Sample records for pollutant emission control

  1. Biofiltration: An innovative air pollution control technology for VOC emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leson, G.; Winer, A.M.

    1991-08-01

    Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readilymore » biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.« less

  2. Biofiltration: an innovative air pollution control technology for VOC emissions.

    PubMed

    Leson, G; Winer, A M

    1991-08-01

    Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readily biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.

  3. Portable air pollution control equipment for the control of toxic particulate emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaurushia, A.; Odabashian, S.; Busch, E.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) priormore » to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.« less

  4. Conference on alternatives for pollution control from coal-fired low emission sources, Plzen, Czech Republic. Plzen Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    The Conference on Alternatives for Pollution Control from Coal-Fired Emission Sources presented cost-effective approaches for pollution control of low emission sources (LES). It also identified policies and strategies for implementation of pollution control measures at the local level. Plzen, Czech Republic, was chosen as the conference site to show participants first hand the LES problems facing Eastern Europe today. Collectively, these Proceedings contain clear reports on: (a) methods for evaluating the cost effectiveness of alternative approaches to control pollution from small coal-fired boilers and furnaces; (b) cost-effective technologies for controlling pollution from coal-fired boilers and furnaces; (c) case studies ofmore » assessment of cost effective pollution control measures for selected cities in eastern Europe; and (d) approaches for actually implementing pollution control measures in cities in Eastern Europe. It is intended that the eastern/central European reader will find in these Proceedings useful measures that can be applied to control emissions and clean the air in his city or region. The conference was sponsored by the United States Agency for International Development (AID), the United States Department of Energy (DOE), and the Czech Ministry of Industry and Trade. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  5. [Study on emission standard system of air pollutants].

    PubMed

    Jiang, Mei; Zhang, Guo-Ning; Zhang, Ming-Hui; Zou, Lan; Wei, Yu-Xia; Ren, Chun

    2012-12-01

    Scientific and reasonable emission standard system of air pollutants helps to systematically control air pollution, enhance the protection of the atmospheric environment effect and improve the overall atmospheric environment quality. Based on the study of development, situation and characteristics of national air pollutants emission standard system, the deficiencies of system were pointed out, which were not supportive, harmonious and perfect, and the improvement measures of emission standard system were suggested.

  6. Evaluating the effects of China's pollution control on inter-annual trends and uncertainties of atmospheric mercury emissions

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhong, H.; Zhang, J.; Nielsen, C. P.

    2014-10-01

    China's atmospheric mercury (Hg) emissions of anthropogenic origin have been effectively restrained through the national policy of air pollution control. Improved methods based on available field measurements are developed to quantify the benefits of Hg abatement through various emission control measures. Those measures include increased use of flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems for power sector, precalciners with fabric filter (FF) for cement production, machinery coking with electrostatic precipitator (ESP) for iron and steel production, and advanced manufacturing technologies for nonferrous metal smelting. Declining trends in emissions factors for those sources are revealed, leading to a much slower growth of national total Hg emissions than that of energy and economy, from 679 in 2005 to 750 metric tons (t) in 2012. In particular, nearly half of emissions from the above-mentioned four types of sources are expected to be reduced in 2012, attributed to expansion of technologies with high energy efficiencies and air pollutant removal rates after 2005. The speciation of Hg emissions keeps stable for recent years, with the mass fractions of around 55, 39 and 6% for Hg0, Hg2+ and Hgp, respectively. The lower estimate of Hg emissions than previous inventories is supported by limited chemistry simulation work, but middle-to-long term observation on ambient Hg levels is further needed to justify the inter-annual trends of estimated Hg emissions. With improved implementation of emission controls and energy saving, 23% reduction in annual Hg emissions for the most optimistic case in 2030 is expected compared to 2012, with total emissions below 600 t. While Hg emissions are evaluated to be gradually constrained, increased uncertainties are quantified with Monte-Carlo simulation for recent years, particularly for power and certain industrial sources. The uncertainty of Hg emissions from coal-fired power plants, as an example

  7. Reducing air pollutant emissions at airports by controlling aircraft ground operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelinas, C.G.; Fan, H.S.L.

    1979-02-01

    Potential reductions in air pollutant emissions were determined for four stategies to control aircraft ground operations at two case study airports, Los Angeles and San Francisco International Airports. Safety, cost, and fuel savings associated with strategy implementation were examined. Two strategies, aircraft towing and shutdown of one engine during taxi operations, provided significant emission reductions. However, there are a number of safety problems associated with aircraft towing. The shutdown of one engine while taxiing was found to be the most viable strategy because of substantial emission reductions, cost benefits resulting from fuel savings, and no apparent safety problems.

  8. Evaluating the effects of China's pollution controls on inter-annual trends and uncertainties of atmospheric mercury emissions

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhong, H.; Zhang, J.; Nielsen, C. P.

    2015-04-01

    China's anthropogenic emissions of atmospheric mercury (Hg) are effectively constrained by national air pollution control and energy efficiency policies. In this study, improved methods, based on available data from domestic field measurements, are developed to quantify the benefits of Hg abatement by various emission control measures. Those measures include increased use of (1) flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems in power generation; (2) precalciner kilns with fabric filters (FF) in cement production; (3) mechanized coking ovens with electrostatic precipitators (ESP) in iron and steel production; and (4) advanced production technologies in nonferrous metal smelting. Investigation reveals declining trends in emission factors for each of these sources, which together drive a much slower growth of total Hg emissions than the growth of China's energy consumption and economy, from 679 metric tons (t) in 2005 to 750 t in 2012. In particular, estimated emissions from the above-mentioned four source types declined 3% from 2005 to 2012, which can be attributed to expanded deployment of technologies with higher energy efficiencies and air pollutant removal rates. Emissions from other anthropogenic sources are estimated to increase by 22% during the period. The species shares of total Hg emissions have been stable in recent years, with mass fractions of around 55, 39, and 6% for gaseous elemental Hg (Hg0), reactive gaseous mercury (Hg2+), and particle-bound mercury (Hgp), respectively. The higher estimate of total Hg emissions than previous inventories is supported by limited simulation of atmospheric chemistry and transport. With improved implementation of emission controls and energy saving, a 23% reduction in annual Hg emissions from 2012 to 2030, to below 600 t, is expected at the most. While growth in Hg emissions has been gradually constrained, uncertainties quantified by Monte Carlo simulation for recent years have increased

  9. On the Effects of NOx Emission Control and Drought on an Ozone-Polluted Ecosystem

    NASA Astrophysics Data System (ADS)

    Pusede, S.; Geddes, J.; Buysse, C. E.; Esperanza, A.; Najacht, E.; Anderson, J. F.; Bailey, C. B.; Munyan, J.

    2017-12-01

    Regulatory emission controls are typically designed to reduce ozone when ozone is highest. However, high ozone concentrations are often asynchronous with periods of the greatest ozone harm to plants and ecosystems, particularly during drought. Because ozone production chemistry is nonlinear, emissions reductions designed to be effective in polluted cities may have a range of effects on downwind ecosystems. Here, we investigate the influence of regional NOx emission controls on ozone pollution in Sequoia National Park (SNP). First, we show that steep declines in NOx throughout the region have had smaller impacts in SNP than in cities upwind, and that these reductions have been least effective at times of day and year when plants are most sensitive to ozone. Second, in recent years (2012-2015), California experienced the worst drought in recorded history. We present observational evidence of the ozone response in SNP to drought conditions, finding that the drought altered the chemical sensitivity of local ozone production to NOx emissions and, hence, the effectiveness of NOx emission controls. We show that drought impacts on the ozone sensitivity to NOx have persisted at least two years since the drought ended.

  10. Control of Air Pollution from Aviation: The Emission Standard Setting Process.

    DTIC Science & Technology

    1981-01-01

    49 VIII-2 ORGANIC EMISSIONS FROM GAS TURBINE ENGINES .......... 64 VIII-3 THE REACTIVITY OF AIRCRAFT COMPARED WITH OTHER EMISSION SOURCES...SETTING PROCESS ............................................... 45 VIII-I GAS TURBINE POLLUTANT FORMATION AND DECOMPO- SITION...144 A-4-3 AIRCRAFT GAS TURBINE POLLUTION CONSIDERATIONS ....... 145 A-4-4 PRIMARY ZONE ENRICHMENT, DELAYED DILUTION, AND AIRBLAST

  11. Air Pollution Control, Part I.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    Authoritative reviews in seven areas of current importance in air pollution control are supplied in this volume, the first of a two-part set. Titles contained in this book are: "Dispersion of Pollutants Emitted into the Atmosphere,""The Formation and Control of Oxides of Nitrogen in Air Pollution,""The Control of Sulfur Emissions from Combustion…

  12. Influence of Air Pollutant Emission Controls on the "Climate Penalty" in the United States

    NASA Astrophysics Data System (ADS)

    Feng, T.; Couzo, E. A.; Selin, N. E.; Garcia-Menendez, F.; Monier, E.

    2016-12-01

    Previous work has examined the so-called "climate penalty" (or benefit, where climate change leads to decreased pollutant concentrations) for the U.S. In particular, previous research has identified the role of changes in temperature, precipitation, relative humidity, and biogenic emissions, in altering concentrations of O3 and PM2.5, when emissions of air pollutant precursors are held constant. However, changes in emissions of those precursors can also affect the magnitude of climate penalty/benefit. The effect of changing air pollutant emissions on the climate penalty/benefit has not been systematically studied. Here, we estimate the U.S. climate penalty (for O3 and PM2.5) as a function of four different local (U.S.) non-GHG emissions scenarios using the GEOS-Chem chemical transport model coupled to the MIT Integrated Global System Model linked to the Community Atmosphere Model (IGSM-CAM). Our base case scenario includes global and regional emissions for 2006. We conduct three sensitivity scenarios that adjust U.S. air pollutant precursor (non-GHG) emissions by -50%, +50%, and +100%; global emissions are kept at 2006 levels. This allows us to quantify the avoided climate penalty achieved by non-GHG emissions reductions. To capture inter-annual meteorological variability, our climate penalty calculations use 20-year averages for the present (1991-2010) and future (2091-2110) climate under a no-policy scenario. Consistent with previous work, we find a "climate penalty" for O3 and PM2.5 in U.S. by 2100 across all four scenarios. We also find a climate-related decrease in the concentration of NOx and nitrate, and an increase in black carbon, organic carbon and sulfate. Changes in ammonium are spatially inhomogeneous, with an increase in eastern U.S. and a decrease in middle and western U.S. When air pollutant precursor emissions increase, we find that the O3 "climate penalty" is enhanced. However, the response of the PM2.5 "climate penalty" to changed emissions

  13. Evaluating the Effects of Emission Reductions on Multiple Pollutants Simultaneously

    EPA Science Inventory

    Modeling studies over the Philadelphia metropolitan area have examined how emission control strategies might affect several types of air pollutants simultaneously. This study supports considering effects of multiple pollutants in determining optimum pollution control strategies. ...

  14. Strategies for emission reduction of air pollutants produced from a chemical plant.

    PubMed

    Lee, Byeong-Kyu; Cho, Sung-Woong

    2003-01-01

    Various air pollution control (APC) techniques were employed in order to reduce emissions of air pollutants produced from chemical plants, which have many different chemical production facilities. For an emission reduction of acid gases, this study employed a method to improve solubility of pollutants by decreasing the operating temperature of the scrubbers, increasing the surface area for effective contact of gas and liquid, and modifying processes in the acid scrubbers. To reduce emission of both amines and acid gases, pollutant gas components were first separated, then condensation and/or acid scrubbing, depending on the chemical and physical properties of pollutant components, were used. To reduce emission of solvents, condensation and activated carbon adsorption were employed. To reduce emission of a mixture gases containing acid gases and solvents, the mixed gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. As a strategy to reduce emission of pollutants at the source, this study also employed the simple pollution prevention concept of modification of the previously operating APC control device. Finally, air emissions of pollutants produced from the chemical plants were much more reduced by applying proper APC methods, depending upon the types (physical or chemical properties) and the specific emission situations of pollutants.

  15. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ...-OAR-2011-0135; FRL-9818-5] RIN 2060-A0 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles...

  16. Quantifying Pollutant Emissions from Office Equipment Phase IReport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, R.L.; Destaillats, H.; Hodgson, A.T.

    2006-12-01

    Although office equipment has been a focal point for governmental efforts to promote energy efficiency through programs such as Energy Star, little is known about the relationship between office equipment use and indoor air quality. This report provides results of the first phase (Phase I) of a study in which the primary objective is to measure emissions of organic pollutants and particulate matter from a selected set of office equipment typically used in residential and office environments. The specific aims of the overall research effort are: (1) use screening-level measurements to identify and quantify the concentrations of air pollutants ofmore » interest emitted by major categories of distributed office equipment in a controlled environment; (2) quantify the emissions of air pollutants from generally representative, individual machines within each of the major categories in a controlled chamber environment using well defined protocols; (3) characterize the effects of ageing and use on emissions for individual machines spanning several categories; (4) evaluate the importance of operational factors that can be manipulated to reduce pollutant emissions from office machines; and (5) explore the potential relationship between energy consumption and pollutant emissions for machines performing equivalent tasks. The study includes desktop computers (CPU units), computer monitors, and three categories of desktop printing devices. The printer categories are: (1) printers and multipurpose devices using color inkjet technology; (2) low- to medium output printers and multipurpose devices employing monochrome or color laser technology; and (3) high-output monochrome and color laser printers. The literature review and screening level experiments in Phase 1 were designed to identify substances of toxicological significance for more detailed study. In addition, these screening level measurements indicate the potential relative importance of different categories of office

  17. Methods for reducing pollutant emissions from jet aircraft

    NASA Technical Reports Server (NTRS)

    Butze, H. F.

    1971-01-01

    Pollutant emissions from jet aircraft and combustion research aimed at reducing these emissions are defined. The problem of smoke formation and results achieved in smoke reduction from commercial combustors are discussed. Expermental results of parametric tests performed on both conventional and experimental combustors over a range of combustor-inlet conditions are presented. Combustor design techniques for reducing pollutant emissions are discussed. Improved fuel atomization resulting from the use of air-assist fuel nozzles has brought about significant reductions in hydrocarbon and carbon monoxide emissions at idle. Diffuser tests have shown that the combustor-inlet airflow profile can be controlled through the use of diffuser-wall bleed and that it may thus be possible to reduce emissions by controlling combustor airflow distribution. Emissions of nitric oxide from a shortlength annular swirl-can combustor were significantly lower than those from a conventional combustor operating at similar conditions.

  18. Using satellite data to guide emission control strategies for surface ozone pollution

    NASA Astrophysics Data System (ADS)

    Jin, X.; Fiore, A. M.

    2017-12-01

    Surface ozone (O3) has adverse effects on public health, agriculture and ecosystems. As a secondary pollutant, ozone is not emitted directly. Ozone forms from two classes of precursors: NOx and VOCs. We use satellite observations of formaldehyde (a marker of VOCs) and NO2 (a marker of NOx) to identify areas which would benefit more from reducing NOx emissions (NOx-limited) versus areas where reducing VOC emissions would lead to lower ozone (VOC-limited). We use a global chemical transport model (GEOS-Chem) to develop a set of threshold values that separate the NOx-limited and VOC-limited conditions. Combining these threshold values with a decadal record of satellite observations, we find that U.S. cities (e.g. New York, Chicago) have shifted from VOC-limited to NOx-limited ozone production regimes in the warm season. This transition reflects the NOx emission controls implemented over the past decade. Increasing NOx sensitivity implies that regional NOx emission control programs will improve O3 air quality more now than it would have a decade ago.

  19. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenariosmore » in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 μg/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 μg/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 μg/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential

  20. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source.

    PubMed

    Liu, Jun; Mauzerall, Denise L; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R; Zhu, Tong

    2016-07-12

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m(-3) (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m(-3); mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m(-3) (40 ± 9% of 67 ± 41 μg⋅m(-3)), 44 ± 27 μg⋅m(-3) (43 ± 10% of 99 ± 54 μg⋅m(-3)), and 25 ± 14 μg⋅m(-3) (35 ± 8% of 70 ± 35 μg⋅m(-3)) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level.

  1. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source

    PubMed Central

    Liu, Jun; Mauzerall, Denise L.; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R.; Zhu, Tong

    2016-01-01

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level. PMID:27354524

  2. Product Guide/1972 [Air Pollution Control Association].

    ERIC Educational Resources Information Center

    Journal of the Air Pollution Control Association, 1971

    1971-01-01

    Reprinted in this pamphlet is the fifth annual directory of air pollution control products as compiled in the "Journal of the Air Pollution Control Association" for December, 1971. The 16-page guide lists manufacturers of emission control equipment and air pollution instrumentation under product classifications as derived from McGraw-Hill's "Air…

  3. Determination of a cost-effective air pollution control technology for the control of VOC and HAP emissions from a steroids processing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, T.M.

    1997-12-31

    A steroids processing plant located in northeastern Puerto Rico emits a combined average of 342 lb/hr of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from various process operations. The approach that this facility used to implement maximum achievable control technology (MACT) may assist others who must contend with MACT for pharmaceutical or related manufacturing facilities. Federal air regulations define MACT standards for stationary sources emitting any of 189 HAPs. The MACT standards detailed in the NESHAPs are characterized by industry and type of emission control system or technology. It is anticipated that the standard will require HAP reductionsmore » of approximately 95%. The steroid plant`s emissions include the following pollutant loadings: VOC/HAP Emission Rate (lb/hr): Methanol 92.0; Acetone 35.0; Methylene chloride 126.0; Chloroform 25.0; Ethyl acetate 56.0; Tetrahydrofuran 5.00; and 1,4-Dioxane 3.00. The facility`s existing carbon adsorption control system was nearing the end of its useful life, and the operators sought to install an air pollution control system capable of meeting MACT requirements for the pharmaceutical industry. Several stand-alone and hybrid control technologies were considered for replacement of the carbon adsorption system at the facility. This paper examines the following technologies: carbon adsorption, membrane separation, thermal oxidation, membrane separation-carbon adsorption, and condensation-carbon adsorption. Each control technology is described; the advantages and disadvantages of utilizing each technology for the steroid processing plant are examined; and capital and operating costs associated with the implementation of each technology are presented. The rationale for the technology ultimately chosen to control VOC and HAP emissions is presented.« less

  4. How to reach haze control targets by air pollutants emission reduction in the Beijing-Tianjin-Hebei region of China?

    PubMed

    Xu, Feng; Xiang, Nan; Higano, Yoshiro

    2017-01-01

    Currently, Haze is one of the greatest environmental problems with serious impacts on human health in China, especially in capital region (Beijing-Tianjin-Hebei region). To alleviate this problem, the Chinese government introduced a National Air Pollution Control Action Plan (NAPCAP) with air pollutants reduction targets by 2017. However, there is doubt whether these targets can be achieved once the plan is implemented. In this work, the effectiveness of NAPCAP is analyzed by developing models of the statistical relationship between PM2.5 concentrations and air pollutant emissions (SO2, NOx, smoke and dust), while taking into account wind and neighboring transfer impacts. The model can also identify ways of calculating the intended emission levels in the Beijing-Tianjin-Hebei area. The results indicate that haze concentration control targets will not be attained by following the NAPCAP, and that the amount of progress needed to meet the targets is unrealistic. A more appropriate approach to reducing air emissions is proposed, which addresses joint regional efforts.

  5. Benefits of China's efforts in gaseous pollutant control indicated by the bottom-up emissions and satellite observations 2000-2014

    NASA Astrophysics Data System (ADS)

    Xia, Yinmin; Zhao, Yu; Nielsen, Chris P.

    2016-07-01

    To evaluate the effectiveness of national air pollution control policies, the emissions of SO2, NOX, CO and CO2 in China are estimated using bottom-up methods for the most recent 15-year period (2000-2014). Vertical column densities (VCDs) from satellite observations are used to test the temporal and spatial patterns of emissions and to explore the ambient levels of gaseous pollutants across the country. The inter-annual trends in emissions and VCDs match well except for SO2. Such comparison is improved with an optimistic assumption in emission estimation that the emission standards for given industrial sources issued after 2010 have been fully enforced. Underestimation of emission abatement and enhanced atmospheric oxidization likely contribute to the discrepancy between SO2 emissions and VCDs. As suggested by VCDs and emissions estimated under the assumption of full implementation of emission standards, the control of SO2 in the 12th Five-Year Plan period (12th FYP, 2011-2015) is estimated to be more effective than that in the 11th FYP period (2006-2010), attributed to improved use of flue gas desulfurization in the power sector and implementation of new emission standards in key industrial sources. The opposite was true for CO, as energy efficiency improved more significantly from 2005 to 2010 due to closures of small industrial plants. Iron & steel production is estimated to have had particularly strong influence on temporal and spatial patterns of CO. In contrast to fast growth before 2011 driven by increased coal consumption and limited controls, NOX emissions decreased from 2011 to 2014 due to the penetration of selective catalytic/non-catalytic reduction systems in the power sector. This led to reduced NO2 VCDs, particularly in relatively highly polluted areas such as the eastern China and Pearl River Delta regions. In developed areas, transportation is playing an increasingly important role in air pollution, as suggested by the increased ratio of NO2 to SO

  6. Model assessment of atmospheric pollution control schemes for critical emission regions

    NASA Astrophysics Data System (ADS)

    Zhai, Shixian; An, Xingqin; Liu, Zhao; Sun, Zhaobin; Hou, Qing

    2016-01-01

    In recent years, the atmospheric environment in portions of China has become significantly degraded and the need for emission controls has become urgent. Because more international events are being planned, it is important to implement air quality assurance targeted at significant events held over specific periods of time. This study sets Yanqihu (YQH), Beijing, the location of the 2014 Beijing APEC (Asia-Pacific Economic Cooperation) summit, as the target region. By using the atmospheric inversion model FLEXPART, we determined the sensitive source zones that had the greatest impact on the air quality of the YQH region in November 2012. We then used the air-quality model Models-3/CMAQ and a high-resolution emissions inventory of the Beijing-Tianjian-Hebei region to establish emission reduction tests for the entire source area and for specific sensitive source zones. This was achieved by initiating emission reduction schemes at different ratios and different times. The results showed that initiating a moderate reduction of emissions days prior to a potential event is more beneficial to the air quality of Beijing than initiating a high-strength reduction campaign on the day of the event. The sensitive source zone of Beijing (BJ-Sens) accounts for 54.2% of the total source area of Beijing (BJ), but its reduction effect reaches 89%-100% of the total area, with a reduction efficiency 1.6-1.9 times greater than that of the entire area. The sensitive source zone of Huabei (HuaB-Sens.) only represents 17.6% of the total area of Huabei (HuaB), but its emission reduction effect reaches 59%-97% of the entire area, with a reduction efficiency 4.2-5.5 times greater than that of the total area. The earlier that emission reduction measures are implemented, the greater the effect they have on preventing the transmission of pollutants. In addition, expanding the controlling areas to sensitive provinces and cities around Beijing (HuaB-sens) can significantly accelerate the reduction

  7. California State Implementation Plan; San Diego County Air Pollution Control District; VOC Emissions from Polyester Resin Operations

    EPA Pesticide Factsheets

    EPA is taking final action to approve revisions to the San Diego County Air Pollution Control District (SDCAPCD) portion of the California SIP concerning volatile organic compound (VOC) emissions from polyester resin operations.

  8. Locational Determinants of Emissions from Pollution-Intensive Firms in Urban Areas

    PubMed Central

    Zhou, Min; Tan, Shukui; Guo, Mingjing; Zhang, Lu

    2015-01-01

    Industrial pollution has remained as one of the most daunting challenges for many regions around the world. Characterizing the determinants of industrial pollution should provide important management implications. Unfortunately, due to the absence of high-quality data, rather few studies have systematically examined the locational determinants using a geographical approach. This paper aimed to fill the gap by accessing the pollution source census dataset, which recorded the quantity of discharged wastes (waste water and solid waste) from 717 pollution-intensive firms within Huzhou City, China. Spatial exploratory analysis was applied to analyze the spatial dependency and local clusters of waste emissions. Results demonstrated that waste emissions presented significantly positive autocorrelation in space. The high-high hotspots generally concentrated towards the city boundary, while the low-low clusters approached the Taihu Lake. Their locational determinants were identified by spatial regression. In particular, firms near the city boundary and county road were prone to discharge more wastes. Lower waste emissions were more likely to be observed from firms with high proximity to freight transfer stations or the Taihu Lake. Dense populous districts saw more likelihood of solid waste emissions. Firms in the neighborhood of rivers exhibited higher waste water emissions. Besides, the control variables (firm size, ownership, operation time and industrial type) also exerted significant influence. The present methodology can be applicable to other areas, and further inform the industrial pollution control practices. Our study advanced the knowledge of determinants of emissions from pollution-intensive firms in urban areas. PMID:25927438

  9. [Exploring the Severe Haze in Beijing During December, 2015: Pollution Process and Emissions Variation].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Nie, Teng; Pan, Tao; Qi, Jun; Nie, Lei; Wang, Zhan-shan; Li, Yun-ting; Li, Xue-feng; Tian, He-zhong

    2016-05-15

    Severe haze episodes shrouded Beijing and its surrounding regions again during December, 2015, causing major environmental and health problems. Beijing authorities had launched two red alerts for atmospheric heavy pollution in this period, adopted a series of emergency control measures to reduce the emissions from major pollution sources. To better understand the pollution process and emissions variation during these extreme pollution events, we performed a model-assisted analysis of the hourly observation data of PM₂.₅, and meteorological parameters combined with the emissions variation of pollution sources. The synthetic analysis indicated that: (1) Compared with the same period of last year, the emissions of atmospheric pollution sources decreased in December 2015. However, the emission levels of primary pollutants were still rather high, which were the main intrinsic causes for haze episodes, and the unfavorable diffusion conditions represented the important external factor. High source emissions and meteorological factors together led to this heavy air pollution process. (2) Emergency control measures taken by the red alert for heavy air pollution could decrease the pollutants emission by about 36% and the PM₂.₅ concentrations by 11% to 21%. Though the implementation of red alert could not reverse the evolution trend of heavier pollution, it indeed played an active role in mitigation of PM₂.₅ pollution aggravating. (3) Under the heavy pollution weather conditions, air pollutants continued to accumulate in the atmosphere, and the maximum effect by taking emergency measures occurred 48-72 hours after starting the implementation; therefore, the best time for executing emergency measures should be 36-48 hours before the rapid rise of PM₂.₅ concentration, which requires a more powerful demand on the accuracy of air quality forecast.

  10. Measurement of air pollutant emissions from Lome, Cotonou and Accra

    NASA Astrophysics Data System (ADS)

    Lee, James; Vaughan, Adam; Nelson, Bethany; Young, Stuart; Evans, Mathew; Morris, Eleanor; Ladkin, Russel

    2017-04-01

    High concentrations of airborne pollutants (e.g. the oxides of nitrogen, sulphur dioxide and carbon monoxide) in existing and evolving cities along the Guinea Coast cause respiratory diseases with potentially large costs to human health and the economic capacity of the local workforce. It is important to understand the rate of emission of such pollutants in order to model current and future air quality and provide guidance to the potential outcomes of air pollution abatement strategies. Often dated technologies and poor emission control strategies lead to substantial uncertainties in emission estimates calculated from vehicle and population number density statistics. The unreliable electrical supply in cities in the area has led to an increased reliance on small-scale diesel powered generators and these potentially present a significant source of emissions. The uncontrolled open incineration of waste adds a further very poorly constrained emission source within the cities. The DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project involved a field campaign which used highly instrumented aircraft capable of in situ measurements of a range of air pollutants. Seven flights using the UK British Antarctic Survey's Twin Otter aircraft specifically targeted air pollution emissions from cities in West Africa (4 x Accra, Ghana; 2 x Lome, Togo and 1 x Cotonou, Benin). Measurements of NO, NO2, SO2, CO, CH4 and CO2 were made at multiple altitudes upwind and downwind of the cities, with the mass balance technique used to calculate emission rates. These are then compared to the Emissions Database for Global Atmospheric Research (EDGAR) estimates. Ultimately the data will be used to inform on and potentially improve the emission estimates, which in turn should lead to better forecasting of air pollution in West African cities and help guide future air pollution abatement strategy.

  11. AIR POLLUTION CONTROL TECHNOLOGIES (CHAPTER 65)

    EPA Science Inventory

    The chapter discusses the use of technologies for reducing air pollution emissions from stationary sources, with emphasis on the control of combustion gen-erated air pollution. Major stationary sources include utility power boilers, industrial boilers and heaters, metal smelting ...

  12. Mitigation of severe urban haze pollution by a precision air pollution control approach.

    PubMed

    Yu, Shaocai; Li, Pengfei; Wang, Liqiang; Wu, Yujie; Wang, Si; Liu, Kai; Zhu, Tong; Zhang, Yuanhang; Hu, Min; Zeng, Liming; Zhang, Xiaoye; Cao, Junji; Alapaty, Kiran; Wong, David C; Pleim, Jon; Mathur, Rohit; Rosenfeld, Daniel; Seinfeld, John H

    2018-05-25

    Severe and persistent haze pollution involving fine particulate matter (PM 2.5 ) concentrations reaching unprecedentedly high levels across many cities in China poses a serious threat to human health. Although mandatory temporary cessation of most urban and surrounding emission sources is an effective, but costly, short-term measure to abate air pollution, development of long-term crisis response measures remains a challenge, especially for curbing severe urban haze events on a regular basis. Here we introduce and evaluate a novel precision air pollution control approach (PAPCA) to mitigate severe urban haze events. The approach involves combining predictions of high PM 2.5 concentrations, with a hybrid trajectory-receptor model and a comprehensive 3-D atmospheric model, to pinpoint the origins of emissions leading to such events and to optimize emission controls. Results of the PAPCA application to five severe haze episodes in major urban areas in China suggest that this strategy has the potential to significantly mitigate severe urban haze by decreasing PM 2.5 peak concentrations by more than 60% from above 300 μg m -3 to below 100 μg m -3 , while requiring ~30% to 70% less emission controls as compared to complete emission reductions. The PAPCA strategy has the potential to tackle effectively severe urban haze pollution events with economic efficiency.

  13. The national air pollutant emission trends, 1900-1998

    DOT National Transportation Integrated Search

    2000-03-01

    The National Air Pollutant Emission Trends Report, 1900-1998 presents the most : recent estimate of national emissions of the criteria air pollutants. The : emissions of each pollutant are estimated for many different source categories, : which colle...

  14. Air Pollution Prevention and Control Policy in China.

    PubMed

    Huang, Cunrui; Wang, Qiong; Wang, Suhan; Ren, Meng; Ma, Rui; He, Yiling

    2017-01-01

    With rapid urbanization and development of transport infrastructure, air pollution caused by multiple-pollutant emissions and vehicle exhaust has been aggravated year by year in China. In order to improve air quality, the Chinese authorities have taken a series of actions to control air pollution emission load within a permissible range. However, although China has made positive progress on tackling air pollution, these actions have not kept up with its economy growth and fossil-fuel use. The traditional single-pollutant approach is far from enough in China now, and in the near future, air pollution control strategies should move in the direction of the multiple-pollutant approach. In addition, undesirable air quality is usually linked with the combination of high emissions and adverse weather conditions. However, few studies have been done on the influence of climate change on atmospheric chemistry in the global perspective. Available evidence suggested that climate change is likely to exacerbate certain kinds of air pollutants including ozone and smoke from wildfires. This has become a major public health problem because the interactions of global climate change, urban heat islands, and air pollution have adverse effects on human health. In this chapter, we first review the past and current circumstances of China's responses to air pollution. Then we discuss the control challenges and future options for a better air quality in China. Finally, we begin to unravel links between air pollution and climate change, providing new opportunities for integrated research and actions in China.

  15. Greenidge Multi-Pollutant Control Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connell, Daniel

    2008-10-18

    The Greenidge Multi-Pollutant Control Project was conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electric generating units (EGUs). There are about 400 units in the United States with capacities of 50-300 MW that currently are not equipped with selective catalytic reduction (SCR), flue gas desulfurization (FGD), or mercury control systems. Many of these units, which collectively represent more than 55 GWmore » of installed capacity, are difficult to retrofit for deep emission reductions because of space constraints and unfavorable economies of scale, making them increasingly vulnerable to retirement or fuel switching in the face of progressively more stringent environmental regulations. The Greenidge Project sought to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs by offering a combination of deep emission reductions, low capital costs, small space requirements, applicability to high-sulfur coals, mechanical simplicity, and operational flexibility. The multi-pollutant control system includes a NO{sub x}OUT CASCADE{reg_sign} hybrid selective non-catalytic reduction (SNCR)/in-duct SCR system for NO{sub x} control and a Turbosorp{reg_sign} circulating fluidized bed dry scrubbing system (with a new baghouse) for SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter control. Mercury removal is provided as a co-benefit of the in-duct SCR, dry scrubber, and baghouse, and by injection of activated carbon upstream of the scrubber, if required. The multi-pollutant control system was installed and tested on the 107-MW{sub e}, 1953-vintage AES Greenidge Unit 4 by a team

  16. RESEARCH AREA -- POLLUTION PREVENTION (P2) (EMISSIONS CHARACTERIZATION AND PREVENTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The objective of this program is to develop and demonstrate technologies, processes, and products that will prevent the formation of hazardous emission or criteria pollutants. The pollution prevention alternatives are often no more costly (and sometimes even less) than tradition...

  17. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures

    NASA Astrophysics Data System (ADS)

    Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang

    2016-10-01

    Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used

  18. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Technical Reports Server (NTRS)

    Zoogman, P.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Hilton, B. B.; Nicks, D. K.; Newchurch, M. J.; Carr, J. L.; hide

    2016-01-01

    TEMPO (Tropospheric Emissions: Monitoring of Pollution) was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (approximately 2.1 kilometers N/S by 4.4 kilometers E/W at 36.5 degrees N, 100 degrees W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide),water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the

  19. RESEARCH AREA -- MUNICIPAL WASTE COMBUSTION (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The municipal waste combustion (MWC) program supports the development of revised rules for air pollutant emissions from the MWC source category. Basic research is performed on MWC pollutant formation and control mechanisms for acid gas, trace organic, and trace metal emissions. T...

  20. Spatial analysis on China's regional air pollutants and CO2 emissions: emission pattern and regional disparity

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Liang, Hanwei

    2014-08-01

    China has suffered from serious air pollution and CO2 emission. Challenges of emission reduction policy not only come from technology advancement, but also generate from the fact that, China has pronounced disparity between regions, in geographical and socioeconomic. How to deal with regional disparity is important to achieve the reduction target effectively and efficiently. This research conducts a spatial analysis on the emission patterns of three air pollutants named SO2, NOx and PM2.5, and CO2, in China's 30 provinces, applied with spatial auto-correlation and multi regression modeling. We further analyze the regional disparity and inequity issues with the approach of Lorenz curve and Gini coefficient. Results highlight that: there is evident cluster effect for the regional air pollutants and CO2 emissions. While emission amount increases from western regions to eastern regions, the emission per GDP is in inverse trend. The Lorenz curve shows an even larger unequal distribution of GDP/emissions than GDP/capita in 30 regions. Certain middle and western regions suffers from a higher emission with lower GDP, which reveal the critical issue of emission leakage. Future policy making to address such regional disparity is critical so as to promote the emission control policy under the “equity and efficiency” principle.

  1. Tropospheric emissions: monitoring of pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David E.; Al-Saadi, Jassim; Janz, Scott J.

    2013-09-01

    TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch circa 2018. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2 km N/S×4.5 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with European Sentinel-4 and Korean GEMS.

  2. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE) model v1.0

    NASA Astrophysics Data System (ADS)

    Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.

    2018-04-01

    The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs

  3. Self-organized global control of carbon emissions

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

    2010-09-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

  4. 77 FR 16508 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins; Pesticide... Hazardous Air Pollutant Emissions: Group IV Polymers and Resins; National Emission Standards for Hazardous... proposed rule titled, National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers...

  5. The Sources of Air Pollution and Their Control.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Arlington, VA.

    The problems of air pollution and its control are discussed. Major consideration is given the sources of pollution - motor vehicles, industry, power plants, space heating, and refuse disposal. Annual emission levels of five principle pollutants - carbon monoxide, sulfur dioxide, nitrogen oxides, hydrocarbons, and particulate matter - are listed…

  6. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    NASA Astrophysics Data System (ADS)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  7. Response of SO2 and Particulate Air Pollution to Local and Regional Emission Controls: A Case Study in Maryland

    NASA Technical Reports Server (NTRS)

    He, Hao; Vinnikov, Konstantin Y.; Li, Can; Krotkov, Nickolay Anatoly; Jongeward, Andrew R.; Li, Zhanqing; Stehr, Jeffrey W.; Hains, Jennifer; Dickerson, RUssell R.

    2016-01-01

    This paper addresses the questions of what effect local regulations can have on pollutants with different lifetimes and how surface observations and remotely sensed data can be used to determine the impacts. We investigated the decadal trends of tropospheric sulfur dioxide (SO2) and aerosol pollution over Maryland and its surrounding states, using surface, aircraft, and satellite measurements. Aircraft measurements indicated fewer isolated SO2 plumes observed in summers, a 40 decrease of column SO2, and a 20 decrease of atmospheric optical depth (AOD) over Maryland after the implementation of local regulations on sulfur emissions from power plants (90 reduction from 2010). Surface observations of SO2 and particulate matter (PM) concentrations in Maryland show similar trends. OMI SO2 and MODIS AOD observations were used to investigate the column contents of air pollutants over the eastern U.S.; these indicate decreasing trends in column SO2 (60 decrease) and AOD (20 decrease). The decrease of upwind SO2 emissions also reduced aerosol loadings over the downwind Atlantic Ocean near the coast by 20, while indiscernible changes of the SO2 column were observed. A step change of SO2 emissions in Maryland starting in 20092010 had an immediate and profound benefit in terms of local surface SO2 concentrations but a modest impact on aerosol pollution, indicating that short-lived pollutants are effectively controlled locally, while long-lived pollutants require regional measures.

  8. Recent changes in particulate air pollution over China observed from space and the ground: effectiveness of emission control.

    PubMed

    Lin, Jintai; Nielsen, Chris P; Zhao, Yu; Lei, Yu; Liu, Yang; McElroy, Michael B

    2010-10-15

    The Chinese government has moved aggressively since 2005 to reduce emissions of a number of pollutants including primary particulate matter (PM) and sulfur dioxide (SO(2)), efforts inadvertently aided since late 2008 by economic recession. Satellite observations of aerosol optical depth (AOD) and column nitrogen dioxide (NO(2)) provide independent indicators of emission trends, clearly reflecting the sharp onset of the recession in the fall of 2008 and rebound of the economy in the latter half of 2009. Comparison of AOD with ground-based observations of PM over a longer period indicate that emission-control policies have not been successful in reducing concentrations of aerosol pollutants at smaller size range over industrialized regions of China. The lack of success is attributed to the increasing importance of anthropogenic secondary aerosols formed from precursor species including nitrogen oxides (NO(x)), non-methane volatile organic compounds (NMVOC), and ammonia (NH(3)).

  9. 78 FR 29815 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ...This action would establish more stringent vehicle emissions standards and reduce the sulfur content of gasoline beginning in 2017, as part of a systems approach to addressing the impacts of motor vehicles and fuels on air quality and public health. The proposed gasoline sulfur standard would make emission control systems more effective for both existing and new vehicles, and would enable more stringent vehicle emissions standards. The proposed vehicle standards would reduce both tailpipe and evaporative emissions from passenger cars, light-duty trucks, medium-duty passenger vehicles, and some heavy-duty vehicles. This would result in significant reductions in pollutants such as ozone, particulate matter, and air toxics across the country and help state and local agencies in their efforts to attain and maintain health-based National Ambient Air Quality Standards. Motor vehicles are an important source of exposure to air pollution both regionally and near roads. These proposed vehicle standards are intended to harmonize with California's Low Emission Vehicle program, thus creating a federal vehicle emissions program that would allow automakers to sell the same vehicles in all 50 states. The proposed vehicle standards would be implemented over the same timeframe as the greenhouse gas/fuel efficiency standards for light-duty vehicles, as part of a comprehensive approach toward regulating emissions from motor vehicles.

  10. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 [EPA-HQ-OAR-2010-0687; FRL-9678-1] RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages 36341-36386 in the issue of Monday, June 18, 2012...

  11. North American pollution measurements from geostationary orbit with Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.

    2017-12-01

    TEMPO is the first NASA Earth Venture Instrument. It launches between 2019 and 2021 to measure atmospheric pollution from Mexico City and Cuba to the Canadian oil sands, and from the Atlantic to the Pacific, hourly at high spatial resolution, 10 km2. Geostationary daytime measurements capture the variability in the diurnal cycle of emissions and chemistry at sub-urban scale to improve emission inventories, monitor population exposure, and enable emission-control strategies.TEMPO measures UV/visible Earth reflectance spectra to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, BrO, OClO, IO, aerosols, cloud parameters, and UVB radiation. It tracks aerosol loading. It provides near-real-time air quality products. TEMPO is the North American component of the upcoming the global geostationary constellation for pollution monitoring, together with the European Sentinel-4 and the Korean Geostationary Environmental Monitoring Spectrometer (GEMS).TEMPO science studies include: Intercontinental pollution transport; Solar-induced fluorescence from chlorophyll over land and in the ocean to study tropical dynamics, primary productivity and carbon uptake, to detect red tides, and to study phytoplankton; measurements of stratospheric intrusions that cause air quality exceedances; measurements at peaks in vehicle travel to capture the variability in emissions from mobile sources; measurements of thunderstorm activity, including outflow regions to better quantify lightning NOx and O3 production; cropland measurements to follow the temporal evolution of emissions after fertilizer application and from rain-induced emissions from semi-arid soils; investigating the chemical processing of primary fire emissions and the secondary formation of VOCs and ozone; examining ocean halogen emissions and their impact on the oxidizing capacity of coastal environments; measuring spectra of nighttime lights as markers for human activity, energy conservation, and compliance with outdoor lighting standards

  12. Pollution Emissions, Environmental Policy, and Marginal Abatement Costs.

    PubMed

    He, Ling-Yun; Ou, Jia-Jia

    2017-12-05

    Pollution emissions impose serious social negative externalities, especially in terms of public health. To reduce pollution emissions cost-effectively, the marginal abatement costs (MACs) of pollution emissions must be determined. Since the industrial sectors are the essential pillars of China's economic growth, as well as leading energy consumers and sulfur dioxide (SO₂) emitters, estimating MACs of SO₂ emissions at the industrial level can provide valuable information for all abatement efforts. This paper tries to address the critical and essential issue in pollution abatement: How do we determine the MACs of pollution emissions in China? This paper first quantifies the SO₂ emission contribution of different industrial sectors in the Chinese economy by an Input-Output method and then estimates MACs of SO₂ for industrial sectors at the national level, provincial level, and sectoral level by the shadow price theory. Our results show that six sectors (e.g., the Mining and Washing of Coal sector) should be covered in the Chinese pollution emission trading system. We have also found that the lowest SO₂ shadow price is 2000 Yuan/ton at the national level, and that shadow prices should be set differently at the provincial level. Our empirical study has several important policy implications, e.g., the estimated MACs may be used as a pricing benchmark through emission allowance allocation. In this paper, the MACs of industrial sectors are calculated from the national, provincial and sectoral levels; therefore, we provide an efficient framework to track the complex relationship between sectors and provinces.

  13. Pollution Emissions, Environmental Policy, and Marginal Abatement Costs

    PubMed Central

    He, Ling-Yun; Ou, Jia-Jia

    2017-01-01

    Pollution emissions impose serious social negative externalities, especially in terms of public health. To reduce pollution emissions cost-effectively, the marginal abatement costs (MACs) of pollution emissions must be determined. Since the industrial sectors are the essential pillars of China’s economic growth, as well as leading energy consumers and sulfur dioxide (SO2) emitters, estimating MACs of SO2 emissions at the industrial level can provide valuable information for all abatement efforts. This paper tries to address the critical and essential issue in pollution abatement: How do we determine the MACs of pollution emissions in China? This paper first quantifies the SO2 emission contribution of different industrial sectors in the Chinese economy by an Input-Output method and then estimates MACs of SO2 for industrial sectors at the national level, provincial level, and sectoral level by the shadow price theory. Our results show that six sectors (e.g., the Mining and Washing of Coal sector) should be covered in the Chinese pollution emission trading system. We have also found that the lowest SO2 shadow price is 2000 Yuan/ton at the national level, and that shadow prices should be set differently at the provincial level. Our empirical study has several important policy implications, e.g., the estimated MACs may be used as a pricing benchmark through emission allowance allocation. In this paper, the MACs of industrial sectors are calculated from the national, provincial and sectoral levels; therefore, we provide an efficient framework to track the complex relationship between sectors and provinces. PMID:29206170

  14. Role of sectoral and multi-pollutant emission control strategies in improving atmospheric visibility in the Yangtze River Delta, China.

    PubMed

    Huang, Kan; Fu, Joshua S; Gao, Yang; Dong, Xinyi; Zhuang, Guoshun; Lin, Yanfen

    2014-01-01

    The Community Multi-scale Air Quality modeling system is used to investigate the response of atmospheric visibility to the emission reduction from different sectors (i.e. industries, traffic and power plants) in the Yangtze River Delta, China. Visibility improvement from exclusive reduction of NOx or VOC emission was most inefficient. Sulfate and organic aerosol would rebound if NOx emission was exclusively reduced from any emission sector. The most efficient way to improve the atmospheric visibility was proven to be the multi-pollutant control strategies. Simultaneous emission reductions (20-50%) on NOx, VOC and PM from the industrial and mobile sectors could result in 0.3-1.0 km visibility improvement. And the emission controls on both NOx (85%) and SO2 (90%) from power plants gained the largest visibility improvement of up to 4.0 km among all the scenarios. The seasonal visibility improvement subject to emission controls was higher in summer while lower in the other seasons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Regional emissions of air pollutants in China.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streets, D. G.

