Sample records for pollution-induced forest decline

  1. Potential streamflow changes from forest decline due to air pollution

    Treesearch

    R. M. Rice; J. Lewis

    1988-01-01

    In recent years, serious die-back of forest trees has been reported in western Europe and eastern North America. One presumed cause of the forest decline is air pollution and acid deposition. Concern has been expressed that adverse hydrologic responses might occur in forested watersheds as the result of reduced evapotranspiration and increased discharge. According...

  2. Advances of Air Pollution Science: From Forest Decline to Multiple-Stress Effects on Forest Ecosystem Services

    Treesearch

    E. Paoletti; M. Schaub; R. Matyssek; G. Wieser; A. Augustaitis; A. M. Bastrup-Birk; A. Bytnerowicz; M. S. Gunthardt-Goerg; G. Muller-Starck; Y. Serengil

    2010-01-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of...

  3. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    PubMed

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  5. Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests

    PubMed Central

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A.; Badmaeva, Natalya K.; Sandanov, Denis V.

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies. PMID:22916142

  6. Characterization of Extreme Deposition of Air Pollutants in MT. Mitchell State Park: Potential for Forest Decline and Opportunity for Cloud Deacidification

    NASA Astrophysics Data System (ADS)

    Defelice, Thomas Peter

    The decline of forests has long been attributed to various natural (e.g. drought), man-made (e.g. logging), and perhaps, combinations of these (eg. fires caused by loggers) causes. A new type of forest decline (attributed to the deposition of air pollutants and other natural causes) has become apparent at high elevation sites in western Europe and North America; especially for above cloudbase forests like those in the Mt. Mitchell State Park. Investigations of air pollutant deposition are plentiful and laboratory studies have shown extreme deposition of these pollutants to be potentially harmful to forests. However, no field study has concentrated on these events. The primary objective of this study is to characterize (i.e., meterologically, microphysically, chemically) extreme episodes of air pollutant deposition. This study defines extreme aqueous events as having a pH < 3.1. pH's of this order are known to reduce laboratory tree growth depending on their age and species. On the average, one out of three aqueous events, sampled in the park during the 1986-1988 growing seasons (mid-May through mid-September), was extreme. Their occurrence over time may lead to the death of infant and 'old' trees, and to the reduced vigor of trees in their prime, as a result of triggering the decline mechanisms of these trees. These events usually last ~ 4.0 h, form during extended periods of high atmospheric pressure, have a liquid water content of ~ 0.10 gm^{-3}, and near typical cloud droplet sizes (~ 8.0 μm). Extreme aqueous events deposit most of their acid at their end. The deposition from the infrequent occurrences of very high ozone ( >=q100 ppb) and sulfur dioxide (>=q 5 ppb) concentrations in conjunction with these cloud events may be even more detrimental to the canopy, then that by extreme aqueous events alone. The physical characteristics of these combined events appear to include those of mature, precipitating clouds. Their occurrence may provide a clue as to how

  7. Air pollution: worldwide effects on mountain forests

    Treesearch

    Anne M. Rosenthal; Andrzej Featured: Bytnerowicz

    2004-01-01

    Widespread forest decline in remote areas of the Carpathian Mountains has been linked to air pollution from urban and industrial regions. Besides injuring plant tissues directly, pollutants may deposit to soils and water, drastically changing susceptible ecosystems. Researcher Andrzej Bytnerowicz has developed effective methods for assessing air quality over wildlands...

  8. Decline of Ohia Lehua forests in Hawaii

    Treesearch

    Robert E. Burgan; Robert E. Nelson

    1972-01-01

    Thousands of acres of ohia lehua (Metrosidems collina) forests on the island of Hawaii have died, and tree death is progressing rapidly into healthy forests. Most of the losses are on State-owned lands. All of the "ohia decline" cannot be attributed to the same agent. Some of the earlier decline was attributed to frost and sulphur dioxide....

  9. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia.

    PubMed

    Liu, Hongyan; Park Williams, A; Allen, Craig D; Guo, Dali; Wu, Xiuchen; Anenkhonov, Oleg A; Liang, Eryuan; Sandanov, Denis V; Yin, Yi; Qi, Zhaohuan; Badmaeva, Natalya K

    2013-08-01

    Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests. © 2013 John Wiley & Sons Ltd.

  10. Characteristics of Declining Forest Stands on the Allegheny National Forest

    Treesearch

    William H. McWilliams; Robert White; Stanford L. Arner; Christopher, A. Nowak; Susan L. Stout; Susan L. Stout

    1996-01-01

    Forest stands with advanced symptoms of forest decline located on the Allegheny National Forest in northwestern Pennsylvania were studied to describe contemporary stand structure and composition, and the status of regeneration. Across all 340 stands, 12 percent of the total basal area per acre was in dead trees and 16 percent was in trees at high risk of mortality. For...

  11. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth.

    PubMed

    Tang, Jianwu; Luyssaert, Sebastiaan; Richardson, Andrew D; Kutsch, Werner; Janssens, Ivan A

    2014-06-17

    The traditional view of forest dynamics originated by Kira and Shidei [Kira T, Shidei T (1967) Jap J Ecol 17:70-87] and Odum [Odum EP (1969) Science 164(3877):262-270] suggests a decline in net primary productivity (NPP) in aging forests due to stabilized gross primary productivity (GPP) and continuously increased autotrophic respiration (Ra). The validity of these trends in GPP and Ra is, however, very difficult to test because of the lack of long-term ecosystem-scale field observations of both GPP and Ra. Ryan and colleagues [Ryan MG, Binkley D, Fownes JH (1997) Ad Ecol Res 27:213-262] have proposed an alternative hypothesis drawn from site-specific results that aboveground respiration and belowground allocation decreased in aging forests. Here, we analyzed data from a recently assembled global database of carbon fluxes and show that the classical view of the mechanisms underlying the age-driven decline in forest NPP is incorrect and thus support Ryan's alternative hypothesis. Our results substantiate the age-driven decline in NPP, but in contrast to the traditional view, both GPP and Ra decline in aging boreal and temperate forests. We find that the decline in NPP in aging forests is primarily driven by GPP, which decreases more rapidly with increasing age than Ra does, but the ratio of NPP/GPP remains approximately constant within a biome. Our analytical models describing forest succession suggest that dynamic forest ecosystem models that follow the traditional paradigm need to be revisited.

  12. Ohia forest decline: its spread and severity in Hawaii

    Treesearch

    Edwin Q. P. Petteys; Robert E. Burgan; Robert E. Nelson

    1975-01-01

    Ohia forest decline–its severity and rate of spread–was studied by aerial photographic techniques on a 197,000-acre (80,000-ha) portion of the island of Hawaii. In 1954, only 300 acres (121 ha) showed signs of severe decline; by 1972, the acreage of severely affected forest had increased to 85,200 acres (34,480 ha). Rate of decline and current severity were related to...

  13. An experimental test of the causes of forest growth decline with stand age.

    Treesearch

    Michael G. Ryan; Dan Binkley; James H. Fownes; Christian Giardina; Randy S. Senock

    2004-01-01

    The decline in aboveground wood production after canopy closure in even-aged forest stands is a common pattern in forests, but clear evidence for the mechanism causing the decline is lacking. The problem is fundamental to forest biology, commercial forestry (the decline sets the rotation age), and to carbon storage in forests. We tested three hypotheses...

  14. Forest declines in response to environmental change

    Treesearch

    Philip M. Wargo; Allan N.D. Auclair

    2000-01-01

    Decline diseases are intimately linked to stress and environmental change. There is strong evidence that, as a category, decline diseases have increased significantly in response to the climate, air chemistry, and other changes documented in the northeastern United States over the past century, and particularly the last two decades. No other forest response to...

  15. Devastating decline of forest elephants in central Africa.

    PubMed

    Maisels, Fiona; Strindberg, Samantha; Blake, Stephen; Wittemyer, George; Hart, John; Williamson, Elizabeth A; Aba'a, Rostand; Abitsi, Gaspard; Ambahe, Ruffin D; Amsini, Fidèl; Bakabana, Parfait C; Hicks, Thurston Cleveland; Bayogo, Rosine E; Bechem, Martha; Beyers, Rene L; Bezangoye, Anicet N; Boundja, Patrick; Bout, Nicolas; Akou, Marc Ella; Bene, Lambert Bene; Fosso, Bernard; Greengrass, Elizabeth; Grossmann, Falk; Ikamba-Nkulu, Clement; Ilambu, Omari; Inogwabini, Bila-Isia; Iyenguet, Fortune; Kiminou, Franck; Kokangoye, Max; Kujirakwinja, Deo; Latour, Stephanie; Liengola, Innocent; Mackaya, Quevain; Madidi, Jacob; Madzoke, Bola; Makoumbou, Calixte; Malanda, Guy-Aimé; Malonga, Richard; Mbani, Olivier; Mbendzo, Valentin A; Ambassa, Edgar; Ekinde, Albert; Mihindou, Yves; Morgan, Bethan J; Motsaba, Prosper; Moukala, Gabin; Mounguengui, Anselme; Mowawa, Brice S; Ndzai, Christian; Nixon, Stuart; Nkumu, Pele; Nzolani, Fabian; Pintea, Lilian; Plumptre, Andrew; Rainey, Hugo; de Semboli, Bruno Bokoto; Serckx, Adeline; Stokes, Emma; Turkalo, Andrea; Vanleeuwe, Hilde; Vosper, Ashley; Warren, Ymke

    2013-01-01

    African forest elephants- taxonomically and functionally unique-are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fieldwork) revealed that population size declined by ca. 62% between 2002-2011, and the taxon lost 30% of its geographical range. The population is now less than 10% of its potential size, occupying less than 25% of its potential range. High human population density, hunting intensity, absence of law enforcement, poor governance, and proximity to expanding infrastructure are the strongest predictors of decline. To save the remaining African forest elephants, illegal poaching for ivory and encroachment into core elephant habitat must be stopped. In addition, the international demand for ivory, which fuels illegal trade, must be dramatically reduced.

  16. The role of contaminants and pollution in species decline

    USGS Publications Warehouse

    Pattee, O.H.; Rattner, B.A.; Eisler, R.; Wegner, V.L.; Bounds, D.L.

    1999-01-01

    Members of over 1,200 taxa have been listed as Threatened or Endangered, and over 4,000 additional organisms have been identified as Candidate Species or Species of Concern. Both naturally-occurring and anthropogenic activities (e.g., environmental contaminants and pollution) have been demonstrated to be a significant factor in depressing populations or catalyzing the final crash of some species. The objective of this project is to develop a synthesis document and database that lists and ranks the presumed causes of decline, with special emphasis on contaminants and pollutant-related situations. This will be accomplished by a synoptic review of all recovery plans (n=517) with listing packages (n= 1180) serving as a secondary source of information, followed by itemization, cross-referencing, enumeration, and ranking of contributing and limiting factors. To date we have analyzed most of the available recovery plans for freshwater mussels (n=39), reptiles (n=26). and amphibians (n=6). We categorized 116 reasons fur the decline in freshwater mussels, subsuming them into 6 classes: habitat alteration/availability (44.4%);.contaminants (24.1%); pollution (18.0%); exploitation/harvest (1.7%); introduction of exotic species (2.7%); miscellaneous others (9.2%). The 171 causes of decline for reptiles can be subsumed into the same categories: habitat alteration/availability (32.7%); contaminants (6.4%); pollution (9.9%); exploitation/harvest (28.7%); introduction of exotic species (11.1%); miscellaneous others (11.1%). The 34 causes for amphibian decline fall into 5 classes: habitat alteration/availability (50.0%); contaminants (5.9%); pollution (5.9%); exploitation/harvest (5.9%); miscellaneous others (32.3%). The contaminant and pollution related causes for the decline in mussels can be attributed to four classes of alterations: water quality (47.2%); effluents/ spills (46.7%); biocides (3.3%); other toxic compounds (2.8%). For reptiles, the contamination and pollution

  17. Ecological consequences of forest elephant declines for Afrotropical forests.

    PubMed

    Poulsen, John R; Rosin, Cooper; Meier, Amelia; Mills, Emily; Nuñez, Chase L; Koerner, Sally E; Blanchard, Emily; Callejas, Jennifer; Moore, Sarah; Sowers, Mark

    2018-06-01

    Poaching is rapidly extirpating African forest elephants (Loxodonta cyclotis) from most of their historical range, leaving vast areas of elephant-free tropical forest. Elephants are ecological engineers that create and maintain forest habitat; thus, their loss will have large consequences for the composition and structure of Afrotropical forests. Through a comprehensive literature review, we evaluated the roles of forest elephants in seed dispersal, nutrient recycling, and herbivory and physical damage to predict the cascading ecological effects of their population declines. Loss of seed dispersal by elephants will favor tree species dispersed abiotically and by smaller dispersal agents, and tree species composition will depend on the downstream effects of changes in elephant nutrient cycling and browsing. Loss of trampling and herbivory of seedlings and saplings will result in high tree density with release from browsing pressures. Diminished seed dispersal by elephants and high stem density are likely to reduce the recruitment of large trees and thus increase homogeneity of forest structure and decrease carbon stocks. The loss of ecological services by forest elephants likely means Central African forests will be more like Neotropical forests, from which megafauna were extirpated thousands of years ago. Without intervention, as much as 96% of Central African forests will have modified species composition and structure as elephants are compressed into remaining protected areas. Stopping elephant poaching is an urgent first step to mitigating these effects, but long-term conservation will require land-use planning that incorporates elephant habitat into forested landscapes that are being rapidly transformed by industrial agriculture and logging. © 2017 Society for Conservation Biology.

  18. Devastating Decline of Forest Elephants in Central Africa

    PubMed Central

    Blake, Stephen; Wittemyer, George; Hart, John; Williamson, Elizabeth A.; Aba’a, Rostand; Abitsi, Gaspard; Ambahe, Ruffin D.; Amsini, Fidèl; Bakabana, Parfait C.; Hicks, Thurston Cleveland; Bayogo, Rosine E.; Bechem, Martha; Beyers, Rene L.; Bezangoye, Anicet N.; Boundja, Patrick; Bout, Nicolas; Akou, Marc Ella; Bene, Lambert Bene; Fosso, Bernard; Greengrass, Elizabeth; Grossmann, Falk; Ikamba-Nkulu, Clement; Ilambu, Omari; Inogwabini, Bila-Isia; Iyenguet, Fortune; Kiminou, Franck; Kokangoye, Max; Kujirakwinja, Deo; Latour, Stephanie; Liengola, Innocent; Mackaya, Quevain; Madidi, Jacob; Madzoke, Bola; Makoumbou, Calixte; Malanda, Guy-Aimé; Malonga, Richard; Mbani, Olivier; Mbendzo, Valentin A.; Ambassa, Edgar; Ekinde, Albert; Mihindou, Yves; Morgan, Bethan J.; Motsaba, Prosper; Moukala, Gabin; Mounguengui, Anselme; Mowawa, Brice S.; Ndzai, Christian; Nixon, Stuart; Nkumu, Pele; Nzolani, Fabian; Pintea, Lilian; Plumptre, Andrew; Rainey, Hugo; de Semboli, Bruno Bokoto; Serckx, Adeline; Stokes, Emma; Turkalo, Andrea; Vanleeuwe, Hilde; Vosper, Ashley; Warren, Ymke

    2013-01-01

    African forest elephants– taxonomically and functionally unique–are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fieldwork) revealed that population size declined by ca. 62% between 2002–2011, and the taxon lost 30% of its geographical range. The population is now less than 10% of its potential size, occupying less than 25% of its potential range. High human population density, hunting intensity, absence of law enforcement, poor governance, and proximity to expanding infrastructure are the strongest predictors of decline. To save the remaining African forest elephants, illegal poaching for ivory and encroachment into core elephant habitat must be stopped. In addition, the international demand for ivory, which fuels illegal trade, must be dramatically reduced. PMID:23469289

  19. Air pollution impacts on forests in changing climate

    Treesearch

    M. Lorenz; N. Clarke; E. Paoletti; A. Bytnerowicz; N. Grulke; N. Lukina; H. Sase; J. Staelens

    2010-01-01

    Growing awareness of air pollution effects on forests has, from the early 1980s on, led to intensive forest damage research and monitoring. This has fostered air pollution control, especially in Europe and North America, and to a smaller extent also in other parts of the world. At several forest sites in these regions, there are first indications of a recovery of...

  20. Forest Disturbance Across the Conterminous United States from 1985-2012: The Emerging Dominance of Forest Decline

    NASA Technical Reports Server (NTRS)

    Cohen, Warren B.; Yang, Zhiqiang; Stehman, Stephen; Schroeder, Todd; Bell, David M.; Masek, Jeffrey; Huang, Chengquan; Meigs, Garrett W.

    2015-01-01

    Evidence of shifting dominance among major forest disturbance agent classes regionally to globally has been emerging in the literature. For example, climate-related stress and secondary stressors on forests (e.g., insect and disease, fire) have dramatically increased since the turn of the century globally, while harvest rates in the western US and elsewhere have declined. For shifts to be quantified, accurate historical forest disturbance estimates are required as a baseline for examining current trends. We report annual disturbance rates (with uncertainties) in the aggregate and by major change causal agent class for the conterminous US and five geographic subregions between 1985 and 2012. Results are based on human interpretations of Landsat time series from a probability sample of 7200 plots (30 m) distributed throughout the study area. Forest disturbance information was recorded with a Landsat time series visualization and data collection tool that incorporates ancillary high-resolution data. National rates of disturbance varied between 1.5% and 4.5% of forest area per year, with trends being strongly affected by shifting dominance among specific disturbance agent influences at the regional scale. Throughout the time series, national harvest disturbance rates varied between one and two percent, and were largely a function of harvest in the more heavily forested regions of the US (Mountain West, Northeast, and Southeast). During the first part of the time series, national disturbance rates largely reflected trends in harvest disturbance. Beginning in the mid-90s, forest decline-related disturbances associated with diminishing forest health (e.g., physiological stress leading to tree canopy cover loss, increases in tree mortality above background levels), especially in the Mountain West and Lowland West regions of the US, increased dramatically. Consequently, national disturbance rates greatly increased by 2000, and remained high for much of the decade. Decline

  1. Modeling the effects of harvest alternatives on mitigating oak decline in a Central Hardwood Forest landscape

    Treesearch

    Wen J. Wang; Hong S. He; Martin A. Spetich; Stephen R. Shifley; Frank R. III Thompson; Jacob S. Fraser

    2013-01-01

    Oak decline is a process induced by complex interactions of predisposing factors, inciting factors, and contributing factors operating at tree, stand, and landscape scales. It has greatly altered species composition and stand structure in affected areas. Thinning, clearcutting, and group selection are widely adopted harvest alternatives for reducing forest...

  2. The Impact of Indonesian Forest Fires on Singaporean Pollution and Health.

    PubMed

    Sheldon, Tamara L; Sankaran, Chandini

    2017-05-01

    Between 1990 and 2015, Indonesia lost nearly 25 percent of its forests, largely due to intentional burning to clear land for cultivation of palm oil and timber plantations.1 The neighboring "victim countries" experienced severe deteriorations in air quality as a result of these fires. For example, Singapore experienced record air pollution levels in June of 2013 and again in September of 2015 as a result of the Indonesian forest fires.2 This air pollution is associated with increased incidences of upper respiratory tract infections, acute conjunctivitis, lung disease, asthma, bronchitis, emphysema, and pneumonia, among other ailments.2 Quantifying the impact of air pollution on health outcomes is challenging because pollution levels are often nonrandom for a variety of reasons, including policy endogeneity and sorting (Dominici, Greenstone, and Sunstein 2014). In this paper we offer the first causal analysis of the transboundary health effects of the Indonesian forest burning. The Indonesian fires induce exogenous variation in Singaporean air quality. We take advantage of this by using satellite fire data to instrument for changes in Singaporean air quality. Since Singapore is only 277.6 square miles in area (two-thirds the size of New York City), air pollution resulting from the fires is homogeneously spread so that sorting is less likely to be an issue. Using a two-stage least squares approach, we find that from 2010 through mid-2016, the Indonesian fires caused a statistically significant increase in pollution levels in Singapore. Our study also provides evidence that polyclinic attendances for acute respiratory tract infections and acute conjunctivitis in Singapore increased as a result of the deterioration in air quality. The reduced form estimates show that a one standard deviation increase in our measure of fires causes a 0.7 standard deviation increase in polyclinic attendances for each of these illnesses. These findings provide causal evidence of the

  3. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    PubMed

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass. © 2015 John Wiley & Sons Ltd.

  4. Recent drought-induced decline of forests along a water-balance tipping point for ecosystems in western Canada

    NASA Astrophysics Data System (ADS)

    Hess, N. J.; Tfaily, M. M.; Heredia-Langnar, A.; Rodriguez, L.; Purvine, E.; Todd-Brown, K. E.

    2016-12-01

    In western Canada, the forest-prairie boundary corresponds to a hydrologically-defined ecosystem "tipping point" where long-term precipitation is barely sufficient to meet the water use requirements of healthy, closed-canopy forests. In the province of Alberta, the severe subcontinental drought of 2001-2002 heralded the beginning of a 15-year dry period, representing a northward incursion of prairie-like climates into boreal and cordilleran forests. This poses a significant concern for ecosystem functioning of these forests, given GCM projections for continued warming and drying under anthropogenic climate change during this century. Through a multi-scale monitoring approach, we have examined the regional-scale impacts of recent droughts and associated climatic drying on the productivity and health of two important boreal tree species: aspen (Populus tremuloides) and white spruce (Picea glauca). For aspen, the 2016 re-measurement of a regional network of 150 ground plots revealed that tree mortality has escalated, especially in stands exposed to the combined impacts of multi-year drought and insect defoliation. On average, mortality losses exceeded growth gains during 2000-2016 for the 54 aspen plots in Alberta, leading to a net multi-year decline in the aboveground biomass of these stands. For white spruce, tree-ring analysis of 40 stands across Alberta revealed that the prolonged dry period led to a 38% decline in average, tree-level growth in aboveground biomass. In both species, stand age was not a significant factor affecting forest sensitivity to drought and climatic drying, suggesting that these forests are at risk if the trend toward more frequent, severe drought continues in the region.

  5. Recent drought-induced decline of forests along a water-balance tipping point for ecosystems in western Canada

    NASA Astrophysics Data System (ADS)

    Hogg, E. H.; Michaelian, M.

    2017-12-01

    In western Canada, the forest-prairie boundary corresponds to a hydrologically-defined ecosystem "tipping point" where long-term precipitation is barely sufficient to meet the water use requirements of healthy, closed-canopy forests. In the province of Alberta, the severe subcontinental drought of 2001-2002 heralded the beginning of a 15-year dry period, representing a northward incursion of prairie-like climates into boreal and cordilleran forests. This poses a significant concern for ecosystem functioning of these forests, given GCM projections for continued warming and drying under anthropogenic climate change during this century. Through a multi-scale monitoring approach, we have examined the regional-scale impacts of recent droughts and associated climatic drying on the productivity and health of two important boreal tree species: aspen (Populus tremuloides) and white spruce (Picea glauca). For aspen, the 2016 re-measurement of a regional network of 150 ground plots revealed that tree mortality has escalated, especially in stands exposed to the combined impacts of multi-year drought and insect defoliation. On average, mortality losses exceeded growth gains during 2000-2016 for the 54 aspen plots in Alberta, leading to a net multi-year decline in the aboveground biomass of these stands. For white spruce, tree-ring analysis of 40 stands across Alberta revealed that the prolonged dry period led to a 38% decline in average, tree-level growth in aboveground biomass. In both species, stand age was not a significant factor affecting forest sensitivity to drought and climatic drying, suggesting that these forests are at risk if the trend toward more frequent, severe drought continues in the region.

  6. Urban forests and pollution mitigation: analyzing ecosystem services and disservices.

    PubMed

    Escobedo, Francisco J; Kroeger, Timm; Wagner, John E

    2011-01-01

    The purpose of this paper is to integrate the concepts of ecosystem services and disservices when assessing the efficacy of using urban forests for mitigating pollution. A brief review of the literature identifies some pollution mitigation ecosystem services provided by urban forests. Existing ecosystem services definitions and typologies from the economics and ecological literature are adapted and applied to urban forest management and the concepts of ecosystem disservices from natural and semi-natural systems are discussed. Examples of the urban forest ecosystem services of air quality and carbon dioxide sequestration are used to illustrate issues associated with assessing their efficacy in mitigating urban pollution. Development of urban forest management alternatives that mitigate pollution should consider scale, contexts, heterogeneity, management intensities and other social and economic co-benefits, tradeoffs, and costs affecting stakeholders and urban sustainability goals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Survival analysis for a large scale forest health issue: Missouri oak decline

    Treesearch

    C.W. Woodall; P.L. Grambsch; W. Thomas; W.K. Moser

    2005-01-01

    Survival analysis methodologies provide novel approaches for forest mortality analysis that may aid in detecting, monitoring, and mitigating of large-scale forest health issues. This study examined survivor analysis for evaluating a regional forest health issue - Missouri oak decline. With a statewide Missouri forest inventory, log-rank tests of the effects of...

  8. Spatial heterogeneity and air pollution removal by an urban forest

    Treesearch

    Francisco J. Escobedo; David J. Nowak

    2009-01-01

    Estimates of air pollution removal by the urban forest have mostly been based on mean values of forest structure variables for an entire city. However, the urban forest is not uniformly distributed across a city because of biophysical and social factors. Consequently, air pollution removal function by urban vegetation should vary because of this spatial heterogeneity....

  9. On the decline of ground lichen forests in the Swedish boreal landscape: Implications for reindeer husbandry and sustainable forest management.

    PubMed

    Sandström, Per; Cory, Neil; Svensson, Johan; Hedenås, Henrik; Jougda, Leif; Borchert, Nanna

    2016-05-01

    Lichens are a bottleneck resource for circumpolar populations of reindeer, and as such, for reindeer husbandry as an indigenous Sami land-use tradition in northern Sweden. This study uses ground lichen data and forest information collected within the Swedish National Forest Inventory since 1953, on the scale of northern Sweden. We found a 71 % decline in the area of lichen-abundant forests over the last 60 years. A decline was observed in all regions and age classes and especially coincided with a decrease of >60 year old, open pine forests, which was the primary explanatory factor in our model. The effects of reindeer numbers were inconclusive in explaining the decrease in lichen-abundant forest. The role that forestry has played in causing this decline can be debated, but forestry can have a significant role in reversing the trend and improving ground lichen conditions.

  10. More harmful climate change impacts in polluted forests – a review

    Treesearch

    E Paoletti; NE Grulke; A Bytnerowicz

    2009-01-01

    Forests are facing significant pressures from climate change and air pollution. Air pollution is the main driver of the ongoing climate change. Current knowledge suggests that climate change may become more harmful to pollution-affected forests, although the magnitude of these feedbacks is still to be determined. At present, the air pollutants of most concern to...

  11. Do improvement harvests mitigate oak decline in Missouri Ozark forests?

    Treesearch

    John P. Dwyer; John M. Kabrick; James Wetteroff

    2007-01-01

    Since the 1970s, oak decline has been a chronic problem throughout the oak-dominated forests of the Missouri Ozarks. Prior research indicates that environmental stress, particularly drought, leads to the onset of oak decline. Consequently, some scientists and managers have advocated thinning and intermediate harvesting to maintain or improve tree vigor and growth,...

  12. Is air pollution associated with increased risk of cognitive decline? A systematic review.

    PubMed

    Peters, Ruth; Peters, Jean; Booth, Andrew; Mudway, Ian

    2015-09-01

    exposure to air pollution has been shown to increase risk of inflammatory processes and risk of cardiovascular mortality. Such exposure may therefore also be a risk factor for cognitive impairment/dementia. a systematic review of the literature was conducted with databases searched using keywords for air pollution, cognitive decline and dementia. All identified abstracts and potentially relevant articles were double read. For those papers meeting the inclusion criteria, summary tables were prepared and papers quality assessed. from 1,551 abstracts identified, 10 articles were retrieved of which two were rejected. Of the eight remaining six reported prevalent cognitive assessment with historical pollution exposure and two incident cognitive decline, also with historical pollution exposure. In general, an association was reported between exposure and poorer prevalent measures of cognitive function. Data were mixed for incident cognitive decline with one study finding an association and the other not. Reports were limited by a lack of detailed reporting, use of proxy measures of pollution exposure and a lack of clarity regarding cognitive testing methodology and analysis. this systematic review highlights that there is some evidence of a potential association between air pollution and subsequent cognitive decline. Further work is clearly required and longitudinal analysis of ongoing cohort studies or new research would add much needed clarity to this area. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Decline in snail abundance due to soil acidification causes eggshell defects in forest passerines.

    PubMed

    Graveland, J; van der Wal, R

    1996-02-01

    On poor soils in the Netherlands an increasing number of great tits, Parus major, and of other forest passerines produce eggs with defective shells and have low reproductive success as a result of calcium deficiency. A similar increase in eggshell defects has been observed in Germany and Sweden. Snail shells are the main calcium source for tits in forests where defective eggshells do not occur, but are very little taken in forests where tits often have eggshell defects. We investigated whether a decrease in snail abundance on poor soils could be responsible for the decline in eggshell quality, and if so, what caused this decrease. Snail density in forests where tits have eggshell defects was much lower than in forests where tits do not have such defects. Snail density correlated with the calcium content and to a lesser extent with pH of the litter layer. Liming of a calciumpoor forest soil with few snails resulted in snail densities comparable to those on calcium-rich soils after 4 years. Snail density has declined on calcium-poor soils over the last two decades, but not on calcium-rich soils. Acid deposition has caused a decline of soil calcium on poor soils. We conclude, therefore, that anthropogenic acidification has caused a decline in snail populations, resulting in an increase in eggshell defects in birds in forests on poor soils.

  14. Aspen decline on the Coconino National Forest

    Treesearch

    Mary Lou Fairweather; Brian W. Geils; Mike Manthei

    2008-01-01

    An accelerated decline of aspen occurred across the Coconino National Forest, in northern Arizona, following a frost event in June 1999, and a long-term drought that included an extremely dry and warm period from 2001 through 2002, and bouts of defoliation by the western tent caterpillar in 2004, 2005, and 2007. From 2003 to 2007, we monitored aspen mortality and...

  15. POPULATION DECLINES OF THE PUERTO RICAN VIREO IN GUANICA FOREST.

    Treesearch

    JOHN FAABORG; KATE M. DUGGER; WAYNE J. ARENDT; BETHANY L. WOODWORTH; MICHAEL E. BALTZ

    1997-01-01

    Abundance of the Puerto Rican Vireo (Vireo Zutimeri) in Guanica Forest, Puerto Rico, has declined gradually over the period 1973-1996 as determined by constant effort mist netting. Concurrent studies of breeding vireos show low nesting success, primarily due to parasitism by Shiny Cowbirds (Molothrus bonariensis). This decline may reflect the rather recent entry of the...

  16. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    NASA Astrophysics Data System (ADS)

    Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc

    2017-03-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  17. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    PubMed Central

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-01-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959

  18. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    PubMed

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João Hn; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-03-16

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  19. Twentieth-century warming and the dendroclimatology of declining yellow-cedar forests in southeastern Alaska

    Treesearch

    Colin M. Beier; Scott E. Sink; Paul E. Hennon; David V. D' Amore; Glenn P. Juday

    2008-01-01

    Decline of yellow-cedar (Chamaecyparis nootkatensis((D. Don) Spach) has occurred on 200 000 ha of temperate rainforests across southeastern Alaska. Because declining forests appeared soon after the Little Ice Age and are limited mostly to low elevations (whereas higher elevation forests remain healthy), recent studies have hypothesized a climatic...

  20. Twentieth-century warming and the dendroclimatology of declining yellow-cedar forests in southeastern Alaska

    Treesearch

    Colin M. Beier; Scot E. Sink; Paul E. Hennon; David V. D' amore; Glenn P. Juday

    2008-01-01

    Decline of yellow-cedar (Chamaecyparis nootkatensis D. Don) Spach) has occurred on 200 000 ha of temperate rainforests across southeastern Alaska. Because declining forests appeared soon after the Little Ice Age and are limited mostly to low elevations (whereas higher elevation forests remain healthy), recent studies have hypothesized a climatic...

  1. Warming-Induced Decline of Picea crassifolia Growth in the Qilian Mountains in Recent Decades.

    PubMed

    Yu, Li; Huang, Lei; Shao, Xuemei; Xiao, Fengjing; Wilmking, Martin; Zhang, Yongxiang

    2015-01-01

    Warming-induced drought has widely affected forest dynamics in most places of the northern hemisphere. In this study, we assessed how climate warming has affected Picea crassifolia (Qinghai spruce) forests using tree growth-climate relationships and the normalized difference vegetation index (NDVI) along the Qilian Mountains, northeastern Tibet Plateau (the main range of Picea crassifolia). Based on the analysis on trees radial growth data from the upper tree line and the regional NDVI data, we identified a pervasive growth decline in recent decades, most likely caused by warming-induced droughts. The drought stress on Picea crassifolia radial growth were expanding from northeast to southwest and the favorable moisture conditions for tree growth were retreating along the identical direction in the study area over the last half century. Compared to the historical drought stress on tree radial growth in the 1920s, recent warming-induced droughts display a longer-lasting stress with a broader spatial distribution on regional forest growth. If the recent warming continues without the effective moisture increasing, then a notable challenge is developed for Picea crassifolia in the Qilian Mountains. Elaborate forest management is necessary to counteract the future risk of climate change effects in this region.

  2. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  3. Using Forest Service forest inventory and analysis data to estimate regional oak decline and oak mortality

    Treesearch

    Kathryn W. Kromroy; Jennifer Juzwik; Paul Castillo; Mark H. Hansen

    2008-01-01

    Damage and mortality data are collected as part of the US Forest Service, Forest Inventory and Analysis (FIA) ongoing assessments of the nation's timberlands. The usefulness and value of FIA tree data in assessing historical levels of oak decline and oak mortality were investigated for seven Midwestern states. The data were collected during two periodic...

  4. Yellow-cedar decline in the North Coast Forest District of British Columbia.

    Treesearch

    Paul E. Hennon; David V. D' Amore; Stefan Zeglan; Mike Grainger

    2005-01-01

    The distribution of a forest decline of yellow-cedar (Callitropsis nootkatensis (D. Don) Örsted) has been documented in southeast Alaska, but its occurrence in British Columbia was previously unknown. We conducted an aerial survey in the Prince Rupert area in September 2004 to determine if yellow-cedar forests in the North Coast Forest District of...

  5. Factors affecting population dynamics of leaf beetles in a subarctic region: The interplay between climate warming and pollution decline.

    PubMed

    Zvereva, Elena L; Hunter, Mark D; Zverev, Vitali; Kozlov, Mikhail V

    2016-10-01

    Understanding the mechanisms by which abiotic drivers, such as climate and pollution, influence population dynamics of animals is important for our ability to predict the population trajectories of individual species under different global change scenarios. We monitored four leaf beetle species (Coleoptera: Chrysomelidae) feeding on willows (Salix spp.) in 13 sites along a pollution gradient in subarctic forests of north-western Russia from 1993 to 2014. During a subset of years, we also measured the impacts of natural enemies and host plant quality on the performance of one of these species, Chrysomela lapponica. Spring and fall temperatures increased by 2.5-3°C during the 21-year observation period, while emissions of sulfur dioxide and heavy metals from the nickel-copper smelter at Monchegorsk decreased fivefold. However, contrary to predictions of increasing herbivory with climate warming, and in spite of discovered increase in host plant quality with increase in temperatures, none of the beetle species became more abundant during the past 20years. No directional trends were observed in densities of either Phratora vitellinae or Plagiodera versicolora, whereas densities of both C. lapponica and Gonioctena pallida showed a simultaneous rapid 20-fold decline in the early 2000s, remaining at very low levels thereafter. Time series analysis and model selection indicated that these abrupt population declines were associated with decreases in aerial emissions from the smelter. Observed declines in the population densities of C. lapponica can be explained by increases in mortality from natural enemies due to the combined action of climate warming and declining pollution. This pattern suggests that at least in some tri-trophic systems, top-down factors override bottom-up effects and govern the impacts of environmental changes on insect herbivores. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A method of selecting forest sites for air pollution study

    Treesearch

    Sreedevi K. Bringi; Thomas A. Seliga; Leon S. Dochinger

    1981-01-01

    Presents a method of selecting suitable forested areas for meaningful assessments of air pollution effects. The approach is based on the premise that environmental influences can significantly affect the forest-air pollution relationship, and that it is, therefore, desirable to equalize such influences at different sites. From existing data on environmental factors and...

  7. Have changing forests conditions contributed to pollinator decline in the southeastern United States?

    Treesearch

    James L. Hanula; Scott Horn; Joseph J. O' Brien

    2015-01-01

    Two conservation goals of the early 20th century, extensive reforestation and reduced wildfire through fire exclusion, may have contributed to declining pollinator abundance as forests became denser and shrub covered. To examine how forest structure affects bees we selected 5 stands in each of 7 forest types including: cleared forest; dense young pines; thinned young...

  8. Space images processing methodology for assessment of atmosphere pollution impact on forest-swamp territories

    NASA Astrophysics Data System (ADS)

    Polichtchouk, Yuri; Tokareva, Olga; Bulgakova, Irina V.

    2003-03-01

    Methodical problems of space images processing for assessment of atmosphere pollution impact on forest ecosystems using geoinformation systems are developed. An approach to quantitative assessment of atmosphere pollution impact on forest ecosystems is based on calculating relative squares of forest landscapes which are inside atmosphere pollution zones. Landscape structure of forested territories in the southern part of Western Siberia are determined on the basis of procession of middle resolution space images from spaceborn Resource-O. Particularities of atmosphere pollution zones modeling caused by gas burning in torches on territories of oil fields are considered. Pollution zones were revealed by modeling of contaminants dispersal in atmosphere with standard models. Polluted landscapes squares are calculated depending on atmosphere pollution level.

  9. Disturbance and Forest Health in Oregon and Washington.

    Treesearch

    Sally Campbell; Leon Liegel

    1996-01-01

    The scope and intensity of disturbance by such agents as fire, insects, diseases, air pollution, and weather in Pacific Northwest forests suggests that forest health has declined in recent years in many areas. The most significant disturbances and causes of tree mortality or decline in Oregon and Washington are presented and illustrated. We discuss the interrelations...

  10. Photochemical Pollution over the suburban forest in Seoul South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Saewung; Sanchez, Dianne; Jeong, Daun; Seco, Roger; Gu, Dasa; Guenther, Alex; Lee, Meehye

    2017-04-01

    We will present long term photo-chemical observations at Taehwa Research Forest a suburban forest near by Seoul Metropolitan Area a home of 23 million. The discussion is mainly about observations during KORUS-AQ 2016 a NASA-NIER collaborative field campaign in the late spring. There were a couple of pollution stagnation episodes during the campaign and we will present how intensified pollution elevate ozone forming potentials by interacting with BVOC from surrounding forest. During the campaign, we conducted a comprehensive suite of trace gas observations along with OH reactivity and radical precursor observations. We will comprehensively examine atmospheric oxidation capacity and reactivity to evaluate the accuracy of our photochemical understanding in diagnosing regional pollution.

  11. Losing a jewel-Rapid declines in Myanmar's intact forests from 2002-2014.

    PubMed

    Bhagwat, Tejas; Hess, Andrea; Horning, Ned; Khaing, Thiri; Thein, Zaw Min; Aung, Kyaw Moe; Aung, Kyaw Htet; Phyo, Paing; Tun, Ye Lin; Oo, Aung Htat; Neil, Anthony; Thu, Win Myo; Songer, Melissa; LaJeunesse Connette, Katherine; Bernd, Asja; Huang, Qiongyu; Connette, Grant; Leimgruber, Peter

    2017-01-01

    New and rapid political and economic changes in Myanmar are increasing the pressures on the country's forests. Yet, little is known about the past and current condition of these forests and how fast they are declining. We mapped forest cover in Myanmar through a consortium of international organizations and environmental non-governmental groups, using freely-available public domain data and open source software tools. We used Landsat satellite imagery to assess the condition and spatial distribution of Myanmar's intact and degraded forests with special focus on changes in intact forest between 2002 and 2014. We found that forests cover 42,365,729 ha or 63% of Myanmar, making it one of the most forested countries in the region. However, severe logging, expanding plantations, and degradation pose increasing threats. Only 38% of the country's forests can be considered intact with canopy cover >80%. Between 2002 and 2014, intact forests declined at a rate of 0.94% annually, totaling more than 2 million ha forest loss. Losses can be extremely high locally and we identified 9 townships as forest conversion hotspots. We also delineated 13 large (>100,000 ha) and contiguous intact forest landscapes, which are dispersed across Myanmar. The Northern Forest Complex supports four of these landscapes, totaling over 6.1 million ha of intact forest, followed by the Southern Forest Complex with three landscapes, comprising 1.5 million ha. These remaining contiguous forest landscape should have high priority for protection. Our project demonstrates how open source data and software can be used to develop and share critical information on forests when such data are not readily available elsewhere. We provide all data, code, and outputs freely via the internet at (for scripts: https://bitbucket.org/rsbiodiv/; for the data: http://geonode.themimu.info/layers/geonode%3Amyan_lvl2_smoothed_dec2015_resamp).

  12. Patterns of understory diversity in mixed coniferous forests of southern California impacted by air pollution.

    PubMed

    Allen, Edith B; Temple, Patrick J; Bytnerowicz, Andrzej; Arbaugh, Michael J; Sirulnik, Abby G; Rao, Leela E

    2007-03-21

    The forests of the San Bernardino Mountains have been subject to ozone and nitrogen (N) deposition for some 60 years. Much work has been done to assess the impacts of these pollutants on trees, but little is known about how the diverse understory flora has fared. Understory vegetation has declined in diversity in response to elevated N in the eastern U.S. and Europe. Six sites along an ozone and N deposition gradient that had been part of a long-term study on response of plants to air pollution beginning in 1973 were resampled in 2003. Historic ozone data and leaf injury scores confirmed the gradient. Present-day ozone levels were almost half of these, and recent atmospheric N pollution concentrations confirmed the continued air pollution gradient. Both total and extractable soil N were higher in sites on the western end of the gradient closer to the urban source of pollution, pH was lower, and soil carbon (C) and litter were higher. The gradient also had decreasing precipitation and increasing elevation from west to east. However, the dominant tree species were the same across the gradient. Tree basal area increased during the 30-year interval in five of the sites. The two westernmost sites had 30-45% cover divided equally between native and exotic understory herbaceous species, while the other sites had only 3-13% cover dominated by native species. The high production is likely related to higher precipitation at the western sites as well as elevated N. The species richness was in the range of 24 to 30 in four of the sites, but one site of intermediate N deposition had 42 species, while the easternmost, least polluted site had 57 species. These were primarily native species, as no site had more than one to three exotic species. In three of six sites, 20-40% of species were lost between 1973 and 2003, including the two westernmost sites. Two sites with intermediate pollution had little change in total species number over 30 years, and the easternmost site had more

  13. Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada.

    PubMed

    Chen, Lei; Huang, Jian-Guo; Dawson, Andria; Zhai, Lihong; Stadt, Kenneth J; Comeau, Philip G; Whitehouse, Caroline

    2018-02-01

    Insects, diseases, fire and drought and other disturbances associated with global climate change contribute to forest decline and mortality in many parts of the world. Forest decline and mortality related to drought or insect outbreaks have been observed in North American aspen forests. However, little research has been done to partition and estimate their relative contributions to growth declines. In this study, we combined tree-ring width and basal area increment series from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada and attempted to investigate the effect of drought and insect outbreaks on growth decline, and simultaneously partition and quantify their relative contributions. Results indicated that the influence of drought on forest decline was stronger than insect outbreaks, although both had significant effects. Furthermore, the influence of drought and insect outbreaks showed spatiotemporal variability. In addition, our data suggest that insect outbreaks could be triggered by warmer early spring temperature instead of drought, implicating that potentially increased insect outbreaks are expected with continued warming springs, which may further exacerbate growth decline and death in North America aspen mixed forests. © 2017 John Wiley & Sons Ltd.

  14. Desiccation by Foliar Deposition of Hygroscopic Aerosols may link Air Pollution to Forest Decline and Tree Mortality associated with Global-Change-Type Drought

    NASA Astrophysics Data System (ADS)

    Burkhardt, J.; Grantz, D. A.; Hunsche, M.; Pariyar, S.; Sutton, M. A.; Zinsmeister, D.

    2016-12-01

    Leaf surfaces are a major sink for atmospheric aerosol deposition. Plants benefit from aerosol associated nutrients and are able to increase deposition by leaf surface micromorphology. Recent studies have shown that deposited hygroscopic aerosols can also influence plant water relations. This might be an important issue even for remote forest ecosystems, given the strong anthropogenic influence on aerosol production and efficient atmospheric transport. We study processes of aerosol deposition to plant surfaces and their impact on water relations and drought tolerance, both for experimental particle amendment and for aerosol exclusion in filtered air (FA). FA plants experience an environment with < 10% concentration of hygroscopic aerosols compared to ambient air (AA), but no difference in trace gases. Increasing particle concentration leads to decreasing water use efficiency and increasing minimum epidermal conductance (gmin; a measure of uncontrolled water loss inversely related to drought tolerance). After particle amendment, anisohydric beech seedlings increased transpiration and maintained photosynthesis, while isohydric pine seedlings maintained transpiration and tended to reduce photosynthesis. FA seedlings of pine, oak, and fir showed lower gmin than corresponding AA seedlings. The results support the concept of hydraulic activation of stomata (HAS) and an associated wick action caused by leaf surface particles. Concentrated salt solutions formed by hygroscopicity even in unsaturated air may create a thin liquid film that penetrates the stomatal pore, allowing evaporation of liquid water at the leaf surface. Increased gmin suggests the significance of this process under ambient conditions. The direct impact of air pollution on plant drought tolerance is poorly integrated in current scenarios of forest decline and tree mortality, but might represent an important component.

  15. Declining Radial Growth Response of Coastal Forests to Hurricanes and Nor'easters

    NASA Astrophysics Data System (ADS)

    Fernandes, Arnold; Rollinson, Christine R.; Kearney, William S.; Dietze, Michael C.; Fagherazzi, Sergio

    2018-03-01

    The Mid-Atlantic coastal forests in Virginia are stressed by episodic disturbance from hurricanes and nor'easters. Using annual tree ring data, we adopt a dendroclimatic and statistical modeling approach to understand the response and resilience of a coastal pine forest to extreme storm events, over the past few decades. Results indicate that radial growth of trees in the study area is influenced by age, regional climate trends, and individual tree effects but dominated periodically by growth disturbance due to storms. We evaluated seven local extreme storm events to understand the effect of nor'easters and hurricanes on radial growth. A general decline in radial growth was observed in the year of the extreme storm and 3 years following it, after which the radial growth started recovering. The decline in radial growth showed a statistically significant correlation with the magnitude of the extreme storm (storm surge height and wind speed). This study contributes to understanding declining tree growth response and resilience of coastal forests to past disturbances. Given the potential increase in hurricanes and storm surge severity in the region, this can help predict vegetation response patterns to similar disturbances in the future.

  16. Health of eastern North American sugar maple forests and factors affecting decline

    Treesearch

    Stephen B. Horsley; Robert P. Long; Scott W. Bailey; Richard A. Hallett; Philip M. Wargo

    2002-01-01

    Sugar maple (Acer saccharum) is a keystone species in the forests of the northeastern and Midwestern United States and eastern Canada. Its sustained health is an important issue in both managed and unmanaged forests. While sugar maple generally is healthy throughout its range, decline disease of sugar maple has occurred sporadically during the past...

  17. Drought as a driver of declining boreal forest growth: Integrating forest inventory measurements with models to gain insight into underlying mechanisms

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Medvigy, D.; Anderegg, W.; Caspersen, J.; Zeng, H.; Pacala, S. W.

    2016-12-01

    Boreal forests contain over 30% of Earth's terrestrial carbon and are an important component of the land carbon sink. However, the future ability of the boreal forest to maintain a net carbon sink is uncertain and depends on potentially compensating interactions of CO2 fertilization, warmer temperatures, and hotter drought conditions. Observational studies have attributed drought as a major driver of recent declines in growth and increases in mortality in many parts of the North American boreal forest. Yet, most vegetation models have a simplistic representation of vegetation water stress and fail to capture drought-associated growth and mortality trends, impacting our ability to accurately forecast the effects of climate change on the boreal forest. Here, we show additional evidence for widespread declines in boreal tree growth and increasing insect-related mortality in aspen trees based on a mixed model analysis of the Cooperative Alaska Forest Inventory. Our findings indicate that the growth decline is controlled by high midsummer potential evapotranspiration that overpowers any CO2 fertilization signal. We also observe a possible shift in the distribution of angiosperm and gymnosperm, a biological transition that could impact long-term local carbon dynamics. Using insight gained from our mixed model analysis, we perform a regional-scale model evaluation using the boreal forest version of Ecosystem Demography model 2 that includes a dynamic soil organic layer, 7 boreal-specific plant functional types, and a fully mechanistic plant hydraulic scheme. We then use both the Alaskan and Canadian Forest Inventories to constrain our hypotheses and assess whether drought related growth declines can be better attributed to tree drought response from (1) carbon starvation, (2) permanent damage of hydraulic machinery, or (3) delayed recovery of hydraulic machinery. Under each of these scenarios we forecast how drought potentially impacts decadal-scale boreal carbon dynamics.

  18. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA)

    USGS Publications Warehouse

    Beier, Colin M.; Caputo, Jesse; Lawrence, Gregory B.; Sullivan, Timothy J.

    2017-01-01

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global ‘hot-spot’ of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils – an estimated loss of ∼ $10,000 ha−1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact – relative to the effects of surficial geology and till depth – on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8–5.5, but are costly and limited in scope. Although any estimates of the monetary ‘damages’ of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition.

  19. Impacts of Air Pollution and Climate Change on Forest Ecosystems — Emerging Research Needs

    PubMed Central

    Paoletti, Elena; Bytnerowicz, Andrzej; Andersen, Chris; Augustaitis, Algirdas; Ferretti, Marco; Grulke, Nancy; Günthardt-Goerg, Madeleine S.; Innes, John; Johnson, Dale; Karnosky, Dave; Luangjame, Jesada; Matyssek, Rainer; McNulty, Steven; Müller-Starck, Gerhard; Musselman, Robert; Percy, Kevin

    2007-01-01

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems “Forests under Anthropogenic Pressure Effects of Air Pollution, Climate Change and Urban Development”, September 1016, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic air pollutant of major interest. Challenging issues are how to make O3 standards or critical levels more biologically based and at the same time practical for wide use; quantification of plant detoxification processes in flux modeling; inclusion of multiple environmental stresses in critical load determinations; new concept development for nitrogen saturation; interactions between air pollution, climate, and forest pests; effects of forest fire on air quality; the capacity of forests to sequester carbon under changing climatic conditions and coexposure to elevated levels of air pollutants; enhanced linkage between molecular biology, biochemistry, physiology, and morphological traits. PMID:17450274

  20. Losing a jewel—Rapid declines in Myanmar’s intact forests from 2002-2014

    PubMed Central

    Horning, Ned; Khaing, Thiri; Thein, Zaw Min; Aung, Kyaw Moe; Aung, Kyaw Htet; Phyo, Paing; Tun, Ye Lin; Oo, Aung Htat; Neil, Anthony; Thu, Win Myo; Songer, Melissa; Huang, Qiongyu; Connette, Grant; Leimgruber, Peter

    2017-01-01

    New and rapid political and economic changes in Myanmar are increasing the pressures on the country’s forests. Yet, little is known about the past and current condition of these forests and how fast they are declining. We mapped forest cover in Myanmar through a consortium of international organizations and environmental non-governmental groups, using freely-available public domain data and open source software tools. We used Landsat satellite imagery to assess the condition and spatial distribution of Myanmar’s intact and degraded forests with special focus on changes in intact forest between 2002 and 2014. We found that forests cover 42,365,729 ha or 63% of Myanmar, making it one of the most forested countries in the region. However, severe logging, expanding plantations, and degradation pose increasing threats. Only 38% of the country’s forests can be considered intact with canopy cover >80%. Between 2002 and 2014, intact forests declined at a rate of 0.94% annually, totaling more than 2 million ha forest loss. Losses can be extremely high locally and we identified 9 townships as forest conversion hotspots. We also delineated 13 large (>100,000 ha) and contiguous intact forest landscapes, which are dispersed across Myanmar. The Northern Forest Complex supports four of these landscapes, totaling over 6.1 million ha of intact forest, followed by the Southern Forest Complex with three landscapes, comprising 1.5 million ha. These remaining contiguous forest landscape should have high priority for protection. Our project demonstrates how open source data and software can be used to develop and share critical information on forests when such data are not readily available elsewhere. We provide all data, code, and outputs freely via the internet at (for scripts: https://bitbucket.org/rsbiodiv/; for the data: http://geonode.themimu.info/layers/geonode%3Amyan_lvl2_smoothed_dec2015_resamp) PMID:28520726

  1. Heavy metal pollution and forest health in the Ukrainian Carpathians.

    PubMed

    Shparyk, Y S; Parpan, V I

    2004-07-01

    The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils.

  2. Viewing forests from below: fine root mass declines relative to leaf area in aging lodgepole pine stands.

    PubMed

    Schoonmaker, A S; Lieffers, V J; Landhäusser, S M

    2016-07-01

    In the continued quest to explain the decline in productivity and vigor with aging forest stands, the most poorly studied area relates to root system change in time. This paper measures the wood production, root and leaf area (and mass) in a chronosequence of fire-origin lodgepole pine (Pinus contorta Loudon) stands consisting of four age classes (12, 21, 53, and ≥100 years), each replicated ~ five times. Wood productivity was greatest in the 53-year-old stands and then declined in the ≥100-year-old stands. Growth efficiency, the quantity of wood produced per unit leaf mass, steadily declined with age. Leaf mass and fine root mass plateaued between the 53- and ≥100-year-old stands, but leaf area index actually increased in the older stands. An increase in the leaf area index:fine root area ratio supports the idea that older stand are potentially limited by soil resources. Other factors contributing to slower growth in older stands might be lower soil temperatures and increased self-shading due to the clumped nature of crowns. Collectively, the proportionally greater reduction in fine roots in older stands might be the variable that predisposes these forests to be at a potentially greater risk of stress-induced mortality.

