaceae and recurrent shifts in pollination system have evolved in those with ten or more species. Pollination by long-tongued anthophorine bees foraging for nectar and coincidentally acquiring pollen on some part of their bodies is the inferred ancestral pollination strategy for most genera of the large subfamilies Iridoideae and Crocoideae and may be ancestral for the latter. Derived strategies include pollination by long-proboscid flies, large butterflies, night-flying hovering and settling moths, hopliine beetles and sunbirds. Bee pollination is diverse, with active pollen collection by female bees occurring in several genera, vibratile systems in a few and non-volatile oil as a reward in one species. Long-proboscid fly pollination, which is apparently restricted to southern Africa, includes four separate syndromes using different sets of flies and plant species in different parts of the subcontinent. Small numbers of species use bibionid flies, short-proboscid flies or wasps for their pollination; only about 2 % of species use multiple pollinators and can be described as generalists. Using pollination observations for 375 species and based on repeated patterns of floral attractants and rewards, we infer pollination mechanisms for an additional 610 species. Matching pollination system to phylogeny or what is known about species relationships based on shared derived features, we infer repeated shifts in pollination system in some genera, as frequently as one shift for every five or six species of southern African Babiana or Gladiolus. Specialized systems using pollinators of one pollination group, or even a single pollinator species are the rule in the family. Shifts in pollination system are more frequent in genera of Crocoideae that have bilaterally symmetric flowers and a perianth tube, features that promote adaptive radiation by facilitating precise shifts in pollen

  17. Pollination niche overlap between a parasitic plant and its host.

    PubMed

    Ollerton, Jeff; Stott, Adrian; Allnutt, Emma; Shove, Sam; Taylor, Chloe; Lamborn, Ellen

    2007-03-01

    Niche theory predicts that species which share resources should evolve strategies to minimise competition for those resources, or the less competitive species would be extirpated. Some plant species are constrained to co-occur, for example parasitic plants and their hosts, and may overlap in their pollination niche if they flower at the same time and attract the same pollinators. Using field observations and experiments between 1996 and 2006, we tested a series of hypotheses regarding pollination niche overlap between a specialist parasitic plant Orobanche elatior (Orobanchaceae) and its host Centaurea scabiosa (Asteraceae). These species flower more or less at the same time, with some year-to-year variation. The host is pollinated by a diverse range of insects, which vary in their effectiveness, whilst the parasite is pollinated by a single species of bumblebee, Bombus pascuorum, which is also an effective pollinator of the host plant. The two species therefore have partially overlapping pollination niches. These niches are not finely subdivided by differential pollen placement, or by diurnal segregation of the niches. We therefore found no evidence of character displacement within the pollination niches of these species, possibly because pollinators are not a limiting resource for these plants. Direct observation of pollinator movements, coupled with experimental manipulations of host plant inflorescence density, showed that Bombus pascuorum only rarely moves between inflorescences of the host and the parasite and therefore the presence of one plant is unlikely to be facilitating pollination in the other. This is the first detailed examination of pollination niche overlap in a plant parasite system and we suggest avenues for future research in relation to pollination and other shared interactions between parasitic plants and their hosts.

  18. High temperatures result in smaller nurseries which lower reproduction of pollinators and parasites in a brood site pollination mutualism.

    PubMed

    Krishnan, Anusha; Pramanik, Gautam Kumar; Revadi, Santosh V; Venkateswaran, Vignesh; Borges, Renee M