    1998-10-05

    As part of the China-MAP program, sponsored by the US National Aeronautics and Space Administration, regional inventories of air pollutants emitted in China are being characterized, in order that the atmospheric chemistry over China can be more fully understood and the resulting ambient concentrations in Chinese cities and the deposition levels to Chinese ecosystems be determined with better confidence. In addition, the contributions of greenhouse gases from China and of acidic aerosols that counteract global warming are being quantified. This paper presents preliminary estimates of the emissions of some of the major air pollutants in China: sulfur dioxide (SO{sub 2}),more » nitrogen oxides (NO{sub x}), carbon monoxide (CO), and black carbon (C). Emissions are estimated for each of the 27 regions of China included in the RAINS-Asia simulation model and are subsequently distributed to a 1{degree} x 1{degree} grid using appropriate disaggregation factors. Emissions from all sectors of the Chinese economy are considered, including the combustion of biofuels in rural homes. Emissions from larger power plants are calculated individually and allocated to the grid accordingly. Data for the period 1990-1995 are being developed, as well as projections for the future under alternative assumptions about economic growth and environmental control.« less

  16. Nature of air pollution, emission sources, and management in the Indian cities

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Goel, Rahul; Pant, Pallavi

    2014-10-01

    The global burden of disease study estimated 695,000 premature deaths in 2010 due to continued exposure to outdoor particulate matter and ozone pollution for India. By 2030, the expected growth in many of the sectors (industries, residential, transportation, power generation, and construction) will result in an increase in pollution related health impacts for most cities. The available information on urban air pollution, their sources, and the potential of various interventions to control pollution, should help us propose a cleaner path to 2030. In this paper, we present an overview of the emission sources and control options for better air quality in Indian cities, with a particular focus on interventions like urban public transportation facilities; travel demand management; emission regulations for power plants; clean technology for brick kilns; management of road dust; and waste management to control open waste burning. Also included is a broader discussion on key institutional measures, like public awareness and scientific studies, necessary for building an effective air quality management plan in Indian cities.

  17. Diesel Locomotive Exhaust Emission Control and Abatement

    DOT National Transportation Integrated Search

    1972-06-01

    Exhaust emissions from diesel locomotives are a product of engine design and combustion characteristics. These pollutants, control methods, and emissions reduction through engine maintenance and retrofittable equipment changes are discussed in this r...

  18. SELECTED ORGANIC POLLUTANT EMISSIONS FROM UNVENTED KEROSENE HEATERS

    EPA Science Inventory

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emission rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emiss...

  19. Mapping Emissions that Contribute to Air Pollution Using Adjoint Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Bastien, L. A. J.; Mcdonald, B. C.; Brown, N. J.; Harley, R.

    2014-12-01

    The adjoint of the Community Multiscale Air Quality model (CMAQ) is used to map emissions that contribute to air pollution at receptors of interest. Adjoint tools provide an efficient way to calculate the sensitivity of a model response to a large number of model inputs, a task that would require thousands of simulations using a more traditional forward sensitivity approach. Initial applications of this technique, demonstrated here, are to benzene and directly-emitted diesel particulate matter, for which atmospheric reactions are neglected. Emissions of these pollutants are strongly influenced by light-duty gasoline vehicles and heavy-duty diesel trucks, respectively. We study air quality responses in three receptor areas where populations have been identified as especially susceptible to, and adversely affected by air pollution. Population-weighted air basin-wide responses for each pollutant are also evaluated for the entire San Francisco Bay area. High-resolution (1 km horizontal grid) emission inventories have been developed for on-road motor vehicle emission sources, based on observed traffic count data. Emission estimates represent diurnal, day of week, and seasonal variations of on-road vehicle activity, with separate descriptions for gasoline and diesel sources. Emissions that contribute to air pollution at each receptor have been mapped in space and time using the adjoint method. Effects on air quality of both relative (multiplicative) and absolute (additive) perturbations to underlying emission inventories are analyzed. The contributions of local versus upwind sources to air quality in each receptor area are quantified, and weekday/weekend and seasonal variations in the influence of emissions from upwind areas are investigated. The contribution of local sources to the total air pollution burden within the receptor areas increases from about 40% in the summer to about 50% in the winter due to increased atmospheric stagnation. The effectiveness of control

  20. Examining air pollution in China using production- and consumption-based emissions accounting approaches.

    PubMed

    Huo, Hong; Zhang, Qiang; Guan, Dabo; Su, Xin; Zhao, Hongyan; He, Kebin

    2014-12-16

    Two important reasons for China's air pollution are the high emission factors (emission per unit of product) of pollution sources and the high emission intensity (emissions per unit of GDP) of the industrial structure. Therefore, a wide variety of policy measures, including both emission abatement technologies and economic adjustment, must be implemented. To support such measures, this study used the production- and consumption-based emissions accounting approaches to simulate the SO2, NOx, PM2.5, and VOC emissions flows among producers and consumers. This study analyzed the emissions and GDP performance of 36 production sectors. The results showed that the equipment, machinery, and devices manufacturing and construction sectors contributed more than 50% of air pollutant emissions, and most of their products were used for capital formation and export. The service sector had the lowest emission intensities, and its output was mainly consumed by households and the government. In China, the emission intensities of production activities triggered by capital formation and export were approximately twice that of the service sector triggered by final consumption expenditure. This study suggests that China should control air pollution using the following strategies: applying end-of-pipe abatement technologies and using cleaner fuels to further decrease the emission factors associated with rural cooking, electricity generation, and the transportation sector; continuing to limit highly emission-intensive but low value-added exports; developing a plan to reduce construction activities; and increasing the proportion of service GDP in the national economy.

  1. Tropospheric Emissions: Monitoring of Pollution Overview

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David; Al-Saadi, Jay; Janz, Scott

    2015-01-01

    TEMPO is now well into its implementation phase, having passed both its Key Decision Point C and the Critical Design Review (CDR) for the instrument. The CDR for the ground systems will occur in March 2016 and the CDR for the Mission component at a later date, after the host spacecraft has been selected. TEMPO is on schedule to measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions by 50 percent. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. Instruments from Europe (Sentinel 4) and Asia (GEMS) will

  2. Co-control of urban air pollutants and greenhouse gases in Mexico City.

    PubMed

    West, J Jason; Osnaya, Patricia; Laguna, Israel; Martínez, Julia; Fernández, Adrián

    2004-07-01

    This study addresses the synergies of mitigation measures to control urban air pollutant and greenhouse gas (GHG) emissions, in developing integrated "co-control" strategies for Mexico City. First, existing studies of emissions reduction measures--PROAIRE (the air quality plan for Mexico City) and separate GHG studies--are used to construct a harmonized database of options. Second, linear programming (LP) is developed and applied as a decision-support tool to analyze least-cost strategies for meeting co-control targets for multiple pollutants. We estimate that implementing PROAIRE measures as planned will reduce 3.1% of the 2010 metropolitan CO2 emissions, in addition to substantial local air pollutant reductions. Applying the LP, PROAIRE emissions reductions can be met at a 20% lower cost, using only the PROAIRE measures, by adjusting investments toward the more cost-effective measures; lower net costs are possible by including cost-saving GHG mitigation measures, but with increased investment. When CO2 emission reduction targets are added to PROAIRE targets, the most cost-effective solutions use PROAIRE measures for the majority of local pollutant reductions, and GHG measures for additional CO2 control. Because of synergies, the integrated planning of urban-global co-control can be beneficial, but we estimate that for Mexico City these benefits are often small.

  3. Tropospheric emissions: Monitoring of pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Zoogman, P.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Hilton, B. B.; Nicks, D. K.; Newchurch, M. J.; Carr, J. L.; Janz, S. J.; Andraschko, M. R.; Arola, A.; Baker, B. D.; Canova, B. P.; Chan Miller, C.; Cohen, R. C.; Davis, J. E.; Dussault, M. E.; Edwards, D. P.; Fishman, J.; Ghulam, A.; González Abad, G.; Grutter, M.; Herman, J. R.; Houck, J.; Jacob, D. J.; Joiner, J.; Kerridge, B. J.; Kim, J.; Krotkov, N. A.; Lamsal, L.; Li, C.; Lindfors, A.; Martin, R. V.; McElroy, C. T.; McLinden, C.; Natraj, V.; Neil, D. O.; Nowlan, C. R.; O`Sullivan, E. J.; Palmer, P. I.; Pierce, R. B.; Pippin, M. R.; Saiz-Lopez, A.; Spurr, R. J. D.; Szykman, J. J.; Torres, O.; Veefkind, J. P.; Veihelmann, B.; Wang, H.; Wang, J.; Chance, K.

    2017-01-01

    TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution ( 2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring

  4. Development of reduction scenarios for criteria air pollutants emission in Tehran Traffic Sector, Iran.

    PubMed

    Mohammadiha, Amir; Malakooti, Hossein; Esfahanian, Vahid

    2018-05-01

    Transport-related pollution as the main source of air pollution must be reduced in Tehran mega-city. The performance of various developed scenarios including BAU (Business As Usual) as baseline scenario, ECV (Elimination of carburetor equipped Vehicle), NEM (New Energy Motorcycles), HES (Higher Emission Standard), VCR (Vehicle Catalyst Replacement), FQE (Fuel Quality Enhancement), DPF (Diesel Particulate Filter) and TSA (Total Scenarios Aggregation) are evaluated by International Vehicle Model up to 2028. In the short term, the ECV, VCR, and FQE scenarios provided high performance in CO, VOCs and NOx emissions control. Also FQE has an excellent effect on SOx emission reduction (86%) and DPF on PM emissions (20%). In the mid-term, the VCR, ECV, and FQE scenarios were presented desirable mean emission reduction on CO, VOCs, and NOx. Moreover, NOx emission reduction of DPF scenario is the most common (14%). Again FQE scenario proves to have great effect on SOx emission reduction in mid-term (86%), DPF and HES scenarios on PM (DPF: 49% and HES: 17%). Finally for the long term, VCR, ECV, FQE, and NEM scenarios were shown good performance in emission control on CO, VOCs and NOx. For SOx only FQE has a good effect in all time periods (FQE: 86%) and DPF and HES scenarios have the best effect on PM emission reduction respectively (DPF: 51% and HES: 27%) compared with BAU scenario. However, DPF scenario increases 12% SOx emission in long-term (2028). It can be generally concluded that VCR and ECV scenarios would achieve a significant reduction on gaseous pollutants emission except for SOx in general and FQE scenarios have desirable performance for all gaseous pollutants in the short term and also for SOx and VOCs in long term. In addition, the DPF and HES would be desirable scenario for emission control on PM in Tehran Traffic Sector. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. 76 FR 22565 - National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins; Marine Tank...-AO91 National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins... Emissions Standards for Group I Polymers and Resins (Butyl Rubber Production, Epichlorohydrin Elastomers...

  6. Cellulose Products Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Read the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Cellulose Products Manufacturing, see the rule history for this Maximum Achievable Control Technology (MACT), and find Compliance help for this source.

  7. Air Pollutant Emissions Projections for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanbeigi, Ali; Khanna, Nina; Price, Lynn

    China’s cement and steel industry accounts for approximately half of the world’s total cement and steel production. These two industries are two of the most energy-intensive and highest carbon dioxide (CO 2)-emitting industries and two of the key industrial contributors to air pollution in China. For example, the cement industry is the largest source of particulate matter (PM) emissions in China, accounting for 40 percent of its industrial PM emissions and 27 percent of its total national PM emissions. The Chinese steel industry contributed to approximately 20 percent of sulfur dioxide (SO 2) emissions and 27 percent of PM emissionsmore » for all key manufacturing industries in China in 2013. In this study, we analyzed and projected the total PM and SO2 emissions from the Chinese cement and steel industry from 2010–2050 under three different scenarios: a Base Case scenario, an Advanced scenario, and an Advanced EOP (end-of-pipe) scenario. We used bottom-up emissions control technologies data and assumptions to project the emissions. In addition, we conducted an economic analysis to estimate the cost for PM emissions reductions in the Chinese cement industry using EOP control technologies, energy efficiency measures, and product change measures. The results of the emissions projection showed that there is not a substantial difference in PM emissions between the Base Case and Advanced scenarios, for both the cement and steel industries. This is mainly because PM emissions in the cement industry caused mainly by production process and not the fuel use. Since our forecast for the cement production in the Base Case and Advanced scenarios are not too different from each other, this results in only a slight difference in PM emissions forecast for these two scenarios. Also, we assumed a similar share and penetration rate of control technologies from 2010 up to 2050 for these two scenarios for the cement and steel industry. However, the Advanced EOP scenario showed

  8. Methanator Fueled Engines for Pollution Control

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Winkler, E. L.

    1973-01-01

    A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.

  9. Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China.

    PubMed

    You, Zhiqiang; Zhu, Yun; Jang, Carey; Wang, Shuxiao; Gao, Jian; Lin, Che-Jen; Li, Minhui; Zhu, Zhenghua; Wei, Hao; Yang, Wenwei

    2017-01-01

    To develop a sound ozone (O 3 ) pollution control strategy, it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O 3 . Using the "Shunde" city as a pilot summer case study, we apply an innovative response surface modeling (RSM) methodology based on the Community Multi-Scale Air Quality (CMAQ) modeling simulations to identify the O 3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O 3 impacts of volatile organic compound (VOC) control strategy. Our results show that Shunde is a typical VOC-limited urban O 3 polluted city. The "Jiangmen" city, as the main upper wind area during July 2014, its VOCs and nitrogen oxides (NO x ) emissions make up the largest contribution (9.06%). On the contrary, the contribution from local (Shunde) emission is lowest (6.35%) among the seven neighbor regions. The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde. The results of dynamic source contribution analysis further show that the local NO x control could slightly increase the ground O 3 under low (10.00%) and medium (40.00%) reduction ratios, while it could start to turn positive to decrease ground O 3 under the high NO x abatement ratio (75.00%). The real-time assessment of O 3 impacts from VOCs control strategies in Pearl River Delta (PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O 3 concentration in Shunde. Copyright © 2016. Published by Elsevier B.V.

  10. A model for interprovincial air pollution control based on futures prices.

    PubMed

    Zhao, Laijun; Xue, Jian; Gao, Huaizhu Oliver; Li, Changmin; Huang, Rongbing

    2014-05-01

    Based on the current status of research on tradable emission rights futures, this paper introduces basic market-related assumptions for China's interprovincial air pollution control problem. The authors construct an interprovincial air pollution control model based on futures prices: the model calculated the spot price of emission rights using a classic futures pricing formula, and determined the identities of buyers and sellers for various provinces according to a partitioning criterion, thereby revealing five trading markets. To ensure interprovincial cooperation, a rational allocation result for the benefits from this model was achieved using the Shapley value method to construct an optimal reduction program and to determine the optimal annual decisions for each province. Finally, the Beijing-Tianjin-Hebei region was used as a case study, as this region has recently experienced serious pollution. It was found that the model reduced the overall cost of reducing SO2 pollution. Moreover, each province can lower its cost for air pollution reduction, resulting in a win-win solution. Adopting the model would therefore enhance regional cooperation and promote the control of China's air pollution. The authors construct an interprovincial air pollution control model based on futures prices. The Shapley value method is used to rationally allocate the cooperation benefit. Interprovincial pollution control reduces the overall reduction cost of SO2. Each province can lower its cost for air pollution reduction by cooperation.

  11. Tropospheric Emissions: Monitoring of Pollution (TEMPO) - Status and Potential Science Studies

    NASA Astrophysics Data System (ADS)

    Chance, Kelly

    2016-05-01

    TEMPO is the first NASA Earth Venture Instrument, to launch between 2019 and 2021. It measures atmospheric pollution from Mexico City and Cuba to the Canadian oil sands, and from the Atlantic to the Pacific, hourly at high spatial resolution, ~ 10 km2. It measures the key elements of air pollution chemistry. Geostationary (GEO) measurements capture the variability in the diurnal cycle of emissions and chemistry at sub-urban scale to improve emission inventories, monitor population exposure, and enable emission-control strategies. TEMPO measures the UV/visible spectra to retrieve O3, NO2, SO2, H2 CO, C2 H2 O2, H2 O, aerosols, cloud parameters, and UVB radiation. It tracks aerosol loading. It provides near-real-time air quality products. TEMPO is the North American component of the global geostationary constellation for pollution monitoring, with the European Sentinel-4 and the Korean GEMS. TEMPO studies may include: Solar-induced fluorescence from chlorophyll over land and in the ocean to study tropical dynamics, primary productivity, carbon uptake, to detect red tides, and to study phytoplankton; Measurements of stratospheric intrusions that cause air quality exceedances; Measurements at peaks in vehicle travel to capture the variability in emissions from mobile sources; Measurements of thunderstorm activity, including outflow regions to better quantify lightning NOx and O3 production; Cropland measurements follow the temporal evolution of emissions after fertilizer application and from rain-induced emissions from semi-arid soils; Measurements investigate the chemical processing of primary fire emissions and the secondary formation of VOCs and ozone; Measurements examine ocean halogen emissions and their impact on the oxidizing capacity of coastal environments; Spectra of nighttime lights are markers for human activity, energy conservation, and compliance with outdoor lighting standards intended to reduce light pollution.

  12. Air Pollution Control Policies in China: A Retrospective and Prospects.

    PubMed

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-12-09

    With China's significant role on pollution emissions and related health damage, deep and up-to-date understanding of China's air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006-2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO₂) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM 2.5 ) and ground level ozone (O₃) emerged and worsened; (3) After the winter-long PM 2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions.

  13. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain majormore » source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called 'major' or 'minor') has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Finally, our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.« less

  14. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States

    DOE PAGES

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin; ...

    2017-04-26

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain majormore » source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called 'major' or 'minor') has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Finally, our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.« less

  15. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States.

    PubMed

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin; Heath, Garvin

    2017-06-06

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain major source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called "major" or "minor") has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.

  16. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.; Tempo Science Team

    2013-05-01

    TEMPO has been selected by NASA as the first Earth Venture Instrument. It will measure atmospheric pollution for greater North America from space using ultraviolet/visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar/oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (Mexico City is measured at 1.6 km N/S by 4.5 km E/W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well proven technique, able to produce a revolutionary

  17. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David E.; Al-Saadi, Jassim; Janz, Scott J.

    2014-06-01

    TEMPO, selected by NASA as the first Earth Venture Instrument, will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest-cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50 %. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well-proven technique, able to produce a revolutionary data set. TEMPO provides much of the atmospheric measurement

  18. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Janz, S. J.

    2012-12-01

    TEMPO is a proposed concept to measure pollution for greater North America using ultraviolet/visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar/oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (9 km2). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well proven technique, able to produce a revolutionary data set. TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007

  19. Air Pollution Control, Part II.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    This book contains five major articles in areas of current importance in air pollution control. They are written by authors who are actively participating in the areas on which they report. It is the aim of each article to completely cover theory, experimentation, and practice in the field discussed. The contents are as follows: Emissions,…

  20. A multi-factor designation method for mapping particulate-pollution control zones in China.

    PubMed

    Qin, Y; Xie, S D

    2011-09-01

    A multi-factor designation method for mapping particulate-pollution control zones was brought out through synthetically considering PM(10) pollution status, PM(10) anthropogenic emissions, fine particle pollution, long-range transport and economic situation. According to this method, China was divided into four different particulate-pollution control regions: PM Suspended Control Region, PM(10) Pollution Control Region, PM(2.5) Pollution Control Region and PM(10) and PM(2.5) Common Control Region, which accounted for 69.55%, 9.66%, 4.67% and 16.13% of China's territory, respectively. The PM(10) and PM(2.5) Common Control Region was mainly distributed in Bohai Region, Yangtze River Delta, Pearl River Delta, eastern of Sichuan province and Chongqing municipality, calling for immediate control of both PM(10) and PM(2.5). Cost-effective control effects can be achieved through concentrating efforts on PM(10) and PM(2.5) Common Control Region to address 60.32% of national PM(10) anthropogenic emissions. Air quality in districts belonging to PM(2.5) Pollution Control Region suggested that Chinese national ambient air quality standard for PM(10) was not strict enough. The result derived from application to China proved that this approach was feasible for mapping pollution control regions for a country with vast territory, complicated pollution characteristics and limited available monitoring data. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Effectiveness evaluation of temporary emission control action in 2016 in winter in Shijiazhuang, China

    NASA Astrophysics Data System (ADS)

    Liu, Baoshuang; Cheng, Yuan; Zhou, Ming; Liang, Danni; Dai, Qili; Wang, Lu; Jin, Wei; Zhang, Lingzhi; Ren, Yibin; Zhou, Jingbo; Dai, Chunling; Xu, Jiao; Wang, Jiao; Feng, Yinchang; Zhang, Yufen

    2018-05-01

    To evaluate the environmental effectiveness of the control measures for atmospheric pollution in Shijiazhuang, China, a large-scale controlling experiment for emission sources of atmospheric pollutants (i.e. a temporary emission control action, TECA) was designed and implemented during 1 November 2016 to 9 January 2017. Compared to the no-control action and heating period (NCAHP), under unfavourable meteorological conditions, the mean concentrations of PM2.5, PM10, SO2, NO2, and chemical species (Si, Al, Ca2+, Mg2+) in PM2.5 during the control action and heating period (CAHP) still decreased by 8, 8, 5, 19, 30.3, 4.5, 47.0, and 45.2 %, respectively, indicating that the control measures for atmospheric pollution were effective. The effects of control measures in suburbs were better than those in urban area, especially for the control effects of particulate matter sources. The control effects for emission sources of carbon monoxide (CO) were not apparent during the TECA period, especially in suburbs, likely due to the increasing usage of domestic coal in suburbs along with the temperature decreasing.The results of positive matrix factorization (PMF) analysis showed that crustal dust, secondary sources, vehicle emissions, coal combustion and industrial emissions were main PM2.5 sources. Compared to the whole year (WY) and the no-control action and no-heating period (NCANHP), the contribution concentrations and proportions of coal combustion to PM2.5 increased significantly during other stages of the TECA period. The contribution concentrations and proportions of crustal dust and vehicle emissions to PM2.5 decreased noticeably during the CAHP compared to other stages of the TECA period. The contribution concentrations and proportions of industrial emissions to PM2.5 during the CAHP decreased noticeably compared to the NCAHP. The pollutants' emission sources during the CAHP were in effective control, especially for crustal dust and vehicles. However, the necessary coal

  2. 76 FR 72049 - National Emission Standards for Hazardous Air Pollutant Emissions for Shipbuilding and Ship...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ...This action finalizes the residual risk and technology review conducted for two industrial source categories regulated by separate national emission standards for hazardous air pollutants. The two national emission standards for hazardous air pollutants are: National Emissions Standards for Shipbuilding and Ship Repair (Surface Coating) and National Emissions Standards for Wood Furniture Manufacturing Operations. This action also finalizes revisions to the regulatory provisions related to emissions during periods of startup, shutdown and malfunction.

  3. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea

    NASA Astrophysics Data System (ADS)

    Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil

    2009-12-01

    Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.

  4. A quantitative integrated assessment of pollution prevention achieved by integrated pollution prevention control licensing.

    PubMed

    Styles, David; O'Brien, Kieran; Jones, Michael B

    2009-11-01

    This paper presents an innovative, quantitative assessment of pollution avoidance attributable to environmental regulation enforced through integrated licensing, using Ireland's pharmaceutical-manufacturing sector as a case study. Emissions data reported by pharmaceutical installations were aggregated into a pollution trend using an Environmental Emissions Index (EEI) based on Lifecycle Assessment methodologies. Complete sectoral emissions data from 2001 to 2007 were extrapolated back to 1995, based on available data. Production volume data were used to derive a sectoral production index, and determine 'no-improvement' emission trends, whilst questionnaire responses from 20 industry representatives were used to quantify the contribution of integrated licensing to emission avoidance relative to these trends. Between 2001 and 2007, there was a 40% absolute reduction in direct pollution from 27 core installations, and 45% pollution avoidance relative to hypothetical 'no-improvement' pollution. It was estimated that environmental regulation avoided 20% of 'no-improvement' pollution, in addition to 25% avoidance under business-as-usual. For specific emissions, avoidance ranged from 14% and 30 kt a(-1) for CO(2) to 88% and 598 t a(-1) for SO(x). Between 1995 and 2007, there was a 59% absolute reduction in direct pollution, and 76% pollution avoidance. Pollution avoidance was dominated by reductions in emissions of VOCs, SO(x) and NO(x) to air, and emissions of heavy metals to water. Pollution avoidance of 35% was attributed to integrated licensing, ranging from between 8% and 2.9 t a(-1) for phosphorus emissions to water to 49% and 3143 t a(-1) for SO(x) emissions to air. Environmental regulation enforced through integrated licensing has been the major driver of substantial pollution avoidance achieved by Ireland's pharmaceutical sector - through emission limit values associated with Best Available Techniques, emissions monitoring and reporting requirements, and

  5. The role of meteorological conditions and pollution control strategies in reducing air pollution in Beijing during APEC 2014 and Victory Parade 2015

    NASA Astrophysics Data System (ADS)

    Liang, Pengfei; Zhu, Tong; Fang, Yanhua; Li, Yingruo; Han, Yiqun; Wu, Yusheng; Hu, Min; Wang, Junxia

    2017-11-01

    To control severe air pollution in China, comprehensive pollution control strategies have been implemented throughout the country in recent years. To evaluate the effectiveness of these strategies, the influence of meteorological conditions on levels of air pollution needs to be determined. Using the intensive air pollution control strategies implemented during the Asia-Pacific Economic Cooperation Forum in 2014 (APEC 2014) and the 2015 China Victory Day Parade (Victory Parade 2015) as examples, we estimated the role of meteorological conditions and pollution control strategies in reducing air pollution levels in Beijing. Atmospheric particulate matter of aerodynamic diameter ≤ 2.5 µm (PM2.5) samples were collected and gaseous pollutants (SO2, NO, NOx, and O3) were measured online at a site in Peking University (PKU). To determine the influence of meteorological conditions on the levels of air pollution, we first compared the air pollutant concentrations during days with stable meteorological conditions. However, there were few days with stable meteorological conditions during the Victory Parade. As such, we were unable to estimate the level of emission reduction efforts during this period. Finally, a generalized linear regression model (GLM) based only on meteorological parameters was built to predict air pollutant concentrations, which could explain more than 70 % of the variation in air pollutant concentration levels, after incorporating the nonlinear relationships between certain meteorological parameters and the concentrations of air pollutants. Evaluation of the GLM performance revealed that the GLM, even based only on meteorological parameters, could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution and, hence, the contribution of control strategies in reducing air pollution. Using the GLM, we found that the meteorological conditions and pollution control strategies contributed 30 and 28 % to the reduction

  6. [Spatial heterogeneity and classified control of agricultural non-point source pollution in Huaihe River Basin].

    PubMed

    Zhou, Liang; Xu, Jian-Gang; Sun, Dong-Qi; Ni, Tian-Hua

    2013-02-01

    Agricultural non-point source pollution is of importance in river deterioration. Thus identifying and concentrated controlling the key source-areas are the most effective approaches for non-point source pollution control. This study adopts inventory method to analysis four kinds of pollution sources and their emissions intensity of the chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in 173 counties (cities, districts) in Huaihe River Basin. The four pollution sources include livestock breeding, rural life, farmland cultivation, aquacultures. The paper mainly addresses identification of non-point polluted sensitivity areas, key pollution sources and its spatial distribution characteristics through cluster, sensitivity evaluation and spatial analysis. A geographic information system (GIS) and SPSS were used to carry out this study. The results show that: the COD, TN and TP emissions of agricultural non-point sources were 206.74 x 10(4) t, 66.49 x 10(4) t, 8.74 x 10(4) t separately in Huaihe River Basin in 2009; the emission intensity were 7.69, 2.47, 0.32 t.hm-2; the proportions of COD, TN, TP emissions were 73%, 24%, 3%. The paper achieves that: the major pollution source of COD, TN and TP was livestock breeding and rural life; the sensitivity areas and priority pollution control areas among the river basin of non-point source pollution are some sub-basins of the upper branches in Huaihe River, such as Shahe River, Yinghe River, Beiru River, Jialu River and Qingyi River; livestock breeding is the key pollution source in the priority pollution control areas. Finally, the paper concludes that pollution type of rural life has the highest pollution contribution rate, while comprehensive pollution is one type which is hard to control.

  7. METHODOLOGIES FOR QUANTIFYING POLLUTION PREVENTION BENEFITS FROM LANDFILL GAS CONTROL AND UTILIZATION

    EPA Science Inventory

    The report describes developing emission factors for controlled primary pollutants (e.g., nonmethane organic compounds) and secondary air pollutants (e.g., carbon monoxide). The report addresses the following criteria air pollutants and greenhouse gases: carbon dioxide, carbon mo...

  8. Analysis of the repeatability of the exhaust pollutants emission research results for cold and hot starts under controlled driving cycle conditions.

    PubMed

    Jaworski, Artur; Kuszewski, Hubert; Ustrzycki, Adam; Balawender, Krzysztof; Lejda, Kazimierz; Woś, Paweł

    2018-04-20

    Measurement of car engines exhaust pollutants emissions is very important because of their harmful effects on the environment. This article presents the assessment of repeatability of the passenger car engine exhaust pollutants emission research results obtained in the conditions of a chassis dynamometer. The research was conducted in a climate chamber, enabling the temperature conditions to be determined from - 20 to + 30 °C. The emission of CO, CH 4 , CO 2 , NO X , THC, and NMHC was subjected to the analysis. The aim of the research is to draw attention to the accuracy of the pollutant emission research results in driving cycles, and the comparison of pollutant emission results and their repeatability obtained in successive NEDC cycles under cold and hot start conditions. The results of the analysis show that, in the case of a small number of measurements, the results repeatability analysis is necessary for a proper interpretation of the pollutant emission results on the basis of the mean value. According to the authors' judgment, it is beneficial to determine the coefficient of variation for a more complete assessment of exhaust emission result repeatability obtained from a small number of measurements. This parameter is rarely presented by the authors of papers on exhaust components emission research.

  9. Air Pollution Control Policies in China: A Retrospective and Prospects

    PubMed Central

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-01-01

    With China’s significant role on pollution emissions and related health damage, deep and up-to-date understanding of China’s air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006–2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO2) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM2.5) and ground level ozone (O3) emerged and worsened; (3) After the winter-long PM2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions. PMID:27941665

  10. Implementation of Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2014-12-01

    The updated status of TEMPO, as it proceeds from formulation phase into implementation phase is presented. TEMPO, the first NASA Earth Venture Instrument, will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. GEO-CAPE is not planned for implementation this decade. However, instruments from Europe (Sentinel 4) and Asia (GEMS) will form parts of a global GEO constellation for pollution monitoring later this decade, with a major focus on intercontinental

  11. 76 FR 15607 - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ...On September 13, 2004, under authority of section 112 of the Clean Air Act, EPA promulgated national emission standards for hazardous air pollutants for new and existing industrial/commercial/ institutional boilers and process heaters. On June 19, 2007, the United States Court of Appeals for the District of Columbia Circuit vacated and remanded the standards. In response to the Court's vacatur and remand, EPA is, in this action, establishing emission standards that will require industrial/ commercial/institutional boilers and process heaters located at major sources to meet hazardous air pollutants standards reflecting the application of the maximum achievable control technology. This rule protects air quality and promotes public health by reducing emissions of the hazardous air pollutants listed in section 112(b)(1) of the Clean Air Act.

  12. Chemical Preparations Industry: National Emission Standards for Hazardous Air Pollutants for Area Sources

    EPA Pesticide Factsheets

    National emissions standards for control of hazardous air pollutants (HAP) from the chemical preparations area source category. Includes rule history, Federal Registry citations, implementation information, and additional resources.

  13. Improved attribution of climate forcing to emissions by pollutant and sector

    NASA Astrophysics Data System (ADS)

    Shindell, D. T.

    2009-12-01

    Evaluating multi-component climate change mitigation strategies requires knowledge of the diverse direct and indirect effects of emissions. Methane, ozone and aerosols are linked through atmospheric chemistry so that emissions of a single pollutant can affect several species. I will show new calculations of atmospheric composition changes, radiative forcing, and the global warming potential (GWP) for increased emissions of tropospheric ozone and aerosol precursors in a coupled composition-climate model. The results demonstrate that gas-aerosol interactions substantially alter the relative importance of the various emissions, suggesting revisions to the GWPs used in international carbon trading. Additionally, I will present results showing how the net climate impact of particular activities depends strongly upon non-CO2 forcing agents for some sectors. These results will be highlighted by discussing the interplay between air quality emissions controls and climate for the case of emissions from coal-fired power plants. The changing balance between CO2 and air quality pollutants from coal plants may have contributed to the 20th century spatial and temporal patterns of climate change, and is likely to continue to do so as more and more plants are constructed in Asia.

  14. Global health benefits of mitigating ozone pollution with methane emission controls.

    PubMed

    West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L

    2006-03-14

    Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.

  15. 40 CFR 60.2706 - By what date must I conduct the initial air pollution control device inspection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air pollution control device inspection? 60.2706 Section 60.2706 Protection of Environment... pollution control device inspection? (a) The initial air pollution control device inspection must be... meeting the amended emission limitations. (b) Within 10 operating days following an air pollution control...

  16. 40 CFR 60.2706 - By what date must I conduct the initial air pollution control device inspection?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air pollution control device inspection? 60.2706 Section 60.2706 Protection of Environment... pollution control device inspection? (a) The initial air pollution control device inspection must be... meeting the amended emission limitations. (b) Within 10 operating days following an air pollution control...

  17. 40 CFR 60.2706 - By what date must I conduct the initial air pollution control device inspection?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air pollution control device inspection? 60.2706 Section 60.2706 Protection of Environment... pollution control device inspection? (a) The initial air pollution control device inspection must be... meeting the amended emission limitations. (b) Within 10 operating days following an air pollution control...

  18. Atmospheric pollution reduction effect and regional predicament: An empirical analysis based on the Chinese provincial NOx emissions.

    PubMed

    Ding, Lei; Liu, Chao; Chen, Kunlun; Huang, Yalin; Diao, Beidi

    2017-07-01

    Atmospheric pollution emissions have become a matter of public concern in recent years. However, most of the existing researches on NOx pollution are from the natural science and technology perspective, few studies have been conducted from an economic point, and regional differences have not been given adequate attention. This paper adopts provincial panel data from 2006 to 2013 and the LMDI model to analyze the key driving factors and regional dilemmas of NOx emissions. The results show that significant regional disparities still exit on NO x emissions and its reduction effect 27 provinces didn't accomplish their corresponding reduction targets. Economic development factor is the dominating driving factor of NO x emissions during the study period, while energy efficiency and technology improvement factors offset total NO x emissions in the majority of provinces. In addition, the industrial structure factor plays a more significant role in reducing the NO x emissions after 2011. Therefore, the government should consider all these factors as well as regional heterogeneity in developing appropriate pollution mitigating policies. It's necessary to change NOx emissions control attitude from original key areas control to divided-zone control, not only attaches great importance to the reduction of the original key areas, but also emphasizes the new potential hotspots with high NO x emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Manufacturing of Nutritional Yeast: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Read the final rule on the National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Manufacturing of Nutritional Yeast, see the rule history, and a compliance and enforcement manual on this Maximum Achievable Control Technology.

  20. Will joint regional air pollution control be more cost-effective? An empirical study of China's Beijing-Tianjin-Hebei region.

    PubMed

    Wu, Dan; Xu, Yuan; Zhang, Shiqiu

    2015-02-01

    By following an empirical approach, this study proves that joint regional air pollution control (JRAPC) in the Beijing-Tianjin-Hebei region will save the expense on air pollution control compared with a locally-based pollution control strategy. The evidences below were found. (A) Local pollutant concentration in some of the cities is significantly affected by emissions from their surrounding areas. (B) There is heterogeneity in the marginal pollutant concentration reduction cost among various districts as a result of the cities' varying contribution of unit emission reduction to the pollutant concentration reduction, and their diverse unit cost of emission reduction brought about by their different industry composition. The results imply that the cost-efficiency of air pollution control will be improved in China if the conventional locally based regime of air pollution control can shift to a regionally based one. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurniawan, Jermanto S., E-mail: Jermanto.kurniawan@inrets.fr; Khardi, S., E-mail: Salah.khardi@inrets.f

    2011-04-15

    Air transportation growth has increased continuously over the years. The rise in air transport activity has been accompanied by an increase in the amount of energy used to provide air transportation services. It is also assumed to increase environmental impacts, in particular pollutant emissions. Traditionally, the environmental impacts of atmospheric emissions from aircraft have been addressed in two separate ways; aircraft pollutant emissions occurring during the landing and take-off (LTO) phase (local pollutant emissions) which is the focus of this study, and the non-LTO phase (global/regional pollutant emissions). Aircraft pollutant emissions are an important source of pollution and directly ormore » indirectly harmfully affect human health, ecosystems and cultural heritage. There are many methods to asses pollutant emissions used by various countries. However, using different and separate methodology will cause a variation in results, some lack of information and the use of certain methods will require justification and reliability that must be demonstrated and proven. In relation to this issue, this paper presents identification, comparison and reviews of some of the methodologies of aircraft pollutant assessment from the past, present and future expectations of some studies and projects focusing on emissions factors, fuel consumption, and uncertainty. This paper also provides reliable information on the impacts of aircraft pollutant emissions in short term and long term predictions.« less

  2. Emission characteristics of harmful air pollutants from cremators in Beijing, China

    PubMed Central

    Xue, Yifeng; Cheng, Linglong; Chen, Xi; Zhai, Xiaoman; Wang, Wei; Zhang, Wenjie; Bai, Yan; Tian, Hezhong; Nie, Lei; Zhang, Shihao; Wei, Tong

    2018-01-01

    The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM), sulfur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of “odor” in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50%) of the chemical components of VOCs in the flue gas from the cremators. PMID:29718907

  3. Emission characteristics of harmful air pollutants from cremators in Beijing, China.

    PubMed

    Xue, Yifeng; Cheng, Linglong; Chen, Xi; Zhai, Xiaoman; Wang, Wei; Zhang, Wenjie; Bai, Yan; Tian, Hezhong; Nie, Lei; Zhang, Shihao; Wei, Tong

    2018-01-01

    The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM), sulfur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of "odor" in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50%) of the chemical components of VOCs in the flue gas from the cremators.

  4. Resolving the interactions between population density and air pollution emissions controls in the San Joaquin Valley, USA.

    PubMed

    Hixson, Mark; Mahmud, Abdullah; Hu, Jianlin; Kleeman, Michael J

    2012-05-01

    .5 concentration in the future San Joaquin Valley during a severe winter stagnation event. The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).

  5. EMISSION FACTORS FOR IRON FOUNDRIES - CRITERIA AND TOXIC POLLUTANTS

    EPA Science Inventory

    The report lists criteria and toxic pollutant emission factors or sources commonly found in gray and ductile iron foundries. Emission factors are identified for process source and process fugitive emissions. he emission factors, representing uncontrolled emissions, may be used to...

  6. Present and future emissions of air pollutants in China:. SO 2, NO x, and CO

    NASA Astrophysics Data System (ADS)

    Streets, D. G.; Waldhoff, S. T.

    As part of the CHINA-MAP program, sponsored by the US National Aeronautics and Space Administration, regional inventories of air pollutants emitted in China are being characterized, in order that the atmospheric chemistry over China can be more fully understood and the resulting ambient concentrations in Chinese cities and the deposition levels to Chinese ecosystems be determined with better confidence. This paper presents estimates of emissions of three of the major air pollutants in China: sulfur dioxide (SO 2), nitrogen oxides (NO x), and carbon monoxide (CO). Emissions are estimated for each of the 29 regions of China covered by the RAINS-ASIA simulation model, including Hong Kong and Taiwan. All sectors of the Chinese economy are considered, including the combustion of biofuels in rural homes. Data for 1990 and 1995 are presented, as well as two projections for the year 2020 under alternative assumptions about levels of environmental control. Sulfur dioxide emissions are projected to increase from 25.2 mt in 1995 to 30.6 mt in 2020, provided emission controls are implemented on major power plants; if this does not happen, emissions could increase to as much as 60.7 mt by 2020. Emissions of nitrogen oxides are projected to increase from 12.0 mt in 1995 to somewhere in the range of 26.6-29.7 mt by 2020, with little in the way of pollution controls or other emission reduction measures in place. Emissions of carbon monoxide are projected to decline from 115 mt in 1995 to 96.8 mt in 2020, due to more efficient combustion techniques, especially in the transportation sector; if these measures are not realized, carbon monoxide emissions could increase to 130 mt by 2020. Emissions of all three species are concentrated in the populated and industrialized areas of China: the Northeastern Plain, the East Central and Southeastern provinces, and the Sichuan Basin.

  7. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connell, Daniel P

    2009-01-12

    The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, andmore » HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm the

  8. Emissions inventory and scenario analyses of air pollutants in Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Meng, Jing

    2017-03-01

    Air pollution, causing significantly adverse health impacts and severe environmental problems, has raised great concerns in China in the past few decades. Guangdong Province faces major challenges to address the regional air pollution problem due to the lack of an emissions inventory. To fill this gap, an emissions inventory of primary fine particles (PM2.5) is compiled for the year 2012, and the key precursors (sulfur dioxide, nitrogen oxides) are identified. Furthermore, policy packages are simulated during the period of 2012‒2030 to investigate the potential mitigation effect. The results show that in 2012, SO2, NO x , and PM2.5 emissions in Guangdong Province were as high as (951.7, 1363.6, and 294.9) kt, respectively. Industrial production processes are the largest source of SO2 and PM2.5 emissions, and transport is the top contributor of NO x emissions. Both the baseline scenario and policy scenario are constructed based on projected energy growth and policy designs. Under the baseline scenario, SO2, NO x , and PM2.5 emissions will almost double in 2030 without proper emissions control policies. The suggested policies are categorized into end-of- pipe control in power plants (ECP), end-of-pipe control in industrial processes (ECI), fuel improvement (FI), energy efficiency improvement (EEI), substitution-pattern development (SPD), and energy saving options (ESO). With the implementation of all these policies, SO2, NO x , and PM2.5 emissions are projected to drop to (303.1, 585.4, and 102.4) kt, respectively, in 2030. This inventory and simulated results will provide deeper insights for policy makers to understand the present situation and the evolution of key emissions in Guangdong Province.

  9. Room chamber assessment of the pollutant emission properties of (nominally) low-emission unflued gas heaters.

    PubMed

    Brown, Stephen K; Mahoney, K John; Cheng, Min

    2004-01-01

    Pollutant emissions from unflued gas heaters were assessed in CSIRO's Room Dynamic Environmental Chamber. This paper describes the chamber assessment procedure and presents findings for major commercial heaters that are nominally "low-emission". The chamber was operated at controlled conditions of temperature, humidity, ventilation and air mixing, representative of those encountered in typical indoor environments. A fixed rate of heat removal from the chamber air ensured that the heaters operated at constant heating rates, typically approximately 6 MJ/h which simulated operation of a heater after warm-up in an insulated dwelling in south-east Australia. The pollutants assessed were nitrogen dioxide, carbon monoxide, formaldehyde, VOCs and respirable suspended particulates. One type of heater was lower emitting for nitrogen dioxide, but emitted greater amounts of carbon monoxide and formaldehyde (the latter becoming significant to indoor air quality). When operated with low line pressure or slight misalignment of the gas burner, this heater became a hazardous source of these pollutants. Emissions from the heaters changed little after continuous operation for up to 2 months. Unflued gas heaters have been popular as primary heating sources in Australian homes for many years due to their ease of installation and energy efficiency, with approximately 600,000 now installed in housing and schools. However, with concerns over potential health impacts to occupants, manufacturers have reduced the nitrogen dioxide emissions from unflued gas heaters in Australia over recent years. They have done so with a target level for nitrogen dioxide in indoor air of 300 p.p.b. This is somewhat higher than the ambient air (and WHO) guideline of 110 p.p.b. Several studies of child respiratory health show an impact of unflued gas combustion products. A full characterization of the combustion products is needed under conditions that simulate heater operation in practice-this study was

  10. Evaluation of pollution prevention options to reduce styrene emissions from fiber-reinforced plastic open molding processes.

    PubMed

    Nunez, C M; Ramsey, G H; Kong, E J; Bahner, M A; Wright, R S; Clayton, C A; Baskir, J N

    1999-03-01

    Pollution prevention (P2) options to reduce styrene emissions, such as new materials and application equipment, are commercially available to the operators of open molding processes. However, information is lacking on the emissions reduction that these options can achieve. To meet this need, the U.S. Environmental Protection Agency's (EPA) Air Pollution Prevention and Control Division, working in collaboration with Research Triangle Institute, measured styrene emissions for several of these P2 options. In addition, the emission factors calculated from these test results were compared with the existing EPA emission factors for gel coat sprayup and resin applications. Results show that styrene emissions can be reduced by up to 52% by using controlled spraying (i.e., reducing overspray), low-styrene and styrene-suppressed materials, and nonatomizing application equipment. Also, calculated emission factors were 1.6-2.5 times greater than the mid-range EPA emission factors for the corresponding gel coat and resin application. These results indicate that facilities using existing EPA emission factors to estimate emissions in open molding processes are likely to underestimate actual emissions. Facilities should investigate the applicability and feasibility of these P2 options to reduce their styrene emissions.

  11. REGIONAL AIR POLLUTION STUDY: HEAT EMISSION INVENTORY

    EPA Science Inventory

    As part of the St. Louis Regional Air Pollution Study (RAPS), a heat emission inventory has been assembled. Heat emissions to the atmosphere originate, directly or indirectly, from the combustion of fossil fuels (there are no nuclear plants in the St. Louis AQCR). With the except...

  12. The Efficacy of Air Pollution Control Efforts: Evidence from AURA

    NASA Technical Reports Server (NTRS)

    Dickerson, Russell R.; Canty, Tim; Duncan, Bryan N.; Hao, He; Krotkov, Nickolay A.; Salawitch, Ross J.; Stehr, Jeffrey W.; Vinnikov, Konstatin

    2014-01-01

    Observations of NO2, SO2, and H2CO from OMI on AURA provide an excellent record of pollutant concentrations for the past decade. Abatement strategies to control criteria pollutants including ozone and fine particulate matter (PM2.5) have met with varying degrees of success. Sulfur controls had a profound impact on local SO2 concentrations and a measurable impact on PM2.5. Although substantial effort has gone into VOC control, ozone in the eastern US has responded dramatically to NOx emissions controls.

