Science.gov

Sample records for polyaniline composite films

  1. Electrochemical preparation of Photosystem I-polyaniline composite films for biohybrid solar energy conversion.

    PubMed

    Gizzie, Evan A; LeBlanc, Gabriel; Jennings, G Kane; Cliffel, David E

    2015-05-13

    In this work, we report for the first time the entrapment of the biomolecular supercomplex Photosystem I (PSI) within a conductive polymer network of polyaniline via electrochemical copolymerization. Composite polymer-protein films were prepared on gold electrodes through potentiostatic electropolymerization from a single aqueous solution containing both aniline and PSI. This study demonstrates the controllable integration of large membrane proteins into rapidly prepared composite films, the entrapment of such proteins was observed through photoelectrochemical analysis. PSI's unique function as a highly efficient biomolecular photodiode generated a significant enhancement in photocurrent generation for the PSI-loaded polyaniline films, compared to pristine polyaniline films, and dropcast PSI films. A comprehensive study was then performed to separately evaluate film thickness and PSI concentration in the initial polymerization solution and their effects on the net photocurrent of this novel material. The best performing composite films were prepared with 0.1 μM PSI in the polymerization solution and deposited to a film thickness of 185 nm, resulting in an average photocurrent density of 5.7 μA cm(-2) with an efficiency of 0.005%. This photocurrent output represents an enhancement greater than 2-fold over bare polyaniline films and 200-fold over a traditional PSI multilayer film of comparable thickness. PMID:25897977

  2. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors.

    PubMed

    Meng, Yuena; Wang, Kai; Zhang, Yajie; Wei, Zhixiang

    2013-12-23

    A highly flexible graphene free-standing film with hierarchical structure is prepared by a facile template method. With a porous structure, the film can be easily bent and cut, and forms a composite with another material as a scaffold. The 3D graphene film exhibits excellent rate capability and its capacitance is further improved by forming a composite with polyaniline nanowire arrays. The flexible hierarchical composite proves to be an excellent electrode material for flexible supercapacitors. PMID:24123419

  3. Polyaniline-carbon nanotube composite film for cholesterol biosensor.

    PubMed

    Dhand, Chetna; Arya, Sunil K; Datta, Monika; Malhotra, B D

    2008-12-15

    Nanocomposite film composed of polyaniline (PANI) and multiwalled carbon nanotubes (MWCNT), prepared electrophoretically onto indium tin oxide (ITO)-coated glass plate, was used for covalent immobilization of cholesterol oxidase (ChOx) via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. Results of linear sweep voltammetric measurements reveal that ChOx/PANI-MWCNT/ITO bioelectrode can detect cholesterol in the range of 1.29 to 12.93 mM with high sensitivity of 6800 nA mM(-1) and a fast response time of 10 s. Photometric studies for ChOx/PANI-MWCNT/ITO bioelectrode indicate that it is thermally stable up to 45 degrees C and has a shelf life of approximately 12 weeks when stored at 4 degrees C. The results of these studies have implications for the application of this interesting matrix (PANI-MWCNT) toward the development of other biosensors. PMID:18817744

  4. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    SciTech Connect

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  5. Nickel coated flyash (Ni-FAC) cenosphere doped polyaniline composite film for electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Bora, Pritom J.; Vinoy, K. J.; Ramamurthy, Praveen C.; Kishore; Madras, Giridhar

    2015-03-01

    A solid waste material fly ash cenosphere (FAC) was nickel coated and polyaniline in situ polymerized at -30 ± 2 °C in nitrogen atmosphere. A thin film of this composite material was prepared by solution processing and surface morphology/topography was studied. High electromagnetic shielding effectiveness (SE) was obtained for this film; 59 ± 4 μm and 133 ± 4 μm films show an average of 38 and 60 dB SE, respectively, in the frequency range 8.2-12.4 GHz (X-band). Unlike PANI film, the SE of these composite films is high at high frequency. The presence of magneto dielectric microsphere (Ni-FAC) increases the heterogeneity of the composite film in an efficient way for EMI shielding by changing film topography and increasing ac conductivity and permeability.

  6. Polyaniline/poly acid acrylic thin film composites: a new gamma radiation detector

    SciTech Connect

    Lima Pacheco, Ana P.; Araujo, Elmo S.; Azevedo, Walter M. de

    2003-03-15

    In this paper, we present a new and straightforward route to prepare polyaniline/poly acid acrylic (PAA) thin film composites in large areas and on almost any surface. This method was developed to improve the mechanical and adherence properties of polyaniline devices used as ionization radiation sensors. The route consists of the combination of the metal oxidant with polymer acid to form a highly homogeneous and viscous paste, which can be easily spread over any surface. In the second step, an aniline acid solution is brought in contact with the dried paste where polymerization occurs, yielding a high homogeneous and conducting polymer composite. The UV-visible absorption and infrared analysis confirm that a polyaniline/PAA complex is obtained. The four-point conductivity measurements show that the composite conductivity {rho} is the order of 5 {omega}{sup -1} cm{sup -1}. Preliminary gamma radiation interaction with the composite shows that the doped composite exhibits a linear response that can be used in the development of real-time radiation sensors for the dose range from 0 to 5000 Gy.

  7. Novel poly (vinyl butyral) (PVB)/polyaniline-cenosphere composite film for EMI shielding

    NASA Astrophysics Data System (ADS)

    Bora, Pritom J.; Shahidsha, N.; Madras, Giridhar; Kishore, Ramamurthy, Praveen C.

    2016-05-01

    in-situ synthesis of polyaniline (PANI)/fly ash cenosphere (hollow microspheres) composite was carried out under nitrogen atmosphere at -30±2 °C. Investigated electromagnetic shielding effectiveness (EMI SE) of free standing PVB/PANI-cenosphere (PVBPC) composite films prepared by solution casting indicates an ap preciable shielding. The most effective EMI SE of 30.3 dB was obtained for 197±3 µm thicker flexible film over the frequency range 8.2-12.4 GHz. Mechanistically, absorption was found to be dominant. The obtained shielding effectiveness due to absorbance (SEA) of PVBPC film is more than two times higher than PVB/PANI composite film. In the presence of hollow PANI-cenospheres in PVB matrix the time average power of incident electromagnetic wave decreases resulting in an increase of absorbance.

  8. Elaboration of m-cresol polyamide12/ polyaniline composite films for antistatic applications

    SciTech Connect

    Mezdour, D.; Tabellout, M.; Bardeau, J.-F; Sahli, S.

    2013-12-16

    The present work deals with the preparation of transparent antistatic films from an extreme dilution of an intrinsically conducting polymer (ICP) with not coloured polymers. Our approach is based on the chemical polymerization of a very thin layer of Polyaniline (PANI) around particles of an insulating polymer (PA12). Films were obtained by dissolving the synthesized core-shell particles in m-Cresol. The electric property and structure relationships were investigated by using dielectric relaxation spectroscopy, X-ray diffraction and micro-Raman spectroscopy. Composite films exhibited a well established dc conductivity over all the frequency range for 10 wt. % of PANI concentration related to the conductive properties of the PANI clusters. X-ray diffraction data show broader and lower intensity of PA12 peaks when increasing PANI content, probably due to the additional doping effect of m- cresol. The doping of PA12/PANI films with Dodecyl benzene sulfonic acid (DBSA) was unequivocally verified by Raman spectroscopy.

  9. Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Zang, Xiaobei; Li, Xiao; Zhu, Miao; Li, Xinming; Zhen, Zhen; He, Yijia; Wang, Kunlin; Wei, Jinquan; Kang, Feiyu; Zhu, Hongwei

    2015-04-01

    We report the design and preparation of graphene and polyaniline (PANI) woven-fabric composite films by in situ electropolymerization. The introduction of PANI greatly improves the electrochemical properties of solid-state supercapacitors which possess capacitances as high as 23 mF cm-2, and exhibit excellent cycling stability with ~100% capacitance retention after 2000 cycles. The devices have displayed superior flexibility with improved areal specific capacitances to 118% during deformation.We report the design and preparation of graphene and polyaniline (PANI) woven-fabric composite films by in situ electropolymerization. The introduction of PANI greatly improves the electrochemical properties of solid-state supercapacitors which possess capacitances as high as 23 mF cm-2, and exhibit excellent cycling stability with ~100% capacitance retention after 2000 cycles. The devices have displayed superior flexibility with improved areal specific capacitances to 118% during deformation. Electronic supplementary information (ESI) available: SEM image, Raman spectrum and electrochemical characterizations. See DOI: 10.1039/c5nr00584a

  10. Preparation, characterization and electrochromic properties of composite thin films incorporation of polyaniline

    NASA Astrophysics Data System (ADS)

    Farasat, Mahshid; Golzan, M. Maqsood; Farhadi, Khalil; Shojaei, S. H. Reza; Gheisvandi, Sorayya

    2016-05-01

    Two different electrochromic composite films consisting of aniline/sodium molybdate (S1) and aniline/ferric nitrate (S2) were obtained by electrochemical polymerization method on indium tin oxide (ITO) coated glass substrates in oxalic acid (H2C2O4ṡ2H2O) aqueous solution. The electrochromic properties of the resulting thin films were investigated by spectroelectrochemical measurement and cyclic voltammetry (CV). Under a square electrical potential, they show capacitive current characteristic and represent electrochromic performance, with maximum optical attenuations (ΔT%) of 30.8% at 355nm and 28.3% at 400nm for aniline/ferric nitrate and aniline/sodium molybdate thin films, respectively. Optical behavior of thin films was examined by UV-Vis spectrophotometry technique. The doped films indicated multiple color changes (yellow; green; and bluish green). The spectra also showed that produced layers have high absorption of UV radiation with respect to pure polyaniline (PANI) films. The optical band gap energy of PANI film decreased by dopant injection. Due to their decent transparency and electrochromic behavior, they are promising materials for electrochromic devices.

  11. Nanoscale electrical and mechanical characteristics of conductive polyaniline network in polymer composite films.

    PubMed

    Jafarzadeh, Shadi; Claesson, Per M; Sundell, Per-Erik; Pan, Jinshan; Thormann, Esben

    2014-11-12

    The presence and characteristics of a connected network of polyaniline (PANI) within a composite coating based on polyester acrylate (PEA) has been investigated. The bulk electrical conductivity of the composite was measured by impedance spectroscopy. It was found that the composite films containing PANI have an electrical conductivity level in the range of semiconductors (order of 10(-3) S cm(-1)), which suggests the presence of a connected network of the conductive phase. The nanoscopic distribution of such a network within the cured film was characterized by PeakForce tunneling atomic force microscopy (AFM). This method simultaneously provides local information about surface topography and nanomechanical properties, together with electrical conductivity arising from conductive paths connecting the metallic substrate to the surface of the coating. The data demonstrates that a PEA-rich layer exists at the composite-air interface, which hinders the conductive phase to be fully detected at the surface layer. However, by exposing the internal structure of the composites using a microtome, a much higher population of a conductive network of PANI, with higher elastic modulus than the PEA matrix, was observed and characterized. Local current-voltage (I-V) spectroscopy was utilized to investigate the conduction mechanism within the nanocomposite films, and revealed non-Ohmic characteristics of the conductive network. PMID:25295701

  12. Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Sun, Li-Jie; Luan, Feng; Liang, Ying; Li, Yat; Liu, Xiao-Xia

    We report the synthesis and pseudocapacitive studies of a composite film (PANI-ND-MnO 2) of polyaniline (PANI) and manganese oxide (MnO 2) nanoparticles. To enhance the interaction of MnO 2 and PANI, the surfaces of MnO 2 nanoparticles were modified by a silane coupling reagent, triethoxysilylmethyl N-substituted aniline (ND42). The composite film was obtained via controlled electro-co-polymerization of aniline and N-substituted aniline grafted on surfaces of MnO 2 nanoparticles (ND-MnO 2) on a carbon cloth in a electrolyte of 0.5 M H 2SO 4 and 0.6 M (NaPO 3) 6. In comparison to similarly prepared PANI film, the incorporation of MnO 2 nanoparticles substantially increases the effective surface area of the film by reducing the size of rod-like PANI aggregates and avoiding the entanglement of these PANI nanorods. Significantly, we observed significant enhancement of specific capacitance in PANI-ND-MnO 2 film compared to PANI-MnO 2 film prepared in a similar condition, indicating that the presence of the coupling reagent can improve the electrochemical performance of PANI composite film. A symmetric model capacitor has been fabricated by using two PANI-ND-MnO 2 nanocomposite films as electrodes. The PANI-ND-MnO 2 capacitor showed an average specific capacitance of ∼80 F g -1 and a stable coulombic efficiency of ∼98% over 1000 cycles. The results demonstrated that PANI-ND-MnO 2 nanocomposites are promising materials for supercapacitor electrode and the importance of designing and manipulating the interaction between PANI and MnO 2 for fundamentally improving capacitive properties.

  13. Optical and electronic properties of layer-by-layer and composite polyaniline-cadmium selenide quantum dot films

    NASA Astrophysics Data System (ADS)

    Ayub, Ambreen; Shakoor, Abdul; Elahi, Asmat; Rizvi, Tasneem Zahra

    2015-08-01

    Two organic-inorganic hybrid films of intrinsically conducting polymer; polyaniline and cadmium selenide quantum dots were prepared. One by layer-by-layer deposition of polyaniline and cadmium selenide films on PEDOT-PSS/ITO coated glass substrate (ITO/PEDOT-PSS/PANI/CdSe) and other by depositing polyaniline-cadmium selenide quantum dots composite film on the same substrate (ITO/PEDOT-PSS/PANI-CdSe) using spin coating technique. Pure polyaniline, cadmium selenide quantum dots and their composites thus obtained were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and UV/VIS/NIR absorption spectroscopy. The surface morphologies were studied by Scanning Electron Microscopy (SEM). The diode performance parameters were compared and contrasted for the two devices obtained by different deposition routes. J-V characteristics of these devices showed a rectifying contact with Al metal, however with variation in performance parameters like barrier height, ideality factor and reverse saturation current the ITO/PEDOT-PSS/PANI-CdSe/Al device exhibited better diode performance as compared to ITO/PEDOT-PSS/PANI/CdSe/Al device.

  14. Growth, Morphology, and Electrical Characterization of Polyaniline-ZnO Nano-composite Langmuir-Blodgett Thin Films

    NASA Astrophysics Data System (ADS)

    Bhullar, Gurpreet Kaur; Kaur, Ramneek; Raina, K. K.

    2015-10-01

    Polyaniline (PANi)-zinc oxide (ZnO) nano-composites were prepared by chemical polymerization of aniline doped with ZnO nanoparticles. Surface pressure-area ( π-A) isotherms for the PANi-ZnO nano-composite revealed phase transformations of the monolayer during compression. Langmuir-Blodgett (LB) films of PANi and PANi-ZnO nano-composite were characterized by use of UV-visible (UV-Vis) and Fourier-transform infrared spectroscopy, atomic force microscopy, and conductive atomic force microscopy (C-AFM). Local current-voltage ( I- V) characteristics revealed the current range for PANi-ZnO nano-composite LB films was larger than that for PANi LB films. Conductive data images were recorded to investigate charge-transport current inhomogeneities in the LB films.

  15. Flexible Electrode Design: Fabrication of Freestanding Polyaniline-Based Composite Films for High-Performance Supercapacitors.

    PubMed

    Khosrozadeh, Ali; Darabi, Mohammad Ali; Xing, Malcolm; Wang, Quan

    2016-05-11

    Polyaniline (PANI) is a promising pseudocapacitance electrode material. However, its structural instability leads to low cyclic stability and limited rate capability which hinders its practical applications. In view of the limitations, flexible PANI-based composite films are developed to improve the electrochemical performance of electrode materials. We report in the research a facile and cost-effective approach for fabrication of a high-performance supercapacitor (SC) with excellent cyclic stability and tunable energy and power densities. SC electrode containing a very high mass loading of active materials is a flexible film of PANI, tissue wiper-based cellulose, graphite-based exfoliated graphite (ExG), and silver nanoparticles with potential applications in wearable electronics. The optimum preparation weight ratios of silver nitrate/aniline and ExG/aniline used in the research are estimated to be 0.18 and 0.65 (or higher), respectively. Our results show that an ultrahigh capacitance of 3.84 F/cm(2) (240.10 F/g) at a discharge rate of 5 mA can be achieved. In addition, our study shows that the power density can be increased from 1531.3 to 3000 W/kg by selecting the weight ratio of ExG/aniline to be more than 0.65, with a sacrifice in the energy density. The obtained promising electrochemical properties are found to be mainly attributed to an effective combination of PANI, ExG, cushiony cellulose scaffold, and silver as well as the porosity of the composite. PMID:27116563

  16. Lightweight polyaniline-cobalt coated fly ash cenosphere composite film for electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Bora, Pritom J.; Vinoy, K. J.; Ramamurthy, Praveen C.; Kishore; Madras, Giridhar

    2016-07-01

    Thermal power plant's solid environmental waste fly ash cenosphere (FAC) is cobalt coated chemically and functionalized by in situ synthesis of polyaniline (PANI) under nitrogen atmosphere at -30 ± 2 °C and characterized by various techniques. The electromagnetic interference shielding effectiveness (EMI SE) of free standing PANI/Co-FAC (PCC) films prepared by solution casting indicates an appreciable shielding. The most effective average EMI SE of ~ 30 dB was obtained for 89 ± 3 µm thicker flexible film over the frequency range of 12.4-18 GHz (Ku-band). Mechanistically, EMI shielding due to absorption was found to be dominant. The obtained shielding effectiveness due to absorbance (SE A) of PCC film is nearly two times higher than PC film. The microwave conductivity (s) of PCC film (157-184 Sm-1) is much higher than PC film (118-142 Sm-1). Moreover, the high EM attenuation constant (α) value of PCC film indicates excellent suitability of EMI shielding due to absorption.

  17. Nanostructured metal-polyaniline composites

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  18. Magnetic and electromagnetic properties of Pr doped strontium ferrite/polyaniline composite film

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Li, Yuqing; Wang, Yan

    2014-11-01

    This paper reported three acid (including hydrochloric acid HCl, p-toluenesulfonic acid PTS and D-camphor-10-acid CSA) doped SrPr0.2Fe11.8O19/PANI composite film and the HCl-PANI film prepared by a sol-gel method and in-situ oxidative polymerization. The characteristics of the film phase structure, surface morphology, conductivity and magnetic and electromagnetic properties were studied by using XRD, XPS, FESEM, four-probe tester, VSM and Vector Network Analyzer. The resistivity of organic acid doped composite films is higher than that of the HCl doped one. The saturation and remanent magnetization of PTS and HCl doped composite films are greater than the CSA-doped one; however, the coercivity of the three acid doped composite films is basically 5546 Oe. The saturation magnetization, remanent magnetization and coercivity of SrPr0.2Fe11.8O19 film are greater than those of the SrPr0.2Fe11.8O19-PANI composite film. In the frequency range of 8-12 GHz, the dielectric loss of HCl-PANI film is the maximum, and the dielectric loss of SrPr0.2Fe11.8O19 film is the minimum; the magnetic loss of the four films is in descending order as SrPr0.2Fe11.8O19 film, PrSrM/(HCl-PANI) composite film, PrSrM/(CSA-PANI) and HCl-PANI film.

  19. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance.