    2014-01-01

    In a nursery pollination mutualism, we asked whether environmental factors affected reproduction of mutualistic pollinators, non-mutualistic parasites and seed production via seasonal changes in plant traits such as inflorescence size and within-tree reproductive phenology. We examined seasonal variation in reproduction in Ficus racemosa community members that utilise enclosed inflorescences called syconia as nurseries. Temperature, relative humidity and rainfall defined four seasons: winter; hot days, cold nights; summer and wet seasons. Syconium volumes were highest in winter and lowest in summer, and affected syconium contents positively across all seasons. Greater transpiration from the nurseries was possibly responsible for smaller syconia in summer. The 3-5°C increase in mean temperatures between the cooler seasons and summer reduced fig wasp reproduction and increased seed production nearly two-fold. Yet, seed and pollinator progeny production were never negatively related in any season confirming the mutualistic fig-pollinator association across seasons. Non-pollinator parasites affected seed production negatively in some seasons, but had a surprisingly positive relationship with pollinators in most seasons. While within-tree reproductive phenology did not vary across seasons, its effect on syconium inhabitants varied with season. In all seasons, within-tree reproductive asynchrony affected parasite reproduction negatively, whereas it had a positive effect on pollinator reproduction in winter and a negative effect in summer. Seasonally variable syconium volumes probably caused the differential effect of within-tree reproductive phenology on pollinator reproduction. Within-tree reproductive asynchrony itself was positively affected by intra-tree variation in syconium contents and volume, creating a unique feedback loop which varied across seasons. Therefore, nursery size affected fig wasp reproduction, seed production and within-tree reproductive phenology

  19. Advances in pollination ecology from tropical plantation crops.

    PubMed

    Klein, Alexandra-Maria; Cunningham, Saul A; Bos, Merijn; Steffan-Dewenter, Ingolf

    2008-04-01

    Although ecologists traditionally focus on natural ecosystems, there is growing awareness that mixed landscapes of managed and unmanaged systems provide a research environment for understanding basic ecological relationships on a large scale. Here, we show how tropical agroforestry systems can be used to develop ideas about the mechanisms that influence species diversity and subsequent biotic interactions at different spatial scales. Our focus is on tropical plantation crops, mainly coffee and cacao, and their pollinators, which are of basic ecological interest as partners in an important mutualistic interaction. We review how insect-mediated pollination services depend on local agroforest and natural habitats in surrounding landscapes. Further, we evaluate the functional significance of pollinator diversity and the explanatory value of species traits, and we provide an intercontinental comparison of pollinator assemblages. We found that optimal pollination success might be best understood as a consequence of niche complementarities among pollinators in landscapes harboring various species. We further show that small cavity-nesting bees and small generalist beetles were especially affected by isolation from forest and that larger-bodied insects in the same landscapes were not similarly affected. We suggest that mixed tropical landscapes with agroforestry systems have great potential for future research on the interactions between plants and pollinators.

  20. Bee pollination improves crop quality, shelf life and commercial value.

    PubMed

    Klatt, Björn K; Holzschuh, Andrea; Westphal, Catrin; Clough, Yann; Smit, Inga; Pawelzik, Elke; Tscharntke, Teja

    2014-01-22

    Pollination improves the yield of most crop species and contributes to one-third of global crop production, but comprehensive benefits including crop quality are still unknown. Hence, pollination is underestimated by international policies, which is particularly alarming in times of agricultural intensification and diminishing pollination services. In this study, exclusion experiments with strawberries showed bee pollination to improve fruit quality, quantity and market value compared with wind and self-pollination. Bee-pollinated fruits were heavier, had less malformations and reached higher commercial grades. They had increased redness and reduced sugar-acid-ratios and were firmer, thus improving the commercially important shelf life. Longer shelf life reduced fruit loss by at least 11%. This is accounting for 0.32 billion US$ of the 1.44 billion US$ provided by bee pollination to the total value of 2.90 billion US$ made with strawberry selling in the European Union 2009. The fruit quality and yield effects are driven by the pollination-mediated production of hormonal growth regulators, which occur in several pollination-dependent crops. Thus, our comprehensive findings should be transferable to a wide range of crops and demonstrate bee pollination to be a hitherto underestimated but vital and economically important determinant of fruit quality.

  1. Radiation of Pollination Systems in the Iridaceae of sub-Saharan Africa

    PubMed Central

    GOLDBLATT, PETER; MANNING, JOHN C.