  13. Status of Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Suleiman, R. M.; Chance, K.; Liu, X.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2015-12-01

    TEMPO is now well into its implementation phase, having passed both its Key Decision Point C and the Critical Design Review (CDR) for the instrument. The CDR for the ground systems will occur in March 2016 and the CDR for the Mission component at a later date, after the host spacecraft has been selected. TEMPO is on schedule to measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies.TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available.TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. Instruments from Europe (Sentinel 4) and Asia (GEMS) will form

  14. Status of Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2016-12-01

    TEMPO is now in the Assembly, Integration and Test (AI&T) phase, having passed its Key Decision Point C, Critical Design Reviews (CDRs) for the instrument and the ground systems, and the Test Readiness Review (TRR). The TEMPO instrument is scheduled for delivery in August 2017. The request for proposals to host TEMPO on a commercial geostationary satellite is scheduled for release by May 2017, with host selection hopefully completed by the end of calendar 2017. TEMPO is thus on schedule to measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City and Cuba to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. It provides a measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the high variability in the diurnal cycle of emissions and chemistry. The small spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies.TEMPO takes advantage of a GEO host spacecraft to provide a mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available.TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space

  15. Implications of alternative assumptions regarding future air pollution control in RCP-like scenarios

    NASA Astrophysics Data System (ADS)

    Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef; Hazeleger, Wilco; Strunk, Achim; Deetman, Sebastiaan; Mendoza Beltran, Angelica; van Vliet, Jasper

    2013-04-01

    Estimation of future emissions of short-lived trace gases and aerosols from human activities is a main source of uncertainty in projections of future air quality and climate forcing. The Representative Concentration Pathways (RCPs), however, all assume that worldwide ambitious air pollution control policies will be implemented in the coming decades. In this study, we therefore explore the consequences of four alternative emission scenarios generated using the IMAGE integrated assessment model following the methods used to generate the RCPs. These scenarios combine low and high air pollution variants of the scenarios with radiative forcing targets in 2100 of 2.6 W/m2 and 6.0 W/m2 (the high air pollution variants assume no improvement in emission factors, representing a hypothetical upper end of emission levels). Analysis using the global atmospheric chemistry and transport model TM5 shows that climate mitigation and air pollution control policy variants studied here have similar large-scale effects on the concentrations of ozone and black carbon; the impact of climate policy, however, has a stronger impact on sulphate concentrations. Air pollution control measures could significantly reduce the warming by tropospheric ozone and black carbon and the cooling by sulphate already in 2020, and on the longer term contribute to enhanced warming by methane. These effects tend to cancel each other at the global scale. According to our estimates the effect of the worldwide implementation of air pollution control measures on the total global mean direct radiative forcing in 2050 is +0.09 W/m2 in the 6.0 W/m2 scenario and -0.16 W/m2 in the 2.6 W/m2 scenario.

  16. 40 CFR 1060.103 - What permeation emission control requirements apply for fuel tanks?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What permeation emission control... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT Emission Standards and Related Requirements § 1060.103 What permeation...

  17. 75 FR 9647 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ...EPA is promulgating national emission standards for hazardous air pollutants for existing stationary compression ignition reciprocating internal combustion engines that either are located at area sources of hazardous air pollutant emissions or that have a site rating of less than or equal to 500 brake horsepower and are located at major sources of hazardous air pollutant emissions. In addition, EPA is promulgating national emission standards for hazardous air pollutants for existing non-emergency stationary compression ignition engines greater than 500 brake horsepower that are located at major sources of hazardous air pollutant emissions. Finally, EPA is revising the provisions related to startup, shutdown, and malfunction for the engines that were regulated previously by these national emission standards for hazardous air pollutants.

  18. Controlling air pollution from passenger ferries: cost-effectiveness of seven technological options.

    PubMed

    Farrell, Alexander E; Corbett, James J; Winebrake, James J

    2002-12-01

    Continued interest in improving air quality in the United States along with renewed interest in the expansion of urban passenger ferry service has created concern about air pollution from ferry vessels. This paper presents a methodology for estimating the air pollution emissions from passenger ferries and the costs of emissions control strategies. The methodology is used to estimate the emissions and costs of retrofitting or re-powering ferries with seven technological options (combinations of propulsion and emission control systems) onto three vessels currently in service in San Francisco Bay. The technologies include improved engine design, cleaner fuels (including natural gas), and exhaust gas cleanup devices. The three vessels span a range of ages and technologies, from a 25-year-old monohull to a modern, high-speed catamaran built only four years ago. By looking at a range of technologies, vessel designs, and service conditions, a sense of the broader implications of controlling emissions from passenger ferries across a range of vessels and service profiles is provided. Tier 2-certified engines are the most cost-effective choice, but all options are cost-effective relative to other emission control strategies already in place in the transportation system.

  19. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ...The EPA is announcing two public hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''), which will be published separately in the Federal Register. The hearings will be held in Philadelphia, PA on April 24, 2013 and in Chicago, IL on April 29, 2013. The comment period for the proposed rulemaking will end on June 13, 2013.

  20. Air pollution radiative forcing from specific emissions sectors at 2030

    NASA Astrophysics Data System (ADS)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  1. PRELIMINARY COST ESTIMATES OF POLLUTION CONTROL TECHNOLOGIES FOR GEOTHERMAL DEVELOPMENTS

    EPA Science Inventory

    This report provides preliminary cost estimates of air and water pollution control technologies for geothermal energy conversion facilities. Costs for solid waste disposal are also estimated. The technologies examined include those for control of hydrogen sulfide emissions and fo...

  2. CO-DEPENDENCIES OF REACTIVE AIR TOXIC AND CRITERIA POLLUTANTS ON EMISSION REDUCTIONS

    EPA Science Inventory

    It is important to understand the effect of emission controls on the concentrations of ozone, PM2.5, and hazardous air pollutants simultaneously, in order to evaluate the full range of both health related and economic effects. Until recently, the capability of simultan...

  3. Waterbury, Conn., Incinerator to Control Mercury Emissions

    EPA Pesticide Factsheets

    Emission control equipment to limit the discharge of mercury pollution to the atmosphere will be installed at an incinerator owned by the City of Waterbury, Conn., according to a proposed agreement between the city and federal government.

  4. Improving the City-scale Emission Inventory of Anthropogenic Air Pollutants: A Case Study of Nanjing

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Zhao, Y.; Xu, R.; Xie, F.; Wang, H.; Qin, H.; Wu, X.; Zhang, J.

    2014-12-01

    To evaluate the improvement of city-scale emission inventory, a high-resolution emission inventory of air pollutants for Nanjing is first developed combining detailed source information, and then justified through quantitative analysis with observations. The best available domestic emission factors and unit-/facility-based activity level data were compiled based on a thorough field survey on major emission sources. Totally 1089 individual emission sources were identified as point sources and all the emission-related parameters including burner type, combustion technology, fuel quality, and removal efficiency of pollution control devices, are carefully investigated and analyzed. Some new data such as detailed information of city fueling-gas stations, construction sites, monthly activity level, data from continuous emission monitoring systems and traffic flow information were combined to improve spatiotemporal distribution of this inventory. For SO2, NOX and CO, good spatial correlations were found between ground observation (9 state controlling air sampling sites in Nanjing) and city-scale emission inventory (R2=0.34, 0.38 and 0.74, respectively). For TSP, PM10 and PM2.5, however, poorer correlation was found due to relatively weaker accuracy in emission estimation and spatial distribution of road dust. The mixing ratios between specific pollutants including OC/EC, BC/CO and CO2/CO, are well correlated between those from ground observation and emission. Compared to MEIC (Multi-resolution Emission Inventory for China), there is a better spatial consistence between this city-scale emission inventory and NO2 measured by OMI (Ozone Monitoring Instrument). In particular, the city-scale emission inventory still correlated well with satellite observations (R2=0.28) while the regional emission inventory showed little correlation with satellite observations (R2=0.09) when grids containing power plants are excluded. It thus confirms the improvement of city-scale emission

  5. Redefining the importance of nitrate during haze pollution to help optimize an emission control strategy

    NASA Astrophysics Data System (ADS)

    Pan, Yuepeng; Wang, Yuesi; Zhang, Junke; Liu, Zirui; Wang, Lili; Tian, Shili; Tang, Guiqian; Gao, Wenkang; Ji, Dongsheng; Song, Tao; Wang, Yonghong

    2016-09-01

    Nitrate salts represent a major component of fine mode aerosols, which play an important role in air pollution worldwide. Based on on-line and off-line aerosol measurements in urban Beijing for both clean and haze conditions, we demonstrate that the absolute and relative concentrations of nitrate increased with visibility degradation (relative humidity), whereas the variations of organics tracked the patterns of mixing-layer height and temperature. We propose that the increase in the relative contribution of nitrate to PM1 observed during the early stages of haze pollution was due to new particle formation, whereas the nitrate formed in PM1-2.5 during the latter stages was due to heterogeneous formation and hygroscopic growth. The increasing trend of nitrate (and also sulfate and ammonium) but decreasing trends of organics during haze development, together with the increase of the NO2/SO2 molar ratio with increasing proximity to downtown Beijing and with visibility degradation, provide further evidence that controlling NOx emissions should be a priority for improving air quality in mega cities. Additional large-scale investigation is required to adequately characterize the regional features of NOx-induced haze pollution in China. Such studies may provide insight into the formation of critical nuclei or the subsequent growth of freshly nucleated particles and advance our understanding of the role of nitrate in new particle formation.

  6. Emission inventory of primary air pollutants in 2010 from industrial processes in Turkey.

    PubMed

    Alyuz, Ummugulsum; Alp, Kadir

    2014-08-01

    The broad objective of this study was to develop CO2, PM, SOx, CO, NOx, VOC, NH3 and N2O emission inventory of organic and inorganic chemicals, mineral products, metallurgical, petroleum refining, wood products, food industries of Turkey for 2010 for both co]ntrolled and uncontrolled conditions. In this study, industries were investigated in 7 main categories and 53 sub-sectors and a representative number of pollutants per sub-sector were considered. Each industry was evaluated in terms of emitted emissions only from industrial processes, and fuel combustion activities were excluded (except cement industry). The study employed an approach designed in four stages; identification of key categories; activity data & emission factor search; emission factor analyzing; calculation of emissions. Emission factor analyzing required aggregate and firm analysis of sectors and sub-sectors and deeper insights into underlying specific production methods used in the industry to decide on the most representative emission factor. Industry specific abatement technologies were considered by using open-source documents and industry specific reports. Regarding results of this study, mineral industry and iron & steel industry were determined as important contributors of industrial emissions in Turkey in 2010. Respectively, organic chemicals, petroleum refining, and pulp & paper industries had serious contributions to Turkey's air pollutant emission inventory from industrial processes. The results showed that calculated CO2 emissions for year 2010 was 55,124,263 t, also other emissions were 48,853 t PM, 24,533 t SOx, 79,943 t NOx, 31,908 t VOC, 454 t NH3 and 2264 t N2O under controlled conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Quantification of local and global benefits from air pollution control in Mexico City.

    PubMed

    Mckinley, Galen; Zuk, Miriam; Höjer, Morten; Avalos, Montserrat; González, Isabel; Iniestra, Rodolfo; Laguna, Israel; Martínez, Miguel A; Osnaya, Patricia; Reynales, Luz M; Valdés, Raydel; Martínez, Julia

    2005-04-01

    Complex sociopolitical, economic, and geographical realities cause the 20 million residents of Mexico City to suffer from some of the worst air pollution conditions in the world. Greenhouse gas emissions from the city are also substantial, and opportunities for joint local-global air pollution control are being sought. Although a plethora of measures to improve local air quality and reduce greenhouse gas emissions have been proposed for Mexico City, resources are not available for implementation of all proposed controls and thus prioritization must occur. Yet policy makers often do not conduct comprehensive quantitative analyses to inform these decisions. We reanalyze a subset of currently proposed control measures, and derive cost and health benefit estimates that are directly comparable. This study illustrates that improved quantitative analysis can change implementation prioritization for air pollution and greenhouse gas control measures in Mexico City.

  8. Impacts of Aging Emission Control Systems on In-Use Heavy-Duty Diesel Truck Emission Rates

    NASA Astrophysics Data System (ADS)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2017-12-01

    Heavy-duty diesel trucks are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems have become standard equipment on new trucks. Particle filters can also be installed as a retrofit on older engines. Prior work has shown that exhaust filters and SCR systems effectively reduce BC and NOx emission rates by up to 90 and 80%, respectively (Preble et al., ES&T 2015). There is concern, however, that DPFs may promote the formation of ultrafine particles (UFP) and increase tailpipe emissions of nitrogen dioxide (NO2). Additionally, urea-based SCR systems for NOx control may form nitrous oxide (N2O), an important contributor to stratospheric ozone depletion. The effectiveness of these emission controls has been thoroughly evaluated in the laboratory, but the long-term durability of in-use systems and their impacts on co-emitted species have not been well characterized. To evaluate the in-use performance of DPF and SCR systems, pollutant emissions from thousands of diesel trucks were measured over several years at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Pollutants present in the exhaust plumes of individual trucks were measured at high time resolution (≥1 Hz) as trucks passed under a mobile lab stationed on an overpass. Fuel-based emission factors (g pollutant emitted per kg fuel burned) were calculated for individual trucks and linked via recorded license plates to vehicle attributes, including engine model year and installed emission control systems. Use of DPFs reduced the BC emission rate by up to 95% at both locations. SCR systems were more effective at reducing NOx emissions under the uphill, highway driving conditions at the Caldecott Tunnel. The emission rates of co-emitted species NO2, UFP, and N2O depended on driving

  9. Risk-based prioritization among air pollution control strategies in the Yangtze River Delta, China.

    PubMed

    Zhou, Ying; Fu, Joshua S; Zhuang, Guoshun; Levy, Jonathan I

    2010-09-01

    The Yangtze River Delta (YRD) in China is a densely populated region with recent dramatic increases in energy consumption and atmospheric emissions. We studied how different emission sectors influence population exposures and the corresponding health risks, to inform air pollution control strategy design. We applied the Community Multiscale Air Quality (CMAQ) Modeling System to model the marginal contribution to baseline concentrations from different sectors. We focused on nitrogen oxide (NOx) control while considering other pollutants that affect fine particulate matter [aerodynamic diameter < or = 2.5 mum (PM2.5)] and ozone concentrations. We developed concentration-response (C-R) functions for PM2.5 and ozone mortality for China to evaluate the anticipated health benefits. In the YRD, health benefits per ton of emission reductions varied significantly across pollutants, with reductions of primary PM2.5 from the industry sector and mobile sources showing the greatest benefits of 0.1 fewer deaths per year per ton of emission reduction. Combining estimates of health benefits per ton with potential emission reductions, the greatest mortality reduction of 12,000 fewer deaths per year [95% confidence interval (CI), 1,200-24,000] was associated with controlling primary PM2.5 emissions from the industry sector and reducing sulfur dioxide (SO2) from the power sector, respectively. Benefits were lower for reducing NOx emissions given lower consequent reductions in the formation of secondary PM2.5 (compared with SO2) and increases in ozone concentrations that would result in the YRD. Although uncertainties related to C-R functions are significant, the estimated health benefits of emission reductions in the YRD are substantial, especially for sectors and pollutants with both higher health benefits per unit emission reductions and large potential for emission reductions.

  10. Emissions of particulate and gaseous pollutants within the Keelung Harbor region of Taiwan.

    PubMed

    Yu-Peng, Chiung; Lin, Chern-Gyuan; Jong, Tain-Chyuan

    2005-10-01

    The Keelung port, which is located on the northern tip of Taiwan, right next to the Taipei metropolitan area, is an important international harbor. However, any air pollutants generated from the Keelung port region, immediately travel to the neighboring Keelung city, and greatly impact the residents' daily life and the quality of their environment. This study has investigated and quantified pollution emissions, from the Keelung port region, between 1997 and 2002. Emissions from major air pollution sources were estimated. The estimated results indicated that total TSP (total suspended particles) emissions had significantly increased, from 5221 ton/yr in 1997 to 262 687 ton/yr in 2002, due to the greatly increased volume of sand imported into Keelung Harbor. Quantities of other emissions, such as SO(2), NO(2), CO and HC remained stable and were 440, 207, 78 and 25 ton/yr, respectively, on average, with variations within 7% over the previous six-year period. By examining the emissions from pollution sources, it was found that TSP emissions mainly originated from re-suspension of dust, due to both vehicle movement and the sand unloading process; this accounted for over 99% of the total TSP emissions produced in the port region. About 80% of the total SO(2) emissions originated from the main ships' engines within the Keelung port region, due to the use of fuel with a high sulfur content. In addition, loading/unloading machines within the port region were the major sources of NO(2), CO and HC pollution emissions, which comprised 54, 58 and 66% of the total emissions of these pollutants, respectively. TSP emissions from Keelung port were much higher than from the neighboring Keelung city; hence, alleviating TSP emissions should be the first priority for air pollution reduction within both the port of Keelung and Keelung city.

  11. Assimilative capacity-based emission load management in a critically polluted industrial cluster.

    PubMed

    Panda, Smaranika; Nagendra, S M Shiva

    2017-12-01

    In the present study, a modified approach was adopted to quantify the assimilative capacity (i.e., the maximum emission an area can take without violating the permissible pollutant standards) of a major industrial cluster (Manali, India) and to assess the effectiveness of adopted air pollution control measures at the region. Seasonal analysis of assimilative capacity was carried out corresponding to critical, high, medium, and low pollution levels to know the best and worst conditions for industrial operations. Bottom-up approach was employed to quantify sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), and particulate matter (aerodynamic diameter <10 μm; PM 10 ) emissions at a fine spatial resolution of 500 × 500 m 2 in Manali industrial cluster. AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), an U.S. Environmental Protection Agency (EPA) regulatory model, was used for estimating assimilative capacity. Results indicated that 22.8 tonnes/day of SO 2 , 7.8 tonnes/day of NO 2 , and 7.1 tonnes/day of PM 10 were emitted from the industries of Manali. The estimated assimilative capacities for SO 2 , NO 2 , and PM 10 were found to be 16.05, 17.36, and 19.78 tonnes/day, respectively. It was observed that the current SO 2 emissions were exceeding the estimated safe load by 6.7 tonnes/day, whereas PM 10 and NO 2 were within the safe limits. Seasonal analysis of assimilative capacity showed that post-monsoon had the lowest load-carrying capacity, followed by winter, summer, and monsoon seasons, and the allowable SO 2 emissions during post-monsoon and winter seasons were found to be 35% and 26% lower, respectively, when compared with monsoon season. The authors present a modified approach for quantitative estimation of assimilative capacity of a critically polluted Indian industrial cluster. The authors developed a geo-coded fine-resolution PM 10 , NO 2 , and SO 2 emission inventory for Manali industrial area and further

  12. Air pollutant emissions from straw open burning: A case study in Tianjin

    NASA Astrophysics Data System (ADS)

    Guan, Yanan; Chen, Guanyi; Cheng, Zhanjun; Yan, Beibei; Hou, Li'an

    2017-12-01

    Straw open burning is a primary source of air pollution and difficult to forbid in China. To have a better understanding of the pollution status of straw open burning in Tianjin, an accurate pollutant emission inventory was established based on the county-level statistical data from 1996 to 2014 in Tianjin. Results showed that the emission of CO, VOCs, PM10, PM2.5, CH4, NOx, OC, SO2, NH3 and BC have decreased by 41.66%, 58.74%, 54.55%, 55.01%, 58.42%, 47.03%, 48.71%, 44.85%, 64.60%, 51.56% from 1996 to 2000, and then gradually increased by 44.05%, 53.48%, 59.43%, 59.49%, 51.24%, 55.05%, 53.09%, 22.73%, 56.25%, and 64.29% from 2000 to 2014, respectively. Spatially, counties of Wuqing, Baodi and Jixian were the largest contributors to the total emissions with the contribution of 25.98%, 22.69% and 18.87% respectively through the study period. The Monte Carlo simulation was also used to estimate the uncertainty and its confidence intervals of the pollutant emissions. The uncertainty of total pollutant emissions for each year is within ±80.35%. This study provides more accurate estimation for the pollutant emissions from straw open burning and reliable guidance for the policy formulation to improve the air quality in Tianjin.

  13. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.

    PubMed

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-06-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007-2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM10, PM2.5, SO2, NOx, CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NOx and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2016-11-01

    Coal burning in power plants and industrial boilers is the largest combustion source of mercury emissions in China. Together, power plants and industrial boilers emit around 250 tonnes of mercury each year, or around half of atmospheric mercury emissions from anthropogenic sources in the country. Power plants in China are generally equipped with multi-pollutant control technologies, which offer the co-benefit of mercury removal, while mercury-specific control technologies have been installed in some facilities. In contrast, most industrial boilers have only basic or no flue gas cleaning. A combination of measures, including energy conservation, coal switching and blending, reducing the mercury contents of coals through washing, combustion controls, and flue gas cleaning, can be used to reduce mercury emissions from these stationary combustion sources. More stringent emission standards for the major air pollutants from coal-fired power plants and industrial boiler, along with standards for the previously unregulated mercury, were implemented recently, which is expected to bring significant reduction in their mercury emissions through the necessary upgrades of multi-pollutant and mercury-specific control technologies. Meanwhile, strong monitoring capacity and strict enforcement are necessary to ensure that the combustion sources operate in compliance with the new emission standards and achieve significant reduction in the emissions of mercury and other air pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evaluation of diesel fleet emissions and control policies from plume chasing measurements of on-road vehicles

    NASA Astrophysics Data System (ADS)

    Lau, Chui Fong; Rakowska, Agata; Townsend, Thomas; Brimblecombe, Peter; Chan, Tat Leung; Yam, Yat Shing; Močnik, Griša; Ning, Zhi

    2015-12-01

    Vehicle emissions are an important source of urban air pollution. Diesel fuelled vehicles, although constituting a relatively small fraction of fleet population in many cities, are significant contributors to the emission inventory due to their often long mileage for goods and public transport. Recent classification of diesel exhaust as carcinogenic by the World Health Organization also raises attention to more stringent control of diesel emissions to protect public health. Although various mandatory and voluntary based emission control measures have been implemented in Hong Kong, there have been few investigations to evaluate if the fleet emission characteristics have met desired emission reduction objectives and if adoption of an Inspection/Maintenance (I/M) programme has been effective in achieving these objectives. The limitations are partially due to the lack of cost-effective approaches for the large scale characterisation of fleet based emissions to assess the effectiveness of control measures and policy. This study has used a plume chasing method to collect a large amount of on-road vehicle emission data of Hong Kong highways and a detailed analysis was carried out to provide a quantitative evaluation of the emission characteristics in terms of the role of high and super-emitters in total emission reduction, impact of after-treatment on the multi-pollutants reduction strategy and the trend of NO2 emissions with newer emission standards. The study revealed that not all the high-emitters are from those vehicles of older Euro emission standards. Meanwhile, there is clear evidence that high-emitters for one pollutant may not be a high-emitter for another pollutant. Multi-pollutant control strategy needs to be considered in the enactment of the emission control policy which requires more comprehensive retrofitting technological solutions and matching I/M programme to ensure the proper maintenance of fleets. The plume chasing approach used in this study also

  16. Agricultural pollution control under Spanish and European environmental policies

    NASA Astrophysics Data System (ADS)

    MartíNez, Yolanda; Albiac, José

    2004-10-01

    Nonpoint pollution from agriculture is an important environmental policy issue in Spain and the European Union. Agricultural pollution in Spain is being addressed by the National Irrigation Plan and by the European Water Framework Directive. This article contributes to the ongoing policy decision process by analyzing nonpoint pollution control and presenting results on the efficiency of abatement measures. Results question the reliance of the Water Framework Directive on water pricing as a pollution instrument for reaching good status for all waters because higher water prices close to full recovery cost advocated by the directive appear to be inefficient as an emission control instrument. Another important result is that abatement measures based on input taxes and standards on nitrogen appear to be more suitable than the National Irrigation Plan subsidies designed to promote irrigation investments. The results also contribute with further evidence to the discussion on the appropriate instrument base for pollution control, proving that nonpoint pollution control instruments cannot be assessed accurately without a correct understanding of the key underlying biophysical processes. Nonpoint pollution is characterized by nonlinearities, dynamics, and spatial dependency, and neglect of the dynamic aspects may lead to serious consequences for the design of measures. Finally, a quantitative assessment has been performed to explore discriminating measures based on crop pollution potential on vulnerable soils. No significant welfare gains are found from discriminating control, although results are contingent upon the level of damage, and discrimination could be justified in areas with valuable ecosystems and severe pollution damages.

  17. Overview of Megacity Air Pollutant Emissions and Impacts

    NASA Astrophysics Data System (ADS)

    Kolb, C. E.

    2013-05-01

    The urban metabolism that characterizes major cities consumes very large qualities of humanly produced and/or processed food, fuel, water, electricity, construction materials and manufactured goods, as well as, naturally provided sunlight, precipitation and atmospheric oxygen. The resulting urban respiration exhalations add large quantities of trace gas and particulate matter pollutants to urban atmospheres. Key classes of urban primary air pollutants and their sources will be reviewed and important secondary pollutants identified. The impacts of these pollutants on urban and downwind regional inhabitants, ecosystems, and climate will be discussed. Challenges in quantifying the temporally and spatially resolved urban air pollutant emissions and secondary pollutant production rates will be identified and possible measurement strategies evaluated.

  18. Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Yuying; Zhang, Fang; Li, Zhanqing; Tan, Haobo; Xu, Hanbing; Ren, Jingye; Zhao, Jian; Du, Wei; Sun, Yele

    2017-04-01

    A series of strict emission control measures was implemented in Beijing and the surrounding seven provinces to ensure good air quality during the 2015 China Victory Day parade, rendering a unique opportunity to investigate the anthropogenic impact of aerosol properties. Submicron aerosol hygroscopicity and volatility were measured during and after the control period using a hygroscopic and volatile tandem differential mobility analyzer (H/V-TDMA) system. Three periods, namely the control clean period (Clean1), the non-control clean period (Clean2), and the non-control pollution period (Pollution), were selected to study the effect of the emission control measures on aerosol hygroscopicity and volatility. Aerosol particles became more hydrophobic and volatile due to the emission control measures. The hygroscopicity parameter (κ) of 40-200 nm particles decreased by 32.0-8.5 % during the Clean1 period relative to the Clean2 period, while the volatile shrink factor (SF) of 40-300 nm particles decreased by 7.5-10.5 %. The emission controls also changed the diurnal variation patterns of both the probability density function of κ (κ-PDF) and the probability density function of SF (SF-PDF). During Clean1 the κ-PDF showed one nearly hydrophobic (NH) mode for particles in the nucleation mode, which was likely due to the dramatic reduction in industrial emissions of inorganic trace gases. Compared to the Pollution period, particles observed during the Clean1 and Clean2 periods exhibited a more significant nonvolatile (NV) mode throughout the day, suggesting a more externally mixed state particularly for the 150 nm particles. Aerosol hygroscopicities increased as particle sizes increased, with the greatest increases seen during the Pollution period. Accordingly, the aerosol volatility became weaker (i.e., SF increased) as particle sizes increased during the Clean1 and Clean2 periods, but no apparent trend was observed during the Pollution period. Based on a correlation

  19. Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Yuying; Zhang, Fang; Li, Zhanqing

    2017-04-01

    A series of strict emission control measures were implemented in Beijing and the surrounding seven provinces to ensure good air quality during the 2015 China Victory Day parade, rendering a unique opportunity to investigate anthropogenic impact of aerosol properties. Submicron aerosol hygroscopicity and volatility were measured during and after the control period using a hygroscopic and volatile tandem differential mobility analyzer (H/V-TDMA) system. Three periods, namely, the control clean period (Clean1), the non-control clean period (Clean2), and the non-control pollution period (Pollution), were selected to study the effect of the emission control measures on aerosol hygroscopicity and volatility. Aerosol particles became more hydrophobic and volatile due to the emission control measures. The hygroscopicity parameter (κ) of 40-200 nm particles decreased by 32.0%-8.5% during the Clean1 period relative to the Clean2 period, while the volatile shrink factor (SF) of 40-300 nm particles decreased by 7.5%-10.5%. The emission controls also changed the diurnal variation patterns of both the probability density function of κ (κ-PDF) and the probability density function of SF (SF-PDF). During Clean1 the κ-PDF showed one nearly-hydrophobic (NH) mode for particles in the nucleation mode, which was likely due to the dramatic reduction in industrial emissions of inorganic trace gases. Compared to the Pollution period, particles observed during the Clean1 and Clean2 periods exhibited a more significant non-volatile (NV) mode throughout the day, suggesting a more externally-mixed state particularly for the 150 nm particles. Aerosol hygroscopicities increased as particle sizes increased, with the greatest increases seen during the Pollution period. Accordingly, the aerosol volatility became weaker (i.e., SF increased) during the Clean1 and Clean2 periods, but no apparent trend was observed during the Pollution period. Based on a correlation analysis of the number fractions

  20. Are greenhouse gas emissions from international shipping a type of marine pollution?

    PubMed

    Shi, Yubing

    2016-12-15

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of 'conditional' marine pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Study on the total amount control of atmospheric pollutant based on GIS.

    PubMed

    Wang, Jian-Ping; Guo, Xi-Kun

    2005-08-01

    To provide effective environmental management for total amount control of atmospheric pollutants. An atmospheric diffusion model of sulfur dioxide on the surface of the earth was established and tested in Shantou of Guangdong Province on the basis of an overall assessment of regional natural environment, social economic state of development, pollution sources and atmospheric environmental quality. Compared with actual monitoring results in a studied region, simulation values fell within the range of two times of error and were evenly distributed in the two sides of the monitored values. Predicted with the largest emission model method, the largest emission of sulfur dioxide would be 54,279.792 tons per year in 2010. The mathematical model established and revised on the basis of GIS is more rational and suitable for the regional characteristics of total amount control of air pollutants.

  2. Fine-particulate Air Pollution from Diesel Emission Control and Mortality Rates in Tokyo: A Quasi-experimental Study.

    PubMed

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-11-01

    Evidence linking air pollution with adverse health outcomes is accumulating. However, few studies have adopted a quasi-experimental design to evaluate whether decline in air pollution from regulatory action improves public health. We evaluated the effect of a diesel emission control ordinance introduced in 2003 on mortality rates in 23 wards of the Tokyo metropolitan area, Japan, from October 2000 to September 2012, taking into account change in mortality rates in a reference population (Osaka) with a introduction of such a regulation in 2009. We obtained daily counts of all-cause and cause-specific mortality and concentrations of nitrogen dioxide (NO2) and particulate matter less than 2.5 μm in diameter (PM2.5) during the study period. We employed interrupted time-series analysis to analyze the data. Decline in NO2 during the study period was similar in the two areas, while decline in PM2.5 and the improvement in age-standardized mortality rates were greater in Tokyo's 23 wards compared with Osaka. Even after adjusting for age-standardized mortality rates in Osaka, percent changes in mortality between the first 3-year interval (October 2000 to September 2003) and the last 3-year interval (October 2009 to September 2012) were -6.0% for all causes, -11% for cardiovascular disease, -10% for ischemic heart disease, -6.2% for cerebrovascular disease, -22% for pulmonary disease, and -4.9% for lung cancer. We did not observe a decline in mortality from other causes. This quasi-experimental study in Tokyo suggests that emission control was associated with improvements in both air quality and health outcomes.

  3. Alternative policies for the control of air pollution in Poland. World Bank Environment Paper 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, R.; Cofala, J.; Toman, M.

    1994-05-01

    Examines the costs of lowering air-polluting emissions and assesses the cost savings achieved from their abatement. Encourages the use of various economic incentives rather than rigid `command and control` measures. The analysis is based on a dynamic model of energy supply in Poland that allows a comparison of different pollution standards and policies (outlined in an appendix). Further economic restructuring and energy price reform are expected to generate significant reductions in air pollution, as are current policies calling for enforcement of tighter emissions standards. Incentive-based policies could offer significant cost savings over `command and control` approaches. The authors suggest thatmore » trading of emissions rights, as done in the United States, should be considered for Poland. To do so would require additional legal and regulatory reforms.« less

  4. 76 FR 13514 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources. Among the... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources (CMAS) on October...

  5. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan

    NASA Astrophysics Data System (ADS)

    Wang, Qiaoli; Li, Sujing; Dong, Minli; Li, Wei; Gao, Xiang; Ye, Rongmin; Zhang, Dongxiao

    2018-06-01

    Zhoushan is an island city with booming tourism and service industry, but also has many developed VOCs and/or NOX emission industries. It is necessary to carry out regional VOCs and O3 pollution control in Zhoushan as the only new area owns the provincial economic and social administration rights. Anthropogenic VOCs emission inventories were built based on emission factor method and main emission sources were identified according to the emission inventories. Then, localized VOCs source profiles were built based on in-site sampling and referring to other studies. Furthermore, ozone formation potentials (OFPs) profiles were built through VOCs source profiles and maximum incremental reactivity (MIR) theory. At last, the priority control analysis results showed that industrial processes, especially surface coating, are the key of VOCs and O3 control. Alkanes were the most emitted group, accounting for 58.67%, while aromatics contributed the most to ozone production accounting for 69.97% in total OFPs. n-butane, m/p-xylene, i-pentane, n-decane, toluene, propane, n-undecane, o-xylene, methyl cyclohexane and ethyl benzene were the top 10 VOC species that should be preferentially controlled for VOCs emission control. However, m/p-xylene, o-xylene, ethylene, n-butane, toluene, propene, 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, ethyl benzene and 1,2,3-trimethyl benzene were the top 10 VOC species that required preferential control for O3 pollution control.

  6. OFFICE EQUIPMENT: DESIGN, INDOOR AIR EMISSIONS, AND POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The report summarizes available information on office equipment design; indoor air emissions of organics, ozone, and particulates from office equipment; and pollution prevention approaches for reducing these emissions. Since much of the existing emissions data from office equipme...

  7. CONTROLLING EMISSIONS FROM FUEL AND WASTE COMBUSTION

    EPA Science Inventory

    Control of emissions from combustion of fuels and wastes has been a traditional focus of air pollution regulations. Significant technology developments of the '50s and '60s have been refined into reliable chemical and physical process unit operations. In the U.S., acid rain legis...

  8. Near-Roadway Emission of Reactive Nitrogen Compounds and Other Non-Criteria Pollutants at a Southern California Freeway Site

    NASA Astrophysics Data System (ADS)

    Moss, J. A.; Baum, M.; Castonguay, A. E.; Aguirre, V., Jr.; Pesta, A.; Fanter, R. K.; Anderson, M.

    2015-12-01

    Emission control systems in light-duty motor vehicles (LDMVs) have played an important role in improving regional air quality by dramatically reducing the concentration of criteria pollutants (carbon monoxide, hydrocarbons, and nitrogen oxides) in exhaust emissions. Unintended side-reactions occurring on the surface of three-way catalysts may lead to emission of a number of non-criteria pollutants whose identity and emission rates are poorly understood. A series of near-roadway field studies conducted between 2009-2015 has investigated LDMV emissions of these pollutants with unprecedented depth of coverage, including reactive nitrogen compounds (NH3, amines, HCN, HONO, and HNO3), organic peroxides, and carbonyl compounds (aldehydes, ketones, and carboxylic acids). Methods to collect these pollutants using mist chambers, annular denuders, impingers, and solid-phase cartridges and quantify their concentration using GC-MS, LC-MS/MS, IC, and colorimetry were developed and validated in the laboratory and field. These methods were subsequently used in near-roadway field studies where the concentrations of the target compounds integrated over 1-4 hour blocks were measured at the edge of a freeway and at a background site 140 m from the roadway. Concentrations followed a steep decreasing gradient from the freeway to the background site. Emission factors (pollutant mass emitted per mass fuel consumed) were calculated by carbon mass balance using the difference in concentration measured between the freeway and background sites for the emitted pollutant and CO2 as a measure of carbon mass in the vehicle exhaust. The significance of these results will be discussed in terms of emissions inventories in the South Coast Air Basin of California, emission trends at this site over the period of 2009-2015, and for NH3, emission measurements conducted by our group and others over the period 2000-2015.

  9. Characterization of Coal Combustion Residues from Electric Utilities Using Wet Scrubbers for Multi-Pollutant Control

    EPA Science Inventory

    This report evaluates changes that may occur to coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants, which will reduce emissions from the flue gas stack by transferring pollutants to fly ash and other air pollution...

  10. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control agencies...

  11. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control agencies...

  12. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control agencies...

  13. Selected organic pollutant emissions from unvented kerosene space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, G.W.; Apte, M.G.; Sokol, H.A.

    1990-08-01

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emissions rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emissions. Each heater was operated in a 27-m{sup 3} chamber with a prescribed on/off pattern. Organic compounds were collected on Teflon-impregnated glass filters backed by XAD-2 resin and analyzed by gas chromatography/mass spectrometry. Pollutant source strengths were calculated by use of a mass balance equation. The results show that kerosene heaters can emit polycyclic aromatic hydrocarbons (PAHs); nitrated PAHs; alkylbenzenes, phthalates; hydronaphthalenes; aliphatic hydrocarbons,more » alcohols, and ketones; and other organic compounds, some of which are known mutagens.« less

  14. Economic development and multiple air pollutant emissions from the industrial sector.

    PubMed

    Fujii, Hidemichi; Managi, Shunsuke

    2016-02-01

    This study analyzed the relationship between economic growth and emissions of eight environmental air pollutants (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), nitrogen oxide (NOx), sulfur oxide (SOx), carbon monoxide (CO), non-methane volatile organic compound (NMVOC), and ammonia (NH3)) in 39 countries from 1995 to 2009. We tested an environmental Kuznets curve (EKC) hypothesis for 16 individual industry sectors and for the total industrial sector. The results clarified that at least ten individual industries do not have an EKC relationship in eight air pollutants even though this relationship was observed in the country and total industrial sector level data. We found that the key industries that dictated the EKC relationship in the country and the total industrial sector existed in CO2, N2O, CO, and NMVOC emissions. Finally, the EKC turning point and the relationship between economic development and trends of air pollutant emissions differ among industries according to the pollution substances. These results suggest inducing new environmental policy design such as the sectoral crediting mechanism, which focuses on the industrial characteristics of emissions.

  15. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics.

    PubMed

    Wang, Kun; Tian, Hezhong; Hua, Shenbing; Zhu, Chuanyong; Gao, Jiajia; Xue, Yifeng; Hao, Jiming; Wang, Yong; Zhou, Junrui

    2016-07-15

    China has become the largest producer of iron and steel throughout the world since 1996. However, as an energy-and-pollution intensive manufacturing sector, a detailed comprehensive emission inventory of air pollutants for iron and steel industry of China is still not available. To obtain and better understand the temporal trends and spatial variation characteristics of typical hazardous air pollutants (HAPs) emissions from iron and steel production in China, a comprehensive emission inventory of multiple air pollutants, including size segregated particulate matter (TSP/PM10/PM2.5), gaseous pollutants (SO2, NOx, CO), heavy metals (Pb, Cd, Hg, As, Cr, Ni etc.), as well as the more dangerous PCDD/Fs, is established with the unit-based annual activity, specific dynamic emission factors for the historical period of 1978-2011, and the future potential trends till to 2050 are forecasted by using scenario analysis. Our results show that emissions of gaseous pollutants and particulate matter have experienced a gradual increase tendency since 2000, while emissions of priority-controlled heavy metals (Hg, Pb, As, Cd, Cr, and Ni) have exhibited a short-term fluctuation during the period of 1990 to 2005. With regard to the spatial distribution of HAPs emissions in base year 2011, Bohai economic circle is identified as the top emission intensity region where iron and steel smelting plants are densely built; within iron and steel industry, blast furnaces contribute the majority of PM emissions, sinter plants account for most of gaseous pollutants and the majority of PCDD/Fs, whereas steel making processes are responsible for the majority of heavy metal emissions. Moreover, comparisons of future emission trends under three scenarios indicate that advanced technologies and integrated whole process management strategies are in great need to further diminish various hazardous air pollutants from iron and steel industry in the future. Copyright © 2016 Elsevier B.V. All rights

  16. A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China

    NASA Astrophysics Data System (ADS)

    Qi, Ji; Zheng, Bo; Li, Meng; Yu, Fang; Chen, Chuchu; Liu, Fei; Zhou, Xiafei; Yuan, Jing; Zhang, Qiang; He, Kebin

    2017-12-01

    We developed a high-resolution Beijing-Tianjin-Hebei (BTH) regional air pollutants emission inventory for the year 2013. The inventory was established using a bottom-up approach based on facility-level activity data obtained from multiple data sources. The estimates from the BTH 2013 emission inventory show that the total emissions of SO2, NOX, PM2.5, PM10, CO, NMVOC, NH3, BC, and OC were 2,305, 2,686, 1,090, 1,494, 20,567, 2,207, 623, 160, and 254 Gg, respectively. The industry sector is the largest emissions source for SO2, NOX, PM2.5, PM10, CO, and NMVOC in the BTH region, contributing 72.6%, 43.7%, 59.6%, 64.7%, 60.3%, and 70.4% of the total emissions, respectively. Power plants contributed 11.8% and 23.3% of the total SO2 and NOX emissions, respectively. The transportation sector contributed 28.9% of the total NOX emissions. Emissions from the residential sector accounted for 31.3%, 21.5%, 46.6% and 71.7% of the total PM2.5, NMVOC, BC and OC emissions, respectively. In addition, more than 90% of the total NH3 emissions originate from the agriculture sector, with 44.2% from fertilizer use and 47.7% from livestock. The spatial distribution results illustrate that air pollutant emissions are mainly distributed over the eastern and southern BTH regions. Beijing, Tianjin, Shijiazhuang, Tangshan and Handan are the major contributors of air pollutants. The major NMVOC species in the BTH region are ethylene, acetylene, ethane and toluene. Ethylene is the biggest contributor in Tianjin and Hebei. The largest contributor in Beijing is toluene. There is relatively low uncertainty in SO2 and NOX emission estimates, medium uncertainty in PM2.5, PM10 and CO emission estimates, and high uncertainties in VOC, NH3, BC and OC emission estimates. The proposed policy recommendations, based on the BTH 2013 emission inventory, would be helpful to develop strategies for air pollution control.

  17. Greenhouse gas emission and groundwater pollution potentials of soils amended with different swine biochars

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to study the greenhouse gas emission and groundwater pollution potentials of the soils amended with various biochars using different biomass feedstocks and thermal processing conditions. Triplicate sets of small pots were designed; control soil consisting of Histi...

  18. Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lining; Patel, Pralit L.; Yu, Sha

    The rapid growth of energy consumption in China has led to increased emissions of air pollutants. As a response, in its 12th Five Year Plan the Chinese government proposed mitigation targets for SO2 and NOx emissions. Herein we have investigated mitigation measures taken in different sectors and their corresponding impacts on the energy system. Additionally, as non-fossil energy development has gained traction in addressing energy and environmental challenges in China, we further investigated the impact of non-fossil energy development on air pollutant emissions, and then explored interactions and co-benefits between these two types of policies. An extended Global Change Assessmentmore » Model (GCAM) was used in this study, which includes an additional air pollutant emissions control module coupling multiple end-of-pipe (EOP) control technologies with energy technologies, as well as more detailed end-use sectors in China. We find that implementing EOP control technologies would reduce air pollution in the near future, but with little room left to implement these EOP technologies, other cleaner and more efficient technologies are also effective. These technologies would reduce final energy consumption, increase electricity’s share in final energy, and increase the share of non-fossil fuels in primary energy and electricity consumption. Increasing non-fossil energy usage at China’s proposed adoption rate would in turn also reduce SO2 and NOx emissions, however, the reductions from this policy alone still lag behind the targeted requirements of air pollutant reduction. Fortunately, a combination of air pollutant controls and non-fossil energy development could synergistically help realize the respective individual targets, and would result in lower costs than would addressing these issues separately.« less

  19. 78 FR 6784 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... the California State Implementation Plan, Placer County Air Pollution Control District AGENCY... the Placer County Air Pollution Control District (PCAPCD) portion of the California State... regulate this emission source under the Clean Air Act (CAA or the Act). DATES: Any comments on this...

  20. 40 CFR 60.5215 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollution control device inspections and make any necessary repairs? 60.5215 Section 60.5215 Protection of... air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution control device used to comply with the emission limits, according...

  1. Emissions of air pollutants from scented candles burning in a test chamber

    NASA Astrophysics Data System (ADS)

    Derudi, Marco; Gelosa, Simone; Sliepcevich, Andrea; Cattaneo, Andrea; Rota, Renato; Cavallo, Domenico; Nano, Giuseppe

    2012-08-01

    Burning of scented candles in indoor environment can release a large number of toxic chemicals. However, in spite of the large market penetration of scented candles, very few works investigated their organic pollutants emissions. This paper investigates volatile organic compounds emissions, with particular reference to the priority indoor pollutants identified by the European Commission, from the burning of scented candles in a laboratory-scale test chamber. It has been found that BTEX and PAHs emission factors show large differences among different candles, possibly due to the raw paraffinic material used, while aldehydes emission factors seem more related to the presence of additives. This clearly evidences the need for simple and cheap methodologies to measure the emission factors of commercial candles in order to foresee the expected pollutant concentration in a given indoor environment and compare it with health safety standards.

  2. Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game

    PubMed Central

    2015-01-01

    Transboundary industrial pollution requires international actions to control its formation and effects. In this paper, we present a stochastic differential game to model the transboundary industrial pollution problems with emission permits trading. More generally, the process of emission permits price is assumed to be stochastic and to follow a geometric Brownian motion (GBM). We make use of stochastic optimal control theory to derive the system of Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions for the cooperative and the noncooperative games, respectively, and then propose a so-called fitted finite volume method to solve it. The efficiency and the usefulness of this method are illustrated by the numerical experiments. The two regions’ cooperative and noncooperative optimal emission paths, which maximize the regions’ discounted streams of the net revenues, together with the value functions, are obtained. Additionally, we can also obtain the threshold conditions for the two regions to decide whether they cooperate or not in different cases. The effects of parameters in the established model on the results have been also examined. All the results demonstrate that the stochastic emission permits prices can motivate the players to make more flexible strategic decisions in the games. PMID:26402322

  3. Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game.

    PubMed

    Chang, Shuhua; Wang, Xinyu; Wang, Zheng

    2015-01-01

    Transboundary industrial pollution requires international actions to control its formation and effects. In this paper, we present a stochastic differential game to model the transboundary industrial pollution problems with emission permits trading. More generally, the process of emission permits price is assumed to be stochastic and to follow a geometric Brownian motion (GBM). We make use of stochastic optimal control theory to derive the system of Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions for the cooperative and the noncooperative games, respectively, and then propose a so-called fitted finite volume method to solve it. The efficiency and the usefulness of this method are illustrated by the numerical experiments. The two regions' cooperative and noncooperative optimal emission paths, which maximize the regions' discounted streams of the net revenues, together with the value functions, are obtained. Additionally, we can also obtain the threshold conditions for the two regions to decide whether they cooperate or not in different cases. The effects of parameters in the established model on the results have been also examined. All the results demonstrate that the stochastic emission permits prices can motivate the players to make more flexible strategic decisions in the games.

  4. Reducing air pollutant emissions at airports by controlling aircraft ground operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelinas, C.G.; Fan, H.S.L.