    PubMed

    Xia, X H; Tu, J P; Zhang, J; Wang, X L; Zhang, W K; Huang, H

    2008-11-19

    A highly porous NiO/polyaniline (PANI) composite film was prepared on ITO glass by combining the chemical bath deposition and electro-polymerization methods, successively. The porous NiO film acts as a template for the preferential growth of PANI along NiO flakes, and the NiO/PANI composite film has an intercrossing net-like morphology. The electrochromic performance of the NiO/PANI composite film was investigated in 1 M LiClO(4)+1 mM HClO(4)/propylene carbonate (PC) by means of transmittance, cyclic voltammetry (CV) and chronoamperometry (CA) measurements. The NiO/PANI thin film exhibits a noticeable electrochromism with reversible color changes from transparent yellow to purple and presents quite good transmittance modulation with a variation of transmittance up to 56% at 550 nm. The porous NiO/polyaniline (PANI) composite film also shows good reaction kinetics with fast switching speed, and the response time for oxidation and reduction is 90 and 110 ms, respectively. PMID:21836256

  20. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance

    NASA Astrophysics Data System (ADS)

    Xia, X. H.; Tu, J. P.; Zhang, J.; Wang, X. L.; Zhang, W. K.; Huang, H.

    2008-11-01

    A highly porous NiO/polyaniline (PANI) composite film was prepared on ITO glass by combining the chemical bath deposition and electro-polymerization methods, successively. The porous NiO film acts as a template for the preferential growth of PANI along NiO flakes, and the NiO/PANI composite film has an intercrossing net-like morphology. The electrochromic performance of the NiO/PANI composite film was investigated in 1 M LiClO4+1 mM HClO4/propylene carbonate (PC) by means of transmittance, cyclic voltammetry (CV) and chronoamperometry (CA) measurements. The NiO/PANI thin film exhibits a noticeable electrochromism with reversible color changes from transparent yellow to purple and presents quite good transmittance modulation with a variation of transmittance up to 56% at 550 nm. The porous NiO/polyaniline (PANI) composite film also shows good reaction kinetics with fast switching speed, and the response time for oxidation and reduction is 90 and 110 ms, respectively.

  1. Polyaniline nanorods/PVC composites with antistatic properties

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Feng, Weitao; Ding, Guoxin; Cheng, Guojun

    2015-08-01

    Novel antistatic polyaniline/poly(vinyl chloride) (PVC) composite materials are prepared. This study focuses on modification of PVC matrix with different content of polyaniline nanorods. Polyaniline nanorods can reduce the volumn resistivity of PVC/polyaniline composites 1016 Ω cm from to 1011 Ω cm five orders of magnitude at low content of 2 wt %. Moreover, the mechanical performance of the composite material is also good. Based on the results, we have confidence in the new antistatic composites.

  2. Blood coagulation and platelet adhesion on polyaniline films.

    PubMed

    Humpolíček, Petr; Kuceková, Zdenka; Kašpárková, Věra; Pelková, Jana; Modic, Martina; Junkar, Ita; Trchová, Miroslava; Bober, Patrycja; Stejskal, Jaroslav; Lehocký, Marián

    2015-09-01

    Polyaniline is a promising conducting polymer with still increasing application potential in biomedicine. Its surface modification can be an efficient way how to introduce desired functional groups and to control its properties while keeping the bulk characteristics of the material unchanged. The purpose of the study was to synthetize thin films of pristine conducting polyaniline hydrochloride, non-conducting polyaniline base and polyaniline modified with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) and investigate chosen parameters of their hemocompatibility. The modification was performed either by introduction of PAMPSA during the synthesis or by reprotonation of polyaniline base. The polyaniline hydrochloride and polyaniline base had no impact on blood coagulation and platelet adhesion. By contrast, the polyaniline reprotonated with PAMPSA completely hindered coagulation thanks to its interaction with coagulation factors Xa, Va and IIa. The significantly lower platelets adhesion was also found on this surface. Moreover, this film maintains its conductivity at pH of 6, which is an improvement in comparison with standard polyaniline hydrochloride losing most of its conductivity at pH of 4. Polyaniline film with PAMPSA introduced during synthesis had an impact on platelet adhesion but not on coagulation. The combined conductivity, anticoagulation activity, low platelet adhesion and improved conductivity at pH closer to physiological, open up new possibilities for application of polyaniline reprotonated by PAMPSA in blood-contacting devices, such as catheters or blood vessel grafts. PMID:26119372

  3. Engineered Molecular Chain Ordering in Single-Walled Carbon Nanotubes/Polyaniline Composite Films for High-Performance Organic Thermoelectric Materials.

    PubMed

    Wang, Liming; Yao, Qin; Xiao, Juanxiu; Zeng, Kaiyang; Qu, Sanyin; Shi, Wei; Wang, Qun; Chen, Lidong

    2016-06-21

    Single-walled carbon nanotubes (SWNTs)/polyaniline (PANI) composite films with enhanced thermoelectric properties were prepared by combining in situ polymerization and solution processing. Conductive atomic force microscopy and X-ray diffraction measurements confirmed that solution processing and strong π-π interactions between the PANI and SWNTs induced the PANI molecules to form a highly ordered structure. The improved degree of order of the PANI molecular arrangement increased the carrier mobility and thereby enhanced the electrical transport properties of PANI. The maximum in-plane electrical conductivity and power factor of the SWNTs/PANI composite films reached 1.44×10(3)  S cm(-1) and 217 μW m(-1)  K(-2) , respectively, at room temperature. Furthermore, a thermoelectric generator fabricated with the SWNTs/PANI composite films showed good electric generation ability and stability. A high power density of 10.4 μW cm(-2)  K(-1) was obtained, which is superior to most reported results obtained in organic thermoelectric modules. PMID:27123885

  4. Amperometric creatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film.

    PubMed

    Yadav, Sandeep; Kumar, Ashok; Pundir, C S

    2011-12-15

    A mixture of commercial creatinine amidohydrolase (CA), creatine amidinohydrolase (CI), and sarcosine oxidase (SO) was coimmobilized covalently via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry onto carboxylated multiwalled carbon nanotube (c-MWCNT)/polyaniline (PANI) nanocomposite film electrodeposited over the surface of a platinum (Pt) electrode. A creatinine biosensor was fabricated using enzyme/c-MWCNT/PANI/Pt as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and electrochemical impedance spectroscopy (EIS). The biosensor detected creatinine levels as low as 0.1 μM, estimated at a signal-to-noise ratio of 3, within 5s at pH 7.5 and 35°C. The optimized biosensor showed a linear response range of 10 to 750 μM creatinine with sensitivity of 40 μA/mM/cm(2). The fabricated biosensor was successfully employed for determination of creatinine in human serum. The biosensor showed only 15% loss in its initial response after 180 days when stored at 4°C. PMID:21906581

  5. Infrared surface plasmon polariton on polyaniline-graphite composite

    NASA Astrophysics Data System (ADS)

    Shahzad, Monas; Medhi, Gautam; Maukonen, Doug; Yesiltas, Mehmet; Peale, R. E.; Buchwald, Walter R.; Cleary, Justin; Liao, Yi; Alber, Candace; Johns, Valentine K.; Hegishte, Rahul; Boreman, Glen D.

    2012-06-01

    Conducting polymers are potentially useful materials in sensor applications. Polyaniline is one of the most promising of these materials due to high conductivity and plasma frequencies as high as the mid-infrared. The application of this material is still limited because of low conductivity. In this paper, we chemically prepared a composite of co-doped polyaniline with hydrochloric acid and MSA (methane sulfonic acid) in aqueous solution with both colloidal and nano-graphite. Solutions of the composite material were prepared in m-cresol and NMP (N-mthyle-2-pyrrolidone), which are common organic solvents. This approach resulted in material with conductivity higher than either intrinsic polyaniline or graphite alone. The solution of the composite was spin coated on suitable substrates. The thicknesses of the films were measured using atomic force microscope (AFM). Fourier transform infrared spectra (FTIR) and micro-Raman spectra were collected to confirm the composition and determine the infrared thickness. Surface plasmon resonances for grating patterns of this composite material were calculated using experimental determined infrared (IR) ellipsometry data. The goal is to identify a material which has potential application for surface plasmons resonance sensing with high sensitivity and selectivity in IR range.

  6. Thermochromic effect in synthetic opal/polyaniline composite structures

    NASA Astrophysics Data System (ADS)

    Rahman, F.; Khokhar, A. Z.

    2009-02-01

    The design and construction of a novel storage/indicator bilayer system is described where ammonia gas stored in a porous material can be used to dope a colour-changing polyaniline film. Both reversible and irreversible colour change effects are possible. A thin synthetic opal film is coupled to a polyaniline film in a parallel plate glass cell with ammonia gas adsorbed on the silica balls that form the opal structure. When heated and cooled, ammonia reversibly exchanges between the opal and polyaniline films causing a very distinct change in the colour of the polyaniline film. This thermochromic effect is also electrically detectable because of the large concomitant change in the resistivity of the polyaniline film that accompanies its colour change.

  7. Organic Solar Cells Based on Electrodeposited Polyaniline Films

    NASA Astrophysics Data System (ADS)

    Inoue, Kei; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2012-04-01

    Polyaniline thin films as hole transporting layers were fabricated on transparent indium-tin-oxide electrodes by electrodeposition of aniline in an aqueous H2SO4 electrolyte solution. Emerald-green polyaniline films were obtained, which showed stable redox waves. A mixed solution of polythiophene and fullerene derivative was spin-coated onto the electrodeposited polyaniline film. After the modification of titanium oxide film on the surface of the polythiophene/fullerene layer, an aluminum electrode was fabricated by vacuum deposition. The obtained solar cells generated stable photocurrent and photovoltage under light illumination.

  8. Fabrication of superhydrophobic polyaniline films with rapidly switchable wettability

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoyan; Zhang, Zhaozhu; Men, Xuehu; Yang, Jin; Xu, Xianghui; Zhu, Xiaotao; Xue, Qunji

    2011-10-01

    A superhydrophobic polyaniline (PANI) film has been fabricated by using a facile one-step spraying method. The PANI was synthesized via in situ doping polymerization in the presence of perfluorooctanoic acid (PFOA) as the dopant. The water contact angle of this superhydrophobic surface reaches to 156°. Both the surface chemical compositions and morphological structures were analyzed. A granular morphology of PANI with a moderate amount of nanofibers was obtained. Moreover, a rapid surface wettability transition between superhydrophobicity and superhydrophilicity can be observed when it is doped with PFOA and de-doped with base. The mechanism for this tunable wettability has been discussed in detail.

  9. Investigation of the properties of polyacrylamide-polyaniline composite and its application as a battery electrode

    SciTech Connect

    Bhat, N.V.; Joshi, N.V. . Dept. of Chemical Technology)

    1993-11-20

    The composite films of polyacrylamide and polyaniline were prepared by polymerizing aniline using ammonium persulfate as an initiator in an aqueous solution containing poly-acrylamide. A film was then cast from this solution. The structural, dynamic mechanical, electrical, and thermal properties of these films have been studied. The infrared spectrum shows the presence of polyacrylamide as well as polyaniline in the composite film. The thermal analysis shows that the composite degrades slower than does the polyacrylamide alone. The dynamic mechanical analysis indicates that there is an increase in the glass transition temperature after the composite formation. The electrical conductivity has been found to increase by more than eight orders of magnitude. These composite films have also been suitably used as electrodes in secondary batteries.

  10. Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Patil, U. V.; Ramgir, Niranjan S.; Karmakar, N.; Bhogale, A.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.; Kothari, D. C.

    2015-06-01

    Thin films of copper nanoparticles intercalated-polyaniline nanocomposites (NC) have been deposited at room temperatures by in situ oxidative polymerization of aniline in the presence of different concentrations of Cu nanoparticles. The response characteristics of the NC thin films toward different gases namely NH3, CO, CO2, NO and CH4 were examined at room temperature. Both pure polyaniline (PANI) and NC films exhibited a selective response toward NH3. Incorporation of Cu nanoparticles resulted in an improvement of the sensors response and response kinetics. The response and the recovery times of composite film toward 50 ppm of NH3 were 7 and 160 s, respectively. Additionally, the NC sensor film could reversibly detect as low as 1 ppm of NH3 concentrations. The enhanced response of NC films toward NH3 is attributed to the deprotonation and reprotonation processes as also supported by Raman investigations.

  11. Electrical and thermal properties of graphite/polyaniline composites

    SciTech Connect

    Bourdo, Shawn E.; Warford, Brock A.; Viswanathan, Tito

    2012-12-15

    A composite of a carbon allotrope (graphite) and an inherently conducting polymer, polyaniline (PANI), has been prepared that exhibits an electrical conductivity greater than either of the two components. An almost 2-fold increase in the bulk conductivity occurs when only a small mass fraction of polyaniline exists in the composite (91% graphite/ 9% polyaniline, by mass). This increase in dc electrical conductivity is curious since in most cases a composite material will exhibit a conductivity somewhere between the two individual components, unless a modification to the electronic nature of the material occurs. In order to elucidate the fundamental electrical properties of the composite we have performed variable temperature conductivity measurements to better understand the nature of conduction in these materials. The results from these studies suggest a change in the mechanism of conduction as the amount of polyaniline is increased in the composite. Along with superior electrical properties, the composites exhibit an increase in thermal stability as compared to the graphite. - Graphical abstract: (Left) Room temperature electrical conductivity of G-PANI composites at different mass ratios. (Right) Electrical conductivity of G-PANI composites at temperatures from 5 K to 300 K. Highlights: Black-Right-Pointing-Pointer Composites of graphite and polyaniline have been synthesized with unique electrical and thermal properties. Black-Right-Pointing-Pointer Certain G-PANI composites are more conductive and more thermally stable than graphite alone. Black-Right-Pointing-Pointer G-PANI composites exhibit a larger conductivity ratio with respect to temperature than graphite alone.

  12. Magnetoactive feature of in-situ polymerised polyaniline film developed on the surface of manganese-zinc ferrite

    NASA Astrophysics Data System (ADS)

    Babayan, V.; Kazantseva, N. E.; Sapurina, I.; Moučka, R.; Vilčáková, J.; Stejskal, J.

    2012-07-01

    A polyaniline film exhibits magnetoactive properties when deposited on the surface of multidomain particles of manganese-zinc ferrite during in-situ polymerisation of aniline. This is reflected in the increased coercivity and thermomagnetic stability of an in-situ prepared composite compared with bare ferrite and its mixed composite with polyaniline. In addition, the deposition of a polyaniline film results in a shift of the complex-permeability dispersion region towards ultrahigh frequency band. These changes in the magnetic properties of polyaniline-coated ferrite are attributed to the increased value of the inner demagnetisation factor, which results from stress-induced magnetic anisotropy due to the pinning of domain walls appearing on the surface of ferrite. This study is focused on the mechanism of pinning of domain walls and its influence on the magnetic properties of in-situ prepared composites in terms of the molecular mechanism of oxidative polymerisation of aniline. Ferrite stimulates the propagation of polyaniline chains, which start to grow on the domain walls on the ferrite surface. It leads to the pinning of domain walls and restricts their mobility in a magnetic field. The further increase in the coercivity and the resonance frequency of polyaniline-coated ferrite due to film shrinkage after deprotonation of polyaniline makes it obvious that polyaniline coating induces elastic stresses in a ferrite particle that stimulate the growth of the effective magnetic anisotropy. Stress-induced magnetic anisotropy contributes to the reorientation of the magnetisation vectors in domains with respect to the new directions of easy magnetisation, given by magnetoelastic stresses, which leads to complex changes in the magnetic properties of in-situ prepared composites.

  13. Nanostructured metal-polyaniline composites and applications thereof

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2012-10-02

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  14. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite

    PubMed Central

    Bairi, Venu Gopal; Bourdo, Shawn E.; Sacre, Nicolas; Nair, Dev; Berry, Brian C.; Biris, Alexandru S.; Viswanathan, Tito

    2015-01-01

    A highly active tannin doped polyaniline-TiO2 composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO2 in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO2. Scanning electron microscopy (SEM) along with energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO2 and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm) of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO2 composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported. PMID:26501291

  15. Ammonia gas sensing behavior of tanninsulfonic acid doped polyaniline-TiO₂ composite.

    PubMed

    Bairi, Venu Gopal; Bourdo, Shawn E; Sacre, Nicolas; Nair, Dev; Berry, Brian C; Biris, Alexandru S; Viswanathan, Tito

    2015-01-01

    A highly active tannin doped polyaniline-TiO₂ composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO₂ in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO₂. Scanning electron microscopy (SEM) along with energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO₂ and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm) of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO₂ composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported. PMID:26501291

  16. Electrochemical and resonance Raman spectroscopic characterization of polyaniline and polyaniline-metalloporphyrin electrode films

    SciTech Connect

    Macor, K.A.; Su, Y.O.; Miller, L.A.; Spiro, T.G.

    1987-08-12

    Characteristics of electropolymerized aniline and metallotetrakis(2-aminophenyl)porphine (metallo-2-TAPP) films are described. Aniline polymerized from methylene chloride solution by oxidative cycling at a platinum electrode shows characteristic two-wave or one-wave cycle voltammograms when scanned in pH 1 aqueous solution, depending on the positive potential sweep limit. Similar CV's are produced when the solution contains metallo-TAPP's, except that additional waves associated with metalloporphyrin redox processes are superimposed. The absorption spectra of the films formed on transparent SnO/sub 2/ electrodes showed characteristic metalloporphyrin Soret absorption bands, with red shifts relative to the solution spectra, due to axial coordination and/or excitonic effects. Raman spectra are reported for films polymerized from aniline, aniline-/sup 15/N, aniline-N,N-d/sub 2/, and aniline-d/sub 5/. The replacement of strong aniline bands at 1000 and 1029 cm/sup -1/ with bands in the films at 1190 and 1200 cm/sup -1/ is diagnostic for para-substituted aniline units in the polymer. The films show a strong /sup 15/N-sensitive band at 1525 cm/sup -1/, which is absent in aniline but present in p-phenylenediamine. Thus the electrochemical and spectroscopic characteristics of the TAPP films are fully consistent with unmodified porphyrin units contained within a polyaniline polymer. Porphyrin radical cation formation is insufficient to induce polymerization if the potential is lower than that required for aniline oxidation. Films containing Mn(2-TAPP) show a Mn/sup 3+/2+/ wave at approx.-0.2 V, negative of the polyaniline redox waves, when the electrode is in contact with nonaqueous or aqueous electrolyte. The metalloporphyrin redox process does not require electronic conduction through the polyaniline framework. 21 references. 8 figures.

  17. Synthesis and characterization of polyaniline-hexaferrite composites

    NASA Astrophysics Data System (ADS)

    Khursheed, Tooba; Islam, M. U.; Asif Iqbal, M.; Ali, Irshad; Shakoor, Abdul; Awan, M. S.; Iftikhar, Aisha; Azhar Khan, Muhammad; Naeem Ashiq, Muhammad

    2015-11-01

    Polyaniline was synthesized by chemical polymerization using aniline as monomer, and Y-type hexaferrite with composition (Co2Mn2Sr1.66Nd0.4Fe10O22) was prepared by co-precipitation assisted by surfactant. Three composites of Polyaniline with different ferrite ratios were prepared by mechanical blending. The synthesized samples were characterized by X-Ray diffraction, Scanning electron microscopy and electrical measurements. The XRD analysis reveals that no second phase was observed in Y-type hexagonal ferrite. In PANI-Ferrite composites, significant changes in resistivity, real and imaginary part of complex permittivity were observed with the increase of ferrite in the polyaniline matrix. At low frequencies the magnitude of dielectric constant and complex permittivity is high with few relaxation peaks. AC conductivity of PANI-Ferrite composites increase with the increase of frequency following Jonscher law. The resistivity and activation energy were found to show similar behavior.