    2006-01-01

    • Background Seventeen distinct pollination systems are known for genera of sub-Saharan African Iridaceae and recurrent shifts in pollination system have evolved in those with ten or more species. Pollination by long-tongued anthophorine bees foraging for nectar and coincidentally acquiring pollen on some part of their bodies is the inferred ancestral pollination strategy for most genera of the large subfamilies Iridoideae and Crocoideae and may be ancestral for the latter. Derived strategies include pollination by long-proboscid flies, large butterflies, night-flying hovering and settling moths, hopliine beetles and sunbirds. Bee pollination is diverse, with active pollen collection by female bees occurring in several genera, vibratile systems in a few and non-volatile oil as a reward in one species. Long-proboscid fly pollination, which is apparently restricted to southern Africa, includes four separate syndromes using different sets of flies and plant species in different parts of the subcontinent. Small numbers of species use bibionid flies, short-proboscid flies or wasps for their pollination; only about 2 % of species use multiple pollinators and can be described as generalists. • Scope Using pollination observations for 375 species and based on repeated patterns of floral attractants and rewards, we infer pollination mechanisms for an additional 610 species. Matching pollination system to phylogeny or what is known about species relationships based on shared derived features, we infer repeated shifts in pollination system in some genera, as frequently as one shift for every five or six species of southern African Babiana or Gladiolus. Specialized systems using pollinators of one pollination group, or even a single pollinator species are the rule in the family. Shifts in pollination system are more frequent in genera of Crocoideae that have bilaterally symmetric flowers and a perianth tube, features that promote adaptive radiation by facilitating

  2. Carbohydrates, pollinators, and cycads

    PubMed Central

    Marler, Thomas E; Lindström, Anders J

    2015-01-01

    Cycad biology, ecology, and horticulture decisions are not supported by adequate research, and experiments in cycad physiology in particular have been deficient. Our recent report on free sugar content in a range of cycad taxa and tissues sets the stage for developing continued carbohydrate research. Growth and development of cycad pollen, mediation of the herbivory traits of specialist pollinators, and support of expensive strobilus behavioral traits are areas of cycad pollination biology that would benefit from a greater understanding of the role of carbohydrate relations. PMID:26479502

  3. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production

    PubMed Central

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E.; Mathews, Sarah

    2016-01-01

    Background and Aims Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Methods Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana. RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. Key Results About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen–ovule interactions. Conclusions The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of

  4. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production.

    PubMed

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah

    2016-05-01

    Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops

  5. Corridors restore animal-mediated pollination in fragmented tropical forest landscapes

    PubMed Central

    Kormann, Urs; Scherber, Christoph; Tscharntke, Teja; Klein, Nadja; Larbig, Manuel; Valente, Jonathon J.; Hadley, Adam S.; Betts, Matthew G.

    2016-01-01

    Tropical biodiversity and associated ecosystem functions have become heavily eroded through habitat loss. Animal-mediated pollination is required in more than 94% of higher tropical plant species and 75% of the world's leading food crops, but it remains unclear if corridors avert deforestation-driven pollination breakdown in fragmented tropical landscapes. Here, we used manipulative resource experiments and field observations to show that corridors functionally connect neotropical forest fragments for forest-associated hummingbirds and increase pollen transfer. Further, corridors boosted forest-associated pollinator availability in fragments by 14.3 times compared with unconnected equivalents, increasing overall pollination success. Plants in patches without corridors showed pollination rates equal to bagged control flowers, indicating pollination failure in isolated fragments. This indicates, for the first time, that corridors benefit tropical forest ecosystems beyond boosting local species richness, by functionally connecting mutualistic network partners. We conclude that small-scale adjustments to landscape configuration safeguard native pollinators and associated pollination services in tropical forest landscapes. PMID:26817765

  6. Requirements for plant coexistence through pollination niche partitioning

    PubMed Central

    Benadi, Gita

    2015-01-01

    Plant–pollinator interactions are often thought to have been a decisive factor in the diversification of flowering plants, but to be of little or no importance for the maintenance of existing plant diversity. In a recent opinion paper, Pauw (2013 Trends Ecol. Evol. 28, 30–37. (doi:10.1016/j.tree.2012.07.019)) challenged this view by proposing a mechanism of diversity maintenance based on pollination niche partitioning. In this article, I investigate under which conditions the mechanism suggested by Pauw can promote plant coexistence, using a mathematical model of plant and pollinator population dynamics. Numerical simulations show that this mechanism is most effective when the costs of searching for flowers are low, pollinator populations are strongly limited by resources other than pollen and nectar, and plant–pollinator interactions are sufficiently specialized. I review the empirical literature on these three requirements, discuss additional factors that may be important for diversity maintenance through pollination niche partitioning, and provide recommendations on how to detect this coexistence mechanism in natural plant communities. PMID:26108627