    1979-02-01

    Average-day carbon monoxide, total hydrocarbon, and NO/sub x/ aircraft emissions and fuel use estimates (apportioned to takeoff, taxi, idle, and landing) for departure and arrival at Los Angeles and San Francisco International Airports were compared with emissions level and fuel use estimates for four emission reduction strategies (tow aircraft between runways and gates, shutdown one engine during taxiing, control departure time, and assign runways to minimize taxiing distance). The best strategy, the shutdown of one engine while taxiing, produces substantial emission reductions, cost benefits owing to fuel savings, and no apparent safety problems; aircraft towing reduced emissions significantly, but introducedmore » a number of safety problems.« less

  5. Effects of future anthropogenic pollution emissions on global air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U.; van Aardenne, J.; Dentener, F.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC is used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecision inherent to the coarse horizontal resolution (around 100 km). To identify possible future hot spots of poor air quality, a multi pollutant index (MPI) has been applied. It appears that East and South Asia and the Arabian Gulf regions represent such hotspots due to very high pollutant concentrations. In East Asia a range of pollutant gases and particulate matter (PM2.5) are projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels will increase strongly. By extending the MPI definition, we calculated a Per Capita MPI (PCMPI) in which we combined population projections with those of pollution emissions. It thus appears that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. It is projected that air quality for the global average citizen in 2050 will be comparable to the average in East Asia in the year 2005.

  6. 40 CFR 60.5215 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution control device used to comply with the emission limits, according to § 60.5220(c), no later than 12 months following the previous annual air pollution control device...

  7. 40 CFR 60.5215 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution control device used to comply with the emission limits, according to § 60.5220(c), no later than 12 months following the previous annual air pollution control device...

  8. 40 CFR 60.5215 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution control device used to comply with the emission limits, according to § 60.5220(c), no later than 12 months following the previous annual air pollution control device...

  9. EFFECTS OF CHANGING COALS ON THE EMISSIONS OF METAL HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF PULVERIZED COAL

    EPA Science Inventory

    The report discusses tests conducted at EPA's Air Pollution Prevention and Control Division to evaluate the effects of changing coals on emissions of metal hazardous air pollutants from coal-fired boilers. Six coals were burned in a 29 kW (100,000 Btu/hr) down-fired combustor und...

  10. 78 FR 37176 - Revisions to the California State Implementation Plan, San Diego Air Pollution Control District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... the California State Implementation Plan, San Diego Air Pollution Control District AGENCY... the San Diego Air Pollution Control District (SDAPCD) portion of the California State Implementation... coatings. We are proposing to approve a local rule to regulate these emission sources under the Clean Air...

  11. Assessment of air pollutant emissions from brick kilns

    NASA Astrophysics Data System (ADS)

    Rajarathnam, Uma; Athalye, Vasudev; Ragavan, Santhosh; Maithel, Sameer; Lalchandani, Dheeraj; Kumar, Sonal; Baum, Ellen; Weyant, Cheryl; Bond, Tami

    2014-12-01

    India has more than 100,000 brick kilns producing around 250 billion bricks annually. Indian brick industry is often a small scale industry and third largest consumer of coal in the country. With the growing demand for building materials and characterised by lack of pollution control measures the brick industry has a potential to cause adverse effects on the environment. This paper presents assessment of five brick making technologies based on the measurements carried out at seventeen individual brick kilns. Emissions of PM, SO2, CO and CO2 were measured and these emissions were used to estimate the emission factors for comparing the emissions across different fuel or operating conditions. Estimated emission from brick kilns in South Asia are about 0.94 million tonnes of PM; 3.9 million tonnes of CO and 127 million tonnes of CO2 per year. Among various technologies that are widely used in India, Zig zag and vertical shaft brick kilns showed better performance in terms of emissions over the traditional fixed chimney Bull's trench kilns. This suggests that the replacement of traditional technologies with Zig zag, vertical shaft brick kilns or other cleaner kiln technologies will contribute towards improvements in the environmental performance of brick kiln industry in the country. Zig zag kilns appear to be the logical replacement because of low capital investment, easy integration with the existing production process, and the possibility of retrofitting fixed chimney Bull's trench kilns into Zig zag firing.

  12. 75 FR 56942 - Revisions to the California State Implementation Plan, San Diego County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... the California State Implementation Plan, San Diego County Air Pollution Control District AGENCY... the San Diego Air Pollution Control District (SDCAPCD) portion of the California State Implementation... to approve a local rule to regulate these emission sources under the Clean Air Act as amended in 1990...

  13. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 1: USER'S GUIDE

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  14. 76 FR 14839 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ...Pursuant to section 112(l) of the 1990 Clean Air Act, EPA granted delegation of specific national emission standards for hazardous air pollutants (NESHAP) to the Maricopa County Air Quality Department on May 6, 2010, and December 14, 2010, and to the Santa Barbara County Air Pollution Control District on July 30, 2010. EPA is proposing to revise the Code of Federal Regulations to reflect the current delegation status of NESHAP in Arizona and California.

  15. CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT

    EPA Science Inventory

    The report provides additional information on mercury (Hg) emissions control following the release of "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units--Final Report to Congress" in February 1998. Chapters 1-3 describe EPA's December 2000 de...

  16. [Air pollutant emissions of aircraft in China in recent 30 years].

    PubMed

    He, Ji-Cheng

    2012-01-01

    Although aircrafts are of great importance in transportation in China, there has been rare study on air pollutant emissions of aircrafts until now. Based on the annually statistical data collected by the Statistic Center of Civil Aviation of China, using the emission factor method derived from fuel consumption, the air pollutant emissions of aircrafts during 1980-2009 were calculated, and their emission intensities and dynamic characteristics were analyzed. The results show that the emissions of SO2, CO, NO(x) and HC from aircrafts of China Civil Aviation increased from 0.31 thousand, 1.89 thousand, 2.25 thousand and 3.14 thousand tons in 1980 to 11.83 thousand, 72.98 thousand, 87.05 thousand and 121.59 thousand tons in 2009, indicating a increase of 0.397 thousand, 2.45 thousand, 2.92 thousand and 4.08 thousand tons per year, respectively. The emission intensities of SO2, CO, NO(x) and HC decreased significantly from 0.624, 3.806, 4.53 and 6.322 g x (t x km)(-1) in 1980 to 0.275, 1.697, 2.025 and 2.828 g x (t x km)(-1) in 2009, respectively. SO2, CO, NO(x) emissions of aircrafts of China Civil Aviation accounted very little of each total emissions in China, and the air pollutant emissions from aircrafts of China Civil Aviation was less than those from other industries in China.

  17. INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 2: TECHNICAL DOCUMENTATION

    EPA Science Inventory

    The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...

  18. INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 1: USER'S GUIDE

    EPA Science Inventory

    The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...

  19. The Economics of Pollution; Part Three: Can Pollution Be Controlled? Teaching About: Can Pollution Be Controlled?

    ERIC Educational Resources Information Center

    Wolozin, Harold; Reilly, Patricia R.

    In this third of three articles on the economics of pollution control general statements from several sources present a background which questions our ability to devise the necessary tools to fight pollution, even if adequate expenditures of money are provided. In the struggle to control pollution, the economist, it is believed, can provide…

  20. Impact of Trans-Boundary Emissions on Modelled Air Pollution in Canada

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Moran, Mike; Zhang, Junhua; Zheng, Qiong; Menard, Sylvain; Anselmo, David; Davignon, Didier

    2014-05-01

    The operational air quality model GEM-MACH is run twice daily at the Canadian Meteorological Centre in Montreal, Quebec to produce 48-hour forecasts of hourly O3, NO2, and PM2.5 fields over a North American domain. The hourly gridded anthropogenic emissions fields needed by GEM-MACH are currently based on the 2006 Canadian emissions inventory, a 2012 projected U.S. inventory, and the 1999 Mexican inventory. The Sparse Matrix Operator Kernel Emissions (SMOKE) processing package was used to process these three national emissions inventories to create the GEM-MACH emissions fields. While Canada is the second-largest country in the world by total area, its population and its emissions of criteria contaminants are both only about one-tenth of U.S. values and roughly 80% of the Canadian population lives within 150 km of the international border with the U.S. As a consequence, transboundary transport of air pollution has a major impact on air quality in Canada. To quantify the impact of non-Canadian emissions on forecasted pollutant levels in Canada, the following two tests were performed: (a) all U.S. and Mexican anthropogenic emissions were switched off; and (b) anthropogenic emissions from the southernmost tier of U.S. states and Mexico were switched off. These sensitivity tests were performed for the summer and winter periods of 2012 or 2011. The results obtained show that the impact of non-Canadian sources on forecasted pollution is generally larger in summer than in winter, especially in south-eastern parts of Canada. For the three pollutants considered in the Canadian national Air Quality Health Index, PM2.5 is impacted the most (up to 80%) and NO2 the least (<10%). Emissions from the southern U.S. and Mexico do impact Canadian air quality, but the sign may change depending on the season (i.e., increase vs. decrease), reflecting chemical processing en route.

  1. 40 CFR 63.1332 - Emissions averaging provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... if pollution prevention measures are used to control five or more of the emission points included in... additional emission points if pollution prevention measures are used to control five or more of the emission... which emissions are reduced by pollution prevention measures shall be determined using the procedures...

  2. 40 CFR 63.1332 - Emissions averaging provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... if pollution prevention measures are used to control five or more of the emission points included in... additional emission points if pollution prevention measures are used to control five or more of the emission... which emissions are reduced by pollution prevention measures shall be determined using the procedures...

  3. 40 CFR 63.1332 - Emissions averaging provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... if pollution prevention measures are used to control five or more of the emission points included in... additional emission points if pollution prevention measures are used to control five or more of the emission... which emissions are reduced by pollution prevention measures shall be determined using the procedures...

  4. The fate of mercury collected from air pollution control devices

    EPA Science Inventory

    The mercury that enters a coal-fired power plant, originates from the coal that is burned, and leaves through the output streams that include stack emissions and air pollution control (APC) residues (either in solid or liquid form). This article describes recent fmdings on the fa...

  5. Rice emissions during field flooding and air pollution feedbacks across South Korea

    NASA Astrophysics Data System (ADS)

    So, C.; Diskin, G. S.; DiGangi, J. P.; Choi, Y.; Rana, M.; Hughes, S.; Blake, D. R.; Nault, B.; Schroeder, J.; Campuzano Jost, P.; Jimenez, J. L.; Kim, M. J.; Teng, A.; Crounse, J. D.; Wenneberg, P.; Kaser, L.; Mikoviny, T.; Müller, M.; Wisthaler, A.; Pusede, S. E.

    2017-12-01

    Nitrous oxide (N2O) and methane (CH4) are important long-lived greenhouse gases. Known anthropogenic sources of these gases include rice cultivation, which represents anywhere between 5% and 20% of methane emissions globally. Other volatile molecules are also produced by soil biogeochemistry when rice fields are flooded, including small organic oxygenates. Here, we use recent aircraft measurements from the KORUS-AQ experiment to describe controls over rice emissions of N2O and CH4 at regional-scales across the South Korean Peninsula. We also investigate potential emissions of molecular hydrogen and volatile alcohols and organic acids and consider the effect of aerosol nitrate and sulfate deposition on rice soil biogeochemistry on paddies downwind of polluted urban areas.

  6. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, S.; Prévôt, A. S. H.; Baltensperger, U.

    2015-11-01

    Emissions from the marine transport sector are one of the least regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in the EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5 and the dry and wet deposition of nitrogen and sulfur compounds in Europe. Our results suggest that emissions from international shipping affect the air quality in northern and southern Europe differently and their contributions to the air concentrations vary seasonally. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Increased concentrations of the primary particle mass were found only along the shipping routes whereas concentrations of the secondary pollutants were affected over a larger area. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), in the English Channel and the North Sea (30-35 %) while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %) where there were high NH3 land-based emissions. Our model results showed that not only the atmospheric concentrations of pollutants are affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas-phase to the

  7. 75 FR 8056 - California State Nonroad Engine Pollution Control Standards; California New Nonroad Compression...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... maintenance intervals, recordkeeping, warranties, test procedures, certification test fuel, and engine useful... Control of Emissions of Air Pollution From Nonroad Diesel Engines and Fuel and EPA's Final Rule for Test... request for an authorization of its emission standards and accompanying test procedures for new nonroad...

  8. [Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing].

    PubMed

    Xie, Yuan-bo; Li, Wei

    2013-05-01

    It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.

  9. Assessment of China's virtual air pollution transport embodied in trade by a consumption-based emission inventory

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Zhang, Q.; Davis, S. J.; Guan, D.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2014-10-01

    High anthropogenic emissions from China have resulted in serious air pollution, and it has attracted considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated, however, understanding the mechanisms how the pollutants were transferred through economic and trade activities remains challenge. In this work, we assessed China's virtual air pollutant transport embodied in trade, by using consumption-based accounting approach. We first constructed a consumption-based emission inventory for China's four key air pollutants (primary PM2.5, sulfur dioxide (SO2), nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOC)) in 2007, based on the bottom-up sectoral emission inventory concerning their production activities - a production-based inventory. We used a multiregional input-output (MRIO) model to integrate the sectoral production-based emissions and the associated economic and trade activities, and finally obtained consumption-based inventory. Unlike the production-based inventory, the consumption-based inventory tracked emissions throughout the supply chain related to the consumption of goods and services and hereby identified the emission flows followed the supply chains. From consumption-based perspective, emissions were significantly redistributed among provinces due to interprovincial trade. Large amount of emissions were embodied in the net imports of east regions from northern and central regions; these were determined by differences in the regional economic status and environmental policies. We also calculated the emissions embodied in exported and imported goods and services. It is found that 15-23% of China's pollutant emissions were related to exports for foreign consumption; that proportion was much higher for central and export-oriented coastal regions. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers

  10. Assessing Potential Air Pollutant Emissions from Agricultural Feedstock Production using MOVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Warner, Ethan; Zhang, Yi Min

    Biomass feedstock production is expected to grow as demand for biofuels and bioenergy increases. The change in air pollutant emissions that may result from large-scale biomass supply has implications for local air quality and human health. We developed spatially explicit emissions inventories for corn grain and six cellulosic feedstocks through the extension of the National Renewable Energy Laboratory's Feedstock Production Emissions to Air Model (FPEAM). These inventories include emissions of seven pollutants (nitrogen oxides, ammonia, volatile organic compounds, particulate matter, sulfur oxides, and carbon monoxide) generated from biomass establishment, maintenance, harvest, transportation, and biofuel preprocessing activities. By integrating the EPA'smore » MOtor Vehicle Emissions Simulator (MOVES) into FPEAM, we created a scalable framework to execute county-level runs of the MOVES-Onroad model for representative counties (i.e., those counties with the largest amount of cellulosic feedstock production in each state) on a national scale. We used these results to estimate emissions from the on-road transportation of biomass and combined them with county-level runs of the MOVES-Nonroad model to estimate emissions from agricultural equipment. We also incorporated documented emission factors to estimate emissions from chemical application and the operation of drying equipment for feedstock processing, and used methods developed by the EPA and the California Air Resources Board to estimate fugitive dust emissions. The model developed here could be applied to custom equipment budgets and is extensible to accommodate additional feedstocks and pollutants. Future work will also extend this model to analyze spatial boundaries beyond the county-scale (e.g., regional or sub-county levels).« less

  11. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, Sebnem; Baltensperger, Urs; Prévôt, André S. H.

    2016-02-01

    Emissions from the marine transport sector are one of the least-regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx (Comprehensive Air Quality Model with Extensions) with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5, and the dry and wet deposition of nitrogen and sulfur compounds in Europe. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), the English Channel and the North Sea (30-35 %), while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %), where there were high NH3 land-based emissions. Our model results showed that not only are the atmospheric concentrations of pollutants affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships, especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas phase to the particle phase which then contributes to an increase in the wet deposition at coastal areas with higher precipitation. In the western Mediterranean region, on the other hand, model results show an increase in the deposition of oxidized nitrogen (mostly HNO3) due to the ship traffic. Dry deposition of SO2 seems to be significant along

  12. Is it time to tackle PM(2.5) air pollutions in China from biomass-burning emissions?

    PubMed

    Zhang, Yan-Lin; Cao, Fang

    2015-07-01

    An increase in haze days has been observed in China over the past two decades due to the rapid industrialization, urbanization and energy consumptions. To address this server issue, Chinese central government has recently released the Action Plan on Prevention and Control of Air Pollution, which mainly focuses on regulation of indusial and transport-related emissions with major energy consumption from fossil fuels. This comprehensive and toughest plan is definitely a major step in the right direction aiming at beautiful and environmental-friendly China; however, based on recent source apportionment results, we suggest that strengthening regulation emissions from biomass-burning sources in both urban and rural areas is needed to meet a rigorous reduction target. Here, household biofuel and open biomass burning are highlighted, as impacts of these emissions can cause local and regional pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Air pollution in Latin America: Bottom-up Vehicular Emissions Inventory and Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Ibarra Espinosa, S.; Vela, A. V.; Calderon, M. G.; Carlos, G.; Ynoue, R.

    2016-12-01

    Air pollution is a global environmental and health problem. Population of Latin America are facing air quality risks due to high level of air pollution. According to World Health Organization (WHO; 2016), several Latin American cities have high level of pollution. Emissions inventories are a key tool for air quality, however they normally present lack of quality and adequate documentation in developing countries. This work aims to develop air quality assessments in Latin American countries by 1) develop a high resolution emissions inventory of vehicles, and 2) simulate air pollutant concentrations. The bottom-up vehicular emissions inventory used was obtained with the REMI model (Ibarra et al., 2016) which allows to interpolate traffic over road network of Open Street Map to estimate vehicular emissions 24-h, each day of the week. REMI considers several parameters, among them the average age of fleet which was associated with gross domestic product (GDP) per capita. The estimated pollutants are CO, NOx, HC, PM2.5, NO, NO2, CO2, N2O, COV, NH3 and Fuel Consumption. The emissions inventory was performed at the biggest cities, including every capital of Latin America's countries. Initial results shows that the cities with most CO emissions are Buenos Aires 162800 (t/year), São Paulo 152061 (t/year), Campinas 151567 (t/year) and Brasilia 144332 (t/year). The results per capita shows that the city with most CO emissions per capita is Campinas, with 130 (kgCO/hab/year), showed in figure 1. This study also cover high resolution air quality simulations with WRF-Chem main cities in Latin America. Results will be assessed comparing: fuel estimates with local fuel sales, traffic count interpolation with available traffic data set at each city, and comparison between air pollutant simulations with air monitoring observation data. Ibarra, S., R. Ynoue, and S. Mhartain. 2016: "High Resolution Vehicular Emissions Inventory for the Megacity of São Paulo." Manuscript submitted to

  14. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 3: PROGRAMMER'S MAINTENACE MANUAL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  15. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 2: TECHNICAL DOCUMENTATION MANUAL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  16. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wu, Wenjing; Wang, Shuxiao; Xing, Jia; Chang, Xing; Liou, Kuo-Nan; Jiang, Jonathan H.; Gu, Yu; Jang, Carey; Fu, Joshua S.; Zhu, Yun; Wang, Jiandong; Lin, Yan; Hao, Jiming

    2017-10-01

    The Beijing-Tianjin-Hebei (BTH) region has been suffering from the most severe fine-particle (PM2. 5) pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM) technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM). The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24-36 %) to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA) to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM2. 5 concentrations. The contributions of primary

  17. 78 FR 5303 - Approval and Promulgation of Implementation Plans; State of Missouri; Control of Sulfur Emissions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... Promulgation of Implementation Plans; State of Missouri; Control of Sulfur Emissions From Stationary Boilers.... Louis nonattainment area by limiting sulfur dioxide (SO 2 ) emissions (a precursor pollutant to PM 2.5... stringency of the SIP. Missouri's revision adds 10 CSR 10- 5.570 Control of Sulfur Emissions from Stationary...

  18. Unexpected slowdown of US pollutant emission reduction in the past decade

    PubMed Central

    McDonald, Brian C.; Worden, Helen; Worden, John R.; Miyazaki, Kazuyuki; Qu, Zhen; Henze, Daven K.; Jones, Dylan B. A.; Fischer, Emily V.; Zhu, Liye; Boersma, K. Folkert

    2018-01-01

    Ground and satellite observations show that air pollution regulations in the United States (US) have resulted in substantial reductions in emissions and corresponding improvements in air quality over the last several decades. However, large uncertainties remain in evaluating how recent regulations affect different emission sectors and pollutant trends. Here we show a significant slowdown in decreasing US emissions of nitrogen oxides (NOx) and carbon monoxide (CO) for 2011–2015 using satellite and surface measurements. This observed slowdown in emission reductions is significantly different from the trend expected using US Environmental Protection Agency (EPA) bottom-up inventories and impedes compliance with local and federal agency air-quality goals. We find that the difference between observations and EPA’s NOx emission estimates could be explained by: (i) growing relative contributions of industrial, area, and off-road sources, (ii) decreasing relative contributions of on-road gasoline, and (iii) slower than expected decreases in on-road diesel emissions. PMID:29712822

  19. GREENHOUSE GASES (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Greenhouse gas (GHG) emissions are projected for various scenarios and the most appropriate approaches and technologies for mitigation are identified by NRMRL's Air Pollution Prevention and Control Division's Atmospheric Protection Branch (APB). These methods contribute to reduct...

  20. Mutagenicity and Pollutant Emission Factors of Solid-Fuel Cookstoves: Comparison with Other Combustion Sources

    PubMed Central

    Mutlu, Esra; Warren, Sarah H.; Ebersviller, Seth M.; Kooter, Ingeborg M.; Schmid, Judith E.; Dye, Janice A.; Linak, William P.; Gilmour, M. Ian; Jetter, James J.; Higuchi, Mark; DeMarini, David M.

    2016-01-01

    Background: Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. Objective: We evaluated two categories of solid-fuel cookstoves for eight pollutant and four mutagenicity emission factors, correlated the mutagenicity emission factors, and compared them to those of other combustion emissions. Methods: We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS), and we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. Results: With the exception of NOx, the emission factors per MJd were highly correlated (r ≥ 0.97); the correlation for NOx with the other emission factors was 0.58–0.76. Excluding NOx, the NDS and FDS reduced the emission factors an average of 68 and 92%, respectively, relative to the TSF. Nevertheless, the mutagenicity emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was between those of a large diesel bus engine and a small diesel generator. Conclusions: Both mutagenicity and pollutant emission factors may be informative for characterizing cookstove performance. However, mutagenicity emission factors may be especially useful for characterizing potential health effects and should be evaluated in relation to health outcomes in future research. An FDS operated as intended by the manufacturer is safer than a TSF, but without adequate ventilation, it will still result in poor indoor air quality. Citation: Mutlu E, Warren SH, Ebersviller SM, Kooter IM, Schmid JE, Dye JA, Linak WP, Gilmour MI, Jetter

  1. On - road mobile source pollutant emissions : identifying hotspots and ranking roads.

    DOT National Transportation Integrated Search

    2010-12-30

    A considerable amount of pollution to the air in the forms of hydrocarbons, carbon : monoxide (CO), nitrogen oxides (NOx), particulate matter (PM) and air toxics comes : from the on-road mobile sources. Estimation of the emissions of these pollutants...

  2. Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China.

    PubMed

    Xu, Yong; Hu, Jianlin; Ying, Qi; Hao, Hongke; Wang, Dexiang; Zhang, Hongliang

    2017-10-01

    A high-resolution inventory of primary atmospheric pollutants from coal-fired power plants in Shaanxi in 2012 was built based on a detailed database compiled at unit level involving unit capacity, boiler size and type, commission time, corresponding control technologies, and average coal quality of 72 power plants. The pollutants included SO 2 , NO x , fine particulate matter (PM 2.5 ), inhalable particulate matter (PM 10 ), organic carbon (OC), elemental carbon (EC), carbon monoxide (CO) and non-methane volatile organic compounds (NMVOC). Emission factors for SO 2 , NO x , PM 2.5 and PM 10 were adopted from standardized official promulgation, supplemented by those from local studies. The estimated annual emissions of SO 2 , NO x , PM 2.5 , PM 10 , EC, OC, CO and NMVOC were 152.4, 314.8, 16.6, 26.4, 0.07, 0.27, 64.9 and 2.5kt, respectively. Small units (<100MW), which accounted for ~60% of total unit numbers, had less coal consumption but higher emission rates compared to medium (≥100MW and <300MW) and large units (≥300MW). Main factors affecting SO 2 , NO x , PM 2.5 and PM 10 emissions were decontamination efficiency, sulfur content and ash content of coal. Weinan and Xianyang were the two cities with the highest emissions, and Guanzhong Plain had the largest emission density. Despite the projected growth of coal consumption, emissions would decrease in 2030 due to improvement in emission control technologies and combustion efficiencies. SO 2 and NO x emissions would experience significant reduction by ~81% and ~84%, respectively. PM 2.5 , PM 10 , EC and OC would be decreased by ~43% and CO and NMVOC would be reduced by ~16%. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 3: PROGRAMMER'S MAINTENANCE MANUAL

    EPA Science Inventory

    The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...

  4. A comparative assessment of economic-incentive and command-and-control instruments for air pollution and CO2 control in China's iron and steel sector.

    PubMed

    Liu, Zhaoyang; Mao, Xianqiang; Tu, Jianjun; Jaccard, Mark

    2014-11-01

    China's iron and steel sector is faced with increasing pressure to control both local air pollutants and CO2 simultaneously. Additional policy instruments are needed to co-control these emissions in this sector. This study quantitatively evaluates and compares two categories of emission reduction instruments, namely the economic-incentive (EI) instrument of a carbon tax, and the command-and-control (CAC) instrument of mandatory application of end-of-pipe emission control measures for CO2, SO2 and NOx. The comparative evaluation tool is an integrated assessment model, which combines a top-down computable general equilibrium sub-model and a bottom-up technology-based sub-model through a soft-linkage. The simulation results indicate that the carbon tax can co-control multiple pollutants, but the emission reduction rates are limited under the tax rates examined in this study. In comparison, the CAC instruments are found to have excellent effects on controlling different pollutants separately, but not jointly. Such results indicate that no single EI or CAC instrument is overwhelmingly superior. The environmental and economic effectiveness of an instrument highly depends on its specific attributes, and cannot be predicted by the general policy category. These findings highlight the necessity of clearer identification of policy target priorities, and detail-oriented and integrated policy-making among different governmental departments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The CO2 emission in urbanic soils in the conditions of intensive technogenic pollution

    NASA Astrophysics Data System (ADS)

    Deviatova, Tatiana; Alaeva, Liliia; Negrobova, Elena; Kramareva, Tatiana

    2017-04-01

    Massive industrial pollution of the environment including soils leads to drastic changes in the vital activity of microorganisms, plants and animals. As objects of research was selected soils of the industrial and residential zones, farmland soils, forest soils. Comparative analysis showed that the emission of CO2 urbanizable increase compared to the suburban soils in recreational areas is 1.5 times, in the residential and industrial zones - in 3-5 times. In addition, identified a local point located in the vicinity of chemical plants, where soil CO2 emission increased up to 40 times compared to the suburban soils. Air technogenic pollution of soils by industrial emissions and transport enhances the mineralization of soil organic matter, increases its lability. These trends are associated with nonspecific adaptive reactions of the soil microbial complex in terms of pollution. Strengthening of the processes of mineralization may be due to the increase in the proportion of fungi in the microbial community. According to numerous reports they are more resistant to pollution compared to bacteria and actinomycetes. Admission to the soil organic matter of anthropogenic origin also increases the process of mineralization. According to the findings, low concentrations of petroleum products lead to increased "breathing" of the soil. Strengthening of the processes of mineralization and, consequently, of CO2 emissions, in the conditions of technogenic pollution of the soils identified in our studies, confirmed by numerous studies by other authors. According to reports in Russia the emission of CO2 from soils is 4.5 times higher than the industrial receipt of its atmosphere. The contribution of local anthropogenic CO2 emissions is not so significant compared to the indirect influence of soil pollution on increased CO2 emissions. Consequently, the expansion of technogenic contaminated soil is becoming a more significant factor adversely affecting the state of the atmosphere

  6. Municipal sludge composting facility emissions -- comparison of wet scrubber and biofiltration control performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzman, M.I.; Gammie, L.A.; Gilbert, P.E.

    1997-12-31

    The Metropolitan District (MDC) Water Pollution Control Plant located in Hartford, Connecticut operates a state-of-the-art composting facility to process municipal sewage sludge. An air emissions test program was performed to determine emission rates of criteria and non-criteria pollutants and to evaluate the performance of two types of emissions/odor control systems (biofiltration and wet scrubbing). The purpose of this report is to further the limited available emissions and control performance data on a municipal sewage sludge composting facility operation. The MDC`s sludge composting facility consists of a Biocell train and a Cure Cell train, each of which can currently receive approximatelymore » 20 wet tons per hour of sludge at 60% of full capacity. The minimum retention time in each train is 10.5 days. Air emissions from the Biocell train are treated by both a biofiltration system and a three-stage wet scrubber system. The biofilter and wet scrubber system operate in parallel, so as to allow direct comparison of performance. Emissions from the Cure Cell train are treated by a single biofiltration system. The wet scrubber system consists of a first stage reducing absorber (ammonia solution), followed by a second stage oxidation absorber (sodium hypochlorite and sulfuric acid), and a final residual scrubber (sodium hydroxide solution). The two biofiltration systems are identically sized at 10,000 square feet surface area and three feet depth. The emissions testing program was designed to obtain simultaneous inlet and outlet data across each control device. The measured pollutants included organo-sulfides, alcohols, aldehydes, ketones, pinenes, terpenes, total reduced sulfur compounds, chlorinated hydrocarbons, sulfuric acid, sodium hydroxide, ammonia, carbon monoxide and volatile organic compounds.« less

  7. Historical and future emission of hazardous air pollutants (HAPs) from gas-fired combustion in Beijing, China.

    PubMed

    Xue, Yifeng; Nie, Lei; Zhou, Zhen; Tian, Hezhong; Yan, Jing; Wu, Xiaoqing; Cheng, Linglong

    2017-07-01

    The consumption of natural gas in Beijing has increased in the past decade due to energy structure adjustments and air pollution abatement. In this study, an integrated emission inventory of hazardous air pollutants (HAPs) emitted from gas-fired combustion in Beijing was developed for the period from 2000 to 2014 using a technology-based approach. Future emission trends were projected through 2030 based on current energy-related and emission control policies. We found that emissions of primary HAPs exhibited an increasing trend with the rapid increase in natural gas consumption. Our estimates indicated that the total emissions of NO X , particulate matter (PM) 10 , PM 2.5 , CO, VOCs, SO 2 , black carbon, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn, polychlorinated dibenzo-p-dioxins and dibenzofurans, and benzo[a]pyrene from gas-fired combustion in Beijing were approximately 22,422 t, 1042 t, 781 t, 19,097 t, 653 t, 82 t, 19 t, 0.6 kg, 0.1 kg, 43 kg, 52 kg, 0.3 kg, 0.03 kg, 4.3 kg, 0.6 kg, 216 μg, and 242 g, respectively, in 2014. To mitigate the associated air pollution and health risks caused by gas-fired combustion, stricter emission standards must be established. Additionally, combustion optimization and flue gas purification system could be used for lowering NO X emissions from gas-fired combustion, and gas-fired facilities should be continuously monitored based on emission limits. Graphical abstract Spatial distribution and typical live photos of gas-fired boiler in Beijing.

  8. Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China

    NASA Astrophysics Data System (ADS)

    Saikawa, Eri; Kim, Hankyul; Zhong, Min; Avramov, Alexander; Zhao, Yu; Janssens-Maenhout, Greet; Kurokawa, Jun-ichi; Klimont, Zbigniew; Wagner, Fabian; Naik, Vaishali; Horowitz, Larry W.; Zhang, Qiang

    2017-05-01

    Anthropogenic air pollutant emissions have been increasing rapidly in China, leading to worsening air quality. Modelers use emissions inventories to represent the temporal and spatial distribution of these emissions needed to estimate their impacts on regional and global air quality. However, large uncertainties exist in emissions estimates. Thus, assessing differences in these inventories is essential for the better understanding of air pollution over China. We compare five different emissions inventories estimating emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter with an aerodynamic diameter of 10 µm or less (PM10) from China. The emissions inventories analyzed in this paper include the Regional Emission inventory in ASia v2.1 (REAS), the Multi-resolution Emission Inventory for China (MEIC), the Emission Database for Global Atmospheric Research v4.2 (EDGAR), the inventory by Yu Zhao (ZHAO), and the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS). We focus on the period between 2000 and 2008, during which Chinese economic activities more than doubled. In addition to national totals, we also analyzed emissions from four source sectors (industry, transport, power, and residential) and within seven regions in China (East, North, Northeast, Central, Southwest, Northwest, and South) and found that large disagreements exist among the five inventories at disaggregated levels. These disagreements lead to differences of 67 µg m-3, 15 ppbv, and 470 ppbv for monthly mean PM10, O3, and CO, respectively, in modeled regional concentrations in China. We also find that all the inventory emissions estimates create a volatile organic compound (VOC)-limited environment and MEIC emissions lead to much lower O3 mixing ratio in East and Central China compared to the simulations using REAS and EDGAR estimates, due to their low VOC emissions. Our results illustrate that a better

  9. COMBUSTION ADDITIVES FOR POLLUTION CONTROL - A STATE-OF-THE-ART REVIEW

    EPA Science Inventory

    The report is a state-of-the-art review of the potential of combustion-type fuel additives in reducing air pollutant emissions from oil and coal firing. It contains two complementary parts: a review of the relation of combustion mechanisms to additive action in controlling emissi...

  10. Are changing emission patterns across the Northern Hemisphere influencing long-range transport contributions to background air pollution?

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Kang, D.; Napelenok, S. L.; Xing, J.; Hogrefe, C.

    2017-12-01

    Air pollution reduction strategies for a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Contrasting changes in emission patterns across the globe (e.g. declining emissions in North America and Western Europe in response to implementation of control measures and increasing emissions across Asia due to economic and population growth) are resulting in heterogeneous changes in the tropospheric chemical composition and are likely altering long-range transport impacts and consequently background pollution levels at receptor regions. To quantify these impacts, the WRF-CMAQ model is expanded to hemispheric scales and multi-decadal model simulations are performed for the period spanning 1990-2010 to examine changes in hemispheric air pollution resulting from changes in emissions over this period. Simulated trends in ozone and precursor species concentrations across the U.S. and the Northern Hemisphere over the past two decades are compared with those inferred from available measurements during this period. Additionally, the decoupled direct method (DDM) in CMAQ, a first- and higher-order sensitivity calculation technique, is used to estimate the sensitivity of O3 to emissions from different source regions across the Northern Hemisphere. The seasonal variations in source region contributions to background O3 are then estimated from these sensitivity calculations and will be discussed. These source region sensitivities estimated from DDM are then combined with the multi-decadal simulations of O3 distributions and emissions trends to characterize the changing contributions of different source regions to background O3 levels across North America. This characterization of changing long-range transport contributions is critical for the design and implementation of tighter national air quality standards

  11. Atmospheric emissions and pollution from the coal-fired thermal power plants in India

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Jawahar, Puja

    2014-08-01

    In India, of the 210 GW electricity generation capacity, 66% is derived from coal, with planned additions of 76 GW and 93 GW during the 12th and the 13th five year plans, respectively. Atmospheric emissions from the coal-fired power plants are responsible for a large burden on human health. In 2010-11, 111 plants with an installed capacity of 121 GW, consumed 503 million tons of coal, and generated an estimated 580 ktons of particulates with diameter less than 2.5 μm (PM2.5), 2100 ktons of sulfur dioxides, 2000 ktons of nitrogen oxides, 1100 ktons of carbon monoxide, 100 ktons of volatile organic compounds, and 665 million tons of carbon dioxide. These emissions resulted in an estimated 80,000 to 115,000 premature deaths and 20.0 million asthma cases from exposure to PM2.5 pollution, which cost the public and the government an estimated INR 16,000 to 23,000 crores (USD 3.2 to 4.6 billion). The emissions were estimated for the individual plants and the atmospheric modeling was conducted using CAMx chemical transport model, coupled with plume rise functions and hourly meteorology. The analysis shows that aggressive pollution control regulations such as mandating flue gas desulfurization, introduction and tightening of emission standards for all criteria pollutants, and updating procedures for environment impact assessments, are imperative for regional clean air and to reduce health impacts. For example, a mandate for installation of flue gas desulfurization systems for the operational 111 plants could reduce the PM2.5 concentrations by 30-40% by eliminating the formation of the secondary sulfates and nitrates.

  12. Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Zhang, Q.; Guan, D. B.; Davis, S. J.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2015-05-01

    Substantial anthropogenic emissions from China have resulted in serious air pollution, and this has generated considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated; however, understanding the mechanisms how the pollutant was transferred through economic and trade activities remains a challenge. For the first time, we quantified and tracked China's air pollutant emission flows embodied in interprovincial trade, using a multiregional input-output model framework. Trade relative emissions for four key air pollutants (primary fine particle matter, sulfur dioxide, nitrogen oxides and non-methane volatile organic compounds) were assessed for 2007 in each Chinese province. We found that emissions were significantly redistributed among provinces owing to interprovincial trade. Large amounts of emissions were embodied in the imports of eastern regions from northern and central regions, and these were determined by differences in regional economic status and environmental policy. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers and producers within national agreements to encourage efficiency improvement in the supply chain and optimize consumption structure internationally. The consumption-based air pollutant emission inventory developed in this work can be further used to attribute pollution to various economic activities and final demand types with the aid of air quality models.

  13. Guideline series: Control of volatile organic compound emissions from wood furniture manufacturing operations. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    This draft Control Techniques Guidelines (CTG) provides necessary guidance for development of regulations to limit emissions of volatile organic compounds (VOC`s) from wood furniture finishing and cleaning operations. This guidance includes emission limits for specific wood furniture finishing steps and work pratices to reduce waste and evaporation through pollution prevention methods; these represent reasonably available control technology for wood furniture finishing and cleaning operations. This document is intended to provide State and local air pollution authorities with an information base for proceeding with their own analyses of RACT to meet statutory requirements.

  14. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... March 3, 2010, final national emission standards for hazardous air pollutants for reciprocating internal... engines to allow emergency engines to operate for up to 15 hours per year as part of an emergency demand...

  15. Modeling variability in air pollution-related health damages from individual airport emissions.

    PubMed

    Penn, Stefani L; Boone, Scott T; Harvey, Brian C; Heiger-Bernays, Wendy; Tripodis, Yorghos; Arunachalam, Sarav; Levy, Jonathan I

    2017-07-01

    In this study, we modeled concentrations of fine particulate matter (PM 2.5 ) and ozone (O 3 ) attributable to precursor emissions from individual airports in the United States, developing airport-specific health damage functions (deaths per 1000t of precursor emissions) and physically-interpretable regression models to explain variability in these functions. We applied the Community Multiscale Air Quality model using the Decoupled Direct Method to isolate PM 2.5 - or O 3 -related contributions from precursor pollutants emitted by 66 individual airports. We linked airport- and pollutant-specific concentrations with population data and literature-based concentration-response functions to create health damage functions. Deaths per 1000t of primary PM 2.5 emissions ranged from 3 to 160 across airports, with variability explained by population patterns within 500km of the airport. Deaths per 1000t of precursors for secondary PM 2.5 varied across airports from 0.1 to 2.7 for NOx, 0.06 to 2.9 for SO 2 , and 0.06 to 11 for VOCs, with variability explained by population patterns and ambient concentrations influencing particle formation. Deaths per 1000t of O 3 precursors ranged from -0.004 to 1.0 for NOx and 0.03 to 1.5 for VOCs, with strong seasonality and influence of ambient concentrations. Our findings reinforce the importance of location- and source-specific health damage functions in design of health-maximizing emissions control policies. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The impact of add-on catalytic devices on pollutant emissions from unvented kerosene heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, M.G.; Traynor, G.W.; Froehlich, D.A.

    1989-09-01

    Many studies have documented pollutant emission rates from kerosene heaters. Carbon monoxide (CO), carbon dioxide (CO{sub 2}), nitric oxide (NO), nitrogen dioxide (NO{sub 2}), formaldehyde (HCHO), suspended particles, and semivolatile and nonvolatile organic compounds, including some nitrated and non-nitrated polycyclic aromatic hydrocarbons, can be emitted by kerosene heaters. Recently, several add-on catalytic devices designed to reduce some pollutant emissions have become commercially available. The tests described here were designed to measure the impact of these devices on pollutant emissions from unvented kerosene heaters. Emissions of CO, NO, NO{sub 2}, HCHO, and total suspended particles were investigated in this study. Inmore » addition, analyses of particulate sulfur and chromium were conducted for some tests.« less

  17. 40 CFR 1060.104 - What running loss emission control requirements apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND.... (3) Get an approved Executive Order from the California Air Resources Board showing that your system meets applicable running loss standards in California. (c) If you are subject to both running loss and...

  18. 40 CFR 1060.104 - What running loss emission control requirements apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND.... (3) Get an approved Executive Order from the California Air Resources Board showing that your system meets applicable running loss standards in California. (c) If you are subject to both running loss and...

  19. 40 CFR 1060.104 - What running loss emission control requirements apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND.... (3) Get an approved Executive Order from the California Air Resources Board showing that your system meets applicable running loss standards in California. (c) If you are subject to both running loss and...

  20. 40 CFR 1060.104 - What running loss emission control requirements apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND.... (3) Get an approved Executive Order from the California Air Resources Board showing that your system meets applicable running loss standards in California. (c) If you are subject to both running loss and...

  1. MODELS TO ESTIMATE VOLATILE ORGANIC HAZARDOUS AIR POLLUTANT EMISSIONS FROM MUNICIPAL SEWER SYSTEMS

    EPA Science Inventory

    Emissions from municipal sewers are usually omitted from hazardous air pollutant (HAP) emission inventories. This omission may result from a lack of appreciation for the potential emission impact and/or from inadequate emission estimation procedures. This paper presents an analys...

  2. How do emission patterns in megacities affect regional air pollution?

    NASA Astrophysics Data System (ADS)

    Heil, A.; Richter, C.; Schroeder, S.; Schultz, M. G.

    2010-12-01

    Megacities around the world show distinctly different emission patterns in terms of absolute amounts and emission ratios of individual chemical compounds due to varying socio-economic developments and technological standards. The emission patterns influence the chemical reactivity of the urban pollution plume, and hence determine air quality in and around megacity areas. In this study, which is part of the European project CITYZEN (megaCITY - Zoom for the ENvironment), the effects of emission changes in four selected megacity areas on air pollution were investigated: BeNeLux (BNL), Istanbul (IST), Pearl River Delta (PRD) and Sao Paulo (SAP). The study aims at answering the question: how would air pollution in megacity X change if it had the same urban emissions per capita as megacity Y? Model simulations with the global chemistry climate model ECHAM5-MOZ were carried out for the year 2001 using a resolution of about 2 degrees in the horizontal and of 31 levels (surface to 10 hPa) in the vertical. The model was driven by meteorological input data from the ECMWF ERA Interim reanalysis. Emissions were taken from the gridded global ACCMIP emission inventory recently established for use in chemistry-climate simulations in connection to the IPCC-AR5 assessments (Lamarque et al. 2010). We carried out sensitivity simulations where emission patterns from each of the megacity areas were replaced by those from all others. This was done on the basis of the per capita emissions for each species and sector averaged over the respective region. Total per capita CO and NMVOC emissions are highest in PRD and lowest in SAP while total per capita NOx emissions are highest in BNL and lowest in SAP. There are strong differences in the relative contribution of the urban sectors to total emissions of individual compounds. As a result, each of the four megacity areas exhibits a very characteristic NMVOC speciation profile which determines the NMVOC-related photochemical ozone (O_3

  3. Control of Groundwater Pollution from Animal Feeding Operations: A Farm-Level Dynamic Model for Policy Analysis

    NASA Astrophysics Data System (ADS)

    Wang, J.; Baerenklau, K.

    2012-12-01

    Consolidation in livestock production generates higher farm incomes due to economies of scale, but it also brings waste disposal problems. Over-application of animal waste on adjacent land produces adverse environmental and health effects, including groundwater nitrate pollution. The situation is particularly noticeable in California. In respond to this increasingly severe problem, EPA published a type of command-and-control regulation for concentrated animal feeding operations (CAFOs) in 2003. The key component of the regulation is its nutrient management plans (NMPs), which intend to limit the land application rates of animal waste. Although previous studies provide a full perspective on potential economic impacts for CAFOs to meet nutrient standards, their models are static and fail to reflect changes in management practices other than spreading manure on additional land and changing cropping patterns. We develop a dynamic environmental-economic modeling framework for representative CAFOs. The framework incorporates four models (i.e., animal model, crop model, hydrologic model, and economic model) that include various components such as herd management, manure handling system, crop rotation, water sources, irrigation system, waste disposal options, and pollutant emissions. We also include the dynamics of soil characteristics in the rootzone as well as the spatial heterogeneity of the irrigation system. The operator maximizes discounted total farm profit over multiple periods subject to environmental regulations. Decision rules from the dynamic optimization problem demonstrate best management practices for CAFOs to improve their economic and environmental performance. Results from policy simulations suggest that direct quantity restrictions of emission or incentive-based emission policies are much more cost-effective than the standard approach of limiting the amount of animal waste that may be applied to fields (as shown in the figure below); reason being

  4. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    NASA Astrophysics Data System (ADS)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  5. Unregulated pollutant emissions from on-road vehicles in China, 1999-2014.