  18. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    NASA Astrophysics Data System (ADS)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  19. Comparison of chemically and electrochemically synthesized polyaniline films

    SciTech Connect

    Hatchett, D.W.; Josowicz, M.; Janata, J.

    1999-12-01

    The electrochemical growth of thick ({approximately}2 mm) emeraldine, polyaniline (PANI{sup E}) films from solutions containing 2 M HBF{sub 4} and 0.25 M aniline is demonstrated. Electrochemically and chemically prepared PANI{sup E} films, cast from formic acid solutions, are compared. The combination of electrochemical results with Fourier transform infrared spectroscopic data indicates that pure and homogeneous standard material can be reproducibly prepared electrochemically.

  20. Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films

    NASA Astrophysics Data System (ADS)

    Rami, Soukaina

    Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic medium by studying their electrochemical properties. These films were fabricated using two deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization of these films was done using techniques such as Fourier Transform Infrared Spectroscopy (FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films. However, for the dye incorporated films, since there was an addition in the synthesis of the material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1 layer PANI showed compact film morphology, comparing to other PANI films, which displayed a fiber-like structure. Finally, the electrochemical properties of these thin films were studied using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in

  1. Effect of displacement on resistance and capacitance of polyaniline film

    NASA Astrophysics Data System (ADS)

    Khasan Sanginovich, Karimov; Muhammad Tariq, Saeed; Fazal, Ahmad Khalid; Syed, Abdul Moiz

    2011-04-01

    This paper investigates the properties of displacement sensors based on polyaniline (PANI) films. About 1 wt% of PANI micropowder is mixed and stirred in a solution of 90 wt% water and 10 wt% alcohol at room temperature. The films of PANI are deposited from solution by drop-casting on Ag electrodes, which are preliminary deposited on glass substrates. The thicknesses of the PANI films are in the range of 20 μm-80 μm. A displacement sensor with polyaniline film as an active material is designed and fabricated. The investigations showed that, on average, the AC resistance of the sensor decreases by 2 times and the capacitance accordingly increases by 1.6 times as the displacement changes in the range of 0 mm-0.5 mm. The polyaniline is the only active material of the displacement sensor. The resistance and capacitance of the PANI changes under the pressure of spring and elastic rubber, and this pressure is created by the downward movement of the micrometer.

  2. Perspectives on State-of-the-Art Carbon Nanotube/Polyaniline and Graphene/Polyaniline Composites for Hybrid Supercapacitor Electrodes.

    PubMed

    Srikanth, Vadali V S S; Ramana, Gedela Venkata; Kumar, Puttapati Sampath

    2016-03-01

    Supercapacitors are attractive alternative energy storage sources. They offer high energy/power density with other characteristics like fast discharge/charge time, long operation stability, safety etc. In a supercapacitor, working electrode material is the principal constituent. At present there are numerous electrode materials (with properties) suitable for their use in hybrid type supercapacitors. Carbon/polyaniline (PANi) composites are one class of such electrode materials. Here, perspectives on state-of-the-art carbon/PANi composites namely carbon nanotube/polyaniline and graphene/polyaniline composites expedient as hybrid type supercapacitor electrode materials will be presented. PMID:27455650

  3. Synthesis and structural characterization of polyaniline/cobalt chloride composites

    NASA Astrophysics Data System (ADS)

    Asha, Goyal, Sneh Lata; Kishore, Nawal

    2016-05-01

    Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl2.6H2O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.

  4. Electrodeposited conductive polypyrrole/polyaniline composite film for the corrosion protection of copper bipolar plates in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Pan, T. J.; Zuo, X. W.; Wang, T.; Hu, J.; Chen, Z. D.; Ren, Y. J.

    2016-01-01

    A conductive composite coating consisting of an inner polypyrrole (PPY) layer and an outer polyaniline (PANI) layer is prepared on a copper substrate by an electrochemical synthesis. Potential application of these composite coatings in a proton exchange membrane fuel cell (PEMFC) is evaluated. The corrosion performance of the copper substrate without and with the polymer coatings in the acidic solutions containing H2SO4 (0.2 M), HCl (0.1 M) and HF (3 ppm) is investigated by electrochemical impedance spectroscopy, polarization and open-circuit potential measurements. The results indicate that both the bilayered PPY/PANI and the single PPY coating can increase the corrosion potential of copper substrate by more than 250 mV (SCE), and effectively decrease the corrosion current density by an order of magnitude in comparison with the uncoated copper substrate. Long-term test further confirms that the bilayered PPY/PANI coating with acceptable contact resistance provides better protection for the substrate than the single PPY coating. The bilayered structure with different ion-permselective nature may serve as an effective physical barrier to the inward penetration of corrosive species.

  5. Fabrication and capacitive characteristics of conjugated polymer composite p-polyaniline/n-WO3 heterojunction

    NASA Astrophysics Data System (ADS)

    Amaechi, C. I.; Asogwa, P. U.; Ekwealor, A. B. C.; Osuji, R. U.; Maaza, M.; Ezema, F. I.

    2014-07-01

    A nanocrystalline and porous p-polyaniline/n-WO3 dissimilar heterojunction at ambient temperature is reported. The high-quality and well-reproducible conjugated polymer composite films have been fabricated by oxidative polymerization of anilinium ion on predeposited WO3 thin film by chemical bath deposition followed by thermal annealing at 573 K for 1 h. Atomic force microscopy (AFM) analyses reveal a homogenous but irregular cluster of faceted spherically shaped grains with pores. The scanning electron microscopy confirms the porous network of grains, which is in good agreement with the AFM result. The optical absorption analysis of polyaniline/WO3 hybrid films showed that direct optical transition exist in the photon energy range 3.50-4.00 eV with bandgap of 3.70 eV. The refractive index developed peak at 445 nm in the dispersion region while the high-frequency dielectric constant, ɛ ∞, and the carrier concentration to effective mass ratio, N/m*, was found to be 1.58 and 1.10 × 1039 cm-3, respectively. The temperature dependence of electrical resistivity of the deposited films follows the semiconductor behavior while the C-V characteristics (Mott-Schottky plots) show that the flat band potential was -791 and 830 meV/SCE for WO3 and polyaniline.

  6. Novel microstructure in spin coated polyaniline thin films

    NASA Astrophysics Data System (ADS)

    Verma, Deepak; Dutta, V.

    2007-05-01

    Polyaniline (Pani) thin films doped with camphor sulfonic acid (CSA) have been deposited on glass substrates using the spin coating technique. Pani is chemically synthesized by an oxidation method at ~0 °C. Pani-CSA films show a hexagonal structure in scanning electron micrographs, which occurs due to the crystalline growth of CSA. A dense hexagonal structure is visible for film deposited at 800 rpm, but it becomes sparser as the revolutions per minute are increased (1200, 1500 and 2000 rpm). Electronic transition of quinoid units cause an absorption shoulder at ~900 nm for films deposited at 1200, 1500 and 2000 rpm, which is not observed for film deposited at 800 rpm.

  7. Novel microstructure in spin coated polyaniline thin films.

    PubMed

    Verma, Deepak; Dutta, V

    2007-05-01

    Polyaniline (Pani) thin films doped with camphor sulfonic acid (CSA) have been deposited on glass substrates using the spin coating technique. Pani is chemically synthesized by an oxidation method at ∼0 °C. Pani-CSA films show a hexagonal structure in scanning electron micrographs, which occurs due to the crystalline growth of CSA. A dense hexagonal structure is visible for film deposited at 800 rpm, but it becomes sparser as the revolutions per minute are increased (1200, 1500 and 2000 rpm). Electronic transition of quinoid units cause an absorption shoulder at ∼900 nm for films deposited at 1200, 1500 and 2000 rpm, which is not observed for film deposited at 800 rpm. PMID:21690993

  8. On the mechanism of electrochemical switching in films of polyaniline

    SciTech Connect

    Gottesfeld, S.; Redondo, A.; Feldberg, S.W.

    1987-01-01

    Polyaniline (PA) films can be formed on a Pt electrode by galvanostatic oxidation of the monomer in HCl solutions. The film thus formed undergoes a quasi reversible conversion between a bleached and a colored form as the applied potential is changed between e.g. 0 and 0.5 V vs. a silver wire. This process requires transfer of both electrons and ions to (or from) sites distributed within the PA film. In principle, three possible anodic conversion modes can be envisaged for the PA films: (A) coloration develops from the film/substrate interface towards the film/solution interface; (B) coloration develops from the film/solution interface towards the film/substrate interface; and (C) coloration develops uniformly throughout the volume of the film. Ellipsometric measurements recorded during a scan of the potential through the region of film conversion yield an 'ellipsometric conversion curve' that can serve as a good criterion for distinguishing between the coloration modes (A), (B), and (C) described above.

  9. Deposition of polyaniline film onto porous silicon layer

    SciTech Connect

    Parkhutik, V.P.; Martinez-Duart, J.M.; Callegja, R.D.; Matveeva, E.M.

    1993-12-31

    Presently porous silicon (PS) layers are being considered a promising visible light emitting sources. Current research concentrates on the understanding of the nature of the light emission and the development of practical luminescent devices. The last goal is to find an appropriate solid contact to the rough surface of PS layers to ensure high electric conductivity and transparency. The aim of this work is to study the deposition of polyaniline (PANI) films onto porous silicon layers as an alternative to indium tin oxide (ITO) as the electrode.

  10. Synthesis of mesoporous carbon-silica-polyaniline and nitrogen-containing carbon-silica films and their corrosion behavior in simulated proton exchange membrane fuel cells environment

    NASA Astrophysics Data System (ADS)

    Wang, Tao; He, Jianping; Sun, Dun; Guo, Yunxia; Ma, Yiou; Hu, Yuan; Li, Guoxian; Xue, Hairong; Tang, Jing; Sun, Xin

    In this study, polyaniline is deposited onto mesoporous carbon-silica-coated 304 stainless steel using electropolymerization method. Variation of the electropolymerization time and applied potential can affect the growth of polyaniline, and lead to different structural and electrochemical properties of the films. Nitrogen-containing groups are successfully introduced onto the mesoporous carbon-silica film by pyrolyzing treatment under N 2 atmosphere and the electrical conductivity is improved observably compared with the carbon-silica film. The electrochemical properties of the mesoporous carbon-silica-polyaniline films and nitrogen-containing carbon-silica composite films are examined by using potentiodynamic polarization, potentiostatic polarization and electrochemical impedance spectroscopy. The corrosion tests in 0.5 M H 2SO 4 system display that the carbon-silica-polyaniline films show the optimal protective performance. However, according to potentiostatic polarization process, nitrogen-containing carbon-silica film with a water contact angle 95° is extremely stable and better for the protection of stainless steel in simulated fuel cell environment compared to carbon-silica-polyaniline film. Therefore, the nitrogen-containing carbon-silica-coated 304 stainless steel is a promising candidate for bipolar plate materials in PEMFCs.

  11. Ultrasensitive Gold Nanostar-Polyaniline Composite for Ammonia Gas Sensing.

    PubMed

    Kumar, Vished; Patil, Vithoba; Apte, Amey; Harale, Namdev; Patil, Pramod; Kulkarni, Sulabha

    2015-12-01

    Gold in the form of bulk metal mostly does not react with gases or liquids at room temperature. On the other hand, nanoparticles of gold are very reactive and useful as catalysts. The reactivity of nanoparticles depends on the size and the morphology of the nanoparticles. Gold nanostars containing copper have rough surfaces and large numbers of active sites due to tips, sides, corners, and large surface area-to-volume ratios due to their branched morphology. Here the sensitivity of the gold nanostar-polyaniline composite (average size of nanostars ∼170 nm) toward ammonia gas has been investigated. For 100 ppm ammonia, the sensitivity of the composite increased to 52% from a mere 7% value for pure polyaniline. The gold nanostar-polyaniline composite even showed a response time as short as 15 s at room temperature. The gold nanostars act as a catalyst in the nanocomposite. The stability and sensitivity at different concentrations and the selectivity for ammonia gas were also investigated. PMID:26522375

  12. Composition dependent magnetic properties of iron oxide-polyaniline nanoclusters

    SciTech Connect

    Sharma, Raksha; Lamba, Subhalakshmi; Annapoorni, S.; Sharma, Parmanand; Inoue, Akihisa

    2005-01-01

    {gamma}-Fe{sub 2}O{sub 3} prepared by sol gel process was used to produce nanocomposites with polyaniline of varying aniline concentrations. Transmission electron microscopy (TEM) shows the presence of chain like structure for lower polyaniline concentration. The room temperature hysteresis curves show finite coercivity of {approx}160 Oe for all the composites, while the saturation magnetization was found to decrease with increasing polymer content. Zero field cooled-field cooled magnetization measurements indicate high blocking temperatures. It is believed that this indicates a strongly interacting system, which is also shown by our TEM results. Monte Carlo simulations performed on a random anisotropy model with dipolar and exchange interactions match well with experimental results.

  13. Particle size distributions of polyaniline-silica colloidal composites

    SciTech Connect

    Gill, M.; Armes, S.P. ); Fairhurst, D. ); Emmett, S.N. ); Idzorek, G.; Pigott, T. )

    1992-09-01

    We have characterized a new polyaniline-silica composite colloid by various particle sizing techniques. Our transmission electron microscopy studies have confirmed for the first time an unusual raspberry morphology, with the small silica particles held together by the polyaniline [open quotes]binder[close quotes]. These particles have average diameters in the size range 150-500 nm. Charge-velocity analysis experiments indicated a number-average particle diameter of 300 [plus minus] 80 nm, but only poor statistics were obtained (172 particles counted). Photon correlation spectroscopy studies suggested an intensity-average particle diameter of 380 nm. Disk centrifuge photosedimentometry (DCP) turned out to be our preferred sizing technique for the polyaniline-silica colloids, since it was both quick and reliable and, more importantly, produced the true particle size distribution (PSD) curve with excellent statistics. The DCP data indicated a weight-average and number-average particle diameter of 330 [plus minus] 70 nm and 280 [plus minus] 70 nm, respectively, and moreover confirmed the PSD to be both broad and unimodal. Finally, these colloidal composites were sized using the Malvern Aerosizer. Using this instrument in conjunction with a nebulizer attachment (which allowed particle sizing of the [open quotes]wet[close quotes] dispersion) rather than in the conventional [open quotes]dry powder[close quotes] mode, we obtained particle size data which were in reasonable agreement with the DCP results. 31 refs., 5 figs., 1 tab.

  14. Effect of HCl doping on optoelectrical and LPG sensing properties of nanostructured polyaniline thin films

    NASA Astrophysics Data System (ADS)

    Upadhye, Deepak S.; Huse, Nanasaheb P.; Sharma, Ramphal

    2016-05-01

    Nanostructure Polyaniline thin films doped with 0.5 M, 0.7 M, and 1 M of HCL were synthesized by simple and inexpensive chemical oxidative polymerization technique at room temperature. All prepared thin films of Polyaniline were characterized by optical absorbance study by UV-visible spectroscopy. The absorbance spectrum of Polyaniline shows three fundamental peaks at 356, 419 and 820 nm with increase in absorption intensity. The electrical study shows magnitude of resistance of HCL doped Polyaniline is dependent on doping level. Furthermore, the thin film of Polyaniline was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents irregular granular morphology. In order to investigate LPG sensing properties, I-V characteristics of the Polyaniline films doped with 0.5 M, 0.7 M, and 1 M of HCL were recorded at room temperature in presence of air and 100 ppm of LPG. The observed values of sensitivity found to be 7.21%, 9.85% and 17.46 % for 0.5 M, 0.75 M, and 1.0 M of HCL doped Polyaniline thin films respectively

  15. Enhancement of Electrochromic Durability of a Film Made of Silica-Polyaniline Core-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Lee, Heungyeol; Kim, Hohyeong; Kim, Gyuntak; Mun, Gyeongjin

    Enhancing the operation life time or the electrochemical durability is one of the key issues in electrochromic material studies. It is generally accepted that the inorganic-organic hybrid structure is one of the effective ways to enhance the chemical stability of the material. In this study, an electrochromic film made of silica-polyaniline core-shell composite nanoparticles was tested. The composite particles were prepared through a chemical dispersion polymerization of aniline in an aqueous colloidal solution of silica. The synthesized particles were then dispersed into ethanol and the solution was deposited onto an Indium Tin Oxide (ITO)-coated glass substrate. The electrochromic characterization on the prepared films was performed using the cyclovoltammetry and the optical response to a switching potential. The results showed that the inorganic-organic core-shell hybrid nanoparticle could be a promising choice for the enhancement of electrochromic durability.

  16. Cysteine modified polyaniline films improve biocompatibility for two cell lines.

    PubMed

    Yslas, Edith I; Cavallo, Pablo; Acevedo, Diego F; Barbero, César A; Rivarola, Viviana A

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using l-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV-visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86°±1 to 90°±1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. PMID:25842107

  17. Bacteria counting method based on polyaniline/bacteria thin film.

    PubMed

    Zhihua, Li; Xuetao, Hu; Jiyong, Shi; Xiaobo, Zou; Xiaowei, Huang; Xucheng, Zhou; Tahir, Haroon Elrasheid; Holmes, Mel; Povey, Malcolm

    2016-07-15

    A simple and rapid bacteria counting method based on polyaniline (PANI)/bacteria thin film was proposed. Since the negative effects of immobilized bacteria on the deposition of PANI on glass carbon electrode (GCE), PANI/bacteria thin films containing decreased amount of PANI would be obtained when increasing the bacteria concentration. The prepared PANI/bacteria film was characterized with cyclic voltammetry (CV) technique to provide quantitative index for the determination of the bacteria count, and electrochemical impedance spectroscopy (EIS) was also performed to further investigate the difference in the PANI/bacteria films. Good linear relationship of the peak currents of the CVs and the log total count of bacteria (Bacillus subtilis) could be established using the equation Y=-30.413X+272.560 (R(2)=0.982) over the range of 5.3×10(4) to 5.3×10(8)CFUmL(-1), which also showed acceptable stability, reproducibility and switchable ability. The proposed method was feasible for simple and rapid counting of bacteria. PMID:26921555

  18. Processable Conducting Polyaniline, Carbon Nanotubes, Graphene and Their Composites

    NASA Astrophysics Data System (ADS)

    Wang, Kan

    Good processability is often required for applications of conducting materials like polyaniline (PANI), carbon nanotubes (CNTs) and graphene. This can be achieved by either physical stabilization or chemical functionalization. Functionalization usually expands the possible applications for the conducting materials depending on the properties of the functional groups. Processable conducting materials can also be combined with other co-dissolving materials to prepare composites with desired chemical and physical properties. Polyanilines (PANI) doped with dodecylbenzenesulfonic acid (DBSA) are soluble in many organic solvents such as chloroform and toluene. Single wall carbon nanotubes (SWCNTs) can be dispersed into PANI/DBSA to form homogeneous solutions. PANI/DBSA functions as a conducting surfactant for SWCNTs. The mixture can be combined with two-parts polyurethanes that co-dissolve in the organic solvent to produce conducting polymer composites. The composite mixtures can be applied onto various substrates by simple spray-on methods to obtain transparent and conducting coatings. Graphene, a single layer of graphite, has drawn intense interest for its unique properties. Processable graphene has been produced in N-methyl-2-pyrrolidone (NMP) by a one-step solvothermal reduction of graphite oxide without the aid of any reducing reagent and/or surfactant. The as-synthesized graphene disperses well in a variety of organic solvents such as dimethylsulfoxide (DMSO), ethanol and tetrahydrogenfuran (THF). The conductivity of solvothermal reduced graphite oxide is comparable to hydrazine reduced graphite oxide. Attempts were made to create intrinsically conducting glue comparable to mussel adhesive protiens using polyaniline and graphene. Mussels can attach to a variety of substrates under water. Catechol residue in 3,4-dihydroxyphenylalanine (L-DOPA) is the key to the wet adhesion. Tyrosine and phosphoserine with primary alkyl amine groups also participate in adhesion. A

  19. Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films

    NASA Astrophysics Data System (ADS)

    El-Sayed, Somyia; Abel-Baset, Tarob; Elfadl, Azza Abou; Hassen, Arafa

    2015-05-01

    Nanosilica (NS) was synthesized by a sol-gel method and mixed with 0.98 polyvinyl alcohol (PVA)/0.02 polyaniline (PANI) in different amounts to produce nanocomposite films. High-resolution transmission electron microscopy (HR-TEM) revealed the average particle size of the NS to be ca. 15 nm. Scanning electron microscopy (SEM) showed that the NS was well-dispersed on the surface of the PVA/PNAI films. The Fourier transform infrared (FTIR) spectra of the samples showed a significant change in the intensity of the characteristic peak of the functional groups in the composite films with the amount of NS added. The absorbance and refractive index (n) of the composites were studied in the UV-vis range, and the optical energy band gap, Eg, and different optical parameters were calculated. The dielectric loss modulus, M″ and ac conductivity, σac, of the samples were studied within 300-425 K and 0.1 kHz-5 MHz, respectively. Two relaxation peaks were observed in the frequency dependence of the dielectric loss modulus, M″. The behavior of σac(f) for the composite films indicated that the conduction mechanism was correlated barrier hopping (CBH). The results of this work are discussed and compared with those of previous studies of similar composites.