  3. Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter

    2016-04-01

    Boreal forest soils are commonly characterized by a low plant nitrogen (N) supply. A high tree below-ground allocation of carbon (C) to roots and soil microorganisms in response to the shortage of N may lead to high microbial immobilisation of N, thus aggravating the N limitation. We studied the N supply at a Swedish boreal forest ecosystem chronosequence created by new land rising out of the sea due to iso-static rebound. The youngest soils develop with meadows by the coast, followed by a zone of dinitrogen fixing alder trees, and primary boreal conifer forest on ground up to 560 years old. With increasing ecosystem age, the proportion of microbial C out of the total soil C pool from the youngest to the oldest coniferous ecosystem was constant (c. 1-1.5%), whereas immobilised N (microbial N out of total soil N) increased and approached the levels commonly observed in similar boreal coniferous forests (c. 6-7 %), whereas gross N mineralization declined. Simultaneously, plant foliar N % decreased and the natural abundance of N-15 in the soil increased. More specifically, the difference in N-15 between plant foliage and soil increased, which is related to greater retention of N-15 relative to N-14 by ectomycorrhizal fungi as N is taken up from the soil and some N is transferred to the plant host. In the conifer forest, where these changes were greatest, we found increased fungal biomass in the F- and H-horizons of the mor-layer, in which ectomycorrhizal fungi are known to dominate (the uppermost horizon with litter and moss is dominated by saprotrophic fungi). Hence, we propose that the decreasing N supply to the plants and the subsequent decline in plant production in ageing boreal forests is linked to high tree belowground C allocation to C limited ectomycorrhizal fungi (and other soil microorganisms), a strong sink for available soil N. Data on organic matter C-14 suggested that the largest input of recently fixed plant C occurred in the younger coniferous forest

  4. Forest avifauna as a bioindicator of heavy metal pollution

    NASA Astrophysics Data System (ADS)

    Costa, Rute Alexandra Pais

    Air pollution has become a widespread problem in the last century, becoming necessary the monitorization of several habitats. Air pollution was found to have direct and indirect effects on forest passerines (Eeva et al. 1997), but there is very little information on the effects of emissions from the paper and pulp industry. The present work includes a series of studies which main goals were to use non-invasive procedures in the evaluation of forest passerines as bioindicators of heavy metal pollution and to assess the possible influence of pollution in birds’ breeding biology and health status in industrial and rural sites in maritime pine forests on the west coast of Portugal. We found higher arsenic levels in the rural area and higher mercury levels in the industrial area but we also found several differences with significantly lower levels of contamination in 2010 and 2011. We found that Great tits bred earlier, laid more eggs and produced more fledglings in the industrial area, where we also found higher caterpillar biomass, which are an important food source for tits. Health indices presented similar results in both areas and comparing to other studies in Europe the values are consistent with good health conditions. Our results suggest that there are no direct toxic effects of emissions from the paper industry on the study species. However, invertebrate food availability seems to be related to pollution levels, which indirectly affect the breeding performance of the Great tit.

  5. Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation.

    PubMed

    García-Gómez, Héctor; Aguillaume, Laura; Izquieta-Rojano, Sheila; Valiño, Fernando; Àvila, Anna; Elustondo, David; Santamaría, Jesús M; Alastuey, Andrés; Calvete-Sogo, Héctor; González-Fernández, Ignacio; Alonso, Rocío

    2016-04-01

    Peri-urban vegetation is generally accepted as a significant remover of atmospheric pollutants, but it could also be threatened by these compounds, with origin in both urban and non-urban areas. To characterize the seasonal and geographical variation of pollutant concentrations and to improve the empirical understanding of the influence of Mediterranean broadleaf evergreen forests on air quality, four forests of Quercus ilex (three peri-urban and one remote) were monitored in different areas in Spain. Concentrations of nitrogen dioxide (NO2), ammonia (NH3), nitric acid (HNO3) and ozone (O3) were measured during 2 years in open areas and inside the forests and aerosols (PM10) were monitored in open areas during 1 year. Ozone was the only air pollutant expected to have direct phytotoxic effects on vegetation according to current thresholds for the protection of vegetation. The concentrations of N compounds were not high enough to directly affect vegetation but could be contributing through atmospheric N deposition to the eutrophization of these ecosystems. Peri-urban forests of Q. ilex showed a significant below-canopy reduction of gaseous concentrations (particularly NH3, with a mean reduction of 29-38%), which indicated the feasibility of these forests to provide an ecosystem service of air quality improvement. Well-designed monitoring programs are needed to further investigate air quality improvement by peri-urban ecosystems while assessing the threat that air pollution can pose to vegetation.

  6. IMPACTS OF AIR POLLUTION AND CLIMATE CHANGE ON FOREST ECOSYSTEMS - EMERGING RESEARCH NEEDS

    EPA Science Inventory

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure - Effects of Air Pollution, Climate Change and Urban Development", September 10-16, 2006, Riverside, CA, USA are summarized. Tropospheric ozone is st...

  7. Detection of forest decline in Monchegorsk area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagner, O.; Rigina, O.

    1998-01-01

    Forests on the Kola Peninsula in Northern Russia are growing close to the limits of the northern tree line. They are subjected to both natural (low temperatures and a short period of biochemical activity) and anthropogenic stress factors. The metallurgic industry complex Severo-nickel close to the city of Monchegorsk in the central Russian Kola Peninsula is one of the major sources of sulfur dioxide (SO{sub 2}), nickel, and copper emissions in the region. The environmental impact on the surrounding area is dramatic. In this study multispectral changes observed in Landsat-MSS satellite image data from 1978, 1986, and 1992 are usedmore » to evaluate the relevance of a mathematical model of SO{sub 2} concentration in ambient air as a component for assessment of forest decline. The multispectral changes detected were found to have a statistically significant correspondence to the modeled (SO{sub 2}) concentration levels in ambient air.« less

  8. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA).

    PubMed

    Beier, Colin M; Caputo, Jesse; Lawrence, Gregory B; Sullivan, Timothy J

    2017-04-15

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global 'hot-spot' of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils - an estimated loss of ∼ $10,000 ha -1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact - relative to the effects of surficial geology and till depth - on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8-5.5, but are costly and limited in scope. Although any estimates of the monetary 'damages' of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective.

    PubMed

    Bytnerowicz, Andrzej; Omasa, Kenji; Paoletti, Elena

    2007-06-01

    Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies.

  10. Seasonal changes in needle water content and needle ABA concentration of Japanese red pine, Pinus densiflora, in declining forests on Mt. Gokurakuji, Hiroshima prefecture, Japan.

    PubMed

    Kume, Atsushi; Hanba, Yuko T; Nakane, Kaneyuki; Sakurai, Naoki; Sakugawa, Hiroshi

    2006-05-01

    To evaluate the effects of air pollution on the decline of Pinus densiflora forests, various research has been conducted around Mt. Gokurakuji (34 degrees 23'N, 132 degrees 19'E, 693 m a.s.l.) north of the Seto Inland Sea, west Japan. To investigate the mechanisms responsible for decreases in photosynthesis (Pn) and stomatal conductance (gl), delta13C of needles and seasonal changes in the water content (WC) and abscisic acid concentration (ABA) of needles were measured in various stands. The delta13C values were less negative in declining stands and younger needles. ABA and WC were not correlated with each other. WC decreased consistently with needle age while the ABA showed a minimum in August and a smaller content in older needles. Monthly precipitation and the daily maximum vapor pressure were not correlated with ABA and WC. In declining stands, WC and ABA tended to be higher and lower, respectively, than in nondeclining stands. These results suggest that the trees in declining stands received less water stress than those in nondeclining stands and the differences in gl and delta13C are not caused by the difference in water stress. The possibilities of the effects of air pollution and the infection of pine-wood nematode on the physiological decline on the pine needles are discussed.

  11. The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape.

    PubMed

    Santos, Artur; Pinho, Pedro; Munzi, Silvana; Botelho, Maria João; Palma-Oliveira, José Manuel; Branquinho, Cristina

    2017-05-01

    Atmospheric dust pollution, especially particulate matter below 2.5 μm, causes 3.3 million premature deaths per year worldwide. Although pollution sources are increasingly well known, the role of ecosystems in mitigating their impact is still poorly known. Our objective was to investigate the role of forests located in the surrounding of industrial and urban areas in reducing atmospheric dust pollution. This was tested using lichen transplants as biomonitors in a Mediterranean regional area with high levels of dry deposition. After a multivariate analysis, we have modeled the maximum pollution load expected for each site taking into consideration nearby pollutant sources. The difference between maximum expected pollution load and the observed values was explained by the deposition in nearby forests. Both the dust pollution and the ameliorating effect of forested areas were then mapped. The results showed that forest located nearby pollution sources plays an important role in reducing atmospheric dust pollution, highlighting their importance in the provision of the ecosystem service of air purification.

  12. Export of arsenic from forested catchments under easing atmospheric pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucie Erbanova; Martin Novak; Daniela Fottova

    Massive lignite burning in Central European power plants peaked in the 1980s. Dissolved arsenic in runoff from upland forest ecosystems is one of the ecotoxicological risks resulting from power plant emissions. Maxima in As concentrations in runoff from four forest catchments have increased 2-5 times between 1995 and 2006, and approach the drinking water limit (10 {mu}g L{sup -1}). To assess the fate of anthropogenic As, we constructed input/output mass balances for three polluted and one relatively unpolluted forest catchment in the Czech Republic, and evaluated the pool size of soil As. The observation period was 11 years, and themore » sites spanned a 6-fold As pollution gradient. Two of the polluted sites exhibit large net As export via runoff solutes (mean of 4-5 g As ha{sup -1} yr{sup -1} for the 11-year period; up to 28 g As ha{sup -1} yr{sup -1} in 2005). This contrasts with previous studies which concluded that forest catchments are a net sink for atmogenic arsenic both at times of increasing and decreasing pollution. The amount of exported As is not correlated with the total As soil pool size, which is over 78% geogenic in origin, but correlates closely with water fluxes via runoff. Net arsenic release is caused by an interplay of hydrological conditions and retreating acidification which may mobilize arsenic by competitive ligand exchange. The effects of droughts and other aspects of climate change on subsequent As release from soil were not investigated. Between-site comparisons indicate that most pollutant As may be released from humus. 24 refs., 7 figs., 1 tab.« less

  13. Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method

    NASA Astrophysics Data System (ADS)

    Shamsoddini, A.; Aboodi, M. R.; Karami, J.

    2017-09-01

    Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  14. Possible environmental factors underlying amphibian decline in eastern Puerto Rico: Analysis of U.S. government data archives

    USGS Publications Warehouse

    Stallard, R.F.

    2001-01-01

    The past three decades have seen major declines in populations of several species of amphibians at high elevations in eastern Puerto Rico, a region unique in the humid tropics because of the degree of environmental monitoring that has taken place through the efforts of U.S. government agencies. I examined changes in environmental conditions by examining time-series data sets that extend back at least into the 1980s, a period when frog populations were declining. The data include forest cover; annual mean, minimum, and maximum daily temperature; annual rainfall; rain and stream chemistry; and atmospheric-dust transport. I examined satellite imagery and air-chemistry samples from a single National Aeronautics and Space Administration aircraft flight across the Caribbean showing patches of pollutants, described as thin sheets or lenses, in the lower troposphere. The main source of these pollutants appeared to be fires from land clearing and deforestation, primarily in Africa. Some pollutant concentrations were high and, in the case of ozone, approached health limits set for urban air. Urban pollution impinging on Puerto Rico, dust generation from Africa (potential soil pathogens), and tropical forest burning (gaseous pollutants) have all increased during the last three decades, overlapping the timing of amphibian declines in eastern Puerto Rico. None of the data sets pointed directly to changes so extreme that they might be considered a direct lethal cause of amphibian declines in Puerto Rico. More experimental research is required to link any of these environmental factors to this problem.

  15. Are Scots pine forest edges particularly prone to drought-induced mortality?

    NASA Astrophysics Data System (ADS)

    Buras, Allan; Schunk, Christian; Zeiträg, Claudia; Herrmann, Corinna; Kaiser, Laura; Lemme, Hannes; Straub, Christoph; Taeger, Steffen; Gößwein, Sebastian; Klemmt, Hans-Joachim; Menzel, Annette

    2018-02-01

    Climate change is expected to exacerbate the frequency of drought-induced tree mortality world-wide. To better predict the associated change of species composition and forest dynamics on various scales and develop adequate adaptation strategies, more information on the mechanisms driving the often observed patchiness of tree die-back is needed. Although forest-edge effects may play an important role within the given context, only few corresponding studies exist. Here, we investigate the regional die-back of Scots pine in Franconia, Germany, after a hot and dry summer in 2015, thereby emphasizing possible differences in mortality between forest edge and interior. By means of dendroecological investigations and close-range remote sensing, we assess long-term growth performance and current tree vitality along five different forest-edge distance gradients. Our results clearly indicate a differing growth performance between edge and interior trees, associated with a higher vulnerability to drought, increased mortality rates, and lower tree vitality at the forest edge. Prior long-lasting growth decline of dead trees compared to live trees suggests depletion of carbon reserves in course of a long-term drought persisting since the 1990s to be the cause of regional Scots pine die-back. These findings highlight the forest edge as a potential focal point of forest management adaptation strategies in the context of drought-induced mortality.

  16. Effect of root strength and soil saturation on hillslope stability in forests with natural cedar decline in headwater regions of SE Alaska.

    Treesearch

    Adelaide C. Johnson; Peter Wilcock

    1998-01-01

    A natural decline in the population of yellow-cedar (Chamaecyparis nootkatensis) is occurring in pristine southeast Alaska forests and may be the most significant forest decline in the western United States. The frequency of landslides in cedar decline areas is three times larger than in areas of healthy forest. Three regions are investigated in...

  17. POLUTE. Forest Air Pollutant Uptake Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, C.E. Jr.; Sinclair, T.R.

    1992-02-13

    POLUTE is a computer model designed to estimate the uptake of air pollutants by forests. The model utilizes submodels to describe atmospheric diffusion immediately above and within the canopy, and into the sink areas within or on the trees. The program implementing the model is general and can be used, with only minor changes, for any gaseous pollutant. The model provides an estimate describing the response of the vegetarian-atmosphere system to the environment as related to three types of processes: atmospheric diffusion, diffusion near and inside the absorbing plant, and the physical and chemical processes at the sink on ormore » within the plant.« less

  18. Impacts of air pollution and climate change on forest ecosystems - emerging research needs

    Treesearch

    Elena Paoletti; Bytnerowicz; Chris Andersen; Algirdas Augustaitis; Marco Ferretti; Nancy Grulke; Madeleine S. Gunthardt-goerg; John Innes; Dale Johnson; Dave Karnosky; Jessada Luangjame; Rainer Matyssek; Steven McNulty; Gerhard Muller-Starck; Robert Musselman; Kevin Percy

    2007-01-01

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure – Effects of Air Pollution, Climate Change and Urban Development", September 10–16, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic...

  19. Air pollution and climate change effects on health of the Ukrainian forests: monitoring and evalution

    Treesearch

    Igor F. Buksha; Valentina L. Meshkova; Oleg M. Radchenko; Alexander S. Sidorov

    1998-01-01

    Forests in the Ukraine are affected by environmental pollution, intensive forestry practice, and recreational uses. These factors make them sensitive to impacts of climate change. Since 1989 Ukraine has participated in the International Cooperative Program on Assessment and Monitoring of Air Pollution Effects on Forests (ICP-Forests). A network of monitoring plots has...

  20. Simulation of the effect of air pollution on forest ecosystems in a region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarko, A.M.; Bykadorov, A.V.; Kryuchkov, V.V.

    1995-03-01

    This article describes a model of air pollution effects on spruce in forests of the northern taiga regions which have been exposed to air pollution from a large metallurgical industrial complex. Both the predictions the model makes about forest ecosystem degradation zones and the limitations of the model are discussed. 5 refs., 1 fig.

  1. The importance of age-related decline in forest NPP for modeling regional carbon balances.

    PubMed

    Zaehle, Sönke; Sitch, Stephen; Prentice, I Colin; Liski, Jari; Cramer, Wolfgang; Erhard, Markus; Hickler, Thomas; Smith, Benjamin

    2006-08-01

    We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.

  2. VAM populations in relation to grass invasion associated with forest decline.

    PubMed

    Vosatka, M; Cudlin, P; Mejstrik, V

    1991-01-01

    Spruce stands in Northern Bohemia forests, damaged to various degrees by industrial pollution, have shown establishment of grass cover following tree defoliation. Populations of vesicular-arbuscular mycorrhizal (VAM) fungi were studied under this grass cover in four permanent plots with spruce under different levels of pollution stress. Soil and root samples were collected in April and June within each plot as follows: (1) sites without grass, (2) sites with initial stages of grass invasion, and (3) sites with fully developed grass cover. In all plots, the highest number of propagules were recovered from samples taken from sites having full grass cover. Mycorrhizal infection of grass was highest in the plot with the severest pollution damage and lowest in the least damaged plot. The development of grass cover and VAM infection of grass increased with tree defoliation caused by air pollution.

  3. Managing air pollution impacted forests of California

    Treesearch

    Michael J. Arbaugh; Trent Proctor; Annie Esperanza

    2009-01-01

    Fuel treatments (prescribed fire and mechanical removal) on public lands in California are critical for reducing fuel accumulation and wildfire frequency and severity and protecting private property located in the wildland–urban interface. Treatments are especially needed in forests impacted by air pollution and subject to climate change. High ambient ozone (O

  4. Habitat split and the global decline of amphibians.

    PubMed

    Becker, Carlos Guilherme; Fonseca, Carlos Roberto; Haddad, Célio Fernando Baptista; Batista, Rômulo Fernandes; Prado, Paulo Inácio

    2007-12-14

    The worldwide decline in amphibians has been attributed to several causes, especially habitat loss and disease. We identified a further factor, namely "habitat split"-defined as human-induced disconnection between habitats used by different life history stages of a species-which forces forest-associated amphibians with aquatic larvae to make risky breeding migrations between suitable aquatic and terrestrial habitats. In the Brazilian Atlantic Forest, we found that habitat split negatively affects the richness of species with aquatic larvae but not the richness of species with terrestrial development (the latter can complete their life cycle inside forest remnants). This mechanism helps to explain why species with aquatic larvae have the highest incidence of population decline. These findings reinforce the need for the conservation and restoration of riparian vegetation.

  5. Recent widespread tree growth decline despite increasing atmospheric CO2.

    PubMed

    Silva, Lucas C R; Anand, Madhur; Leithead, Mark D

    2010-07-21

    The synergetic effects of recent rising atmospheric CO(2) and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends. Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE) and growth of two deciduous and two coniferous tree species along a 9 degrees latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53% increases in WUE over the past century, growth decline (measured as a decrease in basal area increment--BAI) has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist. Our results show an unexpected widespread tree growth decline in temperate and boreal forests due to warming induced stress but are also suggestive of additional stressors. Rising atmospheric CO2 levels during the past century resulted in consistent increases in water use efficiency, but this did not prevent growth decline. These findings challenge current predictions of increasing terrestrial carbon stocks under climate change scenarios.

  6. Decline in air pollution and change in prevalence in respiratory symptoms and chronic obstructive pulmonary disease in elderly women.

    PubMed

    Schikowski, Tamara; Ranft, Ulrich; Sugiri, Dorothee; Vierkötter, Andrea; Brüning, Thomas; Harth, Volker; Krämer, Ursula

    2010-08-22

    While adverse effects of exposure to air pollutants on respiratory health are well studied, little is known about the effect of a reduction in air pollutants on chronic respiratory symptoms and diseases. We investigated whether different declines in air pollution levels in industrialised and rural areas in Germany were associated with changes in respiratory health over a period of about 20 years. We used data from the SALIA cohort study in Germany (Study on the influence of Air pollution on Lung function, Inflammation and Aging) to assess the association between the prevalence of chronic obstructive pulmonary disease (COPD) and chronic respiratory symptoms and the decline in air pollution exposure. In 1985-1994, 4874 women aged 55-years took part in the baseline investigation. Of these, 2116 participated in a questionnaire follow-up in 2006 and in a subgroup of 402 women lung function was tested in 2008-2009. Generalized estimating equation (GEE) models were used to estimate the effect of a reduction in air pollution on respiratory symptoms and diseases. Ambient air concentrations of particulate matter with aerodynamic size < 10 microm (PM10) declined in average by 20 microg/m3. Prevalence of chronic cough with phlegm production and mild COPD at baseline investigation compared to follow-up was 9.5% vs. 13.3% and 8.6% vs. 18.2%, respectively. A steeper decline of PM10 was observed in the industrialized areas in comparison to the rural area, this was associated with a weaker increase in prevalence of respiratory symptoms and COPD. Among women who never smoked, the prevalence of chronic cough with phlegm and mild COPD was estimated at 21.4% and 39.5%, respectively, if no air pollution reduction was assumed, and at 13.3% and 17.5%, respectively, if air pollution reduction was assumed. We concluded that parallel to the decline of ambient air pollution over the last 20 years in the Ruhr area the age-related increase in chronic respiratory diseases and symptoms appears to

  7. Population growth and the decline of natural Southern yellow pine forests

    Treesearch

    David B. South; Edward R. Buckner

    2004-01-01

    Population growth has created social and economic pressures that affect the sustainability of naturally regenerated southern yellow pine forests. Major causes of this decline include (1) a shift in public attitudes regarding woods burning (from one favoring it to one that favors fire suppression) and (2) an increase in land values (especially near urban centers). The...

  8. Demography of Symbiotic Nitrogen-Fixing Trees Explains Their Rarity and Successional Decline in Temperate Forests in the United States.

    PubMed

    Liao, Wenying; Menge, Duncan N L

    2016-01-01

    Symbiotic nitrogen (N) fixation is the major N input to many ecosystems. Although temperate forests are commonly N limited, symbiotic N-fixing trees ("N fixers") are rare and decline in abundance as succession proceeds-a challenging paradox that remains unexplained. Understanding demographic processes that underlie N fixers' rarity and successional decline would provide a proximate answer to the paradox. Do N fixers grow slower, die more frequently, or recruit less in temperate forests? We quantified demographic rates of N-fixing and non-fixing trees across succession using U.S. forest inventory data. We used an individual-based model to evaluate the relative contribution of each demographic process to community dynamics. Compared to non-fixers, N fixers had lower growth rates, higher mortality rates, and lower recruitment rates throughout succession. The mortality effect contributed more than the growth effect to N fixers' successional decline. Canopy and understory N fixers experienced these demographic disadvantages, indicating that factors in addition to light limitation likely contribute to N fixers' successional decline. We show that the rarity and successional decline of N-fixing trees in temperate forests is due more to their survival disadvantage than their growth disadvantage, and a recruitment disadvantage might also play a large role.

  9. Demography of Symbiotic Nitrogen-Fixing Trees Explains Their Rarity and Successional Decline in Temperate Forests in the United States

    PubMed Central

    Liao, Wenying; Menge, Duncan N. L.

    2016-01-01

    Symbiotic nitrogen (N) fixation is the major N input to many ecosystems. Although temperate forests are commonly N limited, symbiotic N-fixing trees (“N fixers”) are rare and decline in abundance as succession proceeds–a challenging paradox that remains unexplained. Understanding demographic processes that underlie N fixers’ rarity and successional decline would provide a proximate answer to the paradox. Do N fixers grow slower, die more frequently, or recruit less in temperate forests? We quantified demographic rates of N-fixing and non-fixing trees across succession using U.S. forest inventory data. We used an individual-based model to evaluate the relative contribution of each demographic process to community dynamics. Compared to non-fixers, N fixers had lower growth rates, higher mortality rates, and lower recruitment rates throughout succession. The mortality effect contributed more than the growth effect to N fixers’ successional decline. Canopy and understory N fixers experienced these demographic disadvantages, indicating that factors in addition to light limitation likely contribute to N fixers’ successional decline. We show that the rarity and successional decline of N-fixing trees in temperate forests is due more to their survival disadvantage than their growth disadvantage, and a recruitment disadvantage might also play a large role. PMID:27780268

  10. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    USGS Publications Warehouse

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  11. Ecosystem Consequences of Prolonged Ozone Pollution in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Cousins, S.; Battles, J. J.; Cisneros, R.; Esperanza, A.; Swenson, D.

    2015-12-01

    While acute O3 exposure is widely known to damage plant tissues, the chronic effects on long lived organisms such as trees remain unclear. In the southern Sierra Nevada, O3 pollution has afflicted pine-dominated forests for over 40 years. Here we report the results of a long-term study of O3 impact on tree injury, growth, and mortality. Our study employed a network of forest plots along a gradient of O3 pollution with recurring measurements from 1991-2012. Over the same period and locations, summer O3 was monitored via partnership with USNPS and USFS, making this one of the longest known ecosystem studies of O3 pollution and its effects. We found that exposure at the most polluted sites declined 33%, from a W126 index of 20.12 ppm-hrs in 1992 to 13.5 ppm-hrs in 2012. The severity of foliar pollution damage at these sites also declined, from 43.9 on the 0-100 Ozone Injury Index (OII) scale to 34.2, a drop of 22%. At locations with lower O3 exposure, damage declined from OII of 16.9 to 9.2. Mean annual tree mortality rates over the 20 year period, calculated with a profile likelihood approach, were 0.5%/yr (95% CI 0.3 to 0.8 %/yr). This rate is similar to that of healthy canopy trees in similar unpolluted stands. However, low and declining tree growth rates reveal possible ecosystem impacts of prolonged exposure to pollution. Across affected sites, mean relative growth rates were 1.1%/yr in 1991-2000, and just 0.9%/yr in 2000-2011, a decline of 15.6% in the second decade. Initial analyses suggest that tree damage is positively correlated with June-October O3, as indicated by previous studies. Further analysis will explore the drivers of ecosystem impacts and roles of other natural and anthropogenic stressors, including variation in climatic water deficit. Understanding the consequences of prolonged O3 exposure on both individual trees and complex forest ecosystems helps identify the hidden environmental costs of tropospheric O3 and potential benefits of cleaner air.

  12. Atlantic ocean surface waters buffer declining atmospheric concentrations of persistent organic pollutants.

    PubMed

    Nizzetto, Luca; Lohmann, Rainer; Gioia, Rosalinda; Dachs, Jordi; Jones, Kevin C

    2010-09-15

    Decreasing environmental concentrations of some persistent organic pollutants (POPs) have been observed at local or regional scales in continental areas after the implementation of international measures to curb primary emissions. A decline in primary atmospheric emissions can result in re-emissions of pollutants from the environmental capacitors (or secondary sources) such as soils and oceans. This may be part of the reason why concentrations of some POPs such as polychlorinated biphenyls (PCBs) have not declined significantly in the open oceanic areas, although re-emission of POPs from open ocean water has barely been documented. In contrast, results from this study show that several polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) have undergone a marked decline (2-3 orders of magnitude for some homologues) over a major portion of the remote oligotrophic Atlantic Ocean. The decline appears to be faster than that observed over continental areas, implicating an important role of oceanic geochemical controls on levels and cycling of some POPs. For several lower chlorinated PCDD/Fs, we observed re-emission from surface water back to the atmosphere. An assessment of the effectiveness of the main sink processes highlights the role of degradation in surface waters as potentially key to explaining the different behavior between PCDD/Fs and PCBs and controlling their overall residence time in the ocean/atmosphere system. This study provides experimental evidence that the ocean has a buffering capacity - dependent on individual chemicals - which moderates the rate at which the system will respond to an underlying change in continental emissions.

  13. Recent Widespread Tree Growth Decline Despite Increasing Atmospheric CO2

    PubMed Central

    Silva, Lucas C. R.; Anand, Madhur; Leithead, Mark D.

    2010-01-01

    Background The synergetic effects of recent rising atmospheric CO2 and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends. Methodology/Principal Findings Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE) and growth of two deciduous and two coniferous tree species along a 9° latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53% increases in WUE over the past century, growth decline (measured as a decrease in basal area increment – BAI) has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist. Conclusions Our results show an unexpected widespread tree growth decline in temperate and boreal forests due to warming induced stress but are also suggestive of additional stressors. Rising atmospheric CO2 levels during the past century resulted in consistent increases in water use efficiency, but this did not prevent growth decline. These findings challenge current predictions of increasing terrestrial carbon stocks under climate change scenarios. PMID:20657763

  14. A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests.

    PubMed

    Ibáñez, Beatriz; Gómez-Aparicio, Lorena; Stoll, Peter; Ávila, José M; Pérez-Ramos, Ignacio M; Marañón, Teodoro

    2015-01-01

    In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species' relative abundance and canopy trees' health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into

  15. Smoke pollution disrupted biodiversity during the 2015 El Niño fires in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Y-H Lee, Benjamin P.; Davies, Zoe G.; Struebig, Matthew J.

    2017-09-01

    Forest and peatland fires during the 2015 El Niño drought were amongst the worst on record in Southeast Asia. They were a major contributor of carbon emissions across the region, with the associated smoke-induced haze causing an air pollution crisis that affected millions of people. We present evidence of air pollution impacts on biodiversity. Using daily acoustic recordings in central Singapore, we monitored the dawn chorus before, during and after the haze event. We demonstrate that levels of ecological community acoustic activity dropped dramatically during the haze, and that this decline was significantly associated with levels of air pollution considered ‘unhealthy’ to the human population. Acoustic disruption was apparent across four common indices of soundscape activity, with only a partial recovery to pre-haze levels observed 16 weeks after the smoke had dissipated. These impacts on ecological communities were likely to be even more severe closer to the fires, where air pollution levels were reported to be 15-fold greater than those recorded in Singapore. Our results indicate that large-scale air pollution crises may have hitherto underestimated and potentially far-reaching impacts on biodiversity, especially in parts of the world prone to extensive forest fires.

  16. lnvasive pests ('biological pollutants') and US forests: whose problem, who pays?

    Treesearch

    W.E. Wallner

    1996-01-01

    Invasive pests, or 'biological pollutants' are among the most serious threats to biological diversity in the forest ecosystems of the USA. Additionally, they can disrupt forest management practices and cause enormous financial losses. In the USA, as elsewhere, the receiving country inherits the problem and, along with its citizenry, bears the permanent...

  17. Changes in forest structure associated with oak decline in severely impacted areas of northern Arkansas

    Treesearch

    Eric Heitzman; Adrian Grell; Martin Spetich; Dale Starkey

    2007-01-01

    Four mature northern red oak (Quercus rubra L.)–white oak (Quercus alba L.) stands in the Boston Mountains of northern Arkansas were studied to describe the vegetation dynamics of forests heavily impacted by oak decline. Northern red oak was the species most susceptible to decline. Across the four stands, 51–75% of red oak density...

  18. Forest health and global change.

    PubMed

    Trumbore, S; Brando, P; Hartmann, H

    2015-08-21

    Humans rely on healthy forests to supply energy, building materials, and food and to provide services such as storing carbon, hosting biodiversity, and regulating climate. Defining forest health integrates utilitarian and ecosystem measures of forest condition and function, implemented across a range of spatial scales. Although native forests are adapted to some level of disturbance, all forests now face novel stresses in the form of climate change, air pollution, and invasive pests. Detecting how intensification of these stresses will affect the trajectory of forests is a major scientific challenge that requires developing systems to assess the health of global forests. It is particularly critical to identify thresholds for rapid forest decline, because it can take many decades for forests to restore the services that they provide. Copyright © 2015, American Association for the Advancement of Science.

  19. Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy).

    PubMed

    Loppi, Stefano; Pirintsos, Stergios Arg

    2003-01-01

    The results of a study using epiphytic lichens (Parmelia caperata) as sentinels for heavy metal deposition at six selected forest ecosystems of central Italy are reported. The woods investigated are characterized by holm oak (Quercus ilex), turkey oak (Quercus cerris) and beech (Fagus sylvatica) and represent the typical forest ecosystems of central Italy at low, medium and high elevations, respectively. The results showed that levels of heavy metals in lichens were relatively low and consequently no risk of heavy metal air pollution is expected for the six forest ecosystems investigated. However, for two of them there are indications of a potential risk: the beech forest of Vallombrosa showed signs of contamination by Pb as a consequence of vehicle traffic due to the rather high touristic pressure in the area, and the holm oak forest of Cala Violina showed transboundary pollution by Mn, Cr and Ni originating from the steel industry in Piombino. Epiphytic lichens proved to be very effective as an early warning system to detect signs of a changing environment at forest ecosystems.

  20. Impacts of Oak Decline on Forest Structure in Arkansas and Oklahoma: Preliminary Results

    Treesearch

    Eric Heitzman; James M. Guldin

    2004-01-01

    We established field plots in the Ouachita and Ozark Mountains of Arkansas and Oklahoma to quantify the impacts of oak decline on forest structure. Plots were identified as either high risk (red oak basal area > 20 square feet per acre) or low risk (red oak basal area

  1. Declining ambient air pollution and lung function improvement in Austrian children

    NASA Astrophysics Data System (ADS)

    Neuberger, Manfred; Moshammer, Hanns; Kundi, Michael

    Three thousand four hundred fifty-one Austrian elementary school children were examined (between 2 and 8 times) by spirometry by standardized methods, over a 5 yr period. The districts where they lived were grouped into those where NO 2 declined during this period (by at least 30 μg/m 3 measured as half year means) and those with less or no decline in ambient NO 2. In both groups of districts, SO 2 and TSP fell by similar amounts over this period. A continuous improvement of MEF25 (maximum exspiratory flow rate at 25% vital capacity) was found in districts with declining ambient NO 2. Populations did not differ in respect of anthropometric factors, passive smoking or socioeconomic status. A birth cohort from this study population which was followed up to age 18 confirmed the improved growth of MEF25 with decline in NO 2, while the improved growth of forced vital capacity was more related to decline in SO 2. This study provides the first evidence that improvements in the outdoor air quality during the 1980s are correlated with health benefits, and suggest that adverse effects on lung function related to ambient air pollution are reversible before adulthood. Improvement of small airway functions appeared to be more dependent on reductions of NO 2 than reduction in SO 2 and TSP.

  2. Nitrogen Pollution Shifts Forest Mycorrhizal Associations at Continental Scale

    NASA Astrophysics Data System (ADS)

    Averill, C.; Talbot, J. M.; Dietze, M.

    2016-12-01

    Most trees on Earth form a symbiosis with either ectomycorrhizal or arbuscular mycorrhizal fungi. The type of association has demonstrated importance for understanding ecosystem carbon (C) and nitrogen (N) cycling. Furthermore, the effect is independent of other dominant drivers of ecosystem function: climate, mineralogy and organic matter chemistry. Given this, it becomes important to understand where different mycorrhizal associations are, what controls their distribution, and where they will be in the future. Here we analyze 3,000 forest inventory plots from the United State Forest Inventory and Analysis data set. We categorize forest basal area as ecto- or arbuscular mycorrhizal associated to generate a metric of the relative abundance of ectomycorrhizal trees (ectomycorrhizal basal area / ecto- + arbuscular mycorrhizal basal area). We model this abundance as a function of climate, soil chemical properties (pH and C:N stoichiometry), and atmospheric N deposition. We hypothesized that N pollution in the United States has affected the relative abundance of different mycorrhizal associations, and that this would be reflected in forest composition. Overall, models showed that climate, soil chemistry, and N deposition were important for predicting the current relative abundance of ecto- and arbuscular associated trees. Ectomycorrhizal trees were more abundant in cold and wet climates compared to hot and dry. Low soil pH and high soil C:N ratios were also associated with an increase in the relative abundance of ectomycorrhizal trees. Most interesting, there was a significant influence of N deposition on the relative abundance of different mycorrhizal associations. N deposition reduced the abundance of ectomycorrhizal compared to arbuscular mycorrhizal associated trees independent of climate and soil chemistry. Given the known associations between ectomycorrhizal dominance and soil C stabilization, we argue that N pollution in the United States has shifted the forest

  3. Long-term growth decline in Toona ciliata in a moist tropical forest in Bangladesh: Impact of global warming

    NASA Astrophysics Data System (ADS)

    Rahman, Mizanur; Islam, Rofiqul; Islam, Mahmuda

    2017-04-01

    Tropical forests are carbon rich ecosystems and small changes in tropical forest tree growth substantially influence the global carbon cycle. Forest monitoring studies report inconsistent growth changes in tropical forest trees over the past decades. Most of the studies highlighted changes in the forest level carbon gain, neglecting the species-specific growth changes which ultimately determine community-level responses. Tree-ring analysis can provide historical data on species-specific tree growth with annual resolution. Such studies are inadequate in Bangladesh, which is one of the most climate sensitive regions in the tropics. In this study, we investigated long-term growth rates of Toona ciliata in a moist tropical forest of Bangladesh by using tree-ring analysis. We sampled 50 trees of varying size, obtained increment cores from these trees and measured tree-ring width. Analyses of growth patterns revealed size-dependent growth increments. After correcting for the effect of tree size on tree growth (ontogenetic changes) by two different methods we found declining growth rates in T. ciliata from 1960 to 2013. Standardized ring-width index (RWI) was strongly negatively correlated with annual mean and maximum temperatures suggesting that rising temperature might cause the observed growth decline in T. ciliata. Assuming that global temperatures will rise at the current rate, the observed growth decline is assumed to continue. The analysis of stable carbon and oxygen isotopes may reveal more insight on the physiological response of this species to future climatic changes.

  4. PROJECTION OF RESPONSE OF TREES AND FORESTS TO ACIDIC DEPOSITION AND ASSOCIATED POLLUTANTS

    EPA Science Inventory

    In 1986 the National, Acid Precipitation Assessment Program (NAPAP) established the Forest Response Program (FRP) to assess the effects of acidic deposition and associated pollutants on forests. Modeling studies were developed in parallel with both field studies on the pattern an...

  5. Has Virginia pine declined? The use of Forest Health Monitoring and other information in the determination

    Treesearch

    William G. Burkman; William A. Bechtold

    2000-01-01

    This paper examines the current status of Virginia pine, focusing on Forest Health Monitoring (FHM) results and using Forest Inventory and Analysis (FIA) information to determine if Virginia pine is showing a decline. An examination of crown condition data from live trees in the FHM program from 1991 through 1997 showed that Virginia pine had significantly...

  6. Has Virginia pine declined? The use of forest health monitoring and other information in the determination

    Treesearch

    William G. Burkman; William A. Bechtold

    2000-01-01

    This paper examines the current status of Virginia pine, focusing on Forest Health Monitoring (FHM) results and using Forest Inventory and Analysis (FIA) information to determine if Virginia pine is showing a decline. An examination of crown condition data from live trees in the FHM program from 1991 through 1997 showed that Virginia pine had significantly poorer crown...

  7. [Decline of protective forest and its prevention strategies from viewpoint of restoration ecology: taking Pinus sylvestris var. mongolica plantation in Zhanggutai as an example].

    PubMed

    Jiang, Fengqi; Zeng, Dehui; Yu, Zhanyuan

    2006-12-01

    Aimed at the decline of protective forest in China, and applying the key principles of restoration ecology, such as ecological succession, disturbance, and population density, etc., this paper assessed the rationality of designing elements of protective forest in decision-making level, and analyzed its relationships with the decline of the forest, taking Pinus sylvestris var. mongolica plantation in Zhanggutai sandy land as an example. It was considered that the disagreement of large-scale afforestation with succession climax in regional scale was aberrant to the ecological principles, and resulted in the aberrancy of the objectives, steps, species composition, and stand density of protective forest establishment, being the main cause of protective forest decline. Mismanagement and frequent natural and human disturbances were also the important causes for the decline. Three strategies for preventing the decline, i.e., better understanding damaged ecosystems, increasing material and energy input, and overcoming disturbances were put forward, and the objectives of restoring vegetation, judgment of climax for ecological succession, and application of plagioclimax in establishing artificial vegetation were discussed.

  8. Climate Warming Threatens Semi-arid Forests in Inner Asia

    NASA Astrophysics Data System (ADS)

    WU, X.; Liu, H.; Qi, Z.; Li, X.

    2014-12-01

    A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes (such as fire and insect dynamics) in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected

  9. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest

    NASA Astrophysics Data System (ADS)

    Cornish, P. M.; Vertessy, R. A.

    2001-02-01

    Water yields in a regrowth eucalypt forest were found to increase initially and then to decline below pre-treatment levels during the 16-year period which followed the logging of a moist old-growth eucalypt forest in Eastern Australia. Both regrowth and old-growth stands were dominated by Sydney Blue Gum ( Eucalyptus saligna Smith) and Silvertop Stringybark ( Eucalyptus laevopinea R. Baker). Using a paired-catchment approach we observed significant reductions in five of six gauged catchments, and were able to associate their magnitude with forest growth rate, canopy cover and soil depth. Regular yield declines were interrupted for a period in some catchments, possibly due to foliar insect attack. Yield reductions of up to a maximum 600 mm per year in logged and regenerated areas were in accord with water yield reductions observed in Mountain Ash ( Eucalyptus regnans F.J. Muell.) regeneration in Victoria. This study therefore represents the first confirmation of these Maroondah Mountain Ash results in another forest type that has also undergone eucalypt-to-eucalypt succession. Baseflow analysis indicated that baseflow and stormflow both increased after logging, with stormflow increases dominant in catchments with shallower soils. The lower runoff observed when the regenerating forest was aged 13-16 years was principally a consequence of lower baseflow.

  10. Natural lead concentrations in pristine boreal forest soils and past pollution trends: A reference for critical load models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bindler, R.; Braennvall, M.L.; Renberg, I.

    1999-10-01

    Knowledge of natural, prepollution concentrations of heavy metals in forest soils and temporal trends of soil pollution are essential for understanding present-day pollution and for establishing realistic goals for reductions of atmospheric pollution deposition. Soils not exposed to deposition of atmospheric pollution no longer exist and, for example, present lead (Pb) pollution conditions in northern European soils are a consequence of nearly 4,000 years of atmospheric pollution. The authors use analyses of Pb concentrations and stable Pb isotopes ({sup 206}Pb/{sup 207}Pb ratios) of ombrotrophic peat and forest soils from southern Sweden and a model for Pb cycling in forest soilsmore » to derive an estimate for the prepollution concentration of Pb in the mor layer of boreal forest soils and to back-calculate Pb concentrations for the last 5,500 years. While the present-day concentrations of the mor layer are typically 40--100 {micro}g g{sup {minus}1} (0.25--1.0 g m{sup {minus}2}), Pb concentrations of pristine forest mor layers in Sweden were quite low, {le}0.1 {micro}g g{sup {minus}1} ({le}1 mg m{sup {minus}2}). Large-scale atmospheric pollution from the Greek and Roman cultures increased Pb concentrations to about 1 {micro}g g{sup {minus}1}. Lead (Pb) concentrations increased to about 4 {micro}g g{sup {minus}1} following the increase of metal production and atmospheric pollution in Medieval Europe.« less

  11. Diagnosing injury to eastern forest trees

    Treesearch

    John M. Skelly; Donald D. Davis; William Merrill; E. Alan Cameron; H. Daniel Brown; David B. Drummond; Leon S., eds. Dochinger

    1987-01-01

    The purpose of this manual is to assist members of the National Vegetation Survey in recognizing air pollutant-induced injury and in identifying disease and insect damage that may be confused with air pollutant-induced injury to forest vegetation in the eastern United States. Ozone, sulfur dioxide, and, to a limited geographic extent, hydrogen fluoride, are all...

  12. Decline in the pulp and paper industry: Effects on backward-linked forest industries and local economies

    Treesearch

    Consuelo Brandeis; Zhimei Guo

    2016-01-01

    Pulp, paper, and paperboard mills consume close to 52 percent of southern roundwood, providing a  significant market to southern forest landowners. Declining numbers of pulpwood-using mills and downward trends in mill  capacity, however, present a growing challenge to the southern forest sector. Shrinking mill  capacity affects rural communities that depend on mill...

  13. Air Pollution, Acid Rain, and the Future of Forests. Worldwatch Paper 58.

    ERIC Educational Resources Information Center

    Postel, Sandra

    This book traces centuries of human use and abuse of forest ecosystems by discussing past decades of intense burning, grazing, and timber cutting that added to the natural acidification of the soil. Air pollutants and acids generated by industrial activities worldwide are also considered. Many forests in Europe and North America now receive as…

  14. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems.

    PubMed

    Sicard, Pierre; Augustaitis, Algirdas; Belyazid, Salim; Calfapietra, Carlo; de Marco, Alessandra; Fenn, Mark; Bytnerowicz, Andrzej; Grulke, Nancy; He, Shang; Matyssek, Rainer; Serengil, Yusuf; Wieser, Gerhard; Paoletti, Elena

    2016-06-01

    Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere-biosphere-pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose-response relationships and

  15. Role of the wolf in a deer decline in the Superior National Forest.

    Treesearch

    L. David Mech; Patrick D. Karns

    1977-01-01

    White-tailed deer (Odocoileus virginianus) declined in the Superior National Forest of Minnesota between 1968 and 1974. In a 3,000 km2 area of the poorest habitat, deer were decimated. Contributing factors were severe winters, deteriorating habitat, and wolves. Wolves killed older deer, but insufficient fawns were available to replace them.

  16. Group clearfell harvest can promote regeneration of aspen forests affected by sudden aspen decline in western Colorado

    Treesearch

    Wayne D. Shepperd; Frederick W. Smith; Kristen A. Pelz

    2015-01-01

    An experimental assessment of the use of clearfell harvesting to initiate a regeneration response in commercially managed aspen forests affected by sudden aspen decline (SAD) was conducted in western Colorado in cooperation with the USDA Forest Service. Nine pure commercial quality aspen stands, with three levels of mortality attributed to SAD, were selected (...

  17. Evidence for declining forest resilience to wildfires under climate change.

    PubMed

    Stevens-Rumann, Camille S; Kemp, Kerry B; Higuera, Philip E; Harvey, Brian J; Rother, Monica T; Donato, Daniel C; Morgan, Penelope; Veblen, Thomas T

    2018-02-01

    Forest resilience to climate change is a global concern given the potential effects of increased disturbance activity, warming temperatures and increased moisture stress on plants. We used a multi-regional dataset of 1485 sites across 52 wildfires from the US Rocky Mountains to ask if and how changing climate over the last several decades impacted post-fire tree regeneration, a key indicator of forest resilience. Results highlight significant decreases in tree regeneration in the 21st century. Annual moisture deficits were significantly greater from 2000 to 2015 as compared to 1985-1999, suggesting increasingly unfavourable post-fire growing conditions, corresponding to significantly lower seedling densities and increased regeneration failure. Dry forests that already occur at the edge of their climatic tolerance are most prone to conversion to non-forests after wildfires. Major climate-induced reduction in forest density and extent has important consequences for a myriad of ecosystem services now and in the future. © 2017 John Wiley & Sons Ltd/CNRS.

  18. Amphibian populations in the terrestrial environment: Is there evidence of declines of terrestrial forest amphibians in northwestern California?

    USGS Publications Warehouse

    Welsh, H.H.; Fellers, G.M.; Lind, A.J.

    2007-01-01

    Amphibian declines have been documented worldwide; however the vast majority are species associated with aquatic habitats. Information on the status and trends of terrestrial amphibians is almost entirely lacking. Here we use data collected across a 12-yr period (sampling from 1984-86 and from 1993-95) to address the question of whether evidence exists for declines among terrestrial amphibians in northwestern California forests. The majority of amphibians, both species and relative numbers, in these forests are direct-developing salamanders of the family Plethodontidae. We examined amphibian richness and evenness, and the relative abundances of the four most common species of plethodontid salamanders. We examined evidence of differences between years in two ecological provinces (coastal and interior) and across young, mature, and late seral forests and with reference to a moisture gradient from xeric to hydric within late seral forests. We found evidence of declines in species richness across years on late seral mesic stands and in the coastal ecological province, but these differences appeared to be caused by differences in the detection of rarer species, rather than evidence of an overall pattern. We also found differences among specific years in numbers of individuals of the most abundant species, Ensatina eschscholtzii, but these differences also failed to reflect a consistent pattern of declines between the two decadal sample periods. Results showing differences in richness, evenness, and relative abundances along both the seral and moisture continua were consistent with previous research. Overall, we found no compelling evidence of a downward trend in terrestrial plethodontid salamanders. We believe that continued monitoring of terrestrial salamander populations is important to understanding mechanisms of population declines in amphibian species. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  19. Sudden Oak Death in redwood forests: vegetation dynamics in the wake of tanoak decline

    Treesearch

    Benjamin Ramage; Kevin O’Hara

    2010-01-01

    Numerous lines of inquiry have concluded that tanoak (Lithocarpus densiflorus) will continue to experience drastic population declines and may even disappear entirely from redwood (Sequoia sempervirens) forests as a result of the exotic disease sudden oak death (SOD) (Maloney and others 2005, McPherson and others 2005,...

  20. Assessing Oak Decline Incidence and Distribution in the Southern U.S. Using Forest Inventory and Analysis Data

    Treesearch

    Steven W. Oak; James R. Steinman; Dale A. Starkey; Edwin K. Yockey

    2004-01-01

    Forest Inventory and Analysis data for twelve southern states were used to evaluate regional oak decline status. Total host type, vulnerable host type, and affected areas were determined. The attributes used for classification were forest type, predominant stem size class, oak basal area percent, and dieback damage coding. Host type totaled 104.7 million acres in the...

  1. Oak Decline

    Treesearch

    Vernon Ammon; T. Evan Nebeker; Ted H. Filer; Francis I. McCracken; J. D. Solomon; H. E. Kennedy

    1989-01-01

    Occurrence of decline and mortality in this nation's hardwood forests has been documented in reports for the past 130 years. From 1856 through 1981, more than 26 decline events were reported from eight eastern states affecting almost all species of oaks. Fourteen factors have been implicated as either primary or secondary agents responsible for decline and...

  2. Effect of air and noise pollution on species diversity and population density of forest birds at Lalpahari, West Bengal, India.

    PubMed

    Saha, Dulal C; Padhy, Pratap K

    2011-11-15

    The Rajmahal-type quality stones for building purposes are found abundantly in Birbhum district, West Bengal, India, where stone mining and crushing have become the main industrial activity. Although crusher dust is injurious to health, demand for crushed stone is ever-increasing as a result of rapid infrastructural growth in the country. Most of the crusher units at Rampurhat are situated along the roadways adjacent to forest under Tumboni Beat of Rampurhat Range of Birbhum Forest Division. Excessive load of air pollution in this area has led to degradation of this forest. The status of the ambient air and noise level was evaluated. The effect of air and noise pollution on abundance and variability of birds in this forest have been compared to an almost non-polluted forest of the same bio-geographic zone. Both species diversity and population density of birds were found to decrease in the polluted forest, especially in the areas adjacent to crushers. For comparing the pollution status of two different forest sites and for establishing whether the density of birds have any correlation between the sites, the Student's t-test and the chi-square test were applied respectively. Most of the results proved to be significant. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. An assessment of forest cover and impervious surface area on family forests in the New York City Watershed

    Treesearch

    Nathaniel M. Anderson; Rene H. Germain; Myrna H. Hall

    2012-01-01

    Between 1984 and 2000, the parcelization of family forests in the New York City Watershed caused a decline in average parcel size from 19 to 16 ac. However, little is known about the timing and intensity of development on subdivided parcels, which has the potential to negatively affect water quality by increasing nonpoint source pollution associated with nutrient...

  4. DETECTING FOREST STRESS AND DECLINE IN RESPONSE TO INCREASING RIVER FLOW IN SOUTHWEST FLORIDA, USA

    EPA Science Inventory

    Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...

  5. Assessing Earthquake-Induced Tree Mortality in Temperate Forest Ecosystems: A Case Study from Wenchuan, China

    DOE PAGES

    Zeng, Hongcheng; Lu, Tao; Jenkins, Hillary; ...

    2016-03-17

    Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg·C wasmore » lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a signif icant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets.« less

  6. Assessing Earthquake-Induced Tree Mortality in Temperate Forest Ecosystems: A Case Study from Wenchuan, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Hongcheng; Lu, Tao; Jenkins, Hillary

    Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg·C wasmore » lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a signif icant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets.« less

  7. [Book review] Role of the wolf in a deer decline in the Superior National Forest, by L. David Mech and Patrick D. Karns

    USGS Publications Warehouse

    Greenwood, R.J.

    1979-01-01

    Review of: Role of the Wolf in a Deer Decline in the Superior National Forest. Volume 148 of USDA Forest Service Research Paper. L. David Mech and Patrick D. Karns. North Central Forest Experiment Station, Forest Service, United States Department of Agriculture, 1977. 23 pages.

  8. Interactive effects of air pollution and climate change on forest ecosystems in the United States: current understanding and future scenarios

    Treesearch

    Andrzej Bytnerowicz; Mark Fenn; Steven McNulty; Fengming Yuan; Afshin Pourmokhtarian; Charles Driscoll; Tom Meixner

    2013-01-01

    A review of the current status of air pollution and climate change (CC) in the United States from a perspective of their impacts on forest ecosystems is provided. Ambient ozone (O3) and nitrogen (N) deposition have important and widespread ecological impacts in U.S. forests. Effects of sulphurous (S) air pollutants and other trace pollutants have...

  9. Forests in decline: yellow-cedar research yields prototype for climate change adaptation planning

    Treesearch

    Marie Oliver; Paul Hennon; David D' Amore

    2013-01-01

    Yellow-cedar has been dying across 600 miles of North Pacific coastal rain forest—from Alaska to British Columbia—since about 1880. Thirty years ago, a small group of pathologists began investigating possible biotic causes of the decline. When no biotic cause could be found, the scope broadened into a research program that eventually encompassed the fields of ecology,...

  10. Discrimination between acute and chronic decline of Central European forests using map algebra of the growth condition and forest biomass fuzzy sets: A case study.

    PubMed

    Samec, Pavel; Caha, Jan; Zapletal, Miloš; Tuček, Pavel; Cudlín, Pavel; Kučera, Miloš

    2017-12-01

    Forest decline is either caused by damage or else by vulnerability due to unfavourable growth conditions or due to unnatural silvicultural systems. Here, we assess forest decline in the Czech Republic (Central Europe) using fuzzy functions, fuzzy sets and fuzzy rating of ecosystem properties over a 1×1km grid. The model was divided into fuzzy functions of the abiotic predictors of growth conditions (F pred including temperature, precipitation, acid deposition, soil data and relative site insolation) and forest biomass receptors (F rec including remote sensing data, density and volume of aboveground biomass, and surface humus chemical data). Fuzzy functions were designed at the limits of unfavourable, undetermined or favourable effects on the forest ecosystem health status. Fuzzy sets were distinguished through similarity in a particular membership of the properties at the limits of the forest status margins. Fuzzy rating was obtained from the least difference of F pred -F rec . Unfavourable F pred within unfavourable F rec indicated chronic damage, favourable F pred within unfavourable F rec indicated acute damage, and unfavourable F pred within favourable F rec indicated vulnerability. The model in the 1×1km grid was validated through spatial intersection with a point field of uniform forest stands. Favourable status was characterised by soil base saturation (BS)>50%, BCC/Al>1, C org >1%, MgO>6g/kg, and nitrogen deposition<1200mol(H + )/ha·year. Vulnerable forests had BS humus 46-60%, BCC/Al 9-20 and NDVI≈0.42. Chronic forest damage occurs in areas with low temperatures, high nitrogen deposition, and low soil BS and C org levels. In the Czech Republic, 10% of forests were considered non-damaged and 77% vulnerable, with damage considered acute in 7% of forests and chronic in 5%. The fuzzy model used suggests that improvement in forest health will depend on decreasing environmental load and restoration concordance between growth conditions and tree species

  11. Proceedings of the International Symposium on Air Pollution and Climate Change Effects on Forest Ecosystems

    Treesearch

    Andrzej Bytnerowicz; Michael J. Arbaugh; Susan L. Schilling

    1998-01-01

    Industrial air pollution has been identified as one of the primary causes of severe damage to forests of central Europe in the past 30 to 40 years. The mountain forest ecosystems have been affected considerably, resulting in extensive areas of severely deteriorated forest stands (e.g., the Krusne Hory of the Czech Republic or the Izerske and Sudety Mountains along the...

  12. Cadmium and high temperature effects on brain and behaviour of Lymantria dispar L. caterpillars originating from polluted and less-polluted forests.

    PubMed

    Perić-Mataruga, Vesna; Petković, Branka; Ilijin, Larisa; Mrdaković, Marija; Dronjak Čučaković, Slađana; Todorović, Dajana; Vlahović, Milena

    2017-10-01

    Insects brain as a part of nervous system is the first-line of fast stress response that integrate stress signals to regulate all aspects of insect physiology and behaviour. The cadmium (Cd) bioaccumulation factor (BF), activity of the neurotoxicity biomarker acetylcholinesterase (AChE), dopamine content, expression and amount of Hsp70 in the brain and locomotor activity were evaluated in the 4th instar of Lymantria dispar L. caterpillars fed a Cd supplemented diet and reared in an optimal temperature regime (23 °C) and/or exposed to high temperature (28 °C). The insects originated from two forests, one close to "Nikola Tesla" thermoelectric power plant, Obrenovac (polluted population), and the other Kosmaj mountain (less-polluted population, far from any industrial region). The Cd BF was higher in the less-polluted than in the polluted population especially at the high ambient temperature. AChE activity and dopamine content were changed in the brains of L. dispar from both populations in the same manner. Hsp70 concentration in caterpillar brains showed opposite trends, a decrease in the less-polluted and an increase in the polluted population. Locomotor activity was modified in both Lymantria dispar populations, but the pattern of changes depended on the stressors and their combined effect. ACh activity and dopamine content are sensitive parameters to Cd exposure, regardless of pollutant experience, and might be promising biomarkers in monitoring forest ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The cause of global amphibian declines: a developmental endocrinologist's perspective.