    PubMed

    Lang, Jianlei; Zhou, Ying; Cheng, Shuiyuan; Zhang, Yanyun; Dong, Meng; Li, Shengyue; Wang, Gang; Zhang, Yonglin

    2016-12-15

    Multi-year (1999-2014) vehicular unregulated pollutants emissions in China, including SO 2 , CH 4 , N 2 O, NH 3 , Indeno(1,2,3-cd)pyrene (IPY), Benzo(k)fluoranthene (BkF), Benzo(b)fluoranthene (BbF), Benzo(a)pyrene (BaP), dioxins and furans, were estimated based on emission factors calculated by COPERT. The inter-annual trends, correlation with GDP and population, spatial distribution characteristics, contributions from various vehicle types for the ten pollutants emissions were analyzed. Results showed that the emissions of the above ten pollutants changed from approximately 576.9Gg, 130.0Gg, 8.1Gg, 2.1Gg, 1.0Mg, 1.1Mg, 1.4Mg, 0.5Mg, 7.4g and 15.6g in 1999 to 193.8Gg, 171.1Gg, 79.1Gg, 117.8Gg, 3.5Mg, 6.7Mg, 6.8Mg, 2.9Mg, 37.6g and 79.1g in 2014, respectively. Implementation of stringent sulfur content limit during the past decade reduced approximately 94.4% of the SO 2 emission in 2014. CH 4 and N 2 O increased from 1999 to 2011, but began to decrease since 2012; NH 3 emission had the highest annual average change rate (35.5%) from 1999 to 2014; PAHs, dioxins and furans increased continuously during the past decade. The vehicular emissions were higher in Guangdong, Shandong, Henan, Jiangsu, Zhejiang and Hebei. Good linear correlation between vehicular emissions and GDP was found (except SO 2 ); in the provinces/municipalities with higher population density, the emission density was also larger, indicating more significant vehicular emissions' potential damage on human health. HDT and PC, PC and MC, PC and BUS were the major contributors to SO 2 , CH 4 , N 2 O emissions, respectively. In 2014, PC was the dominant contributor to NH 3 emission; PC, BUS and HDT had higher fraction in the total IPY and BaP emissions; HDT was the major contributor to BkF and BbF emissions. In addition, the uncertainties of estimated emissions were also analyzed based on Monte Carlo simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Marine Fuel Choice For Ocean Going Vessels Within Emission Control Areas

    EIA Publications

    2015-01-01

    The U.S. Energy Information Administration (EIA) contracted with Leidos Corporation to analyze the impact on ocean-going vessel fuel usage of the International Convention for the Prevention of Pollution from Ships (MARPOL) emissions control areas in North America and the Caribbean. EIA plans to update the upcoming Annual Energy Outlook 2016 to include a new methodology for calculating the amount of fuel consumption by ocean-going vessels traveling though North American and Caribbean emissions control areas, including the impact of compliance strategies.

  7. EMISSION FACTORS FOR IRON AND STEEL SOURCES: CRITERIA AND TOXIC POLLUTANTS

    EPA Science Inventory

    The report provides a comprehensive set of emission factors for sources of both criteria and toxic air pollutants in integrated iron and steel plants and specialty electric arc shops (minimills). Emission factors are identified for process sources, and process and open source fug...

  8. Greenhouse gas emission and groundwater pollution potentials of soils amended with raw and carbonized swine solids

    USDA-ARS?s Scientific Manuscript database

    The objective of this research is to study the greenhouse gas emission and groundwater pollution potentials of the soils amended with raw swine solids and swine biochars made from different thermochemical conditions. Triplicate sets of small pots were designed: 1) control soil with a 50/50 mixture o...

  9. Factors controlling peat chemistry and vegetation composition in Sudbury peatlands after 30 years of pollution emission reductions.

    PubMed

    Barrett, Sophie E; Watmough, Shaun A

    2015-11-01

    The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands surrounding Sudbury after more than 30 years of large (>95%) pollution emission reductions. Sites closer to the main Copper Cliff smelter had more humified peat and the surface horizons were greatly enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with that in the plant tissue of Chamaedaphne calyculata. The pH of peat was the strongest determining factor for species richness, diversity, and community composition, although percent vascular plant cover was strongly negatively correlated with surface Cu and Ni concentrations in peat. Sphagnum frequency was also negatively related to peat Cu and Ni concentrations indicating sites close to Copper Cliff smelter remain adversely impacted by industrial activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The '333' integrated strategy for effective pollution control and its application to the heavily polluted Jialu River in north China.

    PubMed

    Huang, Yu; Sun, Jie; Li, Aimin; Xie, Xianchuan

    2018-05-01

    In this study, an integrated approach named the '333' strategy was applied to pollution control in the Jialu River, in northern China, which is heavily burdened with anthropogenic pollution. Due to a deficiency of the natural ecological inflow, the Jialu River receives predominantly industrial and municipal effluent. The '333' strategy is composed of three steps of pollution control including industrial point-source pollution control, advanced treatment of municipal wastewater, and ecological restoration; three increased stringency emission standards; and three stages of reclamation. Phase 1 of the '333' strategy focuses on industrial point-source pollution control; phase 2 aims to harness municipal wastewater and minimize sewage effluents using novel techniques for advanced water purification; phase 3 of the '333' strategy focuses on the further purification of effluents flowing into Jialu River with the employment of an engineering-based ecological restoration project. The application of the '333' strategy resulted in the development of novel techniques for water purification including modified magnetic resins (NDMP resin), a two-stage internal circulation anaerobic reactor (IC reactor) and an ecological restoration system. The results indicate that water quality in the river was significantly improved, with increased concentrations of dissolved oxygen (DO), as well as reduction of COD by 42.8% and NH 3 -N by 61.4%. In addition, it was observed that the total population of phytoplankton in treated river water notably increased from only one prior to restoration to 8 following restoration. This system also provides a tool for pollution control of other similar industrial and anthropogenic source polluted rivers.

  11. Health benefit modelling and optimization of vehicular pollution control strategies

    NASA Astrophysics Data System (ADS)

    Sonawane, Nayan V.; Patil, Rashmi S.; Sethi, Virendra

    2012-12-01

    This study asserts that the evaluation of pollution reduction strategies should be approached on the basis of health benefits. The framework presented could be used for decision making on the basis of cost effectiveness when the strategies are applied concurrently. Several vehicular pollution control strategies have been proposed in literature for effective management of urban air pollution. The effectiveness of these strategies has been mostly studied as a one at a time approach on the basis of change in pollution concentration. The adequacy and practicality of such an approach is studied in the present work. Also, the assessment of respective benefits of these strategies has been carried out when they are implemented simultaneously. An integrated model has been developed which can be used as a tool for optimal prioritization of various pollution management strategies. The model estimates health benefits associated with specific control strategies. ISC-AERMOD View has been used to provide the cause-effect relation between control options and change in ambient air quality. BenMAP, developed by U.S. EPA, has been applied for estimation of health and economic benefits associated with various management strategies. Valuation of health benefits has been done for impact indicators of premature mortality, hospital admissions and respiratory syndrome. An optimization model has been developed to maximize overall social benefits with determination of optimized percentage implementations for multiple strategies. The model has been applied for sub-urban region of Mumbai city for vehicular sector. Several control scenarios have been considered like revised emission standards, electric, CNG, LPG and hybrid vehicles. Reduction in concentration and resultant health benefits for the pollutants CO, NOx and particulate matter are estimated for different control scenarios. Finally, an optimization model has been applied to determine optimized percentage implementation of specific

  12. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    PubMed

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM 2.5 ) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM 2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles. Copyright © 2016. Published by Elsevier B.V.

  13. 76 FR 81327 - National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... for each emission unit type (e.g., gas- or oil-fired paper machine dryers) based on the most common... 63 National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry...-AQ41 National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry AGENCY...

  14. A national day with near zero emissions and its effect on primary and secondary pollutants

    NASA Astrophysics Data System (ADS)

    Levy, Ilan

    2013-10-01

    Traffic related air pollution is a major health concern in many countries. The potential costs and benefits of different abatement policies are usually estimated by either models, case studies or previously implemented intervention measures. Such estimations have, however, limited ability to predict the effect of a reduction in primary pollutants' emissions on secondary pollutants such as ozone, because of the nonlinear nature of the photochemical reactions. This study examines the short term effects of a drastic change in emissions on a national scale during the Jewish holiday of Day of Atonement (DA) in Israel. During the holiday nearly all anthropogenic emission sources are ceased for a period of 25 h, including all vehicles, commercial, industrial and recreational activities. DAs during the 15 years period of 1998-2012 are analyzed at three sites with respect to primary and secondary air pollutants, and in greater details for 2001. A dramatic decrease in primary pollutants emissions (83-98% in NO) causes an 8 ppbv increase in ozone at the urban core. Downwind (27 km), ozone decreases by only 5 ppbv. Nighttime O3 is shown to increase to 20 ppbv at the urban sites and 30 ppbv downwind. In spite of the striking reduction in emissions, changes in ozone are not greater than what is reported in the literature about less significant events like the ozone weekend effect. Changes in ambient pollution levels observed during DA provide some indication to the possible outcomes of a major change in anthropogenic emissions. These may be considered as the best case scenario for emissions reduction intervention measures and thus aid policy makers in evaluating potential benefits of such measures.

  15. 77 FR 65135 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    .... On February 12, 2010, the American Chemistry Council and the Society of Chemical Manufacturers and... National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources (CMAS) that was...

  16. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  17. Secondary Aluminum Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) for new and existing sources at secondary aluminum production facilities. Includes rule history, summary, federal register citations and implementation information.

  18. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Scrubbers for Gaseous Pollutants Control Devices

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  19. Multiple effects and uncertainties of emission control policies in China: Implications for public health, soil acidification, and global temperature.

    PubMed

    Zhao, Yu; McElroy, Michael B; Xing, Jia; Duan, Lei; Nielsen, Chris P; Lei, Yu; Hao, Jiming

    2011-11-15

    Policies to control emissions of criteria pollutants in China may have conflicting impacts on public health, soil acidification, and climate. Two scenarios for 2020, a base case without anticipated control measures and a more realistic case including such controls, are evaluated to quantify the effects of the policies on emissions and resulting environmental outcomes. Large benefits to public health can be expected from the controls, attributed mainly to reduced emissions of primary PM and gaseous PM precursors, and thus lower ambient concentrations of PM2.5. Approximately 4% of all-cause mortality in the country can be avoided (95% confidence interval: 1-7%), particularly in eastern and north-central China, regions with large population densities and high levels of PM2.5. Surface ozone levels, however, are estimated to increase in parts of those regions, despite NOX reductions. This implies VOC-limited conditions. Even with significant reduction of SO2 and NOX emissions, the controls will not significantly mitigate risks of soil acidification, judged by the exceedance levels of critical load (CL). This is due to the decrease in primary PM emissions, with the consequent reduction in deposition of alkaline base cations. Compared to 2005, even larger CL exceedances are found for both scenarios in 2020, implying that PM control may negate any recovery from soil acidification due to SO2 reductions. Noting large uncertainties, current polices to control emissions of criteria pollutants in China will not reduce climate warming, since controlling SO2 emissions also reduces reflective secondary aerosols. Black carbon emission is an important source of uncertainty concerning the effects of Chinese control policies on global temperature change. Given these conflicts, greater consideration should be paid to reconciling varied environmental objectives, and emission control strategies should target not only criteria pollutants but also species such as VOCs and CO2. Copyright

  20. PM, NOx and butane emissions from on-road vehicle fleets in Hong Kong and their implications on emission control policy

    NASA Astrophysics Data System (ADS)

    Ning, Zhi; Wubulihairen, Maimaitireyimu; Yang, Fenhuan

    2012-12-01

    Vehicular emissions are the major sources of air pollution in urban areas. For metropolitan cities with large population working and living in environments with direct traffic impact, emission control is of great significance to protect public health. Implementation of more stringent emission standards, retrofitting fleet with emission control devices and switching to clearer fuel has been commonly practiced in different cities including Hong Kong. The present study employed a new plume chasing method for effective and quick evaluation of on-road fleet emission factors of particulate matter (PM), nitrogen oxides (NOx), and butane from heavy duty diesel trucks, diesel buses and liquefied petroleum gas (LPG) vehicles. The results showed distinct profiles of the emissions from different fleets with excessive butane emissions from LPG fleet and contrasting PM and NOx emissions from diesel trucks and buses fleets. A cross comparison was also made with emission data from other cities and from historic local studies. The implications of the observed difference on the effectiveness of emission control measures and policy are discussed with recommendations of direction for future research and policy making.

  1. 77 FR 41146 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 63 [EPA-R09-OAR-2012-0286; FRL-9698-6] Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories; Gila River Indian Community... emission standards for hazardous air pollutants (NESHAP) to the Gila River Indian Community Department of...

  2. The growth response of Alternanthera philoxeroides in a simulated post-combustion emission with ultrahigh [CO2] and acidic pollutants.

    PubMed

    Xu, Cheng-Yuan; Griffin, Kevin L; Blazier, John C; Craig, Elizabeth C; Gilbert, Dominique S; Sritrairat, Sanpisa; Anderson, O Roger; Castaldi, Marco J; Beaumont, Larry

    2009-07-01

    Although post-combustion emissions from power plants are a major source of air pollution, they contain excess CO2 that could be used to fertilize commercial greenhouses and stimulate plant growth. We addressed the combined effects of ultrahigh [CO2] and acidic pollutants in flue gas on the growth of Alternanthera philoxeroides. When acidic pollutants were excluded, the biomass yield of A. philoxeroides saturated near 2000 micromol mol(-1) [CO2] with doubled biomass accumulation relative to the ambient control. The growth enhancement was maintained at 5000 micromol mol(-1) [CO2], but declined when [CO2] rose above 1%, in association with a strong photosynthetic inhibition. Although acidic components (SO2 and NO2) significantly offset the CO2 enhancement, the aboveground yield increased considerably when the concentration of pollutants was moderate (200 times dilution). Our results indicate that using excess CO2 from the power plant emissions to optimize growth in commercial green house could be viable.

  3. Air pollution monitoring using emission inventories combined with the moss bag approach.

    PubMed

    Iodice, P; Adamo, P; Capozzi, F; Di Palma, A; Senatore, A; Spagnuolo, V; Giordano, S

    2016-01-15

    Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.

    PubMed

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H

    2010-07-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas

  5. Comparison of pollutant emission rates from unvented kerosene and gas space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, M.G.; Traynor, G.W.

    1986-05-01

    In this paper the pollutant emission rates of all five types of unvented space heaters are compared. Pollutant emission rates for carbon dioxide, carbon monoxide (CO), nitric oxide, nitrogen dioxide (NO/sub 2/), formaldehyde, and submicron suspended particles were measured. Special emphasis is placed on CO and NO/sub 2/ emissions. Pollutant measurements were made in a 27-m/sup 3/ environmental chamber and emission rates were calculated using a mass-balance model. Emission rates for propane and natural gas space heaters were similar. Emissions from the various types of heaters fall into three distinct groups. The groups are better characterized by burner design thanmore » by the type of fuel used. Radiant kerosene heaters and infrared UVGSHs constitute one group; convective kerosene heaters and convective UVGSHs the second, and two-stage kerosene heaters the third group. When groups are compared, emission rates vary by an order of magnitude for carbon monoxide and for nitrogen dioxide. The two-stage kerosene heaters emitted the least CO and also the least NO/sub 2/ per unit of fuel energy consumed. The radiant/infrared heaters emitted the most CO, and the convective heaters emitted the most NO/sub 2/. The effects of various operation parameters such as the wick height for kerosene heaters and the air shutter adjustment for gas heaters are discussed. Convective UVGSHs operating at half input were found to have lower emission rates on average than when operating at full input. Some maltuned convective UVGSHs were capable of emitting very high amounts of CO. Kerosene heaters were found to emit more CO and NO/sub 2/ on average when they were operated with lowered wicks.« less

  6. A regional high-resolution emission inventory of primary air pollutants in 2012 for Beijing and the surrounding five provinces of North China

    NASA Astrophysics Data System (ADS)

    Liu, Huanjia; Wu, Bobo; Liu, Shuhan; Shao, Panyang; Liu, Xiangyang; Zhu, Chuanyong; Wang, Yong; Wu, Yiming; Xue, Yifeng; Gao, Jiajia; Hao, Yan; Tian, Hezhong

    2018-05-01

    A high resolution regional emission inventory of typical primary air pollutants (PAPs) for the year 2012 in Beijing and the surrounding five provinces (BSFP) of North China is developed. It is compiled with the combination of bottom-up and top-down methods, based on city-level collected activity data and the latest updated specific emission factors for different sources. The considered sources are classified into 12 major categories and totally 36 subcategories with respect to their multi-dimensional characteristics, such as economic sector, combustion facility or industrial process, installed air pollution control devices, etc. Power plant sector is the dominant contributor of NOX emissions with an average contribution of 34.1%, while VOCs emissions are largely emitted from industrial process sources (33.9%). Whereas, other stationary combustion sources represent major sources of primary PM2.5, PM10 and BC emissions, accounting for 22.7%, 30.0% and 33.9% of the total emissions, respectively. Hebei province contributes over 34% of the regional total CO emissions because of huge volume of iron and steel production. By comparison, Shandong province ranks as the biggest contributor for NOX, PM10, PM2.5, SO2, VOCs and OC. Further, the BSFP regional total emissions are spatially distributed into grid cells with a high resolution of 9 km × 9 km using GIS tools and surrogate indexes, such regional population, gross domestic product (GDP) and the types of arable soils. The highest emission intensities are mainly located in Beijing-Tianjin-Tangshan area, Jinan-Laiwu-Zibo area and several other cities such as Shijiazhuang, Handan, and Zhengzhou. Furthermore, in order to establish a simple method to estimate and forecast PAPs emissions with macroscopic provincial-level statistical parameters in China, multi-parameter regression equations are firstly developed to estimate emissions outside the BSFP region with routine statistics (e.g. population, total final coal consumption

  7. Effect of fuels and domestic heating appliance types on emission factors of selected organic pollutants.

    PubMed

    Šyc, Michal; Horák, Jiří; Hopan, František; Krpec, Kamil; Tomšej, Tomáš; Ocelka, Tomáš; Pekárek, Vladimír

    2011-11-01

    This study reports on the first complex data set of emission factors (EFs) of selected pollutants from combustion of five fuel types (lignite, bituminous coal, spruce, beech, and maize) in six different domestic heating appliances of various combustion designs. The effect of fuel as well as the effect of boiler type was studied. In total, 46 combustion runs were performed, during which numerous EFs were measured, including the EFs of particulate matter (PM), carbon monoxide, polyaromatic hydrocarbons (PAH), hexachlorobenzene (HxCBz), polychlorinated dibenzo-p-dioxins and furans (PCDD/F), etc. The highest EFs of nonchlorinated pollutants were measured for old-type boilers with over-fire and under-fire designs and with manual stoking and natural draft. Emissions of the above-mentioned pollutants from modern-type boilers (automatic, downdraft) were 10 times lower or more. The decisive factor for emission rate of nonchlorinated pollutants was the type of appliance; the type of fuel plays only a minor role. Emissions of chlorinated pollutants were proportional mainly to the chlorine content in fuel, but the type of appliance also influenced the rate of emissions significantly. Surprisingly, higher EFs of PCDD/F from combustion of chlorinated bituminous coal were observed for modern-type boilers (downdraft, automatic) than for old-type ones. On the other hand, when bituminous coal was burned, higher emissions of HxCBz were found for old-type boilers than for modern-type ones.

  8. Control strategies for nitrous oxide emissions reduction on wastewater treatment plants operation.

    PubMed

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2017-11-15

    The present paper focused on reducing greenhouse gases emissions in wastewater treatment plants operation by application of suitable control strategies. Specifically, the objective is to reduce nitrous oxide emissions during the nitrification process. Incomplete nitrification in the aerobic tanks can lead to an accumulation of nitrite that triggers the nitrous oxide emissions. In order to avoid the peaks of nitrous oxide emissions, this paper proposes a cascade control configuration by manipulating the dissolved oxygen set-points in the aerobic tanks. This control strategy is combined with ammonia cascade control already applied in the literature. This is performed with the objective to take also into account effluent pollutants and operational costs. In addition, other greenhouse gases emissions sources are also evaluated. Results have been obtained by simulation, using a modified version of Benchmark Simulation Model no. 2, which takes into account greenhouse gases emissions. This is called Benchmark Simulation Model no. 2 Gas. The results show that the proposed control strategies are able to reduce by 29.86% of nitrous oxide emissions compared to the default control strategy, while maintaining a satisfactory trade-off between water quality and costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. 55 FR 14037 Correction to the National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    Correction to the National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke Byproduct Recovery Plants.

  10. Pollutant emissions from flat-flame burners at high pressures

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1980-01-01

    Maximum flame temperatures and pollutant emission measurements for NOx, CO, and UHC (unburned hydrocarbons) are reported for premixed methane air flat flames at constant total mass flow rate over the pressure range from 1.9 to 30 atm and for equivalence ratios from 0.84 to 1.12. For any given pressure, maxima typically occur in both the temperature and NOx emissions curves slightly to the lean side of stoichiometric conditions. The UHC emissions show minima at roughly the same equivalence ratios. The CO emissions, however, increase continually with increasing equivalence ratio. Flame temperature and NOx emissions decrease with increasing pressure, while the opposite is true for the CO and UHC emissions. The NOx data correlate reasonably well as a function of flame temperature only. Four flameholders, differing only slightly, were used. In general, the temperature and emissions data from these four flameholders are similar, but some differences also exist. These differences appear to be related to minor variations in the condition of the flameholder surfaces.

  11. Transport and Environment Database System (TRENDS): Maritime air pollutant emission modelling

    NASA Astrophysics Data System (ADS)

    Georgakaki, Aliki; Coffey, Robert A.; Lock, Graham; Sorenson, Spencer C.

    This paper reports the development of the maritime module within the framework of the Transport and Environment Database System (TRENDS) project. A detailed database has been constructed for the calculation of energy consumption and air pollutant emissions. Based on an in-house database of commercial vessels kept at the Technical University of Denmark, relationships between the fuel consumption and size of different vessels have been developed, taking into account the fleet's age and service speed. The technical assumptions and factors incorporated in the database are presented, including changes from findings reported in Methodologies for Estimating air pollutant Emissions from Transport (MEET). The database operates on statistical data provided by Eurostat, which describe vessel and freight movements from and towards EU 15 major ports. Data are at port to Maritime Coastal Area (MCA) level, so a bottom-up approach is used. A port to MCA distance database has also been constructed for the purpose of the study. This was the first attempt to use Eurostat maritime statistics for emission modelling; and the problems encountered, since the statistical data collection was not undertaken with a view to this purpose, are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission calculations for bulk carriers entering the port of Helsinki, as an example of the database operation, and aggregate results for different types of movements for France. Overall estimates of SO x and NO x emission caused by shipping traffic between the EU 15 countries are in the area of 1 and 1.5 million tonnes, respectively.

  12. Analyzing Air Pollutant Emissions from the Biofuel Supply Chain | Energy

    Science.gov Websites

    biomass-to-biofuels life cycle - fast-growing trees, agricultural waste, storage silos, and a biorefinery published in Chapter 9-"Implications of Air Pollutant Emissions from Producing Agricultural and

  13. Miscellaneous Coating Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    The national emission standards for hazardous air pollutants for miscellaneous coating manufacturing. Includes summary, rule history, compliance and implementation information, federal registry citations.

  14. Regional air pollution at a turning point.

    PubMed

    Grennfelt, Peringe; Hov, Oystein

    2005-02-01

    The control of transboundary air pollution in Europe has been successful. Emissions of many key pollutants are decreasing and there are signs of improvements in damaged ecosystems. The strategies under development within the CAFE programme under the European Commission and the Convention on Long-range Transboundary Air Pollution (CLRTAP), aim to take regional air pollution control a large step further, in particular with respect to small particles. In this paper we highlight the new strategies but look primarily at socioeconomic trends and climate change feedbacks that may have a significant influence on the outcome of the strategies and which so far have not been considered. In particular, we point out the influence on air quality of increased summer temperatures in Europe and of increasing emissions including international shipping, outside of Europe. Taken together the further emissions reductions in Europe and the increasing background pollution, slowly cause a greying of the Northern Hemisphere troposphere rather than the traditional picture of dominant emissions in Europe and North America ('black') with much lower emission intensities elsewhere ('white'). A hemispheric approach to further combat air pollution will become necessary in Europe and elsewhere.

  15. EPA Air Pollution Control Cost Manual

    EPA Science Inventory

    EPA's Air Pollution Control Cost Manual provides guidance for the development of accurate and consistent costs for air pollution control devices. A long-standing document prepared by EPA, the Control Cost Manual focuses on point source and stationary area source air pollution con...

  16. Global Scenarios of Air Pollutant Emissions from Road Transport through to 2050

    PubMed Central

    Takeshita, Takayuki

    2011-01-01

    This paper presents global scenarios of sulphur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emissions from road transport through to 2050, taking into account the potential impacts of: (1) the timing of air pollutant emission regulation implementation in developing countries; (2) global CO2 mitigation policy implementation; and (3) vehicle cost assumptions, on study results. This is done by using a global energy system model treating the transport sector in detail. The major conclusions are the following. First, as long as non-developed countries adopt the same vehicle emission standards as in developed countries within a 30-year lag, global emissions of SO2, NOx, and PM from road vehicles decrease substantially over time. Second, light-duty vehicles and heavy-duty trucks make a large and increasing contribution to future global emissions of SO2, NOx, and PM from road vehicles. Third, the timing of air pollutant emission regulation implementation in developing countries has a large impact on future global emissions of SO2, NOx, and PM from road vehicles, whereas there is a possibility that global CO2 mitigation policy implementation has a comparatively small impact on them. PMID:21845172

  17. Guideline series: Control of volatile organic compound emissions from wood furniture manufacturing operations, April 1996. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    This Control Techniques Guideline (CTG) provides the necessary guidance for development of regulations to limit emissions of volatile organic compounds (VOC) from wood furniture finishing and cleaning operations. This guidance includes emission limits for specific wood furniture finishing steps and work practices to reduce waste and evaporation through pollution prevention methods; these represent available control technology for wood furniture finishing and cleaning operations. This document is intended to provide State and local air pollution authorities with an information base for proceeding with their own analyses of RACT to meet statutory requirements.

  18. Emission factors of atmospheric and climatic pollutants from crop residues burning.

    PubMed

    Santiago-De La Rosa, Naxieli; González-Cardoso, Griselda; Figueroa-Lara, José de Jesús; Gutiérrez-Arzaluz, Mirella; Octaviano-Villasana, Claudia; Ramírez-Hernández, Irma Fabiola; Mugica-Álvarez, Violeta

    2018-04-13

    Biomass burning is a common agricultural practice, because it allows elimination of postharvesting residues; nevertheless, it involves an inefficient combustion process that generates atmospheric pollutants emission, which has implications on health and climate change. This work focuses on the estimation of emission factors (EFs) of PM 2.5 , PM 10 , organic carbon (OC), elemental carbon (EC), carbon monoxide (CO), carbon dioxide (CO 2 ), and methane (CH 4 ) of residues from burning alfalfa, barley, beans, cotton, maize, rice, sorghum, and wheat in Mexico. Chemical characteristics of the residues were determined to establish their relationship with EFs, as well as with the modified combustion efficiency (MCE). Essays were carried out in an open combustion chamber with isokinetic sampling, following modified EPA 201-A method. EFs did not present statistical differences among different varieties of the same crop, but were statistically different among different crops, showing that generic values of EFs for all the agricultural residues can introduce significant uncertainties when used for climatic and atmospheric pollutant inventories. EFs of PM 2.5 ranged from 1.19 to 11.30 g kg -1 , and of PM 10 from 1.77 to 21.56 g kg -1 . EFs of EC correlated with lignin content, whereas EFs of OC correlated inversely with carbon content. EFs of EC and OC in PM 2.5 ranged from 0.15 to 0.41 g kg -1 and from 0.33 to 5.29 g kg -1 , respectively, and in PM 10 , from 0.17 to 0.43 g kg -1 and from 0.54 to 11.06 g kg -1 . CO 2 represented the largest gaseous emissions volume with 1053.35-1850.82 g kg -1 , whereas the lowest was CH 4 with 1.61-5.59 g kg -1 . CO ranged from 28.85 to 155.71 g kg -1 , correlating inversely with carbon content and MCE. EFs were used to calculate emissions from eight agricultural residues burning in the country during 2016, to know the potential mitigation of climatic and atmospheric pollutants, provided this practice was banned. The emission factors

  19. The effects of deterioration and technological levels on pollutant emission factors for gasoline light-duty trucks.

    PubMed

    Zhang, Qingyu; Fan, Juwang; Yang, Weidong; Chen, Bixin; Zhang, Lijuan; Liu, Jiaoyu; Wang, Jingling; Zhou, Chunyao; Chen, Xuan

    2017-07-01

    Vehicle deterioration and technological change influence emission factors (EFs). In this study, the impacts of vehicle deterioration and emission standards on EFs of regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], and nitrogen oxides [NO x ]) for gasoline light-duty trucks (LDTs) were investigated according to the inspection and maintenance (I/M) data using a chassis dynamometer method. Pollutant EFs for LDTs markedly varied with accumulated mileages and emission standards, and the trends of EFs are associated with accumulated mileages. In addition, the study also found that in most cases, the median EFs of CO, HC, and NO x are higher than those of basic EFs in the International Vehicle Emissions (IVE) model; therefore, the present study provides correction factors for the IVE model relative to the corresponding emission standards and mileages. Currently, vehicle emissions are great contributors to air pollution in cities, especially in developing countries. Emission factors play a key role in creating emission inventory and estimating emissions. Deterioration represented by vehicle age and accumulated mileage and changes of emission standards markedly influence emission factors. In addition, the results provide collection factors for implication in the IVE model in the region levels.

  20. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    PubMed

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. Copyright © 2015. Published by Elsevier B.V.

  1. Unsuccessful Suicide by Carbon Monoxide: A Secondary Benefit of Emissions Control

    PubMed Central

    Landers, Dennis

    1981-01-01

    Emission systems and devices are required on automobile engines to reduce air pollution problems. Catalytic converters have been used on most 1975 and newer automobiles to reduce hydrocarbon and carbon monoxide (CO) emissions to a value that meets the Environmental Protection Agency requirements established for 1975 and 1976. The 1980-1981 Boise, Idaho, study shows that with a functioning catalytic converter either unmeasurable or sublethal quantities of CO appear in automobile exhaust. Thus, emissions control has produced a secondary benefit in reducing the number of suicides by CO poisoning from automobile exhaust fumes. PMID:6176074

  2. Unsuccessful suicide by carbon monoxide: a secondary benefit of emissions control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landers, D.

    Emission systems and devices are required on automobile engines to reduce air pollution problems. Catalytic converters have been used on most 1975 and newer automobiles to reduce hydrocarbon and carbon monoxide (CO) emissions to a value that meets the Environmental Protection Agency requirements established for 1975 and 1976. The 1980-1981 Boise, Idaho, study shows that with a functioning catalytic converter either unmeasurable or sublethal quantities of CO appear in automobile exhaust. Thus, emissions control has produced a secondary benefit in reducing the number of suicides by CO poisoning from automobile exhaust fumes.

  3. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  4. News focus: Report on state and local air toxics regulatory strategies published by STAPPA/ALAPCO (State and Territorial Air Pollution Program Administrators/Association of Local Air Pollution Control Officials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-12-01

    The report is entitled Toxic Air Pollutants: State and Local Regulatory Strategies - 1989. The 364-page report is the result of a survey of state and local air pollution control agencies, which solicited information on their programs to control air toxics. According to the survey, every state currently has a program to address emissions of air toxics. Additionally, 27 of the 40 local agencies that responded to the survey have, or are developing, air toxics programs. The strategies employed by state and local agencies vary widely, including control technology requirements, risk assessment, acceptable ambient guidelines, or a combination of thesemore » approaches. This is a report summarizing the air toxics control programs currently implemented (or under development) by state and local air pollution control agencies throughout the US. The report is based upon a survey of all 50 states and 220 local air pollution control agencies conducted by the State and Territorial Air Pollution Program Administrators (STAPPA) and the Association of Local Air Pollution Control Officials (ALAPCO). This survey updates one published five years earlier.« less

  5. [Method for environmental management in paper industry based on pollution control technology simulation].

    PubMed

    Zhang, Xue-Ying; Wen, Zong-Guo

    2014-11-01

    To evaluate the reduction potential of industrial water pollutant emissions and to study the application of technology simulation in pollutant control and environment management, an Industrial Reduction Potential Analysis and Environment Management (IRPAEM) model was developed based on coupling of "material-process-technology-product". The model integrated bottom-up modeling and scenario analysis method, and was applied to China's paper industry. Results showed that under CM scenario, the reduction potentials of waster water, COD and ammonia nitrogen would reach 7 x 10(8) t, 39 x 10(4) t and 0.3 x 10(4) t, respectively in 2015, 13.8 x 10(8) t, 56 x 10(4) t and 0.5 x 10(4) t, respectively in 2020. Strengthening the end-treatment would still be the key method to reduce emissions during 2010-2020, while the reduction effect of structure adjustment would be more obvious during 2015-2020. Pollution production could basically reach the domestic or international advanced level of clean production in 2015 and 2020; the index of wastewater and ammonia nitrogen would basically meet the emission standards in 2015 and 2020 while COD would not.

  6. Organic Liquids Distribution: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) for organic liquidsdistribution (OLD) (non-gasoline) operations. Includes rule history, Federal Registry citations, implementation and compliance information.

  7. An assessment of consistence of exhaust gas emission test results obtained under controlled NEDC conditions

    NASA Astrophysics Data System (ADS)

    Balawender, K.; Jaworski, A.; Kuszewski, H.; Lejda, K.; Ustrzycki, A.

    2016-09-01

    Measurements concerning emissions of pollutants contained in automobile combustion engine exhaust gases is of primary importance in view of their harmful impact on the natural environment. This paper presents results of tests aimed at determining exhaust gas pollutant emissions from a passenger car engine obtained under repeatable conditions on a chassis dynamometer. The test set-up was installed in a controlled climate chamber allowing to maintain the temperature conditions within the range from -20°C to +30°C. The analysis covered emissions of such components as CO, CO2, NOx, CH4, THC, and NMHC. The purpose of the study was to assess repeatability of results obtained in a number of tests performed as per NEDC test plan. The study is an introductory stage of a wider research project concerning the effect of climate conditions and fuel type on emission of pollutants contained in exhaust gases generated by automotive vehicles.

  8. 40 CFR 61.162 - Emission limits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... maintain the furnace and associated air pollution control equipment in a manner consistent with good air... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions...

  9. 40 CFR 61.162 - Emission limits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maintain the furnace and associated air pollution control equipment in a manner consistent with good air... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions...

  10. 40 CFR 61.162 - Emission limits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... maintain the furnace and associated air pollution control equipment in a manner consistent with good air... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions...

  11. 40 CFR 61.162 - Emission limits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maintain the furnace and associated air pollution control equipment in a manner consistent with good air... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions...

  12. 40 CFR 61.162 - Emission limits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... maintain the furnace and associated air pollution control equipment in a manner consistent with good air... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions...

  13. 75 FR 31317 - National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and Allied... when they should not be covered. This action clarifies text of the National Emission Standards for Hazardous Air Pollutants: Paints and Allied Products Manufacturing Area Source Standards which was published...

  14. Ecotechnology: basis of a new immission concept in water pollution control.

    PubMed

    Benndorf, J

    2005-01-01

    Beyond the traditional load reduction also an ecosystem-internal mechanism can be used to minimise the effects of water pollution. The control of the internal mechanisms is achieved through the optimisation of the ecosystem structure. This ecotechnology principle is based on the idea to reduce as much as possible the gap between the current (suboptimal) structural status and the optimum structure by intentional manipulations. The spectrum of such manipulations is very broad. A few examples are demonstrated. They comprise physical (e.g. stream morphology), chemical (e.g. enhancing the redox potential at the sediment-water interface) and biological (e.g. enhancing stocks of predatory fishes) control measures. It can be supposed that a new immission concept including the ecotechnology principle could be much more adequate to the demand of modern water pollution control than the traditional emission and imission concepts.

  15. Controlling urban air pollution caused by households: uncertainty, prices, and income.

    PubMed

    Chávez, Carlos A; Stranlund, John K; Gómez, Walter

    2011-10-01

    We examine the control of air pollution caused by households burning wood for heating and cooking in the developing world. Since the problem is one of controlling emissions from nonpoint sources, regulations are likely to be directed at household choices of wood consumption and combustion technologies. Moreover, these choices are subtractions from, or contributions to, the pure public good of air quality. Consequently, the efficient policy design is not independent of the distribution of household income. Since it is unrealistic to assume that environmental authorities can make lump sum income transfers part of control policies, efficient control of air pollution caused by wood consumption entails a higher tax on wood consumption and a higher subsidy for more efficient combustion technologies for higher income households. Among other difficulties, implementing a policy to promote the adoption of cleaner combustion technologies must overcome the seemingly paradoxical result that efficient control calls for higher technology subsidies for higher income households. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Predicted impact of thermal power generation emission control measures in the Beijing-Tianjin-Hebei region on air pollution over Beijing, China.

    PubMed

    Wang, Liqiang; Li, Pengfei; Yu, Shaocai; Mehmood, Khalid; Li, Zhen; Chang, Shucheng; Liu, Weiping; Rosenfeld, Daniel; Flagan, Richard C; Seinfeld, John H

    2018-01-17

    Widespread economic growth in China has led to increasing episodes of severe air pollution, especially in major urban areas. Thermal power plants represent a particularly important class of emissions. Here we present an evaluation of the predicted effectiveness of a series of recently proposed thermal power plant emission controls in the Beijing-Tianjin-Hebei (BTH) region on air quality over Beijing using the Community Multiscale Air Quality(CMAQ) atmospheric chemical transport model to predict CO, SO 2 , NO 2 , PM 2.5 , and PM 10 levels. A baseline simulation of the hypothetical removal of all thermal power plants in the BTH region is predicted to lead to 38%, 23%, 23%, 24%, and 24% reductions in current annual mean levels of CO, SO 2 , NO 2 , PM 2.5 , and PM 10 in Beijing, respectively. Similar percentage reductions are predicted in the major cities in the BTH region. Simulations of the air quality impact of six proposed thermal power plant emission reduction strategies over the BTH region provide an estimate of the potential improvement in air quality in the Beijing metropolitan area, as a function of the time of year.

  17. COST EFFECTIVE CONTROL OF HEXAVALENT CHROMIUM AIR EMISSIONS FROM FUNCTIONAL CHROMIUM ELECTROPLATING

    EPA Science Inventory

    This paper will summrize thie pollution prevention (p2) method to control stack emissions from hard chromium plating operations performed by the USEPA's National Risk Management Research Laboratory (NRMRL) over the last four years. During literature research and user surveys, it...

  18. [Odor pollution from landfill sites and its control: a review].

    PubMed

    Hu, Bin; Ding, Ying; Wu, Wei-Xiang; Hu, Bei-Gang; Chen, Ying-Xu

    2010-03-01

    Landfill sites are the major sources of offensive odor in urban public facilities. With the progress of urbanization and the residents' demands for a higher living environment quality, the odor emission from landfill sites has become a severe pollution problem, and the odor control at landfill sites has been one of the research hotspots. This paper summarized the main components and their concentrations of the odor from landfill sites, and expatiated on the research progress in the in-situ control of the odor. The further research directions in in-situ control of the odor from landfill sites were prospected.

  19. Pharmaceuticals Production Industry: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) from facilities that manufacture pharmaceutical products. Includes rule history, Federal Register citations, implementation and compliance information, and additional resources.

  20. Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchstetter, Thomas; Preble, Chelsea; Hadley, Odelle

    2010-11-05

    Traditional methods of cooking in developing regions of the world emit pollutants that endanger the lives of billions of people and contribute to climate change. This study quantifies the emission of pollutants from the Berkeley-Darfur Stove and the traditional three-stone fire at the Lawrence Berkeley National Laboratory cookstove testing facility. The Berkeley-Darfur Stove was designed as a fuel efficient alternative to the three-stone fire to aid refugees in Darfur, who walk long distances from their camps and risk bodily harm in search of wood for cooking. A potential co-benefit of the more fuel efficient stove may be reduced pollutant emissions.more » This study measured emissions of carbon dioxide, carbon monoxide, particulate matter, and sunlight-absorbing black carbon. It also measured climate-relevant optical properties of the emitted particulate matter. Pollutant monitors were calibrated specifically for measuring cookstove smoke.« less

  1. National Emission Standards for Hazardous Air Pollutants in Region 7

    EPA Pesticide Factsheets

    National Emission Standards for Hazardous Air Pollutants (NESHAPs) are applicable requirements under the Title V operating permit program. This is a resource for permit writers and reviewers to learn about the rules and explore other helpful tools.

  2. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    PubMed

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  3. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants

    PubMed Central

    Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  4. A modeling study of coarse particulate matter pollution in Beijing: regional source contributions and control implications for the 2008 summer Olympics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litao Wang; Jiming Hao; Kebin He

    In the last 10 yr, Beijing has made a great effort to improve its air quality. However, it is still suffering from regional coarse particulate matter (PM10) pollution that could be a challenge to the promise of clean air during the 2008 Olympics. To provide scientific guidance on regional air pollution control, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) air quality modeling system was used to investigate the contributions of emission sources outside the Beijing area to pollution levels in Beijing. The contributions to the PM10 concentrations in Beijing were assessed formore » the following sources: power plants, industry, domestic sources, transportation, agriculture, and biomass open burning. In January, it is estimated that on average 22% of the PM10 concentrations can be attributed to outside sources, of which domestic and industrial sources contributed 37 and 31%, respectively. In August, as much as 40% of the PM10 concentrations came from regional sources, of which approximately 41% came from industry and 31% from power plants. However, the synchronous analysis of the hourly concentrations, regional contributions, and wind vectors indicates that in the heaviest pollution periods the local emission sources play a more important role. The implications are that long-term control strategies should be based on regional-scale collaborations, and that emission abatement of local sources may be more effective in lowering the PM10 concentration levels on the heavy pollution days. Better air quality can be attained during the Olympics by placing effective emission controls on the local sources in Beijing and by controlling emissions from industry and power plants in the surrounding regions. 44 refs., 6 figs., 3 tabs.« less

  5. Estimations of pollution emissions by the Moscow megapolis basing on in-situ measurements and optical remote sensing

    NASA Astrophysics Data System (ADS)

    Elansky, N.; Postylyakov, O.; Verevkin, Y.; Volobuev, L.; Ponomarev, N.

    2017-11-01

    By the present a large amount of data has been accumulated on direct measurements of the pollution and thermodynamic state of the atmosphere in the Moscow region, which was obtained at stations of Roshydromet, Mosecomonitoring, A.M.Obukhov Institute of Atmospheric Physics (OIAP), M.V. Lomonosov Moscow State University, NPO Typhoon, what allows estimating pollution emissions based on measurements and correcting existing emission inventories, which are evaluated mainly on indirect data connected with population density, fuel consumption, etc. Within the framework of the project, the whole volume of data on the concentration of ground contaminants CO, NOx, SO2, CH4, obtained at regularly operated Moscow Ecological Monitoring stations and at OIAP stations from 2005 to 2014, was systematized. Observation data on pollution concentrations are supplemented by measurements of their integral content in the atmospheric boundary layer, obtained by differential spectroscopy methods (MAX DOAS, ZDOAS) at stationary stations and by passing Moscow with DOAS-equipped car. The paper present preliminary estimates of pollution emissions in the Moscow region, obtained on the basis of the collected array of experimental data. The estimations of pollutant emissions from Moscow were obtained experimentally in a few ways: (1) on the basis of network observations of surface concentrations, (2) on the basis of measurements in the atmospheric layer 0-348 m at Ostankino TV tower, (3) on the basis of the integral pollutant (NO2) content in ABL obtained by DOAS technique from stationary stations, and (4) using a car with DOAS equipment traveling over the closed route around Moscow (for NO2). All experimental approaches yielded close values of pollution emissions for Moscow. Trends in emissions of CO, NOx, and CH4 are negative, and the trend of SO2 emission is positive from 2005 to 2014.

  6. Reinforced Plastic Composites Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emissions standards for hazardous air pollutants for reinforced plastic composites production facilities. Regulates production and ancillary processes used to manufacture products with thermoset resins and gel coats.

  7. Economic growth and carbon emission control

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu

    The question about whether environmental improvement is compatible with continued economic growth remains unclear and requires further study in a specific context. This study intends to provide insight on the potential for carbon emissions control in the absence of international agreement, and connect the empirical analysis with theoretical framework. The Chinese electricity generation sector is used as a case study to demonstrate the problem. Both social planner and private problems are examined to derive the conditions that define the optimal level of production and pollution. The private problem will be demonstrated under the emission regulation using an emission tax, an input tax and an abatement subsidy respectively. The social optimal emission flow is imposed into the private problem. To provide tractable analytical results, a Cobb-Douglas type production function is used to describe the joint production process of the desired output and undesired output (i.e., electricity and emissions). A modified Hamiltonian approach is employed to solve the system and the steady state solutions are examined for policy implications. The theoretical analysis suggests that the ratio of emissions to desired output (refer to 'emission factor'), is a function of productive capital and other parameters. The finding of non-constant emission factor shows that reducing emissions without further cutting back the production of desired outputs is feasible under some circumstances. Rather than an ad hoc specification, the optimal conditions derived from our theoretical framework are used to examine the relationship between desired output and emission level. Data comes from the China Statistical Yearbook and China Electric Power Yearbook and provincial information of electricity generation for the year of 1993-2003 are used to estimate the Cobb-Douglas type joint production by the full information maximum likelihood (FIML) method. The empirical analysis shed light on the optimal

  8. Effectiveness of national air pollution control policies on the air quality in metropolitan areas of China.

    PubMed

    Wang, Shuxiao; Xing, Jia; Zhao, Bin; Jang, Carey; Hao, Jiming

    2014-01-01

    Understanding the effectiveness of national air pollution controls is important for control policy design to improve the future air quality in China. This study evaluated the effectiveness of major national control policies implemented recently in China through a modeling analysis. The sulfur dioxide (SO2) control policy during the 11th Five Year Plan period (2006-2010) had succeeded in reducing the national SO2 emission in 2010 by 14% from its 2005 level, which correspondingly reduced ambient SO2 and sulfate (SO4(2-)) concentrations by 13%-15% and 8%-10% respectively over east China. The nitrogen oxides (NO(x)) control policy during the 12th Five Year Plan period (2011-2015) targets the reduction of the national NO(x) emission in 2015 by 10% on the basis of 2010. The simulation results suggest that such a reduction in NO(x) emission will reduce the ambient nitrogen dioxide (NO2), nitrate (NO3(-)), 1-hr maxima ozone (O3) concentrations and total nitrogen deposition by 8%, 3%-14%, 2% and 2%-4%, respectively over east China. The application of new emission standards for power plants will further reduce the NO2, NO3(-), 1-hr maxima O(3 concentrations and total nitrogen deposition by 2%-4%, 1%-6%, 0-2% and 1%-2%, respectively. Sensitivity analysis was conducted to evaluate the inter-provincial impacts of emission reduction in Beijing-Tianjin-Hebei and the Yangtze River Delta, which indicated the need to implement joint regional air pollution control.

  9. Pollutant Emissions and Lean Blowoff Limits of Fuel Flexible Burners Operating on Gaseous Renewable and Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Colorado, Andres

    This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including

  10. USERS GUIDE FOR THE CONVERSION OF NAVY PAINT SPRAY BOOTH PARTICULATE EMISSION CONTROL SYSTEMS FROM WET TO DRY OPERATION

    EPA Science Inventory

    The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...

  11. Crop yield changes induced by emissions of individual climate-altering pollutants

    NASA Astrophysics Data System (ADS)

    Shindell, Drew T.