  20. Electrical resistance response of polyaniline films to water, ethanol, and nitric acid solution

    NASA Astrophysics Data System (ADS)

    Yin, Hong-Xing; Li, Meng-Meng; Yang, H.; Long, Yun-Ze; Sun, Xin

    2010-08-01

    This paper reports on electrical resistance vs. aging time for the response of polyaniline films under exposure to water, ethanol and nitric acid (HNO3) solution. Camphor sulfonic acid-doped polyaniline films were prepared by a “doping-dedoping-redoping" method, the morphology and microstructures of the films were characterized by a scanning electron microscope and an x-ray diffractometer, the electrical resistance was measured by a four-probe method. It was found that a lower amount of water molecules infiltrating the film can decrease the film's resistance possibly due to an enhancement of charge carrier transfer between polyaniline chains, whereas excessive water molecules can swell inter-chain distances and result in a quick increase of resistance. The resistance of the film under exposure to ethanol increases and becomes much larger than the original value. However, HNO3 solution can decrease the film's resistance sharply possibly owing to doping effect of protonic acid. These results can help to understand the conduction mechanism in polyaniline films, and also indicate that the films have potential application in chemical sensors.

  1. Silver nanowire/polyaniline composite transparent electrode with improved surface properties

    SciTech Connect

    Kumar, A.B.V. Kiran; Jiang, Jianwei; Bae, Chang Wan; Seo, Dong Min; Piao, Longhai Kim, Sang-Ho

    2014-09-15

    Highlights: • AgNWs/PANI transparent electrode was prepared by layer-by-layer coating method. • The surface roughness of the electrode reached to 6.5 nm (root mean square). • The electrode had reasonable sheet resistance (25 Ω/□) and transmittance (83.5%). - Abstract: Silver nanowires (AgNWs) are as potential candidates to replace indium tin oxide (ITO) in transparent electrodes because of their preferred conducting and optical properties. However, their rough surface properties are not favorable for the fabrication of optoelectronic devices, such as displays and thin-film solar cells. In the present investigation, AgNWs/polyaniline composite transparent electrodes with better surface properties were successfully prepared. AgNWs were incorporated into polyaniline:polystyrene sulfonate (PANI:PSS) by layer-by-layer coating and mechanical pressing. PANI:PSS decreased the surface roughness of the AgNWs electrode by filling the gap of the random AgNWs network. The transparent composite electrode had decreased surface roughness (root mean square 6.5 nm) with reasonable sheet resistance (25 Ω/□) and transmittance (83.5%)

  2. Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Lang, Xingyou; Zhang, Ling; Fujita, Takeshi; Ding, Yi; Chen, Mingwei

    2012-01-01

    We report three-dimensional bicontinuous nanoporous Au/polyaniline (PANI) composite films made by one-step electrochemical polymerization of PANI shell onto dealloyed nanoporous gold (NPG) skeletons for the applications in electrochemical supercapacitors. The NPG/PANI based supercapacitors exhibit ultrahigh volumetric capacitance (∼1500 F cm-3) and energy density (∼0.078 Wh cm-3), which are seven and four orders of magnitude higher than these of electrolytic capacitors, with the same power density up to ∼190 W cm-3. The outstanding capacitive performances result from a novel nanoarchitecture in which pseudocapacitive PANI shells are incorporated into pore channels of highly conductive NPG, making them promising candidates as electrode materials in supercapacitor devices combing high-energy storage densities with high-power delivery.

  3. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors.

    PubMed

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m(2) g(-1)) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics. PMID:27249547

  4. Electrochemical formation of a composite polymer-aluminum oxide film

    NASA Astrophysics Data System (ADS)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the

  5. Impressive electromagnetic shielding effects exhibited by highly ordered, micrometer thick polyaniline films

    NASA Astrophysics Data System (ADS)

    Mohan, Ranjini R.; Varma, Sreekanth J.; Sankaran, Jayalekshmi

    2016-04-01

    The present work highlights the remarkably high shielding effectiveness of about 68 dB, exhibited by highly ordered and doped polyaniline films, in the microwave frequency range 4-12 GHz, obtained by self-stabilized dispersion polymerization as the synthesis route. The observed shielding effectiveness is found to depend quite sensitively on the electrical conducting properties, which are predominantly controlled by the nature and concentration of the dopants. The structural and morphological characterization of the films using XRD and TEM techniques reveals surprisingly high extent of crystallinity, which contributes significantly towards enhancing the electrical conductivity of the films. Most of the available reports on the microwave response of conducting polymer film samples deal with much thicker films, compared to the micrometer thick films of the present studies. The shielding effectiveness of acid doped, micrometer thick polyaniline films reported in the present work far exceeds most of the previously reported values and meets the commercial requirements.

  6. Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor

    PubMed Central

    Lin, Huijuan; Li, Li; Ren, Jing; Cai, Zhenbo; Qiu, Longbin; Yang, Zhibin; Peng, Huisheng

    2013-01-01

    Polyaniline composite films incorporated with aligned multi-walled carbon nanotubes (MWCNTs) are synthesized through an easy electrodeposition process. These robust and electrically conductive films are found to function as effective electrodes to fabricate transparent and flexible supercapacitors with a maximum specific capacitance of 233 F/g at a current density of 1 A/g. It is 36 times of bare MWCNT sheet, 23 times of pure polyaniline and 3 times of randomly dispersed MWCNT/polyaniline film under the same conditions. The novel supercapacitors also show a high cyclic stability. PMID:23443325

  7. Composite membranes prepared from cation exchange membranes and polyaniline and their transport properties in electrodialysis

    SciTech Connect

    Sata, Tshikatsu; Ishii, Yuuko; Kawamura, Kohei; Matsusaki, Koji

    1999-02-01

    A cation exchange membrane was modified with polyaniline by polymerizing aniline with ammonium peroxodisulfate on the membrane surfaces, producing a membrane with polyaniline layers on both surfaces or a membrane with a single polyaniline layer on the surface. The modified membranes, composite membranes, showed sodium ion permselectivity in electrodialysis compared with divalent cations at an optimum polymerization time. The electronic conductivity of dry membranes showed a maximum (ca. 5 {times} 10{sup {minus}3} S/cm) at the same polymerization time as the time to attain a maximum value of the sodium ion permselectivity. Because emeraldine-based polyaniline is conductive and has a cationic charge, the sodium ion permselectivity is based on the difference in the electrostatic repulsion forces of the cationic charge on the membrane surface of a desalting side to divalent cations and sodium ions. In fact, the selective permeation of sodium ions appeared only when the layer faced the desalting side of the membrane, and was affected by dissociation of polyaniline. Further oxidized polyaniline, pernigraniline-based polyaniline, did not affect the permselectivity between cations, and the diffusion coefficient of neutral molecules, urea, increased with increasing polymerization time. Sodium ion permselectivity was maintained with repeated electrodialysis.

  8. Optical and mechanical properties of vacuum evaporated vapour chopped polyaniline thin film

    NASA Astrophysics Data System (ADS)

    Yadav, J. B.; Puri, R. K.; Puri, V.

    2007-08-01

    The paper reports the effect of chopping the vapour flow on properties of vacuum evaporated polyaniline thin films synthesized by aqueous polymerization pathway. The chopper was a metallic vane of V-shaped cut out placed between the substrate and boat in the path of evaporated vapour. It interrupted the flow of vapour at a constant rate. Fourier Transform Infra-red (FTIR) studies indicated that the vacuum evaporated films are more in reduced form and contain short chain oligomers. Improved adhesion and reduced intrinsic stress of polyaniline thin film due to chopping are obtained. Higher transmittance and lower refractive index films resulted due to the process of chopping as compared to the deposited films. Chopping also produces smoother surface morphology.

  9. Effect of morphology on the electrical transport properties of polyaniline films for electronic applications

    SciTech Connect

    Hardaker, S.S.; Eaiprasertsak, K.; Yon, J.; Gregory, R.V.; Tessema, G.X.

    1998-07-01

    Although it is well known that the oxidation state of polyaniline is an important characteristic, there are few reports of its influence on the development of morphology and electrical properties in fibers and films. In this work, differential scanning calorimetry is used in conjunction with measurements of temperature dependence of conductivity and thermoelectric power to elucidate the intimate relationship between structure and properties. By increasing the amount of chemical reduction of polyaniline solutions, films are repaired which exhibit a thermal transition between 300 and 385 C, indicative of melting. Increasing the chemical reduction also increases the conductivity of iodine doped films. The most reduced film exhibited a semiconductor transport mechanism, while the other films could be modeled with a quasi-one dimensional variable range hopping mechanism. The temperature dependence of conductivity also showed increasing order for increasing reduction, consistent with the DSC results.

  10. Structural, optical and electrical properties of CdS–polyaniline Langmuir–Blodgett films

    SciTech Connect

    Das, Nayan Mani Roy, Dhrubojyoti Gupta, P. S.; Gupta, M.; Ganesan, V.

    2014-04-24

    Structural, optical and electrical properties study of the cadmium sulphide (CdS) incorporated polyaniline (PANI) thin films with varying layers have been carried out. It is seen that layer variation enhances the particle mean sizes with quenching of photoluminescence and an increase in rectifying nature of current-voltage measurements.

  11. Prevention of corrosion with polyaniline

    NASA Technical Reports Server (NTRS)

    MacDiarmid, Alan G. (Inventor); Ahmad, Naseer (Inventor)

    1997-01-01

    Methods for improving the corrosion inhibition of a metal or metal alloy substrate surface are provided wherein the substrate surface is coated with a polyaniline film. The polyaniline film coating is applied by contacting the substrate surface with a solution of polyaniline. The polyaniline is dissolved in an appropriate organic solvent and the solvent is allowed to evaporate from the substrate surface yielding the polyaniline film coating.

  12. Superstructure fiber Bragg gratings with coated polyaniline film for ammonia detecting

    NASA Astrophysics Data System (ADS)

    Ai, Long; Mau, Jiang-Chiou; Liu, Wen-Fung; Fu, Ming-Yue; Chen, Tzu-Chiang

    2007-05-01

    In this paper, we proposed a chemical-gas fiber sensor based on the poly-aniline film coated on the surface of an etched fiber grating and experimentally demonstrated for detecting ammonia gas. This sensing mechanism is based on the testing gas to interact with the poly-aniline coating film on the surface of the fiber grating to cause the thin-film index change and then to create the Bragg wavelength shift or grating reflectivity variation. The sensitivity and response time of this sensor for measuring ammonia gas are around 0.73 nm per percent concentration and tens of mini-seconds respectively, which depend on the optical characteristics of fiber grating, the diameter of fiber cladding, and the constituents of chemical sensing film. This sensor may provide a simple, reliable, repeatable and non-destructive fiber sensing technique.

  13. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m2 g-1) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics.A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully

  14. Enhanced cycling stability of lithium sulfur batteries using sulfur-polyaniline-graphene nanoribbon composite cathodes.

    PubMed

    Li, Lei; Ruan, Gedeng; Peng, Zhiwei; Yang, Yang; Fei, Huilong; Raji, Abdul-Rahman O; Samuel, Errol L G; Tour, James M

    2014-09-10

    A hierarchical nanocomposite material of graphene nanoribbons combined with polyaniline and sulfur using an inexpensive, simple method has been developed. The resulting composite, characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and X-ray diffraction analysis, has a good rate performance and excellent cycling stability. The synergistic combination of electrically conductive graphene nanoribbons, polyaniline, and sulfur produces a composite with high performance. The method developed here is practical for the large-scale development of cathode materials for lithium sulfur batteries. PMID:25141233

  15. Polyaniline coated cellulose fiber / polyvinyl alcohol composites with high dielectric permittivity and low percolation threshold

    NASA Astrophysics Data System (ADS)

    Anju, V. P.; Narayanankutty, Sunil K.

    2016-01-01

    Cost effective, high performance dielectric composites based on polyvinyl alcohol, cellulose fibers and polyaniline were prepared and the dielectric properties were studied as a function of fiber content, fiber dimensions and polyaniline content over a frequency range of 40 Hz to 30 MHz. The short cellulose fibers were size-reduced to micro and nano levels prior to coating with polyaniline. Fiber surface was coated with Polyaniline (PANI) by an in situ polymerization technique in aqueous medium. The composites were then prepared by solution casting method. Short cellulose fiber composites showed a dielectric constant (DEC) of 2.3 x 105 at 40 Hz. For the micro- and nano- cellulose fiber composites the DEC was increased to 4.5 x 105 and 1.3 x 108, respectively. To gain insight into the inflection point of the dielectric data polynomial regression analysis was carried out. The loss tangent of all the composites remained at less than 1.5. Further, AC conductivity, real and imaginary electric moduli of all the composites were evaluated. PVA nanocomposite attained an AC conductivity of 3 S/m. These showed that by controlling the size of the fiber used, it was possible to tune the permittivity and dielectric loss to desired values over a wide range. These novel nanocomposites, combining high dielectric constant and low dielectric loss, can be effectively used in applications such as high-charge storage capacitors.

  16. Enhancement of photoelectric catalytic activity of TiO{sub 2} film via Polyaniline hybridization

    SciTech Connect

    Wang Yajun; Xu Jing; Zong Weizheng; Zhu Yongfa

    2011-06-15

    A Polyaniline (PANI)/TiO{sub 2} film coated on titanium foil was successfully prepared using the sol-gel method followed by a facile chemisorption. Compared with pristine TiO{sub 2}, the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation rates of 2,4-dichlorophenol (2,4-DCP) with the PANI/TiO{sub 2} film were enhanced by 22.2% and 57.5%, respectively. 2,4-DCP can be mineralized more effectively in the presence of PANI/TiO{sub 2} film. The best PEC degradation efficiency of 2,4-DCP with the PANI/TiO{sub 2} film was acquired at an external potential of 1.5 V with a layer of 1 nm thick PANI. The PANI/TiO{sub 2} film was characterized by Raman spectra, Fourier transform infrared spectra (FT-IR), Auger electron spectroscopy (AES), and electrochemical analysis. These results indicated that there was a chemical interaction on the interface of PANI and TiO{sub 2}. This interaction may be of significance to promote the migration efficiency of carriers and induce a synergetic effect to enhance the PC and PEC activities. - Graphical abstract: The effect of PANI content on 2,4-DCP degradation with initial concentration of 50 mg/L, external potential=1.5 V. Inset: degradation rate constants of various PANI/TiO{sub 2} films. Highlights: > Polyaniline/TiO{sub 2} film was prepared using the sol-gel method followed by chemisorption. > Photoelectrocatalytic degradation rate of 2,4-dichlorophenol was enhanced by 57.5%. > The modification of Polyaniline to TiO{sub 2} film caused a rapid charge separation. > Best degradation efficiency was acquired at 1.5 V with 1 nm thick PANI.

  17. A spectroelectrochemical study on single-oscillator model and optical constants of sulfonated polyaniline film.

    PubMed

    Caglar, Mujdat; Ilican, Saliha; Caglar, Yasemin; Sahin, Yücel; Yakuphanoglu, Fahrettin; Hür, Deniz

    2008-11-15

    The optical properties of sulfonated polyaniline (SPAN) thin film prepared by electrochemical method have been investigated. Polychromic behavior of SPAN thin film (transparent yellow-green-dark blue) was observed when the cyclic voltammograms were taken between -0.25 V and +1.90 V (vs. Ag/AgCl, sat.) during the growth of polyaniline film. In situ UV-vis spectra of the polymers-indium tin oxide (ITO) glass electrode were taken during the oxidation of the polymers at different applied potentials. The direct band gap values of SPAN thin film changed from 3.771 eV to 3.874 eV with the applied potentials. From in situ UV-vis spectra, the optical constants such as refractive index and dielectric constant of the SPAN thin film were determined. The important changes in absorption edge, refractive index and the dielectric constant were observed due to the applied potentials. The refractive index dispersion curves of the film obey the single-oscillator model and oscillator parameters changed with the applied potentials. The most significant result of the present work is in situ spectroelectrochemical method, which can be used to modify the optical band gaps and constants. PMID:18337162

  18. Polyaniline films photoelectrochemically reduce CO2 to alcohols.

    PubMed

    Hursán, Dorottya; Kormányos, Attila; Rajeshwar, Krishnan; Janáky, Csaba

    2016-07-01

    In this communication, we demonstrate that polyaniline, the very first example of an organic semiconductor, is a promising photocathode material for the conversion of carbon dioxide (CO2) to alcohol fuels. CO2 is a greenhouse gas; thus using solar energy to convert CO2 to transportation fuels (such as methanol or ethanol) is a value-added approach to simultaneous generation of alternative fuels and environmental remediation of carbon emissions. Insights into its unique behavior obtained from photoelectrochemical measurements and adsorption studies, together with spectroscopic data, are presented. Through a comparative study involving various conducting polymers, a set of criteria is developed for an organic semiconductor to function as a photocathode for generation of solar fuels from CO2. PMID:27345191

  19. Temperature dependent thermoelectric property of reduced graphene oxide-polyaniline composite

    NASA Astrophysics Data System (ADS)

    Mitra, Mousumi; Banerjee, Dipali; Kargupta, Kajari; Ganguly, Saibal

    2016-05-01

    A composite material of reduced graphene oxide (rG) nanosheets with polyaniline (PANI) protonated by 5-sulfosalicylic acid has been synthesized via in situ oxidative polymerization method. The morphological and spectral characterizations have been done using FESEM and XRD measurements. The thermoelectric (TE) properties of the reduced graphene oxide-polyaniline composite (rG-P) has been studied in the temperature range from 300-400 K. The electrical conductivity and the Seebeck coefficient of rG-P is higher than the of pure PANI, while the thermal conductivity of the composite still keeps much low value ensuing an increase in the dimensionless figure of merit (ZT) in the whole temperature range.