  7. Anther evolution: pollen presentation strategies when pollinators differ.

    PubMed

    Castellanos, Maria Clara; Wilson, Paul; Keller, Sarah J; Wolfe, Andrea D; Thomson, James D

    2006-02-01

    Male-male competition in plants is thought to exert selection on flower morphology and on the temporal presentation of pollen. Theory suggests that a plant's pollen dosing strategy should evolve to match the abundance and pollen transfer efficiency of its pollinators. Simultaneous pollen presentation should be favored when pollinators are infrequent or efficient at delivering the pollen they remove, whereas gradual dosing should optimize delivery by frequent and wasteful pollinators. Among Penstemon and Keckiella species, anthers vary in ways that affect pollen release, and the morphology of dried anthers reliably indicates how they dispense pollen. In these genera, hummingbird pollination has evolved repeatedly from hymenopteran pollination. Pollen production does not change with evolutionary shifts between pollinators. We show that after we control for phylogeny, hymenopteran-adapted species present their pollen more gradually than hummingbird-adapted relatives. In a species pair that seemed to defy the pattern, the rhythm of anther maturation produced an equivalent dosing effect. These results accord with previous findings that hummingbirds can be more efficient than bees at delivering pollen.

  8. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators

    PubMed Central

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-01-01

    Background and Aims The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Methods Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. Key Results The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Conclusions Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside

  9. Pollination Research Methods with Apis mellifera

    USDA-ARS?s Scientific Manuscript database

    This chapter describes field and lab procedures for doing experiments on honey bee pollination. Most of the methods apply to any insect for whom pollen vectoring capacity is the question. What makes honey bee pollination distinctive is its historic emphasis on agricultural applications; hence one fi...

  10. Seasonal change in a pollinator community and the maintenance of style length variation in Mertensia fusiformis (Boraginaceae).

    PubMed

    Forrest, Jessica R K; Ogilvie, Jane E; Gorischek, Alex M; Thomson, James D

    2011-07-01

    In sub-alpine habitats, patchiness in snowpack produces marked, small-scale variation in flowering phenology. Plants in early- and late-melting patches are therefore likely to experience very different conditions during their flowering periods. Mertensia fusiformis is an early-flowering perennial that varies conspicuously in style length within and among populations. The hypothesis that style length represents an adaptation to local flowering time was tested. Specifically, it was hypothesized that lower air temperatures and higher frost risk would favour short-styled plants (with stigmas more shielded by corollas) in early-flowering patches, but that the pollen-collecting behaviour of flower visitors in late-flowering patches would favour long-styled plants. Floral morphology was measured, temperatures were monitored and pollinators were observed in several matched pairs of early and late populations. To evaluate effects of cold temperatures on plants of different style lengths, experimental pollinations were conducted during mornings (warm) and evenings (cool), and on flowers that either had or had not experienced a prior frost. The effectiveness of different pollinators was quantified as seed set following single visits to plants with relatively short or long styles. Late-flowering populations experienced warmer temperatures than early-flowering populations and a different suite of pollinators. Nectar-foraging bumble-bee queens and male solitary bees predominated in early populations, whereas pollen-collecting female solitary bees were more numerous in later sites. Pollinators differed significantly in their abilities to transfer pollen to stigmas at different heights, in accordance with our prediction. However, temperature and frost sensitivity did not differ between long- and short-styled plants. Although plants in late-flowering patches tended to have longer styles than those in early patches, this difference was not consistent. Seasonal change in pollinator

  11. Effects of habitat disturbance on the pollination system of Ammopiptanthus mongolicus (Maxim) Cheng f. at the landscape-level in an arid region of Northwest China.