    PubMed

    Hayes, T B; Falso, P; Gallipeau, S; Stice, M

    2010-03-15

    Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis.

  14. The cause of global amphibian declines: a developmental endocrinologist's perspective

    PubMed Central

    Hayes, T. B.; Falso, P.; Gallipeau, S.; Stice, M.

    2010-01-01

    Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis. PMID:20190117

  15. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery.

    PubMed

    Zarco-Tejada, P J; Hornero, A; Hernández-Clemente, R; Beck, P S A

    2018-03-01

    The operational monitoring of forest decline requires the development of remote sensing methods that are sensitive to the spatiotemporal variations of pigment degradation and canopy defoliation. In this context, the red-edge spectral region (RESR) was proposed in the past due to its combined sensitivity to chlorophyll content and leaf area variation. In this study, the temporal dimension of the RESR was evaluated as a function of forest decline using a radiative transfer method with the PROSPECT and 3D FLIGHT models. These models were used to generate synthetic pine stands simulating decline and recovery processes over time and explore the temporal rate of change of the red-edge chlorophyll index (CI) as compared to the trajectories obtained for the structure-related Normalized Difference Vegetation Index (NDVI). The temporal trend method proposed here consisted of using synthetic spectra to calculate the theoretical boundaries of the subspace for healthy and declining pine trees in the temporal domain, defined by CI time=n /CI time=n+1 vs. NDVI time=n /NDVI time=n+1 . Within these boundaries, trees undergoing decline and recovery processes showed different trajectories through this subspace. The method was then validated using three high-resolution airborne hyperspectral images acquired at 40 cm resolution and 260 spectral bands of 6.5 nm full-width half-maximum (FWHM) over a forest with widespread tree decline, along with field-based monitoring of chlorosis and defoliation (i.e., 'decline' status) in 663 trees between the years 2015 and 2016. The temporal rate of change of chlorophyll vs. structural indices, based on reflectance spectra extracted from the hyperspectral images, was different for trees undergoing decline, and aligned towards the decline baseline established using the radiative transfer models. By contrast, healthy trees over time aligned towards the theoretically obtained healthy baseline . The applicability of this temporal trend method to the

  16. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery

    NASA Astrophysics Data System (ADS)

    Zarco-Tejada, P. J.; Hornero, A.; Hernández-Clemente, R.; Beck, P. S. A.

    2018-03-01

    The operational monitoring of forest decline requires the development of remote sensing methods that are sensitive to the spatiotemporal variations of pigment degradation and canopy defoliation. In this context, the red-edge spectral region (RESR) was proposed in the past due to its combined sensitivity to chlorophyll content and leaf area variation. In this study, the temporal dimension of the RESR was evaluated as a function of forest decline using a radiative transfer method with the PROSPECT and 3D FLIGHT models. These models were used to generate synthetic pine stands simulating decline and recovery processes over time and explore the temporal rate of change of the red-edge chlorophyll index (CI) as compared to the trajectories obtained for the structure-related Normalized Difference Vegetation Index (NDVI). The temporal trend method proposed here consisted of using synthetic spectra to calculate the theoretical boundaries of the subspace for healthy and declining pine trees in the temporal domain, defined by CItime=n/CItime=n+1 vs. NDVItime=n/NDVItime=n+1. Within these boundaries, trees undergoing decline and recovery processes showed different trajectories through this subspace. The method was then validated using three high-resolution airborne hyperspectral images acquired at 40 cm resolution and 260 spectral bands of 6.5 nm full-width half-maximum (FWHM) over a forest with widespread tree decline, along with field-based monitoring of chlorosis and defoliation (i.e., 'decline' status) in 663 trees between the years 2015 and 2016. The temporal rate of change of chlorophyll vs. structural indices, based on reflectance spectra extracted from the hyperspectral images, was different for trees undergoing decline, and aligned towards the decline baseline established using the radiative transfer models. By contrast, healthy trees over time aligned towards the theoretically obtained healthy baseline. The applicability of this temporal trend method to the red

  17. Air pollution removal and temperature reduction by Gainesville's urban forest

    Treesearch

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Poor air quality is a common problem in many urban areas. It can lead to human health problems and reduced visibility, and it can impair the health of plants and wildlife. The urban forest can help improve air quality by removing pollutants and by reducing air temperature through shading and transpiration. Trees also emit volatile...

  18. Air pollution impacts in the mixed conifer forests of southern California

    Treesearch

    Patrick J. Temple; Andrzej Bytnerowicz; Mark E. Fenn; Mark A. Poth

    2005-01-01

    Air pollution, principally in the form of photochemical ozone and deposition of nitrogen compounds, has significantly affected mixed conifer forests in the mountains of southern California. Foliar injury, premature needle abscission, crown thinning, and reduced growth and vigor have been well documented, particularly for ponderosa (Pinus ponderosa...

  19. Nutritional factors associated with decline in Canada

    Treesearch

    Benoit Cote

    1999-01-01

    Forest decline in eastern Canada was particuiarly severe in the early 1980's and is still prevalent in some areas (Bowers and Hopkin 1997). Early public and scientific opinions on the causes of forest decline were often not based on sound scientific knowledge. Factors such as acidic precipitation and ozone were rnost often mentioned as direct causes of forest...

  20. Climatic and pollution influences on ecosystem processes in northern hardwood forests

    Treesearch

    Kurt S. Pregitzer; David D. Reed; Glenn D. Mroz; Andrew J. Burton; John A. Witter; Donald A. Zak

    1996-01-01

    The Michigan gradient study was established in 1987 to examine the effects of climate and atmospheric deposition on forest productivity and ecosystem processes in the Great Lakes region. Four intensively-monitored northern hardwood study sites are located along a climatic and pollutant gradient extending from southern lower Michigan to northwestern upper Michigan. The...

  1. Global biodiversity: indicators of recent declines

    USGS Publications Warehouse

    Butchart, Stuart H.M.; Walpole, Matt; Collen, Ben; Van Strien, Arco; Scharlemann, Jorn P.W.; Almond, Rosamunde E.A.; Baillie, Jonathan E.M.; Bomhard, Bastian; Brown, Claire; Bruno, John; Carpenter, Kent E.; Carr, Genevieve M.; Chanson, Janice; Chenery, Anna M.; Csirke, Jorge; Davidson, Nick C.; Dentener, Frank; Foster, Matt; Galli, Alessandro; Galloway, James N.; Genovesi, Piero; Gregory, Richard D.; Hockings, Marc; Kapos, Valerie; Lamarque, Jean-Francois; Leverington, Fiona; Loh, Jonathan; McGeoch, Melodie A.; McRae, Louise; Minasyan, Anahit; Morcillo, Monica Hernandez; Oldfield, Thomasina E.E.; Pauly, Daniel; Quader, Suhel; Revenga, Carmen; Sauer, John R.; Skolnik, Benjamin; Spear, Dian; Stanwell-Smith, Damon; Stuart, Simon N.; Symes, Andy; Tierney, Megan; Tyrrell, Tristan D.; Vie, Jean-Christophe; Watson, Reg

    2011-01-01

    In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species' population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.

  2. Hydrological impacts of forest decline and regrowth: a retrospective analysis of the past 60 years in Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Renner, Maik; Kristina, Brust; Christian, Bernhofer

    2013-04-01

    It is generally believed that both, climate and land use land cover (LULC) changes impact evapotranspiration and runoff; yet there is some difficulty to separate the effects of these different impacts. Here, we condense meteorological and hydrological data from the long and well established observation network over Saxony covering the period 1950-2009. The region can be considered as a typical Central European landscape with considerable anthropogenically related impacts. Certainly, one of the most severe impacts have been the air pollution driven tree dieback along the top mountain ranges peaking in the 1970s and 1980s. To address the role of environmental factors on the long term annual average and the potential role of regional scale environmental pollution we conduct a hydro-climatic data analysis of 71 small to medium range river basins covering the greatest part of Saxony. Plotting the 1950-2009 annual averages in a Budyko diagram reveals a significant linear relation of the evaporative fraction (ET/P) to the aridity index (E0-P ). It appears that topographically controlled gradients of precipitation, land use and basin water retention exist. While most basins are found to follow the Budyko curve, two groups of basins deviate. Agriculturally dominated basins at lower altitudes exceed the Budyko curve while a set of high altitude, forested basins fall well below. The latter group is characterized by significant temporal dynamics, which are consistent in space and time with tree damage data. We visualize the decadal dynamics on the relative partitioning of water and energy at the catchment scale and show that the pollution driven tree damage affected head water catchments leading to a decline of ET (P-Q) of up to 200 mm/yr in the 1980s. The apparent regrowth since effective measures on industrial pollution have been established in the 1990s, shows a significant increase of ET. This increase is visible from space and we found good coherence with increasing

  3. Hickory decline and mortality: Update on hickory decline research

    Treesearch

    Jennifer Juzwik; Ji-Huyn Park; Linda Haugen

    2010-01-01

    Research continued through the 2010 field season on the etiology of hickory decline that is characterized by thinning crowns with small, yellow leaves and hickory bark beetle attack on the upper main stem. This research is part of a larger project initiated in 2006 to assess the distribution and determine the cause(s) of Forest Health Monitoring reported decline and...

  4. Monarch butterfly population decline in North America: identifying the threatening processes

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Wiederholt, Ruscena; Oberhauser, Karen; Drum, Ryan G.; Diffendorfer, Jay E.; Altizer, Sonia; Taylor, Orley R.; Pleasants, John M.; Semmens, Darius J.; Semmens, Brice X.; Erickson, Richard A.; Libby, Kaitlin; Lopez-Hoffman, Laura

    2017-01-01

    The monarch butterfly (Danaus plexippus) population in North America has sharply declined over the last two decades. Despite rising concern over the monarch butterfly's status, no comprehensive study of the factors driving this decline has been conducted. Using partial least-squares regressions and time-series analysis, we investigated climatic and habitat-related factors influencing monarch population size from 1993 to 2014. Potential threats included climatic factors, habitat loss (milkweed and overwinter forest), disease and agricultural insecticide use (neonicotinoids). While climatic factors, principally breeding season temperature, were important determinants of annual variation in abundance, our results indicated strong negative relationships between population size and habitat loss variables, principally glyphosate use, but also weaker negative effects from the loss of overwinter forest and breeding season use of neonicotinoids. Further declines in population size because of glyphosate application are not expected. Thus, if remaining threats to habitat are mitigated we expect climate-induced stochastic variation of the eastern migratory population of monarch butterfly around a relatively stationary population size.

  5. POLUTE; forest air pollutant uptake model. [IBM360,370; CSMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, C.E.

    POLUTE is a computer model designed to estimate the uptake of air pollutants by forests. The model utilizes submodels to describe atmospheric diffusion immediately above and within the canopy, and into the sink areas within or on the trees. The program implementing the model is general and can be used, with only minor changes, for any gaseous pollutant. The model provides an estimate describing the response of the vegetarian-atmosphere system to the environment as related to three types of processes: atmospheric diffusion, diffusion near and inside the absorbing plant, and the physical and chemical processes at the sink on ormore » within the plant.IBM360,370; CSMP; OS/370.« less

  6. Applications of ion chromatography to study pollution effects on forest trees

    Treesearch

    Walter C. Shortle; Rakesh Minocha

    1990-01-01

    Air pollution and acidic deposition can influence forest tree growth and survival by causing ionic imbalances in the rooting zone. Altered nutrient status suppresses tree growth and weakens its immune system. Internal infections spread more quickly in response to weakened tree defenses. As adverse conditions persist, many trees die and the survivors are less healthy....

  7. Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest.

    PubMed

    Rousk, Johannes; Rousk, Kathrin

    2018-05-07

    Heavy metals are some of the most persistent and potent anthropogenic environmental contaminants. Although heavy metals may compromise microbial communities and soil fertility, it is challenging to causally link microbial responses to heavy metals due to various confounding factors, including correlated soil physicochemistry or nutrient availability. A solution is to investigate whether tolerance to the pollutant has been induced, called Pollution Induced Community Tolerance (PICT). In this study, we investigated soil microbial responses to a century-old gradient of metal ore pollution in an otherwise pristine subarctic birch forest generated by a railway source of iron ore transportation. To do this, we determined microbial biomass, growth, and respiration rates, and bacterial tolerance to Zn and Cu in replicated distance transects (1 m-4 km) perpendicular to the railway. Microbial biomass, growth and respiration rates were stable across the pollution gradient. The microbial community structure could be distinguished between sampled distances, but most of the variation was explained by soil pH differences, and it did not align with distance from the railroad pollution source. Bacterial tolerance to Zn and Cu started from background levels at 4 km distance from the pollution source, and remained at background levels for Cu throughout the gradient. Yet, bacterial tolerance to Zn increased 10-fold 100 m from the railway source. Our results show that the microbial community structure, size and performance remained unaffected by the metal ore exposure, suggesting no impact on ecosystem functioning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Growth decline and divergent tree ring isotopic composition (δ(13) C and δ(18) O) contradict predictions of CO2 stimulation in high altitudinal forests.

    PubMed

    Gómez-Guerrero, Armando; Silva, Lucas C R; Barrera-Reyes, Miguel; Kishchuk, Barbara; Velázquez-Martínez, Alejandro; Martínez-Trinidad, Tomás; Plascencia-Escalante, Francisca Ofelia; Horwath, William R

    2013-06-01

    Human-induced changes in atmospheric composition are expected to affect primary productivity across terrestrial biomes. Recent changes in productivity have been observed in many forest ecosystems, but low-latitude upper tree line forests remain to be investigated. Here, we use dendrochronological methods and isotopic analysis to examine changes in productivity, and their physiological basis, in Abies religiosa (Ar) and Pinus hartwegii (Ph) trees growing in high-elevation forests of central Mexico. Six sites were selected across a longitudinal transect (Transverse Volcanic Axis), from the Pacific Ocean toward the Gulf of Mexico, where mature dominant trees were sampled at altitudes ranging from 3200 to 4000 m asl. A total of 60 Ar and 84 Ph trees were analyzed to describe changes in growth (annual-resolution) and isotopic composition (decadal-resolution) since the early 1900s. Our results show an initial widespread increase in basal area increment (BAI) during the first half of the past century. However, BAI has decreased significantly since the 1950s with accentuated decline after the 1980s in both species and across sites. We found a consistent reduction in atmosphere to wood (13) C discrimination, resulting from increasing water use efficiency (20-60%), coinciding with rising atmospheric CO2 . Changes in (13) C discrimination were not followed, however, by shifts in tree ring δ(18) O, indicating site- and species-specific differences in water source or uptake strategy. Our results indicate that CO2 stimulation has not been enough to counteract warming-induced drought stress, but other stressors, such as progressive nutrient limitation, could also have contributed to growth decline. Future studies should explore the distinct role of resource limitation (water vs. nutrients) in modulating the response of high-elevation ecosystems to atmospheric change. © 2013 Blackwell Publishing Ltd.

  9. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests.

    PubMed

    O'Donnell, Frances C; Flatley, William T; Springer, Abraham E; Fulé, Peter Z

    2018-06-25

    Climate change and wildfire are interacting to drive vegetation change and potentially reduce water quantity and quality in the southwestern United States, Forest restoration is a management approach that could mitigate some of these negative outcomes. However, little information exists on how restoration combined with climate change might influence hydrology across large forest landscapes that incorporate multiple vegetation types and complex fire regimes. We combined spatially explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape (335,000 ha) on the Kaibab Plateau in northern Arizona, USA. Our objective was to assess the impacts of climate change and forest restoration on the future fire regime, forest vegetation, and watershed outputs. Our model results predict that the combination of climate change and high-severity fire will drive forest turnover, biomass declines, and compositional change in future forests. Restoration treatments may reduce the area burned in high-severity fires and reduce conversions from forested to non-forested conditions. Even though mid-elevation forests are the targets of restoration, the treatments are expected to delay the decline of high-elevation spruce-fir, aspen, and mixed conifer forests by reducing the occurrence of high-severity fires that may spread across ecoregions. We estimate that climate-induced vegetation changes will result in annual runoff declines of up to 10%, while restoration reduced or reversed this decline. The hydrologic model suggests that mid-elevation forests, which are the targets of restoration treatments, provide around 80% of runoff in this system and the conservation of mid- to high-elevation forests types provides the greatest benefit in terms of water conservation. We also predict that restoration treatments will conserve water quality by reducing patches of high-severity fire that are associated with high sediment yield. Restoration

  10. Drought drove forest decline and dune building in eastern upper Michigan, USA, as the upper Great Lakes became closed basins

    USGS Publications Warehouse

    Loope, Walter L.; Loope, Henry M.; Goble, Ronald J.; Fisher, Timothy G.; Lytle, David E.; Legg, Robert J.; Wysocki, Douglas A.; Hanson, Paul R.; Young, Aaron R.

    2012-01-01

    Current models of landscape response to Holocene climate change in midcontinent North America largely reconcile Earth orbital and atmospheric climate forcing with pollen-based forest histories on the east and eolian chronologies in Great Plains grasslands on the west. However, thousands of sand dunes spread across 12,000 km2 in eastern upper Michigan (EUM), more than 500 km east of the present forest-prairie ecotone, present a challenge to such models. We use 65 optically stimulated luminescence (OSL) ages on quartz sand deposited in silt caps (n = 8) and dunes (n = 57) to document eolian activity in EUM. Dune building was widespread ca. 10–8 ka, indicating a sharp, sustained decline in forest cover during that period. This decline was roughly coincident with hydrologic closure of the upper Great Lakes, but temporally inconsistent with most pollen-based models that imply canopy closure throughout the Holocene. Early Holocene forest openings are rarely recognized in pollen sums from EUM because faint signatures of non-arboreal pollen are largely obscured by abundant and highly mobile pine pollen. Early Holocene spikes in nonarboreal pollen are recorded in cores from small ponds, but suggest only a modest extent of forest openings. OSL dating of dune emplacement provides a direct, spatially explicit archive of greatly diminished forest cover during a very dry climate in eastern midcontinent North America ca. 10–8 ka.

  11. Forest biomonitoring of the largest Slovene thermal power plant with respect to reduction of air pollution.

    PubMed

    Al Sayegh Petkovšek, Samar

    2013-02-01

    The condition of the forest ecosystem in the vicinity of the largest Slovene power plant [the Šoštanj Thermal Power Plant (ŠTPP)] was monitored during the period 1991-2008 by determining the total concentration of sulphur, ascorbic acid and chlorophyll in Norway spruce needles. After 1995, the introduction of cleaning devices at the ŠTPP dramatically reduced the former extremely high SO(2) and dust emissions. The most significant findings of this comprehensive, long-duration survey are as follows: (1) the chosen parameters are suitable bioindicators of stress caused by air pollution in Norway spruce needles; they reflect both spatial and temporal variations in air pollution as well as the degree of efficiency of the cleaning devices; (2) observations show that the physiological condition of Norway spruce in northern Slovenia has significantly improved since 1995, when the first desulphurization device at ŠTPP was built, together with a reduction in the area influenced by pollution from ŠTPP; (3) metabolic processes in spruce needles react to air pollution according to the severity of the pollution and the length of exposure; exposure to high SO(2) ambient levels and/or spread over a long duration can damage the antioxidant defence mechanisms of spruce trees as well as diminishing the concentration of ascorbic acid; (4) a reduction in the exposure to air pollution improves the vitality of the trees (e.g. higher concentrations of total (a + b) chlorophyll), as well as restoring their defence capabilities as shown by higher concentrations of ascorbic acid; and (5) forest monitoring should be continued and focused on integrating the effects of multiple stressors, which can additionally affect a forest ecosystem.

  12. Decreases in net primary production and net ecosystem production along a repeated-fires induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, C. H.; Huang, Y. H.; Chung-Yu, L.; Menyailo, O.

    2016-12-01

    Fire is one of the most important disturbances in ecosystems. Fire rapidly releases stored carbon into atmosphere and also plays critical roles on soil properties, light and moisture regimes, and plant structures and communities. With the interventions of climate change and human activities, fire regimes become more severe and frequent. In many parts of world, forest fire regimes can be further altered by grass invasion because the invasive grasses create a positive feedback cycle through their rapid recovery after fires and their high flammability during dry periods and allow forests to be burned repeatedly in a relatively short time. For such invasive grass-fire cycle, a great change of native vegetation community can occur. In this study, we examined a C4 invasive grass () fire-induced forest/grassland gradient to quantify the changes of net primary production (NPP) and net ecosystem production (NEP) from an unburned forest to repeated fire grassland. Our results demonstrated negative effects of repeated fires on NPP and NEP. Within 4 years of the onset of repeated fires on the unburned forest, NPP declined by 14%, mainly due to the reduction in aboveground NPP but offset by increase of belowground NPP. Subsequent fires cumulatively caused reductions in both aboveground and belowground NPP. A total of 40% reduction in the long-term repeated fire induced grassland was found. Soil respiration rate were not significantly different along the forest/grassland gradient. Thus, a great reduction in NEP were shown in grassland, which shifted from 4.6 Mg C ha-1 yr-1 in unburnt forest to -2.6 Mg C ha-1 yr-1. Such great losses are critical within the context of forest carbon cycling and long-term sustainability. Forest management practices that can effectively reduce the likelihood of repeated fires and consequent likelihood of establishment of the grass fire cycle are essential for protecting the forest.

  13. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems

    Treesearch

    P. Sicard; A. Augustaitis; S. Belyazid; C. Calfapietra; A. De Marco; Mark E. Fenn; Andrzej Bytnerowicz; Nancy Grulke; S. He; R. Matyssek; Y. Serengil; G. Wieser; E. Paoletti

    2016-01-01

    Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii)...

  14. From sink to source: Regional variation in U.S. forest carbon futures.

    PubMed

    Wear, David N; Coulston, John W

    2015-11-12

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests' current net sequestration of atmospheric C to be 173 Tg yr(-1), offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr(-1)) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests' role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.

  15. Air pollution increases forest susceptibility to wildfires: a case study for the San Bernardino Mountains in southern California

    Treesearch

    N.E. Grulke; R.A. Minnich; T. Paine; P. Riggan

    2010-01-01

    Many factors increase susceptibility of forests to wildfire. Among them are increases in human population, changes in land use, fire suppression, and frequent droughts. These factors have been exacerbating forest susceptibility to wildfires over the last century in southern California. Here we report on the significant role that air pollution has on increasing forest...

  16. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    NASA Technical Reports Server (NTRS)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  17. Survival rates of female white-tailed deer on an industrial forest following a decline in population density

    Treesearch

    Shawn M. Crimmins; John W. Edwards; Patrick D. Keyser; James M. Crum; W. Mark Ford; Brad F. Miller; Tyler A. Campbell; Karl V. Miller

    2013-01-01

    With white-tailed deer (Odocoileus virginianus) populations at historically high levels throughout many North American forests, many current management activities are aimed at reducing deer populations. However, very little information exists on the ecology of low-density white-tailed deer populations or populations that have declined in density. We...

  18. Developing a stand hazard index for oak decline in upland Oak forests of the Ozark Highlands, Missouri

    Treesearch

    Fan Zhaofei; Fan Xiuli; Martin A. Spetich; Stephen R. Shifley; W. Keith Moser; Randy G. Jensen; John M. Kabrick

    2011-01-01

    Black oak (Quercus velutina Lam.) and scarlet oak (Quercus coccinea Muenchh.)--two major components (44% of total stand basal area) of upland oak forests--are suffering severe decline and mortality in the Ozark Highlands, Missouri. However, factors influencing their survival (mortality) are not well understood. In this study we...

  19. European Holocene landscape change: a comparison of pollen-based approaches to reconstructing land use shifts and forest decline

    NASA Astrophysics Data System (ADS)

    Woodbridge, Jessie; Roberts, Neil; Fyfe, Ralph; Gaillard, Marie-José; Trondman, Anna-Kari; Davis, Basil; Kaplan, Jed

    2016-04-01

    Europe's primaeval forests have been progressively cleared and fragmented since the first appearance of Neolithic farming activities around 6000 years ago. Understanding spatial and temporal changes in forest cover is valuable to researchers interested in past human-environment interactions. Here we present a comparison of reconstructed Holocene forest cover across Europe from three different transformed fossil pollen-based datasets, an extensive modern surface pollen data set, and modern forest cover from remote sensing. The REVEALS approach (Trondman et al., 2015) provides a quantified and validated reconstruction of vegetation incorporating plant productivity estimates, but is currently only available for a limited number of grid cells in mid-latitude and northern Europe for a limited number of time windows. The pseudobiomization (PBM) (Fyfe et al., 2015) and plant functional type (PFT) (Davis et al., 2015) based approaches provide continuous semi-quantitative records of land use change for temperate and Northern Europe spanning the Holocene, but do not provide truly quantified vegetation reconstructions. Estimated modern forest cover based on the various approaches ranges between ~29 and 54%. However, the Holocene estimates of vegetation change show broadly similar trends, with a forest maximum from ~8.2 to ~6 ka BP, and a decline in forest cover after 6 ka BP, accelerating after ~1.2 ka BP. The reconstructions, when broadly disaggregated into northern and mid-latitude Europe, confirm that mid-latitude forest cover has declined more than that in northern Europe over the last 6 ka. The continuous record provided by the PBM has been used to establish a 'half forest loss' date for each grid cell in temperate and northern Europe, which has identified that the timing of forest loss varied spatially with certain regions remaining forested for longer. References Davis BAS, Collins PM, Kaplan JO (2015) The age and post-glacial development of the modern European

  20. Geographic Information System (GIS) analysis of ecosystem response to industrial pollution in the Niepolomice Forest in southern Poland

    Treesearch

    January Weiner; Stefan Fredo-Boniecki; David Reed; Ann Maclean; Marshall Strong; Michael Hyslop

    1998-01-01

    The Niepolomice Forest is located near the city of Krakow in southern Poland. Since the erection of large iron works in the 1950's, the forest has suffered from heavy pollution with SO2 and industrial dusts containing heavy metals. During the past 10 years, the ecology of the Niepolomice Forest has been intensively studied and the impact of...

  1. Three-year progression of emerald ash borer-induced decline and mortality in southeastern Michigan

    Treesearch

    Kamal J.K. Gandhi; Annemarie Smith; Robert P. Long; Robin A.J. Taylor; Daniel A. Herms

    2008-01-01

    We monitored the progression of ash (Fraxinus spp.) decline and mortality due to emerald ash borer (EAB), Agrilus planipennis, in 38 forest stands in the upper Huron River watershed region of southeastern Michigan from 2004-2007. Black ash (F. nigra), green ash (F. pennsylvanica), and white ash...

  2. The impact of pollutants from a major northern highway on an adjacent hardwood forest.

    PubMed

    Watmough, S A; Rabinowitz, T; Baker, S

    2017-02-01

    Emissions of pollutants from highways can exert multiple stresses on adjacent ecosystems. In this study air concentrations of NO 2 and throughfall deposition of inorganic N (NO 3 - and NH 4 + ), SO 4 2- , Cl - , base cations and several metals were measured in all four seasons along a 1.5km hardwood forest gradient extending away from a major highway (Highway 401) in southern Ontario, Canada. Soil and lichen chemistry and herbaceous plant and epiphytic lichen species composition were measured within the hardwood forest to evaluate impacts of these pollutants. Air concentrations of NO 2 and deposition of inorganic N, Cl - , base cations and Cu and Zn in throughfall were significantly elevated within 100m of the road compared with the more distant sites. Concentrations of several pollutants including N (and δ 15 N), Na + , Al and Fe in epiphytic lichen tissue decreased with distance from the highway, and epiphytic lichen richness was lower at sites within 100m of the road. Despite high throughfall inputs of >15kgNha -1 y -1 and 100kgNa + ha -1 y -1 within 33m of the highway, for example, there was no significant difference in soil chemistry amongst sites. Plant community composition at sites within 80m of the highway differed from sites located further from the road, but it is unclear whether differences were due to highway emissions or were a result of natural forest edge effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Greenhouse Gas and Criteria Air Pollutant Emission Reductions from Forest Fuel Treatment Projects in Placer County, California

    NASA Astrophysics Data System (ADS)

    Saah, D. S.; Moritz, M.; Ganz, D. J.; Stine, P. A.; Moody, T.

    2010-12-01

    Years of successful fire suppression activities have left forests unnaturally dense, overstocked, and with high hazardous fuel loads. Wildfires, particularly those of high severity, may dramatically reduce carbon stocks and convert forested lands from carbon sinks to decades-long carbon sources . Forest resource managers are currently pursuing fuels reduction and mitigation strategies to reduce wildfire risk and maintain carbon stocks. These projects include selective thinning and removal of trees and brush to return forest ecosystems to more natural stocking levels, resulting in a more fire-resilient forest that in theory would retain higher carry capacity for standing above ground carbon. Resource managers are exploring the possibility of supporting these local forest management projects by offering greenhouse gas (GHG) offsets to project developers that require GHG emissions mitigation. Using robust field data, this research project modeled three types of carbon benefits that could be realized from forest management: 1. Fuels treatments in the study area were shown to reduce the GHG and Criteria Air Pollutant emissions from wildfires by decreasing the probability, extent, and severity of fires and the corresponding loss in forest carbon stocks; 2. Biomass utilization from fuel treatment was shown to reduce GHG and Criteria Air Pollutant emissions over the duration of the fuels treatment project compared to fossil fuel energy. 3. Management and thinning of forests in order to stimulate growth, resulting in more rapid uptake of atmospheric carbon and approaching a carbon carrying capacity stored in a forest ecosystem under prevailing environmental conditions and natural disturbance regimes.

  4. Species Specific Drought Stress and Temperature Induced Growth Decline in Semi-arid Region of Trans-Himalaya in Central Nepal

    NASA Astrophysics Data System (ADS)

    Tiwari, A.; Zhe-Kun, Z.

    2016-12-01

    Investigations of growth-climate relationships are important to understand the response of forest growth and the dendroclimatic reconstructions (Briffa et al., 1998a; Tessier et al., 1997). This also provides crucial information to assess future forest productivity, growth performance, vegetation dynamics and tree species distributions (Thuiller et al., 2005; Tardif et al., 2006). We explored growth climate response of Abies spectabilis, Betula utilis and Picea smithiana at different elevations of same mountain slope from the semi-arid trans-Himalayan zone of central Himalaya (Mustang, Nepal) in order to observe their drought tolerance. The ring width indices were correlated with the instrumental data (1970-2013 AD) from the nearest climate station to observe the growth climate response. Spring season (March-May) moisture was found to be highly critical for radial growth in all species. Further, we compared the basal area increment (BAI) trend among different species as BAI is the strong indicator of growth trend over the conventional detrended tree ring width indices. Our results demonstrated that BAI is rapidly declining for Betula utilis among three species irrespective of being distributed comparatively to the moist region in the mountain indicating that drought tolerance is highly species specific, as an early warning signal of climate change. Since the global climate models disagree on predicting precipitation intensity and seasonality in the coming decades, and more extreme precipitation events are likely worldwide (IPCC 2013), the least drought tolerant species like birch would be threatened to their survival and might decline due to warming induced drought stress which is already seen with rapid growth decline in the recent decades.

  5. Forest fires and PM10 pollution: the March 2012 case in Northern Spain

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, Domingo; García Codron, Juan Carlos; Carracedo Martín, Virginia

    2016-04-01

    Forest fires are one of the largest sources of particulate matter, carbon monoxide, volatile organic compounds and other pollutants at regional scale. They significantly impact on local air quality and human health, even far from their original sources. March 2012 was one of the largest fire activity late winter and early spring seasons across northern Spain and Portugal. Official statistics from the Spanish and Portuguese authorities show that, during that month, approximately 35.000 ha were burned, representing the top March season in Cantabria (N. Spain) and the northern distritos of Portugal since 1981, most of them occurring in the mountainous areas, as depicted from the FIRMS database (https://firms.modaps.eosdis.nasa.gov/). At the same time, an analysis of the pollution data (Airbase dataset; http://www.eea.europa.eu/) show an increase in PM10 average values and exceedences of the limit values across the same area simultaneously or immediately after the main fire activity episodes. A comprehensive analysis of this fire and pollution event was undertaken to analyze the possible contribution of forest fires and other sources of PM10 to the high levels of this pollutant at ground level. Besides statistics of fire activity, satellite "hot spots" and ground level pollution data, we have included in our analysis meteorological records (synoptic stations, upper air soundings), backtrajectories (http://ready.arl.noaa.gov/HYSPLIT.php) and dust forecast models (https://www.bsc.es/earth-sciences/mineral-dust/catalogo-datos-dust). The results show a good agreement between the spatial and temporal variability of the levels of PM10 and the direction of the pollution plumes downwind the forest fires. The activity was mostly concentrated during 3 events, the first one between February 25th to March 3rd; the second spanning from 10th to 17th, and the last one, the most severe of the three, at the end of March. The climatological background was favourable, because most of the

  6. History of sugar maple decline

    Treesearch

    David R. Houston

    1999-01-01

    Only a few episodes of sugar maple dieback or decline were recorded during the first half of the 20th Century. In contrast, the last 50 years have provided numerous reports of both urban and forest dieback/decline. In the late 1950s, a defoliation-triggered decline, termed maple blight, that occurred in Wisconsin prompted the first comprehensive, multidisciplinary...

  7. Influence of forest canopy and snow on microclimate in a declining yellow-cedar forest of southeast Alaska

    Treesearch

    Paul E. Hennon; David V. D' Amore; Dustin T. Witter; Melinda B. Lamb

    2010-01-01

    Site factors predispose yellow-cedar (Chamaecyparis nootkatensis D. Don (Spach)) to a widespread climate-induced mortality in southeast Alaska. We investigated the influence of canopy cover and snow on microclimate at two small watersheds across a range of declining yellow-cedar stands on Baranof and Chichagof Islands in southeast Alaska. Two...

  8. Pollution mitigation and carbon sequestration by an urban forest.

    PubMed

    Brack, C L

    2002-01-01

    At the beginning of the 1900s, the Canberra plain was largely treeless. Graziers had carried out extensive clearing of the original trees since the 1820s leaving only scattered remnants and some plantings near homesteads. With the selection of Canberra as the site for the new capital of Australia, extensive tree plantings began in 1911. These trees have delivered a number of benefits, including aesthetic values and the amelioration of climatic extremes. Recently, however, it was considered that the benefits might extend to pollution mitigation and the sequestration of carbon. This paper outlines a case study of the value of the Canberra urban forest with particular reference to pollution mitigation. This study uses a tree inventory, modelling and decision support system developed to collect and use data about trees for tree asset management. The decision support system (DISMUT) was developed to assist in the management of about 400,000 trees planted in Canberra. The size of trees during the 5-year Kyoto Commitment Period was estimated using DISMUT and multiplied by estimates of value per square meter of canopy derived from available literature. The planted trees are estimated to have a combined energy reduction, pollution mitigation and carbon sequestration value of US$20-67 million during the period 2008-2012.

  9. From sink to source: Regional variation in U.S. forest carbon futures

    PubMed Central

    Wear, David N.; Coulston, John W.

    2015-01-01

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests’ current net sequestration of atmospheric C to be 173 Tg yr−1, offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr−1) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests’ role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength. PMID:26558439

  10. Biomass and nutrient dynamics associated with slash fires in neotropical dry forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, J.B.; Cummings, D.L.; Sanford, R.L. Jr.

    1993-01-01

    Unprecedented rates of deforestation and biomass burning in tropical dry forests are dramatically influencing biogeochemical cycles, resulting in resource depletion, declines in biodiversity, and atmospheric pollution. We quantified the effects of deforestation and varying levels of slash-fire severity on nutrient losses and redistribution in a second-growth tropical dry forest ([open quotes]Caatinga[close quotes]) near Serra Talhada, Pernambuco, Brazil. Total aboveground biomass prior to burning was [approx]74 Mg/ha. Nitrogen and phosphorus concentrations were highest in litter, leaves attached to slash, and fine wood debris (

  11. Long-run health consequences of air pollution: Evidence from Indonesia's forest fires of 1997.

    PubMed

    Kim, Younoh; Knowles, Scott; Manley, James; Radoias, Vlad

    2017-08-01

    While many studies in the medical literature documented causal relationships between air pollution and negative health outcomes immediately following exposure, much less is known about the long run health consequences of pollution exposure. Using the 1997 Indonesian forest fires as a natural experiment, we estimate the long term effects of air pollution on health outcomes. We take advantage of the longitudinal nature of the Indonesia Family Life Survey (IFLS), which collects detailed individual data on a multitude of health outcomes, in both 1997 and 2007. We find significant negative effects of pollution, which persist in the long run. Men and the elderly are impacted the most, while children seem to recover almost completely from these early shocks. For the entire population, an extra standard deviation in the pollution level increases the likelihood of a poor general health status by almost 3%. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of benzo[a]pyrene dietary intake to antioxidative enzymes of Lymantria dispar (Lepidoptera: Lymantriidae) larvae from unpolluted and polluted forests.

    PubMed

    Gavrilović, Anja; Ilijin, Larisa; Mrdaković, Marija; Vlahović, Milena; Mrkonja, Aleksandra; Matić, Dragana; Perić-Mataruga, Vesna

    2017-07-01

    Anthropogenic activity in industrial development has imposed great threats to the environment and wildlife in the form of persistent organic pollutants. Polycyclic aromatic hydrocarbons (PAH) tend to accumulate in vegetation foliage which is the main food source of polyphagous insect species Lymantria dispar L. Origin and multigenerational adaptation of L. dispar population to environmental challenges strongly condition the enzymes' sensitivity to pollutants. In this study, our aim was to investigate response of the superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) to the chronic dietary exposure of benzo[a]pyrene in the midgut tissues and hemolymph of two L. dispar populations originating from unpolluted and polluted forest habitat. Midgut tissue of the larvae from the polluted forest showed significant increase in SOD, CAT and GST activity, while in unpolluted forest's larvae SOD and CAT showed elevated activities in hemolymph. L. dispar populations adapted to different level of pollution in their environment and expressed distinct tissue-dependent antioxidative enzyme sensitivity to benzo[a]pyrene diet, implying high potential for further elucidation of these enzymes as molecular biomarkers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hotspots of human-induced biomass productivity decline and their social-ecological types toward supporting national policy and local studies on combating land degradation

    NASA Astrophysics Data System (ADS)

    Vu, Quyet Manh; Le, Quang Bao; Vlek, Paul L. G.

    2014-10-01

    Identification and social-ecological characterization of areas that experience high levels of persistent productivity decline are essential for planning appropriate management measures. Although land degradation is mainly induced by human actions, the phenomenon is concurrently influenced by global climate changes that need to be taken into account in land degradation assessments. This study aims to delineate the geographic hotspots of human-induced land degradation in the country and classify the social-ecological characterizations of each specific degradation hotspot type. The research entailed a long-term time-series (1982-2006) of Normalized Difference Vegetation Index to specify the extents of areas with significant biomass decline or increase in Vietnam. Annual rainfall and temperature time-series were then used to separate areas of human-induced biomass productivity decline from those driven by climate dynamics. Next, spatial cluster analyses identified social-ecological types of degradation for guiding further investigations at regional and local scales. The results show that about 19% of the national land mass experienced persistent declines in biomass productivity over the last 25 years. Most of the degraded areas are found in the Southeast and Mekong River Delta (17,984 km2), Northwest Mountains (14,336 km2), and Central Highlands (13,504 km2). We identified six and five social-ecological types of degradation hotspots in agricultural and forested zones, respectively. Constraints in soil nutrient availability and nutrient retention capability are widely spreading in all degradation hotspot types. These hotspot types are different from each other in social and ecological conditions, suggesting that region-specific strategies are needed for the formulation of land degradation combating policy.

  14. Combined effects of thinning and decline on fine root dynamics in a Quercus robur L. forest adjoining the Italian Pre-Alps

    PubMed Central

    Montecchio, L.; Barion, G.; Dal Cortivo, C.; Vamerali, T.

    2017-01-01

    Abstract Aims Oak decline is a complex phenomenon, characterized by symptoms of canopy transparency, bark cracks and root biomass reduction. Root health status is one of the first stress indicators, and root turnover is a key process in plant adaptation to unfavourable conditions. In this study, the combined effects of decline and thinning were evaluated on fine root dynamics in an oak forest adjoining the Italian Pre-Alps by comparison of acute declining trees with non-declining trees, both with and without thinning treatment of surrounding trees. Methods Dynamics of volumetric root length density (RLDV) and tip density (RTDV), root tip density per unit length of root (RTDL), diameter, branching index (BI) and mycorrhizal colonization were monitored by soil coring over 2 years as possible descriptors of decline. Key Results At the beginning of the experiment, the relationship between canopy transparency and root status was weak, declining trees having slightly lower RLDV (–20 %) and RTDV (–11 %). After a 1 year lag, during which the parameters were almost unaffected, BI and RLDV, together with tip density, tip vitality and mycorrhizal colonization, became the descriptors most representative of both decline class and thinning. Thinning of declining trees increased RLDV (+12 %) and RTDV (+32 %), but reduced tip mycorrhizal colonization and vitality over time compared with non-thinned trees, whereas the opposite occurred in healthy trees, together with a marked decrease in branching. After thinning, there was an initial reduction in the structure of the ectomycorrhizal community, although recovery occurred about 10 months later, regardless of decline severity. Conclusions Decline causes losses of fine root length, and a moderate recovery can be achieved by thinning, allowing better soil exploration by oak roots. The close correlation between root vitality and mycorrhizal colonization and their deterioration after thinning indicates that decline does not benefit

  15. Comparison of FVS projection of oak decline on the Mark Twain National Forest to actual growth and mortality as measured over three FIA inventory cycles

    Treesearch

    Don Vandendriesche; Linda Haugen

    2008-01-01

    Oak decline has been recorded on oak forests throughout the Ozark Plateau of Missouri since the 1970s, but severe drought in the late 1990s, combined with the advancing age of the Ozark forests, has intensified the levels of crown dieback and mortality beyond historical levels. The purpose of this project was to determine whether the Forest Vegetation Simulator (FVS)...

  16. Consequences of long-term severe industrial pollution for aboveground carbon and nitrogen pools in northern taiga forests at local and regional scales.

    PubMed

    Manninen, Sirkku; Zverev, Vitali; Bergman, Igor; Kozlov, Mikhail V

    2015-12-01

    Boreal coniferous forests act as an important sink for atmospheric carbon dioxide. The overall tree carbon (C) sink in the forests of Europe has increased during the past decades, especially due to management and elevated nitrogen (N) deposition; however, industrial atmospheric pollution, primarily sulphur dioxide and heavy metals, still negatively affect forest biomass production at different spatial scales. We report local and regional changes in forest aboveground biomass, C and N concentrations in plant tissues, and C and N pools caused by long-term atmospheric emissions from a large point source, the nickel-copper smelter in Monchegorsk, in north-western Russia. An increase in pollution load (assessed as Cu concentration in forest litter) caused C to increase in foliage but C remained unchanged in wood, while N decreased in foliage and increased in wood, demonstrating strong effects of pollution on resource translocation between green and woody tissues. The aboveground C and N pools were primarily governed by plant biomass, which strongly decreased with an increase in pollution load. In our study sites (located 1.6-39.7 km from the smelter) living aboveground plant biomass was 76 to 4888 gm(-2), and C and N pools ranged 35-2333 g C m(-2) and 0.5-35.1 g N m(-2), respectively. We estimate that the aboveground plant biomass is reduced due to chronic exposure to industrial air pollution over an area of about 107,200 km2, and the total (aboveground and belowground) loss of phytomass C stock amounts to 4.24×10(13) g C. Our results emphasize the need to account for the overall impact of industrial polluters on ecosystem C and N pools when assessing the C and N dynamics in northern boreal forests because of the marked long-term negative effects of their emissions on structure and productivity of plant communities. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Drying of Floodplain Forests Associated with Water-Level Decline in the Apalachicola River, Florida - Interim Results, 2006

    USGS Publications Warehouse

    Darst, Melanie R.; Light, Helen M.

    2007-01-01

    Floodplain forests of the Apalachicola River, Florida, are drier in composition today (2006) than they were before 1954, and drying is expected to continue for at least the next 50 years. Drier forest composition is probably caused by water-level declines that occurred as a result of physical changes in the main channel after 1954 and decreased flows in spring and summer months since the 1970s. Forest plots sampled from 2004 to 2006 were compared to forests sampled in the late 1970s (1976-79) using a Floodplain Index (FI) based on species dominance weighted by the Floodplain Species Category, a value that represents the tolerance of tree species to inundation and saturation in the floodplain and consequently, the typical historic floodplain habitat for that species. Two types of analyses were used to determine forest changes over time: replicate plot analysis comparing present (2004-06) canopy composition to late 1970s canopy composition at the same locations, and analyses comparing the composition of size classes of trees on plots in late 1970s and in present forests. An example of a size class analysis would be a comparison of the composition of the entire canopy (all trees greater than 7.5 cm (centimeter) diameter at breast height (dbh)) to the composition of the large canopy tree size class (greater than or equal to 25 cm dbh) at one location. The entire canopy, which has a mixture of both young and old trees, is probably indicative of more recent hydrologic conditions than the large canopy, which is assumed to have fewer young trees. Change in forest composition from the pre-1954 period to approximately 2050 was estimated by combining results from three analyses. The composition of pre-1954 forests was represented by the large canopy size class sampled in the late 1970s. The average FI for canopy trees was 3.0 percent drier than the average FI for the large canopy tree size class, indicating that the late 1970s forests were 3.0 percent drier than pre-1954

  18. Chemical composition of needles and cambial activity of stems of Scots pine trees affected by air pollutants in Polish forests

    Treesearch

    Wojciech Dmuchowski; Ewa U. Kurczynska; Wieslaw Wloch

    1998-01-01

    The impact of environmental pollution is defined for the chemical composition of Scots pine (Pinus sylvestris L.) needles and cambial activity in the tree stems in Polish forests. The research investigated 20-year-old trees growing in two areas in significantly different levels of pollution. The highly polluted area was located near the Warsaw...

  19. Induced plant defenses, host–pathogen interactions, and forest insect outbreaks

    PubMed Central

    Elderd, Bret D.; Rehill, Brian J.; Haynes, Kyle J.; Dwyer, Greg

    2013-01-01

    Cyclic outbreaks of defoliating insects devastate forests, but their causes are poorly understood. Outbreak cycles are often assumed to be driven by density-dependent mortality due to natural enemies, because pathogens and predators cause high mortality and because natural-enemy models reproduce fluctuations in defoliation data. The role of induced defenses is in contrast often dismissed, because toxic effects of defenses are often weak and because induced-defense models explain defoliation data no better than natural-enemy models. Natural-enemy models, however, fail to explain gypsy moth outbreaks in North America, in which outbreaks in forests with a higher percentage of oaks have alternated between severe and mild, whereas outbreaks in forests with a lower percentage of oaks have been uniformly moderate. Here we show that this pattern can be explained by an interaction between induced defenses and a natural enemy. We experimentally induced hydrolyzable-tannin defenses in red oak, to show that induction reduces variability in a gypsy moth’s risk of baculovirus infection. Because this effect can modulate outbreak severity and because oaks are the only genus of gypsy moth host tree that can be induced, we extended a natural-enemy model to allow for spatial variability in inducibility. Our model shows alternating outbreaks in forests with a high frequency of oaks, and uniform outbreaks in forests with a low frequency of oaks, matching the data. The complexity of this effect suggests that detecting effects of induced defenses on defoliator cycles requires a combination of experiments and models. PMID:23966566

  20. Air pollution and forest health studies along a south-north transect in Poland

    Treesearch

    Stefan Godzik; Jerzy Szdzuj; Tomasz Staszewski; Wlodzimierz Lukasik

    1998-01-01

    Air pollution, bulk deposition and throughfall, soil characteristics, needle chemistry, and forest injury were studied on six permanent plots from the south (Brenna and Salmopol in the Beskidy Mountains) to the north (Gac, the Baltic Sea coastal area) in Poland. The concentrations of sulfur dioxide and nitrogen dioxide were the highest at the Katowice location and the...

  1. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced

  2. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China.

    PubMed

    Zhou, Guoyi; Peng, Changhui; Li, Yuelin; Liu, Shizhong; Zhang, Qianmei; Tang, Xuli; Liu, Juxiu; Yan, Junhua; Zhang, Deqiang; Chu, Guowei

    2013-04-01

    Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought-induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad-leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad-leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long-term climate change. © 2012 Blackwell Publishing Ltd.

  3. Geranylgeranylacetone prevents stress-induced decline of leptin secretion in mice.

    PubMed

    Itai, Miki; Kuwano, Yuki; Nishikawa, Tatsuya; Rokutan, Kazuhito; Kensei, Nishida

    2018-01-01

    Geranylgeranylacetone (GGA) is a chaperon inducer that protects various types of cell and tissue against stress. We examined whether GGA modulated energy intake and expenditure under stressful conditions. After mice were untreated or treated orally with GGA (0.16 g per kg body weight per day) for 10 days, they were subjected to 2-h restraint stress once or once a day for 5 consecutive days. GGA administration did not affect corticosterone response to the stress. Restraint stress rapidly decreased plasma leptin levels in control mice. GGA significantly increased circulating leptin levels without changing food intake and prevented the stress-induced decline of circulating leptin. However GGA-treated mice significantly reduced food intake during the repeated stress, compared with control mice. GGA prevented the stress-induced decline of leptin mRNA and its protein levels in epidydimal adipose tissues. We also found that GGA decreased ghrelin mRNA expression in gastric mucosa before the stress, whereas GGA-treated mice recovered the ghrelin mRNA expression to the baseline level after the repeated stress. Leptin and ghrelin are now recognized as regulators of anxiety and depressive mood. Our results suggest that GGA may regulate food intake and relief stress-induced mood disturbance through regulating leptin and ghrelin secretions. J. Med. Invest. 65:103-109, February, 2018.

  4. Hemlock declines rapidly with hemlock woolly adelgid infestation: impacts on the carbon cycle of the Southern Appalachian forests

    Treesearch

    April E. Nuckolls; Nina Wurzburger; Chelcy R. Ford; Ronald L. Hendrick; James M. Vose; Brian D. Kloeppel

    2008-01-01

    The recent infestation of southern Appalachian eastern hemlock stands by hemlock woolly adelgid (HWA) is expected to have dramatic and lasting effects on forest structure and function. We studied the short-term changes to the carbon cycle in a mixed stand of hemlock and hardwoods, where hemlock was declining due to either girdling or HWA infestation. We expected that...

  5. Mutualism-disrupting allelopathic invader drives carbon stress and vital rate decline in a forest perennial herb.

    PubMed

    Brouwer, Nathan L; Hale, Alison N; Kalisz, Susan

    2015-02-27

    Invasive plants can negatively affect belowground processes and alter soil microbial communities. For native plants that depend on soil resources from root fungal symbionts (RFS), invasion could compromise their resource status and subsequent ability to manufacture and store carbohydrates. Herbaceous perennials that depend on RFS-derived resources dominate eastern North American forest understories. Therefore, we predict that forest invasion by Alliaria petiolata, an allelopathic species that produces chemicals that are toxic to RFS, will diminish plant carbon storage and fitness. Over a single growing season, the loss of RFS could reduce a plant's photosynthetic physiology and carbon storage. If maintained over multiple growing seasons, this could create a condition of carbon stress and declines in plant vital rates. Here we characterize the signals of carbon stress over a short timeframe and explore the long-term consequence of Alliaria invasion using Maianthemum racemosum, an RFS-dependent forest understory perennial. First, in a greenhouse experiment, we treated the soil of potted Maianthemum with fresh leaf tissue from either Alliaria or Hesperis matronalis (control) for a single growing season. Alliaria-treated plants exhibit significant overall reductions in total non-structural carbohydrates and have 17 % less storage carbohydrates relative to controls. Second, we monitored Maianthemum vital rates in paired experimental plots where we either removed emerging Alliaria seedlings each spring or left Alliaria at ambient levels for 7 years. Where Alliaria is removed, Maianthemum size and vital rates improve significantly: flowering probability increases, while the probability of plants regressing to non-flowering stages or entering prolonged dormancy are reduced. Together, our results are consistent with the hypothesis that disruption of a ubiquitous mutualism following species invasion creates symptoms of carbon stress for species dependent on RFS. Disruption

  6. Expert opinion survey on the impacts of air pollutants on forests of the USA

    Treesearch

    J.M. Pye; J.E. de Steiguer; C. Love

    1988-01-01

    A panel of experts was surveyed to obtain five air pollutants (SO2 NO2, O3, H2SO4, and HNO3) on growth, mortality, and leaf area of forests of the continental U.S. for later input to economic analysis. Results from the first two of three...

  7. Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice.

    PubMed

    Girardin, Martin P; Guo, Xiao Jing; De Jong, Rogier; Kinnard, Christophe; Bernier, Pierre; Raulier, Frédéric

    2014-03-01

    The 20th century was a pivotal period at high northern latitudes as it marked the onset of rapid climatic warming brought on by major anthropogenic changes in global atmospheric composition. In parallel, Arctic sea ice extent has been decreasing over the period of available satellite data records. Here, we document how these changes influenced vegetation productivity in adjacent eastern boreal North America. To do this, we used normalized difference vegetation index (NDVI) data, model simulations of net primary productivity (NPP) and tree-ring width measurements covering the last 300 years. Climatic and proxy-climatic data sets were used to explore the relationships between vegetation productivity and Arctic sea ice concentration and extent, and temperatures. Results indicate that an unusually large number of black spruce (Picea mariana) trees entered into a period of growth decline during the late-20th century (62% of sampled trees; n = 724 cross sections of age >70 years). This finding is coherent with evidence encoded in NDVI and simulated NPP data. Analyses of climatic and vegetation productivity relationships indicate that the influence of recent climatic changes in the studied forests has been via the enhanced moisture stress (i.e. greater water demands) and autotrophic respiration amplified by the declining sea ice concentration in Hudson Bay and Hudson Strait. The recent decline strongly contrasts with other growth reduction events that occurred during the 19th century, which were associated with cooling and high sea ice severity. The recent decline of vegetation productivity is the first one to occur under circumstances related to excess heat in a 300-year period, and further culminates with an intensifying wildfire regime in the region. Our results concur with observations from other forest ecosystems about intensifying temperature-driven drought stress and tree mortality with ongoing climatic changes. © 2013 Her Majesty the Queen in Right of Canada

  8. Iso-α-acids, bitter components of beer, prevent obesity-induced cognitive decline.

    PubMed

    Ayabe, Tatsuhiro; Ohya, Rena; Kondo, Keiji; Ano, Yasuhisa

    2018-03-19

    Dementia and cognitive decline have become worldwide public health problems, and it was recently reported that life-style related diseases and obesity are key risk factors in dementia. Iso-α-acids, hop-derived bitter components of beer, have been reported to have various physiological functions via activation of peroxisome proliferator-activated receptor γ. In this report, we demonstrated that daily intake of iso-α-acids suppresses inflammations in the hippocampus and improves cognitive decline induced by high fat diet (HFD). Body weight, epididymal fat weight, and plasma triglyceride levels were increased in HFD-fed mice, and significantly decreased in iso-α-acids supplemented HFD-fed mice. HFD feeding enhances the production of inflammatory cytokines and chemokines, such as TNF-α, which was significantly suppressed by iso-α-acids administration. HFD-induced neuroinflammation caused lipid peroxidation, neuronal loss, and atrophy in hippocampus, and those were not observed in iso-α-acids-treated mice. Furthermore, iso-α-acids intake significantly improved cognitive decline induced by HFD-feeding. Iso-α-acids are food derived components that suppressing both lipid accumulation and brain inflammation, thus iso-α-acids might be beneficial for the risk of dementia increased by obesity and lifestyle-related diseases.