    2016-08-01

    Climate change damages agriculture, causing deteriorating food security and increased malnutrition. Many studies have examined the role of distinct physical processes, but impacts have not been previously attributed to individual pollutants. Using a simple model incorporating process-level results from detailed models, here I show that although carbon dioxide (CO2) is the largest driver of climate change, other drivers appear to dominate agricultural yield changes. I calculate that anthropogenic emissions to date have decreased global agricultural yields by 9.5 ± 3.0%, with roughly 93% stemming from non-CO2 emissions, including methane (-5.2 ± 1.7%) and halocarbons (-1.4 ± 0.4%). The differing impacts stem from atmospheric composition responses: CO2 fertilizes crops, offsetting much of the loss induced by warming; halocarbons do not fertilize; methane leads to minimal fertilization but increases surface ozone which augments warming-induced losses. By the end of the century, strong CO2 mitigation improves agricultural yields by ˜3 ± 5%. In contrast, strong methane and hydrofluorocarbon mitigation improve yields by ˜16 ± 5% and ˜5 ± 4%, respectively. These are the first quantitative analyses to include climate, CO2 and ozone simultaneously, and hence, additional studies would be valuable. Nonetheless, as policy makers have leverage over pollutant emissions rather than isolated processes, the perspective presented here may be more useful for decision making than that in the prior work upon which this study builds. The results suggest that policies should target a broad portfolio of pollutant emissions in order to optimize mitigation of societal damages.

  12. USCG Pollution Abatement Program : A Preliminary Study of Vessel and Boat Exhaust Emissions

    DOT National Transportation Integrated Search

    1971-11-30

    A preliminary study of exhaust emissions from Coast Guard vessels and boats indicates that the Coast Guard fleet is an insignificant contributor to air pollution on a national and regional basis. Based upon fuel usage data, emission estimates by vess...

  13. Polluted rainwater runoff from waste recovery and recycling companies: Determination of emission levels associated with the best available techniques.

    PubMed

    Huybrechts, D; Verachtert, E; Vander Aa, S; Polders, C; Van den Abeele, L

    2016-08-01

    Rainwater falling on outdoor storage areas of waste recovery and recycling companies becomes polluted via contact with the stored materials. It contains various pollutants, including heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls, and is characterized by a highly fluctuating composition and flow rate. This polluted rainwater runoff is legally considered as industrial wastewater, and the polluting substances contained in the rainwater runoff at the point of discharge, are considered as emissions into water. The permitting authorities can set emission limit values (discharge limits) at the point of discharge. Best available techniques are an important reference point for setting emission limit values. In this paper, the emission levels associated with the best available techniques for dealing with polluted rainwater runoff from waste recovery and recycling companies were determined. The determination is based on an analysis of emission data measured at different companies in Flanders. The data show that a significant fraction of the pollution in rainwater runoff is associated with particles. A comparison with literature data provides strong indications that not only leaching, but also atmospheric deposition play an important role in the contamination of rainwater at waste recovery and recycling companies. The prevention of pollution and removal of suspended solids from rainwater runoff to levels below 60mg/l are considered as best available techniques. The associated emission levels were determined by considering only emission data from plants applying wastewater treatment, and excluding all samples with suspended solid levels >60mg/l. The resulting BAT-AEL can be used as a reference point for setting emission limit values for polluted rainwater runoff from waste recovery and recycling companies. Since the BAT-AEL (e.g. 150μg/l for Cu) are significantly lower than current emission levels (e.g. 300μg/l as the 90% percentile and 4910

  14. Methodology for the analysis of pollutant emissions from a city bus

    NASA Astrophysics Data System (ADS)

    Armas, Octavio; Lapuerta, Magín; Mata, Carmen

    2012-04-01

    In this work a methodology is proposed for measurement and analysis of gaseous emissions and particle size distributions emitted by a diesel city bus during its typical operation under urban driving conditions. As test circuit, a passenger transportation line at a Spanish city was used. Different ways for data processing and representation were studied and, derived from this work, a new approach is proposed. The methodology was useful to detect the most important uncertainties arising during registration and processing of data derived from a measurement campaign devoted to determine the main pollutant emissions. A HORIBA OBS-1300 gas analyzer and a TSI engine exhaust particle spectrometer were used with 1 Hz frequency data recording. The methodology proposed allows for the comparison of results (in mean values) derived from the analysis of either complete cycles or specific categories (or sequences). The analysis by categories is demonstrated to be a robust and helpful tool to isolate the effect of the main vehicle parameters (relative fuel-air ratio and velocity) on pollutant emissions. It was shown that acceleration sequences have the highest contribution to the total emissions, whereas deceleration sequences have the least.

  15. Pollutant emissions from vehicles with regenerating after-treatment systems in regulatory and real-world driving cycles.

    PubMed

    Alvarez, Robert; Weilenmann, Martin; Novak, Philippe

    2008-07-15

    Regenerating exhaust after-treatment systems are increasingly employed in passenger cars in order to comply with regulatory emission standards. These systems include pollutant storage units that occasionally have to be regenerated. The regeneration strategy applied, the resultant emission levels and their share of the emission level during normal operation mode are key issues in determining realistic overall emission factors for these cars. In order to investigate these topics, test series with four cars featuring different types of such after-treatment systems were carried out. The emission performance in legislative and real-world cycles was monitored as well as at constant speeds. The extra emissions determined during regeneration stages are presented together with the methodology applied to calculate their impact on overall emissions. It can be concluded that exhaust after-treatment systems with storage units cause substantial overall extra emissions during regeneration mode and can appreciably affect the emission factors of cars equipped with such systems, depending on the frequency of regenerations. Considering that the fleet appearance of vehicles equipped with such after-treatment systems will increase due to the evolution of statutory pollutant emission levels, extra emissions originating from regenerations of pollutant storage units consequently need to be taken into account for fleet emission inventories. Accurately quantifying these extra emissions is achieved by either conducting sufficient repetitions of emission measurements with an individual car or by considerably increasing the size of the sample of cars with comparable after-treatment systems.

  16. Environmental Pollution Prevention, Control and Abatement

    DTIC Science & Technology

    1977-08-30

    AD-A271 117 fDATE August 30. 1977 ASD (ORA&L) Department of Defense Instruction SUBJECT: Environmental Pollution Prevention, Control and Abatement...Ensure that any funds appropriated and apportioned for the prevention, control, and abatement of environmental pollution are not used for any other...77 References (a) Executive Order 11752, "Prevention, Control, and Abatement of Environmental Pollution at Federal Facilities," December 19, 1973 (b

  17. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...

  18. GAS-PHASE MASS TRANSFER MODEL FOR PREDICTING VOLATILE ORGANIC COMPOUND (VOC) EMISSION RATES FROM INDOOR POLLUTANT SOURCES

    EPA Science Inventory

    Analysis of the impact of sources on indoor pollutant concentrations and occupant exposure to indoor pollutants requires knowledge of the emission rates from the sources. Emission rates are often determined by chamber testing and the data from the chamber test are fitted to an em...

  19. Historical evaluation of vehicle emission control in Guangzhou based on a multi-year emission inventory

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Wu, Ye; Liu, Huan; Wu, Xiaomeng; Zhou, Yu; Yao, Zhiliang; Fu, Lixin; He, Kebin; Hao, Jiming

    2013-09-01

    The Guangzhou government adopted many vehicle emission control policies and strategies during the five-year preparation (2005-2009) to host the 2010 Asian Games. This study established a multi-year emission inventory for vehicles in Guangzhou during 2005-2009 and estimated the uncertainty in total vehicle emissions by taking the assumed uncertainties in fleet-average emission factors and annual mileage into account. In 2009, the estimated total vehicle emissions in Guangzhou were 313 000 (242 000-387 000) tons of CO, 60 900 (54 000-70 200) tons of THC, 65 600 (56 800-74 100) tons of NOx and 2740 (2100-3400) tons of PM10. Vehicle emissions within the urban area of Guangzhou were estimated to be responsible for ˜40% of total gaseous pollutants and ˜25% of total PM10 in the entire city. Although vehicle use intensity increased rapidly in Guangzhou during 2005-2009, vehicle emissions were estimated to have been reduced by 12% for CO, 21% for THC and 20% for PM10 relative to those in 2005. NOx emissions were estimated to have remained almost constant during this period. Compared to the "without control" scenario, 19% (15%-23%) of CO, 20% (18%-23%) of THC, 9% (8%-10%) of NOx and 16% (12%-20%) of PM10 were estimated to have been mitigated from a combination of the implementation of Euro III standards for light-duty vehicles (LDVs) and heavy-duty diesel vehicles and improvement of fuel quality. This study also evaluated several enhanced vehicle emission control actions taken recently. For example, the enhanced I/M program for LDVs was estimated to reduce 11% (9%-14%) of CO, 9% (8%-10%) of THC and 2% (2%-3%) of NOx relative to total vehicle emissions in 2009. Total emission reductions by temporary traffic controls for the Asian Games were estimated equivalent to 9% (7%-11%) of CO, 9% (8%-10%) of THC, 5% (5%-6%) of NOx and 10% (8%-13%) of PM10 estimated total vehicle emissions in 2009. Those controls are essential to further vehicle emission mitigation in Guangzhou

  20. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  1. Real-World Emission Factors of Gaseous and Particulate Pollutants from Marine Fishing Boats and Their Total Emissions in China.

    PubMed

    Zhang, Fan; Chen, Yingjun; Chen, Qi; Feng, Yanli; Shang, Yu; Yang, Xin; Gao, Huiwang; Tian, Chongguo; Li, Jun; Zhang, Gan; Matthias, Volker; Xie, Zhiyong

    2018-04-17

    Pollutants from fishing boats have generally been neglected worldwide, and there is an acute shortage of measured emission data, especially in China. Therefore, on-board measurements of pollutants emitted from 12 different fishing boats in China (including gill net, angling, and trawler boats) were carried out in this study to investigate emission factors (EFs), characteristics and total emissions. The average EFs for CO 2 , CO, NO x , PM, and SO 2 were 3074 ± 55.9, 50.6 ± 31.7, 54.2 ± 30.7, 9.54 ± 2.24, and 5.94 ± 6.38 g (kg fuel) -1 , respectively, which were higher than those from previous studies of fishing boats. When compared to medium-speed and slow-speed engine vessels, high-speed engines on fishing boats had higher CO EFs but lower NO x EFs. Notably, when fishing boats were in low-load conditions, they always had higher EFs of CO, PM, and NO 2 compared to other operating modes. The estimated results showed that emissions from motor-powered fishing boats in China in 2012 (232, 379, and 61.8 kt CO, NO x and PM) accounted for 10.7%, 10.9%, and 19.3% of the total CO, NO x and PM emitted from nonroad mobile sources, which means significant contribution of fishing boats to air pollution, especially in southern China areas.

  2. Effect of an alternating electric field on the polluting emission from propane flame.

    NASA Astrophysics Data System (ADS)

    Ukradiga, I.; Turlajs, D.; Purmals, M.; Barmina, I.; Zake, M.

    2001-12-01

    The experimental investigations of the AC field effect on the propane combustion and processes that cause the formation of polluting emissions (NO_x, CO, CO_2) are performed. The AC-enhanced variations of the temperature and composition of polluting emissions are studied for the fuel-rich and fuel-lean conditions of the flame core. The results show that the AC field-enhanced mixing of the fuel-rich core with the surrounding air coflow enhances the propane combustion with increase in the mass fraction of NO_x and CO_2 in the products. The reverse field effect on the composition of polluting emissions is observed under the fuel-lean conditions in the flame core. The field-enhanced CO_2 destruction is registered when the applied voltage increase. The destruction of CO_2 leads to a correlating increase in the mass fraction of CO in the products and enhances the process of NO_x formation within the limit of the fuel lean and low temperature combustion. Figs 11, Refs 18.

  3. Analysis of a long-term measurement of air pollutants (2007-2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games.

    PubMed

    Xu, Ruiguang; Tang, Guiqian; Wang, Yuesi; Tie, Xuexi

    2016-09-01

    Five years measurements were used to evaluate the effect of emission controls on the changes of air pollutants in Beijing and its surroundings in the NCP during 2008 Olympic Games (2008OG). The major challenge of this study was to filter out the effect of variability of meteorological conditions, when compared the air pollutants during the game to non-game period. We used four-year (2007, 2009-2011) average as the Non-2008OG to smooth the temporal variability caused by meteorological parameters. To study the spatial variability and regional transport, 6 sites (urban, rural, a mega city, a heavy industrial city, and a remote site) were selected. The result showed that the annually meteorological variability was significantly reduced. Such as, in BJ the differences between 2008OG and 5-years averaged values were 2.7% for relative humidity and 0.6% for wind speed. As a result, the anomaly of air pollutants between 2008OG and Non-2008OG can largely attribute to the emission control. The comparison showed that the major pollutants (PM10, PM2.5, NO, NOx) at the 6 sites in 2008OG were consistently lowered. For example, PM2.5 in BJ decreased from 75 to 45 μg/m(3) (40% reduction). However, the emission controls had minor effect on O3 concentrations (1% reduction). In contrast, the O3 precursor (NOx) reduced from 19.7 to 13.2 ppb (33% reduction). The in-sensitivity between NOx and O3 suggested that the O3 formation was under VOCs control condition in NCP, showing that strong VOC emission control is needed in order to significantly reduce O3 concentration in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Climate responses to anthropogenic emissions of short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.

    2015-07-01

    Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealized, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all models showing an increase in surface temperature focussed in the Northern Hemisphere mid and (especially) high latitudes, and showing a corresponding increase in global mean precipitation. Changes in precipitation patterns are driven mostly by a northward shift in the ITCZ (Intertropical Convergence Zone), consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker response, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are

  5. Climate responses to anthropogenic emissions of short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.; Samset, B. H.

    2015-02-01

    Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealised, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all three models showing an increase in surface temperature focussed in the northern hemisphere high latitudes, and a corresponding increase in global mean precipitation and run-off. Changes in precipitation and run-off patterns are driven mostly by a northward shift in the ITCZ, consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker forcing signal, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the

  6. Implications of emission inventory choice for modeling fire-related pollution in the U.S.

    EPA Science Inventory

    Fires are a major source of particulate matter (PM), one of the most harmful ambient pollutants for human health globally. Within the U.S., fire emissions can account for more than 30% of total PM emissions annually. In order to represent the influence of fire emissions on atmosp...

  7. Co-control of local air pollutants and CO2 in the Chinese iron and steel industry.

    PubMed

    Mao, Xianqiang; Zeng, An; Hu, Tao; Zhou, Ji; Xing, Youkai; Liu, Shengqiang

    2013-01-01

    The present study proposes an integrated multipollutant cocontrol strategy framework in the context of the Chinese iron and steel industry. The unit cost of pollutant reduction (UCPR) was used to examine the cost-effectiveness of each emission reduction measure. The marginal abatement cost (MAC) curves for SO2, NOx, PM2.5, and CO2 were drawn based on the UCPR and the abatement potential. Air pollutant equivalence (APeq) captures the nature of the damage value-weights of various air pollutants and acts as uniformization multiple air pollutants index. Single pollutant abatement routes designed in accordance with the corresponding reduction targets revealed that the cocontrol strategy has promising potential. Moreover, with the same reduction cost limitations as the single pollutant abatement routes, the multipollutant cocontrol routes are able to obtain more desirable pollution reduction and health benefits. Co-control strategy generally shows cost-effective advantage over single-pollutant abatement strategy. The results are robust to changing parameters according to sensitivity analysis. Co-control strategy would be an important step to achieve energy/carbon intensity targets and pollution control targets in China. Though cocontrol strategy has got some traction in policy debates, there are barriers to integrate it into policy making in the near future in China.

  8. Historical analysis of SO2 pollution control policies in China.

    PubMed

    Gao, Cailing; Yin, Huaqiang; Ai, Nanshan; Huang, Zhengwen

    2009-03-01

    Coal is not only an important energy source in China but also a major source of air pollution. Because of this, China's national sulfur dioxide (SO(2)) emissions have been the highest in the world for many years, and since the 1990s, the territory of China's south and southwest has become the third largest acid-rain-prone region in the world. In order to control SO(2) emissions, the Chinese government has formulated and promulgated a series of policies and regulations, but it faces great difficulties in putting them into practice. In this retrospective look at the history of SO(2) control in China, we found that Chinese SO(2) control policies have become increasingly strict and rigid. We also found that the environmental policies and regulations are more effective when central officials consistently give environmental protection top priority. Achieving China's environmental goals, however, has been made difficult by China's economic growth. Part of this is due to the practice of environmental protection appearing in the form of an ideological "campaign" or "storm" that lacks effective economic measures. More recently, better enforcement of environmental laws and regulations has been achieved by adding environmental quality to the performance assessment metrics for leaders at all levels. To continue making advances, China needs to reinforce the economic and environmental assessments for pollution control projects and work harder to integrate economic measures into environmental protection. Nonetheless, China has a long way to go before economic growth and environmental protection are balanced.

  9. Policy interactions and underperforming emission trading markets in China.

    PubMed

    Zhang, Bing; Zhang, Hui; Liu, Beibei; Bi, Jun

    2013-07-02

    Emission trading is considered to be cost-effective environmental economic instrument for pollution control. However, the ex post analysis of emission trading program found that cost savings have been smaller and the trades fewer than might have been expected at the outset of the program. Besides policy design issues, pre-existing environmental regulations were considered to have a significant impact on the performance of the emission trading market in China. Taking the Jiangsu sulfur dioxide (SO2) market as a case study, this research examined the impact of policy interactions on the performance of the emission trading market. The results showed that cost savings associated with the Jiangsu SO2 emission trading market in the absence of any policy interactions were CNY 549 million or 12.5% of total pollution control costs. However, policy interactions generally had significant impacts on the emission trading system; the lone exception was current pollution levy system. When the model accounted for all four kinds of policy interactions, the total pollution control cost savings from the emission trading market fell to CNY 39.7 million or 1.36% of total pollution control costs. The impact of policy interactions would reduce 92.8% of cost savings brought by emission trading program.

  10. Research on the Emission Inventory of Major Air Pollutants in 2012 for the Sichuan City Cluster in China

    NASA Astrophysics Data System (ADS)

    Qian, J.; He, Q.

    2014-12-01

    This paper developed a high resolution emission inventory of major pollutants in city cluster of Sichuan Basin, one of the most polluted regions in China. The city cluster included five cities, which were Chengdu, Deyang, Mianyang, Meishan and Ziyang. Pollution source census and field measurements were conducted for the major emission sources such as the industry sources, on-road mobile sources, catering sources and the dust sources. The inventory results showed that in the year of 2012, the emission of SO2、NOX、CO、PM10、PM2.5、VOCs and NH3 in the region were 143.5、251.9、1659.9、299.3、163.5、464.1 and 995kt respectively. Chengdu, the provincial capital city, had the largest emission load of every pollutant among the cities. The industry sources, including power plants, fuel combustion facilities and non-combustion processes were the largest emission sources for SO2、NOX and CO, contributing to 84%, 46.5%, 35% of total SO2, NOX and CO emissions. On-road mobile sources accounted for 46.5%, 33%, 16% of the total NOx, CO, PM2.5 emissions and 28% of the anthropogenic VOCs emission. Dust and industry sources contributed to 42% and 23% of the PM10 emission with the dust sources also as the largest source of PM2.5, contributing to 27%. Anthropogenic and biogenic sources took 75% and 25% of the total VOCs emission while 36% of anthropogenic VOCs emission was owing to solvent use. Livestock contributed to 62% of NH3 emissions, followed by nitrogen fertilizer application whose contribution was 23%. Based on the developed emission inventory and local meteorological data, the regional air quality modeling system WRF-CMAQ was applied to simulate the status of PM2.5 pollution in a regional scale. The results showed that high PM2.5 concentration was distributed over the urban area of Chengdu and Deyang. On-road mobile sources and dust sources were two major contributors to the PM2.5 pollution in Chengdu, both had an contribution ratio of 27%. In Deyang, Mianyang

  11. 78 FR 49701 - Approval and Promulgation of Implementation Plans; Connecticut; Control of Visible Emissions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... power plants and other large stationary sources of air pollution''), 22a-174-22 (``Control of Nitrogen Oxide Emissions''), and 22a-174-22c (``The Clean Air Interstate Rule (CAIR) Nitrogen Oxides (NO X...

  12. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    NASA Astrophysics Data System (ADS)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  13. 78 FR 5346 - Approval and Promulgation of Implementation Plans; State of Missouri; Control of Sulfur Emissions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R07-OAR-2012-0763; FRL-9772-5] Approval and Promulgation of Implementation Plans; State of Missouri; Control of Sulfur Emissions From Stationary Boilers... by limiting sulfur dioxide (SO 2 ) emissions (a precursor pollutant to PM 2.5 ), from industrial...

  14. The impact of the "Air Pollution Prevention and Control Action Plan" on PM2.5 concentrations in Jing-Jin-Ji region during 2012-2020.

    PubMed

    Cai, Siyi; Wang, Yangjun; Zhao, Bin; Wang, Shuxiao; Chang, Xing; Hao, Jiming

    2017-02-15

    In order to cope with heavy haze pollution in China, the Air Pollution Prevention and Control Action Plan including phased goals of the fine particulate matter (PM 2.5 ) was issued in 2013. In this study, China's emission inventories in the baseline 2012 and the future scenarios of 2017 and 2020 have been developed based on this Action Plan. Beijing-Tianjin-Hebei (Jing-Jin-Ji) region, one of the most polluted regions in China, was taken as a case to assess the impact of phased emission control measures on PM 2.5 concentration reduction using WRF-CMAQ model system. With the implementation of the Action Plan, the emissions of sulfur dioxide (SO 2 ), nitrogen oxides (NO X ) , PM 2.5 , non-methane volatile organic compound (NMVOC), and ammonia (NH 3 ) in 2017 will decrease by36%, 31%, 30%,12%, and -10% from the 2012 levels in Jing-Jin-Ji, respectively. In 2020, the emissions of SO 2 , NO X, PM 2.5 , NMVOC, and NH 3 will decrease by 40%, 44%, 40%, 22%, and -3% from the 2012 levels in Jing-Jin-Ji, respectively. Consequently, the ambient annual PM 2.5 concentration under the scenarios of 2017 and 2020 will be 28.3% and 37.8% lower than those in 2012, respectively. The Action Plan provided an effective approach to alleviate PM 2.5 pollution level in Jing-Jin-Ji region. However, emission control of NMVOC and NH 3 should be paid more attention and be strengthened in future. Meanwhile, emission control of NO x , SO 2 , NH 3 and NMVOC synergistically are highly needed in the future because multiple pollutants impact on PM 2.5 and O 3 concentrations nonlinearly. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. On-road vehicle emissions and their control in China: A review and outlook.

    PubMed

    Wu, Ye; Zhang, Shaojun; Hao, Jiming; Liu, Huan; Wu, Xiaomeng; Hu, Jingnan; Walsh, Michael P; Wallington, Timothy J; Zhang, K Max; Stevanovic, Svetlana

    2017-01-01

    The large (26-fold over the past 25years) increase in the on-road vehicle fleet in China has raised sustainability concerns regarding air pollution prevention, energy conservation, and climate change mitigation. China has established integrated emission control policies and measures since the 1990s, including implementation of emission standards for new vehicles, inspection and maintenance programs for in-use vehicles, improvement in fuel quality, promotion of sustainable transportation and alternative fuel vehicles, and traffic management programs. As a result, emissions of major air pollutants from on-road vehicles in China have peaked and are now declining despite increasing vehicle population. As might be expected, progress in addressing vehicle emissions has not always been smooth and challenges such as the lack of low sulfur fuels, frauds over production conformity and in-use inspection tests, and unreliable retrofit programs have been encountered. Considering the high emission density from vehicles in East China, enhanced vehicle, fuel and transportation strategies will be required to address vehicle emissions in China. We project the total vehicle population in China to reach 400-500 million by 2030. Serious air pollution problems in many cities of China, in particular high ambient PM 2.5 concentration, have led to pressure to accelerate the progress on vehicle emission reduction. A notable example is the draft China 6 emission standard released in May 2016, which contains more stringent emission limits than those in the Euro 6 regulations, and adds a real world emission testing protocol and a 48-h evaporation testing procedure including diurnal and hot soak emissions. A scenario (PC[1]) considered in this study suggests that increasingly stringent standards for vehicle emissions could mitigate total vehicle emissions of HC, CO, NO X and PM 2.5 in 2030 by approximately 39%, 57%, 59% and 79%, respectively, compared with 2013 levels. With additional actions

  16. PRELIMINARY ANALYSIS OF HAZARDOUS AIR POLLUTANT EMISSION INVENTORIES FROM THREE MAJOR URBAN AREAS

    EPA Science Inventory

    The paper reports EPA/AEERL's progress on emissions inventory evaluation and improvement under a hazardous air pollutant (HAP) emissions research program in support of the Urban Area Source Program required under Title III of the Clean Air Act Amendments of 1990 (CAAA). he paper ...

  17. National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines

    EPA Pesticide Factsheets

    This page contains the current National Emission Standards for Hazardous Air Pollutants (NESHAP) for Reciprocating Internal Combustion Engines and additional information regarding rule compliance and implementation.

  18. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds

  19. Controlling Indoor Air Pollution from Moxibustion

    PubMed Central

    Lu, Chung-Yen; Kang, Sy-Yuan; Liu, Shu-Hui; Mai, Cheng-Wei; Tseng, Chao-Heng

    2016-01-01

    Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy. PMID:27331817

  20. Controlling Indoor Air Pollution from Moxibustion.

    PubMed

    Lu, Chung-Yen; Kang, Sy-Yuan; Liu, Shu-Hui; Mai, Cheng-Wei; Tseng, Chao-Heng

    2016-06-20

    Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO₂), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy.

  1. Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City

    NASA Astrophysics Data System (ADS)

    Zavala, Miguel; Molina, Luisa T.; Yacovitch, Tara I.; Fortner, Edward C.; Roscioli, Joseph R.; Floerchinger, Cody; Herndon, Scott C.; Kolb, Charles E.; Knighton, Walter B.; Paramo, Victor Hugo; Zirath, Sergio; Mejía, José Antonio; Jazcilevich, Aron

    2017-12-01

    Diesel-powered vehicles are intensively used in urban areas for transporting goods and people but can substantially contribute to high emissions of black carbon (BC), organic carbon (OC), and other gaseous pollutants. Strategies aimed at controlling mobile emissions sources thus have the potential to improve air quality and help mitigate the impacts of air pollutants on climate, ecosystems, and human health. However, in developing countries there are limited data on the BC and OC emission characteristics of diesel-powered vehicles, and thus there are large uncertainties in the estimation of the emission contributions from these sources. We measured BC, OC, and other inorganic components of fine particulate matter (PM), as well as carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), ethane, acetylene, benzene, toluene, and C2-benzenes under real-world driving conditions for 20 diesel-powered vehicles encompassing multiple emission level technologies in Mexico City with the chasing technique using the Aerodyne mobile laboratory. Average BC emission factors ranged from 0.41-2.48 g kg-1 of fuel depending on vehicle type. The vehicles were also simultaneously measured using the cross-road remote sensing technique to obtain the emission factors of nitrogen oxide (NO), CO, total hydrocarbons, and fine PM, thus allowing for the intercomparison of the results from the two techniques. There is overall good agreement between the two techniques and both can identify high and low emitters, but substantial differences were found in some of the vehicles, probably due to the ability of the chasing technique to capture a larger diversity of driving conditions in comparison to the remote sensing technique. A comparison of the results with the US EPA MOVES2014b model showed that the model underestimates CO, OC, and selected VOC species, whereas there is better agreement for NOx and BC. Larger OC / BC ratios were found in comparison to ratios measured in California using

  2. Integrated Assessment of Air Pollution Control Measures for Megacities

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Theloke, J.; Denier-van-der-Gon, H.; Kugler, U.; Kampffmeyer, T.; Roos, J.; Torras, S.

    2012-04-01

    Air pollution in large cities is still a matter of concern. Especially the concentration of fine particles (PM10 and PM2.5) is largest in large cities leading to severe health impacts. Furthermore the PM10 thresholds of the EU Air Quality Directive are frequently exceeded. Thus the question arises, whether the initiated policies and measures for mitigating air pollution are sufficient to meet the air quality targets and - if not - which efficient further pollution mitigation measures exist. These questions have been addressed in the EU research project MEGAPOLI for the four European megacities respectively agglomerations London, Paris, Rhine-Ruhr area and Po valley. Firstly, a reference scenario of future activities and emissions has been compiled for the megacities for the years 2020, 2030 and 2050 for all relevant air pollutants (CO, NH3, NMVOC, NOx, PM10, PM2.5 and SO2) and greenhouse gases (CO2, CH4 and N2O). The reference scenario takes into account as well population changes as technical progress and economic growth. As pollution flowing in from outside the city is about as important as pollution caused by emissions in the city, the analysis covers the whole of Europe and not only the city area. Emissions are then transformed into concentrations using atmospheric models. The higher concentrations in cities were estimated with a newly developed 'urban increment' model. Results show, that in the megacities the limits of the Air Quality Directive (2008/50/EC) will be exceeded. Thus additional efforts are necessary to reduce emissions further. Thus, a number of further measures (not implemented in current legislation) were selected and assessed. These included mitigation options for road transport, other mobile sources, large combustion plants, small and medium combustion plants and industry. For each measure and in addition for various bundles of measures a cost-benefit analysis has been carried out. Benefits (avoided health risks and climate change risks) have

  3. CFD Investigation of Pollutant Emission in Can-Type Combustor Firing Natural Gas, LNG and Syngas

    NASA Astrophysics Data System (ADS)

    Hasini, H.; Fadhil, SSA; Mat Zian, N.; Om, NI

    2016-03-01

    CFD investigation of flow, combustion process and pollutant emission using natural gas, liquefied natural gas and syngas of different composition is carried out. The combustor is a can-type combustor commonly used in thermal power plant gas turbine. The investigation emphasis on the comparison of pollutant emission such in particular CO2, and NOx between different fuels. The numerical calculation for basic flow and combustion process is done using the framework of ANSYS Fluent with appropriate model assumptions. Prediction of pollutant species concentration at combustor exit shows significant reduction of CO2 and NOx for syngas combustion compared to conventional natural gas and LNG combustion.

  4. ESP 2.0: Improved method for projecting U.S. GHG and air pollution emissions through 2055

    EPA Science Inventory

    The Emission Scenario Projection (ESP) method is used to develop multi-decadal projections of U.S. Greenhouse Gas (GHG) and criteria pollutant emissions. The resulting future-year emissions can then translated into an emissions inventory and applied in climate and air quality mod...

  5. Relationship between urbanisation and pollutant emissions in transboundary river basins under the strategy of the Belt and Road Initiative.

    PubMed

    Yu, Sen; Lu, Hongwei

    2018-07-01

    Urbanisation has increased the discharge of pollutants, altered water flow regimes, and modified the morphology of transboundary river basins. All these actions have resulted in multiple pressures on aquatic ecosystems of transboundary river basins, undermining the healthy development of their aquatic ecosystems as well as impairing the sustainable economic and social development associated therewith. Quantifying the relationship between socio-economic factors, and water environment systems, and understanding the multiple pressures in their combined impact on environmental fairness of transboundary river basins is challenging, and it is crucial to the strategic planning of the Belt and Road strategy. Here, the Songhua River basin, which is the largest branch of the China-Russia boundary river is taken as the study area. The Environmental Kuznets Curve (EKC) model, which is coupled with the integrated model (pollutant emissions intensity, pollutant discharge efficiency, and pollutant emissions per capita), are used to reveal the spatio-temporal variations in regional pollutant emissions in the SRB. The results show that the features of the EKC are present in the pollutant emissions during economic development of the SRB. It also demonstrates that the turning point value of the EKC appeared when the GDP per capita is around ¥40,000 (CNY) in the SRB, which means that the pollutant emissions show an increasing trend, when the GDP per capita is less than ¥40,000. Our findings could contribute to a better understanding of the coupling relationship between pollutant emissions in transboundary river basins and urbanisation process in water stress to help address water allocation problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Pollutant swapping: greenhouse gas emissions from wetland systems constructed to mitigate agricultural pollution

    NASA Astrophysics Data System (ADS)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by 'swapping' this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland's potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be

  7. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is...

  8. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is...

  9. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is...

  10. Effects of Automobile Emissions on Air Pollution in the United States

    NASA Astrophysics Data System (ADS)

    Cohen, Ryan; Singh, Ramesh

    2016-07-01

    Currently, about more than 253,000,000 automobiles and trucks, some are new, old, gas and electric, ply on the roads in the United States of America. Around the world, human activities and energy demand are the main sources for the air pollution and ozone depletion, causing dense haze, fog and smog especially during winter season in the country like China and India and also observed in different parts of the world. In recent years, automakers have been pushed by new governmental regulations and global expectations to create more fuel-efficient vehicles that burn less fossil fuels and create fewer harmful emissions. Automakers are exploring alternative fuel options such as hydrogen, natural gas, hybrids, and completely electric vehicles. Since the Nissan Leaf's introduction in 2010, fully electric vehicles have become widely produced and just fewer than 400,000 fully electric cars have been sold in the United States. Taking the influx of more fuel-efficient and alternative energy vehicles in the market into account, we have analyzed satellite and ground observed atmospheric pollution and greenhouse gases during 2009-2014 in the United States of America. Our results show that the increasing population of hybrid and fuel efficient vehicles have cut down the atmospheric pollution and greenhouse emissions in US in general, whereas in California the pollution level has increased as a result frequency of fog and haze events are seen during winter season. We will present a comparison of atmospheric pollution over US and California State in view of the increasing hybrid and fuel efficient vehicles.

  11. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution.

    PubMed

    Silva, Raquel A; Adelman, Zachariah; Fry, Meridith M; West, J Jason

    2016-11-01

    Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration-response function for ozone and an integrated exposure-response model for PM2.5. We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally-675 (95% CI: 428, 899) thousand deaths/year-and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). The contributions of emissions sectors to ambient air pollution-related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA, Adelman Z, Fry MM, West JJ. 2016. The impact of individual

  12. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO 2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiencymore » measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO 2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.« less

  13. The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China.

    PubMed

    Pei, Ling-Ling; Li, Qin; Wang, Zheng-Xin

    2018-03-08

    The relationship between pollutant discharge and economic growth has been a major research focus in environmental economics. To accurately estimate the nonlinear change law of China's pollutant discharge with economic growth, this study establishes a transformed nonlinear grey multivariable (TNGM (1, N )) model based on the nonlinear least square (NLS) method. The Gauss-Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N ) model based on the NLS basic principle. This algorithm improves the precision of the model by continuous iteration and constantly approximating the optimal regression coefficient of the nonlinear model. In our empirical analysis, the traditional grey multivariate model GM (1, N ) and the NLS-based TNGM (1, N ) models were respectively adopted to forecast and analyze the relationship among wastewater discharge per capita (WDPC), and per capita emissions of SO₂ and dust, alongside GDP per capita in China during the period 1996-2015. Results indicated that the NLS algorithm is able to effectively help the grey multivariable model identify the nonlinear relationship between pollutant discharge and economic growth. The results show that the NLS-based TNGM (1, N ) model presents greater precision when forecasting WDPC, SO₂ emissions and dust emissions per capita, compared to the traditional GM (1, N ) model; WDPC indicates a growing tendency aligned with the growth of GDP, while the per capita emissions of SO₂ and dust reduce accordingly.

  14. Emission Inventory Development and Application Based On an Atmospheric Emission Source Priority Control Classification Technology Method, a Case Study in the Middle Reaches of Yangtze River Urban Agglomerations, China

    NASA Astrophysics Data System (ADS)

    Sun, X.; Cheng, S.

    2017-12-01

    This paper presents the first attempt to investigate the emission source control of the Middle Reaches of Yangtze River Urban Agglomerations (MRYRUA), one of the national urban agglomerations in China. An emission inventory of the MRYRUA was the first time to be developed as inputs to the CAMx model based on county-level activity data obtained by full-coverage investigation and source-based spatial surrogates. The emission inventory was proved to be acceptable owing to the atmospheric modeling verification. A classification technology method for atmospheric pollution source priority control was the first time to be introduced and applied in the MRYRUA for the evaluation of the emission sources control on the region-scale and city-scale. MICAPS (Meteorological Information comprehensive Analysis and Processing System) was applied for the regional meteorological condition and sensitivity analysis. The results demonstrated that the emission sources in the Hefei-center Urban Agglomerations contributed biggest on the mean PM2.5 concentrations of the MRYRUA and should be taken the priority to control. The emission sources in the Ma'anshan city, Xiangtan city, Hefei city and Wuhan city were the bigger contributors on the mean PM2.5 concentrations of the MRYRUA among the cities and should be taken the priority to control. In addition, the cities along the Yangtze River and the tributary should be given the special attention for the regional air quality target attainments. This study provide a valuable preference for policy makers to develop effective air pollution control strategies.

  15. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    EPA Pesticide Factsheets

    Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  16. 40 CFR 63.652 - Emissions averaging provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emissions average. This must include any Group 1 emission points to which the reference control technology... controls for a Group 1 emission point, the pollution prevention measure alone does not have to reduce... in control after November 15, 1990; (2) Group 1 emission points that are controlled by a reference...

  17. 40 CFR 63.652 - Emissions averaging provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emissions average. This must include any Group 1 emission points to which the reference control technology... controls for a Group 1 emission point, the pollution prevention measure alone does not have to reduce... in control after November 15, 1990; (2) Group 1 emission points that are controlled by a reference...

  18. POLLUTION CONTROL GUIDANCE FOR GEOTHERMAL ENERGY DEVELOPMENT

    EPA Science Inventory

    This report summarizes the EPA regulatory approach toward geothermal energy development. The state of knowledge is described with respect to the constituents of geothermal effluents and emissions, including water, air, solid wastes, and noise. Pollutant effects are discussed. Pol...

  19. Future air pollution in the Shared Socio-economic Pathways

    DOE PAGES

    Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.; ...

    2016-07-15

    Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high,more » central, and low pollution control ambitions over the 21 st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. We provide an overview of pollutant emission trajectories under the SSP scenarios. Pollutant emissions in these scenarios cover a wider range than the scenarios used in previous international climate model comparisons. Furthermore, the SSP scenarios provide the opportunity to access a more comprehensive range of future global and regional air quality outcomes.« less

  20. Future air pollution in the Shared Socio-economic Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.

    Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high,more » central, and low pollution control ambitions over the 21 st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. We provide an overview of pollutant emission trajectories under the SSP scenarios. Pollutant emissions in these scenarios cover a wider range than the scenarios used in previous international climate model comparisons. Furthermore, the SSP scenarios provide the opportunity to access a more comprehensive range of future global and regional air quality outcomes.« less

  1. AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    This is a chapter for John Wiley & Son's Mechanical Engineers' Handbook, and covers issues involving air pollution control. Various technologies for controlling sulfur oxides is considered including fuel desulfurization. It also considers control of nitrogen oxides including post...

  2. APPLICATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE INDOOR AIR EMISSIONS FROM ENGINEERED WOOD PRODUCTS

    EPA Science Inventory

    The report gives results of an investigation of pollution prevention options to reduce indoor emissions from a type of finished engineered wood. Emissions were screened from four types of finished engineered wood: oak-veneered particleboard coated and cured with a heat-curable, a...

  3. Changing trends in sulfur emissions in Asia: implications for acid deposition, air pollution, and climate.

    PubMed

    Carmichael, Gregory R; Streets, David G; Calori, Giuseppe; Amann, Markus; Jacobson, Mark Z; Hansen, James; Ueda, Hiromasa

    2002-11-15

    In the early 1990s, it was projected that annual SO2 emissions in Asia might grow to 80-110 Tg yr(-1) by 2020. Based on new high-resolution estimates from 1975 to 2000, we calculate that SO2 emissions in Asia might grow only to 40-45 Tg yr(-1) by 2020. The main reason for this lower estimate is a decline of SO2 emissions from 1995 to 2000 in China, which emits about two-thirds of Asian SO2. The decline was due to a reduction in industrial coal use, a slowdown of the Chinese economy, and the closure of small and inefficient plants, among other reasons. One effect of the reduction in SO2 emissions in China has been a reduction in acid deposition not only in China but also in Japan. Reductions should also improve visibility and reduce health problems. SO2 emission reductions may increase global warming, but this warming effect could be partially offset by reductions in the emissions of black carbon. How SO2 emissions in the region change in the coming decades will depend on many competing factors (economic growth, pollution control laws, etc.). However a continuation of current trends would result in sulfur emissions lower than any IPCC forecasts.

  4. Greenhouse gas emission and groundwater pollution potential of soils amended with raw swine manure, dry and wet pyrolyzed swine biochars

    USDA-ARS?s Scientific Manuscript database

    The objective of this research is to study the greenhouse gas emission and groundwater pollution potentials of the soils amended with raw swine solid and swine biochars made from different thermochemical conditions. Triplicate sets of small pots were designed: 1) control soil with a 50/50 mixture of...

  5. Air Pollution and Control Legislation in India

    NASA Astrophysics Data System (ADS)

    P Bhave, Prashant; Kulkarni, Nikhil

    2015-09-01

    Air pollution in urban areas arises from multiple sources, which may vary with location and developmental activities. Anthropogenic activities as rampant industrialization, exploitation and over consumption of natural resources, ever growing population size are major contributors of air pollution. The presented review is an effort to discuss various aspects of air pollution and control legislation in India emphasizing on the history, present scenario, international treaties, gaps and drawbacks. The review also presents legislative controls with judicial response to certain landmark judgments related to air pollution. The down sides related to enforcement mechanism for the effective implementation of environmental laws for air pollution control have been highlighted.

  6. A high-resolution emission inventory of primary pollutants for the Huabei region, China

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Wang, P.; Ma, J. Z.; Zhu, S.; Pozzer, A.; Li, W.

    2011-07-01

    Huabei is a part of eastern China located between 32° N and 42° N latitude. Administratively it is a region including Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC). Our estimates are based on the data from the statistical yearbooks of state and provinces as well as local districts including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2), 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC. For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2), 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into industrial, civil, traffic, and straw burning sectors, and large industrial point sources, which include 345 sets of power plants, iron and steel plants, cement plants, and

  7. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy.

    PubMed

    Zhang, Afeng; Bian, Rongjun; Li, Lianqing; Wang, Xudong; Zhao, Ying; Hussain, Qaiser; Pan, Genxing

    2015-12-01

    Soil amendment of biochar (BSA) had been shown effective for mitigating greenhouse gas (GHG) emission and alleviating metal stress to plants and microbes in soil. It has not yet been addressed if biochar exerts synergy effects on crop production, GHG emission, and microbial activity in metal-polluted soils. In a field experiment, biochar was amended at sequential rates at 0, 10, 20, and 40 t ha(-1), respectively, in a cadmium- and lead-contaminated rice paddy from the Tai lake Plain, China, before rice cropping in 2010. Fluxes of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored using a static chamber method during the whole rice growing season (WRGS) of 2011. BSA significantly reduced soil CaCl2 extractable pool of Cd, and DTPA extractable pool of Cd and Pb. As compared to control, soil CO2 emission under BSA was observed to have no change at 10 t ha(-1) but decreased by 16-24% at 20 and 40 t ha(-1). In a similar trend, BSA at 20 and 40 t ha(-1) increased rice yield by 25-26% and thus enhanced ecosystem CO2 sequestration by 47-55% over the control. Seasonal total N2O emission was reduced by 7.1, 30.7, and 48.6% under BSA at 10, 20, and 40 t ha(-1), respectively. Overall, a net reduction in greenhouse gas balance (NGHGB) by 53.9-62.8% and in greenhouse gas intensity (GHGI) by 14.3-28.6% was observed following BSA at 20 and 40 t ha(-1). The present study suggested a great potential of biochar to enhancing grain yield while reducing carbon emission in metal-polluted rice paddies.

  8. Air pollution from industrial waste gas emissions is associated with cancer incidences in Shanghai, China.

    PubMed

    Cong, Xiaowei

    2018-05-01

    Outdoor air pollution may be associated with cancer risk at different sites. This study sought to investigate outdoor air pollution from waste gas emission effects on multiple cancer incidences in a retrospective population-based study in Shanghai, China. Trends in cancer incidence for males and females and trends in waste gas emissions for the total waste gas, industrial waste gas, other waste gas, SO 2 , and soot were investigated between 1983 and 2010 in Shanghai, China. Regression models after adjusting for confounding variables were constructed to estimate associations between waste gas emissions and multiple cancer incidences in the whole group and stratified by sex, Engel coefficient, life expectancy, and number of doctors per 10,000 populations to further explore whether changes of waste gas emissions were associated with multiple cancer incidences. More than 550,000 new cancer patients were enrolled and reviewed. Upward trends in multiple cancer incidences for males and females and in waste gas emissions were observed from 1983 to 2010 in Shanghai, China. Waste gas emissions came mainly from industrial waste gas. Waste gas emissions was significantly positively associated with cancer incidence of salivary gland, small intestine, colorectal, anus, gallbladder, thoracic organs, connective and soft tissue, prostate, kidney, bladder, thyroid, non-Hodgkin's lymphoma, lymphatic leukemia, myeloid leukemia, and other unspecified sites (all p < 0.05). Negative association between waste gas emissions and the esophagus cancer incidence was observed (p < 0.05). The results of the whole group were basically consistent with the results of the stratified analysis. The results from this retrospective population-based study suggest ambient air pollution from waste gas emissions was associated with multiple cancer incidences.

  9. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-12-01

    Increases in surface ozone (O3) and fine particulate matter (≤ 2.5μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-hour daily maximum O3 in a year) have increased by 8±0.16 μg/m3 and 30±0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5 (O3) to change by +7.5±0.19 μg/m3 (+25±0.30 ppbv), +0.4±0.17 μg/m3 (+0.5±0.28 ppbv), and -0.02±0.01 μg/m3 (+4.3±0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality associated with air

  10. Alternative policies for the control of air pollution in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, R.; Cofala, J.; Toman, M.

    1994-01-01

    Like other Central European countries, Poland faces the twin challenges of improving environmental quality while also promoting economic development. The study examines the cost of achieving alternative emission standards and the savings in abatement cost that might be achieved with policies that rely on economic incentives rather than with rigid command and control measures. A central element of the analysis is a dynamic model of least-cost energy supply in Poland that allows examination at a national level of the effects of different pollution standards and policies.

  11. Spatial-temporal variation characteristics of air pollution in Henan of China: Localized emission inventory, WRF/Chem simulations and potential source contribution analysis.