    PubMed

    Chen, Min; Zhao, Xue-Yong; Zuo, Xiao-An; Mao, Wei; Qu, Hao; Zhu, Yang-Chun

    2016-05-01

    Ammopiptanthus mongolicus is an ecologically important species in the arid region of Northwest China. Habitat disturbance can significantly affect plant mating success and ultimately species viability. Pollen limitation of plant reproduction occurs in many plant species, particularly those under habitat disturbance. However, previous investigations have demonstrated differences in pollen limitation between conserved and disturbed sites. We compared the phenology, pollen limitation, pollinators and breeding system of both sites to determine whether habitat disturbance has generated changes in these plant components. We found that the species differed in four aspects. First, blooming duration and flowering peak were longer in the disturbed site than in the conserved site. Second, A. mongolicus can be pollen-limited and pollen limitation was more intense in the conserved site than in the disturbed site. Third, Anthophora uljanini was found to be a frequent pollinator in the conserved site, while Apis mellifera was the most effective and frequent flower visitor. More pollinator visits were recorded in the disturbed site, which could explain the differences in reproductive success. Finally, seed set was higher in the disturbed site than in the conserved site. We found that outcrossing was dominant in both sites and that agamospermy and self-pollination played complementary roles to ensure reproduction. Differences in flower production influenced by artificial selection and pollinator type explain the different seed set in both sites, whereas habitat disturbance cause changes differences in the pollination process and limits pollen flow. The balance between artificial management and mating success is crucial to analysis of the pollination process and manipulation of A. mongolicus population size.

  12. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea

    PubMed Central

    Thairu, Margaret W.; Brunet, Johanne

    2015-01-01

    Background and Aims Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Methods Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Key Results Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Conclusions Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. PMID:25808657

  13. Projected climate change threatens pollinators and crop production in Brazil

    PubMed Central

    Costa, Wilian França; Cordeiro, Guaraci Duran; Imperatriz-Fonseca, Vera Lucia; Saraiva, Antonio Mauro; Biesmeijer, Jacobus; Garibaldi, Lucas Alejandro

    2017-01-01

    Animal pollination can impact food security since many crops depend on pollinators to produce fruits and seeds. However, the effects of projected climate change on crop pollinators and therefore on crop production are still unclear, especially for wild pollinators and aggregate community responses. Using species distributional modeling, we assessed the effects of climate change on the geographic distribution of 95 pollinator species of 13 Brazilian crops, and we estimated their relative impacts on crop production. We described these effects at the municipality level, and we assessed the crops that were grown, the gross production volume of these crops, the total crop production value, and the number of inhabitants. Overall, considering all crop species, we found that the projected climate change will reduce the probability of pollinator occurrence by almost 0.13 by 2050. Our models predict that almost 90% of the municipalities analyzed will face species loss. Decreases in the pollinator occurrence probability varied from 0.08 (persimmon) to 0.25 (tomato) and will potentially affect 9% (mandarin) to 100% (sunflower) of the municipalities that produce each crop. Municipalities in central and southern Brazil will potentially face relatively large impacts on crop production due to pollinator loss. In contrast, some municipalities in northern Brazil, particularly in the northwestern Amazon, could potentially benefit from climate change because pollinators of some crops may increase. The decline in the probability of pollinator occurrence is found in a large number of municipalities with the lowest GDP and will also likely affect some places where crop production is high (20% to 90% of the GDP) and where the number of inhabitants is also high (more than 6 million people). Our study highlights key municipalities where crops are economically important and where pollinators will potentially face the worst conditions due to climate change. However, pollinators may be able to

  14. Projected climate change threatens pollinators and crop production in Brazil.

    PubMed

    Giannini, Tereza Cristina; Costa, Wilian França; Cordeiro, Guaraci Duran; Imperatriz-Fonseca, Vera Lucia; Saraiva, Antonio Mauro; Biesmeijer, Jacobus; Garibaldi, Lucas Alejandro