  9. Air pollution and vegetation change in southern California coastal sage scrub: a comparison with chaparral and coniferous forest

    Treesearch

    Edith B. Allen; Abby G. Sirulnik; Louise Egerton-Warburton; Sheila N. Kee; Andrzej Bytnerowicz; Pamela E. Padgett; Patrick J. Temple; Mark E. Fenn; Mark A. Poth; Thomas Meixner

    2005-01-01

    The coastal sage scrub (CSS) vegetation of southern California is rapidly converting to annual grasslands, perhaps in part because of air pollution. By contrast, chaparral and coniferous forest are subject to equally high levels of air pollution but are relatively stable. A comparative analysis of ozone and nitrogen deposition on plants of CSS, exotic annual grassland...

  10. Combined effects of thinning and decline on fine root dynamics in a Quercus robur L. forest adjoining the Italian Pre-Alps.

    PubMed

    Mosca, E; Montecchio, L; Barion, G; Dal Cortivo, C; Vamerali, T

    2017-05-01

    Oak decline is a complex phenomenon, characterized by symptoms of canopy transparency, bark cracks and root biomass reduction. Root health status is one of the first stress indicators, and root turnover is a key process in plant adaptation to unfavourable conditions. In this study, the combined effects of decline and thinning were evaluated on fine root dynamics in an oak forest adjoining the Italian Pre-Alps by comparison of acute declining trees with non-declining trees, both with and without thinning treatment of surrounding trees. Dynamics of volumetric root length density (RLD V ) and tip density (RTD V ), root tip density per unit length of root (RTD L ), diameter, branching index (BI) and mycorrhizal colonization were monitored by soil coring over 2 years as possible descriptors of decline. At the beginning of the experiment, the relationship between canopy transparency and root status was weak, declining trees having slightly lower RLD V (-20 %) and RTD V (-11 %). After a 1 year lag, during which the parameters were almost unaffected, BI and RLD V , together with tip density, tip vitality and mycorrhizal colonization, became the descriptors most representative of both decline class and thinning. Thinning of declining trees increased RLD V (+12 %) and RTD V (+32 %), but reduced tip mycorrhizal colonization and vitality over time compared with non-thinned trees, whereas the opposite occurred in healthy trees, together with a marked decrease in branching. After thinning, there was an initial reduction in the structure of the ectomycorrhizal community, although recovery occurred about 10 months later, regardless of decline severity. Decline causes losses of fine root length, and a moderate recovery can be achieved by thinning, allowing better soil exploration by oak roots. The close correlation between root vitality and mycorrhizal colonization and their deterioration after thinning indicates that decline does not benefit from reduced root competition

  11. EAB induced tree mortality impacts ecosystem respiration and tree water use in an experimental forest

    Treesearch

    Charles E. Flower; Douglas J. Lynch; Kathleen S. Knight; Miquel A. Gonzales-Meler

    2011-01-01

    The invasive emerald ash borer (Agrilus planipennis Fairmaire, EAB) has been spreading across the forest landscape of the Midwest resulting in the rapid decline of ash trees (Fraxinus spp.). Ash trees represent a dominant riparian species in temperate deciduous forests of the Eastern United States (USDA FIA Database). Prior...

  12. Epiphytic bryophytes as bio-indicators of atmospheric nitrogen deposition in a subtropical montane cloud forest: Response patterns, mechanism, and critical load.

    PubMed

    Shi, Xian-Meng; Song, Liang; Liu, Wen-Yao; Lu, Hua-Zheng; Qi, Jin-Hua; Li, Su; Chen, Xi; Wu, Jia-Fu; Liu, Shuai; Wu, Chuan-Sheng

    2017-10-01

    Increasing trends of atmospheric nitrogen (N) deposition due to pollution and land-use changes are dramatically altering global biogeochemical cycles. Bryophytes, which are extremely vulnerable to N deposition, often play essential roles in these cycles by contributing to large nutrient pools in boreal and montane forest ecosystems. To interpret the sensitivity of epiphytic bryophytes for N deposition and to determine their critical load (CL) in a subtropical montane cloud forest, community-level, physiological and chemical responses of epiphytic bryophytes were tested in a 2-year field experiment of N additions. The results showed a significant decrease in the cover of the bryophyte communities at an N addition level of 7.4 kg ha -1 yr -1 , which is consistent with declines in the biomass production, vitality, and net photosynthetic rate responses of two dominant bryophyte species. Given the background N deposition rate of 10.5 kg ha -1 yr -1 for the study site, a CL of N deposition is therefore estimated as ca. 18 kg N ha -1 yr -1 . A disordered cellular carbon (C) metabolism, including photosynthesis inhibition and ensuing chlorophyll degradation, due to the leakage of magnesium and potassium and corresponding downstream effects, along with direct toxic effects of excessive N additions is suggested as the main mechanism driving the decline of epiphytic bryophytes. Our results confirmed the process of C metabolism and the chemical stability of epiphytic bryophytes are strongly influenced by N addition levels; when coupled to the strong correlations found with the loss of bryophytes, this study provides important and timely evidence on the response mechanisms of bryophytes in an increasingly N-polluted world. In addition, this study underlines a general decline in community heterogeneity and biomass production of epiphytic bryophytes induced by increasing N deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A model for estimating air-pollutant uptake by forests: calculation of absorption of sulfur dioxide from dispersed sources

    Treesearch

    C. E., Jr. Murphy; T. R. Sinclair; K. R. Knoerr

    1977-01-01

    The computer model presented in this paper is designed to estimate the uptake of air pollutants by forests. The model utilizes submodels to describe atmospheric diffusion immediately above and within the canopy, and into the sink areas within or on the trees. The program implementing the model is general and can be used with only minor changes for any gaseous pollutant...

  14. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.

    PubMed

    Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R

    2015-01-01

    When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Deposition and Effects of Atmospheric Nitrogen and Ozone in Holm Oak Forests in Spain

    NASA Astrophysics Data System (ADS)

    González Fernández, I.; García Gómez, H.; Calvete Sogo, H.; Bermejo, V.; Valiño, F.; Elvira, S.; Rábago, I.; Sanz, J.; Alonso, R.

    2013-12-01

    Atmospheric nitrogen (N) emissions in Spain, in the western Mediterranean basin, have followed an increasing trend since 1990 and have only started to decline recently. These trends have resulted in growing N depositions in some areas and in N enrichment of ecosystems, as described in previous studies by increasing records of nitrophilous species in herbaria and raising N content both in bryophytes and in leaves of forest trees. Tropospheric ozone (O3) background concentrations, formed as a result of photochemical reactions of N compounds in the atmosphere, have also increased during the last decades. Despite these evidences, limited information is available on N and O3 deposition and effects in Holm oak forests, important ecosystems in Spain. New studies are being developed to address this lack of data. First results on N deposition in a Holm oak forest in central Spain stress the importance of seasonal variations of N inputs in Mediterranean environments. Spring and autumn rainfall events added up to 80% of total annual bulk deposition and losses of NO3- in the soil water were detected when throughfall N pulses occurred during periods of low plant physiological activity. N uptake in the tree canopy was also observed. High O3 concentrations were also measured in this study. The exposure to both N and O3 is a common situation in Holm oak forests. The combined effect of N and O3 deposition on the annual pasture of the Holm oak forest understory has been studied in an open-top chamber study using a simplified community of six species. Results show that O3 can potentially reduce pasture growth, decrease its nutritive value for herbivores and cause shifts in species abundance. N deposition can partially counterbalance O3-induced effects on the pasture biomass, thus both O3 and N need to be considered together when studying air pollution impacts in these ecosystems. The studies presented here are intended for developing N and O3 critical loads and levels for the

  16. Changes in forest productivity across Alaska consistent with biome shift.

    PubMed

    Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J

    2011-04-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. © 2011 Blackwell Publishing Ltd/CNRS.

  17. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions.

    PubMed

    Aragão, Luiz E O C; Anderson, Liana O; Fonseca, Marisa G; Rosan, Thais M; Vedovato, Laura B; Wagner, Fabien H; Silva, Camila V J; Silva Junior, Celso H L; Arai, Egidio; Aguiar, Ana P; Barlow, Jos; Berenguer, Erika; Deeter, Merritt N; Domingues, Lucas G; Gatti, Luciana; Gloor, Manuel; Malhi, Yadvinder; Marengo, Jose A; Miller, John B; Phillips, Oliver L; Saatchi, Sassan

    2018-02-13

    Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km 2 . Gross emissions from forest fires (989 ± 504 Tg CO 2 year -1 ) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.

  18. Mistletoe-induced growth reductions at the forest stand scale.

    PubMed

    Kollas, Chris; Gutsch, Martin; Hommel, Robert; Lasch-Born, Petra; Suckow, Felicitas

    2018-05-01

    The hemiparasite European mistletoe (Viscum album L.) adversely affects growth and reproduction of the host Scots pine (Pinus sylvestris L.) and in consequence may lead to tree death. Here, we aimed to estimate mistletoe-induced losses in timber yield applying the process-based forest growth model 4C. The parasite was implemented into the eco-physiological forest growth model 4C using (literature-derived) established impacts of the parasite on the tree's water and carbon cycle. The amended model was validated simulating a sample forest stand in the Berlin area (Germany) comprising trees with and without mistletoe infection. At the same forest stand, tree core measurements were taken to evaluate simulated and observed growth. A subsample of trees were harvested to quantify biomass compartments of the tree canopy and to derive a growth function of the mistletoe population. The process-based simulations of the forest stand revealed 27% reduction in basal area increment (BAI) during the last 9 years of heavy infection, which was confirmed by the measurements (29% mean growth reduction). The long-term simulations of the forest stand before and during the parasite infection showed that the amended forest growth model 4C depicts well the BAI growth pattern during >100 years and also quantifies well the mistletoe-induced growth reductions in Scots pine stands.

  19. Mapping young forest in Wisconsin

    Treesearch

    Mark Nelson; Kirk Stueve; Charles Perry; Dale Gormanson; Chengquan Huang; Sean. Healey

    2012-01-01

    Population declines of early successional forest-associated wildlife species have been linked to declines in habitat abundance. Forest Inventory and Analysis (FIA) data can be used to estimate composition and change in 'young' forest, but such information typically lacks spatial specificity for determining landscape patterns that also affect habitat...

  20. Aging Exacerbates Obesity-induced Cerebromicrovascular Rarefaction, Neurovascular Uncoupling, and Cognitive Decline in Mice

    PubMed Central

    Tucsek, Zsuzsanna; Toth, Peter; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Warrington, Junie P.; Giles, Cory B.; Wren, Jonathan D.; Koller, Akos; Ballabh, Praveen; Sonntag, William E.; Csiszar, Anna

    2014-01-01

    Epidemiological studies show that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular impairment, we compared young (7 months) and aged (24 months) high-fat diet–fed obese C57BL/6 mice. We found that aging exacerbates the obesity-induced decline in microvascular density both in the hippocampus and in the cortex. The extent of hippocampal microvascular rarefaction and the extent of impairment of hippocampal-dependent cognitive function positively correlate. Aging exacerbates obesity-induced loss of pericyte coverage on cerebral microvessels and alters hippocampal angiogenic gene expression signature, which likely contributes to microvascular rarefaction. Aging also exacerbates obesity-induced oxidative stress and induction of NADPH oxidase and impairs cerebral blood flow responses to whisker stimulation. Collectively, obesity exerts deleterious cerebrovascular effects in aged mice, promoting cerebromicrovascular rarefaction and neurovascular uncoupling. The morphological and functional impairment of the cerebral microvasculature in association with increased blood–brain barrier disruption and neuroinflammation (Tucsek Z, Toth P, Sosnowsk D, et al. Obesity in aging exacerbates blood–brain barrier disruption, neuroinflammation and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol Biol Med Sci. 2013. In press, PMID: 24269929) likely contribute to obesity-induced cognitive decline in aging. PMID:24895269

  1. Declining incidence in fall-induced deaths of older adults: Finnish statistics during 1971-2015.

    PubMed

    Kannus, Pekka; Niemi, Seppo; Sievänen, Harri; Parkkari, Jari

    2018-02-06

    Fall-induced deaths of elderly people are a major problem. Using the Official Cause-of-Death Statistics of Finland, we aimed to determine the current trends in the number and age-adjusted incidence (per 100,000 persons) of fall deaths among older Finns by taking into account 50 years or older persons who died because of a fall-induced injury in 1971-2015. Among men, the number of fall-induced deaths increased considerably between 1971 and 2003 (from 162 in 1971 to 564 in 2003), while thereafter, this number has been relatively stable (579 deaths in 2015). Men's age-adjusted incidence of fall deaths rose from 45.6 in 1971 to 69.5 in 1998, after which it stayed relatively stable until 2005 (69.9). Since 2005, this figure has shown a steady, deep decline (only 45.1 in 2015). Among women, the number of fall-induced deaths increased considerably between 1971 and 1998 (from 279 in 1971 to 563 in 1998), while thereafter, this number has been relatively stable (532 deaths in 2015). In sharp contrast to men, women's age-adjusted incidence of fall-induced deaths has been declining since the early 1970s, the incidence being 82.6 in 1971 while only 33.0 in 2015. A steady, deep decline started in 1998. Among 50 years or older Finns the number of fall-induced deaths increased considerably from the early 1970s until the late 1990s but stabilized thereafter. In the new millennium, the age-adjusted incidence of these deaths has started to decline in both sexes. Despite this we have to effectively continue the falls prevention efforts, because our elderly population will grow rapidly in the near future.

  2. Review of pollutant lead decline in urban air and human blood: A case study from northwestern Europe

    NASA Astrophysics Data System (ADS)

    Petit, Daniel; Véron, Alain; Flament, Pascal; Deboudt, Karine; Poirier, André

    2015-09-01

    A review of the transient decline of pollutant lead in the air (PbA) and the blood (PbB) has been conducted in order to assess the relationship between these environmental reservoirs. We have demonstrated that PbA decreased 20 to 100 times more than PbB for the past 30 years, suggesting another significant intake besides airborne lead to explain lead accumulated in humans. This trend has also been observed in two blood surveys we have completed in 1976-1978 and 2008-2009 in northern France and Belgium. Nowadays, the mean PbB (1.5-3.5 μg/dL) remains at least 100 times higher than the estimated non-contaminated PbB. Lead isotope imprints in blood could help decipher specific contamination cases, and were coherent with the decline of PbA, but could not help discriminate the source of blood lead owing to the lack of source imprints, especially from dietary intakes. Correlations between recent PbB, isotopic imprints and the age of the subjects suggested that lead released from bones has become a significant source of lead in blood. The significant cause for human exposure to lead may have shifted from direct pollutant lead input accumulated in exogenous reservoirs (air and diet) to endogenous lead release from bone tissues consequential to metabolic calcium homeostasis and bone turnover.

  3. Forests under climate change and air pollution: gaps in understanding and future directions for research.

    PubMed

    Matyssek, R; Wieser, G; Calfapietra, C; de Vries, W; Dizengremel, P; Ernst, D; Jolivet, Y; Mikkelsen, T N; Mohren, G M J; Le Thiec, D; Tuovinen, J-P; Weatherall, A; Paoletti, E

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Ecological Restoration Programs Induced Amelioration of the Dust Pollution in North China Plain

    NASA Astrophysics Data System (ADS)

    Long, X.; Tie, X.; Li, G.; Junji, C.

    2017-12-01

    With Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product (MCD12Q1), we quantitatively evaluate the ecological restoration programs (ERP) induced land cover change in China by calculating gridded the land use fraction (LUF). We clearly capture two obvious vegetation (grass and forest) protective barriers arise between the dust source region DSR and North China Plain NCP from 2011 to 2013. The WRF-DUST model is applied to investigate the impact of ERPs on dust pollution from 2 to 8 March 2016, corresponding to a national dust storm event over China. Despite some model biases, the WRF-DUST model reasonably reproduced the temporal variations of dust storm event, involving IOA of 0.96 and NMB of 2% for DSR, with IOA of 0.83 and NMB of -15% for downwind area of NCP. Generally, the WRF-DUST model well capture the spatial variations and evolutions of dust storm events with episode-average [PMC] correlation coefficient (R) of 0.77, especially the dust storm outbreak and transport evolution, involving daily average [PMC] R of 0.9 and 0.73 on 4-5 March, respectively. It is found that the ERPs generally reduce the dust pollution in NCP, especially for BTH, involving upper dust pollution control benefits of -15.3% (-21.0 μg m-3) for BTH, and -6.2% (-9.3 μg m-3) for NCP. We are the first to conduct model sensitivity studies to quantitatively evaluate the impacts of the ERPs on the dust pollution in NCP. And our narrative is independently based on first-hand sources, whereas government statistics.

  5. Decline as a disease category: Is it helpful?

    Treesearch

    M.E. Ostry; R.C. Venette; J. Juzwik

    2011-01-01

    Many, but not all, forest pathologists use "decline" to describe forest tree diseases of complex etiology. We contend that this distinction from abiotic or biotic diseases is completely arbitrary, has caused undue confusion, and provides no practical insights for forest managers. All diseases are complex and can be characterized within the conceptual...

  6. Climate-induced forest dieback: An escalating global phenomenon?

    USGS Publications Warehouse

    Allen, Craig D.

    2009-01-01

    Forests, which today cover 30 percent of the world’s land surface (FAO, 2006), are being rapidly and directly transformed in many areas by the impacts of expanding human populations and economies. Less evident are the pervasive effects of ongoing climatic changes on the condition and status of forests around the world. Recent examples of drought and heat-related forest stress and dieback (defined here as tree mortality noticeably above usual mortality levels) are being documented from all forested continents, making it possible to begin to see global patterns. This article introduces these patterns and considers the possibility that many forests and woodlands today are at increasing risk of climate-induced dieback. A more comprehensive article (Allen et al., 2009) addresses this topic in considerably greater detail. While climate events can damage forests in many ways ranging from ice storms to tornadoes and hurricanes, the emphasis here is on climatic water stress, driven by drought and warm temperatures.

  7. Approaches to modeling landscape-scale drought-induced forest mortality

    USGS Publications Warehouse

    Gustafson, Eric J.; Shinneman, Douglas

    2015-01-01

    Drought stress is an important cause of tree mortality in forests, and drought-induced disturbance events are projected to become more common in the future due to climate change. Landscape Disturbance and Succession Models (LDSM) are becoming widely used to project climate change impacts on forests, including potential interactions with natural and anthropogenic disturbances, and to explore the efficacy of alternative management actions to mitigate negative consequences of global changes on forests and ecosystem services. Recent studies incorporating drought-mortality effects into LDSMs have projected significant potential changes in forest composition and carbon storage, largely due to differential impacts of drought on tree species and interactions with other disturbance agents. In this chapter, we review how drought affects forest ecosystems and the different ways drought effects have been modeled (both spatially and aspatially) in the past. Building on those efforts, we describe several approaches to modeling drought effects in LDSMs, discuss advantages and shortcomings of each, and include two case studies for illustration. The first approach features the use of empirically derived relationships between measures of drought and the loss of tree biomass to drought-induced mortality. The second uses deterministic rules of species mortality for given drought events to project changes in species composition and forest distribution. A third approach is more mechanistic, simulating growth reductions and death caused by water stress. Because modeling of drought effects in LDSMs is still in its infancy, and because drought is expected to play an increasingly important role in forest health, further development of modeling drought-forest dynamics is urgently needed.

  8. Response of epiphytic bryophytes to simulated N deposition in a subtropical montane cloud forest in southwestern China.

    PubMed

    Song, Liang; Liu, Wen-Yao; Ma, Wen-Zhang; Qi, Jin-Hua

    2012-11-01

    A field manipulation experiment was conducted in a subtropical montane cloud forest in southwestern China to determine the possible responses of epiphytic bryophytes to increasing nitrogen (N) deposition from community to physiology level, and to find sensitive epiphytic bryophytes that may be used as indicators for assessing the degree of N pollution. N addition had significantly negative effects on species richness and cover of the epiphytic bryophyte community. Harmful effects of high N loads were recorded for chlorophyll, growth, and vitality of the species tested. The decline of some epiphytic bryophytes may result from detrimental effects on degradation to photosynthetic pigments. Bazzania himalayana (Mitt.) Schiffn., Bazzania ovistipula (Steph.) Mizut., and Homaliodendron flabellatum (Sm.) Fleisch. are candidates in atmospheric nitrogen monitoring. Epiphytic bryophytes in the montane cloud forest are very sensitive to increasing N deposition and often difficult to recover once they have been destroyed, providing early detection of enhanced N pollution for trees or even the whole forest ecosystem. The inference that increasing N pollution may lead to loss of biodiversity is a concern to the developing economy in western China, and should alert the government to the adverse impacts caused by increased industrial pollution during the process of China's West Development.

  9. Fireworks induced particle pollution: A spatio-temporal analysis

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Singh, R. K.; Murari, V.; Singh, A. K.; Singh, R. S.; Banerjee, T.

    2016-11-01

    Diwali-specific firework induced particle pollution was measured in terms of aerosol mass loading, type, optical properties and vertical distribution. Entire nation exhibited an increase in particulate concentrations specifically in Indo-Gangetic Plain (IGP). Aerosol surface mass loading at middle IGP revealed an increase of 56-121% during festival days in comparison to their background concentrations. Space-borne measurements (Aqua and Terra-MODIS) typically identified IGP with moderate to high AOD (0.3-0.8) during pre-festive days which transmutes to very high AOD (0.4-1.8) during Diwali-day with accumulation of aerosol fine mode fractions (0.3-1.0). Most of the aerosol surface monitoring stations exhibited increase in PM2.5 especially on Diwali-day while PM10 exhibited increase on subsequent days. Elemental compositions strongly support K, Ba, Sr, Cd, S and P to be considered as firework tracers. The upper and middle IGP revealed dominance of absorbing aerosols (OMI-AI: 0.80-1.40) while CALIPSO altitude-orbit-cross-section profiles established the presence of polluted dust which eventually modified with association of smoke and polluted continental during extreme fireworks. Diwali-specific these observations have implications on associating fireworks induced particle pollution and human health while inclusion of these observations should improve regional air quality model.

  10. An Evaluation of the Role of Ozone, Acid Deposition, and other Airborne Pollutants in the Forests of Eastern North America

    Treesearch

    J.H.B. Garner; Terry Pagano; Ellis B. Cowling

    1989-01-01

    Existing knowledge on air pollutants that occur in the forests of eastern North America is summarized and interpreted.Resolution is sought to the conflict between the prevailing scientific judgment that ozone and other oxidants are most likely to be damaging eastern forests and the prevailing public perception that acidic and acidifying substances are the most likely...

  11. Climate change and pollution speed declines in zebrafish populations.

    PubMed

    Brown, A Ross; Owen, Stewart F; Peters, James; Zhang, Yong; Soffker, Marta; Paull, Gregory C; Hosken, David J; Wahab, M Abdul; Tyler, Charles R

    2015-03-17

    Endocrine disrupting chemicals (EDCs) are potent environmental contaminants, and their effects on wildlife populations could be exacerbated by climate change, especially in species with environmental sex determination. Endangered species may be particularly at risk because inbreeding depression and stochastic fluctuations in male and female numbers are often observed in the small populations that typify these taxa. Here, we assessed the interactive effects of water temperature and EDC exposure on sexual development and population viability of inbred and outbred zebrafish (Danio rerio). Water temperatures adopted were 28 °C (current ambient mean spawning temperature) and 33 °C (projected for the year 2100). The EDC selected was clotrimazole (at 2 μg/L and 10 μg/L), a widely used antifungal chemical that inhibits a key steroidogenic enzyme [cytochrome P450(CYP19) aromatase] required for estrogen synthesis in vertebrates. Elevated water temperature and clotrimazole exposure independently induced male-skewed sex ratios, and the effects of clotrimazole were greater at the higher temperature. Male sex ratio skews also occurred for the lower clotrimazole exposure concentration at the higher water temperature in inbred fish but not in outbred fish. Population viability analysis showed that population growth rates declined sharply in response to male skews and declines for inbred populations occurred at lower male skews than for outbred populations. These results indicate that elevated temperature associated with climate change can amplify the effects of EDCs and these effects are likely to be most acute in small, inbred populations exhibiting environmental sex determination and/or differentiation.

  12. Arkansas forests

    Treesearch

    William W.S. van Hees

    1980-01-01

    The 1978 Arkansas Forest survey shows a 9 percent reduction in forest land area since 1969. Presently 16.6 million acres, 50 percent of the total State area, are forested. Diversions of forest land to agriculture, particularly to soybean fields in the Delta and to pasture in the Ozarks, account for most of the decline.

  13. Global Forest Area Trends Underestimate Threats from Forest Fragmentation

    EPA Science Inventory

    Forest loss and fragmentation of the remainder threaten the ecological attributes and functions which depend upon forests1. Forest interior area is particularly valued because it is relatively remote from human influence2, 3, 4, 5. Recent global assessments report declines in t...

  14. Primates decline rapidly in unprotected forests: evidence from a monitoring program with data constraints.

    PubMed

    Rovero, Francesco; Mtui, Arafat; Kitegile, Amani; Jacob, Philipo; Araldi, Alessandro; Tenan, Simone

    2015-01-01

    Growing threats to primates in tropical forests make robust and long-term population abundance assessments increasingly important for conservation. Concomitantly, monitoring becomes particularly relevant in countries with primate habitat. Yet monitoring schemes in these countries often suffer from logistic constraints and/or poor rigor in data collection, and a lack of consideration of sources of bias in analysis. To address the need for feasible monitoring schemes and flexible analytical tools for robust trend estimates, we analyzed data collected by local technicians on abundance of three species of arboreal monkey in the Udzungwa Mountains of Tanzania (two Colobus species and one Cercopithecus), an area of international importance for primate endemism and conservation. We counted primate social groups along eight line transects in two forest blocks in the area, one protected and one unprotected, over a span of 11 years. We applied a recently proposed open metapopulation model to estimate abundance trends while controlling for confounding effects of observer, site, and season. Primate populations were stable in the protected forest, while the colobines, including the endemic Udzungwa red colobus, declined severely in the unprotected forest. Targeted hunting pressure at this second site is the most plausible explanation for the trend observed. The unexplained variability in detection probability among transects was greater than the variability due to observers, indicating consistency in data collection among observers. There were no significant differences in both primate abundance and detectability between wet and dry seasons, supporting the choice of sampling during the dry season only based on minimizing practical constraints. Results show that simple monitoring routines implemented by trained local technicians can effectively detect changes in primate populations in tropical countries. The hierarchical Bayesian model formulation adopted provides a flexible

  15. Genetic signatures of natural selection in response to air pollution in red spruce (Picea rubens, Pinaceae).

    PubMed

    Bashalkhanov, Stanislav; Eckert, Andrew J; Rajora, Om P

    2013-12-01

    One of the most important drivers of local adaptation for forest trees is climate. Coupled to these patterns, however, are human-induced disturbances through habitat modification and pollution. The confounded effects of climate and disturbance have rarely been investigated with regard to selective pressure on forest trees. Here, we have developed and used a population genetic approach to search for signals of selection within a set of 36 candidate genes chosen for their putative effects on adaptation to climate and human-induced air pollution within five populations of red spruce (Picea rubens Sarg.), distributed across its natural range and air pollution gradient in eastern North America. Specifically, we used FST outlier and environmental correlation analyses to highlight a set of seven single nucleotide polymorphisms (SNPs) that were overly correlated with climate and levels of sulphate pollution after correcting for the confounding effects of population history. Use of three age cohorts within each population allowed the effects of climate and pollution to be separated temporally, as climate-related SNPs (n = 7) showed the strongest signals in the oldest cohort, while pollution-related SNPs (n = 3) showed the strongest signals in the youngest cohorts. These results highlight the usefulness of population genetic scans for the identification of putatively nonneutral evolution within genomes of nonmodel forest tree species, but also highlight the need for the development and application of robust methodologies to deal with the inherent multivariate nature of the genetic and ecological data used in these types of analyses. © 2013 John Wiley & Sons Ltd.

  16. UV-blocking spectacle lens protects against UV-induced decline of visual performance.

    PubMed

    Liou, Jyh-Cheng; Teng, Mei-Ching; Tsai, Yun-Shan; Lin, En-Chieh; Chen, Bo-Yie

    2015-01-01

    Excessive exposure to sunlight may be a risk factor for ocular diseases and reduced visual performance. This study was designed to examine the ability of an ultraviolet (UV)-blocking spectacle lens to prevent visual acuity decline and ocular surface disorders in a mouse model of UVB-induced photokeratitis. Mice were divided into 4 groups (10 mice per group): (1) a blank control group (no exposure to UV radiation), (2) a UVB/no lens group (mice exposed to UVB rays, but without lens protection), (3) a UVB/UV400 group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [UV400 coating]), and (4) a UVB/photochromic group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [photochromic coating]). We investigated UVB-induced changes in visual acuity and in corneal smoothness, opacity, and lissamine green staining. We also evaluated the correlation between visual acuity decline and changes to the corneal surface parameters. Tissue sections were prepared and stained immunohistochemically to evaluate the structural integrity of the cornea and conjunctiva. In blank controls, the cornea remained undamaged, whereas in UVB-exposed mice, the corneal surface was disrupted; this disruption significantly correlated with a concomitant decline in visual acuity. Both the UVB/UV400 and UVB/photochromic groups had sharper visual acuity and a healthier corneal surface than the UVB/no lens group. Eyes in both protected groups also showed better corneal and conjunctival structural integrity than unprotected eyes. Furthermore, there were fewer apoptotic cells and less polymorphonuclear leukocyte infiltration in corneas protected by the spectacle lenses. The model established herein reliably determines the protective effect of UV-blocking ophthalmic biomaterials, because the in vivo protection against UV-induced ocular damage and visual acuity decline was easily defined.

  17. Future impacts of nitrogen deposition and climate change scenarios on forest crown defoliation.

    PubMed

    De Marco, Alessandra; Proietti, Chiara; Cionni, Irene; Fischer, Richard; Screpanti, Augusto; Vitale, Marcello

    2014-11-01

    Defoliation is an indicator for forest health in response to several stressors including air pollutants, and one of the most important parameters monitored in the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). The study aims to estimate crown defoliation in 2030, under three climate and one nitrogen deposition scenarios, based on evaluation of the most important factors (meteorological, nitrogen deposition and chemical soil parameters) affecting defoliation of twelve European tree species. The combination of favourable climate and nitrogen fertilization in the more adaptive species induces a generalized decrease of defoliation. On the other hand, severe climate change and drought are main causes of increase in defoliation in Quercus ilex and Fagus sylvatica, especially in Mediterranean area. Our results provide information on regional distribution of future defoliation, an important knowledge for identifying policies to counteract negative impacts of climate change and air pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Decline of forest interior conditions in the conterminous United States

    Treesearch

    Kurt H. Riitters; James D. Wickham

    2012-01-01

    Forest fragmentation threatens the sustainability of forest interior environments, thereby endangering subordinate ecological attributes and functions. We analyzed the spatial patterns of forest loss and gain for the conterminous United States from 2001 to 2006 to determine whether forest interior environments were maintained at five spatial scales. A 1.1% net loss of...

  19. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients.

    PubMed

    Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M

    2015-01-01

    Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Disentangling the effects of acidic air pollution, atmospheric CO2 , and climate change on recent growth of red spruce trees in the Central Appalachian Mountains.

    PubMed

    Mathias, Justin M; Thomas, Richard B

    2018-05-20

    In the 45 years after legislation of the Clean Air Act, there has been tremendous progress in reducing acidic air pollutants in the eastern United States, yet limited evidence exists that cleaner air has improved forest health. Here, we investigate the influence of recent environmental changes on the growth and physiology of red spruce (Picea rubens Sarg.) trees, a key indicator species of forest health, spanning three locations along a 100 km transect in the Central Appalachian Mountains. We incorporated a multiproxy approach using 75-year tree ring chronologies of basal tree growth, carbon isotope discrimination (∆ 13 C, a proxy for leaf gas exchange), and δ 15 N (a proxy for ecosystem N status) to examine tree and ecosystem level responses to environmental change. Results reveal the two most important factors driving increased tree growth since ca. 1989 are reductions in acidic sulfur pollution and increases in atmospheric CO 2 , while reductions in pollutant emissions of NO x and warmer springs played smaller, but significant roles. Tree ring ∆ 13 C signatures increased significantly since 1989, concurrently with significant declines in tree ring δ 15 N signatures. These isotope chronologies provide strong evidence that simultaneous changes in C and N cycling, including greater photosynthesis and stomatal conductance of trees and increases in ecosystem N retention, were related to recent increases in red spruce tree growth and are consequential to ecosystem recovery from acidic pollution. Intrinsic water use efficiency (iWUE) of the red spruce trees increased by ~51% across the 75-year chronology, and was driven by changes in atmospheric CO 2 and acid pollution, but iWUE was not linked to recent increases in tree growth. This study documents the complex environmental interactions that have contributed to the recovery of red spruce forest ecosystems from pervasive acidic air pollution beginning in 1989, about 15 years after acidic pollutants started to

  1. Voltage Sag due to Pollution Induced Flashover Across Ceramic Insulator Strings

    NASA Astrophysics Data System (ADS)

    Reddy B, Subba; Goswami, Arup Kumar

    2017-11-01

    Voltage sag or voltage dips are significant to industrial reliability. There is a necessity to characterize the feeder level power quality (PQ) and the PQ performance among various utility companies. Contamination/pollution induced flashover is the ultimate consequence of the creeping discharges across the insulator strings which induce voltage sag. These have a severe threat on the safe and reliable operation of power systems. In the present work an attempt has been made to experimentally investigate the occurrence of voltage sag/dips during pollution induced flashovers. Results show significant dip/sag in the voltage magnitude during the flashover process.

  2. Air Pollution in the Mexico Megacity

    NASA Astrophysics Data System (ADS)

    Ruiz-Suarez, L. G.

    2007-05-01

    forest under strong demographic pressure and under heavy impact of air pollution. Flow patterns induced by complex terrain in the center of Mexico induce strong interaction between the mega city and the rural areas in the Mexico Basin. In and out mesoscale transport to and from the neighboring valleys with cities already larger than one million inhabitants increase the complexity of air pollution processes. Fast urbanization in these valleys suggests even more complicated and full of concerns scenarios. Some recent results on these issues will be shown.

  3. Climate-induced changes in forest disturbance and vegetation

    NASA Technical Reports Server (NTRS)

    Overpeck, Jonathan T.; Rind, David; Goldberg, Richard

    1990-01-01

    New and published climate-model results are discussed which indicate that global warming favors increased rates of forest disturbance as a result of weather more likely to cause forest fires, convective wind storms, coastal flooding, and hurricanes. New sensitivity tests carried out with a vegetation model indicate that climate-induced increases in disturbance could, in turn, significantly alter the total biomass and compositional response of forests to future warming. An increase in disturbance frequency is also likely to increase the rate at which natural vegetation responses to future climate change. The results reinforce the hypothesis that forests could be significantly altered by the first part of the next century. The modeling also confirms the potential utility of selected time series of fossil pollen data for investigating the poorly understood natural patterns of century-scale climate variability.

  4. Tennessee's forest land area was stable 1999-2005 but early successional forest area declined

    Treesearch

    Christopher M. Oswalt

    2008-01-01

    A new analysis of the most recent (2005) annualized moving average data for Tennessee indicates that the area of forest land in the State remained stable between 1999 and 2005. Although trends in forest land area vary from region to region within the State, Tennessee neither lost nor gained forest land between 1999 and 2005. However, Tennessee had more than 2.5 times...

  5. Declining Use of Wild Resources by Indigenous Peoples of the Ecuadorian Amazon

    PubMed Central

    Gray, Clark L.; Bozigar, Matthew; Bilsborrow, Richard E.

    2015-01-01

    Wild product harvesting by forest-dwelling peoples, including hunting, fishing, forest product collection and timber harvesting, is believed to be a major threat to the biodiversity of tropical forests worldwide. Despite this threat, few studies have attempted to quantify these activities across time or across large spatial scales. We use a unique longitudinal household survey (n = 480) to describe changes in these activities over time in 32 indigenous communities from five ethnicities in the northern Ecuadorian Amazon. To provide insight into the drivers of these changes, we also estimate multilevel statistical models of these activities as a function of household and community characteristics. These analyses reveal that participation in hunting, fishing, and forest product collection is high but declining across time and across ethnicities, with no evidence for a parallel decline in resource quality. However, participation in timber harvesting did not significantly decline and there is evidence of a decline in resource quality. Multilevel statistical models additionally reveal that household and community characteristics such as ethnicity, demographic characteristics, wealth, livelihood diversification, access to forest, participation in conservation programs and exposure to external markets are significant predictors of wild product harvesting. These characteristics have changed over time but cannot account for declining participation in resource harvesting. This finding suggests that participation is declining due to changes in the regional-scale social and economic context, including urbanization and the expansion of government infrastructure and services. The lesson for conservationists is that macro-scale social and economic conditions can drive reductions in wild product harvesting even in the absence of successful conservation interventions. PMID:25620805

  6. Declining Use of Wild Resources by Indigenous Peoples of the Ecuadorian Amazon.

    PubMed

    Gray, Clark L; Bozigar, Matthew; Bilsborrow, Richard E

    2015-02-01

    Wild product harvesting by forest-dwelling peoples, including hunting, fishing, forest product collection and timber harvesting, is believed to be a major threat to the biodiversity of tropical forests worldwide. Despite this threat, few studies have attempted to quantify these activities across time or across large spatial scales. We use a unique longitudinal household survey (n = 480) to describe changes in these activities over time in 32 indigenous communities from five ethnicities in the northern Ecuadorian Amazon. To provide insight into the drivers of these changes, we also estimate multilevel statistical models of these activities as a function of household and community characteristics. These analyses reveal that participation in hunting, fishing, and forest product collection is high but declining across time and across ethnicities, with no evidence for a parallel decline in resource quality. However, participation in timber harvesting did not significantly decline and there is evidence of a decline in resource quality. Multilevel statistical models additionally reveal that household and community characteristics such as ethnicity, demographic characteristics, wealth, livelihood diversification, access to forest, participation in conservation programs and exposure to external markets are significant predictors of wild product harvesting. These characteristics have changed over time but cannot account for declining participation in resource harvesting. This finding suggests that participation is declining due to changes in the regional-scale social and economic context, including urbanization and the expansion of government infrastructure and services. The lesson for conservationists is that macro-scale social and economic conditions can drive reductions in wild product harvesting even in the absence of successful conservation interventions.

  7. Response mechanisms of conifers to air pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyssek, R.; Reich, P.; Oren, R.

    1995-07-01

    Conifers are known to respond to SO{sub 2}, O{sub 3}, NO{sub x} and acid deposition. Of these pollutants, O{sub 3} is likely the most widespread and phytotoxic compound, and therefore of great interest to individuals concerned with forest resources Direct biological responses have a toxicological effects on metabolism which can then scale to effects on tree growth and forest ecology, including processes of competition and succession. Air pollution can cause reductions in photosynthesis and stomatal conductance, which are the physiological parameters most rigorously studied for conifers. Some effects air pollutants can have on plants are influenced by the presence ofmore » co-occurring environmental stresses. For example, drought usually reduces vulnerability of plants to air pollution. In addition, air pollution sensitivity may differ among species and with plant/leaf age. Plants may make short-term physiological adjustments to compensate for air pollution or may evolve resistance to air pollution through the processes of selection. Models are necessary to understand how physiological processes, growth processes, and ecological processes are affected by air pollutants. The process of defining the ecological risk that air pollutants pose for coniferous forests requires approaches that exploit existing databases, environmental monitoring of air pollutants and forest resources, experiments with well-defined air pollution treatments and environmental control/monitoring, modeling, predicting air pollution-caused changes in productivity and ecological processes over time and space, and integration of social values.« less

  8. Oak Decline in Missouri: History Revisited

    Treesearch

    Jay R. Law; Ross Melick; Charly Studyvin; James R. Steinman

    2004-01-01

    In the 1980s, following extreme winters in the late 1970s and severe droughts in 1976, 1980, and 1983, dead and dying scarlet and black oaks were found on 185,000 acres of the Mark Twain National Forest. That decline event was linked to environmental stresses (Law and Gott 1987). Severe oak decline is now affecting an estimated 500,000 acres on the Mark Twain. High-...

  9. Creation of forest edges has a global impact on forest vertebrates

    PubMed Central

    Peres, CA; Banks-Leite, C; Wearn, OR; Marsh, CJ; Butchart, SHM; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D’Cruze, N; Faria, D; Hadley, A; Harris, S; Klingbeil, BT; Kormann, U; Lens, L; Medina-Rangel, GF; Morante-Filho, JC; Olivier, P; Peters, SL; Pidgeon, A; Ribeiro, DB; Scherber, C; Schneider-Maunory, L; Struebig, M; Urbina-Cardona, N; Watling, JI; Willig, MR; Wood, EM; Ewers, RM

    2017-01-01

    Summary Forest edges influence more than half the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. We assembled an unmatched global dataset on species responses to fragmentation and developed a new statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1673 vertebrate species. We show that 85% of species’ abundances are affected, either positively or negatively, by forest edges. Forest core species, which were more likely to be listed as threatened by the IUCN, only reached peak abundances at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale. PMID:29088701

  10. Explaining the inter-annual variability in the ecosystem fluxes of the Brasschaat Scots pine forest: 20 years of eddy flux and pollution monitoring

    NASA Astrophysics Data System (ADS)

    Horemans, Joanna; Roland, Marilyn; Janssens, Ivan; Ceulemans, Reinhart

    2017-04-01

    Because of their ecological and recreational value, the health of forest ecosystems and their response to global change and pollution are of high importance. At a number of EuroFlux and ICOS ecosystem sites in Europe - as the Brasschaat forest site - the measurements of ecosystem fluxes of carbon and other gases are combined with vertical profiles of air pollution within the framework of the ICP-Forest monitoring program. The Brasschaat forest is dominated by 80-year old Scots pines (Pinus sylvestris L.), and has a total area of about 150 ha. It is situated near an urban area in the Campine region of Flanders, Belgium and is characterized by a mean annual temperature of 9.8 °C and an annual rainfall of 830 mm. In this contribution we report on a long-term analysis (1996-2016) of the ecosystem carbon and water fluxes, the energy exchanges and the pollutant concentrations (ozone, NOx, NH3, SO2). Particular interest goes to the inter-annual variation of the carbon fluxes and the carbon allocation patterns. The impact of the long-term (aggregated) and the short-term variability in both the meteorological drivers and in the main tropospheric pollutants on the carbon fluxes is examined, as well as their mutual interactive effects and their potential memory effect. The effect of variability in the drivers during the phenological phases (seasonality) on the inter-annual variability of the fluxes is also examined. Basic statistical techniques as well as spectral analyses and data mining techniques are being used.

  11. Airborne dust absorption by semi-arid forests reduces PM pollution in nearby urban environments.

    PubMed

    Uni, Daphna; Katra, Itzhak

    2017-11-15

    Dust storms are a major source of global atmospheric particulate matter (PM), having significant impacts on air pollution and human health. During dust storms, daily averages of atmospheric PM concentrations can reach high levels above the World Health Organization (WHO) guideline for air quality. The objective of this study was to explore the impact of forests on PM distribution following dust events in a region that is subjected to frequent dust storms (Northern Negev, Israel). Dust was measured in a forest transect including urban environments that are nearby the forest and at a distal location. During a background period, without dust events, the forest with its surrounding areas were characterized by lower monthly average of PM concentrations (38μg/m 3 ) compared with areas that are not affected by the forest (54μg/m 3 ). Such difference can be meaningful for long-term human health exposure. A reduction in PM levels in the forest transect was evident at most measured dust events, depending on the storm intensity and the locations of the protected areas. A significant reduction in PM 2.5 /PM 10 during dust events, indicates the high efficiency of the forest trees to absorb airborne PM 2.5 . Analysis of dust particles absorbed on the foliage revealed a total dust deposits of 8.1-9.2g/m 2 , which is equal to a minimum of 418.2tons removed from the atmosphere per a forest foliage area (30km 2 ). The findings can support environmental strategies to enhance life quality in regions that are subjected to dust storms, or under potential risk of dust-related PM due to land use and/or climate changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: a systematic review of epidemiologic research

    PubMed Central

    Power, Melinda C.; Adar, Sara D.; Yanosky, Jeff D.; Weuve, Jennifer

    2016-01-01

    Background Dementia is a devastating condition typically preceded by a long prodromal phase characterized by accumulation of neuropathology and accelerated cognitive decline. A growing number of epidemiologic studies have explored the relation between air pollution exposure and dementia-related outcomes. Methods We undertook a systematic review, including quality assessment, to interpret the collective findings and describe methodological challenges that may limit study validity. Articles, which were identified according to a registered protocol, had to quantify the association of an air pollution exposure with cognitive function, cognitive decline, a dementia-related neuroimaging feature, or dementia. Results We identified 18 eligible published articles. The quality of most studies was adequate to exemplary. Almost all reported an adverse association between at least one pollutant and one dementia-related outcome. However, relatively few studies considered outcomes that provide the strongest evidence for a causal effect, such as within-person cognitive or pathologic changes. Reassuringly, differential selection would likely bias toward a protective association in most studies, making it unlikely to account for observed adverse associations. Likewise, using a formal sensitivity analysis, we found that unmeasured confounding is also unlikely to explain reported adverse associations. Discussion We also identified several common challenges. First, most studies of incident dementia identified cases from health system records. As dementia in the community is underdiagnosed, this could generate either non-differential or differential misclassification bias. Second, almost all studies used recent air pollution exposures as surrogate measures of long-term exposure. Although this approach may be reasonable if the measured and etiologic exposure windows are separated by a few years, its validity is unknown over longer intervals. Third, comparing the magnitude of associations

  13. Oak decline risk rating for the southeastern United States

    Treesearch

    S. Oak; F. Tainter; J. Williams; D. Starkey

    1996-01-01

    Oak decline risk rating models were developed for upland hardwood forests in the southeastern United States using data gathered during regional oak decline surveys. Stepwise discriminant analyses were used to relate 12 stand and site variables with major oak decline incidence for each of three subregions plus one incorporating all subregions. The best model for the...

  14. Decline of forest interior conditions in the conterminous United States

    EPA Science Inventory

    Forest fragmentation threatens the sustainability of forest interior environments, thereby endangering subordinate ecological attributes and functions. We analyzed the spatial patterns of forest disturbance and recovery for the conterminous United States from 2001 to 2006 to det...

  15. History of Tree Growth Declines Recorded in Old Trees at Two Sacred Sites in Northern China

    PubMed Central

    Li, Yan; Zhang, Qi-Bin

    2017-01-01

    Old forests are an important component in sacred sites, yet they are at risk of growth decline from ongoing global warming and increased human activities. Growth decline, characterized by chronic loss of tree vigor, is not a recent phenomenon. Knowledge of past occurrence of declines is useful for preparing conservation plans because it helps understand if present day forests are outside the natural range of variation in tree health. We report a dendroecological study of growth decline events in the past two centuries at two sacred sites, Hengshan and Wutaishan, in Shanxi province of northern China. Tree rings collected at both sites show distinct periods of declining growth evident as narrow rings. These occurred in the 1830s in both sites, in the 1920s in Wutaishan and in the 2000s in Hengshan. By comparing the pattern of grow declines at the two sites, we hypothesize that resistance of tree growth to external disturbances is forest size dependent, and increased human activity might be a factor additional to climatic droughts in causing the recent strong growth decline at Hengshan Park. Despite these past declines, the forests at both sites have high resilience to disturbances as evidenced by the ability of trees to recover their growth rates to levels comparable to the pre-decline period. Managers should consider reducing fragmentation and restoring natural habitat of old forests, especially in areas on dry sites. PMID:29163557

  16. History of Tree Growth Declines Recorded in Old Trees at Two Sacred Sites in Northern China.

    PubMed

    Li, Yan; Zhang, Qi-Bin

    2017-01-01

    Old forests are an important component in sacred sites, yet they are at risk of growth decline from ongoing global warming and increased human activities. Growth decline, characterized by chronic loss of tree vigor, is not a recent phenomenon. Knowledge of past occurrence of declines is useful for preparing conservation plans because it helps understand if present day forests are outside the natural range of variation in tree health. We report a dendroecological study of growth decline events in the past two centuries at two sacred sites, Hengshan and Wutaishan, in Shanxi province of northern China. Tree rings collected at both sites show distinct periods of declining growth evident as narrow rings. These occurred in the 1830s in both sites, in the 1920s in Wutaishan and in the 2000s in Hengshan. By comparing the pattern of grow declines at the two sites, we hypothesize that resistance of tree growth to external disturbances is forest size dependent, and increased human activity might be a factor additional to climatic droughts in causing the recent strong growth decline at Hengshan Park. Despite these past declines, the forests at both sites have high resilience to disturbances as evidenced by the ability of trees to recover their growth rates to levels comparable to the pre-decline period. Managers should consider reducing fragmentation and restoring natural habitat of old forests, especially in areas on dry sites.

  17. Biological Monitoring of Air Pollutants and Its Influence on Human Beings

    PubMed Central

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases. PMID:26628931

  18. The urban forest and ecosystem services: impact on urban water, heat, and pollution cycles at the tree, street, and city scale

    Treesearch

    S. J. Livesley; E. G. McPherson; C. Calfapietra

    2016-01-01

    Many environmental challenges are exacerbated within the urban landscape, such as stormwater runoff and flood risk, chemical and particulate pollution of urban air, soil and water, the urban heat island, and summer heat waves. Urban trees, and the urban forest as a whole, can be managed to have an impact on the urban water, heat, carbon and pollution cycles. However,...

  19. Widespread decline of Congo rainforest greenness in the past decade.

    PubMed

    Zhou, Liming; Tian, Yuhong; Myneni, Ranga B; Ciais, Philippe; Saatchi, Sassan; Liu, Yi Y; Piao, Shilong; Chen, Haishan; Vermote, Eric F; Song, Conghe; Hwang, Taehee

    2014-05-01

    Tropical forests are global epicentres of biodiversity and important modulators of climate change, and are mainly constrained by rainfall patterns. The severe short-term droughts that occurred recently in Amazonia have drawn attention to the vulnerability of tropical forests to climatic disturbances. The central African rainforests, the second-largest on Earth, have experienced a long-term drying trend whose impacts on vegetation dynamics remain mostly unknown because in situ observations are very limited. The Congolese forest, with its drier conditions and higher percentage of semi-evergreen trees, may be more tolerant to short-term rainfall reduction than are wetter tropical forests, but for a long-term drought there may be critical thresholds of water availability below which higher-biomass, closed-canopy forests transition to more open, lower-biomass forests. Here we present observational evidence for a widespread decline in forest greenness over the past decade based on analyses of satellite data (optical, thermal, microwave and gravity) from several independent sensors over the Congo basin. This decline in vegetation greenness, particularly in the northern Congolese forest, is generally consistent with decreases in rainfall, terrestrial water storage, water content in aboveground woody and leaf biomass, and the canopy backscatter anomaly caused by changes in structure and moisture in upper forest layers. It is also consistent with increases in photosynthetically active radiation and land surface temperature. These multiple lines of evidence indicate that this large-scale vegetation browning, or loss of photosynthetic capacity, may be partially attributable to the long-term drying trend. Our results suggest that a continued gradual decline of photosynthetic capacity and moisture content driven by the persistent drying trend could alter the composition and structure of the Congolese forest to favour the spread of drought-tolerant species.

  20. Creation of forest edges has a global impact on forest vertebrates.

    PubMed

    Pfeifer, M; Lefebvre, V; Peres, C A; Banks-Leite, C; Wearn, O R; Marsh, C J; Butchart, S H M; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D'Cruze, N; Faria, D; Hadley, A; Harris, S M; Klingbeil, B T; Kormann, U; Lens, L; Medina-Rangel, G F; Morante-Filho, J C; Olivier, P; Peters, S L; Pidgeon, A; Ribeiro, D B; Scherber, C; Schneider-Maunoury, L; Struebig, M; Urbina-Cardona, N; Watling, J I; Willig, M R; Wood, E M; Ewers, R M

    2017-11-09

    Forest edges influence more than half of the world's forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  1. Creation of forest edges has a global impact on forest vertebrates

    NASA Astrophysics Data System (ADS)

    Pfeifer, M.; Lefebvre, V.; Peres, C. A.; Banks-Leite, C.; Wearn, O. R.; Marsh, C. J.; Butchart, S. H. M.; Arroyo-Rodríguez, V.; Barlow, J.; Cerezo, A.; Cisneros, L.; D'Cruze, N.; Faria, D.; Hadley, A.; Harris, S. M.; Klingbeil, B. T.; Kormann, U.; Lens, L.; Medina-Rangel, G. F.; Morante-Filho, J. C.; Olivier, P.; Peters, S. L.; Pidgeon, A.; Ribeiro, D. B.; Scherber, C.; Schneider-Maunoury, L.; Struebig, M.; Urbina-Cardona, N.; Watling, J. I.; Willig, M. R.; Wood, E. M.; Ewers, R. M.

    2017-11-01

    Forest edges influence more than half of the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  2. Potential influence of wildfire in modulating climate-induced forest redistribution in a central Rocky Mountain landscape

    USGS Publications Warehouse

    Campbell, John L.; Shinneman, Douglas

    2017-01-01

    IntroductionClimate change is expected to impose significant tension on the geographic distribution of tree species. Yet, tree species range shifts may be delayed by their long life spans, capacity to withstand long periods of physiological stress, and dispersal limitations. Wildfire could theoretically break this biological inertia by killing forest canopies and facilitating species redistribution under changing climate. We investigated the capacity of wildfire to modulate climate-induced tree redistribution across a montane landscape in the central Rocky Mountains under three climate scenarios (contemporary and two warmer future climates) and three wildfire scenarios (representing historical, suppressed, and future fire regimes).MethodsDistributions of four common tree species were projected over 90 years by pairing a climate niche model with a forest landscape simulation model that simulates species dispersal, establishment, and mortality under alternative disturbance regimes and climate scenarios.ResultsThree species (Douglas-fir, lodgepole pine, subalpine fir) declined in abundance over time, due to climate-driven contraction in area suitable for establishment, while one species (ponderosa pine) was unable to exploit climate-driven expansion of area suitable for establishment. Increased fire frequency accelerated declines in area occupied by Douglas-fir, lodgepole pine, and subalpine fir, and it maintained local abundance but not range expansion of ponderosa pine.ConclusionsWildfire may play a larger role in eliminating these conifer species along trailing edges of their distributions than facilitating establishment along leading edges, in part due to dispersal limitations and interspecific competition, and future populations may increasingly depend on persistence in locations unfavorable for their establishment.

