Science.gov

Sample records for poly phthalazinone ether

  1. Synthesis and Characterization of Poly(phthalazinone Ether Nitrile) Copolymers with Hydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Dong, L. M.; Liao, G. X.; Liu, C.; Yang, S. S.; Jian, X. G.

    Poly(phthalazinone ether nitrile) (PPEN) block copolymers containing polysiloxane were prepared so as to create a strongly hydrophobic polymer surface. The copolymers were synthesized from eugenol end-capped polydimethylsiloxane (PDMS) and fluoro-terminated PPEN oligomers by the aromatic nucleophilic substitution polycondensation in the presence of dimethyl sulfoxide/o-dichlorobenzene and K2CO3 as solvents and catalyst, respectively. The resultant copolymers were characterized by FTIR, 1H NMR, and gel permeation chromatography. XPS analysis results indicated that the copolymer film had a very rich PDMS segment surface. Atomic force microscopy further showed that there existed a continuous PDMS phase on the copolymer surface and PPEN as the dispersive particles was dispersed at diameters between 0.1 and 0.3 nm. The enrichment of PDMS in the copolymer surface could be responsible for an increase of surface water repellency (113.4°).

  2. Coupling hydrogen separation with butanone hydrogenation in an electrochemical hydrogen pump with sulfonated poly (phthalazinone ether sulfone ketone) membrane

    NASA Astrophysics Data System (ADS)

    Huang, Shiqi; Wang, Tao; Wu, Xuemei; Xiao, Wu; Yu, Miao; Chen, Wei; Zhang, Fengxiang; He, Gaohong

    2016-09-01

    This work reports the novel work of coupling H2/CO2 separation with biomass-derived butanone hydrogenation in non-fluorinated sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) electrochemical hydrogen pump (EHP) reactor. Due to higher resistance to swelling, SPPESK-based EHP reactor exhibits more excellent reaction rate in elevated temperature (60 °C) and higher butanone concentration (2 M) as 270, 260 nmol cm-2 s-1, respectively, higher than 240, 200 nmol cm-2 s-1of Nafion-based EHP reactors. Also, the SPPESK-based EHP reactor remains 90% of initial hydrogenation rate after 4 batches, better than that of Nafion-based EHP reactors, which is only 62%. The energy efficiency of EHP separator reaches 40% under H2/CO2 mixture feed mode, and electricity of about 0.3 kWh is consumed per Nm3 H2 product, being superior to energy consumption compared with alternative processes like PSA and electrolysis of water. In addition, SPPESK-based EHP exhibits better hydrogenation stability due to lower CO2 permeation than Nafion. With increasing CO2 content in H2 feed, hydrogenation rate almost keeps constant at around 210 nmol cm-2 s-1 in SPPESK-based EHP reactor while decreases fast to 50 nmol cm-2 s-1 in Nafion/PTFE-based EHP reactor. These results show integration of gas separation with hydrogenation reactor is feasible in SPPESK-based EHP reactor.

  3. Optimization and characterization of poly(phthalazinone ether ketone) (PPEK) heat-resistant porous fiberous mat by electrospinning

    NASA Astrophysics Data System (ADS)

    Shi, R.; Bin, Y. Z.; Yang, W. X.; Wang, D.; Wang, J. Y.; Jian, X. G.

    2016-08-01

    Poly(phthalazinone ether ketone) (PPEK) is noted for its outstanding heat-resistance property and mechanical strength. A one-step electrospinning method was conducted to produce PPEK micro-nano porous fibrous mat. We gave emphasis study on the spinnability, optimized conditions, fibers' morphology, surface science and fracture mechanism. The uniform electrospun fibrous mat resulted from PPEK/chloroform binary system indicated that PPEK would be a prospective material to be applied in electrospinning. Addition of a small amount of non-solvent (ethanol) turned out to be advantageous to the reduction of fiber diameter and the alleviation of choking during spinning process. Organic salt (benzyltrimethylammonium chloride) was employed to increase the conductivity of solution for the formation of thin fiber. After trials, PPEK/chloroform/ethanol system with salt and PPEK/NMP system were taken as two optimized systems. These two systems showed different pore fraction in N2 adsorption test, and displayed different mechanical behaviors in uniaxial tension test. The fibrous mat from PPEK/chloroform/ethanol system showed a feature of ductile fracture with relatively low fracture strength but long fracture deformation, while the fibrous mat from PPEK/NMP system showed a feature of brittle fracture with small deformation but quite large fracture strength of ca. 6 MPa. Finally thermogravimetric analysis indicated that the resultant PPEK fibrous mat did not decompose until the temperature reached 478 °C, which qualified the resultant fibrous mat as a promising material used under high-temperature condition.

  4. Preparation and characterization of thermally stable copoly(phthalazinone biphenyl ether sulfone) hollow fiber ultrafiltration membranes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Shouhai; Wang, Yutian; Lu, Yan; Jian, Xigao

    2015-04-01

    Novel thermally stable copoly(phthalazinone biphenyl ether sulfone) (PPBES) hollow fiber ultrafiltration (UF) membranes were successfully fabricated by the dry/wet phase inversion technique. The effects of polymer dope formulation (i.e., the PPBES concentration, different types and contents of additives) and fiber spinning conditions (i.e., air gap distance, coagulation bath temperature) on the morphologies and separation performance of PPBES hollow fiber UF membranes were investigated, respectively. It was found that the water flux of hollow fiber membrane decreased with the increase of PPBES concentration or EGME content in casting solution, while the rejection of PEG increased. However, the PPBES hollow fiber UF prepared with LiCl as inorganic small molecule additive exhibited different phenomena. In addition, the decrease of air gap distance or the increase of coagulation bath temperature could improve the water flux of UF membrane while reduce the rejection of PEG. Moreover, the thermal stability of the PPBES hollow fiber UF membranes was investigated. The water flux of PPBES membrane increased dramatically from 155 to 428 L m-2 h-1 without significant decrease of rejection when the temperature of feed solution increased from 20 °C to 95 °C.

  5. Effect of additives on the performance and morphology of sulfonated copoly (phthalazinone biphenyl ether sulfone) composite nanofiltration membranes☆

    NASA Astrophysics Data System (ADS)

    Guan, Shanshan; Zhang, Shouhai; Liu, Peng; Zhang, Guozhen; Jian, Xigao

    2014-03-01

    Sulfonated copoly (phthalazinone biphenyl ether sulfone) (SPPBES) composite nanofiltration membranes were fabricated by adding low molecular weight additives into SPPBES coating solutions during a dip coating process. Three selected additives: glycol, glycerol and hydroquinone were used in this work. The effect of additives on the membrane performance was studied and discussed in terms of rejection and permeation flux. Among all the composite membranes, the membrane prepared with glycol as an additive achieved the highest Na2SO4 rejection, and the membrane fabricated with glycerol as an additive exhibited the highest flux. The salts rejection of SPPBES composite membranes increased in the following order MgCl2 < NaCl ≤ MgSO4 < Na2SO4. The morphologies of the SPPBES composite membranes were characterized by SEM, it was found that the membrane prepared with hydroquinone showed a rough membrane surface. Composite membrane fabricated with glycol or glycerol as the additive showed very good chemical stability.

  6. Poly(arylene ether)s containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)

    1996-01-01

    Poly(arylene ether)s containing pendent ethynyl and substituted ethynyl groups and poly(arylene ether) copolymers containing pendent ethynyl and substituted ethynyl groups are readily prepared from bisphenols containing ethynyl and substituted ethynyl groups. The resulting polymers are cured up to 350.degree. C. to provide crosslinked poly(arylene ether)s with good solvent resistance, high strength and modulus.

  7. Sulfonimide-containing poly(arylene ether)s and poly(arylene ether sulfone)s, methods for producing the same, and uses thereof

    DOEpatents

    Hofmann, Michael A.

    2006-11-14

    The present invention is directed to sulfonimide-containing polymers, specifically sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, and processes for making the sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, for use conductive membranes and fuel cells.

  8. Poly(arylene ether)s That Resist Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul; Smith, Joseph G., Jr.

    1994-01-01

    Novel poly(arylene ether)s containing phosphine oxide (PAEPO's) made via aromatic nucleophilic displacement reactions of activated aromatic dihalides (or, in some cases, activated aromatic dinitro compounds) with new bisphenol monomers containing phosphine oxide. Exhibited favorable combination of physical and mechanical properties and resistance to monatomic oxygen in oxygen plasma environment. Useful as adhesives, coatings, films, membranes, moldings, and composite matrices.

  9. Phenylethynl-terminated poly(arylene ethers)

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Bryant, Robert G. (Inventor); Hergenrother, Paul M. (Inventor)

    1993-01-01

    Phenylethynyl-terminated poly(arylene ethers) are prepared in a wide range of molecular weights by adjusting monomer ratio and adding an appropriate amount of 4-fluoro- 4'-phenylethynyl benzophenone during polymer synthesis. The resulting phenylethynyl-terminated poly(arylene ethers) react and crosslink upon curing for one hour at 350 C to provide materials with improved solvent resistance, higher modulus, and better high temperature properties than the linear, uncrosslinked polymers.

  10. Functionalization of poly(aryl ether ether ketone)

    SciTech Connect

    Wang, Fei; Roovers, J.

    1993-12-31

    Bromomethyl and dibromomethyl substituted poly(aryl ether ether ketone) have been prepared from methyl poly(aryl ether ether ketone) by bromination with bromine. These brominated polymers are intermediates that can be further functionalized by: hydrolysis, oxidation, substitution etc. A series of new functionalized PEEK polymers has been prepared. The functional group includes -CH{sub 2}OH, -CH{sub 2}OCH{sub 3}, -CHO, -COOH, -COOCH{sub 3}, -CH{sub 2}CN, -CH{sub 2}COOH, -CH{sub 2}OCOCH{sub 3}, -CH{sub 2}N{sup +}H(CH{sub 2}CH{sub 3}){sub 2}Br{sup {minus}}, -CH{sub 2}N(CH{sub 2}CH{sub 3}){sub 2}, -CH{sub 2}N{sup +}H(CH{sub 2}CH{sub 3}){sub 3}Br{sup {minus}}.

  11. A new alternative to expandable pedicle screws: Expandable poly-ether-ether-ketone shell.

    PubMed

    Demir, Teyfik

    2015-05-01

    Screw pullout is a very common problem in the fixation of sacrum with pedicle screws. The principal cause of this problem is that the cyclic micro motions in the fixation of sacrum are higher than the other regions of the vertebrae that limit the osteo-integration between bone and screw. In addition to that, the bone quality is very poor at sacrum region. This study investigated a possible solution to the pullout problem without the expandable screws' handicaps. Newly designed poly-ether-ether-ketone expandable shell and classical pedicle screws were biomechanically compared. Torsion test, pullout tests, fatigue tests, flexion/extension moment test, axial gripping capacity tests and torsional gripping capacity tests were conducted in accordance with ASTM F543, F1798 and F1717. Standard polyurethane foam and calf vertebrae were used as embedding medium for pullout tests. Classical pedicle screw pullout load on polyurethane foam was 564.8 N compared to the failure load for calf vertebrae's 1264 N. Under the same test conditions, expandable poly-ether-ether-ketone shell system's pullout loads from polyurethane foam and calf vertebrae were 1196.3 and 1890 N, respectively. The pullout values for expandable poly-ether-ether-ketone shell were 33% and 53% higher than classical pedicle screw on polyurethane foam and calf vertebrae, respectively. The expandable poly-ether-ether-ketone shell exhibited endurance on its 90% of yield load. Contrary to poly-ether-ether-ketone shell, classical pedicle screw exhibited endurance on 70% of its yield load. Expandable poly-ether-ether-ketone shell exhibited much higher pullout performance than classical pedicle screw. Fatigue performance of expandable poly-ether-ether-ketone shell is also higher than classical pedicle screw due to damping the micro motion capacity of the poly-ether-ether-ketone. Expandable poly-ether-ether-ketone shell is a safe alternative to all other expandable pedicle screw systems on mechanical perspective

  12. Poly(Arylene Ether Imidazole) Surface Films

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Towell, Timothy W.; Tompkins, Stephen S.

    1993-01-01

    Films adhere well to some substrates, provide smooth surfaces, and facilitate release from molds. Thin films of thermoplastic poly(arylene ether imidazole)s (PAEI's) particularly suitable for use as surface modifiers for graphite/epoxy or graphite/bismaleimide composite panels. Molecule of PAEI includes imidazole groups along its backbone that co-cure with epoxies or bismaleimides during processing. Films thermally stable and resistant to bombardment by energetic electrons.

  13. Flow-Induced Crystallization of Poly(ether ether ketone)

    NASA Astrophysics Data System (ADS)

    Nazari, Behzad; Rhoades, Alicyn; Colby, Ralph

    The effects of an interval of shear above the melting temperature Tm on subsequent isothermal crystallization below Tm is reported for the premier engineering thermoplastic, poly(ether ether ketone) (PEEK). The effect of shear on the crystallization rate of PEEK is investigated by means of rheological techniques and differential scanning calorimetry (DSC) under a protocol of imposing shear in a rotational cone and plate rheometer and monitoring crystallization after quenching. The rate of crystallization at 320 °C was not affected by shear for shear rates <7 s-1 at 350 °C, whereas intervals of adequate shear at higher shear rates prior to the quench to 320 °C accelerated crystallization significantly. As the duration of the interval of shear above 7 s-1 is increased, the crystallization time decreases but at each shear rate eventually saturates once the applied specific work exceeds ~120 MPa. The annealing of the flow-induced precursors was also investigated. The nuclei were fairly persistent at temperatures close to 350 °C, however very unstable at temperatures above 375 °C. This suggests that the nanostructures formed under shear might be akin to crystalline lamellae of greater thickness, compared to quiescently crystallized lamellae.

  14. Functionalized poly(arylene ethers) as toughness modifiers for bismaleimides

    NASA Technical Reports Server (NTRS)

    Stenzenberger, H. D.; Roemer, W.; Hergenrother, P. M.; Jensen, B.; Breitigam, W.

    1990-01-01

    A family of novel, low molecular weight functionalized poly(arylene ether) resins has been investigated to ascertain its members' toughness-imparting contribution to neat bismaleimide (BMI) resin and BMI-matrix laminate composite properties. Attention is given to the contribution of the reactive poly(arylene ether)'s backbone chemistry to fracture toughness, as well as to the comparative influence of high and low molecular weight reactive poly(arylene ether) types on the modified BMI resin systems. The modified BMIs possess a polyphase morphology, with good adhesion between the thermoplastic nodules and the host thermoset systems.

  15. Solvent-induced crystallization of poly(ether ether ketone)

    NASA Astrophysics Data System (ADS)

    McPeak, Jennifer Lynne

    The purpose of this study was learn how the diffusion, swelling, and crystallization processes are coupled during solvent-induced crystallization of poly(ether ether ketone) (PEEK). Unoriented amorphous PEEK films were immersed in aprotic organic liquids at ambient temperature and bulk properties or characteristics were monitored as a function of immersion time. The sorption behavior, T g and Tm° suppression, crystallinity, and dynamic mechanical response were correlated as a function of solvent chemistry and immersion time. The saturation time of methylene chloride, 1,3-dichloropropane, tetrahydrofuran, cyclopentanone, chlorobenzene, toluene, diethyl ketone, and ethylbenzene in amorphous PEEK films were found to range from hours to days depending on the level of polymer-solvent interactions. In-situ isochronal DMA spectra show that the Tg of PEEK was suppressed from 150°C to below ambient temperature such that crystallization was kinetically feasible during ambient immersion. In addition, an increase in viscoelastic dispersion was attributed to the presence of crystallinity. From dynamic mass uptake and wide-angle x-ray diffraction (WAXD) results, it was found that the bulk sorption rate was equal to the bulk crystallization rate for all solvent systems that promoted SINC and PEEK exhibited diffusion-limited crystallization, irrespective of the nature of the transport mechanism. In addition, the solvent-induced crystals exhibit preferred orientation as supported by photographic WAXD. A distinct sorption front, observed with scanning electron microscopy, further supports the scenario of diffusion-controlled crystallization and one-dimensional diffusion. Isothermal DMA spectra for THF, cyclopentanone, and chlorobenzene, indicate that, as the solvent diffuses into the films, the stiffness of the polymer decreases at short times, begins to increase, and then reaches a relatively time-independent value. It was determined that the initial decrease in the storage

  16. Tough poly(arylene ether) thermoplastics as modifiers for bismaleimides

    NASA Technical Reports Server (NTRS)

    Stenzenberger, H. D.; Roemer, W.; Hergenrother, P. M.; Jensen, B. J.

    1989-01-01

    Several aspects of research on thermoplastics as toughness modifiers are discussed, including the contribution of the backbone chemistry and the concentration of the poly(arylene ether) thermoplastic to fracture toughness, influence of the molecular weight of the poly(arylene ether) thermoplastic on neat resin fracture toughness, and the morphology of the thermoplastic modified networks. The results show that fracture toughness of brittle bismaleimide resins can be improved significantly with poly(arylene ether) thermoplastic levels of 20 percent by weight, and that high molecular weight poly(arylene ether) based on bisphenol A provides the highest degree of toughening. Preliminary composite evaluation shows that improvements in neat resin toughness translate into carbon fabric composite.

  17. Synthesis and characterizations of electrospun sulfonated poly (ether ether ketone) SPEEK nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Hasbullah, N.; Sekak, K. A.; Ibrahim, I.

    2016-07-01

    A novel electrospun polymer electrolyte membrane (PEM) based on Sulfonated Poly (ether ether ketone) were prepared and characterized. The poly (ether ether ketone) PEEK was sulfonated using concentrated sulfuric acid at room temperature for 60 hours reaction time. The degree sulfonation (DS) of the SPEEK are 58% was determined by H1 NMR using area under the peak of the hydrogen shielding at aromatic ring of the SPEEK. Then, the functional group of the SPEEK was determined using Fourier transfer infrared (FTIR) showed O-H vibration at 3433 cm-1 of the sulfonated group (SO2-OH). The effect of the solvent and polymer concentration toward the electrospinning process was investigated which, the DMAc has electrospun ability compared to the DMSO. While, at 20 wt.% of the polymer concentration able to form a fine and uniform nanofiber, this was confirmed by FESEM that shown electrospun fiber mat SPEEK surface at nano scale diameter.

  18. Chemistry and adhesive properties of poly(arylene ether)s containing heterocyclic units

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1991-01-01

    Novel poly(arylene ether)s containing heterocyclic units were prepared, characterized, and evaluated as adhesives and composite matrices. The polymers were prepared by reacting a heterocyclic bisphenol with an activated aromatic dihalide in a polar aprotic solvent, using potassium carbonate. The polymerizations were generally carried out in N,N-dimethylacetamide at 155 C. In some cases, where the polymers were semicrystalline, higher temperatures and thus higher boiling solvents were necessary to keep the polymers in solution. Heterocyclic rings incorporated into the poly(arylene ether) backbone include phenylquinoxaline, phenylimidazole, benzimidazole, benzoxazole, 1,3,4-oxadiazole, and 1,2,4-triazole. The polymers were characterized by differential scanning calorimetry, solution viscosity, X-ray diffraction, thin film, and adhesive and (in some cases) composite properties. The glass transition temperatures, crystalline melt temperature, solubility, and mechanical properties varied depending upon the heterocyclic ring. The chemistry and properties of these materials are discussed.

  19. Electroless nickel-phosphorus coating on poly (ether ether ketone)/carbon nanotubes composite

    NASA Astrophysics Data System (ADS)

    Zhai, Tong; Di, Lizhi; Yang, De'an

    2014-05-01

    In order to improve electromagnetic shielding property of poly (ether ether ketone)/carbon nanotubes composite, a nickel-phosphorus coating was covered on the composite by electroless plating. The morphologies of the substrates and the coatings were characterized by SEM. XPS was performed to analyze the surface composition and chemical states before and after chemical etching. The results showed that lots of microscopic holes appeared and evenly distributed on the surface, and the concentration of hydrophilic groups on the surface increased after the composite was etched. Thermal shock test showed that the adhesive strength between the coating and the composite was good.

  20. Development of quantitative structure property relationships for poly(arylene ether)s.

    PubMed

    Hamerton, I; Howlin, B J; Larwood, V

    1995-02-01

    The technique of quantitative structure-activity relationships (QSAR) is well accepted by the drug design community. The analogous technique of quantitative structure-property relationships (QSPR) has applications in the field of polymer chemistry. A variety of molecular modeling and molecular orbital techniques was used to find molecular descriptors that could be used to derive an empirical equation to describe the glass transition temperature of two related classes of poly(arylene ether)s. The derived equation was then used to predict the thermal characteristics of another polymer of the same type. PMID:7794828

  1. Amorphous phase separation in crystallizable polymer blends based on poly (aryl ether ketones) and poly (ether imide)

    SciTech Connect

    Kalika, D.S.; Bristow, J.F.

    1996-12-31

    The morphology of a series of miscible crystallizable blends based on poly (aryl ether ketones) [PAEK] and poly (ether imide) [PEI] has been investigated as a function of blend composition and crystallization condition by dielectric relaxation spectroscopy. For blends of poly (ether ether ketone) [PEEK] and PEI, dielectric scans of the crystallized samples reveal two glass-rubber relaxations corresponding to the coexistence of a mixed interlamellar amorphous phase, and a pure PEI phase located in interfibrillar/interspherulitic regions. The exclusion of a significant fraction of PEI outside of the crystal lamellae reflects a fundamental change in the nature of interaction between the interlamellar PEEK segments and the PEI chains owing to the constraints imposed on the PEEK segments by the crystal surfaces. The degree of PEI exclusion is dependent upon kinetic factors, i.e. the rate of PEEK crystallization relative to the rate of PEI diffusion away from the advancing crystal front. As a result, lower crystallization temperatures lead to an increase in the amount of PEI trapped in the interlamellar regions. In this work, the morphological characteristics of the PEEK/PEI blends are compared with those of blends comprised of poly (ether ketone ketone) [PEKK] and PEI. The introduction of the {open_quotes}kinked{close_quote} isophthalate moiety in the PEKK backbone has been shown to disrupt the persistence of order at the crystal-amorphous interface, and thereby leads to a reduction in the degree of constraint imposed by the crystal lamellae on the amorphous (interlamellar) PEKK segments. The impact of this reduction in crystalline constraint on the nature of the PEKK/PEI intersegmental interactions and the corresponding PEI segregation is discussed.

  2. Novel high T{sub g} high-strength poly(aryl ether)s

    SciTech Connect

    Banerjee, S.; Maier, G.

    1999-08-01

    A novel 2-perfluoroalkyl-activated bisfluoro monomer has been synthesized successfully using a Pd(0)-catalyzed cross-coupling reaction of 4-fluoro-3-trifluoromethyl phenyl boronic acid with 4,4{prime}-dibromodiphenylbenzene. This monomer was converted to novel poly(aryl ether)s by nucleophilic displacement of the fluorine atoms on the benzene ring with several bisphenols. The products obtained by displacement of the fluorine atoms exhibit weight average molar masses up to 1.06 {times} 10{sup 5} g/mol in GPC. These poly(aryl ether)s showed outstanding thermooxidative stability up to 534 C for 5% weight loss in TGA under synthetic air and high glass transition temperatures (T{sub g}) even up to 300 C in DSC and DMTA. These polymers are soluble in a wide range of organic solvents, e.g., CHCl{sub 3}, THF, NMP, DMF, toluene, etc., and are insoluble in DMSO and acetone. Transparent thin films of these polymers cast from DMF exhibited tensile strengths up to 115 MPa, moduli up to 2.59 GPa, and elongations up to 120% depending on their exact repeating unit structures. These values are comparable to those of high performance thermoplastic materials such as PEEK or Ultem PEI.

  3. Novel high T[sub g] high-strength poly(aryl ether)s

    SciTech Connect

    Banerjee, S.; Maier, G. . Lehrstuhl fuer Makromolekulare Stoffe)

    1999-08-01

    A novel 2-perfluoroalkyl-activated bisfluoro monomer has been synthesized successfully using a Pd(0)-catalyzed cross-coupling reaction of 4-fluoro-3-trifluoromethyl phenyl boronic acid with 4,4[prime]-dibromodiphenylbenzene. This monomer was converted to novel poly(aryl ether)s by nucleophilic displacement of the fluorine atoms on the benzene ring with several bisphenols. The products obtained by displacement of the fluorine atoms exhibit weight average molar masses up to 1.06 [times] 10[sup 5] g/mol in GPC. These poly(aryl ether)s showed outstanding thermooxidative stability up to 534 C for 5% weight loss in TGA under synthetic air and high glass transition temperatures (T[sub g]) even up to 300 C in DSC and DMTA. These polymers are soluble in a wide range of organic solvents, e.g., CHCl[sub 3], THF, NMP, DMF, toluene, etc., and are insoluble in DMSO and acetone. Transparent thin films of these polymers cast from DMF exhibited tensile strengths up to 115 MPa, moduli up to 2.59 GPa, and elongations up to 120% depending on their exact repeating unit structures. These values are comparable to those of high performance thermoplastic materials such as PEEK or Ultem PEI.

  4. Synthesis and characterization of poly(D,L-lactide)-poly(ethylene glycol) multiblock poly(ether-ester-urethane)s

    NASA Astrophysics Data System (ADS)

    Haw, Tan Ching; Ahmad, Azizan; Anuar, Farah Hannan

    2015-09-01

    In this study, poly(D,L-lactide)-poly(ethylene glycol) multiblock poly(ether-ester-urethane)s was synthesized in the framework of environmental friendly products to meet the need for highly flexible polymers. Triblock copolymer with poly(ethylene glycol) as center block and poly(D,L-lactide) as side block were first synthesized by ring-opening polymerization of D,L-lactide, followed by chain extension reaction of triblocks using hexamethylene diisocyanate (HMDI). NMR and infra-red spectroscopies were used to determine the molecular composition whereas XRD analysis revealed crystallinity behavior of synthesized multiblock copolymers.

  5. High temperature fuel cell membranes based on poly(arylene ether)s containing benzimidazole groups

    SciTech Connect

    Kim, Dae Sik; Kim, Yu Seung; Lee, Kwan - Soo; Boncella, James M; Kuiper, David; Guiver, Michael D

    2009-01-01

    Development of new high-performance polymer membranes that retain their proton conductivity under low humidity conditions is one of the most critical requirements to commercialize PEMFC systems. Current sulfonated proton exchange membranes acquire proton conductivity by water that solvates ion and carries proton. Consequently, a loss of water under low RH conditions immediately results in a loss of proton conductivity. One approach to maintain proton conductivity under low RH conditions is to replace water with a less volatile proton solvent. Kreuer has pointed out the possibility to develop fully polymeric proton-conducting membranes based on nitrogen-containing heterocycles such as imidazole, benzimidazole, and pyrazole. We have attempted to blend those less volatile proton solvent with sulfonated copolymers such as polystyrene sulfonic acid, Nafion, poly(arylene ether sulfone, BPSH-xx). [Ref. DOE review meeting 2007 and 2008] However, we observed that imidazole was slowly sublimated out as temperature and humidity increases which could cause poisoning of electro-catalyst, corrosion and losing conductivity. In this presentation, we report the synthesis of novel poly(arylene ether sulfone)s containing benzimidazole groups These benzimidazole containing polymer was blended with sulfonated poly(arylene ether sulfone). In the blend system, benzimidazole group attached to the polysulfone acts as a medium through the basic nitrogen for transfer of protons between the sulfonic acid groups. Proton conductivity of the blend membranes was investigated as a function of water content at 80 C and compared the performance with water based proton conduction system.

  6. Chemistry and properties of new poly(arylene ether imidazoles)

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Hergenrother, P. M.

    1990-01-01

    As part of a program to develop high-temperature high-performance structural resins for aerospace applications, the chemistry and properties of new poly(arylene ether imidazoles) were investigated. The polymers were prepared by the nucleophilic displacement reaction of aromatic bis(imidazolephenols) with activated aromatic difluoro compounds. The amorphous thermoplastic polymers exhibited glass transition temperatures from 230 to 301 C, inherent viscosities from 0.46 to 1.46 dL/g, and number-average molecular weights as high as 59,300 g/mole. The polymers exhibit good toughness, adhesive, composite, and film properties. The chemical, physical, and mechanical properties of these materials are discussed.

  7. Vibrational and VCD spectra of poly(menthyl vinyl ether)

    NASA Astrophysics Data System (ADS)

    McCann, J. L.; Bour, P.; Wieser, H.

    1998-06-01

    The detailed assignments are reported for the vibrational and VCD spectra of (1S,2R,5S)-(+)-menthol. Energy minimized geometries, harmonic force fields, and atomic polar tensors were calculated at the Becke3LYP/6-31G** level, and atomic axial tensors with the vibronic coupling theory at the HF/6-31G level. The spectra consist of contributions mainly from two isomers (70%) distinguished only by conformation of the OH group. An attempt was made to simulate the absorption and VCD spectra of poly(methyl vinyl ether) using a component approach and invoking the excitation scheme with promising though not conclusive results at this stage.

  8. [Recent development of research on the biotribology of carbon fiber reinforced poly ether ether ketone composites].

    PubMed

    Chen, Yan; Pan, Yusong

    2014-12-01

    Carbon fiber reinforced poly ether ether ketone (CF/PEEK) composite possesses excellent biocompatible, biomechanical and bioribological properties. It is one of the most promising implant materials for artificial joint. Many factors influence the bioribological properties of CF/PEEK composites. In this paper, the authors reviewed on the biotribology research progress of CF/PEEK composites. The influences of various factors such as lubricant, reinforcement surface modification, functional particles, friction counterpart and friction motion modes on the bio-tribological properties of CF/PEEK composites are discussed. Based on the recent research, the authors suggest that the further research should be focused on the synergistic effect of multiple factors on the wear and lubrication mechanism of CF/PEEK. PMID:25868268

  9. A sulfonated poly (aryl ether ether ketone ketone) isomer: synthesis and DMFC performance

    SciTech Connect

    Kim, Yu Seung; Liu, Baijun; Hu, Wei; Jiang, Zhenhua; Robertson, Gilles; Guiver, Michael

    2009-01-01

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily-prepared PEEKK post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported analogues and eveluated Nafion membranes.

  10. Wear of ceramic-on-carbon fiber-reinforced poly-ether ether ketone hip replacements.

    PubMed

    Brockett, Claire L; John, Gemma; Williams, Sophie; Jin, Zhongmin; Isaac, Graham H; Fisher, John

    2012-08-01

    Total hip replacement has been a successful surgical intervention for over 50 years, with the majority of bearings using a polyethylene cup. Long-term failure due to osteolysis and loosening has been widely documented and alternative bearings have been sought. A novel carbon fiber-reinforced poly-ether ether ketone (CFR-PEEK) cup was investigated through experimental friction and wear studies. Friction studies demonstrated the bearings operated in a boundary lubrication condition, with friction factors higher than those for other hip replacement bearings. The wear study was conducted with 36 mm diameter bearings tested against Biolox Delta heads for a period of 10 million cycles. The mean volumetric wear rate was 0.3 mm(3)/Mc, indicating the ceramic-on-CFR-PEEK bearing to be a very low wearing option for total hip replacement. PMID:22454322

  11. The effect of high-energy electron radiation on poly(arylene ether)s

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Siochi, E. J.; Croall, C. I.

    1993-01-01

    Thin films of four experimental poly(arylene ether)s of similar chemical structure were exposed to 1 MeV electrons while under high vacuum. The films received total exposures of 5 x 10 exp 7 and 1 x 10 exp 9 rads at a dose rate of 5 x 10 exp 7 rads/h and a pressure of 2 x 10 exp -7 torr. Films exposed to 5 x 10 exp 7 rads showed dramatic changes in molecular weight distribution. After exposures of 1 x 10 exp 9 rads the films were only partially soluble in chloroform and exhibited no detectable changes in the glass transition temperatures. Thin-film tensile properties were also altered by the exposure to electron radiation. The effect of the exposures as determined by various analyses is discussed.

  12. Sulfonated Poly(Ether-Ether-Ketone) Polymer Membranes for Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hodakovska, J.; Kleperis, J.

    2008-01-01

    In the work, sulfonated poly(ether-ether-ketone) (SPEEK) ionomers were synthesized using an original (submitted for patent) and simple method. The resulting membranes were tested to determine parameters that are important for the use of this material in fuel cells (water absorption, sulfonation degree, conductivity, etc.). The thermo-gravimetric analysis has shown a good thermal stability in the range from RT to 200-220 °C, and two characteristic regions of weight loss - 7.4% at ~140 °C (reversible water loss) and 10.3% at 200-220 °C (due to polymer degradation when cross-linked polymer chains permanently break down and their SO3H-groups are lost). The conductivity values obtained by the through-plane measurements of SPEEK membranes were 12 mS/cm at RT and 23 mS/cm at 80 °C.

  13. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    SciTech Connect

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang; Boyer, François; Olivier, Philippe; Sapelkin, Andrei; King, Stephen; Heenan, Richard; Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  14. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation.

    PubMed

    Lu, Tao; Qian, Shi; Meng, Fanhao; Ning, Congqin; Liu, Xuanyong

    2016-06-01

    As a promising implantable material, poly ether ether ketone (PEEK) possesses similar elastic modulus to that of cortical bones yet suffers from bio-inertness and poor osteogenic properties, which limits its application as orthopedic implants. In this work, calcium is introduced onto PEEK surface using calcium plasma immersion ion implantation (Ca-PIII). The results obtained from scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirm the modified layer with varying contents of calcium are formed on PEEK surfaces. Water contact angle measurements reveal the increasing hydrophobicity of both Ca-PIII treated surfaces. In vitro cell adhesion, viability assay, alkaline phosphatase activity and collagen secretion analyses disclose improved the adhesion, proliferation, and osteo-differentiation of rat bone mesenchymal stem cells (bMSCs) on Ca-PIII treated surfaces. The obtained results indicate that PEEK surface with enhanced osteogenic activity can be produced by calcium incorporation. PMID:26954085

  15. Proton-exchange membrane materials based on blends of poly(ether ketone ketone) and poly(ether imide)

    NASA Astrophysics Data System (ADS)

    Swier, S.; Gasa, J.; Shaw, M. T.; Weiss, R. A.