  20. Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance

    NASA Astrophysics Data System (ADS)

    Wang, Guangxiang; Tang, Qianqiu; Bao, Hua; Li, Xingwei; Wang, Gengchao

    2013-11-01

    A novel ternary composite of sulfonated graphene/MnO2/polyaniline (sGMOPANI) is synthesized via a dilute in-situ polymerization method using potassium permanganate as oxidant under neutral condition. The FE-SEM and HRTEM images show that MnO2/polyaniline nanoparticles with the diameter of 5-10 nm deposit onto sulfonated graphene nanosheets. Spectral analysis reveals the existence of the hydrogen bond and π-π interaction between MnO2/polyaniline nanoparticles and sulfonated graphene. As a result, the sGMOPANI composite based on the two-electrode cell shows improved electrochemical capacitance (276 F g-1 at 1 g-1 in 1 M Na2SO4), better rate capability (73% capacitance retention from 0.2 to 20 A g-1), and higher cycling stability (11.7% capacitance loss after 3000 cycles) compared to the MnO2/polyaniline binary composite.

  1. Dual-shell hollow polyaniline/sulfur-core/polyaniline composites improving the capacity and cycle performance of lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    An, Yanling; Wei, Pan; Fan, Meiqiang; Chen, Da; Chen, Haichao; Ju, QiangJian; Tian, Guanglei; Shu, Kangying

    2016-07-01

    In this study, a dual-shell hollow polyaniline/sulfur-core/polyaniline (hPANI/S/PANI) composite was prepared by successively depositing PANI, S, and PANI on the surface of a template silicon sphere. The electrochemical properties of this composite were evaluated using a lithium plate as an anode in lithium/sulfur cells. The hPANI/S/PANI composite showed a discharge capacity of 572.2 mAh g-1 after 214 cycles at 0.1 C, and the Coulombic efficiency was above 87% in the whole charge/discharge cycle. The improved cycle property of the hPANI/S/PANI composite can be ascribed to the fine sulfur particles homogeneously deposited on the PANI surface and sprawled inside the two PANI layers during the charge/discharge cycle. This behavior stabilized the nanostructure of sulfur and enhanced its conductivity.

  2. [Low-Concentration CO₂ Adsorption on Polyaniline/Zeolite Y Composites].

    PubMed

    Liu, Feng-lin; Lu, Xia; Zhang, Hui; Ge, Xin; Liu, Jie; Zhang, Yong-zhen

    2015-12-01

    Three polyaniline (PANI)/zeolite Y composites with different polyaniline loads, PANI-Y-1, PANI-Y-2 and PANI-Y-3, were prepared by in situ chemical oxidation polymerization method using different amounts of aniline. The structural characteristics of these materials were analyzed by FT-IR and nitrogen adsorption experiment. The adsorption and regeneration properties of the composites for low-concentration CO₂ at atmosphere pressure were investigated. Characterization results show that aniline is successfully polymerized in and out side of channels of zeolite Y. The above three materials, whose pores are composed of macropores and mesopores, have specific surface areas of 52, 54 and 35 m2 g -¹, respectively. In addition, a composite with high polyaniline loading has low pore volumes. At 20°C, CO₂ adsorption on the three composites and zeolite Y are well fitted with the Logistic model, and the adsorption amount of CO₂ with initial concentration of 10% follows an order of PANI-Y-2 (2.09 mmol · g⁻¹) > PANI-Y-3 (1.79 mmol · g⁻¹) > PANI-Y-l (1.07 mmol · g⁻¹) > zeolite Y (0.80 mmol · g⁻¹. The adsorption order of the composites is the result of combined effects from polyaniline amount and specific surface area of adsorbents. With concentrations ranging between 2% and 10% CO2 adsorption amount increases when initial concentration is raised. With adsorption temperature changing from 25° to 6°C, low temperature is advantageous to enhancing CO₂ adsorption. For PANI-Y-2, only a low regeneration efficiency of 68% is obtained after four times thermal desorption at 80°C. However, the regeneration efficiency could be increased up to 94% by aqueous ammonia combined with thermal treatment method. PMID:27011973

  3. Atomic level understanding of site-specific interactions in Polyaniline/TiO2 composite

    NASA Astrophysics Data System (ADS)

    Chabungbam, Satyananda; Loh, G. C.; Sahariah, Munima B.; Pal, Arup R.; Pandey, Ravindra

    2016-02-01

    Spin-polarized density functional theory calculations have been performed to understand the interactions in polyaniline (PAni) and TiO2 composite at the atomic level. Binding energy calculation shows that composite structure is energetically more stable when Ti atom of TiO2 sits on top of PAni. It is also found that there is a dependency of the CBM on the site of TiO2 interaction in this composite system. The results suggest that optimization of the synthesis parameters at atomic level can be an effective way to improve the performance of a photovoltaic device based on PAni-TiO2 composite.

  4. Structural organization of films based on polyaniline/polysulfonic acid complexes depending on the synthesis method

    SciTech Connect

    Simagina, L. V. Gaynutdinov, R. V.; Stepina, N. D.; Sorokina, K. L.; Morozova, O. V.; Shumakovich, G. P.; Yaropolov, A. I.; Tolstikhina, A. L.

    2010-07-15

    The optical properties and morphology of complexes based on polyaniline (PANI) and poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS), depending on their synthesis conditions, have been characterized by UV-visible spectroscopy and atomic force microscopy. The dependence of the electron absorption spectra of PANI/PAMPS complexes and the surface topography of their films on the initiation way of PANI formation (chemical and enzymatic) and the use of promoters of aniline polymerization has been investigated. The aniline polymerization kinetics with and without polymerization promoters has been studied. All PANI/PAMPS complexes are found to have a nanocomposite time-stable structure.

  5. Increasing the high-frequency magnetic permeability of MnZn ferrite in polyaniline composites by incorporating silver

    NASA Astrophysics Data System (ADS)

    Babayan, V.; Kazantseva, N. E.; Sapurina, I.; Moučka, R.; Stejskal, J.; Sáha, P.

    2013-05-01

    A hybrid composite containing 73 vol% of MnZn ferrite, 21 vol% of polyaniline, and 6 vol% of silver is obtained by oxidative polymerization of aniline with silver nitrate in the presence of ferrite powder. The hybrid composite contains ferrite particles with a size of 40-80 μm coated by an inhomogeneous layer of polyaniline in the conducting emeraldine form. Silver in the form of nano- and submicrometre -size particles is localized both on the surface of ferrite particles and in the bulk of polyaniline coating. The electrical and magnetic properties of the hybrid composite are investigated and compared with the properties of a composite with 71 vol% of MnZn ferrite coated by a conducting polyaniline layer (29 vol%). The hybrid composite containing silver exhibits an increase in the real and imaginary parts of the complex permeability in the radio-frequency band by more than one and a half times compared with those of the MnZn ferrite-polyaniline composite. The high-frequency permittivity of both composites is determined by the properties of core-shell structure: electric properties of shell as well as its composition and uniformity.

  6. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    NASA Astrophysics Data System (ADS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  7. Preparation and Electrical Characterization of Poly(Aniline) NanoClay Composites

    NASA Astrophysics Data System (ADS)

    Ahlatcioǧlu, Esma; şenkal, Bahire Filiz; Okutan, Mustafa

    2015-07-01

    In this work, synthesis and characterization of composite materials based on NanoClay(NC) and boric acid doped PolyAniline (PANI) is studied. PANI was successfully incorporated into NC to form PANI-NC composites. The resulting organic-inorganic hybrid material, PANI-NC was characterized by various physicochemical techniques. Formation of PANI inside the clay tactoid has been confirmed by X-ray diffraction studies (XRD), scanning electron microscope (SEM) and FT-IR. Also, conductivity and physical properties of the PANI-NC composites were investigated.

  8. Electromagnetic absorption and shielding behavior of polyaniline-antimony oxide composites

    NASA Astrophysics Data System (ADS)

    Faisal, Muhammad; Khasim, Syed

    2013-02-01

    This work highlights the microwave absorption and electromagnetic interference (EMI) shielding properties of synthesized polyaniline (PAni)-antimony oxide (Sb2O3) composites in the 8-12 GHz (X-band) range. These composites showed absorption dominated EMI shielding effectiveness (EMI SEA) of -34 to -40 dB (> 99 % attenuation), indicating their shielding potential throughout the X-band. Our analyses reveal that the Sb2O3 particles in PAni matrix have key impact in determining the microwave absorption properties of the composites.

  9. TEACHING COMPOSITION WITH FILM.

    ERIC Educational Resources Information Center

    COURSEN, HERBERT R., JR.

    A COMPOSITION PROGRAM DESIGNED TO GIVE UPWARD BOUND STUDENTS A FEELING OF SUCCESS WAS BASED ON FILMS WHICH THE STUDENTS VIEWED, DISCUSSED, AND WROTE ABOUT. THE FILMS FELL ROUGHLY INTO THE CATEGORIES OF SOCIAL PROBLEMS, POLITICS AND PROPAGANDA, AND ART AND MUSIC. FOLLOWING CLASS DISCUSSIONS, STUDENTS WERE REQUIRED MERELY TO "WRITE ABOUT THE FILM."…

  10. Styrene-Butadiene Co-Polymer Based Highly Conducting and Flexible Polymer Composite Film with Low Percolation Threshold

    NASA Astrophysics Data System (ADS)

    Mathew, Anisha Mary; Neena, P.

    2011-10-01

    Conducting polymer composites are finding novel applications in various fields especially in device technology. In this work an effort has been made to synthesize polyaniline-synthetic rubber (Styrene-butadiene rubber) composite via ex-situ technique and its electrochemical properties are investigated. Highly conducting emeraldine form of polyaniline (20 S/cm) is prepared by the oxidative polymerization of aniline in aqueous acidic (CSA) media using ammonium peroxydisulfate as oxidizing agent. These composite films are characterized by UV-Visible spectroscopy to investigate their optical properties. The dc conductivity studies indicate that these composite films show extremely low percolation threshold.

  11. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  12. Conductive polyurethane composites containing polyaniline-coated nano-silica.

    PubMed

    Liu, Bo-Tau; Syu, Jhan-Rong; Wang, De-Hua

    2013-03-01

    In this study, we used 1.2-Aminopropyltriethoxysilane (APTS) as a coupling agent to synthesize silica-polyaniline (PANI) core-shell nanoparticles. The core-shell nanoparticles and PANI oligomers were reacted with isocyanates to prepare the conductive polyurethane (PU)-PANI-silica nanocomposites. The core-shell-nanoparticle structure shows significant enhancement on electrical properties of the conductive nanocomposites even though only 0.0755-wt.% PANI was coated on the nano-silica. The surface resistance of the nanocomposite containing 5 wt.% PANI can reduce to ~10(8) Ω/sq, lowering two orders in contrast to the nanocomposite without the core-shell structure. In comparison with the neat PU, tensile strength and elongation of the nanocomposite containing silica-PANI core-shell nanoparticles can increase 3.1 and 3.8 times, respectively. We suspect that the extraordinary enhancement of electrical and mechanical properties may result from the fact that contact probability among PANI moieties and chemical bonding between particles and PU matrix increase due to the PANI coated on the surface of silica. PMID:23261334

  13. Elastomeric Conducting Polyaniline Formed Through Topological Control of Molecular Templates.

    PubMed

    Ding, Hangjun; Zhong, Mingjiang; Wu, Haosheng; Park, Sangwoo; Mohin, Jacob W; Klosterman, Luke; Yang, Zhou; Yang, Huai; Matyjaszewski, Krzysztof; Bettinger, Christopher John

    2016-06-28

    A strategy for creating elastomeric conducting polyaniline networks is described. Simultaneous elastomeric mechanical properties (E < 10 MPa) and electronic conductivities (σ > 10 S cm(-1)) are achieved via molecular templating of conjugated polymer networks. Diblock copolymers with star topologies processed into self-assembled elastomeric thin films reduce the percolation threshold of polyaniline synthesized via in situ polymerization. Block copolymer templates with star topologies produce elastomeric conjugated polymer composites with Young's moduli ranging from 4 to 12 MPa, maximum elongations up to 90 ± 10%, and electrical conductivities of 30 ± 10 S cm(-1). Templated polyaniline films exhibit Young's moduli up to 3 orders of magnitude smaller compared to bulk polyaniline films while preserving comparable bulk electronic conductivity. Flexible conducting polymers have prospective applications in devices for energy storage and conversion, consumer electronics, and bioelectronics. PMID:27175931

  14. Wet chemically grown composite thin film for room temperature LPG sensor

    NASA Astrophysics Data System (ADS)

    Birajadar, Ravikiran; Desale, Dipalee; Shaikh, Shaheed; Mahajan, Sandip; Upadhye, Deepak; Ghule, Anil; Sharma, Ramphal

    2014-04-01

    We have synthesized thin film of zinc oxide-polyaniline (ZnO/PANI) composite using a simple wet chemical approach. As-synthesized ZnO/PANI composite thin film studied using different characterization techniques. The optical study reveals the penetration and interaction of PANI molecules with ZnO thin film. Prominent blue shift in UV-vis due to interaction between ZnO and PANI indicate presence of zinc oxide in polyaniline matrix. It is observed that ZnO thin film is not sensitive to LPG (liquefied petroleum gas) at room temperature. On the other hand ZnO/PANI composite thin film shows good response and recovery behaviors at room temperature.

  15. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzhi; Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin; Hu, Chenglong

    2016-03-01

    Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV-vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C4H9)4N+ under the positive and negative potentials as comparison with the small Li+ ion.

  16. Doping dependence of electrical and thermal conductivity of nanoscale polyaniline thin films

    NASA Astrophysics Data System (ADS)

    Jin, Jiezhu; Wang, Qing; Haque, M. A.

    2010-05-01

    We performed simultaneous characterization of electrical and thermal conductivity of 55 nm thick polyaniline (PANI) thin films doped with different levels of camphor sulfonic acids (CSAs). The effect of the doping level is more pronounced on electrical conductivity than on thermal conductivity of PANIs, thereby greatly affecting their ratio that determines the thermoelectric efficiency. At the 60% (the molar ratio of CSA to phenyl-N repeat unit of PANI) doping level, PANI exhibited the maximum electrical and thermal conductivity due to the formation of mostly delocalized structures. Whereas polarons are the charge carriers responsible for the electrical conduction, phonons are believed to play a dominant role in the heat conduction in nanoscale doped PANI thin films.

  17. Facile Preparation and Characterization of Graphene Nanosheet/polyaniline Nanofiber Thermoelectric Composites

    NASA Astrophysics Data System (ADS)

    Du, Yong; Cai, Kefeng; Shen, Shirley Zhiqi

    2013-10-01

    Graphene nanosheet (GNs)/polyaniline (PANI) nanofiber composites were prepared by oxidative polymerization of aniline in a GNs dispersed 1 mol/L HCl solution. The phase composition of the composites was analyzed by Fourier Transform Infrared Spectroscopy and X-ray Diffraction. The thermoelectric properties of the composite powders, after cold pressing into pellets, were measured at room temperature. As the content of GNs increased from 0 to 40 wt.%, the electrical conductivity and Seebeck coefficient of the composite pellets increased simultaneously; especially the electrical conductivity increased dramatically from 15.4 to 120.1 S/cm. The highest power factor ( 394.4 × 10-8 Wm-1K-2) was obtained from the 40 wt.% GNs/PANI composite sample, which is 200 times as high as that of HCl-doped PANI.

  18. Polyaniline-lead titanate composites for humidity sensing and EMI shielding applications

    NASA Astrophysics Data System (ADS)

    Manocha, Aarushi; Thomas, Jocelyn T.; Fathima, Hana; V, Suveetha; Faisal, Muhammad

    2015-06-01

    The present paper reports the humidity sensing and electromagnetic interference (EMI) shielding properties of synthesized polyaniline-lead titanate (PANi/PbTiO3) composites. The humidity sensing of the PAni/PbTiO3 composites was discussed in terms of change in direct current (DC) resistance with respect to percentage relative humidity (% RH) ranging from 20% to 90%. The EMI shielding properties of the composites were measured in the frequency range of 8-12 GHz (X-band), relevant for practical applications. The composites showed shielding effectiveness (SE) in the range -29 dB to -34 dB and the variations in the shielding effectiveness with the frequency was minimal at a fixed composition. The observed effective humidity sensing and EMI shielding properties highlights the prospects of multifunctional applications of these composites.

  19. Constructing magnetic polyaniline/metal hybrid nanostructures using polyaniline/Fe{sub 3}O{sub 4} composite hollow spheres as supports

    SciTech Connect

    Kong Lirong; Lu Xiaofeng; Jin, E; Jiang Shan; Bian Xiujie; Zhang Wanjin; Wang Ce

    2009-08-15

    Polyaniline (PANI)/Fe{sub 3}O{sub 4} composite hollow spheres have been successfully synthesized in one step using sulfonated polystyrene (PS) spheres as templates. The magnetic PANI hollow spheres were used as supports for noble metal nanoparticles (NPs) such as Au and Pd. The morphology, composition and magnetic properties of the resulting products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, inductively coupled plasma (ICP) atomic spectra and vibrating sample magnetometer. The catalytic activity of magnetic PANI/Au composite shells on the oxidation of dopamine was investigated by cyclic voltammetry. The obtained results provide our product with a practical application for the detection of dopamine. On the other hand, the catalytic activity of magnetic PANI/Pd composite shells on the reduction of 4-nitroaniline was investigated by spectroscopic methods and compared with Pd/C catalyst which was already widely used in industrial production. - Graphical abstract: TEM image of PANI/Fe{sub 3}O{sub 4} hollow spheres which can be used as supports for a variety of catalysts such as noble metal nanoparticles. Based on the unique properties of polyaniline hollow spheres and Fe{sub 3}O{sub 4} NPs, we designed the synthesis of polyaniline/Fe{sub 3}O{sub 4} NPs composite hollow spheres as supports for catalysts such as noble metal NPs. As a result, the obtained composites exhibit enhanced catalytic activities and can be easily separated from reaction mixture by using an NdFeB permanent magnet.

  20. Fabrication of polyaniline/polyimide composite fibers with electrically conductive properties

    NASA Astrophysics Data System (ADS)

    Lv, Pengxia; Zhao, Yong; Liu, Fangfang; Li, Guomin; Dai, Xuemin; Ji, Xiangling; Dong, Zhixin; Qiu, Xuepeng

    2016-03-01

    A series of polyaniline/polyimide (PANi/PI) composite fibers was prepared via dry-jet wet spinning followed by in situ polymerization growth. The resultant composite fibers showed good mechanical properties with a tensile strength of 0.90 GPa, a tensile modulus of 6.79 GPa, and an elongation at break of 14.63%. Thermogravimetric and thermal mechanical analyses revealed that the composite fibers had considerably good thermal stabilities in air and nitrogen atmospheres, as well as good size stabilities at 50-150 °C. Current-voltage curves indicated the transformation from electric insulation to electrical conductivity along the fiber axial direction. The composite fibers exhibited a sensitive response to immersion in solutions with different pH values. This work provides a simple approach to fabricate PANi/PI composite fibers that could be applied in the antistatic textile and military industries.

  1. Schottky Diodes Based on Polyaniline/Multi-Walled Carbon Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Hajibadali, A.; Nejad, M. Baghaei; Farzi, G.