  3. Why do forest products become less available?A pan-tropical comparison of drivers of forest-resource degradation

    NASA Astrophysics Data System (ADS)

    Hermans-Neumann, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-12-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our study addresses this gap by analyzing the factors driving changes in tropical forest products in the perception of rural smallholder communities. Using the poverty and environment network global dataset, we studied recently perceived trends of forest product availability considering firewood, charcoal, timber, food, medicine, forage and other forest products. We looked at a pan-tropical sample of 233 villages with forest access. Our results show that 90% of the villages experienced declining availability of forest resources over the last five years according to the informants. Timber and fuelwood together with forest foods were featured as the most strongly affected, though with marked differences across continents. In contrast, availability of at least one main forest product was perceived to increase in only 39% of the villages. Furthermore, the growing local use of forest resources is seen as the main culprit for the decline. In villages with both growing forest resource use and immigration—vividly illustrating demographic pressures—the strongest forest resources degradation was observed. Conversely, villages with little or no population growth and a decreased use of forest resources were most likely to see significant forest-resource increases. Further, villages are less likely to perceive resource declines when local communities own a significant share of forest area. Our results thus suggest that perceived resource declines have only exceptionally triggered adaptations in local resource-use and management patterns that would effectively deal with scarcity. Hence, at the margin this supports neo-Malthusian over neo-Boserupian explanations of local resource

  4. Vulnerability to drought-induced embolism of Bornean heath and dipterocarp forest trees.

    PubMed

    Tyree, Melvin T.; Patiño, Sandra; Becker, Peter

    1998-01-01

    Occasional droughts may be important in controlling the distribution and structure of forest types in relatively aseasonal north Borneo. The low water retention capacity of the coarse, sandy soils on which tropical heath forest occurs may cause drought to develop more quickly and severely than on the finer textured soils of nearby dipterocarp forest. Resistance to drought-induced embolism is considered an important component of drought tolerance. We constructed embolism vulnerability curves relating loss in hydraulic conductivity to xylem tension by the air-injection method for understory trees of 14 species from both tropical heath and mixed dipterocarp forests in Brunei Darussalam. There was no significant difference (Mann-Whitney U-test, P = 0.11) between forest types in the xylem tension at which 50% loss of hydraulic conductivity occurred. Most species from both forest types were highly vulnerable to embolism compared with species from seasonal tropical forests. We speculate that other mechanisms, such as stomatal control to prevent development of embolism-inducing xylem tensions, are more cost-effective adaptations against occasional drought, but that the attendant reduction in productivity and competitive ability places a greater premium on resistance to embolism when drought is annual and predictable.

  5. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests

    PubMed Central

    Peres, Carlos A.; Emilio, Thaise; Schietti, Juliana; Desmoulière, Sylvain J. M.; Levi, Taal

    2016-01-01

    Tropical forests are the global cornerstone of biological diversity, and store 55% of the forest carbon stock globally, yet sustained provisioning of these forest ecosystem services may be threatened by hunting-induced extinctions of plant–animal mutualisms that maintain long-term forest dynamics. Large-bodied Atelinae primates and tapirs in particular offer nonredundant seed-dispersal services for many large-seeded Neotropical tree species, which on average have higher wood density than smaller-seeded and wind-dispersed trees. We used field data and models to project the spatial impact of hunting on large primates by ∼1 million rural households throughout the Brazilian Amazon. We then used a unique baseline dataset on 2,345 1-ha tree plots arrayed across the Brazilian Amazon to model changes in aboveground forest biomass under different scenarios of hunting-induced large-bodied frugivore extirpation. We project that defaunation of the most harvest-sensitive species will lead to losses in aboveground biomass of between 2.5–5.8% on average, with some losses as high as 26.5–37.8%. These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs. PMID:26811455

  6. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests.

    PubMed

    Peres, Carlos A; Emilio, Thaise; Schietti, Juliana; Desmoulière, Sylvain J M; Levi, Taal

    2016-01-26

    Tropical forests are the global cornerstone of biological diversity, and store 55% of the forest carbon stock globally, yet sustained provisioning of these forest ecosystem services may be threatened by hunting-induced extinctions of plant-animal mutualisms that maintain long-term forest dynamics. Large-bodied Atelinae primates and tapirs in particular offer nonredundant seed-dispersal services for many large-seeded Neotropical tree species, which on average have higher wood density than smaller-seeded and wind-dispersed trees. We used field data and models to project the spatial impact of hunting on large primates by ∼ 1 million rural households throughout the Brazilian Amazon. We then used a unique baseline dataset on 2,345 1-ha tree plots arrayed across the Brazilian Amazon to model changes in aboveground forest biomass under different scenarios of hunting-induced large-bodied frugivore extirpation. We project that defaunation of the most harvest-sensitive species will lead to losses in aboveground biomass of between 2.5-5.8% on average, with some losses as high as 26.5-37.8%. These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs.

  7. Spatiotemporal patterns of fire-induced forest mortality in boreal regions and its potential drivers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tian, H.; Pan, S.; Hansen, M.; Wang, Y.

    2017-12-01

    Wildfire is the major natural disturbance in boreal forests, which have substantially affected various biological and biophysical processes. Although a few previous studies examined fire severity in boreal regions and reported a higher fire-induced forest mortality in boreal North America than in boreal Eurasia, it remains unclear how this mortality changes over time and how environmental factors affect the temporal dynamics of mortality at a large scale. By using a combination of multiple sources of satellite observations, we investigate the spatiotemporal patterns of fire-induced forest mortality in boreal regions, and examine the contributions of potential drivers. Our results show that forest composition is the key factor influencing the spatial variations of fire mortality across ecoregions. For the temporal variations, we find that the late-season burning was associated with higher fire intensity, which lead to greater forest mortality than the early-season burning. Forests burned in the warm and dry years had greater mortality than those burned in the cool and wet years. Our findings suggest that climate warming and drying not only stimulated boreal fire frequency, but also enhanced fire severity and forest mortality. Due to the significant effects of forest mortality on vegetation structure and ecosystem carbon dynamics, the spatiotemporal changes of fire-induced forest mortality should be explicitly considered to better understand fire impacts on regional and global climate change.

  8. Remote Sensing of Forest Health Indicators for Assessing Change in Forest Health

    Treesearch

    Michael K. Crosby; Zhaofei Fan; Martin A. Spetich; Theodor D. Leininger

    2012-01-01

    Oak decline poses a substantial threat to forest health in the Ozark Highlands of northern Arkansas and southern Missouri, where coupled with diseases and insect infestations, it has damaged large tracts of forest lands. Forest Health Monitoring (FHM) crown health indicators (e.g. crown dieback, etc.), collected by the U.S. Forest Service’s Forest Inventory and...

  9. Evaluating key landscape features of a climate- induced forest decline (Project WC-EM-07-01)

    Treesearch

    Paul Hennon; Dustin Wittwer

    2013-01-01

    Yellow-cedar is a culturally, economically, and ecologically important tree in coastal Alaska that has been experiencing a widespread mortality known as yellow-cedar decline for about 100 years. Mapping during annual aerial detection surveys has identified nearly the entire geographical distribution of the problem, which totals over 500,000 acres in Alaska (Lamb and...

  10. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  11. Iowa's forest resources, 1974.

    Treesearch

    John S. Jr. Spencer; Pamela J. Jakes

    1980-01-01

    The second inventory of Iowa's forest resources shows big declines in commercial forest area and in growing-stock and sawtimber volumes between 1954 and 1974. Presented are text and statistics on forest area and timber volume, growth, mortality, ownership, stocking, future timber supply, timber use, forest management opportunities, and nontimber resources.

  12. Long-term effects of different forest regeneration methods on mature forest birds

    Treesearch

    Roger W. Perry; Julianna M.A. Jenkins; Ronald E. Thill; Frank R. Thompson

    2018-01-01

    Changes in forest structure that result from silviculture, including timber harvest, can positively or negatively affect bird species that use forests. Because many bird species associated with mature forests are facing population declines, managers need to know how timber harvesting affects species of birds that rely on mature trees or forests for breeding, foraging,...

  13. ForestCrowns: a transparency estimation tool for digital photographs of forest canopies

    Treesearch

    Matthew Winn; Jeff Palmer; S.-M. Lee; Philip Araman

    2016-01-01

    ForestCrowns is a Windows®-based computer program that calculates forest canopy transparency (light transmittance) using ground-based digital photographs taken with standard or hemispherical camera lenses. The software can be used by forest managers and researchers to monitor growth/decline of forest canopies; provide input for leaf area index estimation; measure light...

  14. Characterisation of diffuse pollutions from forested watersheds in Japan during storm events - its association with rainfall and watershed features.

    PubMed

    Zhang, Zhao; Fukushima, Takehiko; Onda, Yuichi; Mizugaki, Shigeru; Gomi, Takashi; Kosugi, Ken'ichirou; Hiramatsu, Shinya; Kitahara, Hikaru; Kuraji, Koichiro; Terajima, Tomomi; Matsushige, Kazuo; Tao, Fulu

    2008-02-01

    Forest areas have been identified as important sources of nonpoint pollution in Japan. The managers must estimate stormwater quality and quantities from forested watersheds to develop effective management strategies. Therefore, stormwater runoff loads and concentrations of 10 constituents (total suspended solids, dissolved organic carbon, PO(4)-P, dissolved total phosphorus, total phosphorus, NH(4)-N, NO(2)-N, NO(3)-N, dissolved total nitrogen, and total nitrogen) for 72 events across five regions (Aichi, Kochi, Mie, Nagano, and Tokyo) were characterised. Most loads were significantly and positively correlated with stormwater variables (total event rainfall, event duration, and rainfall intensity), but most discharge-weighted event concentrations (DWECs) showed negative correlations with rainfall intensity. Mean water quality concentration during baseflow was correlated significantly with storm concentrations (r=0.41-0.77). Although all pollutant load equations showed high coefficients of determination (R(2)=0.55-0.80), no models predicted well pollutant concentrations, except those for the three N constituents (R(2)=0.59-0.67). Linear regressions to estimate stormwater concentrations and loads were greatly improved by regional grouping. The lower prediction capability of the concentration models for Mie, compared with the other four regions, indicated that other watershed or storm characteristics should be included in the prediction models. Significant differences among regions were found more frequently in concentrations than in loads for all constituents. Since baseflow conditions implied available pollutant sources for stormwater, the similar spatial characteristics of pollutant concentrations between baseflow and stormflow conditions were an important control for stormwater quality.

  15. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off

    PubMed Central

    Anderegg, William R. L.; Berry, Joseph A.; Smith, Duncan D.; Sperry, John S.; Anderegg, Leander D. L.; Field, Christopher B.

    2012-01-01

    Forest ecosystems store approximately 45% of the carbon found in terrestrial ecosystems, but they are sensitive to climate-induced dieback. Forest die-off constitutes a large uncertainty in projections of climate impacts on terrestrial ecosystems, climate–ecosystem interactions, and carbon-cycle feedbacks. Current understanding of the physiological mechanisms mediating climate-induced forest mortality limits the ability to model or project these threshold events. We report here a direct and in situ study of the mechanisms underlying recent widespread and climate-induced trembling aspen (Populus tremuloides) forest mortality in western North America. We find substantial evidence of hydraulic failure of roots and branches linked to landscape patterns of canopy and root mortality in this species. On the contrary, we find no evidence that drought stress led to depletion of carbohydrate reserves. Our results illuminate proximate mechanisms underpinning recent aspen forest mortality and provide guidance for understanding and projecting forest die-offs under climate change. PMID:22167807

  16. Thresholds in forest bird occurrence as a function of the amount of early-seral broadleaf forest at landscape scales

    USGS Publications Warehouse

    Betts, M.G.; Hagar, J.C.; Rivers, J.W.; Alexander, J.D.; McGarigal, K.; McComb, B.C.

    2010-01-01

    Recent declines in broadleaf-dominated, early-seral forest globally as a function of intensive forest management and/or fire suppression have raised concern about the viability of populations dependent on such forest types. However, quantitative information about the strength and direction of species associations with broadleaf cover at landscape scales are rare. Uncovering such habitat relationships is essential for understanding the demography of species and in developing sound conservation strategies. It is particularly important to detect points in habitat reduction where rates of population decline may accelerate or the likelihood of species occurrence drops rapidly (i.e., thresholds). Here, we use a large avian point-count data set (N = 4375) from southwestern and northwestern Oregon along with segmented logistic regression to test for thresholds in forest bird occurrence as a function of broadleaf forest and early-seral broadleaf forest at local (150-m radius) and landscape (500–2000-m radius) scales. All 12 bird species examined showed positive responses to either broadleaf forest in general, and/or early-seral broadleaf forest. However, regional variation in species response to these conditions was high. We found considerable evidence for landscape thresholds in bird species occurrence as a function of broadleaf cover; threshold models received substantially greater support than linear models for eight of 12 species. Landscape thresholds in broadleaf forest ranged broadly from 1.35% to 24.55% mean canopy cover. Early-seral broadleaf thresholds tended to be much lower (0.22–1.87%). We found a strong negative relationship between the strength of species association with early-seral broadleaf forest and 42-year bird population trends; species most associated with this forest type have declined at the greatest rates. Taken together, these results provide the first support for the hypothesis that reductions in broadleaf-dominated early-seral forest due to

  17. CARDIAC MOLECULAR EFFECTS INDUCED BY AIR POLLUTION PARTICLES

    EPA Science Inventory

    Abstract Submitted to the American Thoracic Society 98th International Conference, May 17 - 22, 2002, Atlanta, GA

    CARDIAC MOLECULAR EFFECTS INDUCED BY AIR POLLUTION PARTICLES
    K. Dreher1, R. Jaskot1, J. Richards1, and T. Knuckles2. 1U. S. Environmental Protection Agency,...

  18. Pollen, wind and fire: how to investigate genetic effects of disturbance-induced change in forest trees.

    PubMed

    Bacles, Cecile F E

    2014-01-01

    Understanding the consequences of habitat disturbance on mating patterns although pollen and seed dispersal in forest trees has been a long-standing theme of forest and conservation genetics. Forest ecosystems face global environmental pressures from timber exploitation to genetic pollution and climate change, and it is therefore essential to comprehend how disturbances may alter the dispersal of genes and their establishment in tree populations in order to formulate relevant recommendations for sustainable resource management practices and realistic predictions of potential adaptation to climate change by means of range shift or expansion (Kremer et al. 2012). However, obtaining reliable evidence of disturbance-induced effects on gene dispersal processes from empirical evaluation of forest tree populations is difficult. Indeed, tree species share characteristics such as high longevity, long generation time and large reproductive population size, which may impede the experimenter's ability to assess parameters at the spatial and time scales at which any change may occur (Petit and Hampe 2006). It has been suggested that appropriate study designs should encompass comparison of populations before and after disturbance as well as account for demonstrated variation in conspecific density, that is, the spatial distribution of mates, and forest density, including all species and relating to alteration in landscape openness (Bacles & Jump 2011). However, more often than not, empirical studies aiming to assess the consequences of habitat disturbance on genetic processes in tree populations assume rather than quantify a change in tree densities in forests under disturbance and generally fail to account for population history, which may lead to inappropriate interpretation of a causal relationship between population genetic structure and habitat disturbance due to effects of unmonitored confounding variables (Gauzere et al. 2013). In this issue, Shohami and Nathan (2014

  19. Shifting baselines on a tropical forest frontier: extirpations drive declines in local ecological knowledge.

    PubMed

    Kai, Zhang; Woan, Teoh Shu; Jie, Li; Goodale, Eben; Kitajima, Kaoru; Bagchi, Robert; Harrison, Rhett D

    2014-01-01

    The value of local ecological knowledge (LEK) to conservation is increasingly recognised, but LEK is being rapidly lost as indigenous livelihoods change. Biodiversity loss is also a driver of the loss of LEK, but quantitative study is lacking. In our study landscape in SW China, a large proportion of species have been extirpated. Hence, we were interested to understand whether species extirpation might have led to an erosion of LEK and the implications this might have for conservation. So we investigated peoples' ability to name a selection of birds and mammals in their local language from pictures. Age was correlated to frequency of forest visits as a teenager and is likely to be closely correlated to other known drivers of the loss of LEK, such as declining forest dependence. We found men were better at identifying birds overall and that older people were better able to identify birds to the species as compared to group levels (approximately equivalent to genus). The effect of age was also stronger among women. However, after controlling for these factors, species abundance was by far the most important parameter in determining peoples' ability to name birds. People were unable to name any locally extirpated birds at the species level. However, contrary to expectations, people were better able to identify extirpated mammals at the species level than extant ones. However, extirpated mammals tend to be more charismatic species and several respondents indicated they were only familiar with them through TV documentaries. Younger people today cannot experience the sights and sounds of forest animals that their parents grew up with and, consequently, knowledge of these species is passing from cultural memory. We suggest that engaging older members of the community and linking the preservation of LEK to biodiversity conservation may help generate support for conservation.

  20. Updated Global Patterns of Drought and Heat-Induced Forest Die-off, and Ecohydrological Feedbacks

    NASA Astrophysics Data System (ADS)

    Allen, C. D.

    2011-12-01

    Ongoing climate changes - particularly increases in mean temperatures as well as frequencies, durations, and severities of extreme drought and heat - can amplify tree physiological stress and thereby drive increases in both background tree mortality rates and episodes of rapid, broad-scale forest die-off. Updates are presented to a recent global synthesis of documented tree mortality episodes attributed to drought and/or heat, further expanding the documented spatial distribution and demonstrating the vulnerability of all major forest types from tropical moist forests and savannas to temperate and boreal forests. Given that anthropogenic climate change is projected to drive substantial increases in both mean temperatures and the frequency/duration/severity of extreme drought and heat in many regions, recent episodes of broad-scale drought-induced forest mortality may reflect increasing global risks of forest die-off, even in environments not normally considered water-limited. Since vegetation cover patterns are closely and interactively linked with ecosystem water fluxes, episodes of massive forest die-off can be expected to significantly affect ecohydrological patterns and processes, ranging from runoff and erosion to evaporation and transpiration, often with nonlinear threshold responses expected. Diverse examples of such feedbacks between climate-induced forest mortality and ecohydrology are presented, ranging from detailed observations of linked changes in vegetation, runoff, and erosion in response to forest mortality in the southwestern US to Western Australia and Amazonian rainforest water cycling. Current research efforts to address the large knowledge gaps that at present hinder our ability to predict climate-induced forest mortality and associated ecohydrological responses are discussed.

  1. Indiana's forests 1999-2003 (Part A)

    Treesearch

    Christopher Woodall; Dan Johnson; Joey Gallion; Charles Perry; Brett Butler; Ron Piva; Ed Jepsen; Dave Nowak; Phil Marshall

    2005-01-01

    The first completed annual inventory of Indiana's forests reports more than 4.5 million acres of forest land with a diverse array of forest types, substantial growth of economically valuable tree species, and future forest health concerns such as invasive species, forest fragmentation, and oak forest decline.

  2. Assessment of Loblolly Pine Decline in Central Alabama

    Treesearch

    Nolan J. Hess; William J. Otrosina; Emily A. Carter; Jim R. Steinman; John P. Jones; Lori G. Eckhardt; Ann M. Weber; Charles H. Walkinshaw

    2002-01-01

    Loblolly pine (Pinus taeda L.) decline has been prevalent on upland sites of central Alabama since the 1960's. The purpose of this study was to compare Forest Health Monitoring (FHM) standards and protocols with root health evaluations relative to crown, stem, and site measurements. Thirty-nine 1/6 acre plots were established on loblolly decline...

  3. NOVEL INSIGHTS INTO THE MECHANISM OF SUBCHRONIC AIR POLLUTANT-INDUCED CARDIOVASCULAR IMPAIRMENT

    EPA Science Inventory

    The mechanisms by which air pollutants induce cardiovascular mortality are unknown. We hypothesized that blood vessels are the target of injury by circulating oxidation by-products following pollutant exposure. We exposed male Wistar Kyoto rats (12-15 wks old), nose-only to air, ...

  4. North Carolina's forests, 2002

    Treesearch

    Mark J. Brown; Barry D. New; Sonja N. Oswalt; Tony G. Johnson; Victor A. Rudis

    2006-01-01

    In 2002, forests covered 18.3 million acres in North Carolina, of which 17.7 million were classified as timberland. Hardwood forest types prevailed on 72 percent of timberland and planted pine stands occupied 15 percent. Nonindustrial private forest landowners controlled 78 percent of timberland, forest industry holdings declined to 8 percent, and publicly owned...

  5. Comparison of in situ measurements of forest decline symptoms in Vermont (USA) and the Schwarzwald (FRG)

    NASA Technical Reports Server (NTRS)

    Rock, B. N.; Hoshizaki, T.; Lichtenthaler, H.; Schmuck, G.

    1986-01-01

    Field analyses were conducted at spruce/fir sites in the U.S. and Germany undergoing forest decline. Data gathered from common branch samples included reflectance curves, fluorescence measurements, and pigment concentrations. Similar reflectance signatures are seen for specimens from all sites. Reflectance spectra from specimens collected from high damage sites in both countries show a characteristic reflectance drop in the near infrared and a shift (5 nm) of the red edge to shorter wavelengths. Fluorescence data suggest altered state of health of photosynthetic pigments only in specimens from German high damage sites, and pigment extraction and analysis indicate a reduction in total chlorophyll, a decrease in chlorophyll b when compared with chlorophyll a, and a relative increase in carotenoids.

  6. Acid-base status of upper rooting zone soil in declining and non-declining sugar maple (Acer saccharum Marsh) stands in Pennsylvania

    Treesearch

    William E. Sharpe; Troy L. Sunderland

    1995-01-01

    Sugar maple (Acer saccharum Marsh) is an important commercial tree species of the central hardwood region which is valued for its wood and maple sugar products. High elevation sugar maple stands in northcentral Pennsylvania have been in serious decline for about the last 15 years with more than 1,200 hectares of maple forest affected. The decline...

  7. Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks.

    PubMed

    McIntyre, Patrick J; Thorne, James H; Dolanc, Christopher R; Flint, Alan L; Flint, Lorraine E; Kelly, Maggi; Ackerly, David D

    2015-02-03

    We document changes in forest structure between historical (1930s) and contemporary (2000s) surveys of California vegetation through comparisons of tree abundance and size across the state and within several ecoregions. Across California, tree density in forested regions increased by 30% between the two time periods, whereas forest biomass in the same regions declined, as indicated by a 19% reduction in basal area. These changes reflect a demographic shift in forest structure: larger trees (>61 cm diameter at breast height) have declined, whereas smaller trees (<30 cm) have increased. Large tree declines were found in all surveyed regions of California, whereas small tree increases were found in every region except the south and central coast. Large tree declines were more severe in areas experiencing greater increases in climatic water deficit since the 1930s, based on a hydrologic model of water balance for historical climates through the 20th century. Forest composition in California in the last century has also shifted toward increased dominance by oaks relative to pines, a pattern consistent with warming and increased water stress, and also with paleohistoric shifts in vegetation in California over the last 150,000 y.

  8. Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks

    USGS Publications Warehouse

    McIntyre, Patrick J.; Thorne, James H.; Dolanc, Christopher R.; Flint, Alan L.; Flint, Lorraine E.; Kelly, Maggi; Ackerly, David D.

    2015-01-01

    We document changes in forest structure between historical(1930s) and contemporary (2000s) surveys of California vegetation through comparisons of tree abundance and size across the state and within several ecoregions. Across California, tree density in forested regions increased by 30% between the two time periods, whereas forest biomass in the same regions declined, as indicated by a 19% reduction in basal area. These changes reflect a demographic shift in forest structure: larger trees (>61 cm diameter at breast height) have declined, whereas smaller trees ( < 30 cm) have increased. Large tree declines were found in all surveyed regions of California, whereas small tree increases were found in every region except the south and central coast. Large tree declines were more severe in areas experiencing greater increases in climaticwater deficit since the 1930s, based on a hydrologicmodel of water balance for historical climates through the 20th century. Forest composition in California in the last century has also shifted toward increased dominance by oaks relative to pines, a pattern consistent with warming and increased water stress, and also with paleohistoric shifts in vegetation in California over the last 150,000 y.

  9. State of pine decline in the southeastern United States

    Treesearch

    Lori Eckhardt; Mary Anne Sword Sayer; Don Imm

    2010-01-01

    Pine decline is an emerging forest health issue in the southeastern United States. Observations suggest pine decline is caused by environmental stress arising from competition, weather, insects and fungi, anthropogenic disturbances, and previous management. The problem is most severe for loblolly pine on sites that historically supported longleaf pine, are highly...

  10. DRY DEPOSITION OF POLLUTANTS TO FORESTS

    EPA Science Inventory

    We report on the results of an extensive field campaign to measure dry deposition of ozone and sulfur dioxide to a sample of forest types in the United States. Measurements were made for full growing seasons over a deciduous forest in Pennsylvania and a mixed deciduous-conifer...

  11. Deforestation contributed to droughts that influenced Maya decline

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-12-01

    New studies show that deforestation throughout much of southern Mexico in pre-Columbian times contributed to droughts that led to the decline of the Maya and Aztec civilizations. Significant droughts are known to have affected these civilizations between about 800 and 950 C.E.; it has been debated whether solar forcing, random natural variability, or clearing of rain forests to create pasture or farmlands primarily caused these droughts. Reconstructions of past land cover can be made based on population estimates. Central America was significantly deforested by Maya and Aztec societies before Europeans arrived about 1500 C.E. Forest then recovered as native populations declined, although more deforestation has been taking place in recent years.

  12. Forest survey results for higher grade hardwood sawtimber

    Treesearch

    Roy C. Beltz

    1991-01-01

    The 1987 Forest Survey of Mississippi shows a slight increase in forest area and a substantial gain in hardwood inventory. Hardwood gains, appearing in all diameter classes, suggest an increase in quality but hardwood users generally believe quality is declining. By our analysis, volume of top quality hardwood declined while volume in other grades increased. Forest...

  13. Improving our knowledge of drought-induced forest mortality through experiments, observations, and modeling

    Treesearch

    Nate G. McDowell; Michael G. Ryan; Melanie J. B. Zeppel; David T. Tissue

    2013-01-01

    Regional and continental-scale forest and woodland mortality appears to be accelerating over recent decades (Allen et al., 2010; Peng et al., 2011). These contemporary increases in mortality are just the beginning, as temperature is rising rapidly and global models predict a large decline in the strength of the terrestrial carbon sink over the next century (Arora et al...

  14. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss.

    PubMed

    Helbig, Manuel; Wischnewski, Karoline; Kljun, Natascha; Chasmer, Laura E; Quinton, William L; Detto, Matteo; Sonnentag, Oliver

    2016-12-01

    In the sporadic permafrost zone of North America, thaw-induced boreal forest loss is leading to permafrost-free wetland expansion. These land cover changes alter landscape-scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco-physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw-induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present-day boreal forest-wetland to a hypothetical homogeneous wetland landscape could induce a near-surface cooling effect on regional air temperatures of up to 3-4 °C in late winter and 1-2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol -1 . At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw-induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends. © 2016 John Wiley

  15. Oak decline across the Ozark Highlands- from stand to landscape and regional scale processes

    Treesearch

    Marty Spetich; Zhaofei Fan; Hong S. He; Wen J. Wang; Michael K. Crosby; Stephen R. Shifley

    2016-01-01

    Oak decline has been a problem in forests of the Ozark Highlands (OzH) for decades. It has impacted upland oak-hickory forests, particularly species in the red oak group (Quercus section Lobatae) across the Ozark Highlands of Missouri, Arkansas, and Oklahoma. The oak decline complex is often described in terms of predisposing...

  16. Oxidative stress induces the decline of brain EPO expression in aging rats.

    PubMed

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (p<0.05). Also, the amount of β-galactosidase and the MDA level in the hippocampus were significantly increased but the SOD activity was significantly decreased (p<0.05, 0.01 and 0.01, respectively). Similar to aging rats, the expressions of EPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (p<0.05) at 150mg·kg(-1) and 250mg·kg(-1). Interestingly, negative correlations were found between EPOR (r=-0

  17. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, S. T.; Artaxo, P.; Machado, L.

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across two years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied USA, employed an unparalleled suite of measurements at nine ground sites and onboard two aircraft to investigate the flow of background air into Manaus, the emissions into the air over themore » city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less

  18. Declining water yield from forested mountain watersheds in response to climate change and forest mesophication.

    PubMed

    Caldwell, Peter V; Miniat, Chelcy F; Elliott, Katherine J; Swank, Wayne T; Brantley, Steven T; Laseter, Stephanie H

    2016-09-01

    Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here, we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern Appalachian Mountains of North Carolina, USA to determine whether water yield has changed over time, and to examine and attribute the causal mechanisms of change. We found that annual water yield increased in some watersheds from 1938 to the mid-1970s by as much as 55%, but this was followed by decreases up to 22% by 2013. Changes in forest evapotranspiration were consistent with, but opposite in direction to the changes in water yield, with decreases in evapotranspiration up to 31% by the mid-1970s followed by increases up to 29% until 2013. Vegetation survey data showed commensurate reductions in forest basal area until the mid-1970s and increases since that time accompanied by a shift in dominance from xerophytic oak and hickory species to several mesophytic species (i.e., mesophication) that use relatively more water. These changes in forest structure and species composition may have decreased water yield by as much as 18% in a given year since the mid-1970s after accounting for climate. Our results suggest that changes in climate and forest structure and species composition in unmanaged forests brought about by disturbance and natural community dynamics over time can result in large changes in water supply. © 2016 John Wiley & Sons Ltd.

  19. Assessing the threat that anthropogenic calcium depletion poses to forest health and productivity

    Treesearch

    Paul G. Schaberg; Eric K. Miller; Christopher Eagar

    2010-01-01

    Growing evidence from around the globe indicates that anthropogenic factors including pollution-induced acidification, associated aluminum mobility, and nitrogen saturation are disrupting natural nutrient cycles and depleting base cations from forest ecosystems. Although cation depletion can have varied and interacting influences on ecosystem function, it is the loss...

  20. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.

    PubMed

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-06

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  1. Measurement of atmospheric pollutants associated with oil and natural gas exploration and production activity in Pennsylvania's Allegheny National Forest.

    PubMed

    Pekney, Natalie J; Veloski, Garret; Reeder, Matthew; Tamilia, Joseph; Rupp, Erik; Wetzel, Alan

    2014-09-01

    Oil and natural gas exploration and production (E&P) activities generate emissions from diesel engines, compressor stations, condensate tanks, leaks and venting of natural gas, construction of well pads, and well access roads that can negatively impact air quality on both local and regional scales. A mobile, autonomous air quality monitoring laboratory was constructed to collect measurements of ambient concentrations of pollutants associated with oil and natural gas E&P activities. This air-monitoring laboratory was deployed to the Allegheny National Forest (ANF) in northwestern Pennsylvania for a campaign that resulted in the collection of approximately 7 months of data split between three monitoring locations between July 2010 and June 2011. The three monitoring locations were the Kane Experimental Forest (KEF) area in Elk County, which is downwind of the Sackett oilfield; the Bradford Ranger Station (BRS) in McKean County, which is downwind of a large area of historic oil and gas productivity; and the U.S. Forest Service Hearts Content campground (HC) in Warren County, which is in an area relatively unimpacted by oil and gas development and which therefore yielded background pollutant concentrations in the ANF. Concentrations of criteria pollutants ozone and NO2 did not vary significantly from site to site; averages were below National Ambient Air Quality Standards. Concentrations of volatile organic compounds (VOCs) associated with oil and natural gas (ethane, propane, butane, pentane) were highly correlated. Applying the conditional probability function (CPF) to the ethane data yielded most probable directions of the sources that were coincident with known location of existing wells and activity. Differences between the two impacted and one background site were difficult to discern, suggesting the that the monitoring laboratory was a great enough distance downwind of active areas to allow for sufficient dispersion with background air such that the localized

  2. The Southern Global Change Program: Determining the relationship between air pollutants, climate change and forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickler, R.A.; Fox, S.A.

    The mission of the SGCP is to conduct research and monitoring in the southern region of the US; to determine the interactive responses among forest ecosystems, atmospheric pollution, and climate change; and to use this knowledge to manage and protect forest ecosystems. The first 5 years of research have emphasized the interactions and impacts of five stresses: CO{sub 2}, ozone, temperature, moisture, and nutrients in pine ecosystems. Hierarchial research approaches include correlational studies, experimental field and lab studies, and modeling Across individual-tree to regional levels. The results from 36 projects suggest: elevated CO{sub 2} increases carbon gain and suppress respirationmore » across site-resource conditions; genotypes are differentially affected by climate events; and competition and reproductive biology are likely to be impacted by climate change. An overview of five years of research results will be discussed.« less

  3. Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis.

    PubMed

    Pedersen, Marie; Stayner, Leslie; Slama, Rémy; Sørensen, Mette; Figueras, Francesc; Nieuwenhuijsen, Mark J; Raaschou-Nielsen, Ole; Dadvand, Payam

    2014-09-01

    Pregnancy-induced hypertensive disorders can lead to maternal and perinatal morbidity and mortality, but the cause of these conditions is not well understood. We have systematically reviewed and performed a meta-analysis of epidemiological studies investigating the association between exposure to ambient air pollution and pregnancy-induced hypertensive disorders including gestational hypertension and preeclampsia. We searched electronic databases for English language studies reporting associations between ambient air pollution and pregnancy-induced hypertensive disorders published between December 2009 and December 2013. Combined risk estimates were calculated using random-effect models for each exposure that had been examined in ≥4 studies. Heterogeneity and publication bias were evaluated. A total of 17 articles evaluating the impact of nitrogen oxides (NO2, NOX), particulate matter (PM10, PM2.5), carbon monoxide (CO), ozone (O3), proximity to major roads, and traffic density met our inclusion criteria. Most studies reported that air pollution increased risk for pregnancy-induced hypertensive disorders. There was significant heterogeneity in meta-analysis, which included 16 studies reporting on gestational hypertension and preeclampsia as separate or combined outcomes; there was less heterogeneity in findings of the 10 studies reporting solely on preeclampsia. Meta-analyses showed increased risks of hypertensive disorders in pregnancy for all pollutants except CO. Random-effect meta-analysis combined odds ratio associated with a 5-μg/m3 increase in PM2.5 was 1.57 (95% confidence interval, 1.26-1.96) for combined pregnancy-induced hypertensive disorders and 1.31 (95%confidence interval, 1.14-1.50) for preeclampsia [corrected]. Our results suggest that exposure to air pollution increases the risk of pregnancy-induced hypertensive disorders. © 2014 American Heart Association, Inc.

  4. Assessment of black ash (Fraxinus nigra) decline in Minnesota

    Treesearch

    Kathleen Ward; Michael Ostry; Robert Venette; Brian Palik; Mark Hansen; Mark Hatfield

    2009-01-01

    Black ash (Fraxinus nigra) is an important component of wetland forests throughout the Upper Midwest and northeastern United States and is highly valued for paneling, furniture, and basketry. Decline of black ash has been noted with increasing frequency, although no detailed studies of the pattern of decline across the region have been done. From...

  5. The impact of dissolved oxygen on sulfate radical-induced oxidation of organic micro-pollutants: A theoretical study.

    PubMed

    Zhang, Rui; Wang, Xiaoxiang; Zhou, Lei; Liu, Zhu; Crump, Doug

    2018-05-15

    Sulfate radical (SO 4 .- )-induced oxidation is an important technology in advanced oxidation processes (AOPs) for the removal of pollutants. To date, few studies have assessed the effects of dissolved oxygen (DO) on the SO 4 .- -induced oxidation of organic micro-pollutants. In the present work, a quantum chemical calculation was used to investigate the influence of the external oxygen molecule on the Gibbs free energy (G pollutant ) and HOMO-LUMO gap (ΔE) of 15 organic micro-pollutants representing four chemical categories. Several thermodynamic and statistical models were combined with the data from the quantum chemical calculation to illustrate the impact of DO on the oxidation of organic micro-pollutants by SO 4 .- . Results indicated that the external oxygen molecule increased G pollutant of all studied chemicals, which implies DO has the potential to decrease the energy barrier of the SO 4 .- -induced oxidation and shift the chemical equilibrium of the reaction towards the side of products. From the perspective of kinetics, DO can accelerate the oxidation by decreasing ΔE of organic micro-pollutants. In addition, changes of G pollutant and ΔE of the SO 4 .- -induced oxidation were both significantly different between open-chain and aromatic chemicals, and these differences were partially attributed to the difference of polarizability of these two types of chemicals. Furthermore, we revealed that all changes of G pollutant and ΔE induced by DO were dependent on the DO content. Our study emphasizes the significance of DO on the oxidation of organic micro-pollutants by SO 4 .- , and also provides a theoretical method to study the effect of components in wastewater on removal of organic pollutants in AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Mining-caused changes to habitat structure affect amphibian and reptile population ecology more than metal pollution.

    PubMed

    Sasaki, Kiyoshi; Lesbarrères, David; Watson, Glen; Litzgus, Jacqueline

    2015-12-01

    Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes.

  7. An ecohydrological model to quantify the risk of drought-induced forest mortality events across climate regimes

    NASA Astrophysics Data System (ADS)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2013-12-01

    Regional scale drought-induced forest mortality events are projected to become more frequent under future climates due to changes in rainfall patterns. However, the ability to predict the conditions under which such events occur is currently lacking. To quantify and understand the underlying causes of drought-induced forest mortality, we propose a stochastic ecohydrological model that explicitly couples tree water and carbon use strategies with climate characteristics, such as the frequency and severity of drought. Using the model and results from a controlled drought experiment, we identify the soil, vegetation, and climate factors that underlie tree water and carbon deficits and, ultimately, the risk of drought-induced forest mortality. This mortality risk is then compared across the spectrum of anisohydric-isohydric stomatal control strategies and a range of rainfall regimes. These results suggest certain soil-plant combinations may maximize the survivable drought length in a given climate. Finally, we discuss how this approach can be expanded to estimate the effect of anticipated climate change on drought-induced forest mortality and associated consequences for forest water and carbon balances.

  8. Decline in Topsoil Microbial Quotient, Fungal Abundance and C Utilization Efficiency of Rice Paddies under Heavy Metal Pollution across South China

    PubMed Central

    Liu, Yongzhuo; Zhou, Tong; Crowley, David; Li, Lianqing; Liu, Dawen; Zheng, Jinwei; Yu, Xinyan; Pan, Genxing; Hussain, Qaiser; Zhang, Xuhui; Zheng, Jufeng

    2012-01-01

    Agricultural soils have been increasingly subject to heavy metal pollution worldwide. However, the impacts on soil microbial community structure and activity of field soils have been not yet well characterized. Topsoil samples were collected from heavy metal polluted (PS) and their background (BGS) fields of rice paddies in four sites across South China in 2009. Changes with metal pollution relative to the BGS in the size and community structure of soil microorganisms were examined with multiple microbiological assays of biomass carbon (MBC) and nitrogen (MBN) measurement, plate counting of culturable colonies and phospholipids fatty acids (PLFAs) analysis along with denaturing gradient gel electrophoresis (DGGE) profile of 16S rRNA and 18S rRNA gene and real-time PCR assay. In addition, a 7-day lab incubation under constantly 25°C was conducted to further track the changes in metabolic activity. While the decrease under metal pollution in MBC and MBN, as well as in culturable population size, total PLFA contents and DGGE band numbers of bacteria were not significantly and consistently seen, a significant reduction was indeed observed under metal pollution in microbial quotient, in culturable fungal population size and in ratio of fungal to bacterial PLFAs consistently across the sites by an extent ranging from 6% to 74%. Moreover, a consistently significant increase in metabolic quotient was observed by up to 68% under pollution across the sites. These observations supported a shift of microbial community with decline in its abundance, decrease in fungal proportion and thus in C utilization efficiency under pollution in the soils. In addition, ratios of microbial quotient, of fungal to bacterial and qCO2 are proved better indicative of heavy metal impacts on microbial community structure and activity. The potential effects of these changes on C cycling and CO2 production in the polluted rice paddies deserve further field studies. PMID:22701725

  9. Decline of Ohia (Metrosideros polymorpha) in Hawaii: a review

    Treesearch

    Charles S. Hodges; Ken T. Adee; John D. Stein; Hulton B. Wood; Robert D. Doty

    1986-01-01

    Portions of the ohia (Metrosideros polymorpha) forests on the windward slopes of Mauna Loa and Mauna Kea on the island of Hawaii began dying in 1952. Little mortality has occurred since 1972. About 50,000 ha are affected by the decline. Individual trees exhibit several symptoms, from slow progressive dieback to rapid death. Seven types of decline...

  10. Preliminary assessment of airborne imaging spectrometer and airborne thematic mapper data acquired for forest decline areas in the Federal Republic of Germany

    NASA Technical Reports Server (NTRS)

    Herrmann, Karin; Ammer, Ulrich; Rock, Barrett; Paley, Helen N.

    1988-01-01

    This study evaluated the utility of data collected by the high-spectral resolution airborne imaging spectrometer (AIS-2, tree mode, spectral range 0.8-2.2 microns) and the broad-band Daedalus airborne thematic mapper (ATM, spectral range 0.42-13.0 micron) in assessing forest decline damage at a predominantly Scotch pine forest in the FRG. Analysis of spectral radiance values from the ATM and raw digital number values from AIS-2 showed that higher reflectance in the near infrared was characteristic of high damage (heavy chlorosis, limited needle loss) in Scotch pine canopies. A classification image of a portion of the AIS-2 flight line agreed very well with a damage assessment map produced by standard aerial photointerpretation techniques.

  11. East Oklahoma forests

    Treesearch

    Herbert S. Sternitzke; Charles C. van Sickle

    1968-01-01

    The 17 counties designated as east Oklahoma in this report encompass the main belt of commercial timberland in the State (fig. 1). Forests occupy 5.5 million acres or some 57 percent of the total land area. During the decade that elapsed between the 1956 and 1966 surveys, the acreage of forest land declined about 5 percent. The modest drop in forest area was largely...

  12. Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees.

    PubMed

    Cape, J N

    1993-01-01

    The concept of critical levels was developed in order to define short-term and long-term average concentrations of gaseous pollutants above which plants may be damaged. Although the usual way in which pollutants in precipitation (wet deposition) influence vegetation is by affecting soil processes, plant foliage exposed to fog and cloud, which often contain much greater concentrations of pollutant ions than rain, may be damaged directly. The idea of a critical level has been extended to define concentrations of pollutants in wet deposition above which direct damage to plants is likely. Concentrations of acidity and sulphate measured in mountain and coastal cloud are summarised. Vegetation at risk of injury is identified as montane forest growing close to the cloud base, where ion concentrations are highest. The direct effects of acidic precipitation on trees are reviewed, based on experimental exposure of plants to simulated acidic rain, fog or mist. Although most experiments have reported results in terms of pH (H(+) concentration), the accompanying anion is important, with sulphate being more damaging than nitrate. Both conifers and broadleaved tree seedlings showing subtle changes in the structural characteristics of leaf surfaces after exposure to mist or rain at or about pH 3.5, or sulphate concentration of 150 micromol litre(-1). Visible lesions on leaf surfaces occur at around pH 3 (500 micromol litre(-1) sulphate), broadleaved species tending to be more sensitive than conifers. Effects on photosynthesis and water relations, and interactions with other stresses (e.g. frost), have usually been observed only for treatments which have also caused visible injury to the leaf surface. Few experiments on the direct effects of polluted cloud have been conducted under field conditions with mature trees, which unlike seedlings in controlled conditions, may suffer a growth reduction in the absence of visible injury. Although leaching of cations (Ca(2+), Mg(2+), K(+)) is

  13. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development.

    PubMed

    Al-Gubory, Kaïs H

    2014-07-01

    Developmental toxicity caused by exposure to a mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviours, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase susceptibility of offspring to diseases. There is evidence to suggest that the developmental toxicological mechanisms of chemicals and lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased ROS generation overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Data on the involvement of oxidative stress in the mechanism of developmental toxicity following exposure to environmental pollutants are reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on post-natal development and health outcomes. Developmental toxicity caused by exposure to mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviors, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase the susceptibility of offspring to development complications and diseases. There is evidence to suggest that the developmental toxicological mechanisms

  14. Emergent insects, pathogens and drought shape changing patterns in oak decline in North America and Europe

    Treesearch

    Laurel J. Haavik; Sharon A. Billings; James M. Guldin; Fred M. Stephen

    2015-01-01

    Forest declines are well-studied phenomena. However, recent patterns suggest that the traditional sequence of events and factors involved in forest decline are changing. Several reports in recent decades involve emergent mortality agents, many of which are native insects and diseases. In addition, changing climate and weather patterns place increasing emphasis on root...

  15. Climate contributes to zonal forest mortality in Southern California's San Jacinto Mountains

    NASA Astrophysics Data System (ADS)

    Fellows, A.; Goulden, M.

    2010-12-01

    An estimated 4.6 million trees died over ~375,000 acres of Southern California forest in 2002-2004. This mortality punctuated a decline in forest health that has been attributed to air pollution, stem densification, or drought. Bark beetles were the proximate cause of most tree death but the underlying cause of this extensive mortality is arguably poor forest health. We investigated the contributions that climate, particularly drought, played in tree mortality and how physiological drought stress may have structured the observed patterns of mortality. Field surveys showed that conifer mortality was zonal in the San Jacinto Mountains of Southern California. The proportion of conifer mortality increased with decreasing elevation (p=0.01). Mid-elevation conifers (White Fir, Incense Cedar, Coulter Pine, Sugar Pine, Ponderosa and Jeffrey Pine) died in the lower portions of their respective ranges, which resulted in an upslope lean in species’ distribution and an upslope shift in species’ mean elevation. Long-term precipitation (P) is consistent with elevation over the conifer elevation range (p=0.43). Potential evapotranspiration (ET) estimated by Penman Monteith declines with elevation by nearly half over the same range. These trends suggest that ET, more than P, is critical in structuring the elevational trend in drought stress and may have contributed to the patterns of mortality that occurred in 2002-04. Physiological measurements in a mild drought year (2009) showed late summer declines in plant water availability with decreasing elevation (p < 0.01) and concomitant reductions in carbon assimilation and stomatal conductance with decreasing elevation. We tie these observations together with a simple water balance model.

  16. Diagnosing forest vegetation for air pollution injury

    Treesearch

    Keith F. Jensen

    1989-01-01

    The purpose of this Note is to help you become more technically informed about air pollution when serious problems need to be diagnosed by pollution specialists. (Except for ozone, most of the information discussed does not attempt to describe possible air pollution damage caused by long distance transport. This complex problem is currently under intense study.)

  17. Effects of oil pollution on marine bird populations

    USGS Publications Warehouse

    Piatt, John F.; Carter, Harry R.; Nettleship, David N.; White, Jan

    1991-01-01

    Worldwide oil pollution has killed millions of marine birds in this century but it has been difficult to directly link these losses to population declines. Estimated bird losses from acute spills and chronic pollution are not precise because we usually do not know the proportion of birds killed at sea that are detected on beach surveys or the origin of those birds. Data required to assess effects on populations (abundance, distribution, productivity, recruitment and mortality rates) are inadequate or absent for many species. Local populations may sometimes be devastated by oil pollution, but whether these losses are biologically significant to global populations, especially in light of natural or human-induced sources of mortality, is debatable. In this paper. We review the evidence for effects of oil on marine bird populations, discuss four case histories, and address the debate concerning short- and long-term effects on avian populations.

  18. Forest Area in North Dakota, 1980

    Treesearch

    Ronald L. Hackett

    1982-01-01

    In 1980 North Dakota's forest resources covered 518,100 acres of land, a slight decline from 572,400 acres reported in 1954. The area of commercial forest land also dropped from 398,400 acres to 343,200 acres. The aspen forest type makes up 41 percent of the commercial forest area.

  19. Comprehensive methods for earlier detection and monitoring of forest decline

    Treesearch

    Jennifer Pontius; Richard Hallett

    2014-01-01

    Forested ecosystems are threatened by invasive pests, pathogens, and unusual climatic events brought about by climate change. Earlier detection of incipient forest health problems and a quantitatively rigorous assessment method is increasingly important. Here, we describe a method that is adaptable across tree species and stress agents and practical for use in the...

  20. Declining water yield from forested mountain watersheds in response to climate change and forest mesophication

    Treesearch

    Peter V. Caldwell; Chelcy F. Miniat; Katherine J. Elliott; Wayne. T. Swank; Steven T. Brantley; Stephanie H. Laseter

    2016-01-01

    Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern...

  1. Climate and Management Controls on Forest Growth and Forest Carbon Balance in the Western United States

    NASA Astrophysics Data System (ADS)

    Kelsey, Katharine Cashman

    Climate change is resulting in a number of rapid changes in forests worldwide. Forests comprise a critical component of the global carbon cycle, and therefore climate-induced changes in forest carbon balance have the potential to create a feedback within the global carbon cycle and affect future trajectories of climate change. In order to further understanding of climate-driven changes in forest carbon balance, I (1) develop a method to improve spatial estimates forest carbon stocks, (2) investigate the effect of climate change and forest management actions on forest recovery and carbon balance following disturbance, and (3) explore the relationship between climate and forest growth, and identify climate-driven trends in forest growth through time, within San Juan National Forest in southwest Colorado, USA. I find that forest carbon estimates based on texture analysis from LandsatTM imagery improve regional forest carbon maps, and this method is particularly useful for estimating carbon stocks in forested regions affected by disturbance. Forest recovery from disturbance is also a critical component of future forest carbon stocks, and my results indicate that both climate and forest management actions have important implications for forest recovery and carbon dynamics following disturbance. Specifically, forest treatments that use woody biomass removed from the forest for electricity production can reduce carbon emissions to the atmosphere, but climate driven changes in fire severity and forest recovery can have the opposite effect on forest carbon stocks. In addition to the effects of disturbance and recovery on forest condition, I also find that climate change is decreasing rates of forest growth in some species, likely in response to warming summer temperatures. These growth declines could result in changes of vegetation composition, or in extreme cases, a shift in vegetation type that would alter forest carbon storage. This work provides insight into both

  2. Louisiana forests

    Treesearch

    Herbert S. Sternitzke

    1965-01-01

    The total amount of forest land in Louisiana is virtually the same today as it was a decade ago. But its distribution has changed noticeably. In the Delta, for example, forest acreage is still declining; between 1954 and 1964, it dropped some 7 percent, thus closely paralleling trends in the Delta sections of neighboring Arkansas and Mississippi. Outside the Delta,...

  3. Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests.

    PubMed

    Ma, Zhihai; Peng, Changhui; Zhu, Qiuan; Chen, Huai; Yu, Guirui; Li, Weizhong; Zhou, Xiaolu; Wang, Weifeng; Zhang, Wenhua

    2012-02-14

    The boreal forests, identified as a critical "tipping element" of the Earth's climate system, play a critical role in the global carbon budget. Recent findings have suggested that terrestrial carbon sinks in northern high-latitude regions are weakening, but there has been little observational evidence to support the idea of a reduction of carbon sinks in northern terrestrial ecosystems. Here, we estimated changes in the biomass carbon sink of natural stands throughout Canada's boreal forests using data from long-term forest permanent sampling plots. We found that in recent decades, the rate of biomass change decreased significantly in western Canada (Alberta, Saskatchewan, and Manitoba), but there was no significant trend for eastern Canada (Ontario and Quebec). Our results revealed that recent climate change, and especially drought-induced water stress, is the dominant cause of the observed reduction in the biomass carbon sink, suggesting that western Canada's boreal forests may become net carbon sources if the climate change-induced droughts continue to intensify.

  4. Fir Decline and Mortality in the Southern Siberian Mountains

    NASA Technical Reports Server (NTRS)

    Kharuk, Viacheslav I.; Im, Sergei T.; Petrov, Ilya A.; Dvinskaya, Mariya, L.; Fedotova, Elena V.; Ranson, Kenneth J.

    2016-01-01

    Increased dieback and mortality of dark needle conifer (DNC) stands (composed of fir (Abies sibirica),Siberian pine (Pinus sibirica) and spruce (Picea obovata))were documented in Russia during recent decades. Here we analyzed spatial and temporal patterns of fir decline and mortality in the southern Siberian Mountains based on satellite, in situ and dendrochronological data. The studied stands are located within the boundary between DNC taiga to the north and forest-steppe to the south. Fir decline and mortality were observed to originate where topographic features contributed to maximal water-stress risk, i.e., steep (1825),convex, south-facing slopes with a shallow well-drained root zone. Fir regeneration survived droughts and increased stem radial growth, while upper canopy trees died. Tree ring width(TRW) growth negatively correlated with vapor pressure deficit (VPD), drought index and occurrence of late frosts, and positively with soil water content. Previous year growth conditions (i.e., drought index, VPD, soil water anomalies)have a high impact on current TRW (r 0.600.74). Fir mortality was induced by increased water stress and severe droughts (as a primary factor) in synergy with bark-beetles and fungi attacks (as secondary factors). Dendrochronology data indicated that fir mortality is a periodic process. In a future climate with increased aridity and drought frequency, fir (and Siberian pine) may disappear from portions of its current range (primarily within the boundary with the forest steppe)and is likely to be replaced by drought-tolerant species such as Pinus sylvestris and Larix sibirica.

  5. Fir Decline and Mortality in the Southern Siberian Mountains

    NASA Technical Reports Server (NTRS)

    Kharuk, Viacheslav I.; Im, Sergei T.; Petrov, Ilya A.; Dvinskaya, Mariya, L.; Fedotova, Elena V.; Ranson, Kenneth J.

    2016-01-01

    Increased dieback and mortality of dark needle conifer (DNC) stands (composed of fir (Abies sibirica),Siberian pine (Pinus sibirica) and spruce (Picea obovata)) were documented in Russia during recent decades. Here we analyzed spatial and temporal patterns of fir decline and mortality in the southern Siberian Mountains based on satellite, in situ and dendrochronological data. The studied stands are located within the boundary between DNC taiga to the north and forest-steppe to the south. Fir decline and mortality were observed to originate where topographic features contributed to maximal water-stress risk, i.e., steep (18 deg to 25 deg), convex, south-facing slopes with a shallow well-drained root zone. Fir regeneration survived droughts and increased stem radial growth, while upper canopy trees died. Tree ring width (TRW) growth negatively correlated with vapor pressure deficit (VPD), drought index and occurrence of late frosts, and positively with soil water content. Previous year growth conditions (i.e., drought index, VPD, soil water anomalies) have a high impact on current TRW (r = 0.60 to 0.74). Fir mortality was induced by increased water stress and severe droughts (as a primary factor) in synergy with bark-beetles and fungi attacks (as secondary factors). Dendrochronology data indicated that fir mortality is a periodic process. In a future climate with increased aridity and drought frequency, fir (and Siberian pine) may disappear from portions of its current range (primarily within the boundary with the forest- steppe) and is likely to be replaced by drought-tolerant species such as Pinus sylvestris and Larix sibirica.

  6. Forest health status in Europe.

    PubMed

    Lorenz, Martin; Mues, Volker

    2007-03-21

    Forest health status in Europe is assessed by the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). Established by the Convention on Long-Range Transboundary Air Pollution (CLRTAP) under the United Nations Economic Commission for Europe (UNECE), the ICP Forests has been monitoring forest condition in close cooperation with the European Commission (EC) for 20 years. The present paper describes the latest results of the deposition measurements on permanent monitoring plots and of the extensive defoliation sample survey. The findings reveal marked spatial patterns in bulk and throughfall depositions of nitrate (N-NO3(-)), ammonium (N-NH4(+)), and sulfate (S-SO4(2-)), as well as an obvious decrease in bulk and throughfall deposition of sulfate. Latest analyses of defoliation data confirm previous results, indicating a high correlation with weather extremes.

  7. Arkansas forest resource patterns

    Treesearch

    Charles C. Van Sickle

    1970-01-01

    A new forest survey of Arkansas reveals that forests cover 55 percent of the land in the State. In all, 18.2 million acres are available for and capable of growing industrial timber. Substantial change has occurred in the timber resource. In the 10 years preceding the new survey, forest area declined by one-eighth . Clearing for cropland and pasture claimed...