    2004-03-01

    The development of materials for proton-exchange membranes (PEM) involves finding a compromise between high proton conductivities and sufficient mechanical and chemical stability to withstand the conditions in the fuel cell. The currently used perfluorinated polymer electrolyte membranes tend to be expensive and have problems in case of extensive application. New polymer electrolytes based on hydrocarbon polymers are therefore the focus of a considerable research effort. Blends of sulfonated poly(ether ketone ketone) (SPEKK) and poly(ether imide) (PEI) were evaluated as PEMs. Sulfonation of PEKK was achieved by using a mixture of concentrated sulfuric acid and fuming sulfuric acid, and blend membranes were prepared by casting a solution of the two polymers in N-methyl-2- pyrrolidone. The hydration level of the membrane decreased with increasing PEI concentration, but a proton conductivity comparable to NafionTM was obtained for blends containing less than 20 wt% PEI. The fuel cell performance of the membranes was affected by the sulfonation level of the PEKK, the blend composition and the casting procedure employed. The state of water in the membrane was evaluated from the depression of the glass transition and from the melting endotherms associated with water. Proton conductivity depended strongly on the hydration number (water molecules per sulfonate group), which depended on the sulfonation level of the PEKK and the blend morphology. Sorption data from gravimetric techniques provided important transport information like the solubility and diffusivity of water and methanol.

  16. Comparison of surface modification of poly(ether urethanes) on physical properties and blood compatibility

    SciTech Connect

    Wrobleski, D.A.; Cash, D.L.; Hermes, R.E.

    1988-01-01

    Because of their good elastomeric properties including the ability to undergo repeated flexing without failure, polyurethanes are used in a number of biomedical applications including flexing diaphragms or coatings on surfaces in artificial hearts and heart assist devices. In particular, the poly(ether urethanes), are preferred for use in biomedical applications because of their greater hydrolytic stability as compared to poly(ester urethanes). However, poly(ether urethanes), as other polymeric materials in contact with blood, cause formation of thrombus and bacterial infections. These problems might be overcome by incorporation of antithrombogenic substances and/or antibacterial agents in the surface of the polymer. We have explored both of these methods by examining the infusion of polyvinylpyrrolidone (PVP) and poly(ethylene glycol) (PEG) into commercially available poly(ether urethanes) and the graft polymerization of N-vinyl pyrrolidone onto poly(ether urethanes). Preliminary results are presented here. 7 refs., 1 fig.

  17. Morphological changes in semicrystalline poly(ether ether ketone) and poly(ethylene terephthalate) during heating and structures of blends with poly(ether imide)

    SciTech Connect

    Jonas, A.M.; Russell, T.P.; Yoon, D.Y.

    1995-12-01

    Structural changes occurring during heating of cold crystallized PEEK and PET have been studied by real-time x-ray scattering using synchrotron radiation. Rapid melting/recrystallization is found when the semicrystalline PEEK and PET samples are heated above the previous highest annealing temperatures, Such melting/recrystallization results in irreversible increases in the lamellar long period, the crystal thickness and the density difference between the crystalline and amorphous regions. Throughout the entire temperature range up to the melting point, the linear crystallinity of lamellar stacks remains nearly constant around 0.3. The fact that both PEEK and PET form miscible blends with poly(ether imide) (PEI) in amorphous melts has been utilized to identify and to investigate the noncrystalline inter-lamellar region in the semicrystalline samples. For the semicrystalline blends of PEEK/PEI, both the small-angle x-ray scattering and dielectric loss measurements show that only a small amount of PEI is mixed in the inter-lamellar region. The majority of PEI, expelled from the lamellar stacks, is totally demixed from PEEK, demonstrating that the inter-lamellar region of semicrystalline PEEK is significantly different from the random amorphous melt. Therefore, the level of linear crystallinity and the miscibility characteristics indicate the presence of thick ordered interfacial layer on the lamellar surface, most likely due to the presence of rigid aromatic groups in PEEK and PET chains.

  18. A model survey meter using undoped poly (ether sulfone)

    NASA Astrophysics Data System (ADS)

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Kanayama, Masaya; Sato, Nobuhiro; Kitamura, Hisashi; Takahashi, Sentaro

    2015-04-01

    The large region surrounding the damaged Fukushima Daiichi Nuclear Power Plant has necessitated the use of numerous radiation survey meters with large, robust substrates. The survey meters require efficient scintillation materials that do not require doping and have dimensional stability, such as poly (ether sulfone) (PES) resins. Here, we demonstrate the performance of a model survey meter that uses large PES plates with polished, mirrored surfaces and rough, scattering surfaces. Light collection efficiencies from plates having one or more of these surfaces were quantitatively Characterised with 36Cl-, 60Co-, 137Cs-radioactive sources. The count rates of plates having a combination of mirrored/scattering-surfaces are >1.6 times that for plates having two mirrored surfaces. In addition, a significant amount of radiation-induced light generated in the PES is trapped inside the plate because of its relatively high refractive index. The results indicate that large, undoped PES plates can be used in radiation survey meters.

  19. New aromatic activated dihalides and bisphenol monomers for the preparation of novel poly(arylene ethers)

    NASA Technical Reports Server (NTRS)

    Wolfe, James F.

    1993-01-01

    The goal of this research program was to synthesize a series of unique monomers of type I to be utilized at NASA-Langley in the preparation of new poly(arylene ether ketones), poly(arylene ether ketosulfones), and poly(arylene ether ketophosphine oxides). These A-A and A-B monomer systems, which possess activated aryl halide and/or phenolic end groups, are accessible via condensation reactions of appropriately substituted aryl acetonitrile carbanions with activated aryl dihalides followed by oxidative decyanation.

  20. Electrical conductivity of sulfonated poly(ether ether ketone) based composite membranes containing sulfonated polyhedral oligosilsesquioxane

    NASA Astrophysics Data System (ADS)

    Celso, Fabricio; Mikhailenko, Serguei D.; Rodrigues, Marco A. S.; Mauler, Raquel S.; Kaliaguine, Serge

    2016-02-01

    Composite proton exchange membranes (PEMs) intended for fuel cell applications were prepared by embedding of various amounts of dispersed tri-sulfonic acid ethyl POSS (S-Et-POSS) and tri-sulfonic acid butyl POSS (S-Bu-POSS) in thin films of sulfonated poly ether-ether ketone. The electrical properties of the PEMs were studied by Impedance spectroscopy and it was found that their conductivity σ changes with the filler content following a curve with a maximum. The water uptake of these PEMs showed the same dependence. The investigation of initial isolated S-POSS substances revealed the properties of typical electrolytes, which however in both cases possessed low conductivities of 1. 17 × 10-5 S cm-1 (S-Et-POSS) and 3.52 × 10-5 S cm-1 (S-Bu-POSS). At the same time, the insoluble in water S-POSS was found forming highly conductive interface layer when wetted with liquid water and hence producing a strong positive impact on the conductivity of the composite PEM. Electrical properties of the composites were analysed within the frameworks of effective medium theory and bounding models, allowing to evaluate analytically the range of possible conductivity values. It was found that these approaches produced quite good approximation of the experimental data and constituted a fair basis for interpretation of the observed relationship.

  1. Investigation of crystalline morphology in poly (ether ether ketone) using dielectric relaxation spectroscopy

    SciTech Connect

    Kalika, D.S.; Krishnaswamy, R.K.

    1993-12-31

    The relaxation behavior of poly (ether ether ketone) [PEEK] has been investigated using dielectric relaxation spectroscopy; the glass-rubber ({alpha}) relaxation and a sub-glass ({beta}) relaxation were examined for the amorphous material and both cold-crystallized and melt-crystallized specimens. Analysis of the data using the Cole-Cole modification of the Debye equation allowed determination of the dielectric relaxation strength and relaxation broadening parameter for both transitions as a function of material crystallization history. The crystallized specimens displayed a positive offset in isochronal loss temperature for both the {alpha} and {beta} relaxations, with the {alpha} relaxation broadened significantly. The measured dipolar response was interpreted using a three-phase morphological model encompassing a crystalline phase, a mobile amorphous phase, and a rigid amorphous phase. Determination of phase fractions based on dipolar mobilization across the glass-rubber relaxation revealed a finite rigid amorphous phase fraction for both the cold-crystallized specimens which was relatively insensitive to thermal history and degree of crystallinity (W{sub RAP}40.20).

  2. Vibrational spectroscopic study of pure and silica-doped sulfonated poly(ether ether ketone) membranes

    NASA Astrophysics Data System (ADS)

    Rangasamy, Vijay Shankar; Thayumanasundaram, Savitha; Seo, Jin Won; Locquet, Jean-Pierre

    2015-03-01

    We report the vibrational properties of sulfonated poly(ether ether ketone) (SPEEK) membranes, used as electrolytes in proton exchange membrane (PEM) fuel cells, studied by Fourier transform infrared (FTIR) spectroscopy. We discuss the changes in the vibrational modes of the functional groups present in the polymer arising due to the sulfonation process and the subsequent incorporation of silica particles functionalized with sulfonic acid group. From the infrared spectra, we confirm the incorporation of sulfonic acid group in the polymer chain as well as in the functionalized silica particles. We have also measured the variations in the peak area ratio of the characteristic out-of-plane vibrations of the aromatic rings in the PEEK polymer at 1280 cm-1 with respect to a reference peak at 1305 cm-1. These values were correlated to the crystallinity (XC) values experimentally determined by DSC technique, providing a non-destructive means to calculate the crystallinity of polymer membranes. The calculated XC values were in good agreement with the experimental values. The crystallinity was observed to decrease with increasing degree of sulfonation (DS), indicating the crystalline-to-amorphous phase modification of the polymer by sulfonation, which along with the enhanced ion-exchange capacity and water uptake, is responsible for the improved ionic conductivity at higher DS values.

  3. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation.

    PubMed

    Wang, Heying; Lu, Tao; Meng, Fanhao; Zhu, Hongqin; Liu, Xuanyong

    2014-05-01

    Poly ether ether ketone (PEEK) offers a set of characteristics superior for human implants; however, its application is limited by the bio-inert surface property. In this work, PEEK surface was modified using single step plasma immersion ion implantation (PIII) treatment with a gas mixture of water vapor as a plasma resource and argon as an ionization assistant. Field emission scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy were used to investigate the microstructure and composition of the modified PEEK surface. The water contact angle and zeta-potential of the surfaces were also measured. Osteoblast precursor cells MC3T3-E1 and rat bone mesenchymal stem cells were cultured on the PEEK samples to evaluate their cytocompatibility. The obtained results show that the hydroxyl groups as well as a "ravined structure" are constructed on water PIII modified PEEK. Compared with pristine PEEK, the water PIII treated PEEK is more favorable for osteoblast adhesion, spreading and proliferation, besides, early osteogenic differentiation indicated by the alkaline phosphatase activity is also up-regulated. Our study illustrates enhanced osteoblast responses to the PEEK surface modified by water PIII, which gives positive information in terms of future biomedical applications. PMID:24632035

  4. Ac conduction in conducting poly pyrrole-poly vinyl methyl ether polymer composite materials

    SciTech Connect

    Saha, S.K.; Mandal, T.K.; Mandal, B.M.; Chakravorty, D.

    1997-03-01

    Composite materials containing conducting polypyrrole and insulating poly (vinyl methyl ether) (PVME) have been synthesized by oxidative polymerization of pyrrole in ethanol using FeCl{sub 3} oxidant in the presence of PVME. The ac conductivity measurements have been carried out in the frequency range of 100 Hz to 10 MHz and in the temperature range of 110 to 350 K. The frequency dependent conductivity has been explained on the basis of a small polaron tunnelling mechanism. {copyright} {ital 1997 American Institute of Physics.}

  5. Crystal morphology and phase identifications in poly(aryl ether ketones)s and their copolymers

    SciTech Connect

    Ho, R.M.; Cheng, S.Z.D.; Hsiao, B.S.

    1995-12-01

    A series of poly(aryl ether ketone ketone)s prepared from diphenyl ether (DPE) and terephthalic acid M or isophthalic acid (T) have been investigated. PEKK(T) has been reported to exhibit two polymorphism (form I and form II) based on wide angle X-ray diffraction (WAXD) and electron diffraction (ED) experiments.

  6. Liquid-crystal photoalignment by photosensitive fluorinated poly(arylene ether)

    SciTech Connect

    Li Xiangdan; Zhong Zhenxin; Lee, Seung Hee; Ghang, Gilson; Lee, Myong-Hoon

    2005-03-28

    We report a liquid-crystal (LC) photoalignment material with a high photosensitivity based on the fluorinated poly(arylene ether) containing a chalcone unit in the main chain. The fluorinated poly(arylene ether) exhibited defect-free homogeneous alignment of LCs upon irradiation of linearly polarized UV light for 10 s. Spectroscopic analyses revealed that [2+2] cycloaddition between the chalcone moieties generated the surface anisotropy to induce an efficient alignment of LCs.

  7. Synthesis and Characterization of Poly (Arylene Ether Benzimidazole) Oligomers

    NASA Technical Reports Server (NTRS)

    Leonard, Michael J.

    1995-01-01

    Several poly(arylene ether benzimidazole) oligomers were prepared by the nucleophilic aromatic substitution reaction of a bisphenol benzimidazole and various alkyl-substituted aromatic bisphenols with an activated aromatic dihalide in N, N-dimethylacetarnide. Moderate to high molecular weight terpolymers were obtained in all cases, as shown by their inherent viscosities, which ranged from 0.50 to 0.87 dL g(sup -1). Glass transition temperatures (T(sub g)s) of polymer powders ranged from 267-280 C. Air-dried unoriented thin film T(sub g)s were markedly lower than those of the powders, whereas T(sub g)s of films dried in a nitrogen atmosphere were identical to those of the corresponding powders. In addition, air-dried films were dark amber and brittle, whereas nitrogen-dried films were yellow and creasable. Nitrogen-dried films showed slightly higher thin-film tensile properties than the air-dried films, as well.

  8. Synthesis and fluorescence properties of divalent europium-poly(methacrylate containing crown ether structure) complexes

    SciTech Connect

    Higashiyama, N.; Nakamura, H.; Mishima, T.; Shiokawa, J.; Adachi, G. )

    1991-02-01

    This paper reports on divalent europium complexes with poly(methacrylate containing crown ether structure)s, poly(crown ether)s, prepared and their fluorescence properties studied. The polymers used were poly(15-crown-5-methyl methacrylate) (PMA15C5), copoly(15- crown-5-methyl methacrylate-X) (copoly(MA15C5-X)); (X = MMA, EMA, BMA, 2-methoxyethyl methacrylate (MAGI) 3,6,9,12,15- pentaoxahexadecyl methacrylate (MAG5)), poly(18-crown-6- methyl methacrylate) (PMA18C6), and copoly(18-crown-6-methyl methacrylate-MMA) (copoly(MA18C6-MMA)), which were obtained by bulk polymerization. The fluorescence properties of Eu{sup 2+} polymers activated by complexing Eu{sup 2+} ions with crown ether groups were measured in powder form. The Eu{sup 2+}-poly (crown ether)s irradiated by UV light generally gave blue bright emission in the region of 420-465 nm. It was Eu{sup 2+}-copoly(Ma15C5-X); (X = MMA, EMA, and MAG1) that showed the largest emission intensity among the Eu{sup 2+} polymers, and its emission intensity was ca. 20% of that for CaWO{sub 4}:Pb (NBS1026) whose quantum efficiency is about 76%. The intensities of emission for the Eu{sup 2+} polymers containing 15-crown-5 were much larger than that for the ones containing 18-crown-6.

  9. Chemistry and properties of poly(arylene ether 1,3,4-oxadiazole)s and poly(arylene ether 1,2,4-triazole)s

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Hergenrother, P. M.; Wolf, P.

    1992-01-01

    Poly(arylene ether)s containing l,3,4-oxadiazole and 1,2,4-triazole units were prepared by the aromatic nucleophilic displacement reaction of bisphenol oxadiazole and bisphenol triazole compounds with activated aromatic dihalides. The polymers exhibited glass transition temperatures (Tg) ranging from 182 to 242 C, and several polymers exhibited melting transitions (Tm) ranging from 265 to 390 C. Inherent viscosities ranged from 1.02 to 3.40 dl/g, indicating relatively high molecular weights. Thin films exhibited tensile strengths, moduli, and elongations at 23 C of 90-110 MPa, 2.7-3.6 GPa, and 4-7 percent, respectively. Titanium-to-titanium tensile shear specimens of a poly(arylene ether 1,3,4-oxadiazole) exhibited tensile shear strengths at 23 and 150 C of 22.1 and 17.9 MPa, respectively.

  10. Cathodic delaminations of poly(phenyl ether ether ketone) (PEEK) coatings overlaid on zinc phosphate-deposited steels

    SciTech Connect

    Sugama, T.; Carciello, N.R. . Dept. of Applied Science)

    1993-12-10

    The melt-crystallized poly(phenyl) ether ether ketone (PEEK) polymer was overlaid on crystalline zinc phosphate (Zn [center dot] Ph) conversion coating-deposited and nondeposited cold-rolled steels at 400 C in air or in N[sub 2] environments. The ability of these coatings systems to protect the steel against corrosion was evaluated from the rate of cathodic delamination of the coating layer from the steel. Because the cathodic reaction, H[sub 2]O + 1/20[sub 2] + 2e[sup [minus

  11. State of water in hybrid sulfonated poly(ether ether ketone) - silica membranes by 1H solid-state NMR

    NASA Astrophysics Data System (ADS)

    Baias, Maria; Demco, Dan E.; Blümich, Bernhard; Möller, Martin

    2009-04-01

    The state of water in fully hydrated sulfonated poly(ether ether ketone) - silica hybrid proton exchange membranes were characterized in terms of the exchange rate between bound and free water, the water dynamics in each phase, and the relative water populations by 1H ODESSA and transverse magnetization relaxation NMR. The exchange rate, the amount of bound water, and the reorientation of free water molecules increase in the presence of silica particles. The dynamics of bound water was described by the Lévy statistics with a Cauchy propagator. The proton exchange membranes performances could be improved by addition of small concentrations of silica in the range of 5-10 wt.%.

  12. Comparison of surface modifications of poly(ether urethanes) by chemical infusion and graft polymerization

    SciTech Connect

    Wrobleski, D.A.; Cash, D.L.; Hermes, R.E.

    1988-01-01

    Our approach to surface modification uses the chemical infusion process to introduce materials into the outermost layer of the polymeric material, thereby altering the surface without changing the bulk properties of the polymer. The infused materials may slowly diffuse out of the infusion layer if they are volatile or highly mobile. However, if polymeric infusant materials are employed, they may become chain entangled with the host polymer and result in a permanently modified surface. A second approach utilizes photo-initiated graft polymerization of poly(ether urethanes) with an appropriate monomer. We have explored both of these methods by examining the infusion of polyvinylpyrrolidone (PVP) and poly(ethylene glycol) (PEG) into commercially available poly(ether urethanes) and the graft polymerization of N-vinyl pyrrolidone onto poly(ether urethanes). Results are presented here. 7 refs., 1 tab.

  13. Low dielectric fluorinated poly(phenylene ether ketone) film and coating

    NASA Technical Reports Server (NTRS)

    Cassidy, Patrick E. (Inventor); Tullos, Gordon L. (Inventor); St.clair, Anne K. (Inventor)

    1990-01-01

    The present invention relates to film and coating materials prepared from novel fluorinated poly(phenylene ether ketones). A fluorinated poly(phenylene ether ketone) is prepared by reacting a bisphenol with 1,1,1,3,3,3 hexafluoro-2,2-bis 4-(4-halobenzoyl) phenyl propane (wherein halo is fluoro or chloro), which is a novel monomer formed as the reaction product of halobenzene (wherein halo is fluoro or chloro) and 1,1,1,3,3,3 hexafluoro-2,2-bis (p-chloro formyl phenyl) propane. Especially beneficial results of this invention are that films and coating materials prepared from the novel fluorinated poly(phenylene ether ketone) are essentially optically transparent/colorless and have a lower dielectric constant than otherwise comparable, commercially available poly(phenylene ether ketones). Moreover, unlike the otherwise comparable commercially available materials, the novel fluorinated poly(phenylene ether ketones) of the present invention can be solution cast or sprayed to produce the films and coatings. Furthermore, the long term thermal stability of the polymers of the present invention is superior to that of the commercially available materials.

  14. A gemini quaternary ammonium poly (ether ether ketone) anion-exchange membrane for alkaline fuel cell: design, synthesis, and properties.

    PubMed

    Si, Jiangju; Lu, Shanfu; Xu, Xin; Peng, Sikan; Xiu, Ruijie; Xiang, Yan

    2014-12-01

    To reconcile the tradeoff between conductivity and dimensional stability in AEMs, a novel Gemini quaternary ammonium poly (ether ether ketone) (GQ-PEEK) membrane was designed and successfully synthesized by a green three-step procedure that included polycondensation, bromination, and quaternization. Gemini quaternary ammonium cation groups attached to the anti-swelling PEEK backbone improved the ionic conductivity of the membranes while undergoing only moderate swelling. The grafting degree (GD) of the GQ-PEEK significantly affected the properties of the membranes, including their ion-exchange capacity, water uptake, swelling, and ionic conductivity. Our GQ-PEEK membranes exhibited less swelling (≤ 40 % at 25-70 °C, GD 67 %) and greater ionic conductivity (44.8 mS cm(-1) at 75 °C, GD 67 %) compared with single quaternary ammonium poly (ether ether ketone). Enhanced fuel cell performance was achieved when the GQ-PEEK membranes were incorporated into H2 /O2 single cells. PMID:25346412

  15. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility.

    PubMed

    Guan, Jianjun; Sacks, Michael S; Beckman, Eric J; Wagner, William R

    2004-01-01

    Polymers with elastomeric mechanical properties, tunable biodegradation properties and cytocompatibility would be desirable for numerous biomedical applications. Toward this end a series of biodegradable poly(ether ester urethane)urea elastomers (PEEUUs) based on poly(ether ester) triblock copolymers were synthesized and characterized. Poly(ether ester) triblock copolymers were synthesized by ring-opening polymerization of epsilon-caprolactone with polyethylene glycol (PEG). PEEUUs were synthesized from these triblock copolymers and butyl diisocyanate, with putrescine as a chain extender. PEEUUs exhibited low glass transition temperatures and possessed tensile strengths ranging from 8 to 20MPa and breaking strains from 325% to 560%. Increasing PEG length or decreasing poly(caprolactone) length in the triblock segment increased PEEUU water absorption and biodegradation rate. Human umbilical vein endothelial cells cultured in a medium supplemented with PEEUU biodegradation solution suggested a lack of degradation product cytotoxicity. Endothelial cell adhesion to PEEUUs was less than 60% of tissue culture polystyrene and was inversely related to PEEUU hydrophilicity. Surface modification of PEEUUs with ammonia gas radio-frequency glow discharge and subsequent immobilization of the cell adhesion peptide Arg-Gly-Asp-Ser increased endothelial adhesion to a level equivalent to tissue culture polystyrene. These biodegradable PEEUUs thus possessed properties that would be amenable to applications where high strength and flexibility would be desirable and exhibited the potential for tuning with appropriate triblock segment selection and surface modification. PMID:14580912

  16. Synthesis and characterization of high temperature curable poly(arylene ether) structural adhesive and composite matrices

    SciTech Connect

    Mecham, S.J.; Jayaraman, S.; Bobbitt, M.M.

    1996-12-31

    Crosslinked poly(arylene ether) systems are projected to display many desirable properties suitable for aerospace structural adhesive and composite matrix applications. The synthesis and characterization of a series of processable high temperature curing poly(arylene ether) oligomers incorporating terminally reactive phenylethynyl endgroups will be discussed. Characterization of the oligomers includes NMR, intrinsic viscosity, parallel plate rheological behavior, TGA, and DSC. Curing of these oligomers was conducted at or above 380{degrees}C, providing a large processing window. Thermal stability is very good and the melt viscosity of the oligomers in the processing temperature range is exceptionally low.

  17. Investigation of ionic conductivity of polymeric electrolytes based on poly (ether urethane) networks using positron probe

    NASA Astrophysics Data System (ADS)

    Peng, Z. L.; Wang, B.; Li, S. Q.; Wang, S. J.; Liu, H.; Xie, H. Q.

    1994-10-01

    Positron-lifetime measurements have been made for poly (ether urethane) undoped and doped with [LiClO 4]/[Unit]=0.05 in the temperature range of 120-340 K. The measured lifetime spectra were resolved into three components. The lifetime and the intensity of orthopositronium were used to evaluate the amount of the free volume in poly (ether urethane). It was found that the variation of ionic conductivity with temperature and salt concentration can be rationalised in terms of free volume consideration.

  18. Transparent Films from CO2 -Based Polyunsaturated Poly(ether carbonate)s: A Novel Synthesis Strategy and Fast Curing.

    PubMed

    Subhani, Muhammad Afzal; Köhler, Burkhard; Gürtler, Christoph; Leitner, Walter; Müller, Thomas E

    2016-04-25

    Transparent films were prepared by cross-linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2 , propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron-acceptor and electron-donor groups enables particularly facile UV- or redox-initiated free-radical curing. The resulting materials are transparent and highly interesting for coating applications. PMID:27028458

  19. Crystallization of poly(aryl-ether-ether-ketone) - Effect of thermal history of the melt on crystallization kinetics

    SciTech Connect

    Deslandes, Y.; Day, M.; Suprunchuk, T.; Sabir, N.F. )

    1989-10-01

    Differential Scanning Calorimetry (DSC) and optical microscopy were used to investigate the effect of the thermal history of the melt on the crystallization of a commercial sample of poly(aryl-ether-ether-ketone) (PEEK). Heating a film of PEEK at a temperature above the melt temperature for various periods of time changes the nucleation and crystal growth rate upon cooling the sample. Destruction of existing nuclei, formation of new nuclei, chain branching, cross linking, and chemical degradation of the macromolecular chains are all believed to take place at different times and to different extents during the thermal melt processing of the polymer. This study suggests that the thermal history of the melt plays an important role in the crystallization of PEEK samples. 45 refs.

  20. Intermolecular ionic cross-linked sulfonated poly(ether ether ketone) membranes containing diazafluorene for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Gong, Chenliang; Qi, Zhigang; Li, Hui; Wu, Zhongying; Zhang, Yakui; Zhang, Shujiang; Li, Yanfeng

    2015-06-01

    A series of novel ionic cross-linking sulfonated poly(ether ether ketone) (SPEEK) membranes containing the diazafluorene functional group are synthesized to reduce the swelling ratio and methanol permeability for direct methanol fuel cell (DMFC) applications. The ionic cross-linking is realized by the interaction between sulfonic acid groups and pyridyl in diazafluorene. The prepared membranes exhibit good mechanical properties, adequate thermal stability, good oxidative stability, appropriate water uptake and low swelling ratio. Moreover, the ionic cross-linked membranes exhibit lower methanol permeability in the range between 0.56 × 10-7 cm2 s-1 and 1.8 × 10-7 cm2 s-1, which is lower than Nafion 117, and they exhibit higher selectivity than Nafion 117 at 30 °C on the basis of applicable proton conductivity.

  1. A high performance semi-crystalline electrostatic stabilizer for aqueous dispersion prepregging: Poly(pyridine ether-co-ether ether ketone)

    SciTech Connect

    Brink, A.E.; Lin, M.C.; Riffle, J.S. |

    1993-12-31

    Aqueous dispersion prepregging is a relatively new, alternate method for processing polymer matrix composites, which could potentially circumvent many of the environmental and processing problems prominent in melt or solution prepregging. However, this method requires the high performance thermoplastic matrix resin to be in the form of small particles dispersed in a stable aqueous suspension. The preparation of submicron particles of the high performance semicrystalline poly(ether ether ketone) has previously been reported (Polymer, accepted 1992). Suspensions of these particles in water were demonstrated, but the suspending agents used were not thermally stable materials. This paper discusses the development of a high performance stabilizer which can be used for suspending PEEK particles in water (forming stable colloids), thereby facilitating the development of processes for aqueous dispersion prepegging. The stabilizer is a copolymer formed from 4,4`-difluoro (N-benzohydroxylidene aniline), 2,6-dichloropyridine, and hydroquinone.

  2. Separation of Dimethyl Ether from Syn-Gas Components by Poly(dimethylsiloxane) and Poly(4-methyl-1-pentene) Membranes

    SciTech Connect

    Christopher J. Orme; Frederick F. Stewart

    2011-05-01

    Permeability and selectivity in gas transport through poly(4-methyl-1-pentene) (TPX) and poly(dimethylsiloxane) (PDMS) using variable temperature mixed gas experiments is reported. Selected gases include H2, CO, CH4, CO2, and dimethyl ether (DME). The DME data is the first to be reported through these membranes. In this paper, the chosen polymers reflect both rubbery and crystalline materials. Rubbery polymers tend to be weakly size sieving, which, in this work, has resulted in larger permeabilities, lower separation factors, and lower activation energies of permeation (Ep). Conversely, the crystalline TPX membranes showed much greater sensitivity to penetrant size; although the gas condensability also played a role in transport.

  3. Silyl ether-coupled poly(epsilon-caprolactone)s with stepwise hydrolytic degradation profiles.

    PubMed

    Wang, M; Zhang, Q; Wooley, K L

    2001-01-01

    Silyl ether-coupled poly(epsilon-caprolactone)s (PCLs) with stepwise degradation profiles were synthesized via the cross-dehydrocoupling polymerizations between 1,4-bis(dimethylsilyl)benzene (BDSB) and telechelic, diol-terminated PCL macromonomers. With the presence of 10 wt % palladium on activated carbon as the catalyst, the condensations between BDSB and diol-terminated PCL macromonomers having molecular weights of 1200, 2010, and 5500 g/mol were performed in toluene at 100 degrees C under argon. Hydrogen was eliminated as the condensate upon the formation of silyl ether bonds linking the PCL blocks, yielding within 24 h, silyl ether-coupled PCLs of molecular mass 7590, 29,900, and 29,500 g/mol, respectively. The characterization of each polymer included (1)H NMR, (13)C NMR, and (29)Si NMR spectroscopies, size exclusion chromatography (SEC), and differential scanning calorimetry. The hydrolytic degradation properties of the polymers in solution were studied, and the molecular weight reductions over time were monitored by SEC. The silyl ether linkages of the polymers underwent hydrolysis in the presence of mineral acids, whereas the PCL segments released from the cleavage of the labile silyl ether coupling unit did not undergo detectable molecular weight reduction over 15 days. In the presence of acetic acid, the silyl ether functionalities were cleaved with a half-life of 3 days; however, the PCL chain required reaction with trifluoroacetic acid to give a number-average molecular weight loss half-life of 4 days. The silyl ether-coupled PCLs underwent degradation in a gradient fashion, therefore, by a protocol that involved the addition of acetic acid for cleavage of the silyl ether functionalities, followed by further addition of trifluoroacetic acid to bring the hydrolysis of the silyl ether functionalities to completion and to trigger the degradation of PCL segments. PMID:11777394

  4. Ketimine modifications as a route to novel amorphous and derived semicrystalline poly(arylene ether ketone) homo- and copolymers

    NASA Technical Reports Server (NTRS)

    Mohanty, D. K.; Lowery, R. C.; Lyle, G. D.; Mcgrath, J. E.

    1987-01-01

    A series of amine terminal amorphous poly(arylene ether ketone) oligomers of controlled molecular weights (2-15 K) were synthesized. These oligomers have been found to undergo 'self-crosslinking' reactions upon heating above 220 C, via the reaction of the terminal amine groups with the in-chain keto carbonyl functionalities. The resulting networks are ductile, chemically resistant, and nonporous. The networks obtained via generated ketimine functionality were characterized by solid state NMR. They have also been found to be remarkably stable toward hydrolysis. Ketimine functional bishalide monomers have also been synthesized. Such monomers have been utilized to synthesize a wide variety of amorphous poly(arylene ether) ketimine polymers. A high molecular weight hydroquinone functional poly(arylene ether) ketimine has been acid treated to regenerate a poly(arylene ether ketone) backbone in solution. This novel procedure thus allows for the synthesis of important matrix resins under relatively mild conditions.

  5. Infrared absorption and vibrational circular dichroism spectra of poly(vinyl ether) containing diastereomeric menthols as pendants

    NASA Astrophysics Data System (ADS)

    McCann, Jennifer L.; Rauk, Arvi; Wieser, Hal

    1997-06-01

    The absorption and vibrational circular dichroism (VCD) spectra in the 1700 to 830 cm -1 region are reported and qualitatively interpreted for poly(vinyl ether) with (+)-menthol (I), (+)-isomenthol (II) and (+)-neomenthol (III) as pendants.

  6. 40 CFR 721.7700 - Poly(oxy-1,2-ethanediyl), α-hydro-ω-(oxiranylmethoxy)-, ether with 2-ethyl-2-(hydroxymethyl)-1,3...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-(oxiranylmethoxy)-, ether with 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (3:1). 721.7700 Section 721.7700... Poly(oxy-1,2-ethanediyl), α-hydro-ω-(oxiranylmethoxy)-, ether with 2-ethyl-2-(hydroxymethyl)-1,3... substance identified as poly(oxy-1,2-ethanediyl),α-hydro-ω-(oxiranylmethoxy)-, ether with...