    2015-08-01

    Polyaniline/multi-walled carbon nanotube composites (PANI/MWCNT), with various concentration of multi-walled carbon nanotube, were synthesized. Several Schottky diodes were fabricated, where PANI or PANI/MWCNT composites, aluminum, and gold were used as semiconductor, Schottky contact, and ohmic contact, respectively. Then current-voltage characteristics of the fabricated diodes were measured at room temperature and within the bias range of -5 to +5 V. The measurements were repeated three times for each sample to verify repeatability of experiment. The obtained results show that by increasing the MWCNT concentration, the current intensity increases. Furthermore, I-V characteristics of pure polyaniline Schottky diode follows the thermionic emission mechanism while the I-V characteristics of Schottky diodes based on PANI/MWCNT composites show two distinct power law regions. At lower voltages, the mechanism follows Ohm's Law, whereas at higher voltages, the mechanism is compatible with space charge limited conduction emission mechanism. The parameters of Schottky diodes were determined, and it was observed that critical voltage decreased when the concentration of MWCNT in the composite increased.

  2. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    NASA Astrophysics Data System (ADS)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  3. Enhancement of photoelectric catalytic activity of TiO 2 film via Polyaniline hybridization

    NASA Astrophysics Data System (ADS)

    Wang, Yajun; Xu, Jing; Zong, Weizheng; Zhu, Yongfa

    2011-06-01

    A Polyaniline (PANI)/TiO 2 film coated on titanium foil was successfully prepared using the sol-gel method followed by a facile chemisorption. Compared with pristine TiO 2, the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation rates of 2,4-dichlorophenol (2,4-DCP) with the PANI/TiO 2 film were enhanced by 22.2% and 57.5%, respectively. 2,4-DCP can be mineralized more effectively in the presence of PANI/TiO 2 film. The best PEC degradation efficiency of 2,4-DCP with the PANI/TiO 2 film was acquired at an external potential of 1.5 V with a layer of 1 nm thick PANI. The PANI/TiO 2 film was characterized by Raman spectra, Fourier transform infrared spectra (FT-IR), Auger electron spectroscopy (AES), and electrochemical analysis. These results indicated that there was a chemical interaction on the interface of PANI and TiO 2. This interaction may be of significance to promote the migration efficiency of carriers and induce a synergetic effect to enhance the PC and PEC activities.

  4. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Xu, Bin; Jia, Mengqiu; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-03-01

    A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO3 templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g-1 at a current load of 0.1 A g-1 with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors.

  5. Synthesis of SBA-15/polyaniline mesoporous composite for removal of resorcinol from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Yu, Hui; Song, Jie; Pan, Xianhui; Liu, Jing; Wang, Yi; Tang, Linhong

    2014-01-01

    Polyaniline (PA) modified mesoporous SBA-15 composite (SBA-15/PA) was synthesized by respectively using aniline and ammonium persulfate as modifying agent and oxidant at 0 °C as a novel adsorbent for efficiently removing the resorcinol pollutant from aqueous solution. This material was investigated under the help of various characterization approaches, which suggests that it exhibits ordered two-dimensionally (2D) hexagonal mesostructure, high specific surface area (219.6 m2/g) and narrow pore size distribution centered at 8.8 nm. Polyaniline have been successfully modified on the pore wall of SBA-15. The adsorption experiments demonstrated that the SBA-15/PA composite can be used as an excellent adsorbent for removing resorcinol. Its uptake capacity can reach up to 128 mg/g in 250 mg L-1 of resorcinol solution. In addition, batch experiments were also conducted for analyzing the effects of adsorption conditions on the uptake capacity of the mesoporous composite, including pH value, adsorption temperature, and solution salinity. Moreover, kinetics of the adsorption process was studied by investigating the concentration changes of resorcinol solution with adsorption times. The driving forces for the adsorption process derive from the hydrogen-bond, π-π stacking, and acid-base interactions between the adsorbent and adsorbate. The high specific surface area and ordered mesochannels are also advantageous for the adsorption process.

  6. A Facile Synthesis of a Palladium-Doped Polyaniline-Modified Carbon Nanotube Composites for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Giri, Soumen; Ghosh, Debasis; Malas, Asish; Das, Chapal Kumar

    2013-08-01

    Supercapacitors have evolved as the premier choice of the era for storing huge amounts of charge in the field of energy storage devices, but it is still necessary to enhance their performance to meet the increasing requirements of future systems. This could be achieved either through advancing the interfaces of the material at the nanoscale or by using novel material compositions. We report a high-performance material composition prepared by combining a transition metal (palladium)-doped conductive polymer with multiwalled carbon nanotubes (MWCNTs). MWCNTs/palladium-doped polyaniline (MWCNTs/Pd/PANI) composites and multiwalled carbon nanotube/polyaniline (MWCNTs/PANI) composites (for comparison) were prepared via in situ oxidative polymerization of aniline monomer. The reported composites were characterized by Fourier-transform infrared (FTIR), x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) studies. FESEM and TEM studies indicated the narrow size distribution of the π-conjugated polymer-protected palladium nanoparticles on the surface of the carbon nanotubes. All the electrochemical characterizations were executed using a three-electrode system in 1 M H2SO4 electrolyte. Cyclic voltammetry (CV) analysis was performed to observe the capacitive performance and redox behavior of the composites. The ion transfer behavior and cyclic stability of the composites were investigated by electrochemical impedance spectroscopy (EIS) analysis and cyclic charge-discharge (CCD) testing, respectively. The MWCNTs/Pd/PANI composite was found to exhibit an especially high specific capacitance value of 920 F/g at scan rate of 2 mV/s.

  7. Spectroscopic study of the highly homogeneous polyaniline film formation on gold support

    NASA Astrophysics Data System (ADS)

    Morávková, Zuzana; Stejskal, Jaroslav; Trchová, Miroslava

    2016-01-01

    The oxidation of aniline with ammonium peroxydisulfate in the aqueous solution of acetic acid has two subsequent phases: the oxidation of the neutral aniline molecules at low acidity, which was followed by the oxidation of the anilinium cations after the acidity became higher. The final polyaniline film deposited on immersed surfaces is usually contaminated with semi-crystalline oligomers which precipitated during induction period from the reaction medium. To obtain a homogeneous film, which is important in the fabrication of many molecular electronic devices, we have studied the course of aniline oxidation in a view of new experimental evidence. In the unique series of experiments, the silicon or gold supports have been immersed in the reaction mixture at crucial stages of oxidation reaction, and the deposits at the end of the reaction were analyzed. The growth of a highly homogenous film on the gold-coated glass substrate immersed in the reaction mixture at the end of the polymerization period has been observed. The molecular structure of the products was monitored with UV-visible, infrared, and Raman spectroscopies. The possible mechanism of the film formation and the molecular mechanism of the surface interaction of chemisorbed aniline oligomers with gold support are proposed.

  8. Spectroscopic study of the highly homogeneous polyaniline film formation on gold support.

    PubMed

    Morávková, Zuzana; Stejskal, Jaroslav; Trchová, Miroslava

    2016-01-01

    The oxidation of aniline with ammonium peroxydisulfate in the aqueous solution of acetic acid has two subsequent phases: the oxidation of the neutral aniline molecules at low acidity, which was followed by the oxidation of the anilinium cations after the acidity became higher. The final polyaniline film deposited on immersed surfaces is usually contaminated with semi-crystalline oligomers which precipitated during induction period from the reaction medium. To obtain a homogeneous film, which is important in the fabrication of many molecular electronic devices, we have studied the course of aniline oxidation in a view of new experimental evidence. In the unique series of experiments, the silicon or gold supports have been immersed in the reaction mixture at crucial stages of oxidation reaction, and the deposits at the end of the reaction were analyzed. The growth of a highly homogenous film on the gold-coated glass substrate immersed in the reaction mixture at the end of the polymerization period has been observed. The molecular structure of the products was monitored with UV-visible, infrared, and Raman spectroscopies. The possible mechanism of the film formation and the molecular mechanism of the surface interaction of chemisorbed aniline oligomers with gold support are proposed. PMID:26231780

  9. Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites

    NASA Astrophysics Data System (ADS)

    Yuan, Bingqing; Yu, Liming; Sheng, Leimei; An, Kang; Zhao, Xinluo

    2012-06-01

    Single-wall carbon nanotube/polyaniline (SWCNT/PANI) and graphene sheet/polyaniline (GS/PANI) composites were prepared by a simple alcohol-assisted dispersion and pressing process. The SWCNTs and GSs were synthesized by the dc arc-discharge method. The dc electrical conductivity and the electromagnetic interference (EMI) shielding effectiveness (SE) of these two kinds of composites were measured. The experimental results reveal that the conductivity and the EMI SE of the GS/PANI composite are better than that of the SWCNT/PANI composite, and the absorption proportion of the SWCNT/PANI composite is higher than that of the GS/PANI composite. The EMI shielding results (2-18 GHz) also show that both composites present an absorption-dominant mechanism and present a wide application prospect in the field of EMI shielding and microwave absorption.

  10. Graphene/polyaniline composite sponge of three-dimensional porous network structure as supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Jiu-Xing, Jiang; Xu-Zhi, Zhang; Zhen-Hua, Wang; Jian-Jun, Xu

    2016-04-01

    As a supercapacitor electrode, the graphene/polyaniline (PANI) composite sponge with a three-dimensional (3D) porous network structure is synthesized by a simple three-step method. The three steps include an in situ polymerization, freeze-drying and reduction by hydrazine vapor. The prepared sponge has a large specific surface area and porous network structure, so it is in favor of spreading the electrolyte ion and increasing the charge transfer efficiency of the system. The process of preparation is simple, easy to operate and low cost. The composite sponge shows better electrochemical performance than the pure individual graphene sponge while PANI cannot keep the shape of a sponge. Such a composite sponge exhibits specific capacitances of 487 F·g‑1 at 2 mV/s compared to pristine PANI of 397 F·g‑1. Project supported by the Natural Science Foundation from Harbin University of Science and Technology and Harbin Institute of Technology.

  11. Polyaniline-copper oxide composite: A high performance shield against electromagnetic pollution

    NASA Astrophysics Data System (ADS)

    Rahul, Duvvuri Surya; Pais, Tyson P. M.; Sharath, N.; Ali, Syed Amjad; Faisal, Muhammad

    2015-06-01

    This work reports the electromagnetic interference (EMI) shielding properties of polyaniline-copper oxide PAni/CuO composites prepared by in-situ emulsion polymerization. The shielding measurements have been carried out in the microwave frequency range of 8 to 12 GHz (X-band). The composites showed total EMI shielding effectiveness (SE) of -32 to -37.3 dB (> 99.99 % attenuation) with higher dielectric loss (ɛ″) in the range of 142 to 165, indicating their potential as high performance shield throughout the X-band. The results indicate that the electromagnetic properties of the composites depend on the content of CuO in PAni matrix.

  12. (Metal-Organic Framework)-Polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Guo, ShuaiNan; Zhu, Yong; Yan, YunYun; Min, YuLin; Fan, JinChen; Xu, QunJie; Yun, Hong

    2016-06-01

    Carbonized Zn-(Metal-Organic Framework)MOF- polyaniline composites for high performance of supercapacitor have been developed from zinc acetate, 8-Hydroxyquinoline, and aniline via a simple process. The as-synthesized product has been characterized by X-ray powder diffraction (XRD), Scanning electron microscopy(SEM), Fourier transform infrared spectra (FT-IR), Transmission electron microscope (TEM). The electrochemical properties of carbonized Zn-MOF/polyaniline electrode were investigated by current charge-discharge and cyclic voltammetry. The specific capacitance of MOF/PANI has been approach to be as high as 477 F g-1 at a current density of 1 A g-1.

  13. Facile route to covalently-jointed graphene/polyaniline composite and it's enhanced electrochemical performances for supercapacitors

    NASA Astrophysics Data System (ADS)

    Qiu, Hanxun; Han, Xuebin; Qiu, Feilong; Yang, Junhe

    2016-07-01

    A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g-1 at 0.5 A g-1, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  14. Polymer film composite transducer

    DOEpatents

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  15. Oriented ZnO nanorods grown on a porous polyaniline film as a novel coating for solid-phase microextraction.

    PubMed

    Zeng, Jingbin; Zhao, Cuiying; Chong, Fayun; Cao, Yingying; Subhan, Fazle; Wang, Qianru; Yu, Jianfeng; Zhang, Maosheng; Luo, Liwen; Ren, Wei; Chen, Xi; Yan, Zifeng

    2013-12-01

    In this work, oriented ZnO nanorods (ZNRs) were in situ hydrothermally grown on a porous polyaniline (PANI) film to function as a solid-phase microextraction (SPME) coating. Scanning electron microscopy (SEM) study revealed that the majority of oriented ZNRs grew from pores of PANI matrix, which protected the ZNRs from easily peeling off during operation. Furthermore, in this process, a thin layer of PANI was found to cover the ZNRs, which can enlarge the effective surface area of the composite coating. This ZNRs/PANI composite coating combined the merits of both ZNRs and PANI and, thus, has several advantages over that of sole PANI film and ZNRs coating such as improved extraction efficiency for benzene homologues, enhanced mechanical stability and longer service life (over 150 cycles of SPME-GC operation). Coupled with gas chromatography-flame ionization detector (GC-FID), the optimized SPME-GC-FID method was used for the analysis of six benzene homologues in water samples. The calibration curves were linear from 1 to 1000μgL(-1) for each analyte, and the limits of detection were between 0.001 and 0.024μgL(-1). Single fiber repeatability and fiber-to-fiber reproducibility were in the range of 1.3-6.8% and 5.3-11.2%, respectively. The spiked recoveries at 100 and 5μgL(-1) for three environmental water samples were in the range of 79.8-115.4% and 73.7-117.4%, respectively. PMID:24182864

  16. Thin-film microelectric arrays for amperometric enzyme biosensors with electrochemically synthesized glucose oxidase-polyaniline membrane

    NASA Astrophysics Data System (ADS)

    Dzyadevich, Sergei V.; Rossokhaty, Victor K.; Shram, Nataly; Shul'ga, Alexander A.; Soldatkin, Alexey P.; Strikha, Vitaly I.

    1994-10-01

    An amperometric glucose biosensor was fabricated by the electrochemical polymerization of aniline onto a gold electrodes in presence of glucose oxidase in phosphate buffer solution, pH 7.0. Aniline is easily polymerized forming a thin film, which adheres tightly on the electrodes surface. During the electropolymerization process the enzyme was entrapped into the polyaniline film being able to catalyze the hydrolysis of glucose. The experiments were performed to determine the optimal condition for polyaniline-glucose oxidase film preparation. Glucose can be determined by the biosensor in the concentration range 10-4 M to 2 X 10-2 M. The linearity of the biosensor response was observed from 2 X 10-4 M to 6 X 10-3 M glucose, which demonstrated that the internal diffusion of substrates and products of reaction through the polyaniline layer to the electrodes surface was the main limiting factor controlling the response value. The method of electropolymerization was found to have several advantage in comparison with other approaches especially for further mass manufacturing of the biosensors.

  17. Electrochemically Active Polyaniline (PANi) Coated Carbon Nanopipes and PANi Nanofibers Containing Composite.

    PubMed

    Ramana, G Venkata; Kumar, P Sampath; Srikanth, Vadali V S S; Padya, Balaji; Jain, P K

    2015-02-01

    A composite constituted by carbon nanopipes (CNPs) and polyaniline nanofibers (PANi NFs) is synthesized using in-situ chemical oxidative polymerization. Owing to its electrochemical activity the composite is found to be suitable as a working electrode material in hybrid type supercapacitors. Microstructural and phase analyses of the composite showed that (i) CNP surfaces are coated with PANi and (ii) PANi coated CNPs are distributed among PANi NFs. The composite shows an excellent electrochemical activity and a high specific capacitance of ~224.39 F/g. The electro-chemical activity of the composite is explicated in correlation with crystallinity, intrinsic oxidation state, and doping degree of PANi in the composite. The electro-chemical activity of the composite is also explicated in correlation with BET surface area and ordered meso-porosity pertaining to the composite. Charge/discharge curves indicate that the specific capacitance of the composite is a result of electric double-layer capacitance offered by CNPs and Faradaic pseudo capacitance offered by PANi NFs. PMID:26353652

  18. Structural, thermal and electrical characterizations of multiwalled carbon nanotubes and polyaniline composite

    NASA Astrophysics Data System (ADS)

    Singh, Kamal; Garg, Leena; Singh, Jaspal; Kumar, Sanjeev; Sharma, Amit L.

    2016-05-01

    The undoped and doped composite of MWNTs (Multiwalled Carbon Nanotubes) with PANI (/Polyaniline) was prepared by chemical oxidative polymerization. The MWNTs/PANI composites have been characterized by using various techniques like Thermogravometric Analysis (TGA), Fourier transform infrared (FT-IR) spectrometer and Field emission scanning electron microscope (FE-SEM) and conductivity measurement by using two probe method. TGA results has shown that thermal stability followed the pattern undoped MWNTs/PANI composite < doped MWNTs/PANI composite. FE-SEM micrographs demonstrated the morphological changes on the surface of MWNTs as a result of composite formation. Fourier transformed infrared (FT-IR) spectra ascertained the formation of the composite. Study of electrical characteristics demonstrated that the doped MWNTs/PANI composite (1.2 × 101 Scm-1) have better conductivity than the undoped MWNTs/PANI composite (10-4 Scm-1). These CNTs based polymeric composites are of great importance in developing new nano-scale devices for future chemical, mechanical and electronic applications.

  19. Correlation of Structural Differences between Nafion/Polyaniline and Nafion/Polypyrrole Composite Membranes and Observed Transport Properties

    SciTech Connect

    Schwenzer, Birgit; Kim, Soowhan; Vijayakumar, M.; Yang, Zhenguo; Liu, Jun

    2011-04-15

    Polyaniline/Nafion and polypyrrole/Nafion composite membranes, prepared by chemical polymerization, are studied by infrared and nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Differences in vanadium ion diffusion through the membranes and in the membranes’ area specific resistance are linked to analytical observations that polyaniline and polypyrrole interact differently with Nafion. Polypyrrole, a weakly basic polymer, binds less strongly to the sulfonic acid groups of the Nafion membrane, and thus the hydrophobic polymer aggregates in the center of the Nafion channel rather than on the hydrophilic side chains of Nafion that contain sulfonic acid groups. This results in a drastically elevated membrane resistance and an only slightly decreased vanadium ion permeation compared to a Nafion membrane. Polyaniline on the other hand is a strongly basic polymer, which forms along the sidewalls of the Nafion pores and on the membrane surface, binding tightly to the sulfonic acid groups of Nafion. This leads to a more effective reduction in vanadium ion transport across the polyaniline/Nafion membranes and the increase in membrane resistance is less severe. The performance of selected polypyrrole/Nafion composite membranes is tested in a static vanadium redox cell. Increased coulombic efficiency, compared to a cell employing Nafion, further confirms the reduced vanadium ion transport through the composite membranes.

  20. Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite

    NASA Astrophysics Data System (ADS)

    Li, Yuqing; Huang, Ying; Qi, Shuhua; Niu, Lei; Zhang, Yinling; Wu, Yanfei

    2012-02-01

    Strontium ferrite particles were firstly prepared by sol-gel method and self-propagating synthesis, and then the polyaniline/strontium ferrite/multiwalled carbon nanotubes composites were synthesized through in situ polymerization approach. Structure, morphology and properties of the composite were characterized by various instruments. XRD analysis shows that the output of PANI increases with the increase of the content of MWCNTs, due to the large surface area of MWCNTs. Because of the coating of PANI, the outer diameter of MWCNTs increases from 10 nm to 20-40 nm. The electrical conductivity of the composites increases with the amount increase of MWCNTs and reaches 7.2196 S/cm in the presence of 2 g MWCNTs. The coercive force of the composites prepared with 2 g MWCNTs is 7457.17 Oe, which is much bigger than that of SrFe12O19 particles 6145.6 Oe, however, both the saturation magnetization and the remanent magnetization of the composite become much smaller than those of SrFe12O19 particles. The electromagnetic properties of the composite are excellent in the frequency range of 2-18 GHz, which mainly depend on the dielectric loss in the range of 2-9 GHz, and mainly on the magnetic loss in the range of 9-18 GHz.