    PubMed

    Liu, Shuhan; Hua, Shenbing; Wang, Kun; Qiu, Peipei; Liu, Huanjia; Wu, Bobo; Shao, Pangyang; Liu, Xiangyang; Wu, Yiming; Xue, Yifeng; Hao, Yan; Tian, Hezhong

    2018-05-15

    Henan is the most populous province and one of the most seriously polluted areas in China at present. In this study, we establish an integrated atmospheric emission inventory of primary air pollutants in Henan province for the target year of 2012. The inventory developed here accounts for detailed activity levels of 11 categories of primary anthropogenic emission sources, and determines the best available representation of emission factors. Further, we allocate the annual emissions into a high spatial resolution of 3km×3km with ArcGIS methodology and surrogate indices, such as regional population distribution and gross domestic product (GDP). Our results show that the emissions of VOCs, SO 2 , PM 10 , PM 2.5 , NO X , NH 3 , CO, BC and OC are about 1.15, 1.24, 1.29, 0.70, 1.93, 1.05, 7.92, 0.27 and 0.25milliontons, respectively. The majority of these pollutant emissions comes from the Central Plain Urban Agglomeration (CPUA) region, particularly Zhengzhou and Pingdingshan. By combining with the emission inventory with the WRF/Chem modeling and backward trajectory analysis, we investigate the temporal and spatial variability of air pollution in the province and explore the causes of higher pollutants concentrations in the region of CPUA during the heavily polluted period of January. The results demonstrate that intensive pollutants emissions and unfavorable meteorological conditions are the main causes of the heavy pollution. Besides, Weighted Potential Source Contribution Function (WPSCF) analysis indicates that local emissions remain the major contributor of PM 2.5 in Henan province, although emissions from the neighboring provinces (e.g. Shanxi, Shaanxi, Anhui, and Shandong) are also important contributors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Emissions and prevention/control techniques for automobile body shops in Ciudad Juarez, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffery, J.D.; Sager, M.

    1999-08-01

    Emissions of Volatile Organic Compounds (VOC) from automobile body repair shops are believed to be significant and to contribute to ozone nonattainment in El Paso, Texas and to violations of ozone air quality standards in Ciudad Juarez, Mexico. The Direccion de Desarrollo Urbano Y Ecologia (DDUE), (the local agency in Ciudad Juarez, Mexico) requested CICA's assistance in determining emissions from and identifying appropriate pollution prevention and control techniques for automobile body repair shops in Ciudad Juarez.

  13. A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts.

    PubMed

    Li, Guohao; Wei, Wei; Shao, Xia; Nie, Lei; Wang, Hailin; Yan, Xiao; Zhang, Rui

    2018-05-01

    In China, volatile organic compound (VOC) control directives have been continuously released and implemented for important sources and regions to tackle air pollution. The corresponding control requirements were based on VOC emission amounts (EA), but never considered the significant differentiation of VOC species in terms of atmospheric chemical reactivity. This will adversely influence the effect of VOC reduction on air quality improvement. Therefore, this study attempted to develop a comprehensive classification method for typical VOC sources in the Beijing-Tianjin-Hebei region (BTH), by combining the VOC emission amounts with the chemical reactivities of VOC species. Firstly, we obtained the VOC chemical profiles by measuring 5 key sources in the BTH region and referencing another 10 key sources, and estimated the ozone formation potential (OFP) per ton VOC emission for these sources by using the maximum incremental reactivity (MIR) index as the characteristic of source reactivity (SR). Then, we applied the data normalization method to respectively convert EA and SR to normalized EA (NEA) and normalized SR (NSR) for various sources in the BTH region. Finally, the control index (CI) was calculated, and these sources were further classified into four grades based on the normalized CI (NCI). The study results showed that in the BTH region, furniture coating, automobile coating, and road vehicles are characterized by high NCI and need to be given more attention; however, the petro-chemical industry, which was designated as an important control source by air quality managers, has a lower NCI. Copyright © 2017. Published by Elsevier B.V.

  14. Site Remediation National Emission Standards for Hazardous Air Pollutants (NESHAP) Fact Sheets

    EPA Pesticide Factsheets

    This page contains July 2003 and May 2016 fact sheets with information regarding the final National Emission Standards for Hazardous Air Pollutants (NESHAP). This document provides a summary of the information for these regulations.

  15. Magnetic Tape Manufacturing Operations: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Read this page to find information on the National Emission Standards for hazardous air pollutants for magnetic tape manufacturing operations. Read the rule summary and history, as well as supporting documents and related rules.

  16. 76 FR 24872 - California State Nonroad Engine and Vehicle Pollution Control Standards; Authorization of Tier II...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Pollution Control Standards; Authorization of Tier II Marine Inboard/Sterndrive Spark Ignition Engine... for its second tier (``Tier II'') of emission standards for new marine inboard/sterndrive spark... record of this Marine Engine Authorization Request docket. Although a part of the official docket, the...

  17. The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China

    PubMed Central

    Pei, Ling-Ling; Li, Qin

    2018-01-01

    The relationship between pollutant discharge and economic growth has been a major research focus in environmental economics. To accurately estimate the nonlinear change law of China’s pollutant discharge with economic growth, this study establishes a transformed nonlinear grey multivariable (TNGM (1, N)) model based on the nonlinear least square (NLS) method. The Gauss–Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N) model based on the NLS basic principle. This algorithm improves the precision of the model by continuous iteration and constantly approximating the optimal regression coefficient of the nonlinear model. In our empirical analysis, the traditional grey multivariate model GM (1, N) and the NLS-based TNGM (1, N) models were respectively adopted to forecast and analyze the relationship among wastewater discharge per capita (WDPC), and per capita emissions of SO2 and dust, alongside GDP per capita in China during the period 1996–2015. Results indicated that the NLS algorithm is able to effectively help the grey multivariable model identify the nonlinear relationship between pollutant discharge and economic growth. The results show that the NLS-based TNGM (1, N) model presents greater precision when forecasting WDPC, SO2 emissions and dust emissions per capita, compared to the traditional GM (1, N) model; WDPC indicates a growing tendency aligned with the growth of GDP, while the per capita emissions of SO2 and dust reduce accordingly. PMID:29517985

  18. 76 FR 30604 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production... Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production. The EPA is... present oral testimony at the public hearing, please contact Ms. Teresa Clemons, U.S. Environmental...

  19. 40 CFR 63.1505 - Emission standards for affected sources and emission units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-on air pollution control device if a continuous opacity monitor (COM) or visible emissions monitoring... percent opacity from any PM add-on air pollution control device if a COM is chosen as the monitoring.../delacquering kiln/decoating kiln is equipped with an afterburner having a design residence time of at least 1...

  20. Spatiotemporal air pollution exposure assessment for a Canadian population-based lung cancer case-control study

    PubMed Central

    2012-01-01

    Background Few epidemiological studies of air pollution have used residential histories to develop long-term retrospective exposure estimates for multiple ambient air pollutants and vehicle and industrial emissions. We present such an exposure assessment for a Canadian population-based lung cancer case-control study of 8353 individuals using self-reported residential histories from 1975 to 1994. We also examine the implications of disregarding and/or improperly accounting for residential mobility in long-term exposure assessments. Methods National spatial surfaces of ambient air pollution were compiled from recent satellite-based estimates (for PM2.5 and NO2) and a chemical transport model (for O3). The surfaces were adjusted with historical annual air pollution monitoring data, using either spatiotemporal interpolation or linear regression. Model evaluation was conducted using an independent ten percent subset of monitoring data per year. Proximity to major roads, incorporating a temporal weighting factor based on Canadian mobile-source emission estimates, was used to estimate exposure to vehicle emissions. A comprehensive inventory of geocoded industries was used to estimate proximity to major and minor industrial emissions. Results Calibration of the national PM2.5 surface using annual spatiotemporal interpolation predicted historical PM2.5 measurement data best (R2 = 0.51), while linear regression incorporating the national surfaces, a time-trend and population density best predicted historical concentrations of NO2 (R2 = 0.38) and O3 (R2 = 0.56). Applying the models to study participants residential histories between 1975 and 1994 resulted in mean PM2.5, NO2 and O3 exposures of 11.3 μg/m3 (SD = 2.6), 17.7 ppb (4.1), and 26.4 ppb (3.4) respectively. On average, individuals lived within 300 m of a highway for 2.9 years (15% of exposure-years) and within 3 km of a major industrial emitter for 6.4 years (32% of exposure-years). Approximately 50% of individuals

  1. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  2. Spatial-temporal Variations and Source Apportionment of typical Heavy Metals in Beijing-Tianjin-Hebei (BTH) region of China Based on Localized Air Pollutants Emission Inventory and WRF-CMAQ modelling

    NASA Astrophysics Data System (ADS)

    Tian, H.; Liu, S.; Zhu, C.; Liu, H.; Wu, B.

    2017-12-01

    Abstract: Anthropogenic atmospheric emissions of air pollutants have caused worldwide concerns due to their adverse effects on human health and the ecosystem. By determining the best available emission factors for varied source categories, we established the comprehensive atmospheric emission inventories of hazardous air pollutants including 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu, and Zn) from primary anthropogenic activities in Beijing-Tianjin-Hebei (BTH) region of China for the period of 2012 for the first time. The annual emissions of these pollutants were allocated at a high spatial resolution of 9km × 9km grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Notably, the total heavy metal emissions from this region represented about 10.9% of the Chinese national total emissions. The areas with high emissions of heavy metals were mainly concentrated in Tangshan, Shijiazhuang, Handan and Tianjin. Further, WRF-CMAQ modeling system were applied to simulate the regional concentration of heavy metals to explore their spatial-temporal variations, and the source apportionment of these heavy metals in BTH region was performed using the Brute-Force method. Finally, integrated countermeasures were proposed to minimize the final air pollutants discharge on account of the current and future demand of energy-saving and pollution reduction in China. Keywords: heavy metals; particulate matter; emission inventory; CMAQ model; source apportionment Acknowledgment. This work was funded by the National Natural Science Foundation of China (21377012 and 21177012) and the Trail Special Program of Research on the Cause and Control Technology of Air Pollution under the National Key Research and Development Plan of China (2016YFC0201501).

  3. Air pollution control systems in WtE units: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehlow, J., E-mail: juergen.vehlow@partner.kit.edu

    Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removalmore » of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made.« less

  4. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Improving air pollution control policy in China--A perspective based on cost-benefit analysis.

    PubMed

    Gao, Jinglei; Yuan, Zengwei; Liu, Xuewei; Xia, Xiaoming; Huang, Xianjin; Dong, Zhanfeng

    2016-02-01

    To mitigate serious air pollution, the State Council of China promulgated the Air Pollution Prevention and Control Action Plan in 2013. To verify the feasibility and validity of industrial energy-saving and emission-reduction policies in the action plan, we conducted a cost-benefit analysis of implementing these policies in 31 provinces for the period of 2013 to 2017. We also completed a scenario analysis in this study to assess the cost-effectiveness of different measures within the energy-saving and the emission-reduction policies individually. The data were derived from field surveys, statistical yearbooks, government documents, and published literatures. The results show that total cost and total benefit are 118.39 and 748.15 billion Yuan, respectively, and the estimated benefit-cost ratio is 6.32 in the S3 scenario. For all the scenarios, these policies are cost-effective and the eastern region has higher satisfactory values. Furthermore, the end-of-pipe scenario has greater emission reduction potential than energy-saving scenario. We also found that gross domestic product and population are significantly correlated with the benefit-cost ratio value through the regression analysis of selected possible influencing factors. The sensitivity analysis demonstrates that benefit-cost ratio value is more sensitive to unit emission-reduction cost, unit subsidy, growth rate of gross domestic product, and discount rate among all the parameters. Compared with other provinces, the benefit-cost ratios of Beijing and Tianjin are more sensitive to changes of unit subsidy than unit emission-reduction cost. These findings may have significant implications for improving China's air pollution prevention policy. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Advanced catalytic combustors for low pollutant emissions, phase 1

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.

    1979-01-01

    The feasibility of employing the known attractive and distinguishing features of catalytic combustion technology to reduce nitric oxide emissions from gas turbine engines during subsonic, stratospheric cruise operation was investigated. Six conceptual combustor designs employing catalytic combustion were defined and evaluated for their potential to meet specific emissions and performance goals. Based on these evaluations, two parallel-staged, fixed-geometry designs were identified as the most promising concepts. Additional design studies were conducted to produce detailed preliminary designs of these two combustors. Results indicate that cruise nitric oxide emissions can be reduced by an order of magnitude relative to current technology levels by the use of catalytic combustion. Also, these combustors have the potential for operating over the EPA landing-takeoff cycle and at cruise with a low pressure drop, high combustion efficiency and with a very low overall level of emission pollutants. The use of catalytic combustion, however, requires advanced technology generation in order to obtain the time-temperature catalytic reactor performance and durability required for practical aircraft engine combustors.

  7. Air pollution control systems in WtE units: an overview.

    PubMed

    Vehlow, J

    2015-03-01

    All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 75 FR 77760 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    .... 40 CFR 63.11494(e). On February 12, 2010, the American Chemistry Council and the Society of Chemical... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Hazardous Air Pollutants for Chemical Manufacturing Area Sources. Among the provisions that EPA is...

  9. Global Air Quality and Climate Impacts of Mitigating Short-lived Climate Pollution in China

    NASA Astrophysics Data System (ADS)

    Harper, K.; Unger, N.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Wagner, F.

    2014-12-01

    China is a major emitter of harmful air pollutants, including the short-lived climate pollutants (SLCPs) and their precursors. Implementation of pollution control technologies provides a mechanism for simultaneously protecting human and ecosystem health and achieving near-term climate co-benefits; however, predicting the outcomes of technical and policy interventions is challenging because the SLCPs participate in both climate warming and cooling and share many common emission sources. Here, we present the results of a combined regional integrated assessment and global climate modeling study aimed at quantifying the near-term climate and air quality co-benefits of selective control of Chinese air pollution emissions. Results from IIASA's Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) integrated assessment model indicate that methane emission reductions make up > 75% of possible CO2-equivalent emission reductions of the SLCPs and their precursors in China in 2030. A multi-pollutant emission reduction scenario incorporating the 2030 Chinese pollution control measures with the highest potential for future climate impact is applied to the NASA ModelE2 - Yale Interactive Terrestrial Biosphere (NASA ModelE2-YIBs) global carbon - chemistry - climate model to assess the regional and long-range impacts of Chinese SLCP mitigation measures. Using model simulations that incorporate dynamic methane emissions and photosynthesis-dependent isoprene emissions, we quantify the impacts of Chinese reductions of the short-lived air pollutants on radiative forcing and on surface ozone and particulate air pollution. Present-day modeled methane mole fractions are evaluated against SCIAMACHY methane columns and NOAA ESRL/GMD surface flask measurements.

  10. Taking Action on Air Pollution Control in the Beijing-Tianjin-Hebei (BTH) Region: Progress, Challenges and Opportunities

    PubMed Central

    Wang, Li; Zhang, Fengying; Pilot, Eva; Yu, Jie; Holdaway, Jennifer; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Vardoulakis, Sotiris; Krafft, Thomas

    2018-01-01

    Due to rapid urbanization, industrialization and motorization, a large number of Chinese cities are affected by heavy air pollution. In order to explore progress, remaining challenges, and sustainability of air pollution control in the Beijing-Tianjin-Hebei (BTH) region after 2013, a mixed method analysis was undertaken. The quantitative analysis comprised an overview of air quality management in the BTH region. Semi-structured expert interviews were conducted with 12 stakeholders from various levels of government and research institutions who played substantial roles either in decision-making or in research and advising on air pollution control in the BTH region. The results indicated that with the stringent air pollution control policies, the air quality in BTH meets the targets of the Air Pollution Prevention and Control Action Plan. However, improvements vary across the region and for different pollutants. Although implementation has been decisive and was at least in parts effectively enforced, significant challenges remained with regard to industrial and traffic emission control, and national air quality limits continued to be significantly exceeded and competing development interests remained mainly unsolved. There were also concerns about the sustainability of the current air pollution control measures especially for industries due to the top-down enforcement, and the associated large burden of social cost including unemployment and social inequity resulting industrial restructuring. Better mechanisms for ensuring cross-sectoral coordination and for improved central-local government communication were suggested. Further suggestions were provided to improve the conceptual design and effective implementation of respective air pollution control strategies in BTH. Our study highlights some of the major hurdles that need to be addressed to succeed with a comprehensive air pollution control management for the Chinese mega-urban agglomerations. PMID:29425189

  11. Taking Action on Air Pollution Control in the Beijing-Tianjin-Hebei (BTH) Region: Progress, Challenges and Opportunities.

    PubMed

    Wang, Li; Zhang, Fengying; Pilot, Eva; Yu, Jie; Nie, Chengjing; Holdaway, Jennifer; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Vardoulakis, Sotiris; Krafft, Thomas

    2018-02-09

    Due to rapid urbanization, industrialization and motorization, a large number of Chinese cities are affected by heavy air pollution. In order to explore progress, remaining challenges, and sustainability of air pollution control in the Beijing-Tianjin-Hebei (BTH) region after 2013, a mixed method analysis was undertaken. The quantitative analysis comprised an overview of air quality management in the BTH region. Semi-structured expert interviews were conducted with 12 stakeholders from various levels of government and research institutions who played substantial roles either in decision-making or in research and advising on air pollution control in the BTH region. The results indicated that with the stringent air pollution control policies, the air quality in BTH meets the targets of the Air Pollution Prevention and Control Action Plan. However, improvements vary across the region and for different pollutants. Although implementation has been decisive and was at least in parts effectively enforced, significant challenges remained with regard to industrial and traffic emission control, and national air quality limits continued to be significantly exceeded and competing development interests remained mainly unsolved. There were also concerns about the sustainability of the current air pollution control measures especially for industries due to the top-down enforcement, and the associated large burden of social cost including unemployment and social inequity resulting industrial restructuring. Better mechanisms for ensuring cross-sectoral coordination and for improved central-local government communication were suggested. Further suggestions were provided to improve the conceptual design and effective implementation of respective air pollution control strategies in BTH. Our study highlights some of the major hurdles that need to be addressed to succeed with a comprehensive air pollution control management for the Chinese mega-urban agglomerations.

  12. 40 CFR 63.1505 - Emission standards for affected sources and emission units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... any PM add-on air pollution control device if a continuous opacity monitor (COM) or visible emissions... percent opacity from any PM add-on air pollution control device if a COM is chosen as the monitoring.../delacquering kiln/decoating kiln is equipped with an afterburner having a design residence time of at least 1...

  13. Contribution of biomass combustion to air pollutant emissions =

    NASA Astrophysics Data System (ADS)

    Goncalves, Catia Vanessa Maio

    In Portugal, it was estimated that around 1.95 Mton/year of wood is used in residential wood burning for heating and cooking. Additionally, in the last decades, burnt forest area has also been increasing. These combustions result in high levels of toxic air pollutants and a large perturbation of atmospheric chemistry, interfere with climate and have adverse effects on health. Accurate quantification of the amounts of trace gases and particulate matter emitted from residential wood burning, agriculture and garden waste burning and forest fires on a regional and global basis is essential for various purposes, including: the investigation of several atmospheric processes, the reporting of greenhouse gas emissions, and quantification of the air pollution sources that affect human health at regional scales. In Southern Europe, data on detailed emission factors from biomass burning are rather inexistent. Emission inventories and source apportionment, photochemical and climate change models use default values obtained for US and Northern Europe biofuels. Thus, it is desirable to use more specific locally available data. The objective of this study is to characterise and quantify the contribution of biomass combustion sources to atmospheric trace gases and aerosol concentrations more representative of the national reality. Laboratory (residential wood combustion) and field (agriculture/garden waste burning and experimental wildland fires) sampling experiments were carried out. In the laboratory, after the selection of the most representative wood species and combustion equipment in Portugal, a sampling program to determine gaseous and particulate matter emission rates was set up, including organic and inorganic aerosol composition. In the field, the smoke plumes from agriculture/garden waste and experimental wildland fires were sampled. The results of this study show that the combustion equipment and biofuel type used have an important role in the emission levels and

  14. Integrated pollution prevention and control for heavy ceramic industry in Galicia (NW Spain).

    PubMed

    Barros, M C; Bello, P; Roca, E; Casares, J J

    2007-03-22

    The heavy ceramic industry (building materials and refractory products manufacture) is an important source of pollutants to the environment. For this reason these industrial sub-sectors are included in prevention and control pollution policies, specifically those of the European Union. The IPPC Directive pays particular attention to the mineral industries, not least to the ceramic industry (epigraph 3.5, Annex I). In this paper, a methodology which is being applied to support IPPC installations and the competent administrative authority in Galicia (NW Spain) is presented. For that, the Galician heavy ceramic industry is analysed, as also are the ways to study the Best Available Techniques (BAT) with a view to establishing the emission limit values (ELV) for each specific case. Hence, a technological state of the art has been carried out for both sub-sectors, from the point of view of implementation of the IPPC in Galicia. Following this, the processes are described briefly and an analysis of the consumption and emission levels of the main pollutants is made. An inventory that includes the best environmental practices and the preventive and abatement candidate techniques as BAT was elaborated for both considered sub-sectors. An information data sheet for each candidate BAT is presented as a method to help both the industries and the competent authority to identify a candidate technique of the inventory as BAT. Three illustrative examples of the application of this procedure are presented for different emissions to environmental media for Galician installations.

  15. High reduction of ozone and particulate matter during the 2016 G-20 summit in Hangzhou by forced emission controls of industry and traffic

    EPA Science Inventory

    Many regions in China experience air pollution episodes because of the rapid urbanization and industrialization over the past decades. Here we analyzed the effect of emission controls implemented during the G-20 2016 Hangzhou summit on air quality. Emission controls included a fo...

  16. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption.

    PubMed

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-11-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM 2.5 ), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM 2.5 emission inventory to track primary PM 2.5 emissions embodied in the supply chain and evaluate the extent to which local PM 2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM 2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM 2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.

  17. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    NASA Astrophysics Data System (ADS)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-11-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.

  18. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    PubMed Central

    Meng, Jing; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-01-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization. PMID:27956874

  19. 76 FR 44809 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ...EPA is finalizing a limited approval and limited disapproval of permitting rules submitted for the Placer County Air Pollution Control District (PCAPCD) and Feather River Air Quality Management District (FRAQMD) portions of the California State Implementation Plan (SIP). These revisions were proposed in the Federal Register on May 19, 2011 and concern New Source Review (NSR) permit programs for new and modified major stationary sources of air pollution. We are approving local rules that regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  20. Proposed Rule for Control of Hazardous Air Pollutants From Mobile Sources - 40 CFR Parts 59, 80, 85, and 86

    EPA Pesticide Factsheets

    A proposed rule to control gasoline, passenger vehicles, and portable gasoline containers (gas cans) that would significantly reduce emissions of benzene and other hazardous air pollutants (‘‘mobile source air toxics’’).

  1. 75 FR 67676 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... National Emission Standards for Hazardous Air Pollutants for Source Categories; State of Nevada; Clark... pollutants (NESHAP) to Clark County, Nevada. DATES: Any comments on this proposal must arrive by December 3...: This proposal concerns the delegation of unchanged NESHAP to Clark County, Nevada. In the Rules and...

  2. Decline of ambient air pollution levels due to measures to control automobile emissions and effects on the prevalence of respiratory and allergic disorders among children in Japan.

    PubMed

    Hasunuma, Hideki; Ishimaru, Yasushi; Yoda, Yoshiko; Shima, Masayuki

    2014-05-01

    In Japan, air pollution due to nitrogen oxides (NOx) and particulate matter (PM) has been gradually reduced since control measures based on the Automobile NOx/PM law were enforced beginning in 2001. The effects of decrease in air pollutants due to the control measures during the past decade on the prevalence of respiratory and allergic disorders such as asthma in children were evaluated. Using data of 618,973 children collected in 28 regions of Japan from 1997 to 2009, we evaluated whether reductions in the concentrations of nitrogen dioxide (NO2) and suspended particulate matter (SPM) contribute to the decrease in the prevalence of asthma, wheezing, bronchitis, allergic rhinitis, and atopic dermatitis by multiple linear regression analysis, including adjustments for related factors. The annual rates of decrease in air pollution in the PM-law-enforced areas were 2.0 and 2.5 times higher for NO2 and SPM, respectively, compared with those in the non-enforced areas. The prevalence of asthma decreased significantly at -0.073% per year in the areas in which measures based on the Automobile NOx/PM law were taken but not in area where such measures were not applied. Multiple linear regression analysis showed a reduction in the ambient air pollution was significantly associated with a reduction in the prevalence of asthma, with a rate of 0.118% [95% confidence interval (CI): 0.012-0.225] per 1 ppb for NO2, and 0.050% [95% CI: 0.020-0.080] per 1 μg/m(3) for SPM. An increase in the ambient air pollution was associated with an increase in the prevalence of atopic dermatitis of 0.390% [95% CI: 0.107-0.673] per 1 ppb for NO2, 0.141% [95% CI: 0.058-0.224] per 1 μg/m(3) for SPM. The changes in the prevalence of wheezing and allergic rhinitis were not significantly correlated with changes in air pollutant concentrations. The enforcement of measures to control automobile emissions based on the Automobile NOx/PM law was shown to have reduced air pollution and contributed to

  3. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  4. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  5. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  6. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  7. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air quality...

  8. 30 CFR 784.26 - Air pollution control plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Air pollution control plan. 784.26 Section 784... § 784.26 Air pollution control plan. For all surface operations associated with underground mining activities, the application shall contain an air pollution control plan which includes the following: (a) An...

  9. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air quality...

  10. 30 CFR 784.26 - Air pollution control plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Air pollution control plan. 784.26 Section 784... § 784.26 Air pollution control plan. For all surface operations associated with underground mining activities, the application shall contain an air pollution control plan which includes the following: (a) An...

  11. 30 CFR 784.26 - Air pollution control plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Air pollution control plan. 784.26 Section 784... § 784.26 Air pollution control plan. For all surface operations associated with underground mining activities, the application shall contain an air pollution control plan which includes the following: (a) An...

  12. 30 CFR 784.26 - Air pollution control plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Air pollution control plan. 784.26 Section 784... § 784.26 Air pollution control plan. For all surface operations associated with underground mining activities, the application shall contain an air pollution control plan which includes the following: (a) An...

  13. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air quality...

  14. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air quality...

  15. 30 CFR 784.26 - Air pollution control plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Air pollution control plan. 784.26 Section 784... § 784.26 Air pollution control plan. For all surface operations associated with underground mining activities, the application shall contain an air pollution control plan which includes the following: (a) An...

  16. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air quality...

  17. Emissions of black carbon and co-pollutants emitted from diesel vehicles in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron

    2014-05-01

    Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to

  18. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste.

    PubMed

    Wiedinmyer, Christine; Yokelson, Robert J; Gullett, Brian K

    2014-08-19

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used for chemistry and climate modeling applications. This paper presents the first comprehensive and consistent estimates of the global emissions of greenhouse gases, particulate matter, reactive trace gases, and toxic compounds from open waste burning. Global emissions of CO2 from open waste burning are relatively small compared to total anthropogenic CO2; however, regional CO2 emissions, particularly in many developing countries in Asia and Africa, are substantial. Further, emissions of reactive trace gases and particulate matter from open waste burning are more significant on regional scales. For example, the emissions of PM10 from open domestic waste burning in China is equivalent to 22% of China's total reported anthropogenic PM10 emissions. The results of the emissions model presented here suggest that emissions of many air pollutants are significantly underestimated in current inventories because open waste burning is not included, consistent with studies that compare model results with available observations.

  19. Studies of self-pollution in diesel school buses: methodological issues.

    PubMed

    Borak, Jonathan; Sirianni, Greg

    2007-09-01

    Considerable interest has focused on levels of exhaust emissions in the cabins of diesel-powered school buses and their possible adverse health effects. Significantly different policy and engineering issues would be raised if compelling evidence found that inc-cabin contamination was due to self-pollution from bus emissions, rather than ambient pollution, neighboring vehicles, and/or re-entrained road dust. We identified 19 reports from 11 studies that measured diesel exhaust particulate in the cabins of 58 school bus of various type. Studies were evaluated in light of their experimental design, their data quality, and their capacity to quantify self-pollution. Only one study had a true experimental design, comparing the same buses with and without emission controls, while four others used intentional tracers to quantify tail pipe and/or crankcase emissions. Although definitive data are still lacking, these studies suggest that currently available control technologies can nearly eliminate particulate self-pollution inside diesel school buses.

  20. Emission controls and changes in air quality in Guangzhou during the Asian Games

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Wang, Xuemei; Zhang, Jinpu; He, Kebin; Wu, Ye; Xu, Jiayu

    2013-09-01

    With the new air quality standards forthcoming in China, the Pearl River Delta region is facing new challenges to achieve its air quality goal. The success of the emission reduction measures introduced by local authorities in the run-up to the Guangzhou Asian Games demonstrated that the Pearl River Delta air quality can be improved by introducing integrated emission reduction measures. This paper combines observation data, emission reduction measures, and air quality simulations that were applied during the Asian Games (12-27 November 2010) to analyze the relationship between emissions and concentrations of pollutants in Guangzhou. The Asian Games abatement strategy totally reduced emissions of 41.1% SO2, 41.9% NOx, 26.5% PM10, 25.8% PM2.5 and 39.7% VOC. The concentrations of SO2, NO2, PM10 and PM2.5 were reduced by 66.8%, 51.3%, 21.5% and 17.1%, respectively. In Guangzhou, the main challenge to be overcome with the new air quality daily requirements is mostly for NO2, PM2.5, and hourly ozone maxima. If pollutants maintain the same concentrations before and after the Asian Games, there will be 47.4% and 31.6% non-attainment days for NO2 and PM2.5 respectively as a period average. Although PM10 concentration can meet the daily limits (150 μg m-3), it is quite difficult to meet the annual limit value (70 μg m-3). One important implication is that the long-term, step-by-step integrated measures of the past six years work better than the strict, intensive, short-term measures on SO2, NO2 and VOC control. Dust control by limiting construction sites and watering the roads can further reduce 12.8% of the PM10 concentration. However, to reduce ambient PM2.5, the abatement strategy should be more complex and extensive. On the contrary, ozone pollution was not improved during the Asian Games, indicating that alleviation strategies should be improved by scientific studies to determine the appropriate control ratio of NO2 and VOC in the Pearl River Delta region.

  1. What Is Emissions Trading?

    EPA Pesticide Factsheets

    Learn the basics about how emissions trading uses a market-based policy tool used to control large amounts of pollution emissions from a group of sources in order to protect human health and the environment.

  2. Ozone sensitivity to its precursor emissions in northeastern Mexico for a summer air pollution episode.

    PubMed

    Sierra, A; Vanoye, A Y; Mendoza, A

    2013-10-01

    A summer episode was modeled to address the expected response of ambient air O3 to hypothetical emission control scenarios in northeastern Mexico, and in particular in the Monterrey Metropolitan Area (MMA). This region is of interest because the MMA holds one of the worst air quality problems in the country and levels of air pollutants in the rest of northeastern Mexico are starting to be a concern. The MM5-SMOKE-CMAQ platform was used to conduct the numerical experiments. Twenty-four control scenarios were evaluated, combining the level of emission controls of O3 precursors (NO(x) and volatile organic compounds [VOCs]) from 0% to 50%. For the MMA, VOC-only controls result in the best option to reduce O3 concentrations, though the benefit is limited to the urban core. This same strategy results in negligible benefits for the rest of northeastern Mexico. NO(x) controls result in an increase in O3 concentration within the MMA of up to 20 ppbv and a decrease at downwind locations of up to 11 ppbv, with respect to the base-case scenario. Indicator ratios were also used to probe for NO(x)-sensitive and VOC-sensitive areas. Locations with an important influence of NO(x) point sources (i.e., Monclova and Nava/Acuña) are quite sensitive to changes in NO(x) emissions. Border cities in the Rio Bravo/Grande Valley tend to be marginally NO(x)-sensitive. Overall, the MMA seems to be dominated by a VOC-sensitive regime, while the rest of the region would tend to have a NO(x)-sensitive response. The results obtained serve to expand the current knowledge on the chemical regimes that dominate this region (VOC- or NO(x)-sensitive), and thus could help guide public policies related to emission regional control strategies.

  3. Impact of passenger car NOX emissions on urban NO2 pollution - Scenario analysis for 8 European cities

    NASA Astrophysics Data System (ADS)

    Degraeuwe, Bart; Thunis, Philippe; Clappier, Alain; Weiss, Martin; Lefebvre, Wouter; Janssen, Stijn; Vranckx, Stijn

    2017-12-01

    Residents of large European cities are exposed to NO2 concentrations that often exceed the established air quality standards. Diesel cars have been identified as a major contributor to this situation; yet, it remains unclear to which levels the NOX emissions of diesel cars have to decrease to effectively mitigate urban NO2 pollution across Europe. Here, we take a continental perspective and model urban NO2 pollution in a generic street canyon of 8 major European cities for various NOX emission scenarios. We find that a reduction in the on-road NOX emissions of diesel cars to the Euro 6 level can in general decrease the regional and urban NO2 concentrations and thereby the frequency of exceedances of the NO2 air quality standard. High NO2 fractions in the NOX emissions of diesel cars tend to increase the urban NO2 concentrations only in proximity of intense road traffic typically found on artery roads in large cities like Paris and London. In cities with a low share of diesel cars in the vehicle fleet such as Athens or a high contribution from the NO2 background to the urban NO2 pollution such as Krakow, measures addressing heavy-duty vehicles, and the manufacturing, energy, and mining industry are necessary to decrease urban air pollution. We regard our model results as robust albeit subject to uncertainty resulting from the application of a generic street layout. With small modifications in the input parameters, our model could be used to assess the impact of NOX emissions from road transport on NO2 air pollution in any European city.

  4. Development of a stationary carbon emission inventory for Shanghai using pollution source census data

    NASA Astrophysics Data System (ADS)

    Li, Xianzhe; Jiang, Ping; Zhang, Yan; Ma, Weichun

    2016-12-01

    This study utilizes 521,631 activity data points from the 2007 Shanghai Pollution Source Census to compile a stationary carbon emission inventory for Shanghai. The inventory generated from our dataset shows that a large portion of Shanghai's total energy use consists of coal-oriented energy consumption. The electricity and heat production industries, iron and steel mills, and the petroleum refining industry are the main carbon emitters. In addition, most of these industries are located in Baoshan District, which is Shanghai's largest contributor of carbon emissions. Policy makers can use the enterpriselevel carbon emission inventory and the method designed in this study to construct sound carbon emission reduction policies. The carbon trading scheme to be established in Shanghai based on the developed carbon inventory is also introduced in this paper with the aim of promoting the monitoring, reporting and verification of carbon trading. Moreover, we believe that it might be useful to consider the participation of industries, such as those for food processing, beverage, and tobacco, in Shanghai's carbon trading scheme. Based on the results contained herein, we recommend establishing a comprehensive carbon emission inventory by inputting data from the pollution source census used in this study.

  5. Characterization of polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from joss paper burned in a furnace with air pollution control devices.

    PubMed

    Hu, Ming-Tsan; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Chang-Chien, Guo-Ping; Tsai, Jen-Hsiung

    2009-05-01

    Burning joss paper, a common practice in temples in some Asian countries, can release toxic pollutants. This study investigated polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F) emissions and profiles from burning joss paper in a temple furnace connected to two wet scrubbers. The mean total PCDD/F content and corresponding toxic equivalent quantity (TEQ) in joss paper were 193 ng kg(-1) and 0.645 ng I-TEQ kg(-1), respectively, whereas those in bottom ash from burned joss paper were 18.5 ng kg(-1) and 1.92 ng I-TEQ kg(-1), respectively. The wet scrubbers decreased individual PCDD/F emissions by 26.7-71.0% and those of total PCDD/Fs and I-TEQ by 47.2% and 66.0%, respectively. The total PCDD/F TEQ emission factors before and after the wet scrubbers were 8.14 and 3.42 microg I-TEQ ton-feedstock(-1), respectively. The estimated total PCDD/F and corresponding TEQ emissions were 5.29 g year(-1) and 0.462 g I-TEQ year(-1), respectively, in Taiwan. Burning joss paper in temple furnaces is a significant source of PCDD/F emissions.

  6. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China.

    PubMed

    Wang, N; Lyu, X P; Deng, X J; Guo, H; Deng, T; Li, Y; Yin, C Q; Li, F; Wang, S Q

    2016-12-15

    To evaluate the impact of emission control measures on the air quality in the Pearl River Delta (PRD) region of South China, statistic data including atmospheric observations, emissions and energy consumptions during 2006-2014 were analyzed, and a Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model was used for various scenario simulations. Although energy consumption doubled from 2004 to 2014 and vehicle number significantly increased from 2006 to 2014, ambient SO 2 , NO 2 and PM 10 were reduced by 66%, 20% and 24%, respectively, mainly due to emissions control efforts. In contrast, O 3 increased by 19%. Model simulations of three emission control scenarios, including a baseline (a case in 2010), a CAP (a case in 2020 assuming control strength followed past control tendency) and a REF (a case in 2020 referring to the strict control measures based on recent policy/plans) were conducted to investigate the variations of air pollutants to the changes in NO x , VOCs and NH 3 emissions. Although the area mean concentrations of NO x , nitrate and PM 2.5 decreased under both NO x CAP (reduced by 1.8%, 0.7% and 0.2%, respectively) and NO x REF (reduced by 7.2%, 1.8% and 0.3%, respectively), a rising of PM 2.5 was found in certain areas as reducing NO x emissions elevated the atmospheric oxidizability. Furthermore, scenarios with NH 3 emission reductions showed that nitrate was sensitive to NH 3 emissions, with decreasing percentages of 0-10.6% and 0-48% under CAP and REF, respectively. Controlling emissions of VOCs reduced PM 2.5 in the southwestern PRD where severe photochemical pollution frequently occurred. It was also found that O 3 formation in PRD was generally VOCs-limited while turned to be NO x -limited in the afternoon (13:00-17:00), suggesting that cutting VOCs emissions would reduce the overall O 3 concentrations while mitigating NO x emissions in the afternoon could reduce the peak O 3 levels. Copyright © 2016 Elsevier B

  7. Implications of emission inventory choice for modeling fire-related pollution in the U.S. (2017 CMAS)

    EPA Science Inventory

    Fires are a major source of fine particulate matter (PM2.5), one of the most harmful ambient pollutants for human health globally. Within the U.S., fire emissions can account for more than 30% of total PM2.5 emissions annually. In order to represent the influence of fire emission...

  8. 40 CFR 61.183 - Emission monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.183 Emission monitoring. (a... arsenic trioxide and metallic arsenic process emission stream that exits from a control device. (b) The...

  9. 40 CFR 61.183 - Emission monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.183 Emission monitoring. (a... arsenic trioxide and metallic arsenic process emission stream that exits from a control device. (b) The...

  10. Teaching Applied Chemistry in a Pollution Control Context.

    ERIC Educational Resources Information Center

    Sell, Nancy J.

    1982-01-01

    Discusses rationale behind and content of a course (Industrial Pollution Control Techniques) combining knowledge from fields of industrial chemistry and chemical engineering and utilizing this knowledge in the context of understanding pollution problems and potential methods of pollution control. (Author/SK)

  11. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  12. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  13. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  14. Dynamic optimal strategies in transboundary pollution game under learning by doing

    NASA Astrophysics Data System (ADS)

    Chang, Shuhua; Qin, Weihua; Wang, Xinyu

    2018-01-01

    In this paper, we present a transboundary pollution game, in which emission permits trading and pollution abatement costs under learning by doing are considered. In this model, the abatement cost mainly depends on the level of pollution abatement and the experience of using pollution abatement technology. We use optimal control theory to investigate the optimal emission paths and the optimal pollution abatement strategies under cooperative and noncooperative games, respectively. Additionally, the effects of parameters on the results have been examined.

  15. Pesticide Active Ingredient Production Industry: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This action promulgates national emission standards for hazardous air pollutants (NESHAP) for the pesticide active ingredient (PAI) production source category under section 112 of the Clean Air Act as amended (CAA or Act).

  16. Status of the first NASA EV-I Project, Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2013-12-01

    TEMPO is the first NASA Earth Venture Instrument. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (2 km N/S × 4.5 km E/W at the center of its field of regard). The status of TEMPO including progress in instrument definition and implementation of the ground system will be presented. TEMPO provides a minimally-redundant measurement suite that includes all key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO will be delivered in 2017 for integration onto a NASA-selected GEO host spacecraft for launch as early as 2018. It will provide the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. Additional gases not central to air quality, including BrO, OClO, and IO will also be measured. TEMPO and its Asian (GEMS) and European (Sentinel-4) constellation partners make the first tropospheric trace gas measurements from GEO, building on the heritage of six spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed

  17. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX), carbon monoxide (CO...) Source-specific emission tests; (ii) Mass balance calculations; (iii) Published, verifiable emission...

  18. Laboratory evaluation of electrostatic spray wet scrubber to control particulate matter emissions from poultry facilities

    USDA-ARS?s Scientific Manuscript database

    Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...

  19. Implications of alternative assumptions regarding future air pollution control in scenarios similar to the Representative Concentration Pathways

    NASA Astrophysics Data System (ADS)

    Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef P.; Hazeleger, Wilco; Strunk, Achim; Deetman, Sebastiaan; Beltran, Angelica Mendoza; van Vliet, Jasper

    2013-11-01

    The uncertain, future development of emissions of short-lived trace gases and aerosols forms a key factor for future air quality and climate forcing. The Representative Concentration Pathways (RCPs) only explore part of this range as they all assume that worldwide ambitious air pollution control policies will be implemented. In this study, we explore how different assumptions on future air pollution policy and climate policy lead to different concentrations of air pollutants for a set of RCP-like scenarios developed using the IMAGE model. These scenarios combine low and high air pollution variants of the scenarios with radiative forcing targets in 2100 of 2.6 W m-2 and 6.0 W m-2. Simulations using the global atmospheric chemistry and transport model TM5 for the present-day climate show that both climate mitigation and air pollution control policies have large-scale effects on pollutant concentrations, often of similar magnitude. If no further air pollution policies would be implemented, pollution levels could be considerably higher than in the RCPs, especially in Asia. Air pollution control measures could significantly reduce the warming by tropospheric ozone and black carbon and the cooling by sulphate by 2020, and in the longer term contribute to enhanced warming by methane. These effects tend to cancel each other on a global scale. According to our estimates the effect of the worldwide implementation of air pollution control measures on the total global mean direct radiative forcing in 2050 is +0.09 W m-2 in the 6.0 W m-2 scenario and -0.16 W m-2 in the 2.6 W m-2 scenario.

  20. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2013-02-01

    Increases in surface ozone (O3) and fine particulate matter (≤2.5 μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860) to present (2000) and the global present-day (2000) premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 μg m-3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations), respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O35) to change by +7.5 ± 0.19 μg m-3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 μg m-3 (+0.5 ± 0.28 ppbv), and 0.04 ± 0.24 μg m-3 (+4.3 ± 0.33 ppbv), respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2-1.8) million cardiopulmonary mortalities and 95 (95% CI, 44-144) thousand lung cancer mortalities annually and changes in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their

  1. Air pollution engineering

    NASA Astrophysics Data System (ADS)

    Maduna, Karolina; Tomašić, Vesna

    2017-11-01

    Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.

  2. EPA RESEARCH IN URBAN STORMWATER POLLUTION CONTROL

    EPA Science Inventory

    This state-of-the-art on the Environmental Protection Agency' s research in urban stormwater and combined sewer overflow pollution control describes the major elements of the Urban Runoff Pollution Control Program. roblem definition, users assistance tools, management alternative...

  3. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.

    PubMed

    Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke

    2016-12-01

    Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO x ) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city

    NASA Astrophysics Data System (ADS)

    González, C. M.; Gómez, C. D.; Rojas, N. Y.; Acevedo, H.; Aristizábal, B. H.

    2017-03-01

    Cities in emerging countries are facing a fast growth and urbanization; however, the study of air pollutant emissions and its dynamics is scarce, making their populations vulnerable to potential effects of air pollution. This situation is critical in medium-sized urban areas built along the tropical Andean mountains. This work assesses the contribution of on-road vehicular and point-source industrial activities in the medium-sized Andean city of Manizales, Colombia. Annual fluxes of criteria pollutants, NMVOC, and greenhouse gases were estimated. Emissions were dominated by vehicular activity, with more than 90% of total estimated releases for the majority of air pollutants. On-road vehicular emissions for CO (43.4 Gg/yr) and NMVOC (9.6 Gg/yr) were mainly associated with the use of motorcycles (50% and 81% of total CO and NMVOC emissions respectively). Public transit buses were the main source of PM10 (47%) and NOx (48%). The per-capita emission index was significantly higher in Manizales than in other medium-sized cities, especially for NMVOC, CO, NOx and CO2. The unique mountainous terrain of Andean cities suggest that a methodology based on VSP model could give more realistic emission estimates, with additional model components that include slope and acceleration. Food and beverage facilities were the main contributors of point-source industrial emissions for PM10 (63%), SOx (55%) and NOx (45%), whereas scrap metal recycling had high emissions of CO (73%) and NMVOC (47%). Results provide the baseline for ongoing research in atmospheric modeling and urban air quality, in order to improve the understanding of air pollutant fluxes, transport and transformation in the atmosphere. In addition, this emission inventory could be used as a tool to identify areas of public health exposure and provide information for future decision makers.

  5. 40 CFR 63.1583 - What are the emission points and control requirements for an industrial POTW treatment plant?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control requirements for an industrial POTW treatment plant? 63.1583 Section 63.1583 Protection of... Pollutants: Publicly Owned Treatment Works Industrial Potw Treatment Plant Description and Requirements § 63.1583 What are the emission points and control requirements for an industrial POTW treatment plant? (a...

  6. The Net Climate Impact of Coal-Fired Power Plant Emissions

    NASA Technical Reports Server (NTRS)

    Shindell, D.; Faluvegi, G.

    2010-01-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until 1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogeneities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate

  7. The net climate impact of coal-fired power plant emissions

    NASA Astrophysics Data System (ADS)

    Shindell, D.; Faluvegi, G.