  7. 40 CFR 721.7700 - Poly(oxy-1,2-ethanediyl), α-hydro-ω-(oxiranylmethoxy)-, ether with 2-ethyl-2-(hydroxymethyl)-1,3...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-(oxiranylmethoxy)-, ether with 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (3:1). 721.7700 Section 721.7700... Poly(oxy-1,2-ethanediyl), α-hydro-ω-(oxiranylmethoxy)-, ether with 2-ethyl-2-(hydroxymethyl)-1,3... substance identified as poly(oxy-1,2-ethanediyl),α-hydro-ω-(oxiranylmethoxy)-, ether with...

  8. The synthesis of poly(ether ether ketone) (PEEK) derived from 1,1-bis(4-hydroxyphenyl)-1-phenyl-2,2,3,3,4,4,4-heptafluorobutane

    SciTech Connect

    Peterman, J.A.; Feld, W.A.

    1995-12-31

    Poly(ether ether ketone)s (PEEK) are of interest due to their high thermal stability. Most PEEK materials are prepared by aromatic nucleophilic substitution between an activated aromatic dihalide and an alkali-metal bisphenolate in polar, aprotic solvents. We now report the preparation of a PEEK containing an extended fluorocarbon chain in the bisphenol, analogous to that produced by McGrath, et. al which contained a trifluoromethyl group in the bisphenol, and examine the effect on thermal properties.

  9. Synthesis and characterization of poly(ether ketone)s containing phosphorus and fluorine

    SciTech Connect

    Youngman, P.W.; Fitch, J.W.; Cassidy, P.E. |

    1996-10-01

    Because of the excellent properties exhibited by fluorinated poly(ether ketone)s, modifications were sought to further improve this polymer toward atomic oxygen resistance. For this purpose a phosphorous-containing monomer [bis(4-fluorophenyl)phenyl phosphine oxide] was synthesized and incorporated into a poly(ether ketone) backbone by reaction with 2,2-bis[4-(4-fluorobenzoyl)phenyl]hexafluoropropane in varying proportions with bisphenol AF to produce polymers with different amounts of the phosphine oxide repeating unit in the backbone. Colorless, film-forming materials were produced with a slight increase in Tg due to the phosphine oxide function. The incorporation of this moiety also resulted in a very small increase in the dielectric constant and an improved resistance to atomic oxygen ablation.

  10. Effect of surfactants and temperature on the hyperfiltration performance of poly(ether/urea) membranes

    NASA Technical Reports Server (NTRS)

    Leban, M. I.; Wydeven, T. J.

    1984-01-01

    The individual and combined effects of pasteurization temperature (347 K) and surfactants (anionic, cationic, and neutral) on a poly(ether/urea) thin-film hyperfiltration membrane were studied. Performance of this positively charged membrane was measured in terms of sodium chloride rejection and water flux. The observed effect was mostly on water flux and minimal on salt rejection. Pasteurization temperature caused an irreversible flux decline (flux decline slope of 0.09). The gradual flux reduction caused by neutral and cationic surfactants was reversible, whereas the flux reduction caused by anionic surfactant was irreversible and of similar magnitude to flux reduction caused by pasteurization temperature. The effects of anionic surfactant and pasteurization temperature were additive. Because of flux decline at elevated temperatures the poly(ether/urea) membrane is not very attractive for long-term spaceflight use.

  11. Characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride-co-hexafluoropropylene) composite membrane for vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    Li, Zhaohua; Liu, Le; Yu, Lihong; Wang, Lei; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-12-01

    Sulfonated poly(ether ether ketone) (SPEEK) and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)) composite membranes are prepared and investigated in detail for vanadium redox flow battery (VRFB) application. With the high hydrophobicity and stability of P(VDF-co-HFP), the properties of composite membranes such as mechanical property and vanadium ion permeability are effectively improved, showing good trends with the increasing of P(VDF-co-HFP) mass ratio. The VRFB single cell assembled with the composite membrane of 15 wt.% P(VDF-co-HFP) (SPEEK-15% membrane) exhibits higher coulombic efficiency (CE, 95.4%) and energy efficiency (EE, 83.8%) than that assembled with Nafion 117 membrane (CE 91.1% and EE 78.4%) at the current density of 80 mA cm-2. Furthermore, the SPEEK-15% membrane maintains a stable performance during 100 cycles at the current density of 80 mA cm-2. Therefore the SPEEK/P(VDF-co-HFP) composite membrane could be used as low-cost and high-performance membrane for VRFB application.

  12. Poly(arylene ether ketone) carrying hyperquaternized pendants: Preparation, stability and conductivity

    NASA Astrophysics Data System (ADS)

    Shen, Kunzhi; Zhang, Zhenpeng; Zhang, Haibo; Pang, Jinhui; Jiang, Zhenhua

    2015-08-01

    A new strategy to synthesize comb-shaped poly(arylene ether ketone) ionomers with hyperquaternized pendants was detailed in this work. Poly(arylene ether ketone) with electron-rich phenyl rings on the side chain was copolymerized. These electron-rich phenyl rings which could be chloromethylated and serve as precursors to cationic sites, are introduced during monomer synthesis. After chloromethylation and quaternization on the side chain, these resulting anion exchange membranes exhibit high conductivities and good dimensional stability, which benefit from the side chain type structure. The highest chloride conductivity of 0.047 S cm-1 was observed in PAEK-QTPM-30 (IEC = 1.58 mmol g-1) and swelling ratio is 31.7% at 80 °C. The structural properties of the synthesized poly(arylene ether ketone)s were investigated by 1H NMR spectroscopy. The anion exchange membranes showed excellent thermal stability up to 200 °C under nitrogen and good chemical stability for high conductivity after treating in alkaline condition up to 30 days. These membranes were studied by IEC, water uptake, dimensional stability. The nano-phase separation from ionic aggregation was confirmed by SAXS. This work implies a viable strategy to improve the performance of anion exchange membranes.

  13. Thin film composite nanofiltration membranes fabricated from quaternized poly(ether ether ketone) with crosslinkable moiety using a benign solvent.

    PubMed

    Dong, Xue; Zhang, Qifeng; Zhang, Suobo; Li, Shenghai

    2016-02-01

    Thin film composite nanofiltration membranes were fabricated through dip-coating and in situ cross-linking of quaternized poly(ether ether ketone) containing a certain amount of tertiary amine groups (QAPEEKs) on polyacrylonitrile (PAN) support. The effects of the variables in membrane formation such as the coating polymer concentration, the curing temperature, and the cross-linking agent types on resultant membrane were studied and the membrane properties such as the barrier layer chemical structure, the surface element composition and morphology were investigated. The obtained performance of uncross-linked and cross-linked QAPEEK-70 thin film composites in nanofiltration test was compared. The results indicated that the cross-linking improved the composite membranes' performance. For instance, the membrane cross-linked by bisphenol A diglycidyl ether (BPADGE) named M-C-BPADGE exhibited a MgCl2 rejection of 97.8%, a water flux of 11.8Lm(-2)h(-1), a MWCO of 800Da and corresponding pore size of 0.69nm, while for its uncross-linked membrane named M-U, a MgCl2 rejection of 91.2%, a water flux of 13.5Lm(-2)h(-1), a MWCO with 960Da and a pore size of 0.77nm were found. Furthermore, the M-C-BPADGE membrane exhibited selectivities of 16.0 for separation of mixed Mg(2+) and Na(+) cations, much larger than selectivity of 5.2 obtained for M-U, suggesting that the cross-linked membranes are promising in cation separation. PMID:26606594

  14. Composite proton exchange membranes based on phosphosilicate sol and sulfonated poly(ether ether ketone) for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Xie, Qiang; Li, Yifan; Chen, Xiaojing; Hu, Jing; Li, Lu; Li, Haibin

    2015-05-01

    The phosphosilicate sol/sulfonated poly(ether ether ketone) (SPEEK) composite membranes are fabricated by using a simple mechanical mixing process. The performance of the composite membranes is investigated, including their morphology, thermal and mechanical properties, water adsorption and swelling ratio, proton conductivity and fuel cell performance. The composite membranes obtain the advantages of both components while avert their disadvantages, showing excellent comprehensive performance. The utilization of SPEEK endows the composite membranes with good mechanical properties even if the proportion of inorganic components in the membranes is as high as 40 wt.%. The incorporation of phosphosilicate sol not only enhances the dimensional and thermal stability of the composite membranes, but also improves their conductivity significantly. A maximum of proton conductivity of 0.138 S cm-1, higher than that of Nafion 212 membrane (0.124 S cm-1), is obtained from the composite membrane 6SPEEK/4(P-Si) under the conditions of 70 °C and 95% relative humidity, owing to its enhanced hygroscopicity and functional groups. Besides, a single fuel cell equipped with the composite membrane 7SPEEK/3(P-Si) releases a peak power density of 449.9 mW cm-2 at 60 °C, higher than that of cells equipped with SPEEK and Nafion 212 membrane measured under the same conditions.

  15. Novel composite proton-exchange membrane based on proton-conductive glass powders and sulfonated poly (ether ether ketone)

    NASA Astrophysics Data System (ADS)

    Di, Zhigang; Xie, Qiang; Li, Haibin; Mao, Dali; Li, Ming; Zhou, Daowu; Li, Lu

    2015-01-01

    The SiO2-Nafion/sulfonated poly (ether ether ketone) (SPEEK) composite membranes are fabricated by using the simple mechanical ball-milling process to combine SiO2 glass powders with small portion of Nafion, in which SiO2 glass powders are prepared by modified sol-gel progress and Nafion is embedded in situ into a highly porous silica network. The morphology, thermal and mechanical properties, pore structure, proton conductivity and fuel cell performance of the SiO2-Nafion/SPEEK composite membranes are investigated. The poor miscibility of Nafion and sulfonated aromatic polymer is solved by fixing Nafion into SiO2 glass powders. The composite membranes perform well even if the proportion of inorganic component in membranes is as high as 40 wt.%. A maximum of proton conductivity, 0.018 S cm-1, is obtained from the membrane of 4(8Si-2N)/6SPEEK at 80 °C and 90% relative humidity, which is owing to its enhanced hygroscopicity and highly dispersed Nafion clusters. In addition, a single fuel cell equipped with the composite membrane shows a peak power density of 589.2 mW cm-2 at 70 °C.

  16. Sulfonated poly(ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-07-01

    Hybrid membranes of sulfonated poly(ether ether ketone) (SPEEK) and mesoporous silica SBA-15 are prepared with various mass ratios for vanadium redox flow battery (VRB) application and investigated in detail. The hybrid membranes are dense and homogeneous with no visible hole as the SEM and EDX images shown. With the increasing of SBA-15 mass ratio, the physicochemical property, VO2+ permeability, mechanical property and thermal stability of hybrid membranes exhibit good trends, which can be attributed to the interaction between SPEEK and SBA-15. The hybrid membrane with 20 wt.% SBA-15 (termed as S/SBA-15 20) shows the VRB single cell performance of CE 96.3% and EE 88.1% at 60 mA cm-2 due to its good balance of proton conductivity and VO2+ permeability, while Nafion 117 membrane shows the cell performance of CE 92.2% and EE 81.0%. Besides, the S/SBA-15 20 membrane shows stable cell performance of highly stable efficiency and slower discharge capacity decline during 120 cycles at 60 mA cm-2. Therefore, the SPEEK/SBA-15 hybrid membranes with optimized mass ratio and excellent VRB performance can be achieved, exhibiting good potential usage in VRB systems.

  17. Hydrogen bond cross-linked sulfonated poly(imino ether ether ketone) (PIEEK) for fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Chang, Guanjun; Shang, Zhenfang; Yang, Li

    2015-05-01

    A new diamine monomer, 3,3‧-dihydroxydiphenylamine, is prepared by the palladium catalyzed C-N coupling reaction and the following reduction reaction of 3-bromoanisole and m-anisidine. A series of novel hydrogen bond cross-linked sulfonated poly(imino ether ether ketone) (SPIEEK) are obtained by the copolymerization of sodium 5,5‧-carbonylbis(2-fluorobenzene sulfonate), 4,4‧-difluorobenzophenone with 3,3‧-dihydroxydiphenylamine. The structures of resulting polymers are characterized by means of FT-IR, 1H NMR spectroscopy, and elemental analysis; the results show an agreement with the proposed structure. The resulting SPIEEK membranes display much better resistance to swelling than these without imino groups due to the strong interchain interaction through imino and sulfonic acid groups. The SPIEEK-60 and SPIEEK-80 membrane show the proton conductivity of 0.118 and 0.154 S cm-1 at 80 °C which is higher than Nafion 117 (0.082 S cm-1 at 80 °C). Moreover, the SPIEEK membranes exhibit good mechanical properties and lower methanol permeability due to the hydrogen bondings between the polymer chains.

  18. Anion conductive block poly(arylene ether)s: synthesis, properties, and application in alkaline fuel cells.

    PubMed

    Tanaka, Manabu; Fukasawa, Keita; Nishino, Eriko; Yamaguchi, Susumu; Yamada, Koji; Tanaka, Hirohisa; Bae, Byungchan; Miyatake, Kenji; Watanabe, Masahiro

    2011-07-13

    Anion conductive aromatic multiblock copolymers, poly(arylene ether)s containing quaternized ammonio-substituted fluorene groups, were synthesized via block copolycondensation of fluorene-containing (later hydrophilic) oligomers and linear hydrophobic oligomers, chloromethylation, quaternization, and ion-exchange reactions. The ammonio groups were selectively introduced onto the fluorene-containing units. The quaternized multiblock copolymers (QPEs) produced ductile, transparent membranes. A well-controlled multiblock structure was responsible for the developed hydrophobic/hydrophilic phase separation and interconnected ion transporting pathway, as confirmed by scanning transmission electron microscopic (STEM) observation. The ionomer membranes showed considerably higher hydroxide ion conductivities, up to 144 mS/cm at 80 °C, than those of existing anion conductive ionomer membranes. The durabilities of the QPE membranes were evaluated under severe, accelerated-aging conditions, and minor degradation was recognized by (1)H NMR spectra. The QPE membrane retained high conductivity in hot water at 80 °C for 5000 h. A noble metal-free direct hydrazine fuel cell was operated with the QPE membrane at 80 °C. The maximum power density, 297 mW/cm(2), was achieved at a current density of 826 mA/cm(2). PMID:21657275

  19. Relaxation behavior in model compounds of poly(aryl-ether-ketone-ketone) as revealed by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Ezquerra, T. A.; Zolotukhin, M.; Privalko, V. P.; Baltá-Calleja, F. J.; Nequlqueo, G.; García, C.; de la Campa, J. G.; de Abajo, J.

    1999-05-01

    The relaxation behavior of a series of ether-ketone oligomers, considered as model compounds of poly(ether-ketone-ketone), was studied by means of dielectric spectroscopy. The dynamics of the α relaxation of ether-ketone model compounds as compared with that of poly(arylether-ketone-ketone) (PEKK) (50/50), shows up differences which can be attributed to the variation of inter- and intramolecular correlations with the chain length. Model compounds exhibit a nearly similar degree of cooperativity regardless the differences in Tg values. The PEKK (50/50) polymer exhibits stronger cooperativity than the oligomers suggesting that in poly(ether-ketone-ketone)s molecular motions above Tg extend to more than one monomeric unit.

  20. Reinforcement of poly ether sulphones (PES) with exfoliated graphene oxide for aerospace applications

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    2012-09-01

    Composite materials have been used for aerospace for some time now and have gained virtually 100% acceptance as the materials of choice. Speciality polymers like poly ether sulphones (PES), poly ether ether ketones(PEEK), poly ether imides (PEI) are highly preferred materials as plastic matrix due to their superior temperature performance, excellent wear & friction resistance, excellent dimensional accuracy, high tensile strength, high modulus, precise machinability and chemical resistance. In recent years nanoadditives like single and multiwall carbon nanotubes, graphenes and graphene oxides(GO) are finding huge market potential in aerospace and automobile industries. But manufacture related factors such as particle/ matrix interphases, surface activation, mixing process, particle agglomeration, particle size and shape may lead to different property effects. In this research GO/PES composites were prepared by high shear melt blending technique. GO monolayers were exfoliated from natural graphite flake and dispersed homogeneously in PES matrix for the GO content ranging between 0.5 to 2.0 volume percentage with a high shear twin screw batch mixer. These melt blended nanocomposites were injection moulded for mechanical property validation of tensile strength, flexural modulus and impact resistance. Addition of 0.5 volume percentage of GO enhanced the tensile strength and flexural modulus by 40% and 90% respectively. The results show that addition of GO to PES increase mechanical properties due to the formation of continuous network, good dispersion and strong interfacial interactions. The strong interfacial interactions were accounted for the increase in glass transition temperature. Also there was a significant improvement in the impact resistance of the PES/ GO nanocomposite. The injection moulded samples were tested for stealth performance by measuring the electromagnetic shielding property.

  1. Surface decorated poly(ester-ether-urethane)s nanoparticles: a versatile approach towards clinical translation.

    PubMed

    Piras, Anna Maria; Sandreschi, Stefania; Malliappan, Sivakumar Ponnurengam; Dash, Mamoni; Bartoli, Cristina; Dinucci, Dinuccio; Guarna, Francesco; Ammannati, Enrico; Masa, Marc; Múčková, Marta; Schmidtová, Ludmila; Chiellini, Emo; Chiellini, Federica

    2014-11-20

    Poly(ester-ether-urethane)s copolymers are a resourceful class of biopolymers for the preparation of nanocarriers for drug delivery applications. However, a simple clinical translation for this synthetic material with biological and quality features is still needed. In this view, poly(ε-caprolactone)-co-poly(ethylene glycol) copolymers were synthesized as semi-bulk pilot (Kg) scale under mild conditions in absence of catalyst, bearing functional termini such as fluorescein tag and anticancer targeting moieties. The obtained materials were processed into surface decorated paclitaxel (PTX) loaded nanoparticles (NPs). The NPs were fully characterized in vitro and in vivo biodistribution in healthy mice evidenced no sign of toxicity and lower levels of PTX in lung and spleen, compared to clinically applied PTX dosage form. PMID:25178828

  2. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants.

    PubMed

    Webster, T J; Patel, A A; Rahaman, M N; Sonny Bal, B

    2012-12-01

    Silicon nitride (Si(3)N(4)) is an industrial ceramic used in spinal fusion and maxillofacial reconstruction. Maximizing bone formation and minimizing bacterial infection are desirable attributes in orthopedic implants designed to adhere to living bone. This study has compared these attributes of Si(3)N(4) implants with implants made from two other orthopedic biomaterials, i.e. poly(ether ether ketone) (PEEK) and titanium (Ti). Dense implants made of Si(3)N(4), PEEK, or Ti were surgically implanted into matching rat calvarial defects. Bacterial infection was induced with an injection of 1×10(4)Staphylococcus epidermidis. Control animals received saline only. On 3, 7, and 14days, and 3months post-surgery four rats per time period and material were killed, and calvariae were examined to quantify new bone formation and the presence or absence of bacteria. Quantitative evaluation of osteointegration to adjacent bone was done by measuring the resistance to implant push-out (n=8 rats each for Ti and PEEK, and n=16 rats for Si(3)N(4)). Three months after surgery in the absence of bacterial injection new bone formation around Si(3)N(4) was ∼69%, compared with 24% and 36% for PEEK and Ti, respectively. In the presence of bacteria new bone formation for Si(3)N(4), Ti, and PEEK was 41%, 26%, and 21%, respectively. Live bacteria were identified around PEEK (88%) and Ti (21%) implants, whereas none were present adjacent to Si(3)N(4). Push-out strength testing demonstrated statistically superior bone growth onto Si(3)N(4) compared with Ti and PEEK. Si(3)N(4) bioceramic implants demonstrated superior new bone formation and resistance to bacterial infection compared with Ti and PEEK. PMID:22863905

  3. Development of nanocomposites reinforced with carboxylated poly(ether ether ketone) grafted to zinc oxide with superior antibacterial properties.

    PubMed

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2014-03-12

    Novel poly(ether ether ketone) (PEEK) based nanocomposites have been fabricated via melt-blending by addition of a carboxylated polymer derivative covalently grafted onto the surface of hydroxyl-terminated ZnO nanoparticles. Their morphology, thermal, mechanical, tribological, and antibacterial properties have been analyzed and compared with those of composites reinforced with pristine ZnO. The Fourier transform infrared (FT-IR) spectra corroborate the success of the grafting reaction, showing the appearance of signals related to ester linkages. Microscopic observations demonstrate that the polymer grafting improves the nanoparticle dispersion within the matrix. A progressive rise in thermal stability and flame retardant ability is found with increasing ZnO concentration, with an exceptional increment in the maximum degradation rate temperature of 70 °C at 5.0 wt % loading. The crystallization and melting temperature of PEEK decrease upon incorporation of the grafted nanofillers, attributed to the restrictions on polymer chain mobility and crystal growth imposed by the strong ZnO-matrix interactions. Nanocomposites with polymer-grafted nanoparticles exhibit higher stiffness, strength, ductility, toughness and glass transition temperature whilst lower coefficient of friction and wear rate than the neat polymer and composites with bare ZnO. Further, they show superior antibacterial activity against both the Gram-negative Escherichia coli and the Gram-positive Staphylococcus aureus bacteria. The antimicrobial effect increases upon raising nanoparticle content, and is stronger on E. coli. The approach used in this work is a simple, scalable, and efficient method to improve the performance of PEEK/ZnO nanocomposites for use in biomedical applications such as trauma, orthopedics, and spinal implants. PMID:24552261

  4. Sulfonated poly(ether ether ketone)/clay-SO 3H hybrid proton exchange membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Fu, Tiezhu; Cui, Zhiming; Zhong, Shuangling; Shi, Yuhua; Zhao, Chengji; Zhang, Gang; Shao, Ke; Na, Hui; Xing, Wei

    A new type of sulfonated clay (clay-SO 3H) was prepared by the ion exchange method with the sulfanilic acid as the surfactant agent. The grafted amount of sulfanilic acid in clay-SO 3H was 51.8 mequiv. (100 g) -1, which was measured by thermogravimetric analysis (TGA). Sulfonated poly(ether ether ketone) (SPEEK)/clay-SO 3H hybrid membranes which composed of SPEEK and different weight contents of clay-SO 3H, were prepared by a solution casting and evaporation method. For comparison, the SPEEK/clay hybrid membranes were produced with the same method. The performances of hybrid membranes for direct methanol fuel cells (DMFCs) in terms of mechanical and thermal properties, water uptake, water retention, methanol permeability and proton conductivity were investigated. The mechanical and thermal properties of the SPEEK membranes had been improved by introduction of clay and clay-SO 3H, obviously. The water desorption coefficients of the SPEEK and hybrid membranes were studied at 80 °C. The results showed that the addition of the inorganic part into SPEEK membrane enhanced the water retention of the membrane. Both methanol permeability and proton conductivity of the hybrid membranes decreased in comparison to the pristine SPEEK membrane. However, it was worth noting that higher selectivity defined as ratio of proton conductivity to methanol permeability of the SPEEK/clay-SO 3H-1 hybrid membrane with 1 wt.% clay-SO 3H was obtained than that of the pristine SPEEK membrane. These results showed that the SPEEK/clay-SO 3H hybrid membrane with 1 wt.% clay-SO 3H had potential usage of a proton exchange membrane (PEM) for DMFCs.

  5. Degradation kinetics of poly(ether-urethane) Estane® induced by electron irradiation

    NASA Astrophysics Data System (ADS)

    Dannoux, A.; Esnouf, S.; Begue, J.; Amekraz, B.; Moulin, C.

    2005-07-01

    Radiation effects on a segmented aromatic poly(ether-urethane) induced by electron beam irradiation under oxygen atmosphere were investigated using Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) in order to determine the degradation mechanisms. Thin films have been irradiated under a dose rate of 1 MGy/h with absorbed doses varying from 25 to 1000 kGy under O2. FTIR spectra have shown the formation of hydroperoxides, carboxylic acids, primary amines, alcohols, esters and formates. Moreover, the decrease of urethane and ether absorbances revealed the degradation of both soft and hard segments. Spin-trapping technique was used to monitor the evolution of short-lived peroxy and alkyl radicals at room temperature. Finally, a mechanism of degradation for electron irradiated polyurethane is proposed.

  6. Transgene Delivery using Poly(amino ether)-Gold Nanorod Assemblies

    PubMed Central

    Ramos, James; Rege, Kaushal

    2012-01-01

    Gold nanorods (GNRs) have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach; polymers from a poly(amino ether) library recently synthesized in our laboratory were employed to generate the PAE-GNR assemblies. PAE-GNR assemblies demonstrate long-term colloidal stability as well as the capacity to bind plasmid DNA by means of electrostatic interactions. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs generated using 1,4C-1,4Bis, a cationic polymer from our laboratory demonstrated significantly higher transgene expression and exhibited lower cytotoxicities when compared to similar assemblies generated using 25 kDa poly(ethylene imine) (PEI25k-GNRs), a current standard for polymer-mediated gene delivery. The roles of polyelectrolyte chemistry and zeta-potential in determining transgene expression efficacies of PAE-GNR assemblies were investigated. Our results indicate that stable and effective PAE-GNR assemblies are a promising engineered platform for transgene delivery. PAE-GNRs also have the potential to be used simultaneously for photothermal ablation, photothermally enhanced drug and gene delivery, and biological imaging, thus making them a powerful theranostic platform. PMID:22170455

  7. Controlled release of protein from biodegradable multi-sensitive injectable poly(ether-urethane) hydrogel.

    PubMed

    Li, Xiaomeng; Wang, Yangyun; Chen, Jiaming; Wang, Yinong; Ma, Jianbiao; Wu, Guolin

    2014-03-12

    The synthesis and characterization of multi-sensitive polymers for use as injectable hydrogels for controlled protein/drug delivery is reported. A series of biodegradable multi-sensitive poly(ether-urethane)s were prepared through a simple one-pot condensation of poly(ethylene glycol), 2,2'-dithiodiethanol, N-methyldiethanolamine, and hexamethylene diisocyanate. The sol-gel phase transition behaviors of the obtained copolymers were investigated. Experimental results showed that the aqueous medium comprising the multi-segment copolymers underwent a sol-to-gel phase transition with increasing temperature and pH. At a certain concentration, the copolymer solution could immediately change to a gel under physiological conditions (37 °C and pH 7.4), indicating their suitability as in situ injectable hydrogels in vivo. Insulin was used as a model protein drug for evaluation of the injectable hydrogels as a site-specific drug delivery system. The controlled release of insulin from the hydrogel devices was demonstrated by degradation of the copolymer, which is modulated via the 2,2'-dithiodiethanol content in the poly(ether-urethane)s. These hydrogels having multi-responsive properties may prove to be promising candidates for injectable and controllable protein drug delivery devices. PMID:24460175

  8. Parallel Synthesis of Poly(amino ether)-Templated Plasmonic Nanoparticles for Transgene Delivery

    PubMed Central

    2015-01-01

    Plasmonic nanoparticles have been increasingly investigated for numerous applications in medicine, sensing, and catalysis. In particular, gold nanoparticles have been investigated for separations, sensing, drug/nucleic acid delivery, and bioimaging. In addition, silver nanoparticles demonstrate antibacterial activity, resulting in potential application in treatments against microbial infections, burns, diabetic skin ulcers, and medical devices. Here, we describe the facile, parallel synthesis of both gold and silver nanoparticles using a small set of poly(amino ethers), or PAEs, derived from linear polyamines, under ambient conditions and in absence of additional reagents. The kinetics of nanoparticle formation were dependent on PAE concentration and chemical composition. In addition, yields were significantly greater in case of PAEs when compared to 25 kDa poly(ethylene imine), which was used as a standard catonic polymer. Ultraviolet radiation enhanced the kinetics and the yield of both gold and silver nanoparticles, likely by means of a coreduction effect. PAE-templated gold nanoparticles demonstrated the ability to deliver plasmid DNA, resulting in transgene expression, in 22Rv1 human prostate cancer and MB49 murine bladder cancer cell lines. Taken together, our results indicate that chemically diverse poly(amino ethers) can be employed for rapidly templating the formation of metal nanoparticles under ambient conditions. The simplicity of synthesis and chemical diversity make PAE-templated nanoparticles useful tools for several applications in biotechnology, including nucleic acid delivery. PMID:25084138

  9. The influence of poly(ethylene glycol) ether tetrasuccinimidyl glutarate on the structural, physical, and biological properties of collagen fibers.

    PubMed

    Sanami, Mohammad; Sweeney, India; Shtein, Zvi; Meirovich, Sigal; Sorushanova, Anna; Mullen, Anne Maria; Miraftab, Mohsen; Shoseyov, Oded; O'Dowd, Colm; Pandit, Abhay; Zeugolis, Dimitrios I

    2016-07-01

    Various chemical, natural, or synthetic in origin, crosslinking methods have been proposed over the years to stabilise collagen fibers. However, an optimal method has yet to be identified. Herein, we ventured to assess the potential of 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate, as opposed to glutaraldehyde (GTA), genipin and carbodiimide, on the structural, physical and biological properties of collagen fibers. The 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate induced an intermedium surface smoothness, denaturation temperature and swelling. The 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate fibers had significantly higher stress at break values than the carbodiimide fibers, but significantly lower than the GTA and genipin fibers. With respect to strain at break, no significant difference was observed among the crosslinking treatments. The 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate fibers exhibited significantly higher cell metabolic activity and DNA concentration that all other crosslinking treatments, promoted consistently cellular elongation along the longitudinal fiber axis and by day 7 they were completely covered by cells. Collectively, this work clearly demonstrates the potential of 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate as collagen crosslinker. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 914-922, 2016. PMID:25952265

  10. Rational Design of Fluorescent Phthalazinone Derivatives for One- and Two-Photon Imaging.

    PubMed

    Yang, Lingfei; Zhu, Yuanjun; Shui, Mengyang; Zhou, Tongliang; Cai, Yuanbo; Wang, Wei; Xu, Fengrong; Niu, Yan; Wang, Chao; Zhang, Jun-Long; Xu, Ping; Yuan, Lan; Liang, Lei

    2016-08-22

    Phthalazinone derivatives were designed as optical probes for one- and two-photon fluorescence microscopy imaging. The design strategy involves stepwise extension and modification of pyridazinone by 1) expansion of pyridazinone to phthalazinone, a larger conjugated system, as the electron acceptor, 2) coupling of electron-donating aromatic groups such as N,N-diethylaminophenyl, thienyl, naphthyl, and quinolyl to the phthalazinone, and 3) anchoring of an alkyl chain to the phthalazinone with various terminal substituents such as triphenylphosphonio, morpholino, triethylammonio, N-methylimidazolio, pyrrolidino, and piperidino. Theoretical calculations were utilized to verify the initial design. The desired fluorescent probes were synthesized by two different routes in considerable yields. Twenty-two phthalazinone derivatives were synthesized and their photophysical properties were measured. Selected compounds were applied in cell imaging, and valuable information was obtained. Furthermore, the designed compounds showed excellent performance in two-photon microscopic imaging of mouse brain slices. PMID:27440529

  11. Poly(aryl ethers) and related polysiloxane copolymer molecular coatings: Preparation and radiation degradation

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.

    1982-01-01

    The radiation degradation of poly(arylene ether sulfones) and related materials is studied. These basic studies are important both as a means to developing stronger, more stable matrix resins for composite materials, as well as to improve the data base in regard to chemical structure-physical property relationships. Thirty homo and copolymers were synthesized, at least partially characterized and, in several cases suitable film casting techniques were developed. Four samples were chosen for initial radiation degradation. Poly(dimethyl siloxane) soft bocks/segments can preferentially migrate to the surface of copolymer films. Since siloxanes are utilized as thermal control coatings, this form of 'molecular' coating is of interest. The chemistry for preparing such copolymers with any of the polymers described was demonstrated.

  12. 40 CFR 721.10398 - Poly(oxy-1,2-ethanediyl),. alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic). 721.10398 Section 721.10398 Protection of...-ethanediyl),. alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic). (a) Chemical substance... poly(oxy-1,2-ethanediyl), .alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (PMN P-10-495)...

  13. 40 CFR 721.10398 - Poly(oxy-1,2-ethanediyl),. alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic). 721.10398 Section 721.10398 Protection of...-ethanediyl),. alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic). (a) Chemical substance... poly(oxy-1,2-ethanediyl), .alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (PMN P-10-495)...

  14. 40 CFR 721.10398 - Poly(oxy-1,2-ethanediyl),. alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic). 721.10398 Section 721.10398 Protection of...-ethanediyl),. alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic). (a) Chemical substance... poly(oxy-1,2-ethanediyl), .alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (PMN P-10-495)...

  15. Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.

    PubMed

    Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok

    2014-10-01

    Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211. PMID:25942869

  16. Modification of poly(ether urethane) with fluorinated phosphorylcholine polyurethane for improvement of the blood compatibility.