    2017-01-01

    Animal pollination can impact food security since many crops depend on pollinators to produce fruits and seeds. However, the effects of projected climate change on crop pollinators and therefore on crop production are still unclear, especially for wild pollinators and aggregate community responses. Using species distributional modeling, we assessed the effects of climate change on the geographic distribution of 95 pollinator species of 13 Brazilian crops, and we estimated their relative impacts on crop production. We described these effects at the municipality level, and we assessed the crops that were grown, the gross production volume of these crops, the total crop production value, and the number of inhabitants. Overall, considering all crop species, we found that the projected climate change will reduce the probability of pollinator occurrence by almost 0.13 by 2050. Our models predict that almost 90% of the municipalities analyzed will face species loss. Decreases in the pollinator occurrence probability varied from 0.08 (persimmon) to 0.25 (tomato) and will potentially affect 9% (mandarin) to 100% (sunflower) of the municipalities that produce each crop. Municipalities in central and southern Brazil will potentially face relatively large impacts on crop production due to pollinator loss. In contrast, some municipalities in northern Brazil, particularly in the northwestern Amazon, could potentially benefit from climate change because pollinators of some crops may increase. The decline in the probability of pollinator occurrence is found in a large number of municipalities with the lowest GDP and will also likely affect some places where crop production is high (20% to 90% of the GDP) and where the number of inhabitants is also high (more than 6 million people). Our study highlights key municipalities where crops are economically important and where pollinators will potentially face the worst conditions due to climate change. However, pollinators may be able to

  15. High Temperatures Result in Smaller Nurseries which Lower Reproduction of Pollinators and Parasites in a Brood Site Pollination Mutualism

    PubMed Central

    Krishnan, Anusha; Pramanik, Gautam Kumar; Revadi, Santosh V.; Venkateswaran, Vignesh; Borges, Renee M.

    2014-01-01

    In a nursery pollination mutualism, we asked whether environmental factors affected reproduction of mutualistic pollinators, non-mutualistic parasites and seed production via seasonal changes in plant traits such as inflorescence size and within-tree reproductive phenology. We examined seasonal variation in reproduction in Ficus racemosa community members that utilise enclosed inflorescences called syconia as nurseries. Temperature, relative humidity and rainfall defined four seasons: winter; hot days, cold nights; summer and wet seasons. Syconium volumes were highest in winter and lowest in summer, and affected syconium contents positively across all seasons. Greater transpiration from the nurseries was possibly responsible for smaller syconia in summer. The 3–5°C increase in mean temperatures between the cooler seasons and summer reduced fig wasp reproduction and increased seed production nearly two-fold. Yet, seed and pollinator progeny production were never negatively related in any season confirming the mutualistic fig–pollinator association across seasons. Non-pollinator parasites affected seed production negatively in some seasons, but had a surprisingly positive relationship with pollinators in most seasons. While within-tree reproductive phenology did not vary across seasons, its effect on syconium inhabitants varied with season. In all seasons, within-tree reproductive asynchrony affected parasite reproduction negatively, whereas it had a positive effect on pollinator reproduction in winter and a negative effect in summer. Seasonally variable syconium volumes probably caused the differential effect of within-tree reproductive phenology on pollinator reproduction. Within-tree reproductive asynchrony itself was positively affected by intra-tree variation in syconium contents and volume, creating a unique feedback loop which varied across seasons. Therefore, nursery size affected fig wasp reproduction, seed production and within-tree reproductive

  16. Pollination induces autophagy in petunia petals via ethylene.

    PubMed

    Shibuya, Kenichi; Niki, Tomoko; Ichimura, Kazuo

    2013-02-01

    Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence.

  17. Using nectar-related traits to enhance crop-pollinator interactions

    USDA-ARS?s Scientific Manuscript database

    Floral nectar and other rewards facilitate crop pollination, and in so doing, increase the amount and breadth of food available for humans. Though pollinator abundance and diversity (particularly bees) have declined over the past several decades, a concomitant increase in reliance on pollinators pre...