    2010-04-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until ~1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low-sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogenaities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate

  8. Future anthropogenic pollutant emissions in a Mediterranean port city with emphasis on the maritime sector emissions - Study of the impact on the city air quality

    NASA Astrophysics Data System (ADS)

    Liora, Natalia; Poupkou, Anastasia; Markakis, Konstantinos; Giannaros, Theodoros; Karagiannidis, Athanasios; Melas, Dimitrios

    2013-04-01

    The aim of this study is the estimation of the future emissions in the area of the large urban center of Thessaloniki (Greece) with emphasis on the emissions originated from the maritime sector within the port area of the city which are presented in detail. In addition, the contribution of the future anthropogenic emissions to atmospheric pollution levels in Thessaloniki focusing on PM levels is studied. A 2km spatial resolution anthropogenic gaseous and particulate matter emission inventory has been compiled for the port city of Thessaloniki for the year 2010 with the anthropogenic emission model MOSESS, developed by Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki. MOSESS was used for the estimation of emissions from several emission sources (road transport, central heating, industries, maritime sector etc) while the natural emission model NEMO was implemented for the calculation of dust, sea salt and biogenic emissions. Maritime emissions originated from the various processes inside the area of the port (harbor operations such as stockpiles, loading/unloading operations, machineries etc) as well as from the maritime transport sector including passenger ships, cargo shipping, inland waterways vessels (e.g. pleasure crafts) and fish catching ships. Ship emissions were estimated for the three operation modes; cruising, maneuvering and hotelling. For the calculation of maritime emissions, the activity data used were provided by local and national authorities (e.g.Thessaloniki Port Authority S.A.). Pollutant anthropogenic emissions were projected to the year 2020. The emissions from all the anthropogenic sources except for the maritime sector were projected using factors provided by the GAINS model. Future emissions from the maritime activities were estimated on the basis of the future activity data provided by the Port Authority and of the legislation for shipping in the future. Future maritime emissions are determined by the vessels

  9. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide... systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for...

  10. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide... systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for...

  11. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide... systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for...

  12. EVALUATION OF POLLUTION PREVENTION OPTIONS TO REDUCE STYRENE EMISSIONS FROM FIBER-REINFORCED PLASTIC OPEN MOLDING PROCESSES

    EPA Science Inventory

    Pollution prevention (P2) options to reduce styrene emissions, such as new materials, and application equipment, are commercially available to the operators of open molding processes. However, information is lacking on the emissions reduction that these options can achieve. To me...

  13. 76 FR 13851 - National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...This action proposes amendments to the national emission standards for hazardous air pollutants (NESHAP) for mercury emissions from mercury cell chlor-alkali plants (Mercury Cell NESHAP). On June 11, 2008, EPA proposed amendments to this NESHAP in response to a petition for reconsideration filed by the Natural Resources Defense Council (NRDC). This action is a supplement to the June 11, 2008, proposal. Specifically, this action proposes two options for amending the NESHAP for mercury emissions from mercury cell chlor-alkali plants. The first option would require the elimination of mercury emissions and thus encourage the conversion to non-mercury technology. The second option would require the measures proposed in 2008. These measures, which included significant improvements in the work practices to reduce fugitive emissions from the cell room, would result in near-zero levels of mercury emissions while still allowing the mercury cell facilities to continue to operate. We are specifically requesting comment on which of these options is more appropriate, and may finalize either option or a combination of elements from them. In addition, this action proposes several amendments that would apply regardless of which option we select. These proposed amendments are provisions of the existing NESHAP that would apply to periods of startup, shutdown, and malfunction (SSM), and corrections to compliance errors in the currently effective rule.

  14. Firm productivity, pollution, and output: theory and empirical evidence from China.

    PubMed

    Tang, Erzi; Zhang, Jingjing; Haider, Zulfiqar

    2015-11-01

    Using a theoretical model, this paper argues that as firm productivity increases, there is a decrease in firm-level pollution intensity. However, as productivity increases, firms tend to increase their aggregate output, which requires the use of additional resources that increase pollution. Hence, an increase in productivity results in two opposing effects where increased productivity may in fact increase pollution created by a firm. We describe the joint effect of these two mechanisms on pollution emissions as the "productivity dilemma" of pollution emission. Based on firm-level data from China, we also empirically test this productivity dilemma hypothesis. Our empirical results suggest that, in general, firm productivity has a positive and statistically significant impact on pollution emission in China. However, the impact of productivity on pollution becomes negative when we control for increases in firm output. The empirical evidence also confirms the positive influence of productivity on output, which suggests that the main determinant of pollution is the firm's output. The empirical results provide evidence of the existence of, what we describe as, the productivity dilemma of pollution emission.

  15. Control of ammonia and urea emissions from urea manufacturing facilities of Petrochemical Industries Company (PIC), Kuwait.

    PubMed

    Khan, A R; Al-Awadi, L; Al-Rashidi, M S

    2016-06-01

    Petrochemical Industries Company (PIC) in Kuwait has mitigated the pollution problem of ammonia and urea dust by replacing the melting and prilling units of finished-product urea prills with an environmentally friendly granulation process. PIC has financed a research project conducted by the Coastal and Air Pollution Program's research staff at the Kuwait Institute for Scientific Research to assess the impact of pollution control strategies implemented to maintain a healthy productive environment in and around the manufacturing premises. The project was completed in three phases: the first phase included the pollution monitoring of the melting and prilling units in full operation, the second phase covered the complete shutdown period where production was halted completely and granulation units were installed, and the last phase encompassed the current modified status with granulation units in full operation. There was substantial decrease in ammonia emissions, about 72%, and a 52.7% decrease in urea emissions with the present upgrading of old melting and prilling units to a state-of-the-art technology "granulation process" for a final finished product. The other pollutants, sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds (VOCs), have not shown any significant change, as the present modification has not affected the sources of these pollutants. Petrochemical Industries Company (PIC) in Kuwait has ammonia urea industries, and there were complaints about ammonia and urea dust pollution. PIC has resolved this problem by replacing "melting and prilling unit" of final product urea prills by more environmentally friendly "granulation unit." Environmental Pollution and Climate Program has been assigned the duty of assessing the outcome of this change and how that influenced ammonia and urea dust emissions from the urea manufacturing plant.

  16. A Techno-Economic Analysis of Emission Controls on Hydrocarbon Biofuel Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Arpit; Zhang, Yimin; Davis, Ryan

    Biofuels have the potential to reduce our dependency on petroleum-derived transportation fuels and decrease greenhouse gas (GHG) emissions. Although the overall GHG emissions from biofuels are expected to be lower when compared to those of petroleum fuels, the process of converting biomass feedstocks into biofuels emits various air pollutants, which may be subject to federal air quality regulation or emission limits. While prior research has evaluated the technical and economic feasibility of biofuel technologies, gaps still exist in understanding the regulatory issues associated with the biorefineries and their economic implications on biofuel production costs (referred to as minimum fuel sellingmore » price (MFSP) in this study). The aim of our research is to evaluate the economic impact of implementing emission reduction technologies at biorefineries and estimate the cost effectiveness of two primary control technologies that may be required for air permitting purposes. We analyze a lignocellulosic sugars-to-hydrocarbon biofuel production pathway developed by the National Renewable Energy Laboratory (NREL) and implement air emission controls in Aspen Plus to evaluate how they affect the MFSP. Results from this analysis can help inform decisions about biorefinery siting and sizing, as well as mitigate the risks associated with air permitting.« less

  17. APEX (Air Pollution Exercise) Volume 21: Legal References: Air Pollution Control Regulations.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Legal References: Air Pollution Control Regulations Manual is the last in a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The manual…

  18. Are Changing Emission Patterns Across the Northern Hemisphere Influencing Long-range Transport Contributions to Background Air Pollution?

    EPA Science Inventory

    Air pollution reduction strategies for a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Contrasting changes in emissio...

  19. Krakow conference on low emissions sources: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, B.L.; Butcher, T.A.

    1995-12-31

    The Krakow Conference on Low Emission Sources presented the information produced and analytical tools developed in the first phase of the Krakow Clean Fossil Fuels and Energy Efficiency Program. This phase included: field testing to provide quantitative data on missions and efficiencies as well as on opportunities for building energy conservation; engineering analysis to determine the costs of implementing pollution control; and incentives analysis to identify actions required to create a market for equipment, fuels, and services needed to reduce pollution. Collectively, these Proceedings contain reports that summarize the above phase one information, present the status of energy system managementmore » in Krakow, provide information on financing pollution control projects in Krakow and elsewhere, and highlight the capabilities and technologies of Polish and American companies that are working to reduce pollution from low emission sources. It is intended that the US reader will find in these Proceedings useful results and plans for control of pollution from low emission sources that are representative of heating systems in central and Eastern Europe. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  20. Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data.

    PubMed

    Gately, Conor K; Hutyra, Lucy R; Peterson, Scott; Sue Wing, Ian

    2017-10-01

    On-road emissions vary widely on time scales as short as minutes and length scales as short as tens of meters. Detailed data on emissions at these scales are a prerequisite to accurately quantifying ambient pollution concentrations and identifying hotspots of human exposure within urban areas. We construct a highly resolved inventory of hourly fluxes of CO, NO 2 , NO x , PM 2.5 and CO 2 from road vehicles on 280,000 road segments in eastern Massachusetts for the year 2012. Our inventory integrates a large database of hourly vehicle speeds derived from mobile phone and vehicle GPS data with multiple regional datasets of vehicle flows, fleet characteristics, and local meteorology. We quantify the 'excess' emissions from traffic congestion, finding modest congestion enhancement (3-6%) at regional scales, but hundreds of local hotspots with highly elevated annual emissions (up to 75% for individual roadways in key corridors). Congestion-driven reductions in vehicle fuel economy necessitated 'excess' consumption of 113 million gallons of motor fuel, worth ∼ $415M, but this accounted for only 3.5% of the total fuel consumed in Massachusetts, as over 80% of vehicle travel occurs in uncongested conditions. Across our study domain, emissions are highly spatially concentrated, with 70% of pollution originating from only 10% of the roads. The 2011 EPA National Emissions Inventory (NEI) understates our aggregate emissions of NO x , PM 2.5 , and CO 2 by 46%, 38%, and 18%, respectively. However, CO emissions agree within 5% for the two inventories, suggesting that the large biases in NO x and PM 2.5 emissions arise from differences in estimates of diesel vehicle activity. By providing fine-scale information on local emission hotspots and regional emissions patterns, our inventory framework supports targeted traffic interventions, transparent benchmarking, and improvements in overall urban air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Exposure to industrial air pollutant emissions and lung function in children: Canadian Health Measures Survey, 2007 to 2011.

    PubMed

    Wong, Suzy L; Coates, Allan L; To, Teresa

    2016-02-01

    Long-term exposure to ambient air pollution has been associated with adverse effects on children's lung function. Few studies have examined lung function in relation to industrial emissions of air pollutants. This cross-sectional study was based on 2,833 respondents aged 6 to 18 for whom spirometry data were collected by the Canadian Health Measures Survey, 2007 to 2011. The weighted sum of industrial air emissions of nitrogen oxides (NOₓ) and fine particulate matter (PM2.5) within 25 km of the respondent's residence was derived using National Pollutant Release Inventory data. Multivariate linear regression was used to examine the relationship between NOₓ and PM2.5 emissions and forced vital capacity (FVC), the forced expiratory volume in 1 sec (FEV₁), and the ratio of the two (FEV₁/FVC). Industrial air emissions of NOₓ were not significantly associated with lung function among males or females. Emissions of PM2.5 were negatively associated with FEV₁ and FEV₁/FVC, but not FVC, among males. PM2.5 was not significantly related to lung function among females. The associations that emerged between lung function and industrial emissions of PM2.5 among males were consistent with airway obstruction. Further research is warranted to investigate the gender differences observed in this study.

  2. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  3. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  4. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  5. Performance evaluation on air pollution reducing facilities and mechanism research on the third-party governance on environmental pollution

    NASA Astrophysics Data System (ADS)

    Bingsheng, Xu; Ling, Lin; Jin, Huang; Geng, Wang; Jianhua, Chen; Shuo, Yang; Huiting, Guo

    2017-11-01

    The paper focuses on developing the operational efficiency of air pollution reducing facilities and the treatment effect of the third-party governance on environmental pollution. Comprehensive analysis method and influence factor analysis are employed to build an evaluation index system by means of discussing major pollution control factors derived from the performance of pollution control equipment operation, environmental protection, technological economy, recourse consumption and manufacturing management. Based on the pattern of environmental pollution control offered by the third-party company, the static games model is further established between the government and the pollution emission firm by considering the whole process of the pollution abatement including investment, construction and operation of the treatment project, which focuses on establishing the policy condition and consequence by discussing the cost and benefit in a short and a long time, respectively. The research results can improve the market access requests of the pollution control equipment and normalize the environmental protection service offered by the third-party company. Moreover, the establishment of the evaluation index system for pollution control equipment and the evaluation mechanism for the third-party governance on environmental pollution has guiding significance on leading environmental protection industry and promoting market-oriented development

  6. Air pollution and risk of urinary bladder cancer in a case-control study in Spain.

    PubMed

    Castaño-Vinyals, Gemma; Cantor, Kenneth P; Malats, Núria; Tardon, Adonina; Garcia-Closas, Reina; Serra, Consol; Carrato, Alfredo; Rothman, Nathaniel; Vermeulen, Roel; Silverman, Debra; Dosemeci, Mustafa; Kogevinas, Manolis

    2008-01-01

    Air pollution has been associated with an increased risk for lung cancer. We examined whether long-term air pollution is associated with bladder cancer risk. Information from a case-control study in Spain that included 1219 incident cases and 1271 hospital controls was used. Information on residential history including several indicators of exposure to air pollution and other potential risk factors was collected in a face-to-face computerised personal interview. Odds ratios (OR) and 95% confidence intervals (95% CI) were adjusted for age, gender, region, smoking, occupation, water contaminants and diet. Living more than 40 years in a city with a population of more than 100 000 was associated with an increased risk for bladder cancer overall (OR 1.30, 95% CI 1.04 to 1.63). Emissions of polycyclic aromatic hydrocarbons and diesel from industries near the residence, as evaluated by experts, were associated with an increased risk (OR 1.29, 95% CI 0.85 to 1.98), while lower or no excess risks were observed for other pollution-related variables. Odds ratios among never smokers tended to be higher than among smokers. The small to moderate positive associations found for several indices of air pollution and bladder cancer, while suggestive of excess risk, require further evaluation in other settings.

  7. Spatiotemporal comparison of highly-resolved emissions and concentrations of carbon dioxide and criteria pollutants in Salt Lake City, Utah for health and policy applications

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Fasoli, B.; Bares, R.; o'Keefe, D.; Song, T.; Huang, J.; Horel, J.; Crosman, E.; Ehleringer, J. R.

    2015-12-01

    This study addresses the need for robust highly-resolved emissions and concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are dependent on proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present emissions inventories and modeled concentrations for CO2 and CAPs: carbon monoxide (CO), lead (Pb), nitrogen oxides (NOx), particulate matter (PM2.5 and PM10), and sulfur oxides (SOx) for Salt Lake County, Utah. We compare the resulting concentrations against stationary and mobile measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at an hourly, building and road link resolution as well as hourly gridded emissions with a 0.002o x 0.002o spatial resolution. Two methods for deriving criteria pollutant emission inventories were compared. One was constructed using methods similar to Hestia but downscales total emissions based on the 2011 National Emissions Inventory (NEI). The other used Emission Modeling Clearinghouse spatial and temporal surrogates to downscale the NEI data from annual and county-level resolution to hourly and 0.002o x 0.002o grid cells. The gridded emissions from both criteria pollutant methods were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The CALPUFF dispersion model was used to transport emissions and estimate air pollutant concentrations at an hourly 0.002o x 0.002o resolution. The resulting concentrations were spatially compared in the same manner

  8. Railroads and Air Pollution : A Perspective

    DOT National Transportation Integrated Search

    1973-01-01

    A review of existing air pollution control legislation is presented with emphasis on legislation affecting the rail industry. Locomotive exhaust emissions, especially smoke, are receiving the bulk of attention from control agencies and the general pu...

  9. Motorcycle pollution control in Taiwan, Republic of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H.W.; Hsiao, H.C.; Walsh, M.P.

    1998-12-31

    The Taiwan EPA has developed a comprehensive approach to motor vehicle pollution control. Building on its early adoption of US `83 standards for light duty vehicles (starting July 1, 1990) it recently moved to US `87 requirements, which include the 0.2 gram per mile particulate standard, as of July 1, 1995. Heavy duty diesel particulate standards almost as stringent as US `90, 6.0 grams per brake horsepower hour NO{sub x} and 0.7 particulate, using the US transient test procedure, went into effect on July 1, 1993. It is intended that US`94 standards, 5.0 NO{sub x} and 0.25 particulate, will bemore » adopted soon. Clearly the most distinctive feature of the Taiwan program, however, is its motorcycle control effort, reflecting the fact that motorcycles dominate the vehicle fleet and are a substantial source of emissions. This paper will summarize Taiwan`s extensive efforts to address this problem.« less

  10. Emissions from gas fired agricultural burners

    USDA-ARS?s Scientific Manuscript database

    Because of the Federal Clean Air Act, the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) began defining Best Available Control Technology (BACT) for NOx emissions from cotton gin drying system gas fired burners in its jurisdiction. The NOx emission levels of conventionally used...

  11. 40 CFR 1060.230 - How do I select emission families?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... family if they are the same in all the following aspects: (1) Emission control strategy and design. (2... POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT... emission characteristics throughout their useful life. (b) Group fuel lines into the same emission family...

  12. 40 CFR 1060.230 - How do I select emission families?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... family if they are the same in all the following aspects: (1) Emission control strategy and design. (2... POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT... emission characteristics throughout their useful life. (b) Group fuel lines into the same emission family...

  13. 40 CFR 1060.230 - How do I select emission families?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... family if they are the same in all the following aspects: (1) Emission control strategy and design. (2... POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT... emission characteristics throughout their useful life. (b) Group fuel lines into the same emission family...

  14. 40 CFR 1060.230 - How do I select emission families?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... family if they are the same in all the following aspects: (1) Emission control strategy and design. (2... POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT... emission characteristics throughout their useful life. (b) Group fuel lines into the same emission family...

  15. 40 CFR 1060.230 - How do I select emission families?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... family if they are the same in all the following aspects: (1) Emission control strategy and design. (2... POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT... emission characteristics throughout their useful life. (b) Group fuel lines into the same emission family...

  16. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART II

    EPA Science Inventory

    The southern Lake Michigan area continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues to these sources and their contributions to urban pollut...

  17. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources.

    PubMed

    Hime, Neil J; Marks, Guy B; Cowie, Christine T

    2018-06-08

    This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM) air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.

  18. MOBILE EMISSIONS CHARACTERIZATION TEAM (HANDOUT)

    EPA Science Inventory

    The handout describes the Mobile Emissions Characterization Team of EPA's Office of Research and Development, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division. The team conducts research to characterize and evaluate emissions of volatile...

  19. Air-pollution emission control in China: impacts on soil acidification recovery and constraints due to drought.

    PubMed

    Duan, Lei; Liu, Jing; Xin, Yan; Larssen, Thorjørn

    2013-10-01

    The Chinese government has established compulsory targets to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions by 8% and 10%, respectively, during 2010-2015. In this study, the effect of the policy was evaluated by predicting the recovery of acidified forest soil in Chongqing, an area severely impacted by acid rain in southwest China. Since precipitation has decreased significantly in this area in recent years, the impact of drought on soil acidification was also considered. A dynamic acidification model, MAGIC, was used to predict future trends in soil chemistry under different scenarios for deposition reduction as well as drought. We found that the current regulation of SO2 emission abatement did not significantly increase soil water pH values, the Ca2+ to Al3+ molar ratio (Ca/Al), or soil base saturation to the level of 2000 before 2050. NOx emission control would have less of an effect on acidification recovery, while emission reduction of particulate matter could offset the benefits of SO2 reduction by greatly decreasing the deposition of base cations, particularly Ca(2+). Continuous droughts in the future might also delay acidification recovery. Therefore, more stringent SO2 emission control should be implemented to facilitate the recovery of seriously acidified areas in China. © 2013 Elsevier B.V. All rights reserved.

  20. PUBLICATIONS (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division produces and publishes highly specialized technical and scientific documents related to APTB's research. Areas of research covered include artificial intelligence, CFC destruction,...

  1. The contribution of megacities to regional sulfur pollution in Asia

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Carmichael, Gregory R.; Calori, Giuseppe; Eck, Christina; Woo, Jung-Hun

    Asia is undergoing rapid urbanization resulting in increasing air pollution threats in its cities. The contribution of megacities to sulfur emissions and pollution in Asia is studied over a 25-year period (1975-2000) using a multi-layer Lagrangian puff transport model. Asian megacities cover <2% of the land area but emit ˜16% of the total anthropogenic sulfur emissions of Asia. It is shown that urban sulfur emissions contribute over 30% to the regional pollution levels in large parts of Asia. The average contribution of megacities over the western Pacific increased from <5% in 1975 to >10% in 2000. Two future emission scenarios are evaluated for 2020—"business as usual (BAU)" and "maximum feasible controls (MAXF)" to establish the range of reductions possible for these cities. The MAXF scenario would result in 2020 S-emissions that are ˜80% lower than those in 2000, at an estimated control cost of US 87 billion per year (1995 US) for all of Asia. An urban scale analysis of sulfur pollution for four megacities—Shanghai, and Chongqing in China; Seoul in South Korea; and Mumbai (formerly Bombay) in India is presented. If pollution levels were allowed to increase under BAU, over 30 million people in these cities alone would be exposed to levels in excess of the WHO guidelines.

  2. Supplement B to compilation of air pollutant emission factors, volume 1. Stationary point and area sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains emission factors and process information for more than 200 air pollution source categories. This Supplement to AP-42 addresses pollutant-generating activity from Bituminous And Subbituminous Coal Combustion, Anthracite Coal Combustion, Fuel Oil Combustion, Natural Gas Combustion, Liquefied Petroleum Gas Combustion, Wood Waste Combustion In Boilers, Lignite Combustion, Bagasse Combustion In Sugar Mills, Residential Fireplaces, Residential Wood Stoves, Waste Oil Combustion, Stationary Gas Turbines For Electricity Generation, Heavy-duty Natural Gas-fired Pipeline Compressor Engines And Turbines, Gasoline and Diesel Industrial Engines, Large Stationary Diesel And All Stationary Dual-fuel Engines, Adipic Acid, Cotton Ginning, Alfafalfa Dehydrating, Malt Beverages, Ceramic Products Manufacturing,more » Electroplating, Wildfires And Prescribed Burning, Emissions From Soils-Greenhouse Gases, Termites-Greenhouse Gases, and Lightning Emissions-Greenhouse Gases.« less

  3. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  4. Black carbon, organic carbon, and co-pollutant emissions and energy efficiency from artisanal brick production in Mexico

    NASA Astrophysics Data System (ADS)

    Zavala, Miguel; Molina, Luisa T.; Maiz, Pablo; Monsivais, Israel; Chow, Judith C.; Watson, John G.; Munguia, Jose Luis; Cardenas, Beatriz; Fortner, Edward C.; Herndon, Scott C.; Roscioli, Joseph R.; Kolb, Charles E.; Knighton, Walter B.

    2018-04-01

    In many parts of the developing world and economies in transition, small-scale traditional brick kilns are a notorious source of urban air pollution. Many are both energy inefficient and burn highly polluting fuels that emit significant levels of black carbon (BC), organic carbon (OC) and other atmospheric pollutants into local communities, resulting in severe health and environmental impacts. However, only a very limited number of studies are available on the emission characteristics of brick kilns; thus, there is a need to characterize their gaseous and particulate matter (PM) emission factors to better assess their overall contribution to emissions inventories and to quantify their ecological, human health, and climate impacts. In this study, the fuel-, energy-, and brick-based emissions factors and time-based emission ratios of BC, OC, inorganic PM components, CO, SO2, CH4, NOx, and selected volatile organic compounds (VOCs) from three artisanal brick kilns with different designs in Mexico were quantified using the tracer ratio sampling technique. Simultaneous measurements of PM components, CO, and CO2 were also obtained using a sampling probe technique. Additional measurements included the internal temperature of the brick kilns, mechanical resistance of bricks produced, and characteristics of fuels employed. Average fuel-based BC emission factors ranged from 0.15 to 0.58 g (kg fuel)-1, whereas BC/OC mass ratios ranged from 0.9 to 5.2, depending on the kiln type. The results show that both techniques capture similar temporal profiles of the brick kiln emissions and produce comparable emission factors. A more integrated inter-comparison of the brick kilns' performances was obtained by simultaneously assessing emissions factors, energy efficiency, fuel consumption, and the quality of the bricks produced.

  5. Impacts of Air Pollution on Health in Eastern China: Implications for future air pollution and energy policies

    NASA Astrophysics Data System (ADS)

    Wang, X.; Mauzerall, D.

    2004-12-01

    Our objective is to establish the link between energy consumption and technologies, air pollution and resulting impacts on public health in eastern China. We quantify the impacts that air pollution in the Shandong region of eastern China has on public health in 2000 and quantify the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual, through the implementation of new energy technology. We first develop a highly-resolved emission inventory for the year 2000 for the Shandong region of China including emissions from large point, area, mobile and biogenic sources. We use the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) to process emissions from this inventory for use in the Community Multi-scale Air Quality modeling system (CMAQ) which we drive with the NCAR/PSU MM5 meso-scale meteorology model. We evaluate the inventory by comparing CMAQ results with available measurements of PM10 and SO2 from air pollution indices (APIs) reported in various Chinese municipalities during 2002-2004. We use epidemiological dose-response functions to quantify health impacts and values of a statistical life (VSL) and years-of-life-lost (YLL) to establish a range for the monetary value of these impacts. To examine health impacts and their monetary value, we focus explicitly on Zaozhuang, a coal-intensive city in the Shandong region of eastern China, and quantify the mortalities and morbidities resulting from air pollutants emitted from this city in 2000, and in 2020 using business-as-usual, best-available control technology, and advanced coal gasification technology scenarios. In all scenarios most health damages arise from exposure to particulate matter. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang accounted for 4-10% of its GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have doubled. With no new

  6. 40 CFR 63.1586 - What are the emission points and control requirements for a non-industrial POTW treatment plant?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control requirements for a non-industrial POTW treatment plant? 63.1586 Section 63.1586 Protection of... Pollutants: Publicly Owned Treatment Works Non-Industrial Potw Treatment Plant Requirements § 63.1586 What are the emission points and control requirements for a non-industrial POTW treatment plant? There are...

  7. Air pollution response to changing weather and power plant emissions in the eastern United States

    NASA Astrophysics Data System (ADS)

    Bloomer, Bryan Jaye

    Air pollution in the eastern United States causes human sickness and death as well as damage to crops and materials. NOX emission reduction is observed to improve air quality. Effectively reducing pollution in the future requires understanding the connections between smog, precursor emissions, weather, and climate change. Numerical models predict global warming will exacerbate smog over the next 50 years. My analysis of 21 years of CASTNET observations quantifies a climate change penalty. I calculate, for data collected prior to 2002, a climate penalty factor of ˜3.3 ppb O3/°C across the power plant dominated receptor regions in the rural, eastern U.S. Recent reductions in NOX emissions decreased the climate penalty factor to ˜2.2 ppb O3/°C. Prior to 1995, power plant emissions of CO2, SO2, and NOX were estimated with fuel sampling and analysis methods. Currently, emissions are measured with continuous monitoring equipment (CEMS) installed directly in stacks. My comparison of the two methods show CO 2 and SO2 emissions are ˜5% lower when inferred from fuel sampling; greater differences are found for NOX emissions. CEMS are the method of choice for emission inventories and commodity trading and should be the standard against which other methods are evaluated for global greenhouse gas trading policies. I used CEMS data and applied chemistry transport modeling to evaluate improvements in air quality observed by aircraft during the North American electrical blackout of 2003. An air quality model produced substantial reductions in O3, but not as much as observed. The study highlights weaknesses in the model as commonly used for evaluating a single day event and suggests areas for further investigation. A new analysis and visualization method quantifies local-daily to hemispheric-seasonal scale relationships between weather and air pollution, confirming improved air quality despite increasing temperatures across the eastern U.S. Climate penalty factors indicate

  8. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    NASA Astrophysics Data System (ADS)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  9. A high-resolution emission inventory of primary pollutants for the Huabei region, China

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Wang, P.; Ma, J. Z.; Zhu, S.; Pozzer, A.; Li, W.

    2012-01-01

    Huabei, located between 32° N and 42° N, is part of eastern China and includes administratively the Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC). Our estimates are based on data from the statistical yearbooks of the state, provinces and local districts, including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2), 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC. For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2), 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into industrial, civil, traffic, and straw burning sectors, and large industrial point sources, which include 345 sets of power plants, iron and steel plants, cement plants, and chemical plants. The

  10. 75 FR 28227 - National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... published a proposed rule for mercury emissions from the gold mine ore processing and production area source... proposed rule (75 FR 22470). Several parties requested that EPA extend the comment period. EPA has granted...-AP48 National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production...

  11. EVALUATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE STYRENE EMISSIONS FROM OPEN CONTACT MOLDING PROCESSES - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a study to evaluate several pollution prevention techniques that could be used to reduce styrene emissions from open molding processes in the fiberglass-reinforced plastics/composites (FRP/C) and fiberglass boat building industries. Styrene emissions u...

  12. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien

    2018-05-01

    results suggest that besides minimizing biomass burning activities, an effective air pollution mitigation policy for Southeast Asia needs to consider controlling emissions from non-fire anthropogenic sources.

  13. Intermittent micro-aeration control of methane emissions from an integrated vertical-flow constructed wetland during agricultural domestic wastewater treatment.

    PubMed

    Liu, Xiaoling; Zhang, Ke; Fan, Liangqian; Luo, Hongbing; Jiang, Mingshu; Anderson, Bruce C; Li, Mei; Huang, Bo; Yu, Lijuan; He, Guozhu; Wang, Jingting; Pu, Aiping

    2018-06-16

    It is very important to control methane emissions to mitigate global warming. An intermittent micro-aeration control system was used to control methane emissions from an integrated vertical-flow constructed wetland (IVCW) to treat agricultural domestic wastewater pollution in this study. The optimized intermittent micro-aeration conditions were a 20-min aeration time and 340-min non-aeration time, 3.9 m 3  h -1 aeration intensity, evenly distributed micro-aeration diffusers at the tank bottom, and an aeration period of every 6 h. Methane flux emission by intermittent micro-aeration was decreased by 60.7% under the optimized conditions. The average oxygen transfer efficiency was 26.73%. The control of CH 4 emission from IVCWs was most strongly influenced by the intermittent micro-aeration diffuser distribution, followed by aeration intensity, aeration time, and water depth. Scaling up of IVCWs is feasible in rural areas by using intermittent micro-aeration control as a mitigation measure for methane gas emissions for climate change.

  14. Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers

    DOEpatents

    Reifman, Jaques; Feldman, Earl E.; Wei, Thomas Y. C.; Glickert, Roger W.

    2003-01-01

    The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

  15. Characterizing pollutant emissions from mosquito repellents incenses and implications in risk assessment of human health.

    PubMed

    Wang, Lina; Zheng, Xinran; Stevanovic, Svetlana; Xiang, Zhiyuan; Liu, Jing; Shi, Huiwen; Liu, Jing; Yu, Mingzhou; Zhu, Chun

    2018-01-01

    Mosquito-repellent incense is one of the most popular products used for dispelling mosquitos during summer in China. It releases large amounts of particulate and gaseous pollutants which constitute a potential hazard to human health. We conducted chamber experiment to characterize major pollutants from three types of mosquito-repellent incenses, further assessed the size-fractionated deposition in human respiratory system, and evaluated the indoor removing efficiency by fresh air. Results showed that the released pollutant concentrations were greater than permissible levels in regulations in GB3095-2012, as well as suggested by the World Health Organization (WHO). Formaldehyde accounted for 10-20% of the total amount of pollutants. Fine particles dominated in the total particulate concentrations. Geometric standard deviation (GSD) of particle number size distributions was in the range of 1.45-1.93. Count median diameter (CMD) ranged from 100 to 500 nm. Emission rates, burning rates and emission factors of both particulate and gaseous pollutants were compared and discussed. The deposition fractions in pulmonary airway from the disc solid types reached up to 52.7% of the total deposition, and the largest deposition appeared on juvenile group. Computational Fluid Dynamics (CFD) modellings indicated air-conditioner on and windows closed was the worst case. The highest concentration was 180-200 times over the standard limit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Development of a wireless air pollution sensor package for aerial-sampling of emissions

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  17. The study on the evaluation of the pollution control situation of the sewage systems in the counties and cities of Taiwan by applying the VIKOR method.

    PubMed

    Kuo, Jun-Yuan

    2017-12-01

    Currently, the pollution control situation of the sewage systems across Taiwan can be divided into the two major sewage systems, namely, industrial area sewage and public community sewage. When the counties and cities of Taiwan cannot effectively control the sewage pollution situation, ecological pollution of the environment and personal health damage would result. Therefore, evaluating the pollution control situation of the sewage systems can help the environmental protection authorities developing strategies for the pollution control of the sewage systems in the future. In this study, the Vise Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method was applied to evaluate the pollution control situation of the sewage systems. The water sample test qualification rate, the emission permit issuance rate, and the staff setting rate of the dedicated wastewater treatment company were used as the pollution control evaluation indexes. According to the results, the use of the VIKOR method to evaluate the pollution control situation of the sewage systems is effective. In cities and counties in Taiwan, public community sewage systems, dedicated to pollution control case, the public community should be actively coached in emission control technology to upgrade sewage capacity, the issuance of discharge permits, and the staff setting rate of the dedicated wastewater treatment, to improve public community sewage pollution control system capabilities. In Taiwan, the industrial area sewage systems, dedicated to pollution control situations, must pay attention to business units in raw materials, spare part inventory, and machine supplier of choice, and we must choose to meet environmental supply chain of green suppliers, which would be effective in reducing effluent produce and improve water sample test qualification rate. The VIKOR value of Yilan County is 1.0000, which is the worst in the pollution control of all the industrial area sewage systems, followed by Taoyuan

  18. Extreme pollution of soils by emissions of the copper-nickel industrial complex in the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Kashulina, G. M.

    2017-07-01

    The distribution of the total Ni, Cu, Co, Cd, Pb, and Zn contents was studied in the soil profiles of six catenas in the zone subjected to emissions of the copper-nickel industrial complex, which is the largest source of SO2 and heavy metals in northern Europe. The results show that, at present, the concentrations of Ni and Cu in the upper organic soil horizons in the impact zone reach extreme levels of 9000 and 6000 mg/kg, respectively. Under conditions of the long-term intense multi-element industrial emissions, the modern levels of the accumulation of polluting substances in soils greatly depend on the indirect factors, such as the degree of the technogenic degradation of soils with the loss of a significant part of soil organic matter, the reaching of threshold saturation of the topsoil with polluting metals, and competitive relationships between chemical elements. The state of the ecosystems in the impact zone varied greatly and did not always agree with the contents of the main metals-pollutants in the soils. The moisture conditions determined by the landscape position affected significantly the resistance of the ecosystems to emissions.

  19. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    ERIC Educational Resources Information Center

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  20. 40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... dryer stack a. The average mass flow of particulate matter from the control system applied to emissions...

  1. Environmental and health benefits from designating the Marmara Sea and the Turkish Straits as an emission control area (ECA).

    PubMed

    Viana, M; Fann, N; Tobías, A; Querol, X; Rojas-Rueda, D; Plaza, A; Aynos, G; Conde, J A; Fernández, L; Fernández, C

    2015-03-17

    Ship emissions degrade air quality and affect human health, and are increasingly becoming a matter of concern. Sulfur emission control areas (ECA), specific coastal regions where only low-sulfur fuels may be consumed by ocean-going ships, have proven to be useful tools to reduce ship-sourced air pollution along the North American, Canadian, and European North and Baltic Sea coastlines. The present work assesses the environmental and health benefits which would derive from designating an ECA in the Marmara Sea and the Turkish Straits (50 000 ships/year; 23 million inhabitants). Results show evidence that implementing an ECA would be technically viable and that it would reduce ship-sourced PM10 and PM2.5 ambient concentrations in Istanbul by 67%, and SO2 by 90%. The reduction of the air pollution burden on health was quantified as 210 hospital admissions from exposure to PM10, 290 hospital admissions from exposure to SO2, and up to 30 premature deaths annually due to ECA emission controls. Consequently, the designation of an ECA in the Marmara Sea and the Turkish Straits is evaluated as a positive, technically viable and real-world measure to reduce air pollution from ships in Turkey.

  2. Arctic shipping emissions inventories and future scenarios

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Lack, D. A.; Winebrake, J. J.; Harder, S.; Silberman, J. A.; Gold, M.

    2010-10-01

    This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050) scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow), aerosols, and gaseous emissions including carbon dioxide. We quantify ship emissions scenarios which are expected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. A first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase global warming potential due to Arctic ships' CO2 emissions (~42 000 gigagrams) by some 17% to 78%. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  3. CONTROL OF DIOXIN, FURAN, AND MERCURY EMISSIONS FROM MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    There is a significant public and scientific concern over the potential risks of air pollution emissions from municipal waste combustors (MWCs). The primary pollutants of concern are polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs), and mercury (Hg). Depending on...

  4. The evaluation of the development mode of electric energy and air pollution control in Beijing based on the IPAC-SGM model

    NASA Astrophysics Data System (ADS)

    Zhao, Erdong; Guo, Chaoran; Liu, Liwei; Dai, Sichen; Li, Shangqi

    2017-04-01

    In recent years, China broke out a large-scale of fog and haze, particularly Beijing. Energy production and consumption of fossil fuel combustion emissions is the main source of environmental pollution and haze, and it is most prominent in the power industry. In this paper, we evaluate the relationship between Beijing power structure and the prevention and control of atmospheric pollution by Integrated Policy Assessment Model for China - Second Generation Model (IPAC-SGM). This paper explores the propulsion effect of the new energy industry on Beijing’s air pollution prevention and control by simulating the change of development of electric energy in Beijing under three scenarios which are benchmark scenario, general policy scenario and reinforced policy scenario.

  5. "The Incorporation of National Emission Inventories into Version 2 of the Hemispheric Transport of Air Pollutants Inventory"

    EPA Science Inventory

    EPA’s National Emission Inventory has been incorporated into the Emission Database for Global Atmospheric Research-Hemispheric Transport of Air Pollutants (EDGAR-HTAP) version 2. This work involves the creation of a detailed mapping of EPA Source Classification Codes (SCC) to the...

  6. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste

    EPA Science Inventory

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used in chemistry and climate modeling applications. This paper presents th...

  7. Potential air pollutant emission from private vehicles based on vehicle route

    NASA Astrophysics Data System (ADS)

    Huboyo, H. S.; Handayani, W.; Samadikun, B. P.

    2017-06-01

    Air emissions related to the transportation sector has been identified as the second largest emitter of ambient air quality in Indonesia. This is due to large numbers of private vehicles commuting within the city as well as inter-city. A questionnaire survey was conducted in Semarang city involving 711 private vehicles consisting of cars and motorcycles. The survey was conducted in random parking lots across the Semarang districts and in vehicle workshops. Based on the parking lot survey, the average distance private cars travelled in kilometers (VKT) was 17,737 km/year. The machine start-up number of cars during weekdays; weekends were on average 5.19 and 3.79 respectively. For motorcycles the average of kilometers travelled was 27,092 km/year. The machine start-up number of motorcycles during weekdays and weekends were on average 5.84 and 3.98, respectively. The vehicle workshop survey showed the average kilometers travelled to be 9,510 km/year for motorcycles, while for private cars the average kilometers travelled was 21,347 km/year. Odometer readings for private cars showed a maximum of 3,046,509 km and a minimum of 700 km. Meanwhile, for motorcycles, odometer readings showed a maximum of 973,164 km and a minimum of roughly 54.24 km. Air pollutant emissions on East-West routes were generally higher than those on South-North routes. Motorcycles contribute significantly to urban air pollution, more so than cars. In this study, traffic congestion and traffic volume contributed much more to air pollution than the impact of fluctuating terrain.

  8. Causation mechanism analysis for haze pollution related to vehicle emission in Guangzhou, China by employing the fault tree approach.

    PubMed

    Huang, Weiqing; Fan, Hongbo; Qiu, Yongfu; Cheng, Zhiyu; Xu, Pingru; Qian, Yu

    2016-05-01

    Recently, China has frequently experienced large-scale, severe and persistent haze pollution due to surging urbanization and industrialization and a rapid growth in the number of motor vehicles and energy consumption. The vehicle emission due to the consumption of a large number of fossil fuels is no doubt a critical factor of the haze pollution. This work is focused on the causation mechanism of haze pollution related to the vehicle emission for Guangzhou city by employing the Fault Tree Analysis (FTA) method for the first time. With the establishment of the fault tree system of "Haze weather-Vehicle exhausts explosive emission", all of the important risk factors are discussed and identified by using this deductive FTA method. The qualitative and quantitative assessments of the fault tree system are carried out based on the structure, probability and critical importance degree analysis of the risk factors. The study may provide a new simple and effective tool/strategy for the causation mechanism analysis and risk management of haze pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mortality reduction following the air pollution control measures during the 2010 Asian Games

    NASA Astrophysics Data System (ADS)

    Lin, Hualiang; Zhang, Yonghui; Liu, Tao; Xiao, Jianpeng; Xu, Yanjun; Xu, Xiaojun; Qian, Zhenmin; Tong, Shilu; Luo, Yuan; Zeng, Weilin; Ma, Wenjun

    2014-07-01

    Though increased particulate air pollution has been consistently associated with elevated mortality, evidence regarding whether diminished particulate air pollution would lead to mortality reduction is limited. Citywide air pollution mitigation program during the 2010 Asian Games in Guangzhou, China, provided such an opportunity. Daily mortality from non-accidental, cardiovascular and respiratory diseases was compared for 51 intervention days (November 1-December 21) in 2010 with the same calendar date of baseline years (2006-2009 and 2011). Relative risk (RR) and 95% confidence interval (95% CI) were estimated using a time series Poisson model, adjusting for day of week, public holidays, daily mean temperature and relative humidity. Daily PM10 (particle with aerodynamic diameter less than 10 μm) decreased from 88.64 μg/m3 during the baseline period to 80.61 μg/m3 during the Asian Games period. Other measured air pollutants and weather variables did not differ substantially. Daily mortality from non-accidental, cardiovascular and respiratory diseases decreased from 32, 11 and 6 during the baseline period to 25, 8 and 5 during the Games period, the corresponding RR for the Games period compared with the baseline period was 0.79 (95% CI: 0.73-0.86), 0.77 (95% CI: 0.66-0.89) and 0.68 (95% CI: 0.57-0.80), respectively. No significant decreases were observed in other months of 2010 in Guangzhou and intervention period in two control cities. This finding supports the efforts to reduce air pollution and improve public health through transportation restriction and industrial emission control.

  10. Source apportionment of indoor air pollution

    NASA Astrophysics Data System (ADS)

    Sexton, Ken; Hayward, Steven B.

    An understanding of the relative contributions from important pollutant sources to human exposures is necessary for the design and implementation of effective control strategies. In the past, societal efforts to control air pollution have focused almost exclusively on the outdoor (ambient) environment. As a result, substantial amounts of time and money have been spent to limit airborne discharges from mobile and stationary sources. Yet it is now recognized that exposures to elevated pollutant concentrations often occur as a result of indoor, rather than outdoor, emissions. While the major indoor sources have been identified, their relative impacts on indoor air quality have not been well defined. Application of existing source apportionment models to nonindustrial indoor environments is only just beginning. It is possible that these models might be used to distinguish between indoor and outdoor emissions, as well as to distinguish among indoor sources themselves. However, before the feasibility and suitability of source-apportionment methods for indoor applications can be assessed adequately, it is necessary to take account of model assumptions and associated data requirements. This paper examines the issue of indoor source apportionment and reviews the need for emission characterization studies to support such source-apportionment efforts.

  11. Economic implications of incorporating emission controls to mitigate air pollutants emitted from a modeled hydrocarbon-fuel biorefinery in the United States

    DOE PAGES

    Bhatt, Arpit; Zhang, Yimin; Davis, Ryan; ...

    2016-07-15

    The implementation of the US Renewable Fuel Standard is expected to increase the construction and operation of new biofuel facilities. Allowing this industry to grow without adversely affecting air quality is an important sustainability goal sought by multiple stakeholders. However, little is known about how the emission controls potentially required to comply with air quality regulations might impact biorefinery cost and deployment strategies such as siting and sizing. In this study, we use a baseline design for a lignocellulosic hydrocarbon biofuel production process to assess how the integration of emission controls impacts the minimum fuel selling price (MFSP) of themore » biofuel produced. We evaluate the change in MFSP for two cases as compared to the baseline design by incorporating (i) emission controls that ensure compliance with applicable federal air regulations and (ii) advanced control options that could be used to achieve potential best available control technology (BACT) emission limits. Our results indicate that compliance with federal air regulations can be achieved with minimal impact on biofuel cost (~$0.02 per gasoline gallon equivalent (GGE) higher than the baseline price of $5.10 GGE -1). However, if air emissions must be further reduced to meet potential BACT emission limits, the cost could increase nontrivially. For example, the MFSP could increase to $5.50 GGE -1 by adopting advanced emission controls to meet potential boiler BACT limits. Finally, given tradeoffs among emission control costs, permitting requirements, and economies of scale, these results could help inform decisions about biorefinery siting and sizing and mitigate risks associated with air permitting.« less

  12. Innovation for Pollution Control

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Kinetic Controls Inc.'s refuse-fired steam generating facility led to the development of an air pollution equipment control device. The device is currently marketed by two NASA/Langley Research Center employees. It automatically senses and compensates for the changes in smoke composition when refuse is used as a fuel by adjusting the precipitator's voltage and current to permit maximum collection of electrically charged dust particles. The control adapts to any electrostatic precipitator and should have extensive commercial applications.

  13. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution

    PubMed Central

    Silva, Raquel A.; Adelman, Zachariah; Fry, Meridith M.; West, J. Jason

    2016-01-01

    Background: Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. Objectives: We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. Methods: We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration–response function for ozone and an integrated exposure–response model for PM2.5. Results: We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally—675 (95% CI: 428, 899) thousand deaths/year—and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). Conclusions: The contributions of emissions sectors to ambient air pollution–related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA

  14. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  15. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  16. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  17. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  18. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  19. Air Pollution and Its Control, Second Edition.

    ERIC Educational Resources Information Center

    Sproull, Wayne T.

    A concise appraisal of our contemporary status and future prospects with regard to air pollution and its control are offered in this text for concerned laymen. What air pollution is, how it endangers health, the cost of controlling it, what is being done about it now, and what should be done are some of the basic questions considered. Topics cover…

  20. Estimation of economic costs of particulate air pollution from road transport in China

    NASA Astrophysics Data System (ADS)

    Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.

    2010-09-01

    Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.