    PubMed

    Tan, Dongsheng; Zhang, Xiaoqing; Li, Jiehua; Tan, Hong; Fu, Qiang

    2012-02-01

    In order to improve the blood compatibility, poly(ether urethane) (PEU) and fluorinated phosphorylcholine polyurethane (P-HFPC) were used to prepare PU/P-HFPC blends by solution mixing. The hemocompatibility in vitro was evaluated with protein adsorption and platelet-rich plasma (PRP) contact tests. It was found that the amount of adsorbed protein on surface was decreased by 87%, and almost no platelet adhesion and activation was observed on the surface of blends when P-HFPC content was above 5 wt %. After adding P-HFPC, the blends basically kept favorable mechanical properties of PEU though the content of P-HFPC rises to 20 wt %. To better understand the relationship between structure and properties, the phase structure and surface property of the blend films were further investigated via differential scanning calorimetry, dynamic mechanical analysis, atomic force microscopy, X-ray photoelectron spectroscopy, and contact angle measurements. The results indicated that the fluorinated phosphorylcholine units could be easily enriched on the surface of blend films due to the phase separation between the PEU and P-HFPC. Therefore, ordinary poly(ether urethane)s can obtain both satisfactory blood compatibility and good mechanical properties just by blending with small amount of P-HFPC. PMID:22083794

  17. Transparent Films from CO2‐Based Polyunsaturated Poly(ether carbonate)s: A Novel Synthesis Strategy and Fast Curing

    PubMed Central

    Subhani, Muhammad Afzal; Köhler, Burkhard; Gürtler, Christoph; Leitner, Walter

    2016-01-01

    Abstract Transparent films were prepared by cross‐linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2, propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron‐acceptor and electron‐donor groups enables particularly facile UV‐ or redox‐initiated free‐radical curing. The resulting materials are transparent and highly interesting for coating applications. PMID:27028458

  18. Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone)

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Zhongyi; Tian, Huimin; Wang, Siwen; Zhang, Bei; Cao, Ying; He, Guangwei; Li, Zongyu; Wu, Hong

    2015-08-01

    The development of alkaline anion exchange membrane (AEM) with both high ion conductivity and stabilities is of great significance for fuel cell applications. In this study, a facile acid-base blending method is designed to improve AEM performances. Basic imidazolium-functionalized poly (ether ether ketone) with a high functionalization degree is employed as polymer matrix to pursue high ion-exchange capacity (IEC) as well as high hydroxide conductivity, meanwhile acidic sulfonated poly (ether ether ketone) (SPEEK) is employed as the cross-linking agent to enhance the stabilities of the blend membranes. Particularly, an in-situ Menshutkin/crosslinking method is exploited to prevent the flocculation in the preparation process of blend membranes. As a result, dense and defect-free blend membranes are obtained. The blend membranes exhibit high level of IEC up to 3.15 mmol g-1, and consequently possess elevated hydroxide conductivity up to 31.59 mS cm-1 at 30 °C. In addition, benefiting from the strong electrostatic interaction introduced by the acid-base blending, the stabilities and methanol resistance of blend membranes are enhanced.

  19. Development of novel proteasome inhibitors based on phthalazinone scaffold.

    PubMed

    Yang, Lingfei; Wang, Wei; Sun, Qi; Xu, Fengrong; Niu, Yan; Wang, Chao; Liang, Lei; Xu, Ping

    2016-06-15

    In this study we designed a series of proteasome inhibitors using pyridazinone as initial scaffold, and extended the structure with rational design by computer aided drug design (CADD). Two different synthetic routes were explored and the biological evaluation of the phthalazinone derivatives was investigated. Most importantly, electron positive triphenylphosphine group was first introduced in the structure of proteasome inhibitors and potent inhibition was achieved. As 6c was the most potent inhibitor of proteasome, we examined the structure-activity relationship (SAR) of 6c analogs. PMID:27158142

  20. Degradation of Imidazolium- and Quaternary Ammonium-Functionalized Poly(fluorenyl ether ketone sulfone) Anion Exchange Membranes

    SciTech Connect

    Chen, DY; Hickner, MA

    2012-11-01

    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by H-1 NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 degrees C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 degrees C but much lower stability at 80 degrees C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed.

  1. Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes.

    PubMed

    Chen, Dongyang; Hickner, Michael A

    2012-11-01

    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by ¹H NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 °C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 °C but much lower stability at 80 °C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed. PMID:23067022

  2. Thermal and Optical Properties of New Poly(amide-imide)/Nanocomposite Reinforced by Layer Silicate Containing Diphenyl Ether Moieties

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Faramarzi, Ellahe; Shabanian, Meisam

    2011-04-01

    New poly(amide-imide)-montmorillonite reinforced nanocomposites containing Bis(4-N-trimellitylimido) diphenyl ether moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 4 was synthesized by the direct polycondensation reaction of Bis(4-N-trimellitylimido) diphenyl ether 3 with 4,4'-diamino diphenyl ether 2 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nanocomposite films 4a and 4b with 10 and 20 mass% silicate particles respectively, were characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The properties of nanocomposites films were investigated by using Uv-vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements.

  3. Zero-birefringence photosensitive poly(arylene ether) for optical waveguides

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Dan; Zhong, Zhen-Xin; Kim, Jang Joo; Lee, Myong-Hoon

    2005-01-01

    Novel photosensitive fluorinated poly(arylene ether) containing chalcone unit (F-PAECh) in the main chain was synthesized from decafluorinated chalcone and fluorinated bisphenol at low temperature for polymer optical waveguide application. Upon UV irradiation on the resulting polymer film, [2+2] cycloaddition of chalocone moiety induced the anisotropic decrease of the refractive indices (nTE and nTM) accompanied with crosslinking of polymer film. The decrease was more significant in in-plane direction than out-of-plane direction, and consequently, zero birefringence was obtained with 4.5 min of exposure. Zero-birefringence as well as its excellent optical properties of F-PAECh makes it a promising candidate material for use in high-performance wavelength division multiplexing components such as polarization-independent arrayed waveguide gratings and Bragg wavelength filters.

  4. Synthesis of novel fluorine containing poly(arylene ether-pyrazoles)

    SciTech Connect

    Bass, R.G.; Srinivasan, K.R.

    1993-12-31

    Several novel poly(arylene ether-pyrazoles) (PAE-pyrazoles) containing N-tetrafluorophenyl or octafluorobiphenal groups have been prepared. Polymers containing N-tetrafluorophenyl groups were prepared from two new monomers namely, 3,5-bis(4-hydroxyphenyl)-1-(2,3,5,6-tetrafluorophenyl)pyrazole and 3,5-bis(4-hydroxyphenyl)-4-phenyl-1-(2,3,5,6-tetrafluorophenyl)pyrazole, respectively. Several bisphenol pyrazole monomers were polymerized with decafluorobiphenyl under controlled reaction conditions to obtain PAE-pyrazoles containing octafluorobiphenyl moieties. All polymers were obtained as white granular or fibrous solids with inherent viscosities of 0.19-1.40 dL/g, and were stable up to 480{degrees}C in air and helium. In general, the thermal properties of fluorine containing PAE-pyrazoles were comparable or lower than their corresponding non-fluorine containing systems. The preparation and thermal properties of these polymers will be discussed.

  5. Poly(arylene ether imidazole) surfacing films for flat and parabolic structures

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Towell, Timothy W. (Inventor); Tompkins, Stephen S. (Inventor)

    1996-01-01

    Films of thermoplastic poly(arylene ether imidazole)s (PAEI)s are used as surface modifiers for neat resin panels and composite resin panels. The PAEI polymer contains imidazole groups along the backbone which co-cure, i.e., react chemically, with epoxies or bismaleimides during processing and thereby provide excellent adhesion between the PAEI film and an epoxy or bismaleimide neat resin or composite resin facesheet. The film provides good adhesion and a smooth surface to the finished part and acts as a release agent from the mold. The as-processed integral structures have very smooth (specular) surfaces, and since the film releases readily from a glass mold, no release agent is necessary. The PAEI film is thermally stable, resistant to electron radiation, and adheres tenaciously to the facesheet. The film maintains good adhesion even after thermal cycling from room temperature to .about. -196.degree. C.

  6. CO2 Gas Transport Property of Sulfonated Poly(Arylenen Ether Sulfone) Copolymer Membrane.

    PubMed

    Lee, Hye Jin; Kim, Deuk Ju; Nam, Sang Yong

    2015-03-01

    The effect of functional groups such as sulfuric acid group and metal ions on the CO2 gas transport property of membranes was investigated. Sulfonated poly(arylene ether sulfone) (SPAES) was prepared by direct copolymerization with a non-sulfonated monomer and sulfonated monomer. The sulfonation degree of SPAES was controlled from 0 to 50%. Metal ions such as lithium and sodium were substituted for the protons of the -SO3H group. The thermal properties, microstructure of polymer chains, and the permeability and selectivity of membranes were evaluated. The solubility coefficient of CO2 gas increased with an increase in sulfonation degree. But the diffusivity was largely decreased and the CO2/N2 selectivity of the membrane substituted for metal ions was increased. PMID:26413703

  7. Rheological behavior of branch modified poly(butylene succinate) by butyl glycidyl ether

    NASA Astrophysics Data System (ADS)

    Qi, Zhiguo; Zhang, Yu; Xu, Jun; Guo, Baohua

    2016-03-01

    The Butyl Glycidyl Ether (bge) is selected as a branch mononers and correspondingly poly(butylene succinate) PBS-bge copolymers is synthesised by polymerization. In this study, the dynamic viscoelastic is employed to study the rheological properties of homogeneous PBS and PBS-bge copolymers. The results indicated that all copolymers showed high mole weight and well matched the reaction mole ratio. But the PBS-bge copolymers exhibited a higher shear thinning behaviors than homogeneous PBS. And all PBS-bge copolymers exhibited a higher complex viscosity at low frequency indicating network-like structures were formed at the low shear frequency. In addition, the tanδ is remarkable decreased with the introducing of bge, which reflects that the elasticity of polymer is significantly improved. As a result, the branched modification has improved the ductility and toughness of the material obviously, especially when the branched ratio is more than 5%.

  8. Chitin nanowhisker-supported sulfonated poly(ether sulfone) proton exchange for fuel cell applications.

    PubMed

    Zhang, Chan; Zhuang, Xupin; Li, Xiaojie; Wang, Wei; Cheng, Bowen; Kang, Weimin; Cai, Zhanjun; Li, Mengqin

    2016-04-20

    To balance the relationship among proton conductivity and mechanic strength of sulfonated poly(ether sulfone) (SPES) membrane, chitin nanowhisker-supported nanocomposite membranes were prepared by incorporating whiskers into SPES. The as-prepared chitin whiskers were prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) mediated oxidation of α-chitin from crab shells. The structure and properties of the composite membranes were examined as proton exchange membrane (PEM). Results showed that chitin nanowhiskers were dispersed incompactly in the SPES matrix. Thermal stability, mechanical properties, water uptake and proton conductivity of the nanocomposite films were improved from those of the pure SPES film with increasing whisker content, which ascribed to strong interactions between whiskers and between SPES molecules and chitin whiskers via hydrogen bonding. These indicated that composition of filler and matrix got good properties and whisker-supported membranes are promising materials for PEM. PMID:26876844

  9. Surface modification of a biomedical poly(ether)urethane by a remote air plasma

    NASA Astrophysics Data System (ADS)

    Gray, J. E.; Norton, P. R.; Griffiths, K.

    2003-07-01

    Plasma modification of polymer surfaces is widely used, but the plasma/polymer interaction is very complex and still not fully understood. In this paper, the interaction of a biomedical poly(ether)urethane with a remote air plasma treatment has been studied. Atomic force microscopy studies show the domain structure of the polymer as well as the absence of any surface roughening due to plasma treatment. Contact angle goniometry shows an improved wettability of the surface after plasma treatment. X-ray photoelectron spectroscopy indicates an increase in CO and CC at the surface, as well as the presence of new functional groups such as alcohols, ketones, aldehydes and imines. There is also evidence that the energy imparted to the polymer during plasma treatment causes surface segregation of polyol segments.

  10. Chemistry and properties of poly(arylene ether benzoxazole)s

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.

    1992-01-01

    Several new poly(arylene ether benzoxazole)s (PAEBs) were prepared by the nucleophilic displacement reaction of activated aromatic difluorides with two novel bis(hydroxyphenyl benzoxazole), using potassium carbonate. The 6F-containing PAEBs exhibited better solubility and higher Tgs than did the 6,6'-bis-(2-(4-hydroxyphenyl)benzoxazole)-derived polymers. Several of the 6,6'bis(2-(4-hydroxyphenyl)benzoxazole)-derived polymers exhibited crystallinity by DSC and wide-angle X-ray diffraction. Unorientated thin film properties of the 6F-containing PAEBs were comparable to those of other 6F-containing PAEBS that were previously reported. The chemistry and the physical and mechanical properties of the above polymers are discussed.

  11. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials.

    PubMed

    Lucke, A; Tessmar, J; Schnell, E; Schmeer, G; Göpferich, A

    2000-12-01

    To obtain biodegradable polymers with variable surface properties for tissue culture applications, poly(ethylene glycol) blocks were attached to poly(lactic acid) blocks in a variety of combinations. The resulting poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether (Me.PEG-PLA) diblock copolymers were subject to comprehensive investigations concerning their bulk microstructure and surface properties to evaluate their suitability for drug delivery applications as well as for the manufacture of scaffolds in tissue engineering. Results obtained from 1H-NMR, gel permeation chromatography, wide angle X-ray diffraction and modulated differential scanning calorimetry revealed that the polymer bulk microstructure contains poly(ethylene glycol)-monomethyl ether (Me.PEG) domains segregated from poly(D,L-lactic acid) (PLA) domains varying with the composition of the diblock copolymers. Analysis of the surface of polymer films with atomic force microscopy and X-ray photoelectron spectroscopy indicated that there is a variable amount of Me.PEG chains present on the polymer surface, depending on the polymer composition. It could be shown that the presence of Me.PEG chains in the polymer surface had a suppressive effect on the adsorption of two model peptides (salmon calcitonin and human atrial natriuretic peptide). The possibility to modify polymer bulk microstructure as well as surface properties by variation of the copolymer composition is a prerequisite for their efficient use in the fields of drug delivery and tissue engineering. PMID:11055283

  12. Positively charged and bipolar layered poly(ether imide) nanofiltration membranes for water softening applications

    NASA Astrophysics Data System (ADS)

    Gassara, S.; Abdelkafi, A.; Quémener, D.; Amar, R. Ben; Deratani, A.

    2015-07-01

    Poly(ether imide) (PEI) ultrafiltration membranes were chemically modified with branched poly(ethyleneimine) to obtain nanofiltration (NF) membrane Cat PEI with a positive charge in the pH range below 9. An oppositely charged polyelectrolyte layer was deposited on the resulting membrane surface by using sodium polystyrene sulfonate (PSSNa) and sodium polyvinyl sulfonate (PVSNa) to prepare a bipolar layered membrane NF Cat PEI_PSS and Cat PEI_PVS having a negatively charged surface and positively charged pores. Cat PEI exhibited good performance to remove multivalent cations (more than 90% of Ca2+) from single salt solutions except in presence of sulfate ions. Adding an anionic polyelectrolyte layer onto the positively charged surface resulted in a significant enhancement of rejection performance even in presence of sulfate anions. Application of the prepared membranes in water softening of natural complex mixtures was successful for the different studied membranes and a large decrease of hardness was obtained. Moreover, Cat PEI_PSS showed a good selectivity for nitrate removal. Fouling experiments were carried out with bovine serum albumin, as model protein foulant. Cat PEI_PSS showed much better fouling resistance than Cat PEI with a quantitative flux recovery ratio.

  13. Shifting from hydrogen bond network to π-π stacking: a key mechanism for reversible thermochromic sulfonated poly(ether ether ketone).

    PubMed

    Jarumaneeroj, Chatchai; Tashiro, Kohji; Chirachanchai, Suwabun

    2014-08-01

    Sulfonated poly(ether ether ketone) (SPEEK) thin film performs reversible thermochromic property by developing the color to be yellowish at the temperature above 190 °C. The detailed analyses based on temperature-dependent techniques suggest the thermal treatment inducing the shifting of the hydrogen bond network between the sulfonated group and the hydrated water molecules to the π-π stacking among aromatic rings in SPEEK chains. Although it is general that the polymer chain packing is unfavorable at high temperature, the present work shows a good example that when the polymer chains can form specific molecular interaction, such as π-π stacking, even in harsh thermal treatment, a rearrangement will effectively occur, which leads to an external stimuli-responsive property. PMID:24942891

  14. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Poly(etherimide) and poly(ether-ester-amide) membranes

    SciTech Connect

    Not Available

    1986-01-01

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream's composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  15. Functional Aromatic Poly(1,3,4-Oxadiazole-Ether)s with Benzimidazole Pendants: Synthesis, Thermal and Dielectric Studies

    PubMed Central

    Ganesh, Shimoga D.; Pai, Vasantakumar K.; Kariduraganavar, Mahadevappa Y.; Jayanna, Madhu B.

    2014-01-01

    Poly(1,3,4-oxadiazole-ether) with reactive carboxylic acid pendants was synthesized from solution polymerization via nucleophilic displacement polycondensation among 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole (BFPOx) and 4,4′-bis(4-hydroxyphenyl) valeric acid (BHPA). Without altering the polymeric segments, benzimidazole modified poly(1,3,4-oxadiazole-ether)s were prepared by varying stoichiometric ratios of 1,2-phenylenediamine. The molecular structural characterization of these polymers was achieved by, FT-IR, NMR, TGA, elemental analysis, and analytical techniques. The weight-average molecular weight of virgin polymer with carboxylic acid functionality was determined by gel permeation chromatography (GPC) and was found to be 22400 (Mw/Mn = 2.07). All the synthesized polyethers were compressed into pellets and electrical contacts were established to perform dielectric properties. PMID:27437448

  16. Complexation between poly(maleic acid/octyl vinyl ether) and poly(vinyl caprolactam) in aqueous solution and at the alumina/water interface.

    PubMed

    Qiu, Q; Somasundaran, P

    2002-09-01

    Solution and interfacial properties of binary polymer mixtures of poly(maleic acid/octyl vinyl ether) (PMAOVE) and poly(vinyl caprolactam) (PVCAP) have been studied for the alumina/water system. To test the hydrophobic effect, mixtures of poly(maleic acid/methyl vinyl ether) (PMAMVE) and PVCAP are also investigated and compared to the behavior of PMAOVE/PVCAP. At low pH, both polymer mixtures become turbid upon mixing. The turbidity increases at low mixing ratios of PVCAP to the vinyl ether component, reaches a maximum, and then decreases at higher mixing ratios. Upon shifting the pH to the alkaline range, i.e., pH 7.5 and above, the turbid solution becomes clear for both the polymer mixtures. Cloud point measurements indicate the absence of complexation of PVCAP with PMAMVE under the alkaline conditions, but strong interaction with PMAOVE. This is attributed to the different forces involved in the complexation among the polymers: H bonding for PVCAP/PMAMVE and both H bonding and hydrophobic effects for PVCAP/PMAOVE. At the alumina/water interface, the normally nonadsorbing PVCAP is triggered to adsorb by PMAOVE, attributed to the hydrophobic complexation between the two. However, the adsorption of PVCAP shows a maximum as a function of the concentration of PMAOVE. At concentrations of PMAOVE above the onset of its own plateau adsorption, the amount of PVCAP triggered to adsorb is reduced possibly due to the polymer complex formation in solution. PMID:16290852

  17. Radiation-resistant, amorphous, all-aromatic poly(arylene ether sulfones) - Synthesis, physical behavior, and degradation characteristics

    NASA Technical Reports Server (NTRS)

    Lewis, D. A.; O'Donnell, James H.; Hedrick, J. L.; Ward, T. C.; Mcgrath, J. E.

    1989-01-01

    The effects of Co-60 gamma radiation on a series of poly(arylene ether sulfones) prepared by nucleophilic activated aromatic substitution are investigated experimentally. The preparation of the test compounds is described, and the test results are presented in extensive tables and graphs. Radiation-induced degradation, as measured by SO2 production, was found to be lowest in compounds based on biphenol rather than bisphenol A; these findings were also well correlated with ultimate-tensile-strain measurements.

  18. Toughening of BIS maleimide resins: Synthesis and characterization of maleimide terminated poly(arylene ether) oligomers and polymers

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.; Lyle, G. D.; Jurek, M. J.; Mohanty, D.; Hedrick, J. C.

    1986-01-01

    Amine functional poly(arylene ether) sulfones were previously reported. Herein, the chemistry was extended to amorphous poly(arylene ether) ketones because of their higher fracture toughness values, relative to the polysulfones. It was demonstrated that the amino functional oligomers undergo a self-crosslinking reaction at temperatures above about 220 C. This produces an insoluble, but ductile network that has excellent resistance. A ketamine structure hypothesis was proposed and verified using solid state magic angle NMR. In most cases, the water generated upon ketamine formation is too low to produce porosity and solid networks are obtained. The stability of the ketamine networks towards hydrolysis is excellent. The chemistry was further demonstrated to be able to crosslink preformed nonfunctional poly(arylene ether) ketones if a difunctional amine was utilized. This concept has the possibility of greatly improving the creep resistance of thermoplastics. Also, a new technique was developed for converting the amine functional oligomers cleanly into maleimide structures. This method involves reacting maleic anhydride with monomeric aminophenols in the presence of solvent mixtures.

  19. Preparation and properties of crosslinked sulphonated poly(arylene ether sulphone) blend s for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Tsai, Jie-Cheng; Lin, Chien-Kung; Kuo, Jen-Feng; Chen, Chuh-Yung

    HMS-based sulphonated poly(arylene ether sulphone) (HMSSH) is synthesised using 4,4‧-dihydroxy-α-methylstilbene (HMS) monomer to introduce an interesting stilbene core as crosslinkable group. Crosslinked blend membranes are obtained by blending the BPA-based sulphonated poly(arylene ether sulphone) (BPASH) with crosslinkable HMS-based sulphonated poly(arylene ether sulphone) by UV irradiation of the blend membrane. Compared to the native BPASH with crosslinked BPASH/HMSSH blend membranes, the crosslinked blend membranes greatly reduce the water uptake and methanol permeability with only a slight reduction in proton conductivity. The crosslinked blend membrane, which has a 6% HMSSH content, has a water uptake of 59%, methanol permeability of 0.75 × 10 -6 cm 2 s -1, and proton conductivity of 0.08 S cm -1. A membrane-electrode assembly is used to investigate single-cell performance and durability test for DMFC applications. Both the power density and open circuit voltage are higher than those of Nafion ® 117. A maximum power density of 32 mW cm -2 at 0.2 V is obtained at 80 °C, which is higher than that of Nafion ® 117 (25 mW cm -2).

  20. A new strategy based on electrospray technique to prepare dual-responsive poly(ether urethane) nanogels.

    PubMed

    Chen, Jiaming; Dai, Huafeng; Lin, Hui; Tu, Kehua; Wang, Hongjun; Wang, Li-Qun

    2016-05-01

    In this work, we proposed a new strategy based on electrospray technique to prepare nanogels. Compared with other methods of preparing nanogels, electrospray technique is more simple and efficient. A biodegradable and multi-responsive poly(ether urethane) (PEU) was synthesized via a facile one-pot method and used as the electrospray material. By using electrospray technique, pH- and redox-responsive poly(ether urethane) nanogels were prepared. The morphologies of the electrospray nanoparticles before and after swelling were demonstrated to be spherical and uniform, as characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM). Dynamic light scattering (DLS) results showed that the mean hydrodynamic diameter of nanogels was about 500nm. The pH- and redox-sensitive behaviors of nanogels were studied with DLS and TEM. In acidic media the nanogels dissociated, while in the presence of GSH the nanogels degraded. The nanogels suspension was stored at 4°C and was stable without aggregation for at least 30 days. Doxorubicin (DOX) can be further loaded into the poly(ether urethane) nanogels. The electrospray nanogels can change the release rate of loaded drug in response to pH and GSH stimuli. PMID:26859119

  1. Effect of silica nanoparticles on reinforcement of poly(phenylene ether) based thermoplastic elastomer.

    PubMed

    Gupta, Samik; Maiti, Parnasree; Krishnamoorthy, Kumar; Krishnamurthy, Raja; Menon, Ashok; Bhowmick, Anil K

    2008-04-01

    Reinforcement of a novel poly(phenylene ether) (PPE) based thermoplastic elastomer (TPE), i.e., styrene-ethylene-butylene-styrene (SEBS)/ethylene vinyl acetate (EVA) and PPE-polystyrene (PS), was studied to develop a reinforced thermoplastic elastomer or thermoplastic vulcanizate (TPV). An effort was made to reinforce selectively the elastomeric dispersed phase of EVA by silica nanoparticles and silica sol-gel precursors, like alkoxy orthosilanes, using twin-screw extrusion and injection molding processes. Improvement of tensile strength and percent elongation at break was observed both with silica nanoparticles and tetraethoxy orthosilane (TEOS). Addition of TEOS transformed the dispersed EVA lamellar morphology into semispherical domains as a consequence of possible crosslinking. Soxhlet extraction was done on the silica and TEOS reinforced materials. The insoluble residues collected from both the silica and TEOS reinforced samples were analyzed in detail using both morphological and spectroscopic studies. This extensive study also provided an in-depth conceptual understanding of the PPE based TPE behavior upon reinforcement with silica nanoparticles and silica sol-gel precursors and the effect of reinforcement on recycling behavior. PMID:18572622

  2. Studies on Crystalline Structure of Poly(aryl ether ketone ketone) Copolymer

    NASA Astrophysics Data System (ADS)

    Honigfort, P. S.; Ho, R. M.; Cheng, S. Z. D.

    1998-03-01

    Recent studies on the Poly(aryl ether ketone ketone) [PEKK(T/I)] copolymer containing alternating terphthalic acid (T) and isopthalic acid (I) linked phenylene units have left unanswered polymorphic questions. To help answer these questions a PEKK(T/I) oligomer was prepared and its crystal structure was investigated and compared to results from the copolymer. Evidence was found for 3 different crystal forms. When the copolymer is crystallized near 300 C, only one orthorhombic unit cell (form I) forms, and these crystals are also evident in the oligomer. At crystallization temperatures below 210 C, another crystal unit cell (form II) occurs which can also be isolated in the oligomer. Also, evidence for a new form (form III), which coexists with both form I and II was identified in both the copolymer and the oligomer between 200 and 280 C. Evidence of a larger supercell symmetry consisting of 3 unit cells staggered in the a-axis dimension was seen in electron diffraction studies of form III. This research was supported by WSFDMR(96-17030).

  3. Grafting sulfobetaine monomer onto the segmented poly(ether-urethane) surface to improve hemocompatibility.

    PubMed

    Yuan, Y L; Ai, F; Zhang, J; Zang, X B; Shen, J; Lin, S C

    2002-01-01

    Polyurethanes are widely used as blood-contacting biomaterials, due to their good biocompatibility and mechanical properties. Nevertheless, their blood compatibility is still not adequate for more demanding applications. Surface modification is an effective way to improve the hemocompatibility for biomaterials. The purpose of the present study was to synthesize a novel nonthrombogenic biomaterial by modifying the surface of polyurethane. Ozonization was used to introduce active peroxide groups onto the segmented poly(ether-urethane) (SPEU) film surface and graft polymerization of N,N'-dimethyl (methacryloyloxyethyl) ammonium propanesulfonate (DMAPS), a sulfobetaine structure, onto the ozone-activated SPEU surface was conducted. The SPEU-g-PDMAPS film was characterized by ATR-FTIR, XPS, and contact angle measurements. ATR-FTIR and XPS confirmed the graft polymerization. The grafted film possessed a relatively hydrophilic surface, as revealed by contact angle measurement. The blood compatibility of the grafted films was evaluated by a platelet-rich plasma (PRP) adhesion study and scanning electron microscopy, using SPEU film as the reference. No platelet adhesion was observed for the grafted films incubated with PRP at 37 degrees C for 60 and 180 min. This new sulfobetaine structure grafted biomaterial might have potential for biomedical applications. PMID:12484485

  4. Correlating electronic structure and chemical durability of sulfonated poly(arylene ether sulfone)s

    NASA Astrophysics Data System (ADS)

    Lawrence, Jimmy; Yamashita, Koichi; Yamaguchi, Takeo

    2015-04-01

    Many different proton-conducting polymeric materials have been developed for polymer electrolyte membrane fuel cells (PEMFCs). The development of perfluorosulfonic acid-based, polymer electrolyte membranes (PFSA-PEMs) was followed by aromatic hydrocarbon-based PEMs (HC-PEMs), which allow for tailored design and optimization of their molecular structures. Although many new PFSA-PEMs and HC-PEMs have shown promising proton conductivity and thermal stability, chemical degradation of these materials in an oxidizing environment remains a significant technical barrier in PEMFC development. Here, we used accelerated degradation tests and electronic structure analysis to examine the chemical stability of sulfonated poly(arylene ether sulfone) (SPES) copolymers, a highly thermally stable HC-PEM. HOMO levels, the presence of main chain-protecting steric groups, and HOMO-LUMO location along the main chain have significant effects on the chain scission modes and degradation rate of SPES copolymers. Rational design of HC-PEMs to suppress midpoint scission can open many opportunities in the development of highly robust polymer electrolytes for fuel cell and other energy storage applications.

  5. Poly(arylene ether sulfone)s ionomers containing quaternized triptycene groups for alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuo; Gong, Feixiang; Zhang, Suobo; Li, Shenghai

    2012-11-01

    A series of poly(arylene ether sulfone)s containing quaternized triptycene groups are synthesized through a chloromethylation reaction following a quaternization process. The resulting ionomers are soluble in polar aprotic solvents; thus, flexible, tough membranes could be prepared by solution casting. Novel anion exchange membranes based on these ionomers are obtained by anion exchange with hydroxide ions. All anion exchange membranes show conductivities above 10-2 S cm-1 at room temperature. The highest hydroxide conductivity is 7.2 × 10-2 S cm-1, which is achieved by the anion exchange membrane with ion exchange capacity (IEC) = 2.61 mmol g-1. Meanwhile, these anion exchange membranes have low water uptake and good dimensional stability even at high IEC values. For example, the membrane water uptake (IEC = 1.97 mmol g-1) is only 21% at room temperature, and the swelling ratio is 11%. The anion exchange membranes are stable in alkaline conditions. All the membranes have no significant change in 4 M NaOH solution at 25 °C after 30 days. All results suggest that these anion exchange membranes have potential application in alkaline fuel cells.

  6. Tuning the Miscibility of Polystyrene / Poly(vinyl methyl ether) Blends with Electric Fields

    NASA Astrophysics Data System (ADS)

    Kriisa, Annika; Roth, Connie

    2014-03-01

    Application of electric fields seem experimentally simple, as they can be switched on and off instantly and effortlessly. Nevertheless the influence of electric fields on the phase separation temperature Ts in small molecules and polymeric mixtures is not yet well understood. Available theoretical calculations use thermodynamic arguments for adding an electrostatic free energy term to the total free energy of mixing and predict changes in Ts due to external electric fields that are much smaller than what most experimental results report. To date, neither theory or experiments have found a clear consensus on whether uniform electric fields enhance mixing or demixing. As only a few experimental results have been published over the past several decades with typically only small shifts in Ts, more experiments with unambiguously large shifts in Ts are needed to better understand this effect. Using a fluorescence technique we have developed for measuring the phase separation temperature Ts of polystyrene (PS) / poly(vinyl methyl ether) (PVME) blends [J. Polym. Sci., Part B 2012, 50, 250-256], we investigate the change in Ts due to the presence of electric fields. We show that electric fields strongly enhance mixing in PS/PVME polymer blends. For example, for a 50/50 PS/PVME blend composition, Ts is increased by over 10 K for electric fields of 18 kV/mm.

  7. Enhanced Surface Properties of Branched Poly(ether sulfone) from Semifluorinated Polyhedral Oligomeric Silsequioxanes.

    PubMed

    Knauer, Katrina M; Jennings, Abby R; Bristol, Ashleigh N; Iacono, Scott T; Morgan, Sarah E

    2016-05-18

    Hybrid systems in which poly(ether sulfone) (PESU) chains are grafted to semifluorinated polyhedral oligomeric silsesquioxane (POSS) cores are expected to integrate the advantages of both fluoropolymers and POSS into the polymer system to yield excellent surface properties. For that purpose, we synthesized a novel octa-functional perfluorocyclopentenyl-POSS (PFCP-POSS), which was used as a "core" grafting point. Commercial PESU was successfully grafted to PFCP-POSS via the nucleophilic addition-elimination reaction between the phenolic chain ends and reactive PFCP moieties to yield a hybrid branched polymer possessing a semifluorinated POSS core. X-ray photoelectron spectroscopy, neutron reflectivity, and atomic force microscopy indicated that the preparation of nanostructured polymer surfaces occurs by migration of the low surface energy components (PFCP-POSS molecules), while POSS aggregation is suppressed by covalent attachment to the long PESU chains. The resulting PFCP-POSS modified PESU films were highly transparent and yielded hydrophobic surfaces with low surface energy and high modulus for potential applications in high performance coatings and composites. PMID:27096284

  8. Relationship between morphology and glass-rubber relaxation in solvent-crystallized poly(aryl ether ketones)

    SciTech Connect

    Kalika, D.S.; Gibson, D.G.; Register, R.A.; Quiram, D.J.

    1996-12-31

    The relationship between crystal lamellar structure and glass-rubber relaxation behavior has been examined for solvent- and thermally-crystallized poly (aryl ether ketones). The thermal crystallization of poly (ether ether ketone) [PEEK] leads to a positive offset in the glass transition temperature of 10{degrees}C to 15{degrees}C as compared to a wholly-amorphous (quenched) sample owing to the constraint imposed on the amorphous PEEK segments by the crystallites. The degree of constraint is a function of the crystallization conditions, with less restrictive conditions (e.g., higher cold-crystallization temperatures) leading to a progressive decrease in T{sub g}. Small-angle X-ray scattering measurements reported by Jonas and Legras indicate an inverse relationship between amorphous interlayer thickness and glass transition temperature for thermally-crystallized PEEK specimens, with higher crystallization temperatures resulting in a larger interlayer spacing and correspondingly lower T{sub g}. Solvent-crystallized PEEK samples display relaxation temperatures which are significantly higher as compared to thermally-crystallized PEEK of comparable bulk crystallinity. SAXS measurements reveal a much smaller crystal long spacing (d) for the solvent-crystallized samples. The relationship between T{sub g} and long spacing is consistent with a linear extrapolation of the thermal crystallization values. Annealing of the solvent-crystallized specimens at 300{degrees}C leads to crystal reorganization and an increase in the measured long spacing, with a corresponding decrease in T{sub g}. Results for solvent-crystallized poly (ether ketone ketone) [PEKK] are similar to those obtained for PEEK, with a considerable offset in T{sub g} measured for all samples exposed to solvent crystallization.

  9. Surface modification of poly(ether urethane urea) with modified dehydroepiandrosterone for improved in vivo biostability.

    PubMed

    Christenson, Elizabeth M; Wiggins, Michael J; Anderson, James M; Hiltner, Anne

    2005-04-01

    In this study, a fatty acid urethane derivative of dehydroepiandrosterone (DHEA) was synthesized and evaluated as a polyurethane additive to increase long-term biostability. The modification was hypothesized to reduce the water solubility of the DHEA and physically anchor the additive in the polyurethane during implantation. Polyurethane film weight loss in water as a function of time was studied to determine the polymer retention of the modified DHEA. The polyurethane film with unmodified DHEA had significant weight loss in the first day (10%) that was previously correlated to rapid leaching of the additive. The polyurethane film with modified DHEA had significantly less weight loss at all time points indicating improved polymer retention. The effect of the modified DHEA additive on the biostability of a poly(ether urethane urea) was examined after 5 weeks of subcutaneous implantation in Sprague-Dawley rats. Optical micrographs and infrared analysis of the specimens indicated that the modified DHEA bloomed to the surface of the film forming a crystalline surface layer approximately 10-15 microns thick. After explantation, this surface layer was intact without measurable differences in surface chemistry as monitored by attenuated total reflectance-Fourier transform infrared spectroscopy. There was no evidence of degradation of the polyurethane underneath the modified DHEA surface layer as compared with the polyurethane control. We have concluded that the modified DHEA self-assembled into a protective surface coating that inhibited degradation of the polyurethane. The roughness of the modified DHEA surface layer prevented adherent cell analysis to determine if the additive retained the ability to down-regulate macrophage activity. Subsequent studies will investigate the ability of surface-modifying additives to modulate cellular respiratory bursts in addition to the formation of an impermeable barrier. This bimodal approach to improving biostability holds great

  10. Electric fields enhance miscibility of polystyrene/poly(vinyl methyl ether) blends

    NASA Astrophysics Data System (ADS)

    Kriisa, Annika; Roth, Connie B.

    2014-10-01

    How the presence of electric fields alters the miscibility of mixtures has been studied since the 1960s with conflicting reports on both the magnitude and direction of the shift in the phase separation temperature Ts. Theoretical understanding of the phenomenon has been hampered by the lack of experimental data with unambiguously large shifts in Ts outside of experimental error. Here, we address these concerns by presenting data showing that uniform electric fields strongly enhance the miscibility of polystyrene (PS)/poly(vinyl methyl ether) (PVME) blends. Reliable shifts in Ts of up to 13.5 ± 1.4 K were measured for electric fields strengths of E = 1.7 × 107 V/m in a 50/50 PS/PVME mixture. By using a sensitive fluorescence method to measure Ts, the PS/PVME blend can be quenched back into the one phase region of the phase diagram when the domains are still small allowing the blend to be remixed such that Ts can be measured repeatedly on the same sample. In this manner, highly reproducible Ts values at non-zero and zero electric field can be ascertained on the same sample. Our results agree with the vast majority of existing experimental data on various mixtures finding that electric fields enhance miscibility, but are opposite to the one previous study on PS/PVME blends by Reich and Gordon [J. Polym. Sci.: Polym. Phys. Ed. 17, 371 (1979)] reporting that electric fields induce phase separation, a study which has been considered anomalous in the field.

  11. Quasielastic neutron scattering study of hydrogen motions in an aqueous poly(vinyl methyl ether) solution

    NASA Astrophysics Data System (ADS)

    Capponi, S.; Arbe, A.; Cerveny, S.; Busselez, R.; Frick, B.; Embs, J. P.; Colmenero, J.

    2011-05-01

    We present a quasielastic neutron scattering (QENS) investigation of the component dynamics in an aqueous Poly(vinyl methyl ether) (PVME) solution (30% water content in weight). In the glassy state, an important shift in the Boson peak of PVME is found upon hydration. At higher temperatures, the diffusive-like motions of the components take place with very different characteristic times, revealing a strong dynamic asymmetry that increases with decreasing T. For both components, we observe stretching of the scattering functions with respect to those in the bulk and non-Gaussian behavior in the whole momentum transfer range investigated. To explain these observations we invoke a distribution of mobilities for both components, probably originated from structural heterogeneities. The diffusive-like motion of PVME in solution takes place faster and apparently in a more continuous way than in bulk. We find that the T-dependence of the characteristic relaxation time of water changes at T ≲ 225 K, near the temperature where a crossover from a low temperature Arrhenius to a high temperature cooperative behavior has been observed by broadband dielectric spectroscopy (BDS) [S. Cerveny, J. Colmenero and A. Alegría, Macromolecules, 38, 7056 (2005), 10.1021/ma050811t]. This observation might be a signature of the onset of confined dynamics of water due to the freezing of the PVME dynamics, that has been selectively followed by these QENS experiments. On the other hand, revisiting the BDS results on this system we could identify an additional "fast" process that can be attributed to water motions coupled with PVME local relaxations that could strongly affect the QENS results. Both kinds of interpretations, confinement effects due to the increasing dynamic asymmetry and influence of localized motions, could provide alternative scenarios to the invoked "strong-to-fragile" transition.

  12. Preparation and characterization of poly (arylene ether isoxazole)s by fluoride ion-mediated aromatic nucleophilic displacement reactions

    NASA Technical Reports Server (NTRS)

    Herbert, C. G.; Bass, R. G.

    1994-01-01

    As part of a continuing effort to prepare novel thermally stable high-performance polymers, poly(arylene ether isoxazole)s have been prepared by fluoride ion-catalyzed aromatic nucleophilic substitution reactions with bis(trimethylsiloxyphenyl) isoxazoles and activated bisarylhalides in diphenyl sulfone. Initial investigation involving the preparation of these materials with isoxazole bisphenols and activated bisarylhalides in the presence of potassium carbonate indicated that, under reaction conditions necessary to prepare high-molecular-weight materials, the isoxazole monomer was converted to an enamino ketone. This side reaction was avoided by using fluoride as a base. However, trimethylsilyl ether derivatives of the isoxazole bisphenols were required in these polymerizations for the preparation of high-molecular-weight materials. Moderate to high inherent viscosity eta(sub inh): 0.43-0.87 dl/g) materials with good thermal stability (air: 409-477 C, helium: 435-512 C) can be prepared by the silyl ether method. Glass transition temperatures ranged from 182 to 225 C for polymers with phenyl pendants and from 170 to 214 C for those without. Molecular weight control by 2% endcapping and the incorporation of a phenyl pendant at the 4 position of the isoxazole is necessary to yield polymers soluble in polar aprotic solvents at room temperature. There is evidence, however, indicating the existence of crosslinks between the polymer chains when the silyl ether approach is utilized.

  13. A DFT study of the formation of xanthydrol motifs during electrophilic poly(aryl ether ketone) synthesis.

    PubMed

    Melissen, Sigismund T A G; Tognetti, Vincent; Dupas, Georges; Jouanneau, Julien; Lê, Guillaume; Joubert, Laurent

    2016-01-01

    The reaction pathway of the cyclization of 2-phenoxybenzophenone into 9-phenyl-9H-xanthen-9-ol in the presence of acid and an excess of AlCl33 was studied using density functional theory. This type of reaction is known to occur during the Friedel-Crafts polycondensation of poly(aryl ether ketones) following the undesired benzoylation of nucleophilic positions ortho- to the growing polymer's ether groups. The formed defect acts as an undesired terminator of the polymer chain, causing severe problems in the polymer's melt state. A branched, multistep mechanism reminiscent of the Friedel-Crafts acylation reaction is discovered; the reaction starts with the protonation of the carbonyl oxygen, followed by intramolecular electrophilic attack on the carbonyl carbon that determines the turnover frequency of the catalytic cycle and ends by deprotonation of the Wheland intermediate. PMID:26696543

  14. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Xi, Jingyu; Li, Zhaohua; Yu, Lihong; Yin, Bibo; Wang, Lei; Liu, Le; Qiu, Xinping; Chen, Liquan

    2015-07-01

    The properties of sulfonated poly(ether ether ketone) (SPEEK) membranes with various degree of sulfonation (DS) and casting solvent are investigated for vanadium redox flow battery (VRFB). The optimum DS of SPEEK membrane is firstly confirmed by various characterizations such as physicochemical properties, ion selectivity, and VRFB single-cell performance. Subsequently the optimum casting solvent is selected for the optimum DS SPEEK membrane within N,N‧-dimethylformamide (DMF), N,N‧-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The different performance of SPEEK membranes prepared with various casting solvents can be attributed to the different interaction between solvent and -SO3H group of SPEEK. In the VRFB single-cell test, the optimum SPEEK membrane with DS of 67% and casting solvent of DMF (S67-DMF membrane) exhibits higher VRFB efficiencies and better cycle-life performance at 80 mA cm-2. The investigation of various DS and casting solvent will be effective guidance on the selection and modification of SPEEK membrane towards VRFB application.

  15. Proton-conducting electrolyte membranes based on organosiloxane network/sulfonated poly(ether ether ketone) interpenetrating polymer networks embedding sulfonated mesoporous benzene-silica

    NASA Astrophysics Data System (ADS)

    Han, Sung Yeon; Park, Junghwa; Kim, Dukjoon

    2013-12-01

    Composite membranes based on organosiloxane network (OSPN)/sulfonated poly(ether ether ketone) (SPEEK) interpenetrating polymer network (IPN) structures with sulfonated mesoporous benzene-silica (SMBS) proton conductors embedded are fabricated. The flexibility and toughness properties of OSPN are expected to compensate for the brittleness of the sPEEK membranes. The 2D-hexagonal cylindrical mesopore structures of SMBS maintain the water content at a high level to enhance the conductivity, even at low relative humidity. Compared to the pristine sPEEK membranes, the ternary composite membranes can endure about 10 times more elongation before breaking. Both OSPN and SMBS components enhance the proton conductivity of sPEEK membranes in a hydrated state, while maintaining the water uptake at below 55% even at temperatures as high as 100 °C. The SAXS patterns of the composite membranes explain the water-related membrane properties of composite membranes. The maximum power densities of Nafion membrane-based MEAs are 178.4 mA cm-2, 132.2 mA cm-2, and 90.9 mA cm-2, but those of composite membrane-based ones are 159.1 mA cm-2, 134.2 mA cm-2, and 110.8 mA cm-2 at 95%, 70%, and 45% relative humidity, respectively.

  16. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    NASA Astrophysics Data System (ADS)

    Cao, Zongshuang; Qiu, Li; Yang, Yongzhen; Chen, Yongkang; Liu, Xuguang

    2015-10-01

    The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e-MWCNTs caused an enhancement in the glass transition temperature of the composites. Wear tests have shown that the friction coefficient of e-MWCNT/PEEK composites decreased significantly during the test after the running-in period. This suggests that there is an obvious improvement in tribological properties of e-MWCNT/PEEK composites. Overall, the e-MWCNT/PEEK composites have exhibited improved properties and are promising for their applications in industry.

  17. Development of a cheap and accessible carbon fibers-in-poly(ether ether ketone) tube with high stability for online in-tube solid-phase microextraction.

    PubMed

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2016-02-01

    Carbon fibers (CFs) are one kind of important industrial materials that can be obtained commercially at low price. Based on the high extraction efficiency of carbon sorbents, a cheap and accessible carbon fibers-in-poly(ether ether ketone) (PEEK) tube was developed for online in-tube solid-phase microextraction (SPME) method. Coupled to high performance liquid chromatography (HPLC), the CFs-in-tube SPME was applied to analyze eight polycyclic aromatic hydrocarbons (PAHs) in environmental aqueous samples. Extraction conditions (sampling rate, extraction time, methanol content) and desorption time were investigated for optimization of conditions. Under the optimum conditions, the CFs-in-tube SPME-HPLC method provided high extraction efficiency with enrichment factors up to 1748. Good linearity (0.05-50 μg L(-1), 0.5-50 μg L(-1)) and low detection limits (0.01-0.1 μg L(-1)) were also obtained. The online analysis method was finally applied to determine several model PAHs analytes in real environmental aqueous samples. Some target analytes were detected and relative recoveries were in the range of 92.3-111%. Due to natural chemical stability of carbon fibers and PEEK tube, the CFs-in-tube device exhibited high resistance to organic solvent, acid and alkaline conditions. PMID:26653455

  18. Modeling the Nanophase Structural Dynamics of Phenylated Sulfonated Poly Ether Ether Ketone Ketone (Ph-SPEEKK) Membranes as a Function of Hydration

    SciTech Connect

    Lins, Roberto D.; Devanathan, Ramaswami; Dupuis, Michel

    2011-03-03

    Solvated phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) membranes in the presence of hydronium ions were modeled by classical molecular dynamics simulations. The characterization of the nanophase structure and dynamics of such membranes was carried out as a function of the water content lambda, where lambda is the number of water molecules per sulfonate group, for lambda values of 3.5, 6, 11, 25, and 40. Analysis of pair correlation functions supports the experimental observation of membrane swelling upon hydration as well the increase in water and hydronium ion diffusion with increasing lambda. While the average number of hydrogen bonds between hydronium ions and sulfonate groups is dramatically affected by the hydration level, the average lifetime of the hydrogen bonds remains essentially constant. The membrane is found to be relatively rigid and its overall flexibility shows little dependence on water content. Compared to Nafion, water and ion diffusion coefficients are considerably smaller at lower hydration levels and room temperature. However, at higher lambda values of 25 and 40 these coefficients are comparable to those in Nafion at a lambda value of 16. This study also shows that water diffusion in Ph-SPEEKK membranes at low hydration levels can be significantly improved by raising the temperature with important implications for proton conductivity.

  19. Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion

    SciTech Connect

    Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

    2012-08-14

    We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

  20. A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Zheng, Xuan; Liu, Hai; Wang, Guangjin; Cheng, Fan; Zheng, Genwen; Wen, Sheng; Law, Wing-Cheung; Tsui, Chi-Pong; Tang, Chak-Yin

    2016-09-01

    Remarkable progress has been made on the use of polymer electrolyte membranes (PEMs) for renewable-energy-related research. In particular, carbon nanotubes (CNTs) have emerged as versatile nanomaterials to modify PEMs. However, the inert ionic conduction ability and possible short-circuiting risk are the two major obstacles to their further development. In this work, CNTs are firstly functionalized with an inorganic proton conductor, boron phosphate (BPO4), using a facile polydopamine-assisted sol-gel method to yield BPO4@CNTs. This new additive is then used to modify sulfonated poly(ether ether ketone) (SPEEK). Polydopamine coating layer can act as an extraordinary glue to homogeneously adhere BPO4 nanoparticles on CNTs, thereby not only reducing the risk of short-circuiting, but also fabricating new proton-conducting pathways in the composite membranes. A comprehensive characterization reveals that the thermal stability, tensile properties, and dimensional stability of PEMs are significantly improved. Compared with pure SPEEK, the proton conductivity of SPEEK/BPO4@CNTs-2 is improved by 45% and 150% at 20 °C and at 80 °C, respectively. Furthermore, the H2/O2 cell performance of SPEEK/BPO4@CNTs-2 membrane exhibits a peak power density of 340.7 mW cm-2 at 70 °C, which is significantly better than that of pure SPEEK (254.2 mW cm-2), demonstrating the great potential of proton conductors-functionalized CNTs in PEMs.

  1. Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Cao, Ying; Li, Zhen; He, Guangwei; Jiang, Zhongyi

    2015-01-01

    Sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membranes are prepared by an in situ method using titanium tetrachloride (TiCl4) as inorganic precursor and amino trimethylene phosphonic acid (ATMP) as modifier. Phosphonic acid-functionalized titania nanoparticles with a uniform particle size of ∼50 nm are formed and dispersed homogeneously in the SPEEK matrix with good interfacial compatibility. Accordingly, the nanohybrid membranes display remarkably enhanced proton conduction property due to the incorporation of additional sites for proton transport and the formation of well-connected channels by bridging the hydrophilic domains in SPEEK matrix. The nanohybrid membrane with 6 wt. % of phosphonic acid-functionalized titania nanoparticles exhibits the highest proton conductivity of 0.334 S cm-1 at 65 °C and 100% RH, which is 63.7% higher than that of pristine SPEEK membrane. Furthermore, the as-prepared nanohybrid membranes also show elevated thermal and mechanical stabilities as well as decreased methanol permeability.

  2. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid).

    PubMed

    Costa, M I C F; Steter, J R; Purgato, F L S; Romero, J R

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H(+) with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H(+) was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  3. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid)

    PubMed Central

    Costa, M. I. C. F.; Steter, J. R.; Purgato, F. L. S.; Romero, J. R.

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H+ with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H+ was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  4. Mössbauer spectroscopic study of FeII-doped sulphonated poly(ether-urethane)—styrene-acrylate copolymer

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Grigoryeva, O. P.; Fainleib, A. M.; Kuzmann, E.

    2013-04-01

    Thermoplastic linear ionomer based on sulphonated poly(ether-urethane)—styrene-acrylate copolymer, doped with natural Fe2 + , was studied by Mössbauer spectroscopy at T = 78 and 290 K to monitor the chemical state of Fe species. The Fe2 + added to aqueous suspension of the system was only partly oxidised in the course of polymer film preparation and drying in air. The oxidised part comprised a magnetic phase (~19 % of total Fe both at T = 78 and 298 K) and a quadrupole doublet (~40 %), while FeII (over 40 %) stabilised in two types of microenvironments.

  5. New Poly(amide-imide)/Nanocomposites Reinforced Silicate Nanoparticles Based on N-pyromellitimido-L-phenyl Alanine Containing Ether Moieties

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Shabanian, Meisam; Dadfar, Ehsan

    2012-02-01

    A series of Poly(amide-imide)/montmorillonite nanocomposites containing N-pyromellitimido-L-phenyl alanine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-pyromellitimido-L-phenyl alanine 3 with 4,4'-diamino diphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PAI matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.

  6. 40 CFR 721.10556 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers (PMN P-06-450; CAS...

  7. 40 CFR 721.10557 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers (PMN P-06-451; CAS...

  8. 40 CFR 721.10556 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers (PMN P-06-450; CAS...

  9. 40 CFR 721.10558 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS...

  10. 40 CFR 721.10557 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers (PMN P-06-451; CAS...

  11. 40 CFR 721.10558 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS...

  12. A Pronounced Halogen Effect on the Organogelation Properties of Peripherally Halogen Functionalized Poly(benzyl ether) Dendrons.

    PubMed

    Feng, Yu; Chen, Hui; Liu, Zhi-Xiong; He, Yan-Mei; Fan, Qing-Hua

    2016-03-24

    An interesting halogen-substituent effect on the organogelation properties of poly(benzyl ether) dendrons is reported. A new class of poly(benzyl ether) dendrons with halo substituents decorating their periphery was synthesized and fully characterized. A systematic study on the gelation abilities, thermotropic behaviors, aggregated microstructures, and mechanical properties of self-assembled organogels was performed to elucidate the halogen-substituent effects on their organogelation propensity. It was found that the exact halogen substitutions on the periphery of dendrons exert a profound effect on the organogelation propensity, and dendrons Gn -Cl (n=2, 3) and G2 -I proved to be highly efficient organogelators. The cooperation of multiple π-π, dispersive halogen, CH-π, and weak C-H⋅⋅⋅X hydrogen-bonding interactions were found to be the key contributor to forming the self-assembled gels. Dendritic organogels formed from Gn -Cl (n=2, 3) in 1,2-dichloroethane exhibited thixotropic-responsive properties, and such thixotropic organogels are promising materials for future research and applications. PMID:26916094

  13. High carbon dioxide solubilities in imidazolium-based ionic liquids and in poly(ethylene glycol) dimethyl ether.

    PubMed

    Revelli, Anne-Laure; Mutelet, Fabrice; Jaubert, Jean-Noël

    2010-10-14

    This work is focused on the possible capture of carbon dioxide using ionic liquids (ILs). Such solvents are gaining special attention because the efficiency of many processes can be enhanced by the judicious manipulation of their properties. The absorption of greenhouse gases can be enhanced by the basic character of the IL. In this work, these characteristics are evaluated through the study of the gas-liquid equilibrium of four imidazolium-based ILs: 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF(4)], 1-butyl-3-methylimidazolium thiocyanate [BMIM][SCN], 1,3-dimethylimidazolium methylphosphonate [DMIM][MP], and 1,3-diethoxyimidazolium bis(trifluoromethylsulfonyl)imide [(ETO)(2)IM][Tf(2)N] with CO(2) at temperatures up to 373 K and pressures up to 300 bar. Solubility of carbon dioxide in poly(ethylene glycol) dimethyl ether, component of selexol, was also measured to evaluate the capture's efficiency of ionic liquids. Experimental data indicate that 67 to 123 g of CO(2) can be absorbed per kg of ionic liquid and 198 g per kg of poly(ethylene glycol) dimethyl ether. PMID:20853857

  14. Synthesis and characterization of sulfonated poly(ether sulfone)s containing mesonaphthobifluorene for polymer electrolyte membrane fuel cell.

    PubMed

    Lim, Youngdon; Seo, Dongwan; Lee, Soonho; Hossain, Md Awlad; Lim, Jinseong; Lee, Sangyoung; Hong, Taehoon; Kim, Whangi

    2014-10-01

    The novel sulfonated poly(ether sulfone)s containing mesonaphthobifluorene (MNF) moiety were synthesized and characterized their properties. The prepared polymers have highly conjugated aromatic structure due to the MNF group which is an allotrope of carbon and one atom thick planar sheets of sp2-bonded carbon atoms. Poly(ether sulfone)s bearing tetraphenylethylene on polymer backbone were synthesized by polycondensation and followed intra-cyclization from tetraphenylethylene to form MNF by Friedel-craft reaction with Lewis acid (FeCl3). The sulfonation was performed selectively on MNF units with conc. sulfuric acid. The structural properties of the sulfonated polymers were investigated by 1H-NMR spectroscopy. The membranes were studied by ion exchange capacity (IEC), water uptake, and proton conductivity. The synthesized polymer electrolyte membranes showed better thermal and dimensional stabilities owing to the inducted highly conjugated aromatic structure in the polymer backbone. The water uptake of the synthesized membranes ranged from 23-52%, compared with 32.13% for Nafion 211 at 80 degrees C. The synthesized membranes exhibited proton conductivities (80 degrees C, RH 90%) of 74.6-100.4 mS/cm, compared with 102.7 mS/cm for Nafion 211. PMID:25942900

  15. Ultralow Oil-Fouling Heterogeneous Poly(ether sulfone) Ultrafiltration Membrane via Blending with Novel Amphiphilic Fluorinated Gradient Copolymers.

    PubMed

    Zhang, Guangfa; Jiang, Jingxian; Zhang, Qinghua; Gao, Fan; Zhan, Xiaoli; Chen, Fengqiu

    2016-02-01

    A novel amphiphilic fluorinated gradient copolymer was prepared by semibatch reversible addition-fragmentation chain transfer (RAFT) method using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl acrylate (TFOA) as monomers. The resultant amphiphilic copolymers were then incorporated into the poly(ether sulfone) (PES) to fabricate PES blend membranes via the non-solvent-induced phase separation method (NIPS). During the phase inversion process, both hydrophilic (PEGMA) and low surface energy (TFOA) segments significantly enriched on the membrane surface by surface segregation to form an amphiphilic surface, which was demonstrated by surface wetting properties and X-ray photoelectron spectroscopy (XPS) measurements. According to the filtration experiments of oil-in-water emulsion, the heterogeneous membranes exhibited superior oil-fouling resistant properties, that is, low flux decay (as low as 15.4%) and high flux recovery (almost 100%), compared to the pure PES membrane. The synergistic effect of fouling-resistant and fouling-release mechanisms was found to be responsible for the excellent antifouling capacities. The findings of this study offer a facile and robust strategy for fabricating ultralow oil-fouling membranes that might be used for effective oil/water separation. PMID:26780307

  16. Study on the pretreatment of poly(ether ether ketone)/multiwalled carbon nanotubes composites through environmentally friendly chemical etching and electrical properties of the chemically metallized composites.

    PubMed

    Zhai, Tong; Di, Lizhi; Yang, De'an

    2013-12-11

    The high-volume resistivity and surface resistance of poly(ether ether ketone)/multiwalled carbon nanotubes (PEEK/MWCNT) composites restrict their use in an electronic field. To decrease the volume resistivity and surface resistance, we metalized the composites by electroless plating. The composites and metal coatings were characterized by SEM, XPS, AFM, EDX, and XRD spectroscopy. The swelling ratio of the composites, volume resistivity of two-side-coated composites, sheet resistance of plated composites, and adhesion between the coating and PEEK/MWCNT were tested. The results are as follows. A high roughness and a small swelling ratio were obtained by swelling in 18 mol/L H2SO4 for 3 min. Most of the MWCNT on the surface were still wrapped with PEEK after swelling. To expose the MWCNT, an environmentally friendly and effective etchant (MnO2-NaH2PO4-H2SO4) was used. After etching, not only were high roughness and partially exposed MWCNT obtained but also the percentage of hydrophilic groups on the surface was increased. A dense cauliflower-like Ni-P coating was produced, and the exposed MWCNT were embedded in the metal coating after electroless plating for 20 min. The coating exhibited an amorphous structure with a phosphorus content of 11.21 wt %. The volume resistivity of two-side-coated PEEK/MWCNT dropped sharply to 38 Ω·m after electroless plating for 5 min. The sheet resistance decreased with increasing the electroless-plating time, and it dropped to 0.88 Ω/square after electroless plating for 40 min. The adhesion of the coating reached the highest 5 B scale (ASTM D3359) and could even undergo the test 20 times. PMID:24221995

  17. Novel sulfonated poly(ether ether ketone ketone)s for direct methanol fuel cells usage: Synthesis, water uptake, methanol diffusion coefficient and proton conductivity

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Fu, Tiezhu; Shao, Ke; Li, Xianfeng; Zhao, Chengji; Na, Hui; Zhang, Hong

    A novel series of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) with different degrees of sulfonation (Ds) were synthesized from 1,3-bis(3-sodium sulfonate-4-fluorobenzoyl)benzene (1,3-SFBB-Na), 1,3-bis(4-fluorobenzoyl)benzene (1,3-FBB) and 3,3‧,5,5‧-tetramethyl-4,4‧-biphenol (TMBP) by aromatic nucleophilic polycondensation. The chemical structures of SPEEKKs were confirmed by FT-IR spectroscopy and the Ds values of the polymers were calculated by 1H NMR and titration methods, respectively. The thermal stabilities of the SPEEKKs in acid and sodium forms were characterized by thermogravimetric analysis (TGA), which showed that SPEEKKs had excellent thermal properties at high temperatures. All the SPEEKK polymers were easily solution cast into tough membranes. Water uptakes, proton conductivities and methanol diffusion coefficients of the SPEEKK membranes were measured. Water uptake increased with Ds and temperature. Compared to Nafion, the SPEEKK-60, -70 and -80 membranes showed higher proton conductivities at 80 °C, while the other SPEEKK membranes showed relatively lower proton conductivities. This may be due to the different distribution of ion-conducting domains in membrane. However, these membranes showed lower methanol diffusions in the range of 8.32 × 10 -9 to 1.14 × 10 -7 cm 2 s -1 compared with that of Nafion (2 × 10 -6 cm 2 s -1) at the same temperature. The membranes also showed excellent mechanical properties (with a Young's modulus > 1 GPa and a tensile strength > 40 MPa). These results indicate that the SPEEKK membranes are promising materials for use in direct methanol fuel cell (DMFC) applications.

  18. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Hashim, Nordiana; Ali, Ab Malik Marwan; Lepit, Ajis; Rasmidi, Rosfayanti; Subban, Ri Hanum Yahaya; Yahya, Muhd Zu Azhan

    2015-08-01

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d6) solution of the purified polymer using 1H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10-3 Scm-1 at 30°C and 3.383 × 10-3 Scm-1 at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  19. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    SciTech Connect

    Hashim, Nordiana; Ali, Ab Malik Marwan; Lepit, Ajis; Rasmidi, Rosfayanti; Subban, Ri Hanum Yahaya; Yahya, Muhd Zu Azhan

    2015-08-28

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  20. Block copolymers encapsulated poly (aryl benzyl ether) dendrimer silicon (IV) phthalocyanine for in vivo and in vitro photodynamic efficacy of choroidal neovascularization

    NASA Astrophysics Data System (ADS)

    Wang, Xiongwei; Chen, Kuizhi; Huang, Zheng; Peng, Yiru

    2015-03-01

    A novel series of poly (aryl benzyl ether) dendrimer silicon phthalocyanines loaded block copolymers ethoxypoly(ethylene glycol)-poly (lactic-co-glycolic acid) (MPEG-PLGA)were formed. The time-dependent intracellular uptake of nanoparticles in HUVECs cells increased as they were incorporated into nanoparticles. With its highly effective selective accumulation on choroidal neovascularization(CNV). This treatment resulted in a efficacious choroidal neovascularization (CNV) occlusion with minimal unfavorable phototoxicity.

  1. Computational and experimental investigations of one-step conversion of poly(carbonate)s into value-added poly(aryl ether sulfone)s.

    PubMed

    Jones, Gavin O; Yuen, Alexander; Wojtecki, Rudy J; Hedrick, James L; García, Jeannette M

    2016-07-12

    It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers. PMID:27354514

  2. Tailor-made pore controlled poly (arylene ether ketone) membranes as a lithium-ion battery separator

    NASA Astrophysics Data System (ADS)

    Le Mong, Anh; Kim, Dukjoon

    2016-02-01

    Porous poly(arylene ether ketone) (PAEK) membranes are prepared by selective removal of poly(lactic acid) (PLA) molecules from self-assembled PAEK-PLA block copolymers. The pore size and porosity of the membranes are precisely controlled by adjusting PLA concentration. The synthesis of the PAEK-PLA copolymer is confirmed by FTIR and NMR spectroscopies and the morphology of the membrane is examined by scanning electron microscopy (SEM). Several important properties such as liquid electrolyte uptake, contact angle, thermal and mechanical stability, and lithium ion conductivity are measured and compared with those of commercial poly(propylene) (PP) membranes to investigate their application feasibility as a separator. The porous PAEK membrane shows improved thermal and dimensional stability compared to the PP membrane. The EC/DEC/EMC (1:1:1, v/v/v) soaked PAEK membrane with a pore diameter of 50 nm shows the highest lithium ion conductivity, higher than that of PP membrane. More importantly, the porous PAEK membranes show superior liquid electrolyte holding capacity to the PP membrane.

  3. Anhydrous state proton and lithium ion conducting solid polymer electrolytes based on sulfonated bisphenol-A-poly(arylene ethers)

    NASA Astrophysics Data System (ADS)

    Guha Thakurta, Soma

    Sulfonated polymer based solid polymer electrolytes (SPEs) have received considerable interest in recent years because of their wide variety of applications particularly in fuel cells, batteries, supercapacitors, and electrochromic devices. The present research was focused on three interrelated subtopics. First, two different bisphenol-A-poly(arylene ethers), polyetherimide (PEI) and polysulfone (PSU) were sulfonated by a post sulfonation method to various degrees of sulfonation, and their thermal and mechanical properties were examined. The effects of poly(arylene ether) chemical structure, reaction time, concentration, and types of sulfonating agents on sulfonation reaction were investigated. It was found that deactivation of bisphenol A unit caused by the electron withdrawing imide, retarded the sulfonation of PEI compared to PSU. Sulfonation conducted with a high concentration of sulfonating agent and/or prolonged reaction time exhibited evidence of degradation at the isopropylidene unit. The degradation occurred through the same mechanistic pathway with the two different sulfonating agents, chlorosulfonic acid (CSA) and trimethylsilyl chlorosulfonate (TMSCS). The degradation was faster with CSA than its silyl ester, TMSCS, and was evident even at low acid concentration. Second, novel anhydrous proton conducting solid polymer electrolytes (SPEs) were prepared by the incorporation of 1H-1,2,4-triazole (Taz) as a proton solvent in sulfonated polyetherimide (SPEI) matrix. The size, shape, and state of dispersion (crystal morphology) of triazole crystals in SPEI were examined as a function of degree of sulfonation and triazole concentration. Increasing sulfonic acid content caused reduction of triazole crystallite size, hence the depression of melting temperature and their uniform distribution throughout the sulfonated polymer matrix. The increased rate of structure diffusion within the smaller size crystals due to the improved molecular mobility contributed

  4. Colloidal Properties of Aqueous Poly(vinyl acetate)-Borate Dispersions with Short-Chain Glycol Ethers.

    PubMed

    Duncan, Teresa T; Berrie, Barbara H; Weiss, Richard G

    2016-08-18

    We report the influence of adding five short-chain glycol ethers (SCGEs) on the structure, stability, and viscoelastic properties of aqueous dispersions of partially hydrolyzed poly(vinyl acetate) and borax. The properties of these gel-like materials have been investigated as a function of the structure of the added SCGE both below and above the critical aggregation (or micellar) concentrations using (11) B and (13) C NMR, rheology, and small-angle neutron scattering. The results indicate that the SCGE aggregation behavior is not affected by incorporation into the gel-like network. However, changes in the viscoelasticity and structural properties of the dispersions were detected that can be correlated to the nature of the solvent system. Also, the ability of these materials to clean an unvarnished acrylic paint surface coated with synthetic soil has been evaluated using colorimetery, and the surface of the dispersion after cleaning was visualized with scanning electron microscopy. PMID:27387383

  5. Summary of GPC/DV results for space exposed poly(arylene ether phosphine oxide)s

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie

    1995-01-01

    Gel Permeation Chromatography (GPC) was used to analyze poly(arylene ether phosphine oxide)s whose backbones were identical except for the ketone content and placement. These samples were exposed to low Earth orbit environment (predominantly atomic oxygen) on space shuttle flights. The materials and their unexposed controls were then characterized by GPC to investigate the effect of atomic oxygen on the molecular weight distributions. Analysis of the soluble portion of the samples revealed that there was significant loss of high molecular weight species. The presence of insoluble material also suggested that crosslinking was induced by the atomic oxygen exposure and that this very likely occurred at the high molecular weight portion of the molecular weight distribution.

  6. Summary of GPC/DV results for space exposed poly(arylene ether phosphine oxides). Final report

    SciTech Connect

    Siochi, E.

    1995-09-01

    Gel Permeation Chromatography (GPC) was used to analyze poly(arylene ether phosphine oxide)s whose backbones were identical except for the ketone content and placement. These samples were exposed to low Earth orbit environment (predominantly atomic oxygen) on space shuttle flights. The materials and their unexposed controls were then characterized by GPC to investigate the effect of atomic oxygen on the molecular weight distributions. Analysis of the soluble portion of the samples revealed that there was significant loss of high molecular weight species. The presence of insoluble material also suggested that crosslinking was induced by the atomic oxygen exposure and that this very likely occurred at the high molecular weight portion of the molecular weight distribution.

  7. Mössbauer spectroscopic study of sulphonated poly(ether-urethane) linear ionomer doped with iron species

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Grigoryeva, O. P.; Kuzmann, E.; Vértes, A.

    2009-04-01

    Thermoplastic linear poly(ether-urethane) sulphonated ionomer (PEUSI), doped with natural Fe2 + , was studied by Mössbauer spectroscopy at T = 78 and 290 K in order to monitor the chemical state of Fe species. The Fe2 + added was found to get only partly oxidised in the course of preparation of a dry polymer film from aqueous suspension. The oxidised part gave a ferric quadrupole doublet (over half of total Fe added) and, at T = 78 K only, a small portion of magnetically split sextet (ca. 3%), whereas FeII (total over 40%) stabilised in two different forms (represented by quadrupole doublets) corresponding to two types of iron(II) microenvironments, where FeII could be coordinated involving -CONH- and -NHNH- moieties and sulphonate groups in PEUSI. The results obtained show that Fe2 + -doping of PEUSI-based materials may be used for probing their structural characteristics by Mössbauer spectroscopy.

  8. Characterization of a poly(ether urethane)-based controlled release membrane system for delivery of ketoprofen

    NASA Astrophysics Data System (ADS)

    Macocinschi, Doina; Filip, Daniela; Vlad, Stelian; Oprea, Ana Maria; Gafitanu, Carmen Anatolia

    2012-10-01

    A poly(ether urethane) based on polytetrahydrofuran containing hydroxypropyl cellulose for biomedical applications was tested for its biocompatibility. Ketoprofen was incorporated (3% and 6%) in the polyurethane matrix as an anti-inflammatory drug. Kinetic and drug release mechanisms were studied. The pore size and pore size distribution of the polyurethane membranes were investigated by scanning electron microscopy. Surface tension characteristics as well as moisture sorption properties such as diffusion coefficients and equilibrium moisture contents of the membrane material were studied. It was found that kinetics and release mechanisms are in function of medium pH, composition of polymer-drug system, pore morphology and pore size distribution. Prolonged nature of release of ketoprofen is assured by low amount of drug in polyurethane membrane and physiological pH.

  9. Effects of poly(ethylene glycol) tert-octylphenyl ether on tris(2-phenylpyridine)iridium(III)-tripropylamine electrochemiluminescence.

    PubMed

    Cole, Christopher; Muegge, Brian D; Richter, Mark M

    2003-02-01

    The effects of the nonionic surfactant Triton X-100 (poly(ethylene glycol) tert-octylphenyl ether) on the properties of tris(2-phenylpyridine)iridium(III) (Ir(ppy)3, where ppy = 2-phenylpyridine, electrochemiluminescence (ECL) have been investigated. Anodic oxidation of Ir(ppy)3 produces ECL in the presence of tri-n-propylamine (TPrA) in aqueous surfactant solution. Increases in ECL efficiency (> or = 10-fold) and TPrA oxidation current (> or = 2.0-fold) have been observed in surfactant media. The data support adsorption of surfactant on the electrode surface, thus facilitating TPrA and Ir(ppy)3 oxidation and leading to higher ECL efficiencies. PMID:12585490

  10. Thermoresponsive poly[tri(ethylene glycol) monoethyl ether methacrylate]-peptide surfaces obtained by radiation grafting-synthesis and characterisation.

    PubMed

    Adamus, A; Komasa, J; Kadłubowski, S; Ulański, P; Rosiak, J M; Kawecki, M; Klama-Baryła, A; Dworak, A; Trzebicka, B; Szweda, R

    2016-09-01

    This report demonstrates the feasibility of radiation grafting for the preparation of polymer layers functionalised with short peptide ligands which promote cell adhesion. Thermoresponsive poly [tri(ethylene glycol) monoethyl ether methacrylate] (PTEGMA) layers were synthesised on a polypropylene substrate by post-irradiation grafting. A cell adhesion moiety, the CF-IKVAVK peptide modified with a methacrylamide function and a fluorescent label were introduced to the surface during the polymerisation process. The amount of CF-IKVAVK was easily controlled by changing its concentration in the reaction mixture. The changes in the surface composition, morphology, philicity and thickness at each step of the polypropylene functionalisation confirmed that the surface modification procedures were successful. The increase in environmental temperature above the cloud point temperature of PTEGMA caused a decrease in surface philicity. The obtained PTEGMA and PTEGMA-peptide surfaces above TCP were tested as scaffolds for fibroblast sheet culture and temperature induced detachment. PMID:27182653

  11. Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors

    NASA Astrophysics Data System (ADS)

    Cheng, Zhaoxi; Lin, Minren; Wu, Shan; Thakur, Yash; Zhou, Yue; Jeong, Dae-Yong; Shen, Qundong; Zhang, Q. M.

    2015-05-01

    Developing dielectric polymers with higher dielectric constant without sacrificing loss and thermal stability is of great importance for next generation of high energy density capacitors. We show here that by replacing the CH2 group in the aromatic polyurea (ArPU) with the polar ether group, thus raising the dipole moment of the molecular unit, poly(arylene ether urea) (PEEU) shows an increased dielectric constant of 4.7, compared with 4.2 of ArPU. Moreover, PEEU maintains the low dielectric loss and is thermally stable up to 250 °C. As a result, the polymer delivers 13 J/cm3 discharged energy density at room temperature and 9 J/cm3 at 120 °C. The high quality films perform well in terms of both breakdown strength (at 700 MV/m at room temperature) and leakage current from room temperature to elevated temperature. At 120 °C, the breakdown strength is 600 MV/m and the conductivity is 1.58 × 10-14 S/cm measured under 100 MV/m.

  12. Inorganic-organic polymer electrolytes based on poly(vinyl alcohol) and borane/poly(ethylene glycol) monomethyl ether for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Aydın, Hamide; Şenel, Mehmet; Erdemi, Hamit; Baykal, Abdülhadi; Tülü, Metin; Ata, Ali; Bozkurt, Ayhan

    In this study, poly(vinyl alcohol) (PVA) was modified with poly(ethylene glycol) monomethyl ether (PEGME) using borane-tetrahydrofuran (BH 3/THF) complex. Molecular weights of both PVA and PEGME were varied prior to reaction. Boron containing comb-branched copolymers were produced and abbreviated as PVA1PEGMEX and PVA2PEGMEX. Then polymer electrolytes were successfully prepared by doping of the host matrix with CF 3SO 3Li at several stoichiomeric ratios with respect to EO to Li. The materials were characterized via nuclear magnetic resonance (1H NMR and 11B NMR), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG) and differential scanning calorimeter (DSC). The ionic conductivity of these novel polymer electrolytes were studied by dielectric-impedance spectroscopy. Li-ion conductivity of these polymer electrolytes depends on the length of the side units as well as the doping ratio. Such electrolytes possess satisfactory ambient temperature ionic conductivity (>10 -4 S cm -1). Cyclic voltammetry results illustrated that the electrochemical stability domain extends over 4 V.

  13. Radiolytic preparation of poly(styrene sulfonic acid) - grafted poly(tetrafluoroethylene- co-perfluorovinyl vinyl ether) membranes with highly cross-linked networks

    NASA Astrophysics Data System (ADS)

    Kang, Sung-A.; Shin, Junhwa; Fei, Geng; Ko, Beom-Seok; Kim, Chong-Yeal; Nho, Young-Chang

    2010-11-01

    In this study, various amounts of a divinylbenzene (DVB) cross-linking agent (5˜30%) were introduced during a simultaneous irradiation grafting of styrene onto a PFA film of a 25 μm thickness in order to prepare a series of poly(styrene sulfonic acid)-grafted poly(tetrafluoroethylene- co-perfluorovinyl vinyl ether) (PFA) membranes with various degrees of cross-linking and grafting (29˜74%). The effects of the DVB cross-linking agent on the properties of the prepared membranes, such as water uptake, proton conductivity, methanol permeability, and chemical stability, were also investigated in this study. The results indicated that the ion exchange capacity (IEC) slightly decreased with increasing DVB content, whereas the water uptake, proton conductivity, and methanol permeability of the membrane greatly decreased. The chemical stability of the prepared membranes was found to be significantly improved with increasing DVB content. The results indicated that the cross-linked network membranes are promising for application in a direct methanol fuel cell.

  14. Anti-fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power generation.

    PubMed

    Li, Xue; Cai, Tao; Chung, Tai-Shung

    2014-08-19

    To sustain high performance of osmotic power generation by pressure-retarded osmosis (PRO) processes, fouling on PRO membranes must be mitigated. This is especially true for the porous support of PRO membranes because its porous structure is very prone to fouling by feeding river water. For the first time, we have successfully designed antifouling PRO thin-film composite (TFC) membranes by synthesizing a dendritic hydrophilic polymer with well-controlled grafting sites, hyperbranched polyglycerol (HPG), and then grafting it on poly(ether sulfone) (PES) hollow fiber membrane supports. Compared to the pristine PES membranes, polydopamine modified membranes, and conventional poly(ethylene glycol) (PEG)-grafted membranes, the HPG grafted membranes show much superior fouling resistance against bovine serum albumin (BSA) adsorption, E. coli adhesion, and S. aureus attachment. In high-pressure PRO tests, the PES TFC membranes are badly fouled by model protein foulants, causing a water flux decline of 31%. In comparison, the PES TFC membrane grafted by HPG not only has an inherently higher water flux and a higher power density but also exhibits better flux recovery up to 94% after cleaning and hydraulic pressure impulsion. Clearly, by grafting the properly designed dendritic polymers to the membrane support, one may substantially sustain PRO hollow fiber membranes for power generation. PMID:25019605

  15. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone

    PubMed Central

    Olivares-Navarrete, Rene; Gittens, Rolando A.; Schneider, Jennifer M.; Hyzy, Sharon L.; Haithcock, David A.; Ullrich, Peter F.; Schwartz, Zvi; Boyan, Barbara D.

    2013-01-01

    Background Context Multiple biomaterials are clinically available to spine surgeons for performing interbody fusion. Poly-ether-ether-ketone (PEEK) is used frequently for lumbar spine interbody fusion, but alternative materials are also used, including titanium (Ti) alloys. Previously, we showed that osteoblasts exhibit a more differentiated phenotype when grown on machined or grit-blasted titanium aluminum vanadium (Ti6Al4V) alloys with micron-scale roughened surfaces than when grown on smoother Ti6Al4V surfaces or on tissue culture polystyrene (TCPS). We hypothesized that osteoblasts cultured on rough Ti alloy substrates would present a more mature osteoblast phenotype than cells cultured on PEEK, suggesting that textured Ti6Al4V implants may provide a more osteogenic surface for interbody fusion devices. Purpose The aim of the present study was to compare osteoblast response to smooth Ti6Al4V (sTiAlV) and roughened Ti6Al4V (rTiAlV) with their response to PEEK with respect to differentiation and production of factors associated with osteogenesis. Study Design This in vitro study compared the phenotype of human MG63 osteoblast-like cells cultured on PEEK, sTiAlV, or rTiAlV surfaces and their production of bone morphogenetic proteins (BMPs). Methods Surface properties of PEEK, sTiAlV, and rTiAlV discs were determined. Human MG63 cells were grown on TCPS and the discs. Confluent cultures were harvested, and cell number, alkaline phosphatase–specific activity, and osteocalcin were measured as indicators of osteoblast maturation. Expression of messenger RNA (mRNA) for BMP2 and BMP4 was measured by real-time polymerase chain reaction. Levels of BMP2, BMP4, and BMP7 proteins were also measured in the conditioned media of the cell cultures. Results Although roughness measurements for sTiAlV (Sa=0.09±0.01), PEEK (Sa=0.43±0.07), and rTiAlV (Sa= 1.81±0.51) varied, substrates had similar contact angles, indicating comparable wettability. Cell morphology differed

  16. Thermoresponsive Random Poly(ether urethanes) with Tailorable LCSTs for Anticancer Drug Delivery.

    PubMed

    Sardon, Haritz; Tan, Jeremy P K; Chan, Julian M W; Mantione, Daniele; Mecerreyes, David; Hedrick, James L; Yang, Yi Yan

    2015-10-01

    A new class of thermoresponsive random polyurethanes is successfully synthesized and characterized. Poly(ethylene glycol) diol (Mn = 1500 Da) and 2,2-dimethylolpropionic acid are reacted with isophorone diisocyanate in the presence of methane sulfonic acid catalyst. It is found that these polyurethanes are thermoresponsive in aqueous media and manifest a lower critical solution temperature (LCST) that can be easily tuned from 30 °C to 70 °C by increasing the poly(ethylene glycol) content. Their sharp LCST transitions make these random polyurethanes ideal candidates for stimuli-responsive drug delivery applications. To that end, the ability of these systems to efficiently sequester doxorubicin (up to 36 wt%) by means of a sonication/dialysis method is successfully demonstrated. Additionally, it is also demonstrated that accelerated doxorubicin release kinetics from the nanoparticles can be attained above the LCST. PMID:26260576

  17. Metallosupramolecular poly[2]pseudorotaxane constructed by metal coordination and crown-ether-based molecular recognition.

    PubMed

    Wei, Peifa; Li, Jinying; Yan, Xuzhou; Zhou, Qizhong

    2014-01-01

    A novel bis(m-phenylene)-32-crown-10 derivative bearing two π-extended pyridyl groups was synthesized, and its host-guest complexation with a paraquat derivative to form a threaded [2]pseudorotaxane was studied. Subsequently, a poly[2]pseudorotaxane was constructed with a metallosupramolecular polymer backbone via metal coordination, which was comprehensively confirmed by the combination of (1)H NMR, (31)P{(1)H} NMR, DOSY NMR, DLS, and EDX techniques. PMID:24328434

  18. Self-assembly of brush-like poly[poly(ethylene glycol) methyl ether methacrylate] synthesized via aqueous atom transfer radical polymerization.

    PubMed

    Hussain, Hazrat; Mya, Khine Yi; He, Chaobin

    2008-12-01

    Self-assembly of brush-like well-defined poly[poly(ethylene glycol) methyl ether methacrylate] homopolymers, abbreviated as P(PEGMA-475) and P(PEGMA-1100) is investigated in aqueous solution by employing dynamic/static light scattering (DLS/SLS) and transmission electron microscopy (TEM), whereas 475 and 1100 is molar mass of the respective PEGMA macromonomer. The mentioned brush-like homopolymers are synthesized by aqueous ATRP at room temperature. The critical association concentration (CAC) of the synthesized polymers in water depends on the length of the PEG side chains but not on the overall molar mass of the polymer. Thus, approximately the same CAC of approximately 0.35 mg/mL is estimated for various P(PEGMA-1100) samples, and approximately 0.7 mg/mL is estimated for P(PEGMA-475) series. All the investigated P(PEGMA-1100) samples form multimolecular micelles in aqueous solution, where the hydrodynamic size (Rh) and the aggregation number (Nagg) of micelles decreases as the molecular weight of P(PEGMA-1100) increases. This can be attributed to the increased steric hindrances between the PEG side chains in corona of micelles formed by higher molar mass P(PEGMA-1100). The tendency of micelle formation by samples of P(PEGMA-475) series is significantly lower than that of P(PEGMA-1100) series, as demonstrated by their significantly higher CAC and micelles of lower Nagg. The Rh of micelles does not depend strongly on polymer concentration, which suggests that these micelles are formed via the closed association model. Micelles formed by P(PEGMA-1100) series slightly shrink with increase in temperature from 25 to 60 degrees C, while those of P(PEGMA-475) series are found to be insensitive to the same temperature variation. Finally, TEM is carried out to visualize the formed micelles after transferring the aqueous solution to carbon film. PMID:18986178

  19. In vitro evaluation of poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation

    NASA Astrophysics Data System (ADS)

    Rusen, Laurentiu; Neacsu, Patricia; Cimpean, Anisoara; Valentin, Ion; Brajnicov, Simona; Dumitrescu, L. N.; Banita, Janina; Dinca, Valentina; Dinescu, Maria

    2016-06-01

    Understanding and controlling natural and synthetic biointerfaces is known to be the key to a wide variety of application within cell culture and tissue engineering field. As both material characteristics and methods are important in tailoring biointerfaces characteristics, in this work we explore the feasibility of using Matrix Assisted Pulsed Laser Evaporation technique for obtaining synthetic copolymeric biocoatings (i.e. poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether) for evaluating in vitro Vero and MC3T3-E1 pre-osteoblasts cell response. Characterization and evaluation of the coated substrates were carried out using different techniques. The Fourier transform infrared spectroscopy data demonstrated that the main functional groups in the MAPLE-deposited films remained intact. Atomic Force Microscopy images showed the coatings to be continuous, with the surface roughness depending on the deposition parameters. Moreover, the behaviour of the coatings in medium mimicking the pH and temperature of the human body was studied and corelated to degradation. Spectro-ellipsometry (SE) and AFM measurements revealed the degradation trend during immersion time by the changes in coating thickness and roughness. In vitro biocompatibility was studied by indirect contact tests on Vero cells in accordance with ISO 10993-5/2009. The results obtained in terms of cell morphology (phase contrast microscopy) and cytotoxicity (LDH and MTT assays) proved biocompatibility. Furthermore, direct contact assays on MC3T3-E1 pre-osteoblasts demonstrated the capacity of all analyzed specimens to support cell adhesion, normal cellular morphology and growth.

  20. Effect of Poly(Ether Urethane) Introduction on the Performance of Polymer Electrolyte for All-Solid-State Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Zhou, Yan-Fang; Xiang, Wan-Chun; Fang, Shi-Bi; Chen, Shen; Zhou, Xiao-Wen; Zhang, Jing-Bo; Lin, Yuan

    2009-12-01

    The introduction of poly(ether urethane) (PEUR) into polymer electrolyte based on poly(ethylene oxide), LiI and I2, has significantly increased the ionic conductivity by nearly two orders of magnitudes. An increment of I-3 diffusion coefficient is also observed. All-solid-state dye-sensitized solar cells are constructed using the polymer electrolytes. It was found that PEUR incorporation has a beneficial effect on the enhancement of open circuit voltage Voc by shifting the band edge of TiO2 to a negative value. Scanning electron microscope images indicate the perfect interfacial contact between the TiO2 electrode and the blend electrolyte.

  1. Oxidation-Responsive and "Clickable" Poly(ethylene glycol) via Copolymerization of 2-(Methylthio)ethyl Glycidyl Ether.

    PubMed

    Herzberger, Jana; Fischer, Karl; Leibig, Daniel; Bros, Matthias; Thiermann, Raphael; Frey, Holger

    2016-07-27

    Poly(ethylene glycol) (PEG) is a widely used biocompatible polymer. We describe a novel epoxide monomer with methyl-thioether moiety, 2-(methylthio)ethyl glycidyl ether (MTEGE), which enables the synthesis of well-defined thioether-functional poly(ethylene glycol). Random and block mPEG-b-PMTEGE copolymers (Mw/Mn = 1.05-1.17) were obtained via anionic ring opening polymerization (AROP) with molecular weights ranging from 5 600 to 12 000 g·mol(-1). The statistical copolymerization of MTEGE with ethylene oxide results in a random microstructure (rEO = 0.92 ± 0.02 and rMTEG E = 1.06 ± 0.02), which was confirmed by in situ (1)H NMR kinetic studies. The random copolymers are thermoresponsive in aqueous solution, with a wide range of tunable transition temperatures of 88 to 28 °C. In contrast, mPEG-b-PMTEGE block copolymers formed well-defined micelles (Rh ≈ 9-15 nm) in water, studied by detailed light scattering (DLS and SLS). Intriguingly, the thioether moieties of MTEGE can be selectively oxidized into sulfoxide units, leading to full disassembly of the micelles, as confirmed by detection of pure unimers (DLS and SLS). Oxidation-responsive release of encapsulated Nile Red demonstrates the potential of these micelles as redox-responsive nanocarriers. MTT assays showed only minor effects of the thioethers and their oxidized derivatives on the cellular metabolism of WEHI-164 and HEK-293T cell lines (1-1000 μg·mL(-1)). Further, sulfonium PEG polyelectrolytes can be obtained via alkylation or alkoxylation of MTEGE, providing access to a large variety of functional groups at the charged sulfur atom. PMID:27375132

  2. Study of Biological Degradation of New Poly(Ether-Urethane-Urea)s Containing Cyclopeptide Moiety and PEG by Bacillus amyloliquefaciens Isolated from Soil.

    PubMed

    Rafiemanzelat, Fatemeh; Jafari, Mahboobeh; Emtiazi, Giti

    2015-10-01

    The present work for the first time investigates the effect of Bacillus amyloliquefaciens, M3, on a new poly(ether-urethane-urea) (PEUU). PEUU was synthesized via reaction of 4,4'-methylenebis(4-phenylisocyanate) (MDI), L-leucine anhydride cyclopeptide (LACP) as a degradable monomer and polyethylene glycol with molecular weight of 1000 (PEG-1000). Biodegradation of the synthesized PEUU as the only source for carbon and nitrogen for M3 was studied. The co-metabolism biodegradation of the polymer by this organism was also investigated by adding mannitol or nutrient broth to the basic media. Biodegradation of the synthesized polymer was followed by SEM, FT-IR, TGA, and XRD techniques. It was shown that incubation of PEUU with M3 resulted in a 30-44 % reduction in polymer's weight after 1 month. This study indicates that the chemical structure of PEUU significantly changes after exposure to M3 due to hydrolytic and enzymatic degradation of polymer chains. The results of this work supports the idea that this poly(ether-urethane) is used as a sole carbon source by M3 and this bacterium has a good capability for degradation of poly(ether-urethane)s. PMID:26242387

  3. Highly branched sulfonated poly(fluorenyl ether ketone sulfone)s membrane for energy efficient vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Yin, Bibo; Li, Zhaohua; Dai, Wenjing; Wang, Lei; Yu, Lihong; Xi, Jingyu

    2015-07-01

    A series of highly branched sulfonated poly (fluorenyl ether ketone sulfone)s (HSPAEK) are synthesized by direct polycondensation reactions. The HSPAEK with 8% degree of branching is further investigated as membrane for vanadium redox flow battery (VRFB). The HSPAEK membrane prepared by solution casting method exhibits smooth, dense and tough morphology. It possesses very low VO2+ permeability and high ion selectivity compared to those of Nafion 117 membrane. When applied to VRFB, this novel membrane shows higher coulombic efficiency (CE, 99%) and energy efficiency (EE, 84%) than Nafion 117 membrane (CE, 92% and EE, 78%) at current density of 80 mA cm-2. Besides, the HSPAEK membrane shows super stable CE and EE as well as excellent discharge capacity retention (83%) during 100 cycles life test. After being soaked in 1.5 mol L-1 VO2+ solution for 21 days, the weight loss of HSPAEK membrane and the amount of VO2+ reduced from VO2+ are only 0.26% and 0.7%, respectively, indicating the superior chemical stability of the membrane.

  4. Crystallinity and motional dynamics study of a series of poly(arylene ether sulfone) segmented copolymer analogues.

    PubMed

    Zhang, Bin; Spano, Justin; Chen, Ying; Turner, Richard; Wi, Sungsool

    2012-07-12

    Solid-state NMR spectroscopy was utilized to study the crystallinity and its correlation to the motional dynamics of a series of biphenol based poly(arylene ether sulfone) (PAES) copolymer analogues obtained by incorporating flexible aliphatic blocks. Introduction of a series of conformationally flexible aliphatic blocks into the rigid aromatic PAES blocks in the copolymer sequence had increased the crystallinity of the polymer matrix because the copolymer system with aliphatic blocks provided a decrease in the glass transition temperature (Tg) while maintaining a nonvariant melting temperature (Tm). Modified PAES copolymer systems with aliphatic blocks had yielded shorter (1)H T1 relaxation times and longer (1)H T1ρ relaxation times relative to the neat aromatic PAES copolymer. Trends observed in (1)H T1ρ and T1 data had demonstrated direct correlations to the observed ΔT (= Tm - Tg) and thus to the amount of crystallinity in the polymer matrix. Slow segmental reorientations of PAES blocks in a few milliseconds range also became slightly faster as the size of an aliphatic, segmented block became larger. Additionally, the local electronic environments of aromatic PAES blocks were invariant to the incorporation of aliphatic segments in the copolymer sequence. PMID:22697501

  5. Poly(aryl ether) Dendrons with Monopyrrolotetrathiafulvalene Unit-Based Organogels exhibiting Gel-Induced Enhanced Emission (GIEE).

    PubMed

    Liu, Yucun; Lei, Wenwei; Chen, Tie; Jin, Longyi; Sun, Guangyan; Yin, Bingzhu

    2015-10-19

    A series of poly(aryl ether) dendrons with a monopyrrolo-tetrathiafulvalene unit linked through an acyl hydrazone linkage were designed and synthesized as low molecular mass organogelators (LMOGs). Two of the dendrons could gelate the aromatic solvents and some solvent mixtures, but the others could not gel all solvents tested except for n-pentanol. A subtle change on the molecular structure produces a great influence on the gelation behavior. Note that the dendrons could form the stable gel in the DMSO/water mixture without thermal treatment and could also form the binary gel with fullerene (C60 ) in toluene. The formed gels undergo a reversible gel-sol phase transition upon exposure to external stimuli, such as temperature and chemical oxidation/reduction. A number of experiments (SEM, FTIR spectroscopy, (1) H NMR spectroscopy, and UV/Vis absorption spectroscopy, and XRD) revealed that these dendritic molecules self-assembled into elastically interpenetrating one-dimensional fibrillar aggregates and maintain rectangular molecular-packing mode in organogels. The hydrogen bonding, π-π, and donor-acceptor interactions were found to be the main driving forces for formation of the gels. Moreover, the gel system exhibited gel-induced enhanced emission (GIEE) property in the visible region in spite of the absence of a conventional fluorophore unit and the fluorescence was effectively quenched by introduction of C60 . PMID:26471439

  6. Prolonged Hypocalcemic Effect by Pulmonary Delivery of Calcitonin Loaded Poly(Methyl Vinyl Ether Maleic Acid) Bioadhesive Nanoparticles

    PubMed Central

    Varshosaz, J.; Minaiyan, M.; Forghanian, M.

    2014-01-01

    The purpose of the present study was to design a pulmonary controlled release system of salmon calcitonin (sCT). Therefore, poly(methyl vinyl ether maleic acid) [P(MVEMA)] nanoparticles were prepared by ionic cross-linking method using Fe2+ and Zn2+ ions. Physicochemical properties of nanoparticles were studied in vitro. The stability of sCT in the optimized nanoparticles was studied by electrophoretic gel method. Plasma calcium levels until 48 h were determined in rats as pulmonary-free sCT solution or nanoparticles (25 μg·kg−1), iv solution of sCT (5 μg·kg−1), and pulmonary blank nanoparticles. The drug remained stable during fabrication and tests on nanoparticles. The optimized nanoparticles showed proper physicochemical properties. Normalized reduction of plasma calcium levels was at least 2.76 times higher in pulmonary sCT nanoparticles compared to free solution. The duration of hypocalcemic effect of pulmonary sCT nanoparticles was 24 h, while it was just 1 h for the iv solution. There was not any significant difference between normalized blood calcium levels reduction in pulmonary drug solution and iv injection. Pharmacological activity of nanoparticles after pulmonary delivery was 65% of the iv route. Pulmonary delivery of P(MVEMA) nanoparticles of sCT enhanced and prolonged the hypocalcemic effect of the drug significantly. PMID:24701588

  7. Effects of electron beam irradiation on the property behaviour of poly(ether-block-amide) blended with various stabilisers

    NASA Astrophysics Data System (ADS)

    Murray, Kieran A.; Kennedy, James E.; Barron, Valerie; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2015-05-01

    Radiosterilisation can induce modifications and/or degradation to transpire in poly(ether-block-amide) (PEBA) following irradiation. The current investigation utilises combined synergistic mixtures of stabilisers to minimise these effects, by melt blending them with the PEBA material. Hindered amine stabilisers (HAS), primary antioxidants and secondary antioxidants were the stabilisers incorporate to reduce/eliminate the effects of 50 kGy electron beam irradiation dose on the material. Results were discussed by comparing the stabilising efficiency of mixtures on the PEBA material in contrast to the control sample. Dynamic frequency sweeps demonstrated the formation of crosslinks, where the degree of crosslinking was dependent on the combination of stabilisers mixed in the base material (PEBA). The storage modulus displayed that PEBA blended with Irganox 565 had very slight changes in contrast to all other samples following irradiation. However, since this sample is a phenol containing system, severe discolouration was observed in comparison to other samples due to the oxidation of the hindered phenol. Overall, this study provides compelling evidence that a combined synergistic mixture of Irganox 565 (multifunctional phenolic antioxidant) and Tinuvin 783 (hindered amide light stabiliser) with PEBA, resulted in the best radiation stability.

  8. Photodynamic Therapy With Hyperbranched Poly(Ether-Ester) Chlorin(e6) Nanoparticles On Human Tongue Carcinoma Cal-27 Cells

    PubMed Central

    Li, Pingping; Zhou, Guoyu; Zhu, Xinyuan; Li, Guolin; Yan, Peng; Shen, Linyue; Xu, Qin; Hamblin, Michael R

    2011-01-01

    Background Hyperbranched polymers represent a new class of drug delivery vehicle that can be used to prepare nanoparticles with uniform size distribution. Methods In this study we prepared covalent conjugates between the photosensitizer chlorin(e6) and hyperbranched poly(ether-ester), HPEE. HPEE-ce6 nanoparticles were synthesized by carbodiimide-mediated reaction between HPEE and ce6, and characterized by ultraviolet-visible absorption spectroscopy (UV-Vis), and transmission electron microscopy (TEM). The uptake and phototoxicity of HPEE-ce6 nanoparticles towards human oral tongue cancer CAL-27 cells was detected by confocal laser scanning microscopy (CLSM) and MTT assay respectively. Results The absorption peak of HPEE-ce6 nanoparticles was red-shifted 12-nm compared with ce6, and TEM showed uniform nanoparticles with a diameter of 50-nm. HPEE-ce6 nanoparticles were taken up by CAL-27 cells after 4 hour incubation and localized in the cytoplasm. The MTT assay showed a significantly (P<0.05) higher phototoxicity compared to free ce6 after 12 J/cm2 of 660-nm laser illumination. Conclusions This is the first time to our knowledge that hyperbranched polymers have been used in PDT drug delivery. PMID:22369732

  9. Poly(ether imide)-silica hybrid coatings for tunable corrosion behavior and improved biocompatibility of magnesium implants.

    PubMed

    Kang, Min-Ho; Jang, Tae-Sik; Jung, Hyun-Do; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag; Song, Juha

    2016-01-01

    Magnesium (Mg) and its alloys have gained considerable attention as a promising biomaterial for bioresorbable orthopedic implants, but the corrosion behavior of Mg-based implants is still the major issue for clinical use. In order to improve the corrosion stability and implant-tissue interfaces of these implants, methods for coating Mg have been actively investigated. In this study, poly(ether imide) (PEI)-silica hybrid material was coated on Mg, for the tunable degradation and enhanced biological behavior. Homogeneous PEI-silica hybrid materials with various silica contents were coated on Mg substrates without any cracks, where silica nanoparticles were well dispersed in the PEI matrix without significant particle agglomeration up the 30 vol% silica. The hybrid coatings maintained good adhesion strength of PEI to Mg. The corrosion rate of hybrid-coated Mg was increased along with the increment of the silica content, due to improved hydrophilicity of the hybrid coating layers. Moreover, the biocompatibility of the hybrid-coated Mg specimens was significantly improved, mainly due to the higher Mg ion concentrations associated with faster corrosion, compared to PEI-coated Mg. Therefore, PEI-silica hybrid systems have significant potential as a coating material of Mg for load-bearing orthopedic applications by providing tunable corrosion behavior and enhanced biological performance. PMID:27147643

  10. A poly(ether-ester) copolymer for the preparation of nanocarriers with improved degradation and drug delivery kinetics.

    PubMed

    Gagliardi, M; Bertero, A; Bardi, G; Bifone, A

    2016-02-01

    This paper reports the synthesis and the physicochemical, functional and biological characterisations of nanocarriers made of a novel di-block biodegradable poly(ether-ester) copolymer. This material presents tunable, fast biodegradation rates, but its products are less acidic than those of other biosorbable polymers like PLGA, thus presenting a better biocompatibility profile and the possibility to carry pH-sensitive payloads. A method for the production of monodisperse and spherical nanoparticles is proposed; drug delivery kinetics and blood protein adsorption were measured to evaluate the functional properties of these nanoparticles as drug carriers. The copolymer was labelled with a fluorescent dye for internalisation tests, and rhodamine B was used as a model cargo to study transport and release inside cultured cells. Biological tests demonstrated good cytocompatibility, significant cell internalisation and the possibility to vehiculate non-cell penetrating moieties into endothelial cells. Taken together, these results support the potential use of this nanoparticulate system for systemic administration of drugs. PMID:26652400

  11. Formation and cleansing performance of bicontinuous microemulsions in water/poly (oxyethylene) alkyl ether/ester-type oil systems.

    PubMed

    Aramaki, Kenji; Tawa, Kosuke; Shrestha, Lok Kumar; Iwanaga, Tetsuro; Kamada, Miho

    2013-01-01

    Phase behaviors in water/poly(oxyethylene) dodecyl ether (C₁₂EO(n), n = 4, 6, 8)/cetyl isooctanoate (CIO) systems were studied. In the C₁₂EO₆ and C₁₂EO₈ systems, self-assembled structures with positive curvatures, such as O/W microemulsions, and micellar cubic and hexagonal phases, were observed. A wider region of a lamellar liquid-crystalline phase, which included a narrow microemulsion region joined by a miscibility gap, was observed in the C₁₂EO₄ system. The structure of the microemulsion phase in the C₁₂EO₄ system was characterized by pulsed-field-gradient NMR (PFG-NMR) and small angle X-ray scattering (SAXS) techniques. PFG-NMR measurements indicated that the structure of the microemulsion was bicontinuous; both water and oil phases were continuous within the microemulsion. Pair-distance distribution function, p (r), and structure factors obtained by Generalized Indirect Fourier Transformation (GIFT) analysis of the SAXS data showed that the microemulsion domain sizes decreased with an increase in the oil content. The structure of the bicontinuous microemulsion was consistent with the results of a detergency test, in which the microemulsion samples were applied to lipstick dirt on an artificial skin plate. Detergency was observed to be better for the microemulsion at lower oil contents because of the larger oil domain size at these low concentrations. PMID:24088518

  12. Interfacial interactions of poly(ether ketone ketone) polymer coatings onto oxide-free phosphate films on an aluminum surface

    SciTech Connect

    Asunskis, A. L.; Sherwood, P. M. A.

    2007-07-15

    This article continues a series of papers that shows how thin (10 nm or less) oxide-free phosphate films can be formed on a number of metals. The films formed have potential as corrosion resistant films. Previous papers have shown that it is possible to extend the range of the surface coatings that can be formed by placing a thin polymer layer over the phosphate layer. In this work it is shown how the water insoluble polymer poly(ether ketone ketone) (PEKK) can be placed over a thin oxide-free phosphate film on aluminum metal. The surface and the interfaces involved were studied by valence band and core level x-ray photoelectron spectroscopy. Difference spectra in the valence band region were used to show that there is a chemical interaction between the PEKK and phosphate thin films on the aluminum metal. Three different phosphate film compositions were studied using different phosphorous containing acids, H{sub 3}PO{sub 4}, H{sub 3}PO{sub 3}, and H{sub 3}PO{sub 2}. This type of interaction illustrates the potential of phosphates to act as adhesion promoters. The valence band spectra are interpreted by calculations.

  13. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei

    2016-09-01

    Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.

  14. Understanding How the Presence of Uniform Electric Fields Can Shift the Miscibility of Polystyrene/Poly(vinyl methyl ether) Blends

    NASA Astrophysics Data System (ADS)

    Kriisa, Annika; Roth, Connie B.

    2015-03-01

    Techniques which can externally control and manipulate the phase behavior of polymeric systems, without altering chemistry on a molecular level, have great practical benefits. One such possible mechanism is the use of electric fields, shown to cause interfacial instabilities, orientation of morphologies, and phase transitions in polymer blends and block copolymers. We have recently demonstrated that the presence of uniform electric fields can also strongly enhance the miscibility of polystyrene (PS) / poly(vinyl methyl ether) (PVME) blends [J. Chem. Phys. 2014, 141, 134908]. Using fluorescence to measure the phase separation temperature Ts of PS/PVME blends with and without electric fields, we show that Ts can be reproducibly and reversibly increased by 13.5 +/- 1.4 K for electric fields of 17 kV/mm for this lower critical solution temperature (LCST) blend. This increase in blend miscibility with electric fields represents some of the largest absolute shifts in Ts ever recorded, well outside of experimental error. The best theoretical prediction for the expected shift in Ts with electric field for this system is still two orders of magnitude smaller than that observed experimentally. We discuss the limitations of this theoretical prediction and consider possible factors affecting miscibility that may need to be also included.

  15. pH-Responsive Polyethylene Glycol Monomethyl Ether-ε-Polylysine-G-Poly (Lactic Acid)-Based Nanoparticles as Protein Delivery Systems

    PubMed Central

    Liu, Huiqin; Li, Yijia; Yang, Rui; Gao, Xiujun; Ying, Guoguang

    2016-01-01

    The application of poly(lactic acid) for sustained protein delivery is restricted by the harsh pH inside carriers. In this study, we synthesized a pH-responsive comb-shaped block copolymer, polyethylene glycol monomethyl ether-ε-polylysine-g-poly (lactic acid) (PEP)to deliver protein (bovine serum albumin (BSA)). The PEP nanoparticles could automatically adjust the internal pH to a milder level, as shown by the quantitative ratio metric results. The circular dichroism spectra showed that proteins from the PEP nanoparticles were more stable than those from poly(lactic acid) nanoparticles. PEP nanoparticles could achieve sustained BSA release in both in vitro and in vivo experiments. Cytotoxicity results in HL-7702 cells suggested good cell compatibility of PEP carriers. Acute toxicity results showed that the PEP nanoparticles induced no toxic response in Kunming mice. Thus, PEP nanoparticles hold potential as efficient carriers for sustained protein release. PMID:27467072

  16. Phase Behavior of Poly(vinylidene fluoride)-graft-poly(diethylene glycol methyl ether methacrylate) in Alcohol-Water System: Coexistence of LCST and UCST.

    PubMed

    Kuila, Atanu; Maity, Nabasmita; Chatterjee, Dhruba P; Nandi, Arun K

    2016-03-10

    A thermoresponsive polymer poly(diethylene glycol methyl ether methacrylate) (PMeO2MA) is grafted from poly(vinylidene fluoride) (PVDF) backbone by using a combined ATRC and ATRP technique with a high conversion (69%) of the monomer to produce the graft copolymer (PD). It is highly soluble polymer and its solution property is studied by varying polarity in pure solvents (water, methanol, isopropanol) and also in mixed solvents (water-methanol and water-isopropanol) by measuring the hydrodynamic size (Z-average) of the particles by dynamic light scattering (DLS). The variation of Z-average size with temperature of the PD solution (0.2%, w/v) indicates a lower critical solution temperature (LCST)-type phase transition (T(PL)) in aqueous medium, an upper critical solution temperature (UCST)-type phase transition (T(PU)) in isopropanol medium, and no such phase transition for methanol solution. In the mixed solvent (water + isopropanol) at 0-20% (v/v) isopropanol the TPL increases, whereas the T(PU) decreases at 92-100% with isopropanol content. For the mixture 20-90% isopropanol, PD particles having larger sizes (400-750 nm) exhibit neither any break in Z-average size-temperature plot nor any cloudiness, indicating their dispersed swelled state in the medium. In the methanol + water mixture with methanol content of 0-30%, T(PL) increases, and at 40-60% both UCST- and LCST-type phase separations occur simultaneously, but at 70-90% methanol the swelled state of the particles (size 250-375 nm) is noticed. For 50 vol % methanol by varying polymer concentration (0.07-0.2% w/v) we have drawn a quasibinary phase diagram that indicates an approximate inverted hourglass phase diagram where a swelled state exists between two single phase boundary produced from LCST- and UCST-type phase transitions. An attempt is made to understand the phase separation process by temperature-dependent (1)H NMR spectroscopy along with transmission electron microscopy. PMID:26859626

  17. Photochemical modification of poly(ether sulfone) ultrafiltration membranes by UV-assisted graft polymerization for the prevention of biofouling

    NASA Astrophysics Data System (ADS)

    Pieracci, John Paul

    Membranes are widely used by the biotechnology industry in the separation and recovery of proteins from biological solutions. Fouling of membrane surfaces by irreversible protein adsorption during ultrafiltration causes loss of membrane permeability and can reduce membrane selectivity and lead to significant product loss through denaturation. In this work, low fouling poly(ether sulfone) (PES) ultrafiltration membranes were produced by ultraviolet (UV) assisted graft polymerization of hydrophilic vinyl monomers using a newly developed photochemical dip modification technique. This technique was developed to make the UV modification process more easily adaptable to continuous membrane manufacturing processes. A method was also developed to measure and track the degree of polymer grafting on the membrane surface using attenuated total reflection Fourier transform infrared spectroscopy (FTIR/ATR). Grafting the hydrophilic monomer N-vinyl-2-pyrrolidinone (NVP) onto the membrane surface increased surface wettability and produced membranes with the high wettability of regenerated cellulose membranes. The enhanced surface wettability significantly decreased irreversible adsorptive fouling during the filtration of the protein bovine serum albumin (BSA). In order to maintain the rejection of BSA after modification, PES chain scission was tightly controlled by regulating the UV wavelength range and the light intensity used. The UV reactor system was operated with 300 nm UV lamps and a benzene filter used to remove high energy wavelengths below 275 nm that were determined to cause severe loss of BSA rejection due to pore enlargement from extensive chain scission. Dip modification caused membrane permeability to decrease due to the grafted chains blocking the membrane pores. The use of a chain transfer agent during modification followed by ethanol cleaning increased modified membrane permeability, but BSA rejection was severely decreased. The resultant membranes produced by

  18. Enhancing water retention and low-humidity proton conductivity of sulfonated poly(ether ether ketone) composite membrane enabled by the polymer-microcapsules with controllable hydrophilicity-hydrophobicity

    NASA Astrophysics Data System (ADS)

    He, Guangwei; Li, Yifan; Li, Zongyu; Nie, Lingli; Wu, Hong; Yang, Xinlin; Zhao, Yuning; Jiang, Zhongyi

    2014-02-01

    Four kinds of polymer microcapsules (PMCs) with different hydrophilicity-hydrophobicity are synthesized via distillation-precipitation polymerization (polymer microcapsules form by self-crosslinking of monomers/crosslinkers in this process) and incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare composite membranes. To improve the water retention of the PMCs, the hydrophilicity-hydrophobicity of the PMCs is manipulated by regulating the proportion of hydrophilic ethylene glycol dimethacrylate (EGDMA) and hydrophobic divinylbenzene (DVB) crosslinkers in the synthesis formula. The hydrophilicity of the PMCs decreases with increasing the content of polyDVB in the PMCs. The four kinds of PMCs exhibit different water retention properties. The PMCs with appropriate hydrophilic/hydrophobic balance (EGDMA: DVB = 1:1) possess the best water retention properties. Incorporation of PMCs into SPEEK matrix enhances the water-retention properties, and consequently increases proton conductivity to 0.0132 S cm-1 under 20% relative humidity, about thirteen times higher than that of the SPEEK control membrane. Moreover, the incorporation of PMCs reduces the activation energy for proton conduction and the methanol permeability of the membranes. This study may be helpful to rational design of excellent water-retention materials.

  19. Design and formulation of nanoemulsions using 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene in combination with linear perfluoro(polyethylene glycol dimethyl ether).

    PubMed

    Mountain, Gregory A; Jelier, Benson J; Bagia, Christina; Friesen, Chadron M; Janjic, Jelena M

    2014-06-01

    This is the first report where PFPAE aromatic conjugates and perfluoro(polyethylene glycol dimethyl ether) are combined and formulated as nanoemulsions with droplet size below 100 nm. A perfluoropolyalkylether (PFPAE) aromatic conjugate, 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene, was used as fluorophilic-hydrophilic diblock (FLD) aimed at stabilizing perfluoro(polyethylene glycol dimethyl ether) nanoemulsions. Its effects on colloidal behaviors in triphasic (organic/fluorous/aqueous) nanoemulsions were studied. The addition of FLD construct to fluorous phase led to decrease in PFPAE nanoemulsion droplet size to as low as 85 nm. Prepared nanoemulsions showed high colloidal stability. Our results suggest that these materials represent viable novel approach to fluorous colloid systems design with potential for biomedical and synthetic applications. PMID:24976645

  20. Design and formulation of nanoemulsions using 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene in combination with linear perfluoro(polyethylene glycol dimethyl ether)

    PubMed Central

    Mountain, Gregory A.; Jelier, Benson J.; Bagia, Christina; Friesen, Chadron M.; Janjic, Jelena M.

    2014-01-01

    This is the first report where PFPAE aromatic conjugates and perfluoro(polyethylene glycol dimethyl ether) are combined and formulated as nanoemulsions with droplet size below 100 nm. A perfluoropolyalkylether (PFPAE) aromatic conjugate, 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene, was used as fluorophilic-hydrophilic diblock (FLD) aimed at stabilizing perfluoro(polyethylene glycol dimethyl ether) nanoemulsions. Its effects on colloidal behaviors in triphasic (organic/fluorous/aqueous) nanoemulsions were studied. The addition of FLD construct to fluorous phase led to decrease in PFPAE nanoemulsion droplet size to as low as 85 nm. Prepared nanoemulsions showed high colloidal stability. Our results suggest that these materials represent viable novel approach to fluorous colloid systems design with potential for biomedical and synthetic applications. PMID:24976645

  1. Synthesis and characterization of sulfonated poly (arylene ether sulfone) copolymers via direct copolymerization: Candidates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Harrison, William Lamont

    A designed series of directly copolymerized homo- and disulfonated copolymers containing controlled degrees of pendant sulfonic acid groups have been synthesized via nucleophilic step polymerization. Novel sulfonated poly (arylene ether sulfone) copolymers using 4,4'-bisphenol A, 4,4'-biphenol, hexafluorinated (6F) bisphenol AF, and hydroquinone, respectively, with dichlorodiphenyl sulfone (DCDPS) and 3,3'-disodiumsulfonyl-4,4'-dichlorodiphenylsulfone (SDCDPS) were investigated. Molar ratios of DCDPS and SDCDPS were systematically varied to produce copolymers of controlled compositions, which contained up to 70 mol% of disulfonic acid moiety. The goal is to identify thermally, hydrolytically, and oxidatively stable high molecular weight, film-forming, ductile ion conducting copolymers, which had properties desirable for proton exchange membranes (PEM) in fuel cells. Commercially available bisphenols were selected to produce cost effective alternative PEMs. Partially aliphatic bisphenol A and hexafluorinated (6F) bisphenol AF produced amorphous copolymers with different thermal oxidative and surface properties. Biphenol and hydroquinone was utilized to produce wholly aromatic copolymers. The sulfonated copolymers were prepared in the sodium-salt form and converted to the acid moiety via two different methodologies and subsequently investigated as proton exchange membranes for fuel cells. Hydrophilicity increased with the level of disulfonation, as expected. Moreover, water sorption increased with increasing mole percent incorporation of SDCDPS. The copolymers' water uptake was a function of both bisphenol structure and degree of disulfonation. Furthermore, the acidification procedures were shown to influence the Tg values, water uptake, and conductivity of the copolymers. Atomic force microscopy (AFM) in the tapping mode confirmed that the morphology of the copolymers could be designed to display nanophase separation in the hydrophobic and hydrophilic (sulfonated

  2. Adsorption of proteins onto poly(ether urethane) with a phosphorylcholine moiety and influence of preadsorbed phospholipid.

    PubMed

    van der Heiden, A P; Willems, G M; Lindhout, T; Pijpers, A P; Koole, L H

    1998-05-01

    In a previous report we demonstrated that the blood compatibility of poly(ether urethane) (PEU) was improved by grafting phosphorylcholine (PC) groups on the surface. The improved blood compatibility was indicated by decreased platelet adsorption/activation and reduced thrombin formation at the polymer surface in experiments in which the surfaces were contacted with platelet-rich plasma in vitro. In the present study, we investigated the effect of grafted PC groups at a PEU surface on protein and phospholipid adsorption. Adsorption of human fibrinogen (Fg), human serum albumin (Alb), human high-molecular-weight kininogen (HMWK), and dioleoyl phosphatidylcholine (DOPC) vesicles was measured by ellipsometry. For this purpose, thin PEU films were cast on silicon wafers. The polymer film was photochemically modified with a PC-containing aryl azide. The presence of PC groups on the polymer surface was demonstrated by ESCA (Electron Spectroscopy for Chemical Analysis). The hydrophilicity of the polymer surface increased by the surface modification, as indicated by a decrease of the contact angle from 59 degrees before to 43 degrees after modification. Our data show that the presence of PC groups has little effect on the adsorption of proteins to a PEU surface. The highest adsorption was observed for Fg (0.49 microgram/cm2 on PC-modified PEU and 0.50 microgram/cm2 on PEU), followed by HMWK (0.28 microgram/cm2 on both PC-modified PEU and PEU), and Alb (0.16 microgram/cm2 on PC-modified PEU and 0.18 microgram/cm2 on PEU). Protein adsorption was further studied on a "biomembrane-like" DOPC bilayer formed on hydrophilic silicon. We found no protein adsorption on this DOPC bilayer. The adsorption of small unilamellar DOPC vesicles on the polymer surfaces amounted to about 0.06 microgram/cm2 (corresponding to circa 30% of monolayer coverage) and was similar for PC-modified PEU and PEU. Despite this partial surface coverage, preadsorbed DOPC on the polymer surface diminished the

  3. Environmental effects of poly(phenylene ether) blends after long-term exposure to potable hot water

    NASA Astrophysics Data System (ADS)

    Maclean, Steven

    In recent years, engineering thermoplastic resins have been contemplated for use in a variety pressurized fluid handling components such as potable water delivery pipes, fitting and valves. In this research, rigid blends of glassy poly(phenylene ether) (PPE) polymer are studied to assess their suitability in long-term, potable, hot water environments. Three distinct PPE-based model compounds were prepared for this research: (i) a 50/50 blend of PPE and high impact polystyrene (HIPS); (ii) a 50/50 blend of PPE and HIPS with the inclusion of an anti-oxidant package and; (iii) a blend consisting of capped PPE, crystal polystyrene and styrene-ethyelene-butylene-styrene (SEBS) rubber. A fourth engineering thermoplastic, namely bisphenol-A polysulfone (PSU), was incorporated into the study as a benchmark material due to its proven reliability in hot water applications. Aging experiments were carried out for 8,000 hours in an 80°C water bath and an 80°C convection oven to characterize physical property retention and degradation mechanisms in each material. During water bath immersion, excessive, non-Fickian water diffusion occurred in both PPE/HIPS blends which led to water clustering and disc shaped microcavities on the order of 50 to 100 mum in diameter. These voids in the bulk caused appreciable losses in tensile elongation and fatigue resistance. The capped PPE/PS/SEBS blend, however, managed water uptake more effectively and its chemistry deterred water clustering. With further improvements to the formulation, such as larger rubber domains or an alternative impact modifier, the capped PPE blend may be able to offer physical property retention equal to that of PSU. With the exception of slight craze formation at sharp specimen edges during hot water immersion, the PSU material proved to be an exceptional material candidate throughout the entire experimentation. Surprisingly long-term hot water exposure did not cause gross chemical degradation in any of the materials

  4. Newly developed poly(allyl glycidyl ether/divinyl benzene) polymer for phosphopeptides enrichment and desalting of biofluids.

    PubMed

    Najam-ul-Haq, Muhammad; Saeed, Adeela; Jabeen, Fahmida; Maya, Fernando; Ashiq, Muhammad Naeem; Sharif, Ahsan

    2014-03-12

    The polymeric materials have contributed significantly in the area of bioanalytical science. The functionalization of polymeric backbone after its development brings unique selectivity towards the target biomolecules. In present work, the functionalities of choice have been introduced through the ring-opening of allyl glycidyl ether. The utility of polymer is widened through derivatizations to immobilized metal ion affinity chromatographic (IMAC) material for the phosphopeptides enrichment and Reversed Phase (C-18) for the desalting prior to MALDI-MS analysis. The polymer-IMAC in addition to Fe(3+) is also immobilized with lanthanide ions like La(3+), Eu(3+), and Er(3+). The amount of Fe(3+) immobilized is determined as 0.7928 mg/g. Spherical morphology with narrow particle size dispersion is revealed by scanning electron microscopy (SEM). The surface area, pore volume and size distribution is determined by nitrogen adsorption porosimetery. The elemental composition and purity level is confirmed by energy dispersive X-ray spectroscopy (EDX) data. The derivatization to IMAC and RP is evaluated by Fourier transform infrared (FT-IR) spectroscopy. The polymer enables the efficient phosphopeptide enrichment to equal degree from casein variants, non-fat milk, egg yolk, human serum, and HeLa cell extract. The identification of phosphorylation sites can lead to the phosphorylation pathways to understand the post-translational modifications. The identification with their sequence coverage is made using Mascot and Phosphosite Plus. It is sensitive to enrich the phosphopeptides down to 2 femtomoles with very high selectivity of 1:2000 with BSA background. These attributes are linked to the higher surface area (173.1554 m(2)/g) of the designed polymer. The non-specific bindings, particularly the Fe(3+) linked acidic residues are also avoided. Four characteristic phosphopeptides (fibrinopeptide A and their hydrolytic products) from fibrinogen α-chain are identified from the

  5. Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water-molecular interactions and states of water.

    PubMed

    Pastorczak, Marcin; Dominguez-Espinosa, Gustavo; Okrasa, Lidia; Pyda, Marek; Kozanecki, Marcin; Kadlubowski, Slawomir; Rosiak, Janusz M; Ulanski, Jacek

    2014-01-01

    Water interacting with a polymer reveals a number of properties very different to bulk water. These interactions lead to the redistribution of hydrogen bonds in water. It results in modification of thermodynamic properties of water and the molecular dynamics of water. That kind of water is particularly well observable at temperatures below the freezing point of water, when the bulk water crystallizes. In this work, we determine the amount of water bound to the polymer and of the so-called pre-melting water in poly(vinyl methyl ether) hydrogels with the use of Raman spectroscopy, dielectric spectroscopy, and calorimetry. This analysis allows us to compare various physical properties of the bulk and the pre-melting water. We also postulate the molecular mechanism responsible for the pre-melting of part of water in poly(vinyl methyl ether) hydrogels. We suggest that above -60 °C, the first segmental motions of the polymer chain are activated, which trigger the process of the pre-melting. PMID:25100897

  6. Role of sulfonation in the stability, reactivity, and selectivity of poly(ether imide) used to develop ion exchange membranes: DFT study with application to fuel cells.

    PubMed

    López-Chávez, Ernesto; Peña-Castañeda, Yésica A; de la Portilla-Maldonado, L César; Guzmán-Pantoja, Javier; Martínez-Magadán, José Manuel; Oviedo-Roa, Raúl; de Landa Castillo-Alvarado, Fray; Cruz-Torres, Armando

    2014-07-01

    The design of polymer electrolyte membranes for fuel cells must satisfy two equally important fundamental principles: optimization of the reactivity and the selectivity in order to improve the ion transport properties of the membrane as well as its long-term stability in the hydrated state at high temperature (above 100 °C). A study utilizing density functional theory (DFT) to elucidate the effect of the degree of sulfonation on the chemical stability, reactivity, and selectivity of poly(ether imide) (PEI), which allows the ionic transport properties of the membrane to be predicted, is reported here. Sulfonated poly(ether imide) (SPEI) structures with (-SO3H) n (n = 1-6) groups were built and optimized in order to calculate the above properties as functions of the number of sulfonyl groups. A comparative study demonstrated that the SPEI with four sulfonyl groups in its backbone is the polymer with the properties best suited for use in fuel cells. PMID:24958304

  7. Cross-Linked Hydrogels Formed through Diels-Alder Coupling of Furan- and Maleimide-Modified Poly(methyl vinyl ether-alt-maleic acid).

    PubMed

    Stewart, S Alison; Backholm, Matilda; Burke, Nicholas A D; Stöver, Harald D H

    2016-02-23

    The Diels-Alder [4 + 2] cycloaddition between furan- and maleimide-functional polyanions was used to form cross-linked synthetic polymer hydrogels. Poly(methyl vinyl ether-alt-maleic anhydride) was reacted with furfurylamine or N-(2-aminoethyl)maleimide in acetonitrile to form pairs of furan- and maleimide-functionalized poly(methyl vinyl ether-alt-maleic acid)s. Mixtures of these mutually reactive polyanions in water gelled within 15 min to 18 h, depending on degree of functionalization and polymer concentrations. Solution and magic-angle spinning (1)H NMR were used to confirm the formation of the Diels-Alder adduct, to analyze competing hydrolytic side reactions, and demonstrate postgelation functionalization. The effect of the degree of furan and maleimide functionalization, polymer concentration, pH, and calcium ion concentration, on gelation time, gel mechanical properties, and equilibrium swelling, are described. Release of dextran as a model drug was studied using fluorescence spectroscopy, as a function of gel composition and calcium treatment. PMID:26800849

  8. Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol-gel process

    NASA Astrophysics Data System (ADS)

    Yin, Yongheng; Xu, Tao; He, Guangwei; Jiang, Zhongyi; Wu, Hong

    2015-02-01

    Functionalized titania are used as fillers to modify the sulfonated poly(ether ether ketone) (SPEEK) membrane for improved proton conductivity and methanol barrier property. The functionalized titania sol which contains proton conductive carboxylic acid groups or amino acid groups are derived from a facile chelation method using different functional additives. Then the novel SPEEK/carboxylic acid-functionalized titania (SPEEK/TC) and SPEEK/amino acid-functionalized titania (SPEEK/TNC) hybrid membranes are fabricated via in situ sol-gel method. The anti-swelling property and thermal stability of hybrid membranes are enhanced owing to the formation of electrostatic force between SPEEK and titania nanoparticles. The hybrid membranes exhibit higher proton conductivity than plain SPEEK membrane because more proton transfer sites are provided by the functionalized titania nanoparticles. Particularly, the proton conductivity of SPEEK/TNC membrane with 15% filler content reaches up to 6.24 × 10-2 S cm-1, which is 3.5 times higher than that of the pure SPEEK membrane. For methanol permeability, the SPEEK/TNC membranes possess the lowest values because the acid-base interaction between sulfonic acid groups in SPEEK and amino groups in functionalized titania leads to a more compact membrane structure.

  9. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  10. Drug-loading of poly(ethylene glycol methyl ether methacrylate) (PEGMEMA)-based micelles and mechanisms of uptake in colon carcinoma cells.

    PubMed

    Chang, Teddy; Gosain, Pallavi; Stenzel, Martina H; Lord, Megan S

    2016-08-01

    In this study polymeric micelles formed from poly(poly(ethylene glycol) methyl ether methacrylate)-block-poly(methyl methacrylate) (P(PEGMEMA75)-b-PMMA80) block copolymer of approximately 25nm in diameter were used to encapsulate the model drug, Nile Red, with a loading efficiency of 0.08wt% and a chemotherapeutic drug, doxorubicin (DOX), with an efficiency of 2.75wt%. The release of DOX from the micelles was sufficient to be cytotoxic to human colon carcinoma cells, WiDr, while Nile Red and the unloaded micelles were found not to be cytotoxic when exposed to the cells at polymer concentrations up to 200μg/mL. Nile Red loaded micelles were used to analyze uptake of the micelles into the cells which were rapidly internalized within minutes of exposure. The three major endocytotic pathways were involved in the internalization of micelles; however other passive mechanisms were also at play as the addition of inhibitors to all three pathways did not completely inhibit the uptake of these nanoparticles. These data demonstrate the potential of the P(PEGMEMA)75-b-PMMA80 block copolymer micelles to be rapidly internalized by carcinoma cells and deliver low doses of drugs intracellularly for controlled drug release. PMID:27100852

  11. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... program. A significant new use of this substance is any manner or method of manufacture, import,...

  12. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol...

  13. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol...

  14. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol...

  15. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol...

  16. Immobilization of xylanase on poly (ethylene glycol) methyl ether 5000 and its self-extractive bioconversion for the production of xylo-oligosaccharides.

    PubMed

    Li, Xin; Shan, Zongxing; Song, Xiangyang; Ouyang, Jia; Xu, Yong; Yong, Qiang; Yu, Shiyuan

    2014-02-01

    Endo-β-1,4-xylanase derived from Trichoderma reesei was covalently immobilized on poly (ethylene glycol) methyl ether 5000 (mPEG5000), and the resulting immobilized enzyme had a residual activity of 72.4 % with 82.9 % of PEGylated amino groups. Compared with the free enzyme, the immobilized xylanase was stable at pH values in the range of 4.0-6.0 and temperatures in the range of 50-65 °C. A self-extractive bioconversion system composed of immobilized xylanase, mPEG5000, and sodium citrate was used to produce xylo-oligosaccharides and provided a better distribution of the xylo-oligosaccharides than the free enzyme. Furthermore, the immobilized xylanase could be effectively recovered in situ following the hydrolysis reaction. PMID:24326682

  17. The influence of the cations of salts on the electrochemical stability of a solid polymer electrolyte based on segmented poly(ether urethane)

    NASA Astrophysics Data System (ADS)

    Jo, Nam-Ju; Kim, Min-Kyung; Kang, Sung-Won; Ryu, Kwang-Sun

    2010-05-01

    Solid polymer electrolytes (SPEs) based on segmented poly(ether urethane) (SPEU) and lithium perchlorate or magnesium perchlorate (LiClO4 or Mg(ClO4)2) were prepared. By analyzing the Fourier-transform infrared (FT-IR) spectrum of the SPE, it was confirmed that the interaction of the magnesium ion with the oxygen of the polyether chain was stronger than that of the lithium ion. The highest ionic conductivities of 1.5×10-5 and 4.5×10-6 S cm-1 were obtained at room temperature for the SPEs containing LiClO4 and Mg(ClO4)2, respectively. The results of linear sweep voltammetry (LSV) show that an SPE consisting of SPEU and magnesium salt has good electrochemical stability up to the working voltage of 1.9 V at [O]/[Mg2+]=50.

  18. Atomic motions in poly(vinyl methyl ether): A combined study by quasielastic neutron scattering and molecular dynamics simulations in the light of the mode coupling theory.

    PubMed

    Capponi, S; Arbe, A; Alvarez, F; Colmenero, J; Frick, B; Embs, J P

    2009-11-28

    Quasielastic neutron scattering experiments (time-of-flight, neutron spin echo, and backscattering) on protonated poly(vinyl methyl ether) (PVME) have revealed the hydrogen dynamics above the glass-transition temperature. Fully atomistic molecular dynamics simulations properly validated with the neutron scattering results have allowed further characterization of the atomic motions accessing the correlation functions directly in real space. Deviations from Gaussian behavior are found in the high-momentum transfer range, which are compatible with the predictions of mode coupling theory (MCT). We have applied the MCT phenomenological version to the self-correlation functions of PVME atoms calculated from our simulation data, obtaining consistent results. The unusually large value found for the lambda-exponent parameter is close to that recently reported for polybutadiene and simple polymer models with intramolecular barriers. PMID:19947703

  19. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends.

    PubMed

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. PMID:24863239

  20. Generation of a Focused Poly(amino ether) Library: Polymer-mediated Transgene Delivery and Gold-Nanorod based Theranostic Systems

    PubMed Central

    Vu, Lucas; Ramos, James; Potta, Thrimoorthy; Rege, Kaushal

    2012-01-01

    A focused library of twenty-one cationic poly(amino ethers) was synthesized following ring-opening polymerization of two diglycidyl ethers by different oligoamines. The polymers were screened in parallel for plasmid DNA (pDNA) delivery, and transgene expression efficacies of individual polymers were compared to those of 25 kDa polyethylenimine (PEI), a current standard for polymer-mediated transgene delivery. Seven lead polymers that demonstrated higher transgene expression than PEI in pancreatic and prostate cancer cells lines were identified from the screen. All seven lead polymers showed highest transgene expression at a polymer:pDNA weight ratio of 5:1 in the MIA PaCa-2 pancreatic cancer cell line. Among the conditions studied, transgene expression efficacy correlated with minimal polymer cytotoxicity but not polyplex sizes. In addition, this study indicated that methylene spacing between amine centers in the monomers, amine content, and molecular weight of the polymers are all significant factors and should be considered when designing polymers for transgene delivery. A lead effective polymer was employed for coating gold nanorods, leading to theranostic nanoassemblies that possess combined transgene delivery and optical imaging capabilities, leading to potential theranostic systems. PMID:23382773

  1. Propenyl ether monomers for photopolymerization

    DOEpatents

    Crivello, J.V.

    1996-10-22

    Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of the above formula together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  2. Propenyl ether monomers for photopolymerization

    DOEpatents

    Crivello, James V.

    1996-01-01

    Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  3. Interface-engineering additives of poly(oxyethylene tridecyl ether) for low-band gap polymer solar cells consisting of PCDTBT:PCBM₇₀ bulk-heterojunction layers.

    PubMed

    Huh, Yoon Ho; Park, Byoungchoo

    2013-01-14

    We herein report on the improved photovoltaic (PV) effects of using a polymer bulk-heterojunction (BHJ) layer that consists of a low-band gap electron donor polymer of poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)) (PCDTBT) and an acceptor of [6,6]-phenyl C₇₁ butyric acid methyl ester (PCBM₇₀), doped with an interface-engineering surfactant additive of poly(oxyethylene tridecyl ether) (PTE). The presence of an interface-engineering additive in the PV layer results in excellent performance; the addition of PTE to a PCDTBT:PCBM₇₀ system produces a power conversion efficiency (PCE) of 6.0%, which is much higher than that of a reference device without the additive (4.9%). We attribute this improvement to an increased charge carrier lifetime, which is likely to be the result of the presence of PTE molecules oriented at the interfaces between the BHJ PV layer and the anode and cathode, as well as at the interfaces between the phase-separated BHJ domains. Our results suggest that the incorporation of the PTE interface-engineering additive in the PCDTBT:PCBM₇₀ PV layer results in a functional composite system that shows considerable promise for use in efficient polymer BHJ PV cells. PMID:23389265

  4. Self-assembly behavior of amphiphilic C₆₀-end-capped poly(vinyl ether)s in water and dissociation of the aggregates by the complexing of the C₆₀ moieties with externally added γ-cyclodextrins.

    PubMed

    Motoyanagi, Jin; Kurata, Akihiro; Minoda, Masahiko

    2015-03-01

    C60-end-capped polymers consisting of an amphiphilic poly(2-methoxyethyl vinyl ether) (PMOVE) main chain were synthesized by living cationic polymerization using a C60-functionalized initiator (C60VE-TFA) in the presence of EtAlCl2 as an activator and dioxane as an added base. The obtained polymers (C60-PMOVE) dissolved in a wide range of solvents including water and exhibited solvatochromism depending on the polarity of the media employed. This phenomenon was attributed to self-assembly in polar media due to hydrophobicity of the C60 moieties at the terminus of the amphiphilic polymer chain. Furthermore, the addition of γ-cyclodextrin (γ-CD), a strong host molecule for fullerenes, to the self-assembled system brought about the dissociation of the aggregates into molecularly dispersed free polymer chains. Titration of the aqueous solution of the self-assembly of C60-PMOVE with γ-CD indicated the possible formation of inclusion complexes of C60-PMOVE and γ-CD, and this binding process occurs in a positive cooperative manner. PMID:25658224

  5. Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kihyun; Heo, Pilwon; Ko, Taeyun; Kim, Ki-hyun; Kim, Sung-Kon; Pak, Chanho; Lee, Jong-Chan

    2015-10-01

    Semi-interpenetrating polymer network (semi-IPN) membranes are prepared by in-situ casting and thermal-initiated radical polymerization of vinyl phosphonic acid (VPA) and bis(2-(methacryloyloxy)ethyl) phosphate (BMAEP) in N,N-dimethylacetamide solutions of sulfonated poly(arylene ether sulfone) (SPAES). The incorporation of VPA units into the SPAES membranes improves proton conductivity especially at high temperature and low humidity conditions. In addition the cross-linker, BMAEP, prevents the decrease of the mechanical and chemical stabilities by the aliphatic linear poly(vinyl phosphonic acid) chains in the semi-IPN membranes, and furthermore the phosphonic acid group in BMAEP can prevent the decrease of the proton conductivity by the formation of cross-linked structures. Therefore, the resulting semi-IPN membranes show high proton conductivities up to 15 mS cm-1 at 120 °C and 40% RH. The fuel cell performance (187 mW cm-2 at 120 °C and 40% RH) of membrane-electrode assembly (MEA) from the semi-IPN membrane is found to be superior to that (145 mW cm-2 at 120 °C and 40% RH) of MEA from the SPAES membrane. The durability test result at the operating conditions indicates that the semi-IPN membrane is electrochemically very stable maintaining the low hydrogen cross-over and high power densities.

  6. Structure of poly(propyl ether imine) dendrimer from fully atomistic molecular dynamics simulation and by small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Jana, Chandan; Jayamurugan, G.; Ganapathy, Rajesh; Maiti, Prabal K.; Jayaraman, N.; Sood, A. K.

    2006-05-01

    We study the structure of carboxylic acid terminated neutral poly(propyl ether imine) (PETIM) dendrimer from generations 1-6 (G1-G6) in a good solvent (water) by fully atomistic molecular dynamics (MD) simulations. We determine as a function of generation the structural properties such as radius of gyration, shape tensor, asphericity, fractal dimension, monomer density distribution, and end-group distribution functions. The sizes obtained from the MD simulations have been validated by small angle x-ray scattering experiment on dendrimer of generations 2-4 (G2-G4). A good agreement between the experimental and theoretical value of radius of gyration has been observed. We find a linear increase in radius of gyration with the generation. In contrast, Rg scales as ˜Nx with the number of monomers. We find two distinct exponents depending on the generations, x =0.47 for G1-G3 and x =0.28 for G3-G6, which reveal their nonspace filling nature. In comparison with the amine terminated poly(amidoamine) (PAMAM) dendrimer, we find that Rg of Gth generation PETIM dendrimer is nearly equal to that of (G +1)th generation of PAMAM dendrimer as observed by Maiti et al. [Macromolecules 38, 979 (2005)]. We find substantial back folding of the outer subgenerations into the interior of the dendrimer. Due to their highly flexible nature of the repeating branch units, the shape of the PETIM dendrimer deviates significantly from the spherical shape and the molecules become more and more spherical as the generation increases. The interior of the dendrimer is quite open with internal cavities available for accommodating guest molecules, suggesting the use of PETIM dendrimer for guest-host applications. We also give a quantitative measure of the number of water molecules present inside the dendrimer.

  7. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    NASA Astrophysics Data System (ADS)

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V.; Noll, Thomas; Funk, Richard H. W.; Engelmann, Katrin; Werner, Carsten

    2015-08-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty.

  8. Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    New imide/arylene ether copolymers prepared by reacting anhydride-terminated poly(amic acids) with amine-terminated poly(arylene ethers) in polar aprotic solvents. Each resulting copolymer may have one glass-transition temperature or two, depending on chemical structure and/or compatibility of block units. Most of copolymers form tough, solvent-resistant films with high tensile properties. Films cast from solution tough and flexible, and exhibit useful thermal and mechanical properties. Potentially useful as moldings, adhesives, or composite matrices. Because of flexible arylene ether blocks, these copolymers easier to process than polyimides.

  9. High Dielectric Constants of Composites of Fiber-Like Copper Phthalocyanine-Coated Graphene Oxide Embedded in Poly(arylene Ether Nitriles)

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Pu, Zejun; Wang, Zicheng; Long, Ya; Jia, Kun; Liu, Xiaobo

    2015-07-01

    The surfaces of graphene oxide (GO) sheets were coated with fiber-like copper phthalocyanine (CuPc) by use of a solvothermal process. The product, GO@ CuPc, was used as a filler in high-performance poly(arylene ether nitrile) (PEN) composites. Films of the composites had high thermal stability, and glass-transition temperatures in the range 170-182°C. Thermogravimetric analysis revealed their initial decomposition temperatures were in the range 470-483°C. Scanning electron microscopy showed that dispersion of GO@ CuPc in PEN was much better than that of unmodified GO; this can be attributed to relatively strong interaction between GO@CuPc and the PEN matrix. All the composite films were highly flexible and had enhanced mechanical properties. Tensile strengths of the composites were as high as 89 MPa in the presence of 1 wt.% GO@CuPc, an increase of 20% compared with pure PEN film. Dielectric constants of the composite films were as high as 52 at 100 Hz when the GO@CuPc content was 5%. Because of these excellent mechanical and dielectric properties, PEN/GO@CuPc composites have much potential for use as film capacitors.

  10. Comparison of proton conducting polymer electrolyte membranes prepared from multi-block and random copolymers based on poly(arylene ether ketone)

    NASA Astrophysics Data System (ADS)

    Kang, Kyuhyun; Kim, Dukjoon

    2015-05-01

    Multi-block and random copolymers based on poly(arylene ether ketone) with the similar IEC values are synthesized. The chemical structure of the hydrophobic and hydrophilic oligomers and the copolymers synthesized from them is identified using 1H - and 19F- nuclear magnetic resonance (NMR) spectroscopy, attenuated total reflection fourier transform infrared (ATR-FTIR) spectroscopy, and gel permeation chromatography (GPC). The development of distinguished hydrophobic-hydrophilic phase separation is confirmed by small-angle X-ray scattering (SAXS) spectroscopy. The proton conductivity and water uptake along with the thermal, mechanical, oxidative stabilities are measured to investigate the effect of the copolymer structure on the membrane properties. While water uptake is similar with respect to each other, the proton conductivity of the multi-block copolymer membrane is higher than that of random one at the same levels of IEC. It results from much more distinct hydrophobic-hydrophilic phase separation formed in the multi-block copolymer membrane than the random one. The ion cluster dimension of the multi-block copolymer membranes is larger than that of the random copolymer membranes from the SAXS analysis. Also, the ion cluster dimension distribution of the block copolymer membranes is much narrower than that of random ones. The multi-block copolymer membranes illustrate superior oxidation stability to the random copolymer membrane due to the same phase separation difference.

  11. Solvent resistant chitosan/poly(ether-block-amide) composite membranes for pervaporation of n-methyl-2-pyrrolidone/water mixtures.

    PubMed

    Prasad, N Shiva; Moulik, Siddhartha; Bohra, Subha; Rani, K Yamuna; Sridhar, S

    2016-01-20

    A novel composite barrier comprising of hydrophilic and solvent resistant chitosan (CS) membrane on porous solvent resistant poly(ether-block-amide) (PEBA-2533) substrate was synthesized for pervaporation (PV) based dehydration of the polar aprotic n-methyl-2-pyrolidone (NMP) green solvent. The composite barrier was crosslinked with tetraethyl orthosilicate (TEOS) to control swelling and enhance selectivity. Operating parameters such as feed water concentration, permeate pressure and membrane thickness were varied to assess membrane flux and selectivity. A two-dimensional finite element method (FEM) model was developed to predict the concentration profile within the membrane through computational fluid dynamics (CFD). On the basis of complete mixing experiments, a numerical simulation was performed to predict membrane area requirement and exit streams' compositions for commercial pervaporation units operated in plug flow mode. Both unmodified chitosan and tetraethyl orthosilicate crosslinked composite membranes successfully separated feed mixture containing 4.6 wt% water by exhibiting water fluxes of 0.024 and 0.019 kg/m(2)h, whereas the corresponding selectivities were found to be as high as 182 and 225, respectively. PMID:26572460

  12. Aluminum–phthalocyanine chloride associated to poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy

    PubMed Central

    Muehlmann, Luis Alexandre; Ma, Beatriz Chiyin; Longo, João Paulo Figueiró; Almeida Santos, Maria de Fátima Menezes; Azevedo, Ricardo Bentes

    2014-01-01

    Photodynamic therapy is generally considered to be safer than conventional anticancer therapies, and it is effective against different kinds of cancer. However, its clinical application has been significantly limited by the hydrophobicity of photosensitizers. In this work, a system composed of the hydrophobic photosensitizer aluminum–phthalocyanine chloride (AlPc) associated with water dispersible poly(methyl vinyl ether-co-maleic anhydride) nanoparticles is described. AlPc was associated with nanoparticles produced by a method of solvent displacement. This system was analyzed for its physicochemical characteristics, and for its photodynamic activity in vitro in cancerous (murine mammary carcinoma cell lineage 4T1, and human mammary adenocarcinoma cells MCF-7) and noncancerous (murine fibroblast cell lineage NIH/3T3, and human mammary epithelial cell lineage MCF-10A) cell lines. Cell viability and the elicited mechanisms of cell death were evaluated after the application of photodynamic therapy. This system showed improved photophysical and photochemical properties in aqueous media in comparison to the free photosensitizer, and it was effective against cancerous cells in vitro. PMID:24634582

  13. Correlation between the segmental motion and ionic conductivity of poly(ether urethane)-LiClO4 complex studied by positron spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, B.; Li, S. Q.; Wang, S. J.

    1997-11-01

    Positron annihilation lifetime and conductivity measurements have been performed for the poly(ether urethane) PEU-LiClO4 complex as a function of temperature in the temperature range from 120 to 360 K and from 280 to 360 K, respectively. According to the variations of free volume and fractional free volume, the structural transition of PEU-LiClO4 has been determined. Based on a polymer lattice model, the formation energy of a free-volume hole has been calculated in terms of fractional free volume derived from positron annihilation parameters. The temperature dependence of ionic conductivity obeys the Vogel-Tammann-Fulcher and Williams-Landel-Ferry equations, implying a free-volume transport mechanism. A direct relationship between the ionic conductivity and the fractional free volume has been established based on the experimental measurements. A linear least-squares procedure was used to evaluate the apparent activation energy in the Vogel-Tammann-Fulcher equation and several important parameters in the Williams-Landel-Ferry and Vogel-Tammann-Fulcher equations. The correlation between the segmental motion and the conductivity could be explained by means of the free-volume theory.

  14. Free volume and ionic conductivity of poly(ether urethane)-LiClO4 polymeric electrolyte studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Peng, Z. L.; Wang, B.; Li, S. Q.; Wang, S. J.

    1995-01-01

    The positron lifetime spectra and ionic conductivity have been measured for poly(ether urethane)-LiClO4 polymeric electrolyte as a function of temperature. The glass transition temperature T(sub g), free-volume V(sub f), and fractional free-volume f were derived from the positron annihilation parameters. A correlation between fractional free-volume f(T) and conductivity sigma above T(sub g), log(sigma/sigma(T(sub g))) = C(sub 1)(f(T) - f(T(sub g)))/f(T), was first experimentally confirmed using measured positron annihilation results. The comparison of the value of the obtained constant C(sub 1) with the universal values for the segmental diffusion of amorphous polymers indicated that the critical free volume required for the ion transport is much smaller than that required for polymer chain segment mobility. Carrier transport and the segmental motion are discussed in terms of the free-volume theory.

  15. Luteinizing hormone-releasing hormone targeted poly(methyl vinyl ether maleic acid) nanoparticles for doxorubicin delivery to MCF-7 breast cancer cells.

    PubMed

    Varshosaz, Jaleh; Jahanian-Najafabadi, Ali; Ghazzavi, Jila

    2016-08-01

    The purpose of this study was to design a targeted anti-cancer drug delivery system for breast cancer. Therefore, doxorubicin (DOX) loaded poly(methyl vinyl ether maleic acid) nanoparticles (NPs) were prepared by ionic cross-linking method using Zn(2+) ions. To optimise the effect of DOX/polymer ratio, Zn/polymer ratio, and stirrer rate a full factorial design was used and their effects on particle size, zeta potential, loading efficiency (LE, %), and release efficiency in 72 h (RE72, %) were studied. Targeted NPs were prepared by chemical coating of tiptorelin/polyallylamin conjugate on the surface of NPs by using 1-ethyl-3-(3-dimethylaminopropyl) carboiimid HCl as cross-linking agent. Conjugation efficiency was measured by Bradford assay. Conjugated triptorelin and targeted NPs were studied by Fourier-transform infrared spectroscopy (FTIR). The cytotoxicity of DOX loaded in targeted NPs and non-targeted ones were studied on MCF-7 cells which overexpress luteinizing hormone-releasing hormone (LHRH) receptors and SKOV3 cells as negative LHRH receptors using Thiazolyl blue tetrazolium bromide assay. The best results obtained from NPs prepared by DOX/polymer ratio of 5%, Zn/polymer ratio of 50%, and stirrer rate of 960 rpm. FTIR spectrum confirmed successful conjugation of triptorelin to NPs. The conjugation efficiency was about 70%. The targeted NPs showed significantly less IC50 for MCF-7 cells compared to free DOX and non-targeted NPs. PMID:27463791

  16. Preparation and characterization of high performance sulfonated poly(p-phenylene-co-aryl ether ketone) membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    He, Qingyi; Zheng, Jifu; Zhang, Suobo

    2014-08-01

    A series of sulfonated poly(p-phenylene-co-aryl ether ketone)s (SPP-co-PAEK) have been designed as membrane materials for direct methanol fuel cell (DMFC) applications. The materials for such membranes have been prepared via the nickel (0) catalyzed coupling copolymerization of 2,5-dichloro-3-sulfobenzophenone and 2,6-bis(4-(4-chlorobenzoyl)phenoxy)benzonitrile. The SPP-co-PAEK membranes show the desired characteristics such as excellent thermal and mechanical properties, good oxidative stability, low methanol permeability and well-defined micro-phase separation. With an ion exchange capacity (IEC) ranging from 1.90 to 2.59 mequiv g-1, these membranes display comparable proton conductivity (0.085-0.170 S cm-1) to Nafion@117 when fully hydrated at 80 °C. In addition, the passive direct methanol fuel cell with SPP-co-PAEK CN 1.86 (IEC = 1.90 mequiv g-1) membrane presents a maximum power density of 24.5 mW cm-2 at 25 °C, which is comparable to the value of Nafion@117 (24.3 mW cm-2).

  17. Synthesis and characterization of novel sulfonated poly(arylene ether ketone) copolymers with pendant carboxylic acid groups for proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Cui, Zhiming; Zhao, Chengji; Shao, Ke; Li, Hongtao; Fu, Tiezhu; Na, Hui; Xing, Wei

    A series of novel side-chain-type sulfonated poly(arylene ether ketone)s with pendant carboxylic acid groups copolymers (C-SPAEKs) were synthesized by direct copolymerization of sodium 5,5‧-carbonyl-bis(2-fluorobenzenesulfonate), 4,4‧-difluorobenzophenone and 4,4‧-bis(4-hydroxyphenyl) valeric acid (DPA). The expected structure of the sulfonated copolymers was confirmed by FT-IR and 1H NMR. Membranes with good thermal and mechanical stability could be obtained by solvent cast process. It should be noted that the proton conductivity of these copolymers with high sulfonatation degree (DS > 0.6) was higher than 0.03 S cm -1 and increased with increasing temperature. At 80 °C, the conductivity of C-SPAEK-3 (DS = 0.6) and C-SPAEK-4 (DS = 0.8) reached up to 0.12 and 0.16 S cm -1, respectively, which were higher than that of Nafion 117 (0.10 S cm -1). Moreover, their methanol permeability was much lower than that of Nafion 117. These results showed that the synthesized materials might have potential applications as the proton exchange membranes for DMFCs.

  18. Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: setting, degradation and drug release considerations.

    PubMed

    Zhao, Xin; Olsen, Irwin; Pratten, Jonathan; Knowles, Jonathan C; Young, Anne M

    2011-09-01

    This study has investigated novel bone adhesives consisting of fluid photo-polymerizable poly(lactide-co-propylene glycol-co-lactide)dimethacrylate (PGLA-DMA) mixed with systematically varying fillers of β-tricalcium phosphate (β-TCP) and monocalcium phosphate monohydrate (MCPM), for the delivery of an antibacterial drug chlorhexidine (CHX). All formulations were found to polymerize fully within 200 s after exposure to blue light. In addition, water sorption by the polymerized materials catalyzed varying filler conversion to dicalcium phosphate (DCP) (i.e. brushite and monetite). With greater DCP levels, faster degradation was observed. Moreover, increase in total filler content enhanced CHX release, associated with higher antibacterial activity. These findings thus suggest that such rapid-setting and degradable adhesives with controllable drug delivery property could have potential clinical value as bone adhesives with antibacterial activity. PMID:21706218

  19. Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: chemical, mechanical and biological considerations.

    PubMed

    Zhao, Xin; Olsen, Irwin; Li, Haoying; Gellynck, Kris; Buxton, Paul G; Knowles, Jonathan C; Salih, Vehid; Young, Anne M

    2010-03-01

    A poly(propylene glycol-co-lactide) dimethacrylate adhesive with monocalcium phosphate monohydrate (MCPM)/beta-tricalcium phosphate (beta-TCP) fillers in various levels has been investigated. Water sorption by the photo-polymerized materials catalyzed varying filler conversion to dicalcium phosphate (DCP). Polymer modulus was found to be enhanced upon raising total calcium phosphate content. With greater DCP levels, faster release of phosphate and calcium ions and improved buffering of polymer degradation products were observed. This could reduce the likelihood of pH-catalyzed bulk degradation and localized acid production and thereby may prevent adverse biological responses. Bone-like MG-63 cells were found to attach, spread and have normal morphology on both the polymer and composite surfaces. Moreover, composites implanted into chick embryo femurs became closely apposed to the host tissue and did not appear to induce adverse immunological reaction. The above results suggest that the new composite materials hold promise as clinical effective bone adhesives. PMID:19800424

  20. Effect of extracts of poly(ether imide) microparticles on cytotoxicity, ROS generation and proinflammatory effects on human monocytic (THP-1) cells.

    PubMed

    Kumar, Reddi K; Basu, Sayantani; Lemke, Horst-Dieter; Jankowski, Joachim; Kratz, Karl; Lendlein, Andreas; Tetali, Sarada D

    2016-01-01

    Current haemodialysis techniques are not capable to remove efficiently low molecular weight hydrophobic uremic toxins from the blood of patients suffering from chronic renal failure. With respect to the hydrophobic characteristics and the high level of protein binding of these uremic toxins, hydrophobic adsorber materials might be an alternative to remove these substances from the plasma of the chronic kidney disease (CKD) patients. Here nanoporous microparticles prepared from poly(ether imide) (PEI) with an average diameter of 90 ± 30 μm and a porosity around 88 ± 2% prepared by a spraying/coagulation process are considered as candidate adsorber materials. A prerequisite for the clinical application of such particles is their biocompatibility, which can be examined i.e. indirectly in cell culture experiments with the particles' extracts. In this work we studied the effects of aqueous extracts of PEI microparticles on the viability of THP-1 cells, a human leukemia monocytic cell line, as well as their macrophage differentiation, reactive oxygen species (ROS) generation and inflammation.A high cell viability of around 99 ± 18% and 99 ± 5% was observed when THP-1 cells were cultured in the presence of aqueous extracts of the PEI microparticles in medium A and medium B respectively. The obtained microscopic data suggested that PEI particle extracts have no significant effect on cell death, oxidative stress or differentiation to macrophages. It was further found that the investigated proinflammatory markers in THP-1 cells were not up-regulated. These results are promising with regard to the biocompatibility of PEI microparticles and in a next step the hemocompatibility of the microparticles will be examined. PMID:26639770

  1. Influence of N-phthaloyl chitosan on poly (ether imide) ultrafiltration membranes and its application in biomolecules and toxic heavy metal ion separation and their antifouling properties

    NASA Astrophysics Data System (ADS)

    Kanagaraj, P.; Nagendran, A.; Rana, D.; Matsuura, T.; Neelakandan, S.; Karthikkumar, T.; Muthumeenal, A.

    2015-02-01

    N-phthaloyl chitosan (NPHCs), which could be dissolved in various organic solvents, is synthesized for the modification of poly (ether imide) (PEI) ultrafiltration membrane. Blend membrane with 2 wt% NPHCs exhibited higher pure water flux (112.2 l m-2 h-1), higher water content (63.4%) and lower hydraulic resistance (3 kPa/l m-2 h-1). The top surface morphology of the control PEI membrane changed from a dense surface to visible pores with the increase in NPHCs concentration. The surface roughness of PEI membranes increased with an increase in NPHCs concentration in the casting solution. Application studies were carried out to find the rejection and permeate flux of proteins such as bovine serum albumin (BSA), egg albumin (EA), pepsin and trypsin and toxic heavy metal ions such as Cr(III), Zn(II), Cd(II) and Pb(II). The result shows that the flux and separation performances are dependent upon the content of NPHCs. Furthermore, the blend membranes were subjected to the determination of pore statistics and MWCO. It was found that the blending of NPHCs into the PEI membrane had a visible effect upon MWCO and pore size. The significant effect of hydrophilicity of NPHCs on the fouling of PEI/NPHCs blend membranes by BSA was also discussed. It was found that the blend membranes with 2 wt% NPHCs content had a higher FRR (88.6%), higher reversible fouling (23.7%) and lower irreversible fouling (11.4%) which explained their improved antifouling properties. Thus, the modified chitosan proved to play an important role in the improvement of UF membrane performance.

  2. Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly (ether-block-amide) thermoplastic elastomers.

    PubMed

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2013-01-01

    Both gamma ray and electron beam irradiation are widely used as a means of medical device sterilisation. However, it is known that the radiation produced by both processes can lead to undesirable changes within biomedical polymers. The main objective of this research was to conduct a comparative study on the two key radiosterilisation methods (gamma ray and electron beam) in order to identify the more detrimental process in terms of the mechanical, structural, chemical and thermal properties of a common biomedical grade polymer. Poly (ether-block-amide) (PEBA) was prepared by injection moulding ASTM testing specimens and these were exposed to an extensive range of irradiation doses (5-200 kGy) in an air atmosphere. The effect of varying the irradiation dose concentration on the resultant PEBA properties was apparent. For instance, the tensile strength, percentage elongation at break and shore D hardness can be increased/decreased by controlling the aforementioned criteria. In addition, it was observed that the stiffness of the material increased with incremental irradiation doses as anticipated. Melt flow index demonstrated a dramatic increase in the melting strength of the material indicating a sharp increase in molecular weight. Conversely, modulated differential scanning calorimetry established that there were no significant alterations to the thermal transitions. Noteworthy trends were observed for the dynamic frequency sweeps of the material, where the crosslink density increased according to an increase in electron beam irradiation dose. Trans-vinylene unsaturations and the carbonyl group concentration increased with an increment in irradiation dose for both processes when observed by FTIR. The relationship between the irradiation dose rate, mechanical properties and the subsequent surface properties of PEBA material is further elucidated throughout this paper. This study revealed that the gamma irradiation process produced more adverse effects in the PEBA

  3. Synthesis and Biological Evaluation of New Phthalazinone Derivatives as Anti-Inflammatory and Anti-Proliferative Agents.

    PubMed

    Hameed, Alhamzah Dh; Ovais, Syed; Yaseen, Raed; Rathore, Pooja; Samim, Mohammed; Singh, Surender; Sharma, Kalicharan; Akhtar, Mymona; Javed, Kalim

    2016-02-01

    The chemistry of phthalazine derivatives has been of increasing interest since many of these compounds have found many chemotherapeutic applications. So this study aims to synthesize a library of phthalazine derivatives and to investigate their anti-inflammatory and anti-proliferative activities. Sixteen new phthalazinone derivatives (2a-p) were synthesized and tested for their in vitro antiproliferative and in vivo anti-inflammatory activities. All the synthesized compounds were identified and characterized by IR, (1) H NMR, (13) C NMR spectroscopy, and MS. Two compounds, 2b and 2i, showed significant anti-inflammatory activity comparable with that of the standard drug etoricoxib in the carrageenan-induced rat paw edema model at 3 and 5 h, respectively. Three compounds (2h, 2j, and 2g) showed moderate sensitivity toward the renal cancer cell line UO-31. PMID:26725221

  4. Enhancement of immunogenicity and efficacy of a plasmid DNA rabies vaccine by nanoformulation with a fourth-generation amine-terminated poly(ether imine) dendrimer

    PubMed Central

    Ullas, Padinjaremattathil Thankappan; Madhusudana, Shampur Narayan; Desai, Anita; Sagar, Bhadravathi Kenchappa Chandrasekhar; Jayamurugan, Govindasamy; Rajesh, Yamajala Bhaskara Rama Durga; Jayaraman, Narayanaswami

    2014-01-01

    Purpose Delayed onset of, and low magnitude of, protective immune responses are major drawbacks limiting the practical utility of plasmid vaccination against rabies. In this study we evaluated whether nanoformulation with the novel poly(ether imine) (PETIM) dendrimer can enhance the immunogenicity and efficacy of a plasmid-based rabies vaccine. Materials and methods A plasmid vaccine construct (pIRES-Rgp) was prepared by cloning the full-length rabies virus glycoprotein gene into pIRES vector. Drawing upon the results of our previous study, a dendriplex (dendrimer-DNA complex) of pIRES-Rgp was made with PETIM dendrimer (10:1 w/w, PETIM:pIRES-Rgp). In vitro transfection was done on baby hamster kidney (BHK)-21 cells to evaluate expression of glycoprotein gene from pIRES-Rgp and PETIM-pIRES-Rgp. Subsequently, groups of Swiss albino mice were immunized intramuscularly with pIRES-Rgp or PETIM-pIRES-Rgp. A commercially available cell culture rabies vaccine was included for comparison. Rabies virus neutralizing antibody (RVNA) titers in the immune sera were evaluated on days 14, 28, and 90 by rapid fluorescent focus inhibition test. Finally, an intracerebral challenge study using a challenge virus standard strain of rabies virus was done to evaluate the protective efficacy of the formulations. Results Protective levels of RVNA titer (≥0.5 IU/mL) were observed by day 14 in animals immunized with pIRES-Rgp and its dendriplex. Notably, PETIM-pIRES-Rgp produced 4.5-fold higher RVNA titers compared to pIRES-Rgp at this time point. All mice immunized with the PETIM-pIRES-Rgp survived the intracerebral rabies virus challenge, compared with 60% in the group which received pIRES-Rgp. Conclusion Our results suggest that nanoformulation with PETIM dendrimer can produce an earlier onset of a high-titered protective antibody response to a plasmid-based rabies vaccine. PETIM dendriplexing appears to be an efficacious nonviral delivery strategy to enhance genetic vaccination. PMID

  5. Multifunctional Poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin Amphiphilic Copolymer as an Oral High-Performance Delivery Carrier of Tacrolimus.

    PubMed

    Zhang, Dong; Pan, Xiaolei; Wang, Shang; Zhai, Yinglei; Guan, Jibin; Fu, Qiang; Hao, Xiaoli; Qi, Wanpeng; Wang, Yingli; Lian, He; Liu, Xiaohong; Wang, Yongjun; Sun, Yinghua; He, Zhonggui; Sun, Jin

    2015-07-01

    In order to improve oral bioavailability of tacrolimus (FK506), a novel poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin amphiphilic copolymer (CD-PVM/MA) is developed, combining the bioadhesiveness of PVM/MA, P-glycoprotein (P-gp), and cytochrome P450-inhibitory effect of CD into one. The FK506-loaded nanoparticles (CD-PVM/MA-NPs) were obtained by solvent evaporation method. The physiochemical properties and intestinal absorption mechanism of FK506-loaded CD-PVM/MA-NPs were characterized, and the pharmacokinetic behavior was investigated in rats. FK506-loaded CD-PVM/MA-NPs exhibited nanometer-sized particles of 273.7 nm, with encapsulation efficiency as high as 73.3%. FK506-loaded CD-PVM/MA-NPs maintained structural stability in the simulated gastric fluid, and about 80% FK506 was released within 24 h in the simulated intestinal fluid. The permeability of FK506 was improved dramatically by CD-PVM/MA-NPs compared to its solution, probably due to the synergistic inhibition effect of P-gp and cytochrome P450 3A (CYP3A). The intestinal biodistribution of fluorescence-labeled CD-PVM/MA-NPs confirmed its good bioadhesion to the rat intestinal wall. Two endocytosis pathways, clathrin- and caveolae-mediated endocytosis, were involved in the cellular uptake of CD-PVM/MA-NPs. The important role of lymphatic transport in nanoparticles' access to the systemic circulation, about half of the contribution to oral bioavailability, was observed in mesenteric lymph duct ligated rats. The AUC0-24 of FK506 loaded in nanoparticles was enhanced up to 20-fold compared to FK506 solutions after oral administration. The present study suggested that the novel multifunctional CD-PVM/MA is a promising efficient oral delivery carrier for FK506, due to its ability in solubilization, inhibitory effects on both P-gp and CYP 3A, high bioadhesion, and sustained release capability. PMID:26024817

  6. 40 CFR 721.3488 - Poly(oxy-1,2-ethanediyl), alpha substituted-omega-hydroxy-, C16-20 alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), alpha... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3488 Poly(oxy-1,2-ethanediyl), alpha... reporting. (1) The chemical substance identified generically as poly(oxy-1,2-ethanediyl), alpha...

  7. 40 CFR 721.3488 - Poly(oxy-1,2-ethanediyl), alpha substituted-omega-hydroxy-, C16-20 alkyl ethers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Poly(oxy-1,2-ethanediyl), alpha... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3488 Poly(oxy-1,2-ethanediyl), alpha... reporting. (1) The chemical substance identified generically as poly(oxy-1,2-ethanediyl), alpha...

  8. 40 CFR 721.3488 - Poly(oxy-1,2-ethanediyl), alpha substituted-omega-hydroxy-, C16-20 alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxy-1,2-ethanediyl), alpha... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3488 Poly(oxy-1,2-ethanediyl), alpha... reporting. (1) The chemical substance identified generically as poly(oxy-1,2-ethanediyl), alpha...

  9. 40 CFR 721.3488 - Poly(oxy-1,2-ethanediyl), alpha substituted-omega-hydroxy-, C16-20 alkyl ethers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Poly(oxy-1,2-ethanediyl), alpha... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3488 Poly(oxy-1,2-ethanediyl), alpha... reporting. (1) The chemical substance identified generically as poly(oxy-1,2-ethanediyl), alpha...

  10. 40 CFR 721.3488 - Poly(oxy-1,2-ethanediyl), alpha substituted-omega-hydroxy-, C16-20 alkyl ethers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Poly(oxy-1,2-ethanediyl), alpha... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3488 Poly(oxy-1,2-ethanediyl), alpha... reporting. (1) The chemical substance identified generically as poly(oxy-1,2-ethanediyl), alpha...