  8. Is human fecundity declining in Western countries?

    PubMed

    te Velde, Egbert; Burdorf, Alex; Nieschlag, Eberhard; Eijkemans, René; Kremer, Jan A M; Roeleveld, Nel; Habbema, Dik

    2010-06-01

    Since Carlsen and co-workers reported in 1992 that sperm counts have decreased during the second half of the last century in Western societies, there has been widespread anxiety about the adverse effects of environmental pollutants on human fecundity. The Carlsen report was followed by several re-analyses of their data set and by many studies on time trends in sperm quality and on secular trends in fecundity. However, the results of these studies were diverse, complex, difficult to interpret and, therefore, less straightforward than the Carlsen report suggested. The claims that population fecundity is declining and that environmental pollutants are involved, can neither be confirmed nor rejected, in our opinion. However, it is of great importance to find out because the possible influence of widespread environmental pollution, which would adversely affect human reproduction, should be a matter of great concern triggering large-scale studies into its causes and possibilities for prevention. The fundamental reason we still do not know whether population fecundity is declining is the lack of an appropriate surveillance system. Is such a system possible? In our opinion, determining total sperm counts (as a measure of male reproductive health) in combination with time to pregnancy (as a measure of couple fecundity) in carefully selected populations is a feasible option for such a monitoring system. If we want to find out whether or not population fecundity will be declining within the following 20-30 years, we must start monitoring now.

  9. Observed surface wind speed declining induced by urbanization in East China

    NASA Astrophysics Data System (ADS)

    Li, Zhengquan; Song, Lili; Ma, Hao; Xiao, Jingjing; Wang, Kuo; Chen, Lian

    2018-02-01

    Monthly wind data from 506 meteorological stations and ERA-Interim reanalysis during 1991-2015, are used to examine the surface wind trend over East China. Furthermore, combining the urbanization information derived from the DMSP/OLS nighttime light data during 1992-2013, the effects of urbanization on surface wind change are investigated by applying the observation minus reanalysis (OMR) method. The results show that the observed surface wind speed over East China is distinctly weakening with a rate of -0.16 m s-1 deca-1 during 1991-2015, while ERA-Interim wind speed does not have significant decreasing or increasing trend in the same period. The observed surface wind declining is mainly attributed to underlying surface changes of stations observational areas that were mostly induced by the urbanization in East China. Moreover, the wind declining intensity is closely related to the urbanization rhythms. The OMR annual surface wind speeds of Rhythm-VS, Rhythm-S, Rhythm-M, Rhythm-F and Rhythm-VF, have decreasing trends with the rates of -0.02 to -0.09, -0.16 to -0.26, -0.22 to -0.30, -0.26 to -0.36 and -0.33 to -0.51 m s-1 deca-1, respectively. The faster urbanization rhythm is, the stronger wind speed weakening presents. Additionally urban expansion is another factor resulted in the observed surface wind declining.

  10. Potential causes for amphibian declines in Puerto Rico

    USGS Publications Warehouse

    Burrowes, P.A.; Joglar, R.L.; Green, David E.

    2004-01-01

    We monitored 11 populations of eight species of Eleutherodactylus in Puerto Rico from 1989 through 2001. We determined relative abundance of active frogs along transects established in the Caribbean National Forest (El Yunque), Carite Forest, San Lorenzo, and in the vicinity of San Juan. Three species (Eleutherodactylus karlschmidti, E. jasperi, and E. eneidae) are presumed to be extinct and eight populations of six different species of endemic Eleutherodactylus are significantly declining at elevations above 400 m. Of the many suspected causes of amphibian declines around the world, we focused on climate change and disease. Temperature and precipitation data from 1970a??2000 were analyzed to determine the general pattern of oscillations and deviations that could be correlated with amphibian declines. We examined a total of 106 tissues taken from museum specimens collected from 1961a??1978 and from live frogs in 2000. We found chytrid fungi in two species collected at El Yunque as early as 1976, this is the first report of chytrid fungus in the Caribbean. Analysis of weather data indicates a significant warming trend and an association between years with extended periods of drought and the decline of amphibians in Puerto Rico. The 1970's and 1990's, which represent the periods of amphibian extirpations and declines, were significantly drier than average. We suggest a possible synergistic interaction between drought and the pathological effect of the chytrid fungus on amphibian populations.

  11. Lowland forest loss in protected areas of Indonesian Borneo.

    PubMed

    Curran, L M; Trigg, S N; McDonald, A K; Astiani, D; Hardiono, Y M; Siregar, P; Caniago, I; Kasischke, E

    2004-02-13

    The ecology of Bornean rainforests is driven by El Niño-induced droughts that trigger synchronous fruiting among trees and bursts of faunal reproduction that sustain vertebrate populations. However, many of these species- and carbon-rich ecosystems have been destroyed by logging and conversion, which increasingly threaten protected areas. Our satellite, Geographic Information System, and field-based analyses show that from 1985 to 2001, Kalimantan's protected lowland forests declined by more than 56% (>29,000 square kilometers). Even uninhabited frontier parks are logged to supply international markets. "Protected" forests have become increasingly isolated and deforested and their buffer zones degraded. Preserving the ecological integrity of Kalimantan's rainforests requires immediate transnational management.

  12. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    DOE PAGES

    Martin, S. T.; Artaxo, P.; Machado, L.; ...

    2017-05-15

    The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraftmore » to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Here in this paper, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less

  13. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, S. T.; Artaxo, P.; Machado, L.

    The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraftmore » to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Here in this paper, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less

  14. Impacts of forest age on water use in Mountain ash forests

    USGS Publications Warehouse

    Wood, Stephen A.; Beringer, Jason; Hutley, Lindsay B.; McGuire, A. David; Van Dijk, Albert; Kilinc, Musa

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire returning to pre-fire levels in the following centuries owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8mmday-1 with increasing forest age (an annual decrease of 657mm) the understorey ET contributed between 1.2 and 1.5mmday-1, 45% of the total ET (3mmday-1) at the old growth forest.

  15. Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Saewung

    Manaus, a city of nearly two million people, represents an isolated urban area having a distinct urban pollution plume within the otherwise pristine Amazon Basin. The plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants. Critically, the distinct plume in the setting of the surrounding tropical rain forest serves as a natural laboratory to allow direct comparisons between periods of pollution influence to those of pristine conditions. The funded activity of this report is related to the Brazil-USA collaborative project during the two Intensive Operating Periods (wet season, 1 Febmore » - 31 Mar 2014; dry season, 15 Aug - 15 Oct 2014) of GoAmazon2014/5. The project addresses key science questions regarding the modification of the natural atmospheric chemistry and particle microphysics of the forest by present and future anthropogenic pollution.« less

  16. Climatic sensitivity, water-use efficiency, and growth decline in boreal jack pine (Pinus banksiana) forests in Northern Ontario

    NASA Astrophysics Data System (ADS)

    Dietrich, Rachel; Bell, F. Wayne; Silva, Lucas C. R.; Cecile, Alice; Horwath, William R.; Anand, Madhur

    2016-10-01

    Rises in atmospheric carbon dioxide (atmCO2) levels are known to stimulate photosynthesis and increase intrinsic water-use efficiency (iWUE) in trees. Stand-level increases in iWUE depend on the physiological response of dominant species to increases in atmCO2, while tree-level response to increasing atmCO2 depends on the balance between the direct effects of atmCO2 on photosynthetic rate and the indirect effects of atmCO2 on drought conditions. The aim of this study was to characterize the response of boreal jack pine (Pinus banksiana) stands in Northern Ontario to changes in atmCO2 and associated climatic change over the past 100 years. The impact of changes in growing season length, temperature, and precipitation, as well as atmCO2 on tree growth, was determined using stable carbon isotopes and dendrochronological analysis. Jack pine stands in this study were shown to be in progressive decline. As expected, iWUE was found to increase in association with rising atmCO2. However, increases in iWUE were not directly coupled with atmCO2, suggesting that the degree of iWUE improvement is limited by alternative factors. Water-use efficiency was negatively associated with tree growth, suggesting that warming- and drought-induced stomatal closure has likely led to deviations from expected atmCO2-enhanced growth. This finding corroborates that boreal forest stands are likely to face continued stress under future climatic warming.

  17. Air pollution and watershed research in the central Sierra Nevada of California: nitrogen and ozone

    Treesearch

    Carolyn Hunsaker; Andrzej Bytnerowicz; Jessica Auman; Ricardo Cisneros

    2007-01-01

    Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and...

  18. The Effect of Pollution on Newly-Formed Particle Composition in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Vaattovaara, Petri

    2010-05-01

    Petri Vaattovaara (1), Tuukka Petäjä (2), Jorma Joutsensaari (1), Pasi Miettinen (1), Boris Zaprudin (1,6), Aki Kortelainen (1), Juha Heijari (3,7), Pasi Yli-Pirilä (3), Pasi Aalto (2), Doug R. Worsnop (4), and Ari Laaksonen(1,5) (1) University of Eastern Finland, Finland (2) University of Helsinki, Finland (3) University of Eastern Finland, Finland (4) Aerodyne Research Inc., USA (5) Finnish Meteorological Institute, Finland (6) Currently at University of Turku, Finland (7) Currently at Maritime Research Centre, Finland Email address of the Corresponding author: Petri.Vaattovaara@uef.fi The geographical extent of the tropical, temperate and boreal forests is about 30% of the Earth's land surface. Those forests are located around the world in different climate zones effecting widely on atmospheric composition via new particle formation. The Boreal forests solely cover one third of the forests extent and are one of the largest vegetation environments, forming a circumpolar band throughout the northern hemisphere continents, with a high potential to affect climate processes [1]. In order to more fully understand the possible climatic effects of the forests, the properties of secondary organic aerosols (SOA) in varying conditions (e.g. a change in meteorological parameters or in the concentrations of biogenic and antropogenic trace gases) need to be better known. In this study, we applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer [2]) and the UFH-TDMA (ultrafine hygroscopicity tandem differential mobility analyzer [3]) methods parallel to shed light on the evolution of the nucleation and Aitken mode particle compositions (via physic-chemical properties) at a virgin boreal forest site in varying conditions. The measurements were carried out at Hyytiälä forest station in Northern Europe (Finland) during 15 spring nucleation events. We also carried out a statistical analysis using linear correlations in order to explain the variability in

  19. Genetic susceptibility for air pollution-induced airway inflammation in the SALIA study.

    PubMed

    Hüls, Anke; Krämer, Ursula; Herder, Christian; Fehsel, Karin; Luckhaus, Christian; Stolz, Sabine; Vierkötter, Andrea; Schikowski, Tamara

    2017-01-01

    Long-term air pollution exposure has been associated with chronic inflammation providing a link to the development of chronic health effects. Furthermore, there is evidence that pathways activated by endoplasmatic reticulum (ER) stress induce airway inflammation and thereby play an important role in the pathogenesis of inflammatory diseases. We investigated the role of genetic variation of the ER stress pathway on air pollution-induced inflammation. We used the follow-up examination of the German SALIA study (N=402, age 68-79 years). Biomarkers of inflammation were determined in induced sputum. We calculated biomarker-specific weighted genetic risk scores (GRS) out of eight ER stress related single nucleotide polymorphisms and tested their interaction with PM 2.5 , PM 2.5 absorbance, PM 10 and NO 2 exposure on inflammation by adjusted linear regression. Genetic variation of the ER stress pathway was associated with higher concentration of inflammation-related biomarkers (levels of leukotriene (LT)B 4 , tumor necrosis factor-α (TNF-α), the total number of cells and nitric oxide (NO) derivatives). Furthermore, we observed a significant interaction between air pollution exposure and the ER stress risk score on the concentration of inflammation-related biomarkers. The strongest gene-environment interaction was found for LTB 4 (PM 2.5 : p-value=0.002, PM 2.5 absorbance: p-value=0.002, PM 10 : p-value=0.001 and NO 2 : p-value=0.004). Women with a high GRS had a 38% (95%-CI: 16-64%) higher LTB 4 level for an increase of 2.06μg/m³(IQR) in PM 2.5 (no associations in women with a low GRS). These results indicate that genetic variation in the ER stress pathway might play a role in air pollution induced inflammation in the lung. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Recent population decline of the Marbled Murrelet in the Pacific Northwest

    Treesearch

    Sherri L. Miller; Martin G. Raphael; Gary A. Falxa; Craig Strong; Jim Baldwin; Thomas Bloxton; Beth M. Galleher; Monique Lance; Deanna Lynch; Scott F. Pearson; C. John Ralph; Richard D. Young

    2012-01-01

    We document here a decline of nearly 30% in the Marbled Murrelet (Brachyramphus marmoratus) population of Washington, Oregon, and northern California between 2000 and 2010. The Northwest Forest Plan is an ecosystem-management plan for federal forest lands in the Pacific Northwest of the United States that incorporates monitoring to determine if...

  1. Incidence and impact of oak decline in Western Virginia, 1986

    Treesearch

    Steven W. Oak; Cindy M. Huber; Raymond M. Sheffield

    1991-01-01

    Data collected in consecutive forest surveys of Virginia show that losses to oak decline from 1977-1986 were between 7.4 and 13.5 million cubic feet per year in the Northern Piedmont and Mountain Survey Units. Losses were greatest in the Northern Mountain Unit. The ratio of site index/age appears promising as a predictor of oak decline occurrence after severe stress...

  2. What is forest landscape restoration?

    Treesearch

    David Lamb; John Stanturf; Palle Madsen

    2012-01-01

    The extent and distribution of global forests is a matter of considerable concern. The overall rate of deforestation remains high although recent reports suggest it is fi nally beginning to decline (FAO 2011 ) . But this hides regional differences. In temperate regions net forest cover is increasing because of afforestation and natural expansion of forests. By contrast...

  3. Forest Sustainability in the Northern United States

    Treesearch

    Sherri Wormstead

    2006-01-01

    Are populations of songbirds declining? Are we harvesting more timber than we grow? How healthy and productive are our forests? What will happen to our forests if current rates of development continue? How will forest fragmentation and loss impact water and air quality, recreation, and our country?s forest related economy?

  4. Mitigation of nonpoint source pollution in rural areas: From control to synergies of multi ecosystem services.

    PubMed

    Wu, Yonghong; Liu, Junzhuo; Shen, Renfang; Fu, Bojie

    2017-12-31

    Nonpoint source (NPS) pollution produced by human activities in rural areas has induced excessive nutrient input into surface waters and the decline of water quality. The essence of NPS pollution is the transport of nutrients between soil and water. Traditional NPS pollution control strategies, however, are mainly based on the solid and liquid phases, with little focus on the bio-phase between water and soil. The pollutants produced from NPS can be regarded as a resource if recycled or reused in an appropriate way in the agricultural ecosystem. This mini review proposes novel strategies for NPS pollution control based on three phases (liquid, solid and bio-phase) and highlights the regulating services of an agricultural ecosystem by optimizing land use/cover types. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Soil moisture decline due to afforestation across the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Jia, Xiaoxu; Shao, Ming'an; Zhu, Yuanjun; Luo, Yi

    2017-03-01

    The Loess Plateau of China is a region with one of the most severe cases of soil erosion in the world. Since the 1950s, there has been afforestation measure to control soil erosion and improve ecosystem services on the plateau. However, the introduction of exotic tree species (e.g., R. pseudoacacia, P. tabulaeformis and C. korshinskii) and high-density planting has had a negative effect on soil moisture content (SMC) in the region. Any decrease in SMC could worsen soil water shortage in both the top and deep soil layers, further endangering the sustainability of the fragile ecosystem. This study analyzed the variations in SMC following the conversion of croplands into forests in the Loess Plateau. SMC data within the 5-m soil profile were collected at 50 sites in the plateau region via field survey, long-term in-situ observations and documented literature. The study showed that for the 50 sites, the depth-averaged SMC was much lower under forest than under cropland. Based on in-situ measurements of SMC in agricultural plots and C. korshinskii plots in 2004-2014, SMC in the 0-4 m soil profile in both plots declined significantly (p < 0.01) during the growing season. The rate of decline in SMC in various soil layers under C. korshinskii plots (-0.008 to -0.016 cm3 cm-3 yr-1) was much higher than those under agricultural plots (-0.004 to -0.005 cm3 cm-3 yr-1). This suggested that planting C. korshinskii intensified soil moisture decline in China's Loess Plateau. In the first 20-25 yr of growth, the depth-averaged SMC gradually decreased with stand age in R. pseudoacacia plantation, but SMC somehow recovered with increasing tree age over the 25-year period. Irrespectively, artificial forests consumed more deep soil moisture than cultivated crops in the study area, inducing soil desiccation and dry soil layer formation. Thus future afforestation should consider those species that use less water and require less thinning for sustainable soil conservation without

  6. Understanding Amphibian Declines Through Geographic Approaches

    USGS Publications Warehouse

    Gallant, Alisa

    2006-01-01

    Growing concern over worldwide amphibian declines warrants serious examination. Amphibians are important to the proper functioning of ecosystems and provide many direct benefits to humans in the form of pest and disease control, pharmaceutical compounds, and even food. Amphibians have permeable skin and rely on both aquatic and terrestrial ecosystems during different seasons and stages of their lives. Their association with these ecosystems renders them likely to serve as sensitive indicators of environmental change. While much research on amphibian declines has centered on mysterious causes, or on causes that directly affect humans (global warming, chemical pollution, ultraviolet-B radiation), most declines are the result of habitat loss and habitat alteration. Improving our ability to characterize, model, and monitor the interactions between environmental variables and amphibian habitats is key to addressing amphibian conservation. In 2000, the U.S. Geological Survey (USGS) initiated the Amphibian Research and Monitoring Initiative (ARMI) to address issues surrounding amphibian declines.

  7. Detecting and monitoring acidic deposition effects on soil chemistry and forest growth on the Monongahela National Forest

    Treesearch

    Patricia Elias; James Burger; Stephanie Connolly; Mary Beth. Adams

    2010-01-01

    The Monongahela National Forest (MNF) lies downwind from many sources of acid deposition (AD) pollution. Therefore, managers are concerned about the possible deleterious effects of AD on the forest ecosystem. To address the needs of MNF managers, we used Forest Inventory and Analysis (FIA) sites to evaluate forest growth patterns on the MNF to determine the...

  8. Forest Area in Eastern South Dakota, 1980

    Treesearch

    Thomas L. Castonguay

    1982-01-01

    In 1980 eastern South Dakota's forest resources covered 266,300 acres of land, a slight decline from the 296,600 acres reported in 1965. The area of commercial forest land also dropped from 165,400 acres to 113,600 acres. The elm-ash-locust forest type covers 40 percent of the commercial forest area.

  9. Development history and bibliography of the US Forest Service crown-condition indicator for forest health monitoring.

    PubMed

    Randolph, KaDonna C

    2013-06-01

    Comprehensive assessment of individual-tree crown condition by the US Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Program has its origins in the concerns about widespread forest decline in Europe and North America that developed in the late 1970s and early 1980s. Programs such as the US National Acid Precipitation Assessment Program, US National Vegetation Survey, Canadian Acid Rain National Early Warning System, and joint US-Canadian North American Sugar Maple Decline Project laid the groundwork for the development of the US Forest Service crown-condition indicator. The crown-condition assessment protocols were selected and refined through literature review, peer review, and field studies in several different forest types during the late 1980s and early 1990s. Between 1980 and 2011, 126 publications relating specifically to the crown-condition indicator were added to the literature. The majority of the articles were published by the US Department of Agriculture, Forest Service or other State or Federal government agency, and more than half were published after 2004.

  10. Detection and Characterization of Stress Symptoms in Forest Vegetation

    NASA Technical Reports Server (NTRS)

    Heller, R. C.

    1971-01-01

    Techniques used at the Pacific Southwest Forest and Range Experiment Station to detect advanced and previsual symptoms of vegetative stress are discussed. Stresses caused by bark beetles in coniferous stands of timber are emphasized because beetles induce stress more rapidly than most other destructive agents. Bark beetles are also the most damaging forest insects in the United States. In the work on stress symptoms, there are two primary objectives: (1) to learn the best combination of films, scales, and filters to detect and locate injured trees from aircraft and spacecraft, and (2) to learn if stressed trees can be detected before visual symptoms of decline occur. Equipment and techniques used in a study of the epidemic of the Black Hills bark beetle are described.

  11. Tipping point of a conifer forest ecosystem under severe drought

    NASA Astrophysics Data System (ADS)

    Huang, Kaicheng; Yi, Chuixiang; Wu, Donghai; Zhou, Tao; Zhao, Xiang; Blanford, William J.; Wei, Suhua; Wu, Hao; Ling, Du; Li, Zheng

    2015-02-01

    Drought-induced tree mortality has recently received considerable attention. Questions have arisen over the necessary intensity and duration thresholds of droughts that are sufficient to trigger rapid forest declines. The values of such tipping points leading to forest declines due to drought are presently unknown. In this study, we have evaluated the potential relationship between the level of tree growth and concurrent drought conditions with data of the tree growth-related ring width index (RWI) of the two dominant conifer species (Pinus edulis and Pinus ponderosa) in the Southwestern United States (SWUS) and the meteorological drought-related standardized precipitation evapotranspiration index (SPEI). In this effort, we determined the binned averages of RWI and the 11 month SPEI within the month of July within each bin of 30 of RWI in the range of 0-3000. We found a significant correlation between the binned averages of RWI and SPEI at the regional-scale under dryer conditions. The tipping point of forest declines to drought is predicted by the regression model as SPEItp = -1.64 and RWItp = 0, that is, persistence of the water deficit (11 month) with intensity of -1.64 leading to negligible growth for the conifer species. When climate conditions are wetter, the correlation between the binned averages of RWI and SPEI is weaker which we believe is most likely due to soil water and atmospheric moisture levels no longer being the dominant factor limiting tree growth. We also illustrate a potential application of the derived tipping point (SPEItp = -1.64) through an examination of the 2002 extreme drought event in the SWUS conifer forest regions. Distinguished differences in remote-sensing based NDVI anomalies were found between the two regions partitioned by the derived tipping point.

  12. Forest statistics for Central Florida - 1970

    Treesearch

    Nolan L. Snyder; Herbert A. Knight

    1970-01-01

    Since 1959, area of commercial forest in Central Florida has declined from 3.2 to 2.7 million acres, or 16 percent, excluding the reclassification of 1.7 million acres from non-stocked forest to natural rangeland. Some 589,400 acres were actually diverted from commercial forest to other land uses, while only 56,400 acres of new forest were added. Volume of softwood...

  13. Bulgarian Rila mountain forest ecosystems study site: site description and SO42-, NO3- deposition

    Treesearch

    Karl Zeller; Christo Bojinov; Evgeny Donev; Nedialko Nikolov

    1998-01-01

    Bulgaria's forest ecosystems (31 percent of the country's area) are considered vulnerable to dry and wet pollution deposition. Coniferous forests that cover one-third of the total forest land are particularly sensitive to pollution loads. The USDA Forest Service, Sofia University, and the Bulgarian Forest Research Institute (FRI) established a cooperative...

  14. Decomposition of birch leaves in heavily polluted industrial barrens: relative importance of leaf quality and site of exposure.

    PubMed

    Kozlov, Mikhail V; Zvereva, Elena L

    2015-07-01

    The decrease in litter decomposition rate in polluted habitats is well documented, but the factors that explain the observed variation in the magnitude of this pollution effect on litter decomposition remain poorly understood. We explored effects of environmental conditions and leaf quality on decomposition rate of mountain birch (Betula pubescens ssp. czerepanovii) leaves in a heavily polluted industrial barren near the nickel-copper smelter at Monchegorsk. Litter bags filled with leaves collected from two heavily polluted barren sites and from two control forest sites were buried at 2.5-cm depth and exposed for 2 and 4 years at each of these four sites. The relative mass loss of native leaves in the industrial barren during 2 years of exposure was reduced to 49% of the loss observed in the unpolluted forest. We found a similar reduction in mass loss when leaves from control sites were exposed to polluted sites and when leaves from polluted sites were exposed to control sites. We conclude that the reduction in leaf litter decomposition in an industrial barren is caused by pollution-induced changes in both environmental conditions and leaf quality. This reduction is much smaller than expected, given the four-fold decrease in soil microbial activity and nearly complete extinction of saprophagous invertebrates in the polluted soil. We suggest that a longer snowless period and higher spring and summer temperatures at the barren sites have partially counterbalanced the adverse effects caused by the toxicity of metal pollutants.

  15. Development history and bibliography of the US Forest Service crown-condition indicator for forest health monitoring

    Treesearch

    KaDonna Randolph

    2013-01-01

    Comprehensive assessment of individual-tree crown condition by the US Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Program has its origins in the concerns about widespread forest decline in Europe and North America that developed in the late 1970s and early 1980s. Programs such as the US National Acid Precipitation Assessment Program,...

  16. Fortifying the forest: Thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience

    Treesearch

    Sharon M. Hood; Stephen Baker; Anna Sala

    2016-01-01

    Fire frequency in low-elevation coniferous forests in western North America has greatly declined since the late 1800s. In many areas, this has increased tree density and the proportion of shade-tolerant species, reduced resource availability, and increased forest susceptibility to forest insect pests and high-severity wildfire. In response, treatments are...

  17. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.

  18. The conservation of diversity in forest trees

    Treesearch

    F. Thomas Ledig

    1988-01-01

    Deforestation, pollution, and climatic change threaten forest diversity all over the world. And because forests are the habitats for diverse organisms, the threat is extended to all the flora and fauna associated with forests, not only forest trees. In a worst case scenario, if the tropical forest in Latin America was reduced to the areas now set aside in parks and...

  19. Differential declines in Alaskan boreal forest vitality related to climate and competition.

    PubMed

    Trugman, Anna T; Medvigy, David; Anderegg, William R L; Pacala, Stephen W

    2018-03-01

    Rapid warming and changes in water availability at high latitudes alter resource abundance, tree competition, and disturbance regimes. While these changes are expected to disrupt the functioning of boreal forests, their ultimate implications for forest composition are uncertain. In particular, recent site-level studies of the Alaskan boreal forest have reported both increases and decreases in productivity over the past few decades. Here, we test the idea that variations in Alaskan forest growth and mortality rates are contingent on species composition. Using forest inventory measurements and climate data from plots located throughout interior and south-central Alaska, we show significant growth and mortality responses associated with competition, midsummer vapor pressure deficit, and increased growing season length. The governing climate and competition processes differed substantially across species. Surprisingly, the most dramatic climate response occurred in the drought tolerant angiosperm species, trembling aspen, and linked high midsummer vapor pressure deficits to decreased growth and increased insect-related mortality. Given that species composition in the Alaskan and western Canadian boreal forests is projected to shift toward early-successional angiosperm species due to fire regime, these results underscore the potential for a reduction in boreal productivity stemming from increases in midsummer evaporative demand. © 2017 John Wiley & Sons Ltd.

  20. Small-scale dynamics of plant communities in an experimentally polluted and fungicide-treated subarctic birch-pine forest

    NASA Astrophysics Data System (ADS)

    Zobel, Martin; Pilt, Indrek; Moora, Mari; Pärtel, Meelis; Liira, Jaan

    1999-02-01

    Pollution from the Cu-Ni smelter at Monchegorsk, Kola peninsula, has resulted in major changes in the plant communities surrounding the smelter. However, very little pollution reaches northern Finland, which makes it possible to use this area for field experiments to study the mechanism of community change under pollution load. A field experiment was established to study the possible effect of pollution on the subarctic forest community, with Cu-Ni pollution and acid rain (AR) used as treatments. A fungicide (F)-treatment was also added to estimate the significance of plant-fungus interactions in community response. Floristic similarity decreased during the experiment, both within and between treatments. Cu-Ni- and AR-treatments did not have any effect on species richness. The Cu-Ni treatment reduced significantly the number of new species arrivals in plots, whereas the number of local extinctions remained constant. The heavy metal treatment resulted in a decrease in the bryophyte cover. The cover of Linnea borealis increased slightly due to the Cu-Ni-treatment, but decreased due to the AR-treatment. The F-treatment also resulted in a lower richness than in the untreated variant. Again, this effect was due to the reduced number of arrivals, whereas the number of local extinctions remained unchanged. The F-treatment also resulted in a higher cover of bryophytes and dwarf shrubs. Changes in species richness of subarctic understorey plant communities were mainly caused by the differential arrival of species under different environmental conditions. As the number of arrivals was negatively correlated to the F-treatment, the presence of (presumably positive) interactions between vascular plants and fungi may have an influence on the response of a community to pollution.

  1. Current content of selected pollutants in moss, humus, soil and bark and long-term radial growth of pine trees in the Mezaparks forest in Riga.

    PubMed

    Pīrāga, Dace; Tabors, Guntis; Nikodemus, Oļģerts; Žīgure, Zane; Brūmelis, Guntis

    2017-05-01

    The aim of this study was to evaluate the use of various indicators in the assessment of environmental pollution and to determine the response of pine to changes of pollution levels. Mezaparks is a part of Riga that has been subject to various long-term effects of atmospheric pollution and, in particular, historically from a large superphosphate factory. To determine the spatial distribution of pollution, moss, pine bark and soil O and B horizons were used as sorbents in this study, as well as the additional annual increment of pine trees. The current spatial distribution of pollution is best shown by heavy metal accumulation in mosses and the long-term accumulation of P 2 O 5 pollution by the soil O horizon. The methodological problems of using these sorbents were explored in the study. Environmental pollution and its changes could be associated with the tree growth ring annual additional increment of Mezaparks pine forest stands. The additional increment increased after the closing of the Riga superphosphate factory.

  2. Long-term monitoring of air pollution effects on selected forest ecosystems in the Bucegi-Piatra Craiului and Retezat Mountains, southern Carpathians (Romania)

    Treesearch

    O. Badea; S. Neagu; Andrzej Bytnerowicz; D. Silaghi; I. Barbu; C. Iacoban; F. Popescu; M. Andrei; E. Preda; C. Iacob; I. Dumitru; H. Iuncu; C. Vezeanu; V. Huber

    2011-01-01

    The monitoring studies carried out in the southern Romanian Carpathians (Retezat and Bucegi - Piatra Craiului Mts) provide a scientific support for long term ecosystem research (LTER). Their general objective is to characterize the air pollution and its potential effects upon forest ecosystems' status and biodiversity in close connection with climatic changes. Two...

  3. Long-term decline of a winter-resident bird community in Puerto Rico

    Treesearch

    J. Faaborg; W. J. Arendt; J. D. Toms; K. M. Dugger; W. A. Cox; M. Canals Mora

    2013-01-01

    Despite concern expressed two decades ago, there has been little recent discussion about continuing declines of migrant bird populations. Monitoring efforts have been focused almost exclusively on the breeding grounds. We describe the long-term decline of a winter-resident bird population in Guanica Commonwealth Forest, Puerto Rico, one of the last remaining tracts of...

  4. Impacts of fire on forest age and runoff in mountain ash forests

    USGS Publications Warehouse

    Wood, S.A.; Beringer, J.; Hutley, L.B.; McGuire, A.D.; Van Dijk, A.; Kilinc, M.

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire - returning to pre-fire levels in the following centuries - owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8 mm day-1 with increasing forest age (an annual decrease of 657 mm) the understorey ET contributed between 1.2 and 1.5 mm day-1, 45% of the total ET (3 mm day-1) at the old growth forest. ?? CSIRO 2008.

  5. AIR PARTICULATE POLLUTION EXPOSURE INDUCES SYSTEMIC OXIDATIVE STRESS IN HEALTHY MICE

    EPA Science Inventory

    Air particulate pollution exposure induces systemic oxidative stress in healthy mice

    Elizabeth S Roberts1 and Kevin L Dreher2. 1 College or Veterinary Medicine, NC State University, Raleigh, NC , 2US Environmental Protection Agency, NHEERL, RTP, NC

    Epidemiological s...

  6. The role of environmental factors in oak decline and mortality in the Ozark Highlands

    Treesearch

    John M. Kabrick; Daniel C. Dey; Randy G. Jensen; Michael Wallendorf

    2008-01-01

    Oak decline is a chronic problem in Missouri Ozark forests. Red oak group species are most susceptible and decline is reportedly more severe on droughty, nutrient-poor sites. However, it was not clear whether greater decline severity was caused by poor site conditions or is simply due to the greater abundance of red oak group species found on poorer sites. We conducted...

  7. Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada

    USGS Publications Warehouse

    Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and

  8. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies).

    PubMed

    Stinziano, Joseph R; Hüner, Norman P A; Way, Danielle A

    2015-12-01

    Climate change, via warmer springs and autumns, may lengthen the carbon uptake period of boreal tree species, increasing the potential for carbon sequestration in boreal forests, which could help slow climate change. However, if other seasonal cues such as photoperiod dictate when photosynthetic capacity declines, warmer autumn temperatures may have little effect on when carbon uptake capacity decreases in these species. We investigated whether autumn warming would delay photosynthetic decline in Norway spruce (Picea abies (L.) H. Karst.) by growing seedlings under declining weekly photoperiods and weekly temperatures either at ambient temperature or a warming treatment 4 °C above ambient. Photosynthetic capacity was relatively constant in both treatments when weekly temperatures were >8 °C, but declined rapidly at lower temperatures, leading to a delay in the autumn decline in photosynthetic capacity in the warming treatment. The decline in photosynthetic capacity was not related to changes in leaf nitrogen or chlorophyll concentrations, but was correlated with a decrease in the apparent fraction of leaf nitrogen invested in Rubisco, implicating a shift in nitrogen allocation away from the Calvin cycle at low autumn growing temperatures. Our data suggest that as the climate warms, the period of net carbon uptake will be extended in the autumn for boreal forests dominated by Norway spruce, which could increase total carbon uptake in these forests. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Ground truth assessments of forests affected by oak decline and red oak borer in the interior highlands of Arkansas, Oklahoma, and Missouri: preliminary results from overstory analysis

    Treesearch

    James M. Guldin; Edward A. Poole; Eric Heitzman; John M. Kabrick; Rose-Marie Muzika

    2006-01-01

    Forests of the Interior Highlands of Arkansas, Oklahoma, and Missouri are being affected by oak decline and an unprecedented outbreak of a native beetle called the red oak borer. On average, Interior Highlands stands contained 236 trees per acre, of which 32 trees per acre (13.4 percent) were dead or dying. Stands averaged 97 square feet per acre of basal area, of...

  10. Oak decline in central hardwood forests: frequency, spatial extent, and scale

    Treesearch

    Steven W Oak; Marty Spetich; Randall S. Morin

    2015-01-01

    Oak decline is a widely distributed disease that results from an interacting set of factors in the Central Hardwood Region. Episodes of decline have been reported since before the turn of the twentieth century and from every state in the region. It is a stress-mediated disease that results from the interactions of physiologically mature trees, abiotic and biotic...

  11. Anthropogenic effects on a tropical forest according to the distance from human settlements.

    PubMed

    Popradit, Ananya; Srisatit, Thares; Kiratiprayoon, Somboon; Yoshimura, Jin; Ishida, Atsushi; Shiyomi, Masae; Murayama, Takehiko; Chantaranothai, Pranom; Outtaranakorn, Somkid; Phromma, Issara

    2015-10-05

    The protection of tropical forests is one of the most urgent issues in conservation biology because of the rapid deforestation that has occurred over the last 50 years. Even in protected forests, the anthropogenic effects from newly expanding villages such as harvesting of medicinal plants, pasturing cattle and forest fires can induce environmental modifications, especially on the forest floor. We evaluated the anthropogenic effects of the daily activities of neighboring residents on natural forests in 12 plots extending from the village boundary into a natural forest in Thailand. The basal area per unit land area did not present a significant trend; however, the species diversity of woody plants decreased linearly towards the village boundary, which caused a loss of individual density because of severe declines in small saplings compared with adult trees and large saplings in proximity to the village. An analysis of tree-size categories indicates a lack of small samplings near the village boundary. The current forest appears to be well protected based on the adult tree canopy, but regeneration of the present-day forests is unlikely because of the loss of seedlings.

  12. Long-term changes in the acidity of a dekalb forest soil in the mid-region of the Susquehanna River Watershed

    Treesearch

    Joy R. Robert; William E. Sharpe

    1996-01-01

    Forest soil acidification has been reported to result in reduced forest productivity and forest decline. Soil acidification and forest decline may trigger changes in nutrient cycling in forest ecosystems with important consequences for drainage water chemistry and aquatic biota.

  13. Tree squirrel habitat selection and predispersal seed predation in a declining subalpine conifer

    Treesearch

    Shawn T. McKinney; Carl E. Fiedler

    2009-01-01

    Differential responses by species to modern perturbations in forest ecosystems may have undesirable impacts on plant-animal interactions. If such disruptions cause declines in a plant species without corresponding declines in a primary seed predator, the effects on the plant could be exacerbated. We examined one such interaction between Pinus...

  14. Long-term monitoring study of beached seabirds shows that chronic oil pollution in the southern North Sea has almost halted.

    PubMed

    Stienen, Eric W M; Courtens, Wouter; Van de Walle, Marc; Vanermen, Nicolas; Verstraete, Hilbran

    2017-02-15

    Trends in oil rates of beached seabirds reflect temporal and spatial patterns in chronic oil pollution at sea. We analysed a long-term dataset of systematic beached bird surveys along the Belgian North Sea coast during 1962-2015, where extreme high oil contamination rates and consequently high mortality rates of seabirds during the 1960s used to coincide with intensive ship traffic. In the 1960s, >90% of all swimming seabirds that washed ashore were contaminated with oil and estimated oil-induced mortality of seabirds was probably several times higher than natural mortality. More than 50years later oil rates of seabirds have dropped to historically low levels while shipping is still very intense, indicating that chronic oil pollution has significantly declined. The declining trend is discussed in the light of a series of legislative measures that were enacted in the North Sea region to reduce oil pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Disruption of calcium nutrition at Hubbard Brook Experimental Forest (New Hampshire) alters the health and productivity of red spruce and sugar maple trees and provides lessons pertinent to other sites and regions

    Treesearch

    Paul G. Schaberg; Gary J. Hawley

    2010-01-01

    Pollution-induced acidification and other anthropogenic factors are leaching calcium (Ca) and mobilizing aluminum (Al) in many forest soils. Because Ca is an essential nutrient and Al is a potential toxin, resulting depletions of Ca and increases in available Al may significantly alter the health and productivity of forest trees. Controlled experiments on red spruce (...

  16. Revisiting forest road retirement

    Treesearch

    Randy Kolka; Mathew Smidt

    2001-01-01

    Determining the sources of nonpoint source pollution in a watershed is difficult, although the largest source of sediment in forested systems is from skld trails, haul roads, and landings associated with forest harvest- ing (Ketcheson et al., 1999; Swft, 1988) The transport of sediment to streams and subsequent sedimentation leads to the loss of...

  17. Further insights into blood pressure induced premature beats: Transient depolarizations are associated with fast myocardial deformation upon pressure decline.

    PubMed

    Haemers, Peter; Sutherland, George; Cikes, Maja; Jakus, Nina; Holemans, Patricia; Sipido, Karin R; Willems, Rik; Claus, Piet

    2015-11-01

    An acute increase in blood pressure is associated with the occurrence of premature ventricular complexes (PVCs). We aimed to study the timing of these PVCs with respect to afterload-induced changes in myocardial deformation in a controlled, preclinically relevant, novel closed-chest pig model. An acute left ventricular (LV) afterload challenge was induced by partial balloon inflation in the descending aorta, lasting 5-10 heartbeats (8 pigs; 396 inflations). Balloon inflation enhanced the reflected wave (augmentation index 30% ± 8% vs 59% ± 6%; P < .001), increasing systolic central blood pressure by 35% ± 4%. This challenge resulted in a more abrupt LV pressure decline, which was delayed beyond ventricular repolarization (rate of pressure decline 0.16 ± 0.01 mm Hg/s vs 0.27 ± 0.04 mm Hg/ms; P < .001 and interval T-wave to peak pressure 1 ± 12 ms vs 36 ± 9 ms; P = .008), during which the velocity of myocardial shortening at the basal septum increased abruptly (ie, postsystolic shortening) (peak strain rate -0.6 ± 0.5 s(-1) vs -2.5 ± 0.8 s(-1); P < .001). It is exactly at this time of LV pressure decline, with increased postsystolic shortening, and not at peak pressure, that PVCs occur (22% of inflations). These PVCs preferentially occurred at the basal and apical segments. In the same regions, monophasic action potentials demonstrated the appearance of delayed afterdepolarization-like transient depolarizations as origin of PVCs. An acute blood pressure increase results in a more abrupt LV pressure decline, which is delayed after ventricular repolarization. This has a profound effect on myocardial mechanics with enhanced postsystolic shortening. Coincidence with induced transient depolarizations and PVCs provides support for the mechanoelectrical origin of pressure-induced premature beats. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  18. Forest fires and air quality issues in southern Europe

    Treesearch

    Ana Isabel Miranda; Enrico Marchi; Marco Ferretti; Millán M. Millán

    2009-01-01

    Each summer forest fires in southern Europe emit large quantities of pollutants to the atmosphere. These fires can generate a number of air pollution episodes as measured by air quality monitoring networks. We analyzed the impact of forest fires on air quality of specific regions of southern Europe. Data from several summer seasons were studied with the aim of...

  19. Effect of Experimentally Manipulated Fire Regimes on the Response of Forests to Drought

    NASA Astrophysics Data System (ADS)

    Refsland, T. K.; Knapp, B.; Fraterrigo, J.

    2017-12-01

    Climate change is expected to increase drought stress in many forests and alter fire regimes. Fire can reduce tree density and thus competition for limited water, but the effects of changing fire regimes on forest productivity during drought remain poorly understood. We measured the annual ring-widths of adult oak (Quercus spp.) trees in Mark Twain National Forest, Missouri USA that experienced unburned, annual or periodic (every 4 years) surface fire treatments from 1951 - 2015. Severe drought events were identified using the BILJOU water balance model. We determined the effect of fire treatment on stand-level annual growth rates as well as stand-level resistance and resilience to drought, defined as the drought-induced reduction in growth and post-drought recovery in growth, respectively. During favorable wet years, annual and periodic fire treatments reduced annual growth rates by approximately 10-15% relative to unburned controls (P < 0.001). Stand-level growth rates declined 22-40% during drought events (P < 0.001), but fire-driven changes to stand basal area had no effect on the resistance or resilience of trees to drought. The decline in annual growth rates of burned stands during favorable wet years was likely caused by increased nitrogen (N) limitation in burned plots. After 60 years of treatment, burned plots experienced 30% declines in total soil N relative to unburned plots. Our finding that drought resistance and resilience were similar across all treatments suggest that fire-driven reductions in stand density may have negligible effects on soil moisture availability during drought. Our results highlight that climate-fire interactions can have important long-term effects on forest productivity.

  20. Louisiana forests: Status and outlook

    Treesearch

    Paul A. Murphy

    1975-01-01

    Between 1964 and 1974, forest area in Louisiana declined 9 percent to 14.5 million acres. Softwood volume increased 31 percent to 9 billion cubic feet, and hardwood declined 7 percent to 7.7 billion. All softwood size classes had increases in volume, and all hardwood size classes had decreases.

  1. Greenhouse gas and air pollutant emissions from land and forest fire in Indonesia during 2015 based on satellite data

    NASA Astrophysics Data System (ADS)

    Pribadi, A.; Kurata, G.

    2017-01-01

    Land and forest fire still become a major problem in environmental management in Indonesia. In this study, we conducted quantitatively assessment of land and forest fire emissions in Indonesia during 2015. We applied methodology of emission inventory based on burned area, biomass density, combustion factor and emission factor for each land cover type using several satellite data such as MODIS burned area, Pantropical National Level Carbon Stock Dataset, as well as Vegetation Condition Index. The greenhouse gases emissions from land and forest fire in Indonesia during 2015 were (in Gg) 806,406 CO2, 8,002 CH4, 96 N2O, while pollutants emissions were (in Gg) 85,268 CO, 1,168 NOx, 340 SO2, 3,093 NMVOC, 1,041 NH3, 259 BC, 1,957 OC, 4,118 PM2.5 and 5,468 PM10. September was the peak of fire season that generate 58% (species average) of total emissions for this year. The largest contribution was from shrubland/savanna burning which account for 66% (species average) of the total emissions, while about 81% of the total emissions were generated from peatland fire. The results of this study emphasizethe importance of proper peatland management in Indonesia as land and forest fire countermeasures strategy.

  2. Soils of Mountainous Forests and Their Transformation under the Impact of Fires in Baikal Region

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, Yu. N.

    2018-04-01

    Data on postpyrogenic dynamics of soils under mountainous taiga cedar ( Pinus sibirica) and pine ( Pinus sylvestris) forests and subtaiga-forest-steppe pine ( Pinus sylvestris) forests in the Baikal region are analyzed. Ground litter-humus fires predominating in this region transform the upper diagnostic organic soil horizons and lead to the formation of new pyrogenic organic horizons (Opir). Adverse effects of ground fires on the stock, fractional composition, and water-physical properties of forest litters are shown. Some quantitative parameters of the liquid and solid surface runoff in burnt areas related to the slope gradient, fire intensity, and the time passed after the fire are presented. Pyrogenic destruction of forest ecosystems inevitably induces the degradation of mountainous soils, whose restoration after fires takes tens of years. The products of soil erosion from the burnt out areas complicate the current situation with the pollution of coastal waters of Lake Baikal.

  3. The status of forest management research in the United States.

    Treesearch

    Donald G. Hodges; Pamela J. Jakes; Frederick W. Cubbage

    1988-01-01

    In 1985, the USDA Forest Service invested nearly $30 million in forest management research, forest industry invested $19 million, and universities invested at least $17 million. Investments in this research have been declining since then. Forest Service data indicate that the public sector is the largest beneficiary of forest management research.

  4. Nitrous oxide pollution from aircraft to increase by 2050

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-09-01

    The transportation industry is not only one of the biggest sources of air pollution and a significant player in greenhouse gas-induced global warming, but, as a new study shows, the industry could also be responsible for episodes of ozone (O3 ) pollution, particularly over the United States and northern Europe. Combustion of fuel in cars, shipping vessels, and low-flying aircraft produce nitrogen oxides (NOx), which not only decrease the lifetime of greenhouse gases such as methane but also react with other molecules in the atmosphere to form tropospheric O3, another, more lethal, air pollutant. Hauglustaine and Koff used a global three-dimensional chemistry-climate model to investigate how different components of the transportation industry—cars, ships, and low-flying aircraft—would contribute to NOx pollution over the next few decades under several projected emission scenarios. They found that as road transportation stagnates or even declines due to stricter regulations and congestion, NOx emissions from cars will decrease over time. However, aircraft will increase in number and could contribute between 25% and 48% of NOx emissions, which will be most severe over the United States and Europe—two regions with the highest growth rate in commercial aviation.

  5. Climate change induced effects on the predisposition of forests of the water protection zone Wildalpen to disturbances by bark beetles

    NASA Astrophysics Data System (ADS)

    Baier, P.; Pennerstorfer, J.; Schopf, A.

    2012-04-01

    The provision of drinking water of high quality is a precious service of forests. Large-scale disturbances like forest fires, wind throws, pest outbreaks and subsequent clear cutting may lead to changes in hydrology (runoff as well as percolation). Furthermore, water quality can be negatively influenced by increased erosion, increased decomposition of litter and humus and leaching of nitrate. Large-scale epidemics of forest pests may induce forest decline at landscape scale with subsequent long-lasting negative effects on water quality. The European spruce bark beetle, Ips typographus (L.), is one of the most significant sources of mortality in mature spruce forest ecosystems in Eurasia. The objective of this study was to apply a complex predisposition assessment system for hazard rating and for the evaluation of climate change impacts for the water protection forests of the City of Vienna in Wildalpen. The following steps have been done to adapt/apply the bark beetle phenology model and the hazard rating system: -application, adaptation and validation of the bark beetle phenology model PHENIPS concerning start of dispersion, brood initiation, duration of development, beginning of sister broods, voltinism and hibernation - spatial/temporal modelling of the phenology and voltinism of I. typographus using past, present as well as projected climate data - application and validation of the stand- and site related long-term predisposition assessment system using forest stand/site data, annual damage reports and outputs of phenology modelling as data input - mapping of endangered areas and assessment of future susceptibility to infestations by I. typographus and other disturbing agents based on climate scenarios using GIS. The assessment of site- and stand-related predisposition revealed that the forest stands in Wildalpen are highly susceptible to bark beetle infestation. More than 65% of the stands were assigned to the predisposition classes high/very high. Only 10% of

  6. A preview of Maryland's forest resource

    Treesearch

    Douglas S. Powell; Teresa M. Bowers

    1978-01-01

    The 1976 forest survey of Maryland shows that the State has 2.5 million acres of commercial forest land, a decline of 13 percent since 1964. Ninety percent of it is in private ownership; 56 percent in sawtimber stands; 46 percent in the oak-hickory forest type. Timber volume has increased to 3.5 billion cubic feet of growing stock and 8.2 billion board feet of...

  7. Forest dynamics in the U.S. indicate disproportionate attrition in western forests, rural areas and public lands

    PubMed Central

    2017-01-01

    Forests are experiencing significant changes; studying geographic patterns in forests is critical in understanding the impact of forest dynamics to biodiversity, soil erosion, water chemistry and climate. Few studies have examined forest geographic pattern changes other than fragmentation; however, other spatial processes of forest dynamics are of equal importance. Here, we study forest attrition, the complete removal of forest patches, that can result in complete habitat loss, severe decline of population sizes and species richness, and shifts of local and regional environmental conditions. We aim to develop a simple yet insightful proximity-based spatial indicator capturing forest attrition that is independent of spatial scale and boundaries with worldwide application potential. Using this proximity indicator, we evaluate forest attrition across ecoregions, land ownership and urbanization stratifications across continental United States of America. Nationally, the total forest cover loss was approximately 90,400 km2, roughly the size of the state of Maine, constituting a decline of 2.96%. Examining the spatial arrangement of this change the average FAD was 3674m in 1992 and increased by 514m or 14.0% in 2001. Simulations of forest cover loss indicate only a 10m FAD increase suggesting that the observed FAD increase was more than an order of magnitude higher than expected. Furthermore, forest attrition is considerably higher in the western United States, in rural areas and in public lands. Our mathematical model (R2 = 0.93) supports estimation of attrition for a given forest cover. The FAD metric quantifies forest attrition across spatial scales and geographic boundaries and assesses unambiguously changes over time. The metric is applicable to any landscape and offers a new complementary insight on forest landscape patterns from local to global scales, improving future exploration of drivers and repercussions of forest cover changes and supporting more informative

  8. Forest dynamics in the U.S. indicate disproportionate attrition in western forests, rural areas and public lands.

    PubMed

    Yang, Sheng; Mountrakis, Giorgos

    2017-01-01

    Forests are experiencing significant changes; studying geographic patterns in forests is critical in understanding the impact of forest dynamics to biodiversity, soil erosion, water chemistry and climate. Few studies have examined forest geographic pattern changes other than fragmentation; however, other spatial processes of forest dynamics are of equal importance. Here, we study forest attrition, the complete removal of forest patches, that can result in complete habitat loss, severe decline of population sizes and species richness, and shifts of local and regional environmental conditions. We aim to develop a simple yet insightful proximity-based spatial indicator capturing forest attrition that is independent of spatial scale and boundaries with worldwide application potential. Using this proximity indicator, we evaluate forest attrition across ecoregions, land ownership and urbanization stratifications across continental United States of America. Nationally, the total forest cover loss was approximately 90,400 km2, roughly the size of the state of Maine, constituting a decline of 2.96%. Examining the spatial arrangement of this change the average FAD was 3674m in 1992 and increased by 514m or 14.0% in 2001. Simulations of forest cover loss indicate only a 10m FAD increase suggesting that the observed FAD increase was more than an order of magnitude higher than expected. Furthermore, forest attrition is considerably higher in the western United States, in rural areas and in public lands. Our mathematical model (R2 = 0.93) supports estimation of attrition for a given forest cover. The FAD metric quantifies forest attrition across spatial scales and geographic boundaries and assesses unambiguously changes over time. The metric is applicable to any landscape and offers a new complementary insight on forest landscape patterns from local to global scales, improving future exploration of drivers and repercussions of forest cover changes and supporting more informative

  9. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest.

    PubMed

    Tremblay, Junior A; Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R; Price, David T; St-Laurent, Martin-Hugues

    2018-01-01

    Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change") were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and

  10. Are Forest Songbirds Declining? Status Assessment from the Southern Appalachians and Northeastern Forests

    Treesearch

    Kathleen E. Franzreb; Kenneth V. Rosenberg

    1997-01-01

    Reported declines in populations of migratory songbirds in the eastern United States (Robbins et al. 1989, Askins et al. 1990, Hagan and Johnston 1992) have created a great deal of concern among researchers, land managers and conservationists, resulting in the formation of the large bird-conservation consortium, Partners In Flight. Among the causes implicated in these...

  11. Discrimination between long-range transport and local pollution sources and precise delineation of polluted soil layers using integrated geophysical-geochemical methods.

    NASA Astrophysics Data System (ADS)

    Magiera, Tadeusz; Szuszkiewisz, Marcin; Szuszkiewicz, Maria; Żogała, Bogdan

    2017-04-01

    The primary goal of this work was to distinguish between soil pollution from long-range and local transport of atmospheric pollutants using soil magnetometry in combination with geochemical analyses and precise delineation of polluted soil layers by using integrated magnetic (surface susceptibility, gradiometric measurement) and other geophysical techniques (conductivity and electrical resistivity tomography). The study area was located in the Izery region of Poland (within the "Black Triangle" region, which is the nickname for one of Europe's most polluted areas, where Germany, Poland and the Czech Republic meet). The study area was located in the Forest Glade where the historical local pollution source (glass factory) was active since and of 18th until the end of 19th century. The magnetic signal here was the combination of long-range transport of magnetic particles, local deposition and anthropogenic layers containing ashes and slags and partly comprising the subsoil of modern soil. Application of the set of different geophysical techniques enabled the precise location of these layers. The effect of the long-range pollution transport was observed on a neighboring hill (Granicznik) of which the western, northwestern and southwestern parts of the slope were exposed to the transport of atmospheric pollutants from the Czech Republic and Germany and Poland. Using soil magnetometry, it was possible to discriminate between long-range transport of atmospheric pollutants and anthropogenic pollution related to the former glasswork located in the Forest Glade. The magnetic susceptibility values (κ) as well as the number of "hot-spots" of volume magnetic susceptibility is significantly larger in the Forest Glade than on the Granicznik Hill where the κ is < 20 ×10-5 SI units. Generally, the western part of the Granicznik Hill is characterized by about two times higher k values than the southeastern part. This trend is attributed to the fact that the western part was

  12. Forest tree responses to extreme drought and some biotic events: Towards a selection according to hazard tolerance?

    NASA Astrophysics Data System (ADS)

    Bréda, Nathalie; Badeau, Vincent

    2008-09-01

    The aim of this paper is to illustrate how some extreme events could affect forest ecosystems. Forest tree response can be analysed using dendroecological methods, as tree-ring widths are strongly controlled by climatic or biotic events. Years with such events induce similar tree responses and are called pointer years. They can result from extreme climatic events like frost, a heat wave, spring water logging, drought or insect damage… Forest tree species showed contrasting responses to climatic hazards, depending on their sensitivity to water shortage or temperature hardening, as illustrated from our dendrochronological database. For foresters, a drought or a pest disease is an extreme event if visible and durable symptoms are induced (leaf discolouration, leaf loss, perennial organs mortality, tree dieback and mortality). These symptoms here are shown, lagging one or several years behind a climatic or biotic event, from forest decline cases in progress since the 2003 drought or attributed to previous severe droughts or defoliations in France. Tree growth or vitality recovery is illustrated, and the functional interpretation of the long lasting memory of trees is discussed. A coupled approach linking dendrochronology and ecophysiology helps in discussing vulnerability of forest stands, and suggests management advices in order to mitigate extreme drought and cope with selective mortality.