  18. Asynchronous diversification in a specialized plant-pollinator mutualism.

    PubMed

    Ramírez, Santiago R; Eltz, Thomas; Fujiwara, Mikiko K; Gerlach, Günter; Goldman-Huertas, Benjamin; Tsutsui, Neil D; Pierce, Naomi E

    2011-09-23

    Most flowering plants establish mutualistic associations with insect pollinators to facilitate sexual reproduction. However, the evolutionary processes that gave rise to these associations remain poorly understood. We reconstructed the times of divergence, diversification patterns, and interaction networks of a diverse group of specialized orchids and their bee pollinators. In contrast to a scenario of coevolution by race formation, we show that fragrance-producing orchids originated at least three times independently after their fragrance-collecting bee mutualists. Whereas orchid diversification has apparently tracked the diversification of orchids' bee pollinators, bees appear to have depended on the diverse chemical environment of neotropical forests. We corroborated this apparent asymmetrical dependency by simulating co-extinction cascades in real interaction networks that lacked reciprocal specialization. These results suggest that the diversification of insect-pollinated angiosperms may have been facilitated by the exploitation of preexisting sensory biases of insect pollinators.

  19. Pollination of Vietnamese Aspidistra xuansonensis (Asparagaceae) by female Cecidomyiidi flies: larvae of pollinator feed on fertile pollen in anthers of anthetic bisexual flowers.

    PubMed

    Vislobokov, Nikolay A; Galinskaya, Tatiana V; Degtjareva, Galina V; Valiejo-Roman, Carmen M; Samigullin, Tahir H; Kuznetsov, Andrey N; Sokoloff, Dmitry D

    2014-09-01

    • Aspidistra is a species-rich, herbaceous monocot genus of tropical Southeast Asia. Most species are recently discovered and apparently endangered, though virtually nothing is known about their biology. Species of the genus are primarily distinguished using flower morphology, which is enormously diverse. However, the pollination process has not been directly observed in the center of diversity of the genus (N Vietnam and S China). Indirect and partly direct data on the only widely cultivated species of the genus (A. elatior) placed it among angiosperms with the most unusual pollination biology, though these data are highly controversial, suggesting pollen transfer by mollusks, crustaceans, flies, or possibly tiny soil invertebrates such as collembolans.• Pollination of Aspidistra xuansonensis in the center of diversity of the genus was studied using visual observations and videos and light and scanning electron microscopy investigation of flowers and their pollinators. Pollinators and their larvae were molecularly barcoded.• Aspidistra xuansonensis is pollinated by female cecidomyiid flies (gall midges). They oviposit on anthers, and larvae develop among the pollen mass. Molecular barcoding proved taxonomic identity of the larvae and the flies. The larvae neither damage floral parts nor cause gall formation, but feed on pollen grains by sucking out their content. The larvae move out of the flowers before decomposition starts. Carebara ants steal developing larvae from flowers but do not contribute to pollination.• More than one kind of myiophily is present in Aspidistra. Brood site pollination was documented for the first time in Aspidistra. The pollination system of A. xuansonensis differs from other kinds of brood site pollination in the exit of the larvae prior to the decomposition of floral parts. © 2014 Botanical Society of America, Inc.

  20. A novel mutualism between an ant-plant and its resident pollinator

    NASA Astrophysics Data System (ADS)

    Shenoy, Megha; Borges, Renee M.

    2008-01-01

    Pollination systems in which the host plant provides breeding sites for pollinators, invariably within flowers, are usually highly specialized mutualisms. We found that the pollinating bee Braunsapis puangensis breeds within the caulinary domatia of the semi-myrmecophyte Humboldtia brunonis (Fabaceae), an unusual ant-plant that is polymorphic for the presence of domatia and harbours a diverse invertebrate fauna including protective and non-protective ants in its domatia. B. puangensis is the most common flower visitor that carries the highest proportion of H. brunonis pollen. This myrmecophyte is pollen limited and cross-pollinated by bees in the daytime. Hence, the symbiotic pollinator could provide a benefit to trees bearing domatia by alleviating this limitation. We therefore report for the first time an unspecialised mutualism in which a pollinator is housed in a plant structure other than flowers. Here, the cost to the plant is lower than for conventional brood-site pollination mutualisms where the pollinator develops at the expense of plant reproductive structures. Myrmecophytes housing resident pollinators are unusual, as ants are known to be enemies of pollinators, and housing them together may decrease the benefits that these residents could individually provide to the host plant.