  1. Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors.

    PubMed

    Oh, Misoon; Kim, Seok

    2012-01-01

    Polyaniline (PANI)/activated carbon (AC) composites were prepared by a chemical oxidation polymerization. To find an optimum ratio between PANI and AC which shows superior electrochemical properties, the preparation was carried out in changing the amount of added aniline monomers. The morphology of prepared composites was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The structural and thermal properties were investigated by Fourier transform infrared spectra (FT-IR) and thermal gravimetric analysis (TGA), respectively. The electrochemical properties were characterized by cyclic voltammetry (CV). Composites showed a summation of capacitances that consisted of two origins. One is double-layer capacitance by ACs and the other is faradic capacitance by redox reaction of PANI. Fiber-like PANIs are coated on the surface of ACs and they contribute to the large surface for redox reaction. The vacancy among fibers provided the better diffusion and accessibility of ion. High capacitances of composites were originated from the network structure having vacancy made by PANI fibers. It was found that the composite prepared with 5 ml of aniline monomer and 0.25 g of AC showed the highest capacitance. Capacitance of 771 F/g was obtained at a scan rate of 5 mV/s. PMID:22524013

  2. Synthesis and electrochemical performance of polyaniline-MnO2 nanowire composites for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Song, Zhaoxia; Liu, Guichang; Qiu, Jieshan; Yu, Chang; Qin, Jiwei; Ma, Lin; Tian, Fengqin; Liu, Wei

    2013-02-01

    Polyaniline-MnO2 nanowire (PANI-MNW) composites were prepared by in situ chemical oxidative polymerization of aniline monomer in a suspension of MnO2 nanowires. The structure and morphology of the PANI-MNW composites were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their electrochemical properties were investigated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 mol/L KOH electrolyte. The PANI-MNW composites show significantly better specific capacity and redox performance in comparison to the untreated MnO2 nanowires. The enhanced properties can be mainly attributed to the composite structure wherein high porosity is created between MnO2 nanowires and PANI during the process of fabricating the PANI-MNW nanocomposites. A specific capacitance as high as 256 F/g is obtained at a current density of 1 A/g for PANI-MNW-5, and the composite also shows a good cyclic performance and coulomb efficiency.

  3. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Jing; Xie, Huaqing; Li, Yang; Liu, Jie; Li, Zhuxin

    Graphene nanosheets/polyaniline nanofibers (GNS/PANI) composites are synthesized via in situ polymerization of aniline monomer in HClO 4 solution. The PANI nanofibers homogeneously coating on the surface of GNS greatly improve the charge transfer reaction. The GNS/PANI composites exhibit better electrochemical performances than the pure individual components. A remarkable specific capacitance of 1130 F g -1 (based on GNS/PANI composites) is obtained at a scan rate of 5 mV s -1 in 1 M H 2SO 4 solution compared to 402 F g -1 for pure PANI and 270 F g -1 for GNS. The excellent performance is not only due to the GNS which can provide good electrical conductivity and high specific surface area, but also associate with a good redox activity of ordered PANI nanofibers. Moreover, the GNS/PANI composites present excellent long cycle life with 87% specific capacitance retained after 1000 charge/discharge processes. The resulting composites are promising electrode materials for high-performance electrical energy storage devices.

  4. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    PubMed

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. PMID:26197106

  5. Modification of inner surface of photonic crystal fibers with self-assembled polyaniline films

    NASA Astrophysics Data System (ADS)

    Pidenko, Sergei A.; Pidenko, Pavel S.; Bondarenko, Sergei D.; Shuvalov, Andrei A.; Burmistrova, Natalia A.; Goryacheva, Irina Y.

    2016-04-01

    Photonic crystal fibers (PCFs) with a hollow core are one of the most promising solid support of fiber-optic sensors. The main advantages of PCF as sensor elements in clinical analysis are minimization of optical interactions from the sample and the ability to analyze small volume of samples. At the same time, low sorption capacity of glass which is the basic material for the fabrication of the PCF, limits their use in the development of biosensors. Modification of the inner surface of the PCF can be the solution of the problem. In this work the synthesis of self-assembled films of polyaniline (PANI) on the inner surface of the PCFs was carried out. The modified PCFs were studied by spectroscopy and electron microscopy. It was found that the covering of the inner surface of the PCFs with PANI leads to a shift of the local maximums of the transmission spectrum PCFs up to 25 nm. These makes possible to design the method of varying of photonic bandgaps location.

  6. Nanostructured polyaniline rice husk composite as adsorption materials synthesized by different methods

    NASA Astrophysics Data System (ADS)

    Tot Pham, Thi; Thanh Thuy Mai, Thi; Quy Bui, Minh; Mai, Thi Xuan; Yen Tran, Hai; Binh Phan, Thi

    2014-03-01

    Composites based on polyaniline (PANi) and rice husk (RH) were prepared by two methods: the first one was chemical method by combining RH contained in acid medium and aniline using ammonium persulfate as an oxidation agent and the second one was that of soaking RH into PANi solution. The presence of PANi combined with RH to form nanocomposite was clearly demonstrated by infrared (IR) spectra as well as by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Lead(II) and cadmium(II) ion concentrations in solution before and after adsorption process on those composites were analysed by atomic adsorption spectroscopy. Of the above preparation methods, the soaking one provided a composite onto which the maximum adsorption capacity was higher for lead(II) ion (200 mg g-1), but lower for cadmium(II) ion (106.383 mg g-1) in comparison with the chemical one. However, their adsorption process occurring on both composites also fitted well into the Langmuir isotherm model.

  7. Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications.

    PubMed

    Bhaumik, Madhumita; Choi, Hyoung J; McCrindle, Rob I; Maity, Arjun

    2014-07-01

    Presented here is a simple preparation of metallic iron nanoparticles, supported on polyaniline nanofibers at room temperature. The preparation is based on polymerization of interconnected nanofibers by rapid mixing of the aniline monomer with Fe(III) chloride as the oxidant, followed by reductive deposition of Fe(0) nanoparticles, using the polymerization by-products as the Fe precursor. The morphology and other physico-chemical properties of the resulting composite were characterized by scanning and transmission electron microscopy, Brunauer-Emmett-Teller method, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and vibrating-sample magnetometry. The composite fibers were 80-150 nm in diameter and exhibited the expected ferromagnetic behavior. The composite rapidly and efficiently removed As(V), Cr(VI), and also Congo red dye, from aqueous solutions suggesting their usefulness for removal of toxic materials from wastewater. The composite fibers have high capacity for toxin removal: 42.37 mg/g of As(V), 434.78 mg/g of Cr(VI), and 243.9 mg/g of Congo red. The fibers are easily recovered from fluids by exploiting their ferromagnetic properties. PMID:24776666

  8. Fabrication of Vertical Array CNTs/Polyaniline Composite Membranes by Microwave-Assisted In Situ Polymerization

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Li, Xiaoyan; Wang, Xia; Zhang, Jinrui; Yu, Dengguang; Qiu, Biwei

    2015-12-01

    A vertical array carbon nanotubes (VACNTs)/polyaniline (PANi) composite membrane was prepared by microwave-assisted in situ polymerization. With microwave assistance, the morphology of PANi revealed a smaller diameter and denser connection. Meanwhile, thermogravimetric analysis showed improved thermal stability of microwave-assisted PANi for higher molecular weight. Focused ion beam thinning method was used to cut the VACNTs/PANi membrane into dozen-nanometer thin strips along the cross-sectional direction, and transmission electron microscopy observation showed seamless deposition of PANi between VACNT gaps, without damaging the vertical status of CNTs. Meanwhile, stronger conjugate interaction between the quinoid ring of PANi and VACNTs of the composite membrane were prompted by microwave-assisted in situ polymerization. By using nanoindentation technology, the VACNTs/PANi composite membrane showed exponential increasing of modulus and hardness. Meanwhile, the elasticity was also improved, which was proved by the calculated plastic index. The results can provide helpful guidance for seamlessly infiltrating matrix into CNT array and also demonstrate the importance of structural hierarchy for getting proper behavior of nanostructures.

  9. High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge

    NASA Astrophysics Data System (ADS)

    Moussa, Mahmoud; El-Kady, Maher F.; Wang, Hao; Michimore, Andrew; Zhou, Qinqin; Xu, Jian; Majeswki, Peter; Ma, Jun

    2015-02-01

    We in this study used a commercial grade kitchen sponge as the scaffold where both graphene platelets (GnPs) and polyaniline (PANi) nanorods were deposited. The high electrical conductivity of GnPs (1460 S cm-1) enhances the pseudo-capacitive performance of PANi grown vertically on the GnPs basal planes; the interconnected pores of the sponge provide sufficient inner surface between the GnPs/PANi composite and the electrolyte, which thus facilitates ion diffusion during charge and discharge processes. When the composite electrode was used to build a supercapacitor with two-electrode configuration, it exhibited a specific capacitance of 965.3 F g-1 at a scan rate of 10 mV s-1 in 1.0 M H2SO4 solution. In addition, the composite Nyquist plot showed no semicircle at high frequency corresponding to a low equivalent series resistance of 0.35 Ω. At 100 mV s-1, the supercapacitor demonstrated an energy density of 34.5 Wh kg-1 and a power density of 12.4 kW kg-1 based on the total mass of the active materials on both electrodes. To demonstrate the performance, we built an array consisting of three cells connected in series, which lit up a red light emitting diode for five minutes. This simple method holds promise for high-performance yet low-cost electrodes for supercapacitors.

  10. Photocurrent enhancement in hybrid cadmium sulfide/conjugated polyaniline nanofiber composites by introducing iodine

    NASA Astrophysics Data System (ADS)

    Hu, Chenglong; Chen, Shaoyun; Peng, Sha; Liu, Xueqing; Liu, Jiyan

    2015-12-01

    In this paper, the effect of iodine on the photocurrent of conjugated polymer/inorganic semiconductor nanocomposites is investigated. Via a redox process, iodine nanoparticles are coated on the surface of highly active nanofiber of conjugated polyaniline (PANI), forming an electron donor (i.e., I2@PANI). After subsequent incorporation of CdS nanoparticles (serving as electron acceptors), the photocurrent of the I2@PANI-CdS system is greatly enhanced as compared to that of the PANI-CdS hybrid. This obvious enhancement is due to the fact that the existence of I2 causes significant improvement in the charge transfer, which has favorable penetration ability into the porous semiconductor film, fast charge transfer and relatively slow recombination with injected photoelectrons. As a result, the total concentration of charge carriers in the CdS nanoparticles may increase as compared to that in bulk CdS. As a result, the photocurrent of CdS in I2@PANI-CdS nanocomposites is remarkably enhanced.

  11. Composite of single walled carbon nanotube and sulfosalicylic acid doped polyaniline: a thermoelectric material

    NASA Astrophysics Data System (ADS)

    Jana Chatterjee, Mukulika; Banerjee, Dipali; Chatterjee, Krishanu

    2016-08-01

    Nanocomposites containing single walled carbon nanotubes (SWCNTs) and highly ordered polyaniline (PANI) have been synthesized employing an in situ polymerization using different weight percentages of single-walled carbon nanotube (SWCNT) as template and aniline as a reactant. The composites show homogeneously dispersed SWCNTs which are uniformly coated with PANI through a strong interface interaction. Structural characterization shows that the PANI cultivated along the surface of the SWCNTs in an ordered manner during the SWCNT-directed polymerization process. Measurements at room temperature displayed a significant enhancement in both the electrical conductivity and thermoelectric power which could be attributed to the more ordered chain structures of the PANI on SWCNT. As a result, the power factor of the composite is improved which increases with temperature. At the same time, the measured value of thermal conductivity at room temperature being lowest among the reported values, has resulted in best ZT at room temperature. The lowest value of thermal conductivity is attributed to the large phonon scattering due to the introduction of nanointerfaces.

  12. Polyaniline/carbon nanotube/CdS quantum dot composites with enhanced optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Goswami, Mrinmoy; Ghosh, Ranajit; Maruyama, Takahiro; Meikap, Ajit Kumar

    2016-02-01

    A new kind of polyaniline/carbon nanotube/CdS quantum dot composites have been developed via in-situ polymerization of aniline monomer in the presence of dispersed CdS quantum dots (size: 2.7-4.8 nm) and multi-walled carbon nanotubes (CNT), which exhibits enhanced optical and electrical properties. The existences of 1st order, 2nd order, and 3rd order longitudinal optical phonon modes, strongly indicate the high quality of synthesized CdS quantum dots. The occurrence of red shift of free exciton energy in photoluminescence is due to size dependent quantum confinement effect of CdS. The conductivity of the composites (for example PANI/CNT/CdS (2 wt.% CdS)) is increased by about 7 of magnitude compared to that of pure PANI indicating a charge transfer between CNT and polymer via CdS quantum dots. This advanced material has a great potential for high-performance of electro-optical applications.

  13. Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study

    NASA Astrophysics Data System (ADS)

    Papathanassiou, Anthony N.; Mykhailiv, Olena; Echegoyen, Luis; Sakellis, Ilias; Plonska-Brzezinska, Marta E.

    2016-07-01

    The complex electric modulus and the ac conductivity of carbon nano-onion/polyaniline composites were studied from 1 mHz to 1 MHz at isothermal conditions ranging from 15 K to room temperature. The temperature dependence of the electric modulus and the dc conductivity analyses indicate a couple of hopping mechanisms. The distinction between thermally activated processes and the determination of cross-over temperature were achieved by exploring the temperature dependence of the fractional exponent of the dispersive ac conductivity and the bifurcation of the scaled ac conductivity isotherms. The results are analyzed by combining the granular metal model (inter-grain charge tunneling of extended electron states located within mesoscopic highly conducting polyaniline grains) and a 3D Mott variable range hopping model (phonon assisted tunneling within the carbon nano-onions and clusters).

  14. Electrical transport and thermochromic properties of polyaniline/chitosan/Co3O4 ternary nano composite

    NASA Astrophysics Data System (ADS)

    V, Mini; Kamath, Archana; S, Raghu; Chapi, Sharanappa; H, Devendrappa

    2015-06-01

    A new Polyaniline/ chitosan/ Co3O4 (CPAESCO) ternary nanocomposite is prepared by in situ oxidation polymerization of aniline in the presence of (NH4)2S2O8, chitosan and Co3O4. The Structural, Thermal, Optical and Electrical features of Polyaniline (PANI), Polyaniline/ chitosan (CPANI) and CPAESCO were analyzed using FT-IR, TGA, UV-vis analysis and Impedance spectroscopy by varying temperature. The results show that the introduction of the Co3O4 nanoparticles into CPANI matrix enhanced its properties. Mott's parameters show 3D -VRH Type conduction in it.

  15. Correlation between Raman spectroscopy and electrical conductivity of graphite/polyaniline composites reacted with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Aymen, Mannai; Sami, Saidi; Ahmed, Souissi; Fethi, Gmati; Abdellatif, Belhadj Mohamed

    2013-08-01

    The aim of this work is to correlate the Raman spectroscopic studies to the electrical properties of graphite/polyaniline composites (G/PANI) reacted with hydrogen peroxide. Raman spectroscopic studies have been performed for G/PANI composites with different graphite weight concentrations (y% = 0, 10, 20, 50). As expected, Raman bands situated at 1350 and 1580 cm-1 coming from graphite lattice appear, and their intensity increases with increasing graphite concentrations. The measured Raman region (1170-1800 cm-1) of PANI reacted with hydrogen peroxide was convoluted and fitted with seven Lorentzian curves. Three Lorentzian curves centred at 1609, 1578 and 1336 cm-1 are investigated. We find that the band at 1578 cm-1 attributed to the C=C stretching vibration in the quinonoid ring (Q) is slightly shifted to 1584 cm-1 and its intensity increases during the reaction with hydrogen peroxide. However, the peaks at 1609 and 1336 cm-1 attributed respectively to the C-C stretching of the benzenoid ring (B) and C-N+. vibration of delocalized polaronic structures (protonation band—PB), keep the same position and their intensities decrease. This could be interpreted as a deprotonation of imines nitrogen atoms in PANI. These results were correlated with the electrical percolation behaviour which occurs in the composite. Indeed, the electrical conductivity of G/PANI composites treated with H2O2 increases with increasing G weight concentration, only when this later becomes higher than a critical concentration yc known as the percolation threshold. We find that the percolation behaviour is linked to the intensity decrease of B and PB bands and to the intensity increase of Q band.

  16. Electromechanical behavior of polyaniline/poly (vinyl alcohol) blend films under static, dynamic and time-dependent strains

    NASA Astrophysics Data System (ADS)

    Akhilesan, S.; Lakshmana Rao, C.; Varughese, S.

    2014-07-01

    We report on the experimentally observed electrical conductivity enhancement in polyaniline/poly (vinyl alcohol) blend films under uniaxial tensile loading. Polyaniline (PANI) is an intrinsically conducting polymer, which does not form stretchable free-standing films easily and hence its electromechanical characterization is a challenge. Blending of PANI with other insulating polymers is a good choice to overcome the processability problem. We report the electromechanical response of solution blended and HCl doped PANI/PVA blends subjected to uniaxial, static, dynamic and time-dependent tensile loading. The demonstrated viscoelastic and morphological contributions of the component polymers to the electrical conductivity behavior in these blends could lead to interesting applications in strain sensors and flexible electronics. The reversibility of the electromechanical response under dynamic strain is found to increase in blends with higher PANI content. Time-dependent conductivity studies during mechanical stress relaxation reveal that variations in the micro-domain ordering and the relative relaxation rate of the individual polymer phases can give rise to interesting electrical conductivity changes in PANI blends. From morphological and electrical conductivity studies, we show that PANI undergoes primary and secondary agglomeration behavior in these blends that contributes to the changes in conductivity behavior during the deformation. A 3D variable range hopping (VRH) process, which uses a deformable core and shell concept based on blend morphology analysis, is used to explain the experimentally observed electromechanical behavior.

  17. Development of a polyaniline-lignocellulose composite for optimal adsorption of Congo red.

    PubMed

    Debnath, Sushanta; Ballav, Niladri; Maity, Arjun; Pillay, Kriveshini

    2015-04-01

    A polyaniline lignocellulose composite (PLC) was synthesized and used in the removal of Congo red (CR) from aqueous solution. The adsorption process showed good fits to both the pseudo-second-order and pseudo-first-order models and the Redlich Peterson isotherm. Boundary layer diffusion was the rate-limiting step. The adsorption was spontaneous and endothermic. The combined effect of pH and initial dye concentration was antagonistic; the combined effect of initial dye concentration and temperature was synergistic, while the combined effect of pH and temperature was reciprocal. The maximum CR adsorption capacity of PLC was evaluated as 1672.5 mg g(-1). The optimal removal was calculated as 99.85% at pH 4.29, initial dye concentration of 28.5 mg L(-1) and adsorbent dosage of 0.69 g L(-1). The predicted removal capacity showed a good correlation to the experimental results. PLC has demonstrated a superior adsorption capacity to many other adsorbents reported and could be used as an efficient adsorbent for CR removal from industrial wastewater. PMID:25620783

  18. Fabrication and characterization of polyaniline-graphene nanoplatelets composite electrode materials for hybrid supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Shi, HaoTian H.; Naguib, Hani E.

    2015-04-01

    Supercapacitor device electrochemical performance characteristics of different nanocomposite materials containing polyaniline (PAni) and graphene nanoplatelets (GnPs) have been evaluated with two-electrode electrochemical setup. The PAni-based nanocomposite electrodes have been fabricated via ultrasonicated in-situ chemical polymerization and solvent casting process. The specific capacitance of the supercapacitor electrode have reached as high as 357.07 F/g at 10mV/s, in the case of 15:1 PAni/GnPs, as a result of graphene nanoparticles' large surface area providing an ideal template for polymerization to occur. Electrodes under study are namely, pristine GnPs, pristine PAni, and 5:1, 15:1 PAni/GnPs nanocomposites. Material composition has been confirmed via thermal gravimetric analysis (TGA), while scanning electron microscopy (SEM) has been used to characterize the morphologies of the nanostructures. Threedimensional nanocomposite morphology has been observed in the micrographs of these nanocomposites, indicating a relationship between the material surface area and the charge storage ability.

  19. Synthesis and electrochemical performance of polyaniline @MnO2/graphene ternary composites for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Pan, Chao; Gu, Haiteng; Dong, Li

    2016-01-01

    We introduce a facile method to construct new ternary hierarchical nanocomposites by combining MnO2 coated one dimensional (1D) conducting polyaniline (PANI) nanowires with 2D graphene sheets (GNs). The hierarchical nanocomposite structures of PANI@MnO2/GNs (PMGNs) are further proved by X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The electrochemical characteristics of the electrodes made of the hierarchical structured PMGNs materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the nanostructured PMGNs exhibit an improved reversible capacitance of 695 F g-1 after 1000 cycles at a high current density of 4 A g-1. The ternary composites possess higher electrochemical capacitance than each individual component as supercapacitor electrode materials. Such intriguing electrochemical performance is mainly attributed to the synergistic effects of MnO2, PANI and graphene. The hierarchical ternary nanocomposites show excellent electrochemical properties for energy storage applications, which evidence their potential application as supercapacitors.

  20. Metallic muscles at work: high rate actuation in nanoporous gold/polyaniline composites.

    PubMed

    Detsi, Eric; Onck, Patrick; De Hosson, Jeff Th M

    2013-05-28

    Metallic muscles made of nanoporous metals suffer from serious drawbacks caused by the usage of an aqueous electrolyte for actuation. An aqueous electrolyte prohibits metallic muscles from operating in dry environments and hampers a high actuation rate due to the low ionic conductivity of electrolytes. In addition, redox reactions involved in electrochemical actuation severely coarsen the ligaments of nanoporous metals, leading to a substantial loss in performance of the actuator. Here we present an electrolyte-free approach to put metallic muscles to work via a metal/polymer interface. A nanocoating of polyaniline doped with sulfuric acid was grown onto the ligaments of nanoporous gold. Dopant sulfate anions coadsorbed into the polymer coating matrix were exploited to tune the nanoporous metal surface stress and subsequently generate macroscopic dimensional changes in the metal. Strain rates achieved in the single-component nanoporous metal/polymer composite actuator are 3 orders of magnitude higher than that of the standard three-component nanoporous metal/electrolyte hybrid actuator. PMID:23582044

  1. Synthesis of highly conductive cotton fiber/nanostructured silver/polyaniline composite membranes for water sterilization application

    NASA Astrophysics Data System (ADS)

    Abu-Thabit, Nedal Y.; Basheer, Rafil A.

    2014-09-01

    Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500-1000 nm size giving a membrane electrical resistance in the range of 10-30 Ohm sq-1. However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2-10 Ohm sq.-1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 107-108 CFU mL-1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h-1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected.

  2. Bi-nanoparticle (CdTe and CdSe) mixed polyaniline hybrid thin films prepared using spin coating technique

    NASA Astrophysics Data System (ADS)

    Verma, Deepak; Dutta, V.

    2009-02-01

    Polyaniline (Pani) films containing CdTe, CdSe, and both nanoparticles were deposited using spin coating technique. Pani was chemically synthesized by oxidation method, whereas surfactant free CdTe and CdSe nanoparticles were prepared using solvothermal method. Binanoparticle films showed an increase in the absorption from 350 nm to the near IR region. Absorption spectra also showed charge transfer complex formation for the binanoparticle hybrid thin films prepared with weight ratio of [Pani (camphor sulfonic acid, CSA):CdTe:CdSe] 200:100:75. Photoluminescence measurement for the bi-nanoparticle hybrid thin films confirmed that the required dissociation of excitons was taking place at the interface. Scanning electron microscopy images showed homogeneity and an interconnected network on the surface of the films prepared with Pani (CSA):CdTe:CdSe weight ratios of 200:100:50 and 200:100:75, respectively. Cyclic voltammetry confirmed better stability for the bi-nanoparticle hybrid films in comparison to Pani film. It also established the process of electrochemical charge transfer between the nanoparticles and the polymer matrix.

  3. Effects of thickness, dopant type and doping levels of flexible nanoscale polyaniline films on responses to gases

    NASA Astrophysics Data System (ADS)

    Sinha, Mousumi; Panda, Siddhartha

    2015-07-01

    While doped nanoscale (sub-100 nm) polyaniline films have shown interesting behavior with respect to electrical conductivities and thermal sensing, there has been scant attention to responses of such films to gases. In this work, a detailed study on the effects of film thicknesses, doping levels and dopant types on the responses to different gases is presented. The responses to NO2 were higher than to NO and NH3, and the films were unresponsive to N2, O2, CO2 and H2. The responses to NO2 and NH3 increased with decrease in film thickness below about 50 nm and were prominent at lower doping levels, and also were dependent on the type of dopant used. Explanations for the experimental observations were provided based on energy considerations. The modulation of the calculated LUMO levels and band gaps, and the Fermi energy levels at lower film thicknesses and doping levels correlated well with the responses. As the transfer of electrons resulting in the formation of the charge complex depends on the difference between the Fermi level of the film and the Mulliken electronegativity of the gas molecules, this difference in the energy levels also correlated with the effects of different gases and different dopants. Limited tests on the effect of water vapor were conducted.

  4. An Introduced Hybrid Graphene/Polyaniline Composites for Improvement of Supercapacitor

    NASA Astrophysics Data System (ADS)

    Tayel, Mazhar B.; Soliman, Moataz M.; Ebrahim, Shaker; Harb, Mohamed E.

    2016-01-01

    Supercapacitors represent an attractive alternative for portable electronics and automotive applications due to their high capacitance, specific power and extended life. In fact, the growing demand of portable systems and hybrid electric vehicles, memory protection in complementary metal-oxide-semiconductor (CMOS), logic circuit, videocassette recorders (VCRs), compact disc (CD) players, personal computers (PCs), uninterruptible power supply (UPS) in security alarm systems, remote sensing, smoke detectors, etc. require high power in short-term pulses. Therefore, in the last 20 years, supercapacitors have been required for the development of large and small devices driven by electrical power. In this paper, graphene oxide (GO) was synthesized by improved Hummers method. Two polyaniline (PANI)/graphene oxide nanocomposites electrode materials were prepared from aniline, GO and ammoniumpersulfate (APS) by in situ chemical polymerization with the mass ratios (mGO:mAniline) 10:90 and 30: 70 in ice bath. The crystal structure and the surface topography of all materials were characterized by means of x-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of the composites were evaluated by cyclic voltammetry (CV), charge-discharge measurements and electrical impedance spectroscopy (EIS), respectively. The results show that the composites have similar and enhanced cyclic voltammetry performance compared with pure PANI based electrode material. The graphene/PANI composite synthesized with the mass ratio (mANI:mGO) 90:10 possessed good capacitive behavior with a specific capacitance as high as 1509.35 F/g at scan rate of 1 mV/s in scanning potential window from -0.8 V to 0.8 V.

  5. Chitosan composite films. Biomedical applications.

    PubMed

    Cárdenas, Galo; Anaya, Paola; von Plessing, Carlos; Rojas, Carlos; Sepúlveda, Jackeline

    2008-06-01

    Chitosan acetate films have been prepared using chitosans from shrimps (Pleuroncodes monodon) of low and high molecular weight (LMv = 68,000 g/mol and HMv = 232,000 g/mol) and deacetylation degree of 80 and 100%, respectively. The chitosan films were obtained by addition of several additives to acetic acid chitosan solutions, such as: glycerol, oleic acid and linoleic acid in different proportions. The pH of the solutions before casting ranged from 5.0 to 6.0. The composite film thickness are reported. The films have been analyzed by FTIR showing characteristic bands corresponding to the additives. The scanning electron microscopy (SEM) studies reveals the different morphology of the composite films. The films exhibit different physical properties depending upon the additives and/or mixture of them. The addition of glycerol to composite improves the elasticity of the films. The swelling in glucose and saline solutions for several films was evaluated, being higher in the glucose solution. The bactericide test against Staphylococcus aureus, Pseudomona aeruginosa and Acinetobacter baumanii in plates with either blood and or agar tripticase showed that the molecular weight influences on the bactericidal properties of the chitosan composite films and over its effect against gram positive and gram negative bacteria. Medical applications of the composite films were done in patients with burns, ulcers and injuries, the films containing glycerol showed good adhesion in comparison with those without it. The composite films tested were mainly three (1) chitosan acetate with glycerol, (2) chitosan acetate with oleic acid and (3) chitosan acetate with glycerol and oleic acid. Excellent results in the skin recovery were obtained after 7-10 days. Since the chitosan is biodegradable by the body enzymes it does not need to be removed and increases the gradual grows of the damage tissues. PMID:18165888

  6. New membrane technologies: Nanotube membranes for biotechnological applications and polyaniline films for corrosion inhibition

    NASA Astrophysics Data System (ADS)

    Gasparac, Rahela

    polyaniline (PANI) films passivate stainless steel surfaces in highly corrosive H2SO 4 solution. A variety of experimental methods including measurements of the open circuit potential, Auger depth profiling, and the scanning reference electrode technique (SRET) was used. These studies have shown that passivation is achieved because the oxidized and protically-doped emeraldine-salt form of PANI holds the potential of the underlying stainless steel electrode in the passive region. Because of this electrostatic mechanism of corrosion inhibition, the entire stainless steel surface does not have to be coated with PANI in order to achieve passivation.

  7. MnO2 Nanorods Intercalating Graphene Oxide/Polyaniline Ternary Composites for Robust High-Performance Supercapacitors

    PubMed Central

    Han, Guangqiang; Liu, Yun; Zhang, Lingling; Kan, Erjun; Zhang, Shaopeng; Tang, Jian; Tang, Weihua

    2014-01-01

    New ternary composites of MnO2 nanorods, polyaniline (PANI) and graphene oxide (GO) have been prepared by a two-step process. The 100 nm-long MnO2 nanorods with a diameter ~20 nm are conformably coated with PANI layers and fastened between GO layers. The MnO2 nanorods incorporated ternary composites electrode exhibits significantly increased specific capacitance than PANI/GO binary composite in supercapacitors. The ternary composite with 70% MnO2 exhibits a highest specific capacitance reaching 512 F/g and outstanding cycling performance, with ~97% capacitance retained over 5000 cycles. The ternary composite approach offers an effective solution to enhance the device performance of metal-oxide based supercapacitors for long cycling applications. PMID:24769835

  8. Simple and mass-produced mechanochemical preparation of graphene nanosheet/polyaniline composite assisted with bifunctional ionic liquid

    NASA Astrophysics Data System (ADS)

    Lu, Xiangjun; Dou, Hui

    2016-05-01

    Graphene nanosheet/polyaniline (GNS/PANI) composite was prepared by a simple and mass-produced mechanochemical method, where the functionalized ionic liquid 1-(3-sulfonic acid) propyl-3-methylimidazolium hydrogen sulfate conducts as not only the dispersant of GNS but also the dopant of PANI. The GNS/PANI composite characterized by Fourier transformation infrared spectra, UV-Vis spectra and X-ray diffraction shows that the resulting PANI in composite is in its doped, conductive emeraldine oxidation state. Scanning electron microscope images reveal that the GNS/PANI composite with PANI uniformly coated on the surface of GNS is randomly stacking. Compared with pure PANI, the GNS/PANI composite has higher electrical conductivity, better thermal stability and electrochemical activity due to the presence of GNS.

  9. Enhanced thermal stability under DC electrical conductivity retention and visible light activity of Ag/TiO₂@polyaniline nanocomposite film.

    PubMed

    Ansari, Mohd Omaish; Khan, Mohammad Mansoob; Ansari, Sajid Ali; Raju, Kati; Lee, Jintae; Cho, Moo Hwan

    2014-06-11

    The development of organic-inorganic photoactive materials has resulted in significant advancements in heterogeneous visible light photocatalysis. This paper reports the synthesis of visible light-active Ag/TiO2@Pani nanocomposite film via a simple biogenic-chemical route. Electrically conducting Ag/TiO2@Pani nanocomposites were prepared by incorporating Ag/TiO2 in N-methyl-2-pyrrolidone solution of polyaniline (Pani), followed by the preparation of Ag/TiO2@Pani nanocomposite film using solution casting technique. The synthesized Ag/TiO2@Pani nanocomposite was confirmed by UV-visible spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The Ag/TiO2@Pani nanocomposite film showed superior activity towards the photodegradation of methylene blue under visible light compared to Pani film, even after repeated use. Studies on the thermoelectrical behavior by DC electrical conductivity retention under cyclic aging techniques showed that the Ag/TiO2@Pani nanocomposite film possessed a high combination of electrical conductivity and thermal stability. Because of its better thermoelectric performance and photodegradation properties, such materials might be a suitable advancement in the field of smart materials in near future. PMID:24836114

  10. A Simple Visual Ethanol Biosensor Based on Alcohol Oxidase Immobilized onto Polyaniline Film for Halal Verification of Fermented Beverage Samples

    PubMed Central

    Kuswandi, Bambang; Irmawati, Titi; Hidayat, Moch Amrun; Jayus; Ahmad, Musa

    2014-01-01

    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%–0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification. PMID:24473284

  11. A simple visual ethanol biosensor based on alcohol oxidase immobilized onto polyaniline film for halal verification of fermented beverage samples.

    PubMed

    Kuswandi, Bambang; Irmawati, Titi; Hidayat, Moch Amrun; Jayus; Ahmad, Musa

    2014-01-01

    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%-0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification. PMID:24473284

  12. Gold-polyaniline composites: Part II. Effects of nanometer sized particles

    SciTech Connect

    Smith, Jon A.; Josowicz, Mira A.; Engelhard, Mark H.; Baer, Donald R.; Janata, Jiri

    2005-09-01

    The amount of electronic charge transferred between gold particles and polyaniline depends not only on the electron affinity of the two materials but also on the size of the gold particles. As measured by X-ray photoelectron spectroscopy, for particles < 5 nm the binding energy of the electrons is size dependent. This nano-effect has its origin in the electrostatics of particles. It is demonstrated as a measurable shift of the binding energy of the Au4f7/2 photoelectrons emitted from Au particles embedded in a polyaniline matrix. Gold nanoparticle size was evaluated by high resolution transmission electron microscopy.

  13. Polyaniline nanowire synthesis templated by DNA

    NASA Astrophysics Data System (ADS)

    Nickels, Patrick; Dittmer, Wendy U.; Beyer, Stefan; Kotthaus, Jörg P.; Simmel, Friedrich C.

    2004-11-01

    DNA-templated polyaniline nanowires and networks are synthesized using three different methods. The resulting DNA/polyaniline hybrids are fully characterized using atomic force microscopy, UV-vis spectroscopy and current-voltage measurements. Oxidative polymerization of polyaniline at moderate pH values is accomplished using ammonium persulfate as an oxidant, or alternatively in an enzymatic oxidation by hydrogen peroxide using horseradish peroxidase, or by photo-oxidation using a ruthenium complex as photo-oxidant. Atomic force microscopy shows that all three methods lead to the preferential growth of polyaniline along DNA templates. With ammonium persulfate, polyaniline can be grown on DNA templates already immobilized on a surface. Current-voltage measurements are successfully conducted on DNA/polyaniline networks synthesized by the enzymatic method and the photo-oxidation method. The conductance is found to be consistent with values measured for undoped polyaniline films.

  14. In situ one-pot synthesis of graphene-polyaniline nanofiber composite for high-performance electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Jin, Yuhong; Fang, Mou; Jia, Mengqiu

    2014-07-01

    In this work, graphene-polyaniline nanofiber (G/PANI-F) composite is prepared through a new and one-pot method that includes the reduction of graphene oxide (GO) by aniline and then followed by in-situ polymerization. Aniline plays the two roles in this method: as a chemical reducing agent to reduce GO to graphene and as a monomer to prepare polyaniline nanofiber (PANI-F). Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy and transmission electron microscopy are employed to confirm that GO can be reduced by aniline and PANI-F can be deposited on the surface of graphene. The electrochemical properties of G/PANI-F composite electrode are measured by using cyclic voltammetry, galvanostatic charge-discharge test and electrochemical impedance spectroscopy. The G/PANI-F composite electrode exhibits enhanced specific capacitance of 965 F g-1 at 0.5 A g-1 and the capacity retention is 90% after 2000 cycles.

  15. Dielectric spectroscopy of polyaniline

    SciTech Connect

    Calleja, R.D.; Matveeva, E.M.

    1993-12-31

    Polyaniline films (PANI) are being considered as attractive new galvanic sources, electrochromic displays, chemical sensors, etc. So far much work has been done to study their optical, electrochemical and electrical properties. However, there are still doubts about the basic electric conductivity mechanisms of PANI. The aim of this paper is to study the influence of water molecules and acid anions on the properties of PANI films by dielectric spectroscopy.

  16. Graphene/polyaniline/poly(4-styrenesulfonate) hybrid film with uniform surface resistance and its flexible dipole tag antenna application.

    PubMed

    Shin, Keun-Young; Cho, Sunghun; Jang, Jyongsik

    2013-11-25

    A graphene/polyaniline/poly(4-styrenesulfonate) (G/PANI/PSS)-based conducting paste is successfully fabricated by introducing a PANI/PSS nanofiller into a multilayer graphene matrix by mechanical blending. As a compatibilizer, the PSS binder increases the dispersibility, interfacial interactions, and mechanical interlocking between the multilayer graphene matrix and PANI, thereby allowing surface resistance with narrow distribution. High concentrations of this PSS binder, obtained using ex situ polymerization, further improve the adhesion of the hybrid film to a flexible substrate. The minimum surface resistance of the screen-printed G/PANI/PSS hybrid film is approximately 10 Ω sq(-1) for a 70 μm uniform thickness. When bent to angles of -30°, the flexible hybrid film exhibits an approximately 6% decrease in surface resistance. The surface resistance after 500 bending cycles increases by only 10 Ω sq(-1) , which is 14 times that of smaller, graphene-based thin films. The micropatterned, screen-printed G/PANI/PSS hybrid film is evaluated as a practical dipole tag antenna. High-resolution patterns are formed in the hybrid film by the inherently high surface tension and the properties of grains within the domain-based structure. The G/PANI/PSS-based dipole tag antenna has a bandwidth of 28.7 MHz, a high transmitted power efficiency of 98.5%, and a recognition distance of 0.42 m at a mean frequency of 910 MHz. These characteristics indicate that the G/PANI/PSS-based dipole tag antenna could be