  13. The effects of site factors on the rate of hemlock decline: a case study in New Jersey

    Treesearch

    Denise Royle; Richard Lathrop

    2000-01-01

    The rate of decline of hemlock (Tsuga canadensis) trees infested with hemlock woolly adelgid (Adelges tsugae) appears to be highly variable and site dependent. Rates of hemlock forest decline have not been quantified at the landscape scale and reasons for observed variations in the rate of decline remain unknown. Others have...

  14. Effects of forest management on California Spotted Owls: implications for reducing wildfire risk in fire‐prone forests.

    PubMed

    Tempel, Douglas J; Gutiérrez, R J; Whitmore, Sheila A; Reetz, Matthew J; Stoelting, Ricka E; Berigan, William J; Seamans, Mark E; Zachariah Peery, M

    Management of many North American forests is challenged by the need to balance the potentially competing objectives of reducing risks posed by high-severity wildfires and protecting threatened species. In the Sierra Nevada, California, concern about high-severity fires has increased in recent decades but uncertainty exists over the effects of fuel-reduction treatments on species associated with older forests, such as the California Spotted Owl (Strix occidentalis occidentalis). Here, we assessed the effects of forest conditions, fuel reductions, and wildfire on a declining population of Spotted Owls in the central Sierra Nevada using 20 years of demographic data collected at 74 Spotted Owl territories. Adult survival and territory colonization probabilities were relatively high, while territory extinction probability was relatively low, especially in territories that had relatively large amounts of high canopy cover (≥70%) forest. Reproduction was negatively associated with the area of medium-intensity timber harvests characteristic of proposed fuel treatments. Our results also suggested that the amount of edge between older forests and shrub/sapling vegetation and increased habitat heterogeneity may positively influence demographic rates of Spotted Owls. Finally, high-severity fire negatively influenced the probability of territory colonization. Despite correlations between owl demographic rates and several habitat variables, life stage simulation (sensitivity) analyses indicated that the amount of forest with high canopy cover was the primary driver of population growth and equilibrium occupancy at the scale of individual territories. Greater than 90% of medium-intensity harvests converted high-canopy-cover forests into lower-canopy-cover vegetation classes, suggesting that landscape-scale fuel treatments in such stands could have short-term negative impacts on populations of California Spotted Owls. Moreover, high-canopy-cover forests declined by an average of

  15. Spatio-Temporal Trends of Oak Decline and Mortality under Periodic Regional Drought in the Ozark Highlands of Arkansas and Missouri

    Treesearch

    Zhaofei Fan; Xiuli Fan; Michael K. Crosby; W. Keith Moser; Hong He; Martin A. Spetich; Stephen R. Shifley

    2012-01-01

    At the forest landscape/region level, based on annual Forest Inventory and Analysis plot data from 1999 to 2010, oak decline and mortality trends for major oak species (groups) were examined in the Ozark Highlands of Arkansas and Missouri. Oak decline has elevated cumulative mortality of red oak species to between 11 and 15 percent in terms of relative density and...

  16. Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate.

    PubMed

    Zhang, Xiongqing; Lei, Yuancai; Ma, Zhihai; Kneeshaw, Dan; Peng, Changhui

    2014-06-01

    Forest insects are major disturbances that induce tree mortality in eastern coniferous (or fir-spruce) forests in eastern North America. The spruce budworm (SBW) (Choristoneura fumiferana [Clemens]) is the most devastating insect causing tree mortality. However, the relative importance of insect-caused mortality versus tree mortality caused by other agents and how this relationship will change with climate change is not known. Based on permanent sample plots across eastern Canada, we combined a logistic model with a negative model to estimate tree mortality. The results showed that tree mortality increased mainly due to forest insects. The mean difference in annual tree mortality between plots disturbed by insects and those without insect disturbance was 0.0680 per year (P < 0.0001, T-test), and the carbon sink loss was about 2.87t C ha(-1) year(-1) larger than in natural forests. We also found that annual tree mortality increased significantly with the annual climate moisture index (CMI) and decreased significantly with annual minimum temperature (T min), annual mean temperature (T mean) and the number of degree days below 0°C (DD0), which was inconsistent with previous studies (Adams et al. 2009; van Mantgem et al. 2009; Allen et al. 2010). Furthermore, the results for the trends in the magnitude of forest insect outbreaks were consistent with those of climate factors for annual tree mortality. Our results demonstrate that forest insects are the dominant cause of the tree mortality in eastern Canada but that tree mortality induced by insect outbreaks will decrease in eastern Canada under warming climate.

  17. Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate

    PubMed Central

    Zhang, Xiongqing; Lei, Yuancai; Ma, Zhihai; Kneeshaw, Dan; Peng, Changhui

    2014-01-01

    Forest insects are major disturbances that induce tree mortality in eastern coniferous (or fir-spruce) forests in eastern North America. The spruce budworm (SBW) (Choristoneura fumiferana [Clemens]) is the most devastating insect causing tree mortality. However, the relative importance of insect-caused mortality versus tree mortality caused by other agents and how this relationship will change with climate change is not known. Based on permanent sample plots across eastern Canada, we combined a logistic model with a negative model to estimate tree mortality. The results showed that tree mortality increased mainly due to forest insects. The mean difference in annual tree mortality between plots disturbed by insects and those without insect disturbance was 0.0680 per year (P < 0.0001, T-test), and the carbon sink loss was about 2.87t C ha−1 year−1 larger than in natural forests. We also found that annual tree mortality increased significantly with the annual climate moisture index (CMI) and decreased significantly with annual minimum temperature (Tmin), annual mean temperature (Tmean) and the number of degree days below 0°C (DD0), which was inconsistent with previous studies (Adams et al. 2009; van Mantgem et al. 2009; Allen et al. 2010). Furthermore, the results for the trends in the magnitude of forest insect outbreaks were consistent with those of climate factors for annual tree mortality. Our results demonstrate that forest insects are the dominant cause of the tree mortality in eastern Canada but that tree mortality induced by insect outbreaks will decrease in eastern Canada under warming climate. PMID:25360275

  18. Recognizing the importance of tropical forests in limiting rainfall-induced debris flows

    EPA Science Inventory

    Worldwide concern for continuing loss of montane forest cover in the tropics usually focuses on adverse ecological consequences. Less recognized, but equally important to inhabitants of these affected regions, is an increasing susceptibility to rainfall-induced debris flows and t...

  19. 78 FR 46312 - Spruce Beetle Epidemic and Aspen Decline Management Response; Grand Mesa, Uncompahgre and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... providing for human safety. Treatments would be carried out on National Forest System (NFS) Lands within the scope of direction provided in the GMUG Revised Land and Resource Management Plan. DATES: To be most... DEPARTMENT OF AGRICULTURE Forest Service Spruce Beetle Epidemic and Aspen Decline Management...

  20. A comparison of forest dynamics at two sites in the Southeastern Ozark Mountains of Missouri

    Treesearch

    Michael A. Jenkins; Stephen G. Pallardy

    1993-01-01

    Changes in tree species composition and regeneration patterns were studied in 53 permanent vegetation plots located at two sites (Pioneer Forest and University State Forest) in oak-hickory forests of southeastern Missouri where mortality and decline of red oak species have been identified. The two sites also exhibited differing levels of decline and mortality. Between...

  1. Transect studies on pine forests along parallel 52° north, 12-32° east and along a pollution gradient in Poland: general assumptions

    Treesearch

    Alicja Breymeyer

    1998-01-01

    The responses of pine forest to changing climate and environmental chemistry were studied along two transects following the pollution and continentality gradients in Poland. One axis begins on the western border of Poland, crosses the country along the 52nd parallel, and ends on the eastern border of Poland in the area of Bialowieza National Park, Biosphere Reserve....

  2. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada’s boreal forest

    PubMed Central

    Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R.; Price, David T.; St-Laurent, Martin-Hugues

    2018-01-01

    Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as “drivers of change”) were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and

  3. Using silviculture to sustain upland oak forests under stress on the Daniel Boone National Forest, Kentucky

    Treesearch

    Callie Jo Schweitzer; Kurt W. Gottschalk; Jeff W. Stringer; Stacy L. Clark; David L. Loftis

    2011-01-01

    We used a large-scale silvicultural assessment designed to examine the efficacy of five stand-level prescriptions in reducing the potential impacts of gypsy moth infestations and oak decline on upland hardwood forests in Kentucky's Daniel Boone National Forest. Prescriptions involved a mix of intermediate stand treatments aimed at increasing residual tree vigor...

  4. The state of South Carolina's forests, 2001

    Treesearch

    Roger C. Conner; Tim Adams; Brett J. Butler; William A. Bechtold; Tony G. Johnson; Sonja N. Oswalt; Gretchen Smith; Susan Will-Wolf; Christopher W. Woodall

    2004-01-01

    Forest land area in South Carolina amounted to 12.4 million acres, including 12.2 million acres of timberland. Nonindustrial-private timberland amounted to 8.9 million acres, a decline of less than 1 percent since 1993. Family forest owners dominate the private ownership group with 357,000 landowners who collectively control 7.1 million acres of forest land in the...

  5. Forest health conditions in North America

    Treesearch

    B. Moody; J.V. Castillo; M.E. Fenn

    2008-01-01

    Some of the greatest forest health impacts in North America are caused by invasive forest insects and pathogens (e.g., emerald ash borer and sudden oak death in the US), by severe outbreaks of native pests (e.g., mountain pine beetle in Canada), and fires exacerbated by changing climate. Ozone and N and S pollutants continue to impact the health of forests in several...

  6. Oxidative Stress Induced Inflammation Initiates Functional Decline of Tear Production

    PubMed Central

    Uchino, Yuichi; Kawakita, Tetsuya; Miyazawa, Masaki; Ishii, Takamasa; Onouchi, Hiromi; Yasuda, Kayo; Ogawa, Yoko; Shimmura, Shigeto; Ishii, Naoaki; Tsubota, Kazuo

    2012-01-01

    Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1) using a modified tetracycline system (Tet-On/Off system). This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC) in humans). The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease. PMID:23071526

  7. Difficulties in tracking the long-term global trend in tropical forest area.

    PubMed

    Grainger, Alan

    2008-01-15

    The long-term trend in tropical forest area receives less scrutiny than the tropical deforestation rate. We show that constructing a reliable trend is difficult and evidence for decline is unclear, within the limits of errors involved in making global estimates. A time series for all tropical forest area, using data from Forest Resources Assessments (FRAs) of the United Nations Food and Agriculture Organization, is dominated by three successively corrected declining trends. Inconsistencies between these trends raise questions about their reliability, especially because differences seem to result as much from errors as from changes in statistical design and use of new data. A second time series for tropical moist forest area shows no apparent decline. The latter may be masked by the errors involved, but a "forest return" effect may also be operating, in which forest regeneration in some areas offsets deforestation (but not biodiversity loss) elsewhere. A better monitoring program is needed to give a more reliable trend. Scientists who use FRA data should check how the accuracy of their findings depends on errors in the data.

  8. Ozone bioindicators and forest health: a guide to the evaluation, analysis, and interpretation of the ozone injury data in the Forest Inventory and Analysis Program

    Treesearch

    Gretchen C. Smith; John W. Coulston; Barbara M. O' Connell

    2008-01-01

    In 1994, the Forest Inventory and Analysis (FIA) and Forest Health Monitoring programs of the U.S. Forest Service implemented a national ozone (O3) biomonitoring program designed to address specific questions about the area and percent of forest land subject to levels of O3 pollution that may negatively affect the forest...

  9. PCB pollution continues to impact populations of orcas and other dolphins in European waters

    NASA Astrophysics Data System (ADS)

    Jepson, Paul D.; Deaville, Rob; Barber, Jonathan L.; Aguilar, Àlex; Borrell, Asunción; Murphy, Sinéad; Barry, Jon; Brownlow, Andrew; Barnett, James; Berrow, Simon; Cunningham, Andrew A.; Davison, Nicholas J.; Ten Doeschate, Mariel; Esteban, Ruth; Ferreira, Marisa; Foote, Andrew D.; Genov, Tilen; Giménez, Joan; Loveridge, Jan; Llavona, Ángela; Martin, Vidal; Maxwell, David L.; Papachlimitzou, Alexandra; Penrose, Rod; Perkins, Matthew W.; Smith, Brian; de Stephanis, Renaud; Tregenza, Nick; Verborgh, Philippe; Fernandez, Antonio; Law, Robin J.

    2016-01-01

    Organochlorine (OC) pesticides and the more persistent polychlorinated biphenyls (PCBs) have well-established dose-dependent toxicities to birds, fish and mammals in experimental studies, but the actual impact of OC pollutants on European marine top predators remains unknown. Here we show that several cetacean species have very high mean blubber PCB concentrations likely to cause population declines and suppress population recovery. In a large pan-European meta-analysis of stranded (n = 929) or biopsied (n = 152) cetaceans, three out of four species:- striped dolphins (SDs), bottlenose dolphins (BNDs) and killer whales (KWs) had mean PCB levels that markedly exceeded all known marine mammal PCB toxicity thresholds. Some locations (e.g. western Mediterranean Sea, south-west Iberian Peninsula) are global PCB “hotspots” for marine mammals. Blubber PCB concentrations initially declined following a mid-1980s EU ban, but have since stabilised in UK harbour porpoises and SDs in the western Mediterranean Sea. Some small or declining populations of BNDs and KWs in the NE Atlantic were associated with low recruitment, consistent with PCB-induced reproductive toxicity. Despite regulations and mitigation measures to reduce PCB pollution, their biomagnification in marine food webs continues to cause severe impacts among cetacean top predators in European seas.

  10. PCB pollution continues to impact populations of orcas and other dolphins in European waters.

    PubMed

    Jepson, Paul D; Deaville, Rob; Barber, Jonathan L; Aguilar, Àlex; Borrell, Asunción; Murphy, Sinéad; Barry, Jon; Brownlow, Andrew; Barnett, James; Berrow, Simon; Cunningham, Andrew A; Davison, Nicholas J; Ten Doeschate, Mariel; Esteban, Ruth; Ferreira, Marisa; Foote, Andrew D; Genov, Tilen; Giménez, Joan; Loveridge, Jan; Llavona, Ángela; Martin, Vidal; Maxwell, David L; Papachlimitzou, Alexandra; Penrose, Rod; Perkins, Matthew W; Smith, Brian; de Stephanis, Renaud; Tregenza, Nick; Verborgh, Philippe; Fernandez, Antonio; Law, Robin J

    2016-01-14

    Organochlorine (OC) pesticides and the more persistent polychlorinated biphenyls (PCBs) have well-established dose-dependent toxicities to birds, fish and mammals in experimental studies, but the actual impact of OC pollutants on European marine top predators remains unknown. Here we show that several cetacean species have very high mean blubber PCB concentrations likely to cause population declines and suppress population recovery. In a large pan-European meta-analysis of stranded (n = 929) or biopsied (n = 152) cetaceans, three out of four species:- striped dolphins (SDs), bottlenose dolphins (BNDs) and killer whales (KWs) had mean PCB levels that markedly exceeded all known marine mammal PCB toxicity thresholds. Some locations (e.g. western Mediterranean Sea, south-west Iberian Peninsula) are global PCB "hotspots" for marine mammals. Blubber PCB concentrations initially declined following a mid-1980s EU ban, but have since stabilised in UK harbour porpoises and SDs in the western Mediterranean Sea. Some small or declining populations of BNDs and KWs in the NE Atlantic were associated with low recruitment, consistent with PCB-induced reproductive toxicity. Despite regulations and mitigation measures to reduce PCB pollution, their biomagnification in marine food webs continues to cause severe impacts among cetacean top predators in European seas.

  11. PCB pollution continues to impact populations of orcas and other dolphins in European waters

    PubMed Central

    Jepson, Paul D.; Deaville, Rob; Barber, Jonathan L.; Aguilar, Àlex; Borrell, Asunción; Murphy, Sinéad; Barry, Jon; Brownlow, Andrew; Barnett, James; Berrow, Simon; Cunningham, Andrew A.; Davison, Nicholas J.; ten Doeschate, Mariel; Esteban, Ruth; Ferreira, Marisa; Foote, Andrew D.; Genov, Tilen; Giménez, Joan; Loveridge, Jan; Llavona, Ángela; Martin, Vidal; Maxwell, David L.; Papachlimitzou, Alexandra; Penrose, Rod; Perkins, Matthew W.; Smith, Brian; de Stephanis, Renaud; Tregenza, Nick; Verborgh, Philippe; Fernandez, Antonio; Law, Robin J.

    2016-01-01

    Organochlorine (OC) pesticides and the more persistent polychlorinated biphenyls (PCBs) have well-established dose-dependent toxicities to birds, fish and mammals in experimental studies, but the actual impact of OC pollutants on European marine top predators remains unknown. Here we show that several cetacean species have very high mean blubber PCB concentrations likely to cause population declines and suppress population recovery. In a large pan-European meta-analysis of stranded (n = 929) or biopsied (n = 152) cetaceans, three out of four species:- striped dolphins (SDs), bottlenose dolphins (BNDs) and killer whales (KWs) had mean PCB levels that markedly exceeded all known marine mammal PCB toxicity thresholds. Some locations (e.g. western Mediterranean Sea, south-west Iberian Peninsula) are global PCB “hotspots” for marine mammals. Blubber PCB concentrations initially declined following a mid-1980s EU ban, but have since stabilised in UK harbour porpoises and SDs in the western Mediterranean Sea. Some small or declining populations of BNDs and KWs in the NE Atlantic were associated with low recruitment, consistent with PCB-induced reproductive toxicity. Despite regulations and mitigation measures to reduce PCB pollution, their biomagnification in marine food webs continues to cause severe impacts among cetacean top predators in European seas. PMID:26766430

  12. Size matters a lot: tree height and prior growth predict drought-induced tree death in Italian oak forests

    NASA Astrophysics Data System (ADS)

    Ripullone, F.; Colangelo, M.; Camarero, J. J.; Gazol, A.; Borghetti, M.; Gentilesca, T.

    2016-12-01

    Climate warming is expected to amplify drought stress resulting in the occurrence of more widespread dieback episodes and increasing mortality rates. This has pushed the search of reliable and robust early-warning indicators of impending drought-triggered tree death. Recent studies highlight how level of defoliation or age of trees strictly coact with drought in leading to forest decline. In addition, tree size and the tree-to-tree competition for water could also contribute to tree death in drought-prone sites. In this regard, it has been predicted that tall trees with isohydric stomatal regulation are most likely to die due to drought stress. Here, we test this hypothesis by analyzing size, age, competition and growth data in a Mediterranean oak species characterized by anisohydric behaviour, showing recent drought-induced mortality in two Italian forest sites. At both study sites, tree height was associated to the probability of dying. However, this association was opposite to published predictions because living trees were taller than dead trees at both sites. Neither age nor competition intensity played significant roles as drivers of tree mortality. Regarding growth data, trends in basal area increment were significantly smaller in dead than in living trees. Differences were most marked at mid (15 years prior to death) than at short (10 years) or long-term (35 year) scales. This is probably not related to intrinsic growth features of the study species but it can be explained because the most severe drought since 1950 occurred in 2000 at the study area, i.e. 15 years prior to the increase of tree mortality and when growth of living and dead trees started diverging. Lastly, we discuss potential factors which may explain why smaller individuals of anisohydric tree species such as Mediterranean oaks are prone to drought-induced tree death.

  13. Declining scaup populations: A retrospective analysis of long-term population and harvest survey data

    USGS Publications Warehouse

    Afton, A.D.; Anderson, M.G.

    2001-01-01

    We examined long-term databases concerning population status of scaup (lesser [Aythya affinis] and greater scaup [A. marila] combined) and harvest statistics of lesser scaup to identify factors potentially limiting population growth. Specifically, we explored evidence for and against the general hypotheses that scaup populations have declined in association with declining recruitment and/or female survival. We examined geographic heterogeneity in scaup demographic patterns that could yield evidence about potential limiting factors. Several biases exist in survey methodology used to estimate scaup populations and harvest statistics; however, none of these biases likely accounted for our major findings that (1) the continental scaup breeding population has declined over the last 20 years, with widespread and consistent declines within surveyed areas of the Canadian western boreal forest where most lesser scaup breed; (2) sex ratios of lesser scaup in the U.S. harvest have increased (more males now relative to females); and (3) age ratios of lesser scaup in the U.S. harvest have declined (fewer immatures now relative to adults), especially in the midcontinent region. We interpreted these major findings as evidence that (1) recruitment of lesser scaup has declined over the last 20 years, particularly in the Canadian western boreal forest; and (2) survival of female lesser scaup has declined relative to that of males. We found little evidence that harvest was associated with the scaup population decline. Our findings underscore the need for both improvements and changes to population survey procedures and new research to discriminate among various hypotheses explaining the recent scaup population decline.

  14. Proceedings of the US/FRG research symposium: effects of atmospheric pollutants on the spruce-fir forests of the Eastern United States and the Federal Republic of Germany

    Treesearch

    Gerard, tech. coord. Hertel; Gerard Hertel

    1988-01-01

    Includes 66 papers presented at the US/FRG research symposium: effects of atmospheric pollutants on the spruce-fir forests of the Eastern United States and the Federal Republic of Germany, which was held October 19-23, 1987, in Burlington, Vermont.

  15. Regional Forest Fragmentation and the Nesting Success of Migratory Birds

    Treesearch

    Scott K. Robinson; Frank R. Thompson III; Therese M. Donovan; Donald R. Whitehead; John Faaborg

    1995-01-01

    Forest fragmentation, the disruption in the continuity of forest habitat, is hypothesized to be a major cause of population decline for, some species of forest birds because fragmentation reduces nesting (reproductive) success. Nest predation and parasitism by cowbirds increased with forest fragmentation in nine midwestern (United States)landscapes that varied from 6...

  16. Forest Management Policy and Community Well-Being in the Pacific Northwest

    Treesearch

    Susan Charnley; Ellen M. Donoghue; Cassandra Moseley

    2008-01-01

    This study uses a multiscale, multimethods approach to examine the effects of declining timber harvests on the well-being of forest communities in the Pacific Northwest as a result of the Northwest Forest Plan (the Plan). We found that the effects of declining timber harvests were variable and depended on the importance of the timber sector in a community in the late...

  17. Forest management policy and community well-being in the Pacific Northwest

    Treesearch

    Susan Charnley; Ellen M. Donoghue; Cassandra Moseley

    2008-01-01

    This study uses a multiscale, multimethods approach to examine the effects of declining timber harvests on the well-being of forest communities in the Pacific Northwest as a result of the Northwest Forest Plan (the Plan). We found that the effects of declining timber harvests were variable and depended on the importance of the timber sector in a community in the late...

  18. Climate and local geomorphic interactions drive patterns of riparian forest decline along a Mediterranean Basin river

    NASA Astrophysics Data System (ADS)

    Stella, John C.; Riddle, Jess; Piégay, Hervé; Gagnage, Matthieu; Trémélo, Marie-Laure

    2013-11-01

    Dynamic fluvial processes strongly influence ecological communities and ecosystem health in riverine and riparian ecosystems, particularly in drought-prone regions. In these systems, there is a need to develop tools to measure impacts from local and regional hydrogeomorphic changes on the key biological and physical processes that sustain riparian ecosystem health and potential recovery. We used dendrochronology of Populus nigra, a riparian tree that is vulnerable to changes in local hydrology, to analyze ecosystem response following channel incision due to gravel mining along the Drôme River, a Mediterranean Basin stream in southern France. We cored 55 trees at seven floodplain sites, measured ring widths, and calculated basal area growth to compare the severity and timing of local growth decline along the river. Current basal area increment (BAI) growth per tree ranged almost 10-fold among sites (7.7 ± 1.3 to 63.9 ± 15.2 cm2 year- 1, mean ± SE) and these differences were significant. Mean BAI was correlated positively with the proportion of healthy trees at a site, and negatively with proportion of dead canopy area. Regime shift analysis of the tree-ring series indicates that tree growth declined significantly at four sites since 1978, coincident with documented channel incision. In addition, patterns of low growth and crown dieback are consistent with stress due to reduced water supply. The most impaired sites were not directly adjacent to local mining pits visible on aerial photographs, nor did the sequence of growth regime shifts suggest a pattern of channel incision progressing from these areas. The initiation of site growth declines was most typically associated with drought years, and the most impaired sites were spatially distributed to suggest the influence of local bedrock controls on soil depth. Climate in the Drôme basin and in the Mediterranean region is trending significantly toward hotter growing seasons with a decrease in summer river

  19. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Christopher; Curtis, Peter; Hardiman, Brady

    Century-old forests in the U.S. upper Midwest and Northeast power much of North Amer- ica’s terrestrial carbon (C) sink, but these forests’ production and C sequestration capacity are expected to soon decline as fast-growing early successional species die and are replaced by slower growing late successional species. But will this really happen? Here we marshal empirical data and ecological theory to argue that substantial declines in net ecosystem production (NEP) owing to reduced forest growth, or net primary production (NPP), are not imminent in regrown temperate deciduous forests over the next several decades. Forest age and production data for temperatemore » deciduous forests, synthesized from published literature, suggest slight declines in NEP and increasing or stable NPP during middle successional stages. We revisit long-held hypotheses by EP Odum and others that suggest low-severity, high-frequency disturbances occurring in the region’s aging forests will, against intuition, maintain NEP at higher-than- expected rates by increasing ecosystem complexity, sustaining or enhancing NPP to a level that largely o sets rising C losses as heterotrophic respiration increases. This theoretical model is also supported by biological evidence and observations from the Forest Accelerated Succession Experiment in Michigan, USA. Ecosystems that experience high-severity disturbances that simplify ecosystem complexity can exhibit substantial declines in production during middle stages of succession. However, observations from these ecosystems have exerted a disproportionate in uence on assumptions regarding the trajectory and magnitude of age-related declines in forest production. We conclude that there is a wide ecological space for forests to maintain NPP and, in doing so, lessens the declines in NEP, with signi cant implications for the future of the North American carbon sink. Our intellectual frameworks for understanding forest C cycle dynamics and resilience

  20. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia.

    PubMed

    Duc, Hiep Nguyen; Bang, Ho Quoc; Quang, Ngo Xuan

    2016-02-01

    During the dry season, from November to April, agricultural biomass burning and forest fires especially from March to late April in mainland Southeast Asian countries of Myanmar, Thailand, Laos and Vietnam frequently cause severe particulate pollution not only in the local areas but also across the whole region and beyond due to the prevailing meteorological conditions. Recently, the BASE-ASIA (Biomass-burning Aerosols in South East Asia: Smoke Impact Assessment) and 7-SEAS (7-South-East Asian Studies) studies have provided detailed analysis and important understandings of the transport of pollutants, in particular, the aerosols and their characteristics across the region due to biomass burning in Southeast Asia (SEA). Following these studies, in this paper, we study the transport of particulate air pollution across the peninsular region of SEA and beyond during the March 2014 burning period using meteorological modelling approach and available ground-based and satellite measurements to ascertain the extent of the aerosol pollution and transport in the region of this particular event. The results show that the air pollutants from SEA biomass burning in March 2014 were transported at high altitude to southern China, Hong Kong, Taiwan and beyond as has been highlighted in the BASE-ASIA and 7-SEAS studies. There are strong evidences that the biomass burning in SEA especially in mid-March 2014 has not only caused widespread high particle pollution in Thailand (especially the northern region where most of the fires occurred) but also impacted on the air quality in Hong Kong as measured at the ground-based stations and in LulinC (Taiwan) where a remote background monitoring station is located.

  1. [Comparison of heavy metal elements between natural and plantation forests in a subtropical Montane forest].

    PubMed

    Nie, Ming; Wan, Jia-Rong; Chen, Xiao-Feng; Wang, Li; Li, Bo; Chen, Jia-Kuan

    2011-11-01

    Heavy metals as one of major pollutants is harmful to the health of forest ecosystems. In the present paper, the concentrations of thirteen heavy metals (Fe, Al, Ti, Cr, Cu, Mn, V, Zn, Ni, Co, Pb, Se and Cd) were compared between natural and plantation forests in the Mt. Lushan by ICP-AES and atomic absorption spectroscopy. The results suggest that the soil of natural forest had higher concentrations of Fe, Al, Ti, Cu, Mn, V, Zn, Ni, Co, Pb, Se, and Cd than the plantation forest except for Cr. The soil of natural forest had a higher level of heavy metals than that of the plantation forest as a whole. This might be due to that the natural forest has longer age than the plantation forest, and fixed soil heavy metals take a longer period of time than the plantation forest.

  2. Degraded lands worth protecting: the biological importance of Southeast Asia's repeatedly logged forests

    PubMed Central

    Edwards, David P.; Larsen, Trond H.; Docherty, Teegan D. S.; Ansell, Felicity A.; Hsu, Wayne W.; Derhé, Mia A.; Hamer, Keith C.; Wilcove, David S.

    2011-01-01

    Southeast Asia is a hotspot of imperilled biodiversity, owing to extensive logging and forest conversion to oil palm agriculture. The degraded forests that remain after multiple rounds of intensive logging are often assumed to be of little conservation value; consequently, there has been no concerted effort to prevent them from being converted to oil palm. However, no study has quantified the biodiversity of repeatedly logged forests. We compare the species richness and composition of birds and dung beetles within unlogged (primary), once-logged and twice-logged forests in Sabah, Borneo. Logging had little effect on the overall richness of birds. Dung beetle richness declined following once-logging but did not decline further after twice-logging. The species composition of bird and dung beetle communities was altered, particularly after the second logging rotation, but globally imperilled bird species (IUCN Red List) did not decline further after twice-logging. Remarkably, over 75 per cent of bird and dung beetle species found in unlogged forest persisted within twice-logged forest. Although twice-logged forests have less biological value than primary and once-logged forests, they clearly provide important habitat for numerous bird and dung beetle species. Preventing these degraded forests from being converted to oil palm should be a priority of policy-makers and conservationists. PMID:20685713

  3. Winter drought impairs xylem phenology, anatomy and growth in Mediterranean Scots pine forests.

    PubMed

    Camarero, J J; Guada, G; Sánchez-Salguero, R; Cervantes, E

    2016-12-01

    Continental Mediterranean forests face drought but also cold spells and both climate extremes can impair the resilience capacity of these forests. Climate warming could amplify the negative effects of cold spells by inducing premature dehardening. Here we capitalize on a winter drought-induced dieback triggered by a cold spell which occurred in December 2001 affecting Scots pine forests in eastern Spain. We assessed post-dieback recovery by quantifying and comparing radial growth and xylem anatomy of non-declining (ND, crown cover >50%) and declining (D, crown cover ≤50%) trees in two sites (VP, Villarroya de los Pinares; TO, Torrijas). We also characterized xylogenesis in both sites and aboveground productivity in site VP. Dieback caused legacy effects since needle loss, a 60% reduction in litter fall and radial-growth decline characterized D-trees 3 years after dieback symptoms started appearing in spring 2002. D-trees formed collapsed tracheids in the 2002-ring, particularly in the most affected VP site where xylogenesis differences between ND and D trees were most noticeable. The lower growth rates of D-trees were caused by a shorter duration of their major xylogenesis phases. In site VP the radial-enlargement and wall-thickening of tracheids were significantly reduced in D-trees as compared to ND-trees because these xylogenesis phases tended to start earlier and end later in ND-trees. Gompertz models fitted to tracheid production predicted that maximum growth rates occurred 11-12 days earlier in ND than in D-trees. The formation of radially-enlarging tracheids was enhanced by longer days in both study sites and also by wetter conditions in the driest TO site, but xylogenesis sensitivity to climate was reduced in D-trees. Winter-drought dieback impairs xylem anatomy and phenology, aboveground productivity, xylogenesis and growth in Mediterranean Scots pine populations. Affected stands show a costly post-dieback recovery challenging their resilience ability

  4. Breeding season concerns and response to forest management: Can forest management produce more breeding birds? Ornitologia Neotropical

    Treesearch

    J.L. Larkin; P.B. Wood; T.J. Boves; J. Sheehan; D.A. Buehler

    2012-01-01

    Cerulean Warblers (Setophaga cerulea), one of the fastest declining avian species in North America, are associated with heterogeneous canopies in mature hardwood forests. However, the age of most second and third-growth forests in eastern North American is not sufficient for natural tree mortality to maintain structurally diverse canopies. Previous research suggests...

  5. Threats to at-risk species in America's private forests: a Forests on the Edge report

    Treesearch

    Mary A. Carr; Ronald E. McRoberts; Lisa G. Mahal; Sara J. Comas

    2010-01-01

    More than 4,600 native animal and plant species associated with private forests in the United States are at risk of decline or extinction. This report identifies areas across the conterminous United States where at-risk species habitats in rural private forests are most likely to decrease because of increases in housing density from 2000 to 2030. We also identify areas...

  6. The role of old forests and big trees in forest carbon sequestration in the Pacific Northwest

    Treesearch

    Andrew N. Gray

    2015-01-01

    Forest ecosystems are an important component of the global carbon (C) cycle. Recent research has indicated that large trees in general, and old-growth forests in particular, sequester substantial amounts of C annually. C sequestration rates are thought to peak and decline with stand age but the timing and controls are not well-understood. The objectives of this study...

  7. Fatigue-induced changes in decline running.

    PubMed

    Mizrahi, J; Verbitsky, O; Isakov, E

    2001-03-01

    Study the relation between muscle fatigue during eccentric muscle contractions and kinematics of the legs in downhill running. Decline running on a treadmill was used to acquire data on shock accelerations, muscle activity and kinematics, for comparison with level running. In downhill running, local muscle fatigue is the cause of morphological muscle damage which leads to reduced attenuation of shock accelerations. Fourteen subjects ran on a treadmill above level-running anaerobic threshold speed for 30 min, in level and -4 degrees decline running. The following were monitored: metabolic fatigue by means of respiratory parameters; muscle fatigue of the quadriceps by means of elevation in myoelectric activity; and kinematic parameters including knee and ankle angles and hip vertical excursion by means of computerized videography. Data on shock transmission reported in previous studies were also used. Quadriceps fatigue develops in parallel to an increasing vertical excursion of the hip in the stance phase of running, enabled by larger dorsi flexion of the ankle rather than by increased flexion of the knee. The decrease in shock attenuation can be attributed to quadriceps muscle fatigue in parallel to increased vertical excursion of the hips.

  8. Floodplain forest loss and changes in forest community composition and structure in the upper Mississippi River: a wildlife habitat at risk

    USGS Publications Warehouse

    Knutson, M.G.; Klaas, E.E.

    1998-01-01

    Large floodplain forests represent a threatened and endangered type of ecosystem in the United States. Estimates of cumulative losses of floodplain forest range from 57% to 95% at different locations within the continental United Stales. Floodplain forests of the Upper Mississippi River (UMR) have significantly declined in extent due to agriculture, lock and dam construction, and urban development since European settlement. We collected data on shrubs, herbs, and trees from 56 floodplain forest plots in 1992 and compared our results with a previous analysis of historical tree data from the same area recorded by the General Land Office Survey in the 1840s. Acer saccharinum strongly dominates among mature trees and its relative dominance has increased over time. Salix spp. And Betula nigra have declined in relative dominance. Tree sizes are similar to those of presettlement forests, but present forests have fewer trees. The lack of early successional tree species and a trend toward an increasing monoculture of A. Saccharinum in the mature stages indicate problems with regeneration. Because floodplain forests represent a rare habitat type, losses and changes in habitat quality could pose serious problems for wildlife that depend upon these habitats, especially birds.

  9. Site factors influencing oak decline in the interior highlands of Arkansas, Missouri, and Oklahoma

    Treesearch

    Edward A. Poole; Eric Heitzman; James M. Guldin

    2006-01-01

    Oak decline is affecting the forests in the Interior Highlands of Arkansas, Missouri, and Oklahoma. In 2002 and 2003, field plots were established throughout the region to evaluate the influence of topographic position and aspect on oak decline. Density and basal area of dead and dying oaks did not significantly differ by either topographic position or aspect. Lack of...

  10. Aluminum-induced calcium deficiency syndrome in declining red spruce

    Treesearch

    Walter C. Shortle; Kevin T. Smith

    1988-01-01

    Prolonged suppression of cambial growth has apparently caused a decline in radial growth in many mature red spruce, Picea rubens. Surveys indicate that this decline occurs in trees throughout the natural range of red spruce and is independent of elevation, tree size, and age class. In addition, crowns of mature red spruce at high elevations across...

  11. Forest aging, disturbance and the carbon cycle.

    PubMed

    Curtis, Peter S; Gough, Christopher M

    2018-05-16

    Contents Summary I. Introduction II. Forest aging and carbon storage III. Successional trends of NEP in northern deciduous forests IV. Mechanisms sustaining NEP in aging deciduous forests Acknowledgements References SUMMARY: Large areas of forestland in temperate North America, as well as in other parts of the world, are growing older and will soon transition into middle and then late successional stages exceeding 100 yr in age. These ecosystems have been important regional carbon sinks as they recovered from prior anthropogenic and natural disturbance, but their future sink strength, or annual rate of carbon storage, is in question. Ecosystem development theory predicts a steady decline in annual carbon storage as forests age, but newly available, direct measurements of forest net CO 2 exchange challenge that prediction. In temperate deciduous forests, where moderate severity disturbance regimes now often prevail, there is little evidence for any marked decline in carbon storage rate during mid-succession. Rather, an increase in physical and biological complexity under these disturbance regimes may drive increases in resource-use efficiency and resource availability that help to maintain significant carbon storage in these forests well past the century mark. Conservation of aging deciduous forests may therefore sustain the terrestrial carbon sink, whilst providing other goods and services afforded by these biologically and structurally complex ecosystems. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  12. Forecasting long-term acorn production with and without oak decline using forest inventory data

    Treesearch

    Cathryn H. Greenberg; Chad E. Keyser; Leah C. Rathburn; Anita K. Rose; Todd M. Fearer; Henry W. McNab

    2013-01-01

    Acorns are important as wildlife food and for oak regeneration, but production is highly variable, posing a challenge to forest managers targeting acorn production levels. Forest managers need tools to predict acorn production capability tailored to individual landscapes and forest management scenarios, adjusting for oak mortality and stand development over time. We...

  13. Reproductive Performance of a Declining Forest Passerine in Relation to Environmental and Social Factors: Implications for Species Conservation

    PubMed Central

    Grendelmeier, Alex; Arlettaz, Raphaël; Gerber, Michael; Pasinelli, Gilberto

    2015-01-01

    Identifying factors influencing a species' ecological niche and demography is a prerequisite for species conservation. However, our understanding of the interplay between demographic rates and biotic/abiotic factors is still poor for most species of conservation concern. We evaluated relevance of eight hypotheses relating to timing of breeding, temporal nest exposure, nest concealment, topography, tree structure, predation risk and disturbance, density dependence and weather for explaining variation in reproductive performance of the declining wood warbler Phylloscopus sibilatrix in northern Switzerland. Reproductive performance was monitored with cameras at 136 nests from 2010 to 2012 and was associated to temporal exposure, timing of breeding and concealment of nests. Daily nest survival was positively related to the number of grass and sedge tussocks, nest concealment and nest age. Clutch size and number of fledglings decreased, the later in the season a nest was initiated. Nest survival over an average nesting period of 31 days was 46.9 ± 0.07% (mean ± SE), daily nest survival rate was 0.976 ± 0.002. As for many ground-breeding birds, nest predation was the principal cause of nest failure, accounting for 79% of all nest losses. Conservation measures should aim at increasing the area of relatively homogenous forest stands featuring suitable habitats characterized by abundant and accessible grass and sedge tussocks. In managed forests, such conditions can be found in stands of middle age (i.e. pole wood) with little to no shrub layer. PMID:26172954

  14. Reproductive Performance of a Declining Forest Passerine in Relation to Environmental and Social Factors: Implications for Species Conservation.

    PubMed

    Grendelmeier, Alex; Arlettaz, Raphaël; Gerber, Michael; Pasinelli, Gilberto

    2015-01-01

    Identifying factors influencing a species' ecological niche and demography is a prerequisite for species conservation. However, our understanding of the interplay between demographic rates and biotic/abiotic factors is still poor for most species of conservation concern. We evaluated relevance of eight hypotheses relating to timing of breeding, temporal nest exposure, nest concealment, topography, tree structure, predation risk and disturbance, density dependence and weather for explaining variation in reproductive performance of the declining wood warbler Phylloscopus sibilatrix in northern Switzerland. Reproductive performance was monitored with cameras at 136 nests from 2010 to 2012 and was associated to temporal exposure, timing of breeding and concealment of nests. Daily nest survival was positively related to the number of grass and sedge tussocks, nest concealment and nest age. Clutch size and number of fledglings decreased, the later in the season a nest was initiated. Nest survival over an average nesting period of 31 days was 46.9 ± 0.07% (mean ± SE), daily nest survival rate was 0.976 ± 0.002. As for many ground-breeding birds, nest predation was the principal cause of nest failure, accounting for 79% of all nest losses. Conservation measures should aim at increasing the area of relatively homogenous forest stands featuring suitable habitats characterized by abundant and accessible grass and sedge tussocks. In managed forests, such conditions can be found in stands of middle age (i.e. pole wood) with little to no shrub layer.

  15. Experimental research on recolonisation with Anemone nemorosa of the beech forests of the Ruhr district (Germany) floristically impoverished by air pollution.

    PubMed

    Wittig, Rüdiger

    2008-09-01

    High SO(2) concentrations as have been observed over decades in the Ruhr district lead to a remarkable reduction of leaf area in the majority of the characteristic broad-leafed herbs of the Central European beech forests even after only a few months of experimental fumigation. Thus, it is no wonder in the time of high SO(2) pollution, e.g., in the town of Herne (centre of the Ruhr district), that there was not a single beech forest hosting, for instance, Viola reichenbachiana or Anemone nemorosa. As air quality has improved very much over some decades in the Ruhr district, one can expect a recolonisation of the beech forests by the species of former time characteristic for the herb layer. However, one has to consider that only the air pollution was reduced, while soil acidification and contamination with heavy metals and PAH are, on the short run, irreversible. That is why experiments were carried out, considering the question as to whether recolonisation of the forests of the Ruhr district by the aforementioned species is possible and why such a recolonisation up to now has not occurred. The experiments were carried out in a beech forest situated in the centre of the Ruhr district in the City of Herne. The wood anemone (A. nemorosa) was chosen as test plant because of its high frequency in beech forests on loess soils outside the Ruhr district, and its absence in beech forests in the Ruhr district. The experiments with A. nemorosa were carried out in three variants with different soils: (a): soil of the local forests (R); (b): soil of the local forests whose soot layer was removed (r); (c): imported soil from a clean air region far away from the Ruhr district (Odenwald). Survival of rhizomes of A. nemorosa is possible for some years in the soils of the Ruhr district; however, the establishment of a population could not be achieved. The results obtained by the imported soil show that it is no longer air pollution, but the soil which prevents the establishment of a

  16. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change.

    PubMed

    Silva, Lucas C R; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R

    2016-08-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems.

  17. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change

    PubMed Central

    Silva, Lucas C. R.; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R.

    2016-01-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems. PMID:27652334

  18. Standing on a declining surface reduces transient prolonged standing induced low back pain development.

    PubMed

    Gallagher, Kaitlin M; Callaghan, Jack P

    2016-09-01

    While alternating standing position on a sloped surface has proven successful at reducing low back pain during standing, the purpose of this study was to evaluate standing solely on a declining surface to isolate the influence of the postural change. Seventeen participants performed two 75-min prolonged standing occupational simulations- level ground and declining surface. Fifty-three percent of participants (9/17) were categorized as pain developers during the level ground standing condition. For these same pain developers, their average maximum pain scores were 58% lower during sloped standing. All participants showed greater hip flexion, trunk-to-thigh angle flexion, and posterior translation of the trunk center of gravity when standing on the sloped surface. These postural changes could cause the muscles crossing the hip posteriorly to increase passive stiffness and assist with stabilizing the pelvis. This study stresses the importance of hip kinematics, not just lumbar spine posture, in reducing prolonged standing induced low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fluctuating asymmetry rather than oxidative stress in Bufo raddei can be an accurate indicator of environmental pollution induced by heavy metals.

    PubMed

    Guo, Rui; Zhang, Wenya; Ai, Shiwei; Ren, Liang; Zhang, Yingmei

    2017-06-01

    Oxidative stress (OS) and fluctuating asymmetry (FA) as risk markers for environmental stress are widely used to predict changes in the health and fitness of many animals exposed to pollutants. However, from the perspective of protecting declining amphibians, it remains to be verified which one would be a reliable indicator for amphibians exposed to long-term heavy metal pollution under natural conditions. In this study, the OS and FA of Bufo raddei exposed to natural heavy metal pollution were analyzed to determine which marker is more accurate for indicating heavy metal-induced stress. Three years of data were collected during the breeding season of B. raddei from Baiyin (BY), which has been mainly contaminated with Cu, Zn, Pb, and Cd compounds for a long period, and from Liujiaxia (LJX), which is a relatively unpolluted area. Unexpectedly, although significant accumulation of the four heavy metals was found in the kidney and liver of B. raddei from BY, the levels of superoxide dismutase, glutathione peroxidase, and malondialdehyde in these two organs were found to be irregular, with low repeatability in both BY and LJX. However, significant differences in the levels of FA were observed in B. raddei populations from these two areas over the past 3 years (P < 0.01). The degrees of FA in B. raddei populations from BY and LJX were assessed as degree 4 and 1, respectively. In short, this study suggested that FA was a more reliable and effective indicator than OS to monitor and predict long-term environmental stress on anuran amphibians.

  20. Twenty years of biological monitoring of element concentrations in permanent forest and grassland plots in Baden-Württemberg (SW Germany).

    PubMed

    Franzaring, Jürgen; Holz, Ingo; Zipperle, Jürgen; Fangmeier, Andreas

    2010-01-01

    nutrients C, N, S, P, Ca, K and Mg and the metals Mn, Cd, Pb, Al, Cu, Ni and Hg. Data were analysed using descriptive and multivariate statistics and maps were produced to identify regional differences in pollutant deposition. Out of the elements analysed, lead and sulphur concentrations showed the most pronounced downward trends over time in tree foliage and grassland samples with the largest decreases observed in the early 1990 s. Both the reduced lead and sulphur levels in the biomonitors reflect the successful implementation of clean air policies, i.e. the introduction of unleaded gasoline, the availability of desulphurisation technologies and the economic transition of Eastern European heavy industries. However, the decrease in sulphur concentrations was lower in beech foliage from SW Germany as compared to beech leaves from six German national parks suggesting regional differences in sulphur deposition and trends thereof. At the same time, sulphur concentrations declined more strongly in the grassland samples indicating that much of the deposited sulphur remains in the forest ecosystems while in the grassland ecosystems it is gradually removed by the frequent cutting and grazing. During the time series, the decrease in sulphur deposition coincided with a marked increase in rain pH. At the same time, the increasing nitrogen concentrations observed over time in beech leaves suggest that emissions of oxidised and reduced nitrogen are still adding to the large-scale eutrophication of SW German forests. However, N concentrations in both the tree foliage and in the bulk grassland samples were unrelated to the modelled N deposition. When also considering macronutrient concentrations and N:P and N:K ratios, the results point to serious nutrient imbalances in many beech forests, which may reduce plant vitality and tree growth in the long run. Biological monitoring using plants is an effective tool to address changes in the environmental quality over time and space. The success

  1. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    NASA Technical Reports Server (NTRS)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  2. [Radio-ecological and hygienic assessment of consequences of forest fires in the areas polluted during the Chernobyl accident].

    PubMed

    Kashparov, V A; Lundin, S M; Kadygrib, A M; Protsak, V P; Levchuk, S E; Ioshchenko, V I; Kashpur, V A; Talerko, N N

    2001-01-01

    Retransfer of radionuclides on the condensation trails of Chernobyl radioactive fallouts during forest fires has been experimentally evaluated and their mathematical transfer model verified. It has been shown that radionuclide retransfer will make no great impact on additional pollution of an area even under the most unfavourable conditions. The contribution of convective and non-convective components of transfer to the formation of a radioactive aerosol concentration field has been assessed. Time course of changes in the concentration of radioactive aerosol and its dispersive composition are shown in different phases of fire and at different distance from its source.

  3. Crop yield changes induced by emissions of individual climate-altering pollutants

    NASA Astrophysics Data System (ADS)

    Shindell, Drew T.

    2016-08-01

    Climate change damages agriculture, causing deteriorating food security and increased malnutrition. Many studies have examined the role of distinct physical processes, but impacts have not been previously attributed to individual pollutants. Using a simple model incorporating process-level results from detailed models, here I show that although carbon dioxide (CO2) is the largest driver of climate change, other drivers appear to dominate agricultural yield changes. I calculate that anthropogenic emissions to date have decreased global agricultural yields by 9.5 ± 3.0%, with roughly 93% stemming from non-CO2 emissions, including methane (-5.2 ± 1.7%) and halocarbons (-1.4 ± 0.4%). The differing impacts stem from atmospheric composition responses: CO2 fertilizes crops, offsetting much of the loss induced by warming; halocarbons do not fertilize; methane leads to minimal fertilization but increases surface ozone which augments warming-induced losses. By the end of the century, strong CO2 mitigation improves agricultural yields by ˜3 ± 5%. In contrast, strong methane and hydrofluorocarbon mitigation improve yields by ˜16 ± 5% and ˜5 ± 4%, respectively. These are the first quantitative analyses to include climate, CO2 and ozone simultaneously, and hence, additional studies would be valuable. Nonetheless, as policy makers have leverage over pollutant emissions rather than isolated processes, the perspective presented here may be more useful for decision making than that in the prior work upon which this study builds. The results suggest that policies should target a broad portfolio of pollutant emissions in order to optimize mitigation of societal damages.

  4. Fungi associated with stem cankers and coincidental scolytid beetles on declining hickory in the upper midwest

    Treesearch

    Jennifer Juzwik; Linda Haugen; Ji-Hyun Park; Melanie Moore

    2008-01-01

    Higher than expected levels of hickory decline and mortality have recently been reported by Forest Health Monitoring, USDA Forest Service, on Carya spp. in Iowa, Maryland, Missouri, New York, Pennsylvania, and West Virginia. Widespread mortality of hickory has historically been attributed to outbreaks of the hickory bark beetle (Scolytus...

  5. Air pollution and watershed research in the central Sierra Nevada of California: nitrogen and ozone.

    PubMed

    Hunsaker, Carolyn; Bytnerowicz, Andrzej; Auman, Jessica; Cisneros, Ricardo

    2007-03-21

    Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100-2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.

  6. Noise pollution alters ecological services: enhanced pollination and disrupted seed dispersal

    PubMed Central

    Francis, Clinton D.; Kleist, Nathan J.; Ortega, Catherine P.; Cruz, Alexander

    2012-01-01

    Noise pollution is a novel, widespread environmental force that has recently been shown to alter the behaviour and distribution of birds and other vertebrates, yet whether noise has cumulative, community-level consequences by changing critical ecological services is unknown. Herein, we examined the effects of noise pollution on pollination and seed dispersal and seedling establishment within a study system that isolated the effects of noise from confounding stimuli common to human-altered landscapes. Using observations, vegetation surveys and pollen transfer and seed removal experiments, we found that effects of noise pollution can reverberate through communities by disrupting or enhancing these ecological services. Specifically, noise pollution indirectly increased artificial flower pollination by hummingbirds, but altered the community of animals that prey upon and disperse Pinus edulis seeds, potentially explaining reduced P. edulis seedling recruitment in noisy areas. Despite evidence that some ecological services, such as pollination, may benefit indirectly owing to noise, declines in seedling recruitment for key-dominant species such as P. edulis may have dramatic long-term effects on ecosystem structure and diversity. Because the extent of noise pollution is growing, this study emphasizes that investigators should evaluate the ecological consequences of noise alongside other human-induced environmental changes that are reshaping human-altered landscapes worldwide. PMID:22438504

  7. Noise pollution alters ecological services: enhanced pollination and disrupted seed dispersal.

    PubMed

    Francis, Clinton D; Kleist, Nathan J; Ortega, Catherine P; Cruz, Alexander

    2012-07-22

    Noise pollution is a novel, widespread environmental force that has recently been shown to alter the behaviour and distribution of birds and other vertebrates, yet whether noise has cumulative, community-level consequences by changing critical ecological services is unknown. Herein, we examined the effects of noise pollution on pollination and seed dispersal and seedling establishment within a study system that isolated the effects of noise from confounding stimuli common to human-altered landscapes. Using observations, vegetation surveys and pollen transfer and seed removal experiments, we found that effects of noise pollution can reverberate through communities by disrupting or enhancing these ecological services. Specifically, noise pollution indirectly increased artificial flower pollination by hummingbirds, but altered the community of animals that prey upon and disperse Pinus edulis seeds, potentially explaining reduced P. edulis seedling recruitment in noisy areas. Despite evidence that some ecological services, such as pollination, may benefit indirectly owing to noise, declines in seedling recruitment for key-dominant species such as P. edulis may have dramatic long-term effects on ecosystem structure and diversity. Because the extent of noise pollution is growing, this study emphasizes that investigators should evaluate the ecological consequences of noise alongside other human-induced environmental changes that are reshaping human-altered landscapes worldwide.

  8. A human-driven decline in global burned area

    NASA Astrophysics Data System (ADS)

    Andela, N.

    2017-12-01

    Fire regimes are changing rapidly across the globe, driven by human land management and climate. We assessed long-term trends in fire activity using multiple satellite data sets and developed a new global data set on individual fire dynamics to understand the implications of changing fire regimes. Despite warming climate, burned area declined across most of the tropics, contributing to a global decline in burned area of 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area was largest in savannas and grasslands, where agricultural expansion and intensification were primary drivers of declining fire activity. In tropical forests, frequent fires for deforestation and agricultural management yield a sharp rise in fire activity with the expansion of settled land uses, but the use of fire decreases with increasing investment in agricultural areas in both savanna and forested landscapes. Disparate patterns of recent socieconomic development resulted in contrasting fire trends between southern Africa (increase) and South America (decrease). A strong inverse relationship between burned area and economic development in savannas and grasslands suggests that despite potential increasing fire risk from climate change, ongoing socioeconomic development will likely sustain observed declines in fire in these ecosystems during coming decades. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. The spatiotemporal distribution of fire size, duration, speed and direction of spread provided new insights in continental scale differences in fire regimes driven by human and climatic factors. Understanding these dynamics over larger scales is critical to achieve a balance between conservation of fire-dependent ecosystems and increasing agricultural production to support growing populations that will require careful management of fire activity in human-dominated landscapes.

  9. Analysis of the interaction between timber markets and the forest resources of Maine

    Treesearch

    William G. Luppold; Paul E. Sendak

    2004-01-01

    The abundant timber resources of Maine are critical to the State's timber economy; thus, when the 1995 forest inventory indicated a 20% decline in softwood growing stock, there was great concern by industry and government. Furthermore, declining near-term softwood growing stock levels were forecast. To better understand what was occurring in Maine's forest,...

  10. Analysis of the Interaction Between Timber Markets and the Forest Resources of Maine

    Treesearch

    William G. Luppold

    2004-01-01

    The abundant timber resources of Maine are critical to the State's timber economy; thus, when the 1995 forest inventory indicated a 20% decline in softwood growing stock, there was great concern by industry and government. Furthermore, declining near-term softwood growing stock levels were forecast. To better understand what was occurring in Maine's forest,...

  11. Moderate forest disturbance as a stringent test for gap and big-leaf models

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Fisk, J.; Holm, J. A.; Bailey, V. L.; Gough, C. M.

    2014-12-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. In particular, it is unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging U.S. forests. We tested whether three forest ecosystem models—Biome-BGC, a classic big-leaf model, and the ED and ZELIG gap-oriented models—could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols, and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ED and ZELIG correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes. Biome-BGC net primary production (NPP) was correctly resilient, but for the wrong reasons, while ED and ZELIG exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. As a result we expect that most ecosystem models, developed to simulate processes following stand-replacing disturbances, will not simulate well the gradual and less extensive tree mortality characteristic of moderate disturbances.

  12. Moderate forest disturbance as a stringent test for gap and big-leaf models

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Fisk, J.; Holm, J. A.; Bailey, V.; Gough, C. M.

    2014-07-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. In particular, it is unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models - Biome-BGC, a classic big-leaf model, and the ED and ZELIG gap-oriented models - could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols, and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ED and ZELIG correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes. Biome-BGC net primary production (NPP) was correctly resilient, but for the wrong reasons, while ED and ZELIG exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. As a result we expect that most ecosystem models, developed to simulate processes following stand-replacing disturbances, will not simulate well the gradual and less extensive tree mortality characteristic of moderate disturbances.

  13. Moderate forest disturbance as a stringent test for gap and big-leaf models

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Fisk, J. P.; Holm, J. A.; Bailey, V.; Bohrer, G.; Gough, C. M.

    2015-01-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models - Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models - could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.

  14. SIMULATION COASTAL PLAIN STREAM FISH COMMUNITY RESPONSE TO NONPOINT SOURCE POLLUTION USING LINKED HYDROLOGIC-ECOLOGICAL MODELS

    EPA Science Inventory

    Nonpoint source pollution is the primary stress in many streams. Characteristic declines in stream fish communities are recognized in streams influenced by nonpoint source pollution, but the processes by which these declines occur are not well understood. Here, predicted time s...

  15. Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injury

    EPA Science Inventory

    Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injuryHenriquez, A.1, Snow, S.2, Miller, D1.,Schladweiler, M.2 and Kodavanti, U2.1 Curriculum in Toxicology, UNC, Chapel Hill, NC. 2 EPHD/NHEERL, US EPA, RTP, Durham, NC. ...

  16. A preliminary assessment of the Montréal process indicators of air pollution for the United States

    Treesearch

    John W. Coulston; Kurt H. Riitters; Grethchen C. Smith

    2004-01-01

    Air pollutants pose a risk to forest health and vitality in the United States. Here we present the major findings from a national scale air pollution assessment that is part of the United States’ 2003 Report on Sustainable Forests. We examine trends and the percent forest subjected to specific levels of ozone and wet deposition of sulfate, nitrate, and ammonium....

  17. A review of southern pine decline in North America

    Treesearch

    David R. Coyle; Kier D. Klepzig; Frank H. Koch; Lawrence A. Morris; John T. Nowak; Steven W. Oak; William J. Otrosina; William D. Smith; Kamal J.K. Gandhi

    2015-01-01

    The southeastern United States is among the most productive forested areas in the world. Four endemic southern pine species – loblolly, longleaf, shortleaf, and slash - contribute significantly to the economic and ecological values in the region. A recently described phenomenon known as Southern Pine Decline (SPD) has been reported as having widespread impact in the...

  18. Stand Dynamics of Coast Redwood/Tanoak Forests Following Tanoak Decline

    Treesearch

    Kristen M. Waring; Kevin L. O' Hara

    2007-01-01

    Current threats to North American forests increasingly include exotic tree pathogens that cause extensive mortality. In California, tanoak (Lithocarpus densiflorus) mortality has increased rapidly since 1995, due to Phytophthora ramorum, believed to be an introduced pathogen. Tanoak frequently grows as a major component of redwood...

  19. Rapid decline of the volcanically threatened Montserrat oriole.

    Treesearch

    Geoff M. Hilton; Phil W. Atkinson; Gerard A.L. Gray; Wayne J. Arendt; David W. Gibbons

    2003-01-01

    Prior to 1995, the Montserrat oriole (Icterus oberi) was confined to ca. 30 km2 of hill forest on the Lesser Antillean island of Montserrat, but was not listed as globally threatened. Since then, the eruption of the Soufriere Hills volcano has destroyed more than half of the species’ range. Recent intensive monitoring has indicated that the species has also declined...

  20. Soil erosion following forest operations in the Southern Piedmont of central Alabama

    Treesearch

    Johnny M. Grace

    2004-01-01

    In recent years, nonpoint source pollution (NPS) has been recognized as one of the major threats to the nation's water quality. Clearly, forest operations such as harvesting and site preparation have the potential to have degrading impacts on forest water quality. However, there exists a gap in the understanding of the nature and extent of NPS pollution problems...

  1. Lichens, ozone, and forest health - exploring cross-indicator analyses with FIA data

    Treesearch

    Susan Will-Wolf; Sarah Jovan

    2009-01-01

    Does air pollution risk represented by a lichen bioindicator of air pollution, an ozone bioindicator, or a combination of both, correlate with forest health as reflected by condition of tree crowns and other variables? We conducted pilot analyses to answer this question using Forest Inventory and Analysis (FIA) data from the Sierra Nevada region of California and the...

  2. Wetfall deposition and precipitation chemistry for a central Appalachian forest

    Treesearch

    Frank S. Gilliam; Mary Beth Adams

    1996-01-01

    Although extensive research on acidic deposition has been directed toward spruce-fir forests, less research has been done on the impacts of air pollution on eastern montane hardwood forests. The purpose of this study was to describe precipitation chemistry for several Appalachian hardwood forest sites at or near the Fernow Experimental Forest (FEF) to assess the...

  3. Recent findings related to measuring and modeling forest road erosion

    Treesearch

    W. J. Elliot; R. B. Foltz; P. R. Robichaud

    2009-01-01

    Sediment is the greatest pollutant of forest streams. In the absence of wildfire, forest road networks are usually the main source of sediment in forest watersheds. An understanding of forest road erosion processes is important to aid in predicting sediment delivery from roads to streams. The flowpath followed by runoff is the key to understanding road erosion...

  4. The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis.

    PubMed

    Baumgardner, Darrel; Varela, Sebastian; Escobedo, Francisco J; Chacalo, Alicia; Ochoa, Carlos

    2012-04-01

    Air quality improvement by a forested, peri-urban national park was quantified by combining the Urban Forest Effects (UFORE) and the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) models. We estimated the ecosystem-level annual pollution removal function of the park's trees, shrub and grasses using pollution concentration data for carbon monoxide (CO), ozone (O(3)), and particulate matter less than 10 microns in diameter (PM(10)), modeled meteorological and pollution variables, and measured forest structure data. Ecosystem-level O(3) and CO removal and formation were also analyzed for a representative month. Total annual air quality improvement of the park's vegetation was approximately 0.02% for CO, 1% for O(3,) and 2% for PM(10), of the annual concentrations for these three pollutants. Results can be used to understand the air quality regulation ecosystem services of peri-urban forests and regional dynamics of air pollution emissions from major urban areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Declining snowpack and forest productivity in a montane ecosystem in the Northern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hu, J.; Clute, T.; Simpson, T.; Hoylman, Z. H.; Jencso, K. G.

    2016-12-01

    Across the western U.S., declining snowpacks have increased drought, leading to reduced productivity rates in high elevation forests. As climate projections predict decreases in the ratio of snow/rainfall by the end of the century, this shift in the mode of precipitation could potentially lead to further decreases in forest productivity. However, different tree species across the montane ecosystem might respond differently to these shifts; while some tree species might experience decreased growth rates, other species might capitalize on the extra rainfall and increase growth rates. Furthermore, the landscape topography will also play an important role by modulating the sensitivity of different trees to these changing precipitation regimes. In this study, we examined the long-term patterns of plant water source use across an elevational gradient in western Montana. Because snow and rain have distinct oxygen isotopic values, we analyzed the δ18O of cellulose from tree rings at annual time scales to track changes in source water in two main species: Pseudotsuga menziezii and Pinus Ponderosa at both high and low elevation. We also used the same cores to link growth rate with the dominant source water. We first compared the annual changes in δ18O of cellulose with available SNOTEL and Snow Course data. We found poor agreement between snowpack depth and δ18O of cellulose prior to 1980. However, after 1980, we found a strong negative relationship; small snowpack years resulted in enriched δ18O of cellulose values while large snowpack years resulted in depleted δ18O of cellulose values. We then used the Craig-Gordon model along with our input of δ18O of cellulose to back calculate source water and found strong agreement between modeled versus measured values. Since the δ18O of cellulose also captures the atmospheric conditions, we then tested the sensitivity of the Craig-Gordon model to changes in relative humidity versus source water. These preliminary results a

  6. Alaska forest products: using resources well.

    Treesearch

    Valerie Rapp

    2003-01-01

    Despite abundant forest resources in the state, the Alaska forest products industry declined throughout the 1990s and early 21st century. In a state with lots of trees, mills are going out of business and most finished lumber used in the state is imported from the lower 48 United States and Canada. The Alaska Wood Utilization Research and Development Center (Wood...

  7. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming

    USGS Publications Warehouse

    Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; Veblen, Thomas T; Smith, Jeremy M.; Kueppers, Lara M.

    2017-01-01

    Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long life spans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively.Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers.Empirically observed, warming-driven declines in recruitment led to rapid modelled population declines at the low-elevation, ‘warm edge’ of subalpine forest and slow emergence of populations beyond the high-elevation, ‘cool edge’. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modelled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above tree line, and, ultimately, expansion into the alpine.Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts.

  8. Forest statistics for North Carolina, 1990

    Treesearch

    Tony G. Johnson

    1991-01-01

    Since 1984, area of timberland in North Carolina declined almost 78,000 acres to 18.7 million acres. Nonindustrial private forest landowners control 76 percent of the State's timberland. Area classified as a pine type declined 3 percent to 6.3 million acres. Nearly 295,000 acres were harvested annually, while 357,000 per year were regenerated both by artificial...

  9. What caused the population decline of the Bridled White-eye on Rota, Mariana Islands?

    USGS Publications Warehouse

    Fancy, Steven G.; Snetsinger, Thomas J.

    2001-01-01

    The Bridled White-eye (Zosterops conspicillatus rotensis) was Once thought to be common and widespread on Rota, Commonwealth of the Northern Mariana Islands, but is now restricted to several patches of native limestone forest in and adjacent to the Sabana region. Surveys conducted in 1990 indicated that the population had declined by 87% between 1982 and 1990 for unknown reasons. The low density and restricted habitat association of the Bridled White-eye on Rota contrasts with the situation on Saipan, Tinian, Agiguan, and formerly on Guam, where the Bridled White-eye is the most common forest bird and occurs at all elevations and in all habitat types. We surveyed the entire range of the Rota Bridled White-eye in 1996 to estimate its current numbers and distribution. We also reviewed existing information on the white-eye and evaluated potential causes of its decline, including predation by Black Drongos (Dicrurus macrocercus), rats (Rattus spp.), and the brown tree snake Boiga irregularis); pesticides; avian disease; and habitat loss and alteration. We found that 94% of the extant population of 1,165 white-eyes on Rota was restricted to four patches of old-growth, native limestone forest covering only 259 ha. We believe that the population decline and current localized distribution is primarily a result of habitat changes due to agricultural development and typhoons, but the absence of white-eyes from several stands of native forest above 200 m remains unexplained. The Rota white-eye may be a different species from white-eyes found on Saipan, Tinian, Agiguan, and Guam, with different habitat preferences.

  10. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006

    NASA Astrophysics Data System (ADS)

    Tong, Yindong; Zhang, Wei; Wang, Xuejun; Couture, Raoul-Marie; Larssen, Thorjørn; Zhao, Yue; Li, Jing; Liang, Huijiao; Liu, Xueyan; Bu, Xiaoge; He, Wei; Zhang, Qianggong; Lin, Yan

    2017-07-01

    Domestic wastewater and agricultural activities are important sources of nutrient pollutants such as phosphorus and nitrogen. Upon reaching freshwater, these nutrients can lead to extensive growth of harmful algae, which results in eutrophication. Many Chinese lakes are subject to such eutrophication, especially in highly polluted areas, and as such, understanding nutrient fluxes to these lakes offers insights into the varying processes governing pollutant fluxes as well as lake water quality. Here we analyse water quality data, recorded between 2006 and 2014 in 862 freshwater lakes in four geographical regions of China, to assess the input of phosphorus from human activity. We find that improvements in sanitation of both rural and urban domestic wastewater have resulted in large-scale declines in lake phosphorus concentrations in the most populated parts of China. In more sparsely populated regions, diffuse sources such as aquaculture and livestock farming offset this decline. Anthropogenic deforestation and soil erosion may also offset decreases in point sources of pollution. In the light of these regional differences, we suggest that a spatially flexible set of policies for water quality control would be beneficial for the future health of Chinese lakes.

  11. Evaluating the suitability of planted forests for African forest monkeys: a case study from Kakamega forest, Kenya.

    PubMed

    Fashing, Peter J; Nguyen, Nga; Luteshi, Patrick; Opondo, Winstone; Cash, Julie F; Cords, Marina

    2012-01-01

    As natural forest cover declines, planted forests have come to occupy an increasing percentage of the earth's surface, yet we know little about their suitability as alternative habitat for wildlife. Although some primate species use planted forests, few studies have compared primate populations in natural and nearby planted forests. From March 2006 to July 2010, we conducted line transect surveys and assessed group sizes and compositions in natural and nearby 60-70 year old mixed indigenous planted forest to determine the densities of diurnal primate species (Colobus guereza, Cercopithecus mitis, C. ascanius) in these two forest types at Isecheno, Kakamega Forest, Kenya. Line transect data were analyzed using the Encounter Rate, Whitesides, and Distance sampling methods, which all provided broadly consistent results. We found that all three diurnal primate species occupy both natural and planted forest at Isecheno. However, group densities of the two Cercopithecus species were 42-46% lower in planted than in natural forest. Colobus guereza achieved comparable group densities in the two forest types, although the species is found in smaller groups, and thus at lower (35%) individual density, in planted than in natural forest. Following a logging episode in the planted forest mid-way through our study, Cercopithecus ascanius group densities fell by 60% while C. mitis and Colobus guereza group densities remained stable over the next two years. Overall, our results suggest that while primate species vary in their response to habitat disturbance, planted forest has the potential to contribute to the conservation of some African monkey species. Even for the relatively flexible taxa in our study, however, 60-70 year old mixed indigenous planted forest failed to support densities comparable to those in nearby natural forest. From the perspective of Kakamega's primates, planted forests may supplement natural forest, but are not an adequate replacement for it. © 2011 Wiley

  12. A national assessment of physical activity on US national forests

    Treesearch

    Jeffrey D. Kline; Randall S. Rosenberger; Eric M. White

    2011-01-01

    In an era of declining timber harvests on federal lands, the US Forest Service has sought to better describe the public benefits associated with the nation's continued investment in managing the national forests. We considered how national forests contribute to public health by providing significant outdoor recreation opportunities. Physical inactivity has become...

  13. Chapter 36: Status of Forest Habitat of the Marbled Murrelet

    Treesearch

    David A. Perry

    1995-01-01

    Marbled Murrelets (Brachyramphus marmoratus) have been shown to be dependant upon old-growth forests for nesting habitat. These forests have declined over the last century as they are cut for human use. This paper reviews the current status of old-growth forests along the west coast, in both the United States and Canada.

  14. Influence of eastern hemlock (Tsuga canadensis) forests on aquatic invertebrate assemblages in headwater streams

    USGS Publications Warehouse

    Snyder, C.D.; Young, J.A.; Lemarie, D.P.; Smith, D.R.

    2002-01-01

    We conducted a comparative study in the Delaware Water Gap National Recreation Area to determine the potential long-term impacts of hemlock forest decline on stream benthic macroinvertebrate assemblages. Hemlock forests throughout eastern North America have been declining because of the hemlock woolly adelgid, an exotic insect pest. We found aquatic invertebrate community structure to be strongly correlated with forest composition. Streams draining hemlock forests supported significantly more total taxa than streams draining mixed hardwood forests, and over 8% of the taxa were strongly associated with hemlock. In addition, invertebrate taxa were more evenly distributed (i.e., higher Simpson's evenness values) in hemlock-drained streams. In contrast, the number of rare species and total densities were significantly lower in streams draining hemlock, suggesting that diversity differences observed between forest types were not related to stochastic factors associated with sampling and that streams draining mixed hardwood forests may be more productive. Analysis of stream habitat data indicated that streams draining hemlock forests had more stable thermal and hydrologic regimes. Our findings suggest that hemlock decline may result in long-term changes in headwater ecosystems leading to reductions in both within-stream (i.e., alpha) and park-wide (i.e., gamma) benthic community diversity.

  15. Effect of urbanization on the structure and functional traits of remnant subtropical evergreen broad-leaved forests in South China.

    PubMed

    Huang, Liujing; Chen, Hongfeng; Ren, Hai; Wang, Jun; Guo, Qinfeng

    2013-06-01

    We investigated the effects of major environmental drivers associated with urbanization on species diversity and plant functional traits (PFTs) in the remnant subtropical evergreen broad-leaved forests in Metropolitan Guangzhou (Guangdong, China). Twenty environmental factors including topography, light, and soil properties were used to quantify the effects of urbanization. Vegetation data and soil properties were collected from 30 400-m(2) plots at 6 study sites in urban and rural areas. The difference of plant species diversity and PFTs of remnant forests between urban and rural areas were analyzed. To discern the complex relationships, multivariate statistical analyses (e.g., canonical correspondence analysis and regression analysis) were employed. Pioneer species and stress-tolerant species can survive and vigorously establish their population dominance in the urban environment. The native herb diversity was lower in urban forests than in rural forests. Urban forests tend to prefer the species with Mesophanerophyte life form. In contrast, species in rural forests possessed Chamaephyte and Nanophanerophyte life forms and gravity/clonal growth dispersal mode. Soil pH and soil nutrients (K, Na, and TN) were positively related to herb diversity, while soil heavy metal concentrations (Cu) were negatively correlated with herb diversity. The herb plant species diversity declines and the species in the remnant forests usually have stress-tolerant functional traits in response to urbanization. The factors related to urbanization such as soil acidification, nutrient leaching, and heavy metal pollution were important in controlling the plant diversity in the forests along the urban-rural gradients. Urbanization affects the structure and functional traits of remnant subtropical evergreen broad-leaved forests.

  16. Association of Phytophthora cinnamomi with white oak decline in southern Ohio

    Treesearch

    Annemarie M. Nagle; Robert P. Long; Laurence V. Madden; Pierluigi. Bonello

    2010-01-01

    A decline syndrome and widespread mortality of mature white oak tree (Quercus alba) associated with wet and low-lying areas has been recently observed in southern Ohio forests. Previous studies have isolated Phytophthora cinnamomi from white oak rhizospheres. In 2008 and 2009, P. cinnamomi population densities in...

  17. Forest resources of Puerto Rico, 1990. Forest Service Resource Bulletin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, P.A.; Weaver, P.L.; Eggen-McIntosh, S.

    1997-10-01

    The prinicipal findings of the second forest survey of Puerto Rico (1990) and changes that have occurred since the survey was established in 1980 are presented. The forest inventory estimates describe the timber resource found within the potential commercial region designated in the first survey. The timber resource addressed consists primarily of regrown areas on abandoned pastures and cropland, including coffee production areas. The status and trends of the timber resource are presented for the two Life Zones occurring in the commercial region, as well as for various forest classes, which are based on stand history and origin. Topics dicussedmore » include forest area, timberland area, basal area, species composition, timber volume, growing-stock volume, and sawtimber volume. results of the 1990 survey are promising, showing inceases in numbers of trees across all diamater classes and substantial increases in volume. These trends offer evidence that Puerto Rico`s forests are continuing to recover following a dramatic decline of the late 19th and early 20th centuries.« less

  18. Epiphytic lichen diversity on dead and dying conifers under different levels of atmospheric pollution.

    PubMed

    Hauck, Markus

    2005-05-01

    Based on literature data, epiphytic lichen abundance was comparably studied in montane woodlands on healthy versus dead or dying conifers of Europe and North America in areas with different levels of atmospheric pollution. Study sites comprised Picea abies forests in the Harz Mountains and in the northern Alps, Germany, Picea rubens-Abies balsamea forests on Whiteface Mountain, Adirondacks, New York, U.S.A. and Picea engelmannii-Abies lasiocarpa forests in the Salish Mountains, Montana, U.S.A. Detrended correspondence analysis showed that epiphytic lichen vegetation differed more between healthy and dead or dying trees at high- versus low-polluted sites. This is attributed to greater differences in chemical habitat conditions between trees of different vitality in highly polluted areas. Based on these results, a hypothetical model of relative importance of site factors for small-scale variation of epiphytic lichen abundance versus atmospheric pollutant load is discussed.

  19. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: implications for groundwater decline in a drying climate.

    PubMed

    Smettem, Keith R J; Waring, Richard H; Callow, John N; Wilson, Melissa; Mu, Qiaozhen

    2013-08-01

    There is increasing concern that widespread forest decline could occur in regions of the world where droughts are predicted to increase in frequency and severity as a result of climate change. The average annual leaf area index (LAI) is an indicator of canopy cover and the difference between the annual maximum and minimum LAI is an indicator of annual leaf turnover. In this study, we analyzed satellite-derived estimates of monthly LAI across forested coastal catchments of southwest Western Australia over a 12 year period (2000-2011) that included the driest year on record for the last 60 years. We observed that over the 12 year study period, the spatial pattern of average annual satellite-derived LAI values was linearly related to mean annual rainfall. However, interannual changes to LAI in response to changes in annual rainfall were far less than expected from the long-term LAI-rainfall trend. This buffered response was investigated using a physiological growth model and attributed to availability of deep soil moisture and/or groundwater storage. The maintenance of high LAIs may be linked to a long-term decline in areal average underground water storage and diminished summer flows, with an emerging trend toward more ephemeral flow regimes. © 2013 John Wiley & Sons Ltd.

  20. Alternative forest resource use - outdoor recreation and rural economics

    Treesearch

    Ellene Kebede; John Schelhas; Janet Haslerig

    2008-01-01

    Since the 1980s demand for outdoor recreation has been increasing in the United States. Growing income and change in lifestyles have been cited as factors contributing to the increase in demand. This period also coincided with a decline in timber prices and loss of income to forest land owners. Forest-based recreation has intensified as a part of forest management...

  1. Detecting air pollution stress in southern California vegetation using Landsat Thematic Mapper band data

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    Landsat Thematic Mapper (TM) and aircraft-borne Thematic Mapper simulator (TMS) data were collected over two areas of natural vegetation in southern California exposed to gradients of pollutant dose, particularly in photochemical oxidants: the coastal sage scrub of the Santa Monica Mountains in the Los Angeles basin, and the yellow pine forests in the southern Sierra Nevada. In both situations, natural variations in canopy closure, with subsequent exposure of understory elements (e.g.,rock or soil, chaparral, grasses, and herbs), were sufficient to cause changes in spectral variation that could obscure differences due to visible foliar injury symptoms observed in the field. TM or TMS data are therefore more likely to be successful in distinguishing pollution injury from background variation when homogeneous communities with closed canopies are subjected to more severe pollution-induced structural and/or compositional change. The present study helps to define the threshold level of vegetative injury detectable by TM data.

  2. Distribution and dynamics of mangrove forests of South Asia

    USGS Publications Warehouse

    Giri, Chandra; Long, Jordan; Abbas, Sawaid; Murali, R. Mani; Qamer, Faisal M.; Pengra, Bruce; Thau, David

    2014-01-01

    Our findings revealed that the areal extent of mangrove forests in South Asia is approximately 1,187,476 ha representing ∼7% of the global total. Our results showed that from 2000 to 2012, 92,135 ha of mangroves were deforested and 80,461 ha were reforested with a net loss of 11,673 ha. In all three case studies, mangrove areas have remained the same or increased slightly, however, the turnover was greater than the net change. Both, natural and anthropogenic factors are responsible for the change and turnover. The major causes of forest cover change are similar throughout the region; however, specific factors may be dominant in specific areas. Major causes of deforestation in South Asia include (i) conversion to other land use (e.g. conversion to agriculture, shrimp farms, development, and human settlement), (ii) over-harvesting (e.g. grazing, browsing and lopping, and fishing), (iii) pollution, (iv) decline in freshwater availability, (v) floodings, (vi) reduction of silt deposition, (vii) coastal erosion, and (viii) disturbances from tropical cyclones and tsunamis. Our analysis in the region's diverse socio-economic and environmental conditions highlights complex patterns of mangrove distribution and change. Results from this study provide important insight to the conservation and management of the important and threatened South Asian mangrove ecosystem.

  3. Michigan forest statistics, 1980.

    Treesearch

    Gerhard K. Raile; W. Brad Smith

    1983-01-01

    The fourth inventory of the timber resource of Michigan shows a 7% decline in commercial forest area and a 27% gain in growing-stock volume between 1966 and 1980. Highlights and statistics are presented on area, volume, growth, mortality, removals, utilization, and biomass.

  4. Siberian Pine Decline and Mortality in Southern Siberian Mountains

    NASA Technical Reports Server (NTRS)

    Kharuk, V. I.; Im, S. T.; Oskorbin, P. A.; Petrov, I. A.; Ranson, K. J.

    2013-01-01

    The causes and resulting spatial patterns of Siberian pine mortality in eastern Kuznetzky Alatau Mountains, Siberia were analyzed based on satellite (Landsat, MODIS) and dendrochronology data. Climate variables studied included temperature, precipitation and Standardized Precipitation-Evapotranspiration Index (SPEI) drought index. Landsat data analysis showed that stand mortality was first detected in the year 2006 at an elevation of 650 m, and extended up to 900 m by the year 2012. Mortality was accompanied by a decrease in MODIS derived vegetation index (EVI).. The area of dead stands and the upper mortality line were correlated with increased drought. The uphill margin of mortality was limited by elevational precipitation gradients. Dead stands (i.e., >75% tree mortality) were located mainly on southern slopes. With respect to slope, mortality was observed within a 7 deg - 20 deg range with greatest mortality occurring on convex terrain. Tree radial incrementmeasurements correlate and were synchronous with SPEI (r sq = 0.37, r(sub s) = 80). Increasing synchrony between tree ring growth and SPEI indicates that drought has reduced the ecological niche of Siberian pine. The results also showed the primary role of drought stress on Siberian pine mortality. A secondary role may be played by bark beetles and root fungi attacks. The observed Siberian pine mortality is part of a broader phenomenon of "dark needle conifers" (DNC, i.e., Siberian pine, fir and spruce) decline and mortality in European Russia, Siberia, and the Russian Far East. All locations of DNC decline coincided with areas of observed drought increase. The results obtained are one of the first observations of drought-induced decline and mortality of DNC at the southern border of boreal forests. Meanwhile if model projections of increased aridity are correct DNC, within the southern part of its range may be replaced by drought-resistant Pinus silvestris and Larix sibirica.

  5. Genetics Show Current Decline and Pleistocene Expansion in Northern Spotted Owls

    USGS Publications Warehouse

    Funk, W. Chris; Forsman, Eric D.; Mullins, Thomas D.; Haig, Susan M.

    2008-01-01

    The northern spotted owl (Strix occidentalis caurina) is one of the most controversial threatened subspecies ever listed under the U.S. Endangered Species Act. Because of concern for persistence of the subspecies, logging on Federal lands in the U.S. Pacific Northwest was dramatically reduced under the Northwest Forest Plan in 1994. Despite protection of its remaining forest habitat, recent field studies show continued demographic declines of northern spotted owls. One potential threat to northern spotted owls that has not yet been shown is loss of genetic variation from population bottlenecks that can increase inbreeding depression and decrease adaptive potential. Here, we show recent genetic bottlenecks in northern spotted owls using a large genetic dataset (352 individuals from across the subspecies' range and 11 microsatellite loci). The signature of bottlenecks was strongest in Washington State, in agreement with field data. Interestingly, we also found a genetic signature of Pleistocene expansion in the same study areas where recent bottlenecks were shown. Our results provide independent evidence that northern spotted owls have recently declined, and suggest that loss of genetic variation is an emerging threat to the subspecies' persistence. Reduced effective population size (Ne), shown here in addition to field evidence for demographic decline, highlights the increasing vulnerability of this bird to extinction.

  6. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques

    DOE PAGES

    Meng, Ran; Wu, Jin; Zhao, Feng; ...

    2018-06-01

    Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less

  7. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; Wu, Jin; Zhao, Feng

    Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less

  8. Progressive Decline in Photosynthetic Uptake Capacity in a Hemlock Stand Infested by Hemlock Woolly Adelgid

    NASA Astrophysics Data System (ADS)

    Munger, J. W.; David, O.; Barker Plotkin, A.; Schaaf, C.

    2017-12-01

    Hemlock Woolly Adelgid (HWA) is an invasive insect pest infesting eastern hemlock. Affected hemlock trees typically die within 4-10 years. Black birch seedlings thrive as a thinning canopy allows additional light to reach the forest floor. HWA invasion is a unique disturbance where decline and recovery are occuring simultaneously over an extended period. Although the overall vegetation dynamics associated with HWA disturbance have been well studied, the instantaneous carbon balance at the ecosystem scale has not been closely observed. At the Harvard Forest in central MA we have measured CO2, water and energy eddy flux since 2004. HWA has been present at Harvard Forest since 2002, but defoliation was insignificant prior to 2010. Since 2010 defoliation among trees near the Hemlock tower has increased dramatically and tree mortality is increasing. The pace of HWA attack has been monitored by periodic surveys and stand structure has been observed by 3-d lidar scans. In order to quantify changes in ecosystem metabolism without biasing the results from data filling we evaluate mean ecosystem function derived from a simple model that relates CO2 flux to temperature and light response. The mean carbon uptake efficiency during summer growing season has declined about 13% from before 2010 (pre-HWA) to after 2010 (post-HWA). Ecosystem respiration averaged over these intervals has not changed noticeably over this period. However, annual mean Reco in the summer peaks in 2014 and then declines over subsequent years. Mean uptake coefficients declined from 26 to 14 μmol-C m-2s-1 per μmol-photon m-2s-1 between 2010 and 2015, with some recovery in 2016. Taken together, results show that despite an accelerating forest mortality, ecosystem carbon stock in this infested hemlock stand has not been destabilized and that rates of carbon metabolism are changing more slowly than the decline in hemlock biomass. The ecosystem can partially compensate for loss of foliage as more light

  9. Forest Area in Wisconsin Counties, 1968

    Treesearch

    Burton L. Essex

    1972-01-01

    In 1968 Wisconsin''s forests covered 14.9 million acres of land, a slight decline from the 15.2 million acres reported in 1956. The area of commercial forest land also dropped slightly to 14.5 million acres; increases in the eastern part of the State of 50,000 acres were more than offset by losses of 381,000 acres in the west and central sections.

  10. Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Jose-Luis; Day, Douglas A.; Martin, Scot T.

    Manaus, a city of nearly two million people, represents an isolated urban area having a distinct urban pollution plume within the otherwise pristine Amazon Basin. The plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants. Critically, the distinct plume in the setting of the surrounding tropical rain forest serves as a natural laboratory to allow direct comparisons between periods of pollution influence to those of pristine conditions. The funded activity of this report is related to the Brazil-USA collaborative project during the two Intensive Operating Periods (wet season, 1 Febmore » - 31 Mar 2014; dry season, 15 Aug - 15 Oct 2014) of GoAmazon2014/5. The project addresses key science questions regarding the modification of the natural atmospheric chemistry and particle microphysics of the forest by present and future anthropogenic pollution. The first objective of the project was to understand and quantify the interactions of biogenic and anthropogenic emissions with respect to the production of secondary organic material. In clean conditions in the Amazon basin, secondary organic material dominates the diameter distribution of the submicron particles. How and why is the diameter distribution shifted by pollution? The second objective followed from the first in that, although the diameter distribution is dominated by secondary organic material, the actual source of new particle production remains uncertain (i.e., the number concentration). The second objective was to test the hypothesis that new particles under natural conditions are produced as a result of evaporation of primary particles emitted by fungal spores as well as to investigate any shifts in this mechanism under pollution conditions, e.g., in consequence to the high concentrations of SO 2 in the pollution plume. Combined, the number-diameter distribution is the key connection to upscaling to the effects of aerosol

  11. Quantifying the Detrimental Impacts of Land-Use and Management Change on European Forest Bird Populations

    PubMed Central

    Wade, Amy S. I.; Barov, Boris; Burfield, Ian J.; Gregory, Richard D.; Norris, Ken; Butler, Simon J.

    2013-01-01

    The ecological impacts of changing forest management practices in Europe are poorly understood despite European forests being highly managed. Furthermore, the effects of potential drivers of forest biodiversity decline are rarely considered in concert, thus limiting effective conservation or sustainable forest management. We present a trait-based framework that we use to assess the detrimental impact of multiple land-use and management changes in forests on bird populations across Europe. Major changes to forest habitats occurring in recent decades, and their impact on resource availability for birds were identified. Risk associated with these changes for 52 species of forest birds, defined as the proportion of each species' key resources detrimentally affected through changes in abundance and/or availability, was quantified and compared to their pan-European population growth rates between 1980 and 2009. Relationships between risk and population growth were found to be significantly negative, indicating that resource loss in European forests is an important driver of decline for both resident and migrant birds. Our results demonstrate that coarse quantification of resource use and ecological change can be valuable in understanding causes of biodiversity decline, and thus in informing conservation strategy and policy. Such an approach has good potential to be extended for predictive use in assessing the impact of possible future changes to forest management and to develop more precise indicators of forest health. PMID:23704997

  12. Planning for and implementing an emerald ash borer-induced forest restoration program in municipal woodlands in Oakville, Ontario

    Treesearch

    Peter A. Williams; Candace. Karandiuk

    2017-01-01

    Oakville is an urban municipality with 846 ha of woodland. Management priorities are to maintain forest health, environmental health, and safety; wood production is a minor objective. The town developed a comprehensive strategy to plan for emerald ash borer (EAB; Agrilus planipennis) induced ash mortality and forest restoration. Oakville has begun...

  13. Oak decline in the Boston Mountains, Arkansas, USA: Spatial and temporal patterns under two fire regimes

    Treesearch

    Martin A. Spetich; Hong S. He

    2008-01-01

    A spatially explicit forest succession and disturbance model is used to delineate the extent and dispersion of oak decline under two fire regimes over a 150-year period. The objectives of this study are to delineate potential current and future oak decline areas using species composition and age structure data in combination with ecological land types, and to...

  14. Economic transition and environmental sustainability: effects of economic restructuring on air pollution in the Russian Federation.

    PubMed

    Cherp, Aleg; Kopteva, Irina; Mnatsakanian, Ruben

    2003-06-01

    Economic liberalization in former socialist countries may have various implications for their environmental sustainability. Positive effects of this process are potentially associated with improved efficiency, investments into cleaner technologies, responsiveness to environmentally aware markets, and ending subsidies to heavy industries. On the other hand, market liberalization may result in weaker environmental controls, economic instabilities distracting attention from environmental issues, and increasing orientation towards profit-making leading to more intensive exploitation of natural resources. In addition, trade liberalization may result in shifts towards more pollution and resource-intensive industries. This article seeks to quantify effects of economic restructuring in Russia on air pollution from productive economic sectors in the 1990s. Air pollution in Russia had significantly declined in 1991-1999, however, this decline was largely due to economic decline, as the overall pollution intensity of the economy had decreased only slightly. The factors that affected the pollution intensity are: (1) a decrease in the combined share of industrial and transport activities in the economy and (2) changing pollution intensities of the industrial and transport sectors. The pollution intensity of the Russian industry had remained relatively stable during the 1990s. This was the result of the two opposite and mutually canceling trends: (a) increasing shares of pollution-intensive branches such as metal smelting and oil production vs. less pollution intensive manufacturing and (b) decline in pollution intensities within the industrial branches. The article proposes a methodology by which the contribution of both factors to the overall pollution intensity of the industrial sector can be quantified. The pollution intensity of the Russian transport sector appears to have declined in the first half of the 1990s and increased in the second half. The most recent trend can be

  15. Effects of wildlife forestry on abundance of breeding birds in bottomland hardwood forests of Louisiana

    USGS Publications Warehouse

    Norris, Jennifer L.; Chamberlain, Michael J.; Twedt, Daniel J.

    2009-01-01

    Effects of silvicultural activities on birds are of increasing interest because of documented national declines in breeding bird populations for some species and the potential that these declines are in part due to changes in forest habitat. Silviculturally induced disturbances have been advocated as a means to achieve suitable forest conditions for priority wildlife species in bottomland hardwood forests. We evaluated how silvicultural activities on conservation lands in bottomland hardwood forests of Louisiana, USA, influenced species-specific densities of breeding birds. Our data were from independent studies, which used standardized point-count surveys for breeding birds in 124 bottomland hardwood forest stands on 12 management areas. We used Program DISTANCE 5.0, Release 2.0 (Thomas et al. 2006) to estimate density for 43 species with > 50 detections. For 36 of those species we compared density estimates among harvest regimes (individual selection, group selection, extensive harvest, and no harvest). We observed 10 species with similar densities in those harvest regimes compared with densities in stands not harvested. However, we observed 10 species that were negatively impacted by harvest with greater densities in stands not harvested, 9 species with greater densities in individual selection stands, 4 species with greater densities in group selection stands, and 4 species with greater densities in stands receiving an extensive harvest (e.g., > 40% canopy removal). Differences in intensity of harvest influenced densities of breeding birds. Moreover, community-wide avian conservation values of stands subjected to individual and group selection, and stands not harvested, were similar to each other and greater than that of stands subjected to extensive harvest that removed > 40% canopy cover. These results have implications for managers estimating breeding bird populations, in addition to predicting changes in bird communities as a result of prescribed and future

  16. History and results of the Northern Forest Health Monitoring Program

    Treesearch

    Charles J. Barnett

    2000-01-01

    Forest Health Monitoring (FHM) Program was established because of a concern that the forests in the United States were declining. The program was established to monitor the state of and changes in forest conditions across the nation. This report looks at the distributions of trees into various rating categories for three variables collected on the FHM plots from 1991...

  17. Forests and ozone: productivity, carbon storage, and feedbacks.

    PubMed

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  18. Moderate forest disturbance as a stringent test for gap and big-leaf models

    DOE PAGES

    Bond-Lamberty, Benjamin; Fisk, Justin P.; Holm, Jennifer; ...

    2015-01-27

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models – Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models – could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experimentmore » in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.« less

  19. Midsouth's Changing Hardwood Forests

    Treesearch

    Herbert S. Sternitzke; Robert L. Johnson

    1979-01-01

    Significant changes have occurred in the Midsouth's hardwood resources over the past quarter century. Prime hardwood acreage has declined alarmingly in some areas due to expansion of soybean cropland. Selective cutting and lack of forest management have diminished the overall quality of available hardwood, too.

  20. Fire-induced surface forcing of the Siberian larch forests since 2000 in the context of climate change

    NASA Astrophysics Data System (ADS)

    Chen, D.; Loboda, T. V.; He, T.; Zhang, Y.; Liang, S.

    2017-12-01

    The Siberian larch forests are a major component of the global boreal biome with wildfire being the most important disturbance agent. However, due to their unique characteristics and remote location, coupled with a limited record of remotely sensed datasets, we know little about the post-fire albedo dynamics in the region as well as the associated climatic impact, especially over a relatively longer temporal span at the regional scale. This is unfortunate as it has been suggested that the fire-induced albedo changes may have a pivotal role in controlling the net climatic impact of the boreal forests. Utilizing a 30-m 24-year stand age distribution map of the Siberian larch forests, combined with the full record of the MODIS albedo product, this study quantified the surface forcing induced by stand-replacing fires in the Siberian larch forests over 2001-2015. The results show that the larch forests experienced stand-replacing fires in the region has a cooling effect lasting for more than 25 years, and the magnitude of the cooling (-9.60 ± 0.03 Wm-2) is much larger than previously expected. Due to the strong cooling of stand-replacing fires, coupled with their wide distribution, the net surface forcing of the Siberian larch forests between 2001 and 2013 is negative (-0.78 Wm-2). In contrast, the forests that did not experience stand-replacing fires since 2000 show a warming effect, which is largely attributable to a lengthening of snow-free duration in the region. These results together indicate that wildfire may play a much bigger role in modulating the climatic impact of the Siberian larch forests than we previously thought, but this role is likely weakened by the considerable warming in the region, thus needs to be evaluated in the context of global climate change.

  1. Host-environment mismatches associated with subalpine fir decline in Colorado

    Treesearch

    Robin M. Reich; John E. Lundquist; Kristina Hughes

    2016-01-01

    Subalpine fir decline (SFD) has killed more trees in Colorado’s high elevation forests than any other insect or disease problem. The widespread nature of this disorder suggests that the cause involves climatic factors. We examined the influence of varying combinations of average annual temperature and precipitation on the incidence and distribution of SFD. Climatic...

  2. Oak wilt and oak decline in the upper midwest USA

    Treesearch

    Jennifer Juzwik; Thomas L. Schmidt

    2000-01-01

    Oaks are a significant component of the hardwood forests of the Upper Midwest USA. Numerous species occur over vast areas in the region and are highly valued for a variety of reasons. Oak wilt caused by C. fagacearum, and oak decline associated with several factors are the major causes of the species, deterioration and death in the region....

  3. Species decline: Contaminants and other contributing factors

    USGS Publications Warehouse

    Pattee, O.H.; Rattner, B.A.; Eisler, R.

    1998-01-01

    Members of over 1,200 taxa have been listed as Threatened or Endangered, and over 4,000 additional organisms have been identified as Candidate Species or Species of Concern. Identification of critical limiting factors may result in management actions that stabilize vulnerable populations and insure their perpetuation. Both naturally-occurring and anthropogenic activities (e.g., environmental contaminants and pollution) have been demonstrated to be a significant factor in depressing populations or catalyzing the final crash of some species. The objective of this project is to develop a synthesis document and database that lists and ranks the presumed causes of decline, with special emphasis on contaminants and pollutant-related situations. This will be accomplished by synoptic review of all recovery plans (n=479) with listing packages (n=1134) serving as a secondary source of information, followed by itemization, cross-referencing, enumeration, and ranking of contributing and limiting factors. To date we have analyzed all of the recovery plans for reptiles (n=26) and amphibians (n=6). 188 causes are defined, falling into 6 major categories: habitat alteration/availability (47.8%); exploitation/harvest (19.7%); introduction of exotic species (10.1%); contaminants (9.0%); miscellaneous others (6.9%); pollution (6.4%). The applicability of these data are extensive, including facilitating reviews of Section 7 consultations and Environmental Impact Statements, reviewing permit applications, conducting environmental contaminant risk assessments, identifying specific data gaps and research needs, selecting potential management actions, and establishing priorities for broad-based research on limiting factors applicable to groups of species rather than the current species-by-species approach. However. caution must be exercised in the use of this data because of the speculative nature of the causes; most of the causes (69.7%) are based on poorly documented expert opinion and

  4. Effects of Ambient Air Pollution Exposure on Olfaction: A Review.

    PubMed

    Ajmani, Gaurav S; Suh, Helen H; Pinto, Jayant M

    2016-11-01

    Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution-related olfactory impacts on the general population using measured

  5. Human impacts on genetic diversity in forest ecosystems

    Treesearch

    F. Thomas Ledig

    1992-01-01

    Humans have converted forest to agricultural and urban uses, exploited species, fragmented wildlands. changed the demographic structure of forests, altered habitat, degraded the environment with atmospheric and soil pollutants, introduced exotic pests and competitors, and domesticated favored species. None of they activities is new; perhaps with the exception of...

  6. Relationships between forest songbird populations and managed forests in Idaho

    Treesearch

    Diane M. Evans; Deborah M. Finch

    1994-01-01

    Many species of songbirds have experienced population declines. In the eastern U.S. in recent years, but conclusive data on population trends and factors affecting populations in the West are lacking. Few studies have evaluated the importance of surrounding land configuration to songbird abundances. In 1992, we initiated a study in mixed conifer forest in west-central...

  7. Early changes in physical tree characteristics during an oak decline event in the Ozark highlands

    Treesearch

    Martin A. Spetich

    2006-01-01

    An oak decline event is severely affecting up to 120 000 ha in the Ozark National Forest of Arkansas. Results of early changes in physical tree characteristics during that event are presented. In the fall and winter of 1999 and 2000, we established research plots on a site that would become a center of severe oak decline. In August 2000, standing trees > 14 cm in...

  8. Breeding bird populations in Missouri Ozark forests with and without clearcutting

    Treesearch

    Frank R., III Thompson; William D. Dijak; Thomas G. Kulowiec; David A. Hamilton

    1992-01-01

    Concern has arisen that forest management practices that create edge (such as clearcutting) are contributing to regional declines in neotropical migrant birds that inhabit forest interiors. Consequently, we studied breeding bird populations in an extensively forested region of southern Missouri to determine if the numbers of breeding birds differed between areas (n = 9...

  9. Pollutant-induced cell death and reactive oxygen species accumulation in the aerial roots of Chinese banyan (Ficus microcarpa)

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Cao, Ce; Sun, Zhongyu; Lin, Zhifang; Deng, Rufang

    2016-11-01

    Industrial pollutants induce the production of toxic reactive oxygen species (ROS) such as O2.-, H2O2, and ·OH in plants, but they have not been well quantified or localized in tissues and cells. This study evaluated the pollutant- (HSO3-, NH4NO3, Al3+, Zn2+, and Fe2+) induced toxic effects of ROS on the aerial roots of Chinese banyan (Ficus microcarpa). Root cell viability was greatly reduced by treatment with 20 mM NaHSO3, 20 mM NH4NO3, 0.2 mM AlCl3, 0.2 mM ZnSO4, or 0.2 mM FeSO4. Biochemical assay and histochemical localization showed that O2.- accumulated in roots in response to pollutants, except that the staining of O2.- under NaHSO3 treatment was not detective. Cytochemical localization further indicated that the generated O2.- was present mainly in the root cortex, and pith cells, especially in NH4NO3- and FeSO4-treated roots. The pollutants also caused greatly accumulated H2O2 and ·OH in aerial roots, which finally resulted in lipid peroxidation as indicated by increased malondialdehyde contents. We conclude that the F. microcarpa aerial roots are sensitive to pollutant-induced ROS and that the histochemical localization of O2.- via nitrotetrazolium blue chloride staining is not effective for detecting the effects of HSO3- treatment because of the treatment’s bleaching effect.

  10. Impact of Road Traffic Pollution on Pre-eclampsia and Pregnancy-induced Hypertensive Disorders

    PubMed Central

    Halldorsson, Thorhallur I.; Olsen, Sjurdur F.; Hjortebjerg, Dorrit; Ketzel, Matthias; Grandström, Charlotta; Raaschou-Nielsen, Ole; Sørensen, Mette

    2017-01-01

    Background: Road traffic is a major source of air pollution and noise. Both exposures have been associated with hypertension in adults, but pregnant women have been less studied. Methods: We examined single and joint effects of ambient air pollution and road traffic noise on pre-eclampsia and pregnancy-induced hypertensive disorders among 72,745 singleton pregnancies (1997–2002) from the Danish National Birth Cohort with complete covariate data and residential address history from conception until live born birth. Nitrogen dioxide (NO2) and noise from road traffic (Lden) were modeled at all addresses. Outcome and covariate data were derived from registries, hospital records, and questionnaires. Results: A 10-µg/m3 increase in NO2 exposure during first trimester was associated with increased risk of pre-eclampsia (n = 1,880, adjusted odds ratio = 1.07 [95% confidence interval = 1.01, 1.14]) and pregnancy-induced hypertensive disorders (n = 2,430, adjusted odds ratio = 1.07 [1.01, 1.13]). A 10 dB higher road traffic noise was also associated with increased risk of pre-eclampsia (1.10 [1.02, 1.18]) and pregnancy-induced hypertensive disorders (1.08 [1.02, 1.15]). For both exposures, the associations were strongest for mild pre-eclampsia (n = 1,393) and early-onset pre-eclampsia (n = 671), whereas higher risk for severe pre-eclampsia (n = 487) was not evident. In mutually adjusted models, estimates for both exposures decreased and only the association between NO2 and mild pre-eclampsia remained. Conclusions: Road traffic may increase the risk of pre-eclampsia and hypertensive disorders in pregnancy through exposure to both ambient air pollution and noise, although associations with the two exposures were generally not found to be independent of one another. See video abstract, http://links.lww.com/EDE/B112. PMID:27648591

  11. Urban forest sustainability in the United States

    Treesearch

    David J. Nowak

    2017-01-01

    Urban forests in the United States provide numerous ecosystem services that vary in magnitude across the country and are valued in the billions of dollars per year. Urban tree cover has been on the decline in recent years. Numerous forces for change will continue to alter urban forests in the coming years (i.e., development, climate change, insects and diseases,...

  12. Nitrogen and sulfur deposition and forest nutrient status in the Valley of Mexico

    Treesearch

    M. E. Fenn; L. I. de Bauer; A. Quevedo-Nolasco; Rodriquez-Frausto-C.

    1999-01-01

    Mexico City experiences some of the most severe air pollution in the world. Ozone injury has been documented in sensitive tree species in urban and forested areas in the Valley of Mexico. However, little is known of the levels of other atmospheric pollutants and their ecological effects on forests in the Valley of Mexico. In this study bulk throughfall deposition of...

  13. Nitrogen and sulfur desposition and forest nutrient status in the valley of Mexico

    Treesearch

    Mark E. Fenn; L.I. De Baur; A. Quevedo-Nolasco; C. Rodriguez-Frausto

    1999-01-01

    Mexico City experiences some of the most severe air pollution in the world. Ozone injury has been documented in sensitive tree species in urban and forested areas in the Valley of Mexico. However, little is known of the levels of other atmospheric pollutants and their ecological effects on forests in the Valley of Mexico. In this study bulk throughfall deposition of...

  14. Risk factors of oak decline and regional mortality patterns in the Ozark Highlands of Arkansas and Missouri

    Treesearch

    Martin A. Spetich; Zhaofei Fan; Xiuli Fan; Hong He; Stephen R. Shifley; W. Keith Moser

    2011-01-01

    Since the late 1970s, oak decline and mortality have plagued Midwestern-upland oak-hickory forests, particularly species in the red oak group (Quercus Section Lobatae) across the Ozark Highlands of Missouri, Arkansas, and Oklahoma (Dwyer and others 1995). Drought is a common inciting factor in oak decline, while advanced tree age is considered a...

  15. Air pollution alters brain and pituitary endothelin-1 and inducible nitric oxide synthase gene expression.

    PubMed

    Thomson, Errol M; Kumarathasan, Prem; Calderón-Garcidueñas, Lilian; Vincent, Renaud

    2007-10-01

    Recent work suggests that air pollution is a risk factor for cerebrovascular and neurodegenerative disease. Effects of inhaled pollutants on the production of vasoactive factors such as endothelin (ET) and nitric oxide (NO) in the brain may be relevant to disease pathogenesis. Inhaled pollutants increase circulating levels of ET-1 and ET-3, and the pituitary is a potential source of plasma ET, but the effects of pollutants on the expression of ET and NO synthase genes in the brain and pituitary are not known. In the present study, Fischer-344 rats were exposed by nose-only inhalation to particles (0, 5, 50mg/m3 EHC-93), ozone (0, 0.4, 0.8 ppm), or combinations of particles and ozone for 4 h. Real-time reverse transcription polymerase chain reaction was used to measure mRNA levels in the cerebral hemisphere and pituitary 0 and 24 h post-exposure. Ozone inhalation significantly increased preproET-1 but decreased preproET-3 mRNAs in the cerebral hemisphere, while increasing mRNA levels of preproET-1, preproET-3, and the ET-converting enzyme (ECE)-1 in the pituitary. Inducible NO synthase (iNOS) was initially decreased in the cerebral hemisphere after ozone inhalation, but increased 24 h post-exposure. Particles decreased tumour necrosis factor (TNF)-alpha mRNA in the cerebral hemisphere, and both particles and ozone decreased TNF-alpha mRNA in the pituitary. Our results show that ozone and particulate matter rapidly modulate the expression of genes involved in key vasoregulatory pathways in the brain and pituitary, substantiating the notion that inhaled pollutants induce cerebrovascular effects.

  16. Alabama forests: Trends and prospects

    Treesearch

    Paul A. Murphy

    1973-01-01

    Between 1963 and 1972, forest area in Alabama declined 2 percent to 21.3 million acres. Softwood volume increased 30 percent and hardwood 15 percent. Volumes increased in all tree-size classes, but increases were greatest in small trees.

  17. Rapid regional recovery from sulfate and nitrate pollution in streams of the western Czech Republic - Comparison to other recovering areas

    USGS Publications Warehouse

    Majer, V.; Kram, P.; Shanley, J.B.

    2005-01-01

    Hydrochemical changes between 1991 and 2001 were assessed based on two synoptic stream surveys from the 820-km2 region of the Slavkov Forest and surrounding area, western Czech Republic. Marked declines of sulfate, nitrate, chloride, calcium and magnesium in surface waters were compared with other areas of Europe and North America recovering from acidification. Declines of sulfate concentration in the Slavkov Forest (-30 ??eq L-1 yr-1) were more dramatic than declines reported from other sites. However, these dramatic declines of strong acid anions did not generate a widespread increase of stream water pH in the Slavkov Forest. Only the most acidic streams experienced a slight increase of pH by 0.5 unit. An unexpected decline of stream water pH occurred in slightly alkaline streams. ?? 2004 Elsevier Ltd. All rights reserved.

  18. Suggestions for Forest Conservation Policy under Climate Change

    NASA Astrophysics Data System (ADS)

    Choe, H.; Thorne, J. H.; Lee, D. K.; Seo, C.

    2015-12-01

    Climate change and the destruction of natural habitats by land-use change are two main factors in decreasing terrestrial biodiversity. Studying land-use and climate change and their impact under different scenarios can help suggest policy directions for future events. This study explores the spatial results of different land use and climate models on the extent of species rich areas in South Korea. We built land use models of forest conversion and created four 2050 scenarios: (1) a loss trend following current levels, resulting in 15.5% lost; (2) similar loss, but with forest conservation in areas with suitable future climates; (3) a reduction of forest loss by 50%; and (4) a combination of preservation of forest climate refugia and overall reduction of loss by 50%. Forest climate refugia were identified through the use of species distribution models run on 1,031 forest plant species to project current and 2050 distributions. We calculated change in species richness under four climate projections, permitting an assessment of forest refugia zones. We then crossed the four land use models with the climate-driven change in species richness. Forest areas predominantly convert to agricultural areas, while climate-suitable extents for forest plants decline and move northward, especially to higher elevations. Scenario 2, that has the higher level of deforestation but protects future species rich areas, conserves nearly as much future biodiversity as scenario 3, which reduced deforestation rates by 50%. This points to the importance of including biogeographic climate dynamics in forest policy. Scenario 4 was the most effective at conserving forest biodiversity. We suggest conserving forest areas with suitable climates for biodiversity conservation and the establishment of monoculture plantations targeted to areas where species richness will decline based on our results.

  19. Nebraska's second forest inventory.

    Treesearch

    Gerhard K. Raile

    1986-01-01

    The second inventory of the timber resource of Nebraska shows a 25% decline in commercial forest area and a 23% gain in growing-stock volume between 1955 and 1983. Text and statistics are presented on area, volume, growth, mortality, removals, utilization, biomass, and future timber supply.

  20. Reassessment of Loblolly Pine Decline on the Oakmulgee Ranger District, Talladega National Forest, Alabama

    Treesearch

    Nolan J. Hess; William J. Otroana; John P. Jones; Arthur J. Goddard; Charles H. Walkinshaw

    1999-01-01

    Loblolly pine (Pinus taeda L.) decline has been a management concern on the Oakmulgee Ranger District since the 1960's. The symptoms include sparse crowns, reduced radial growth, deterioration of fine roots, decline, and mortality of loblolly pine by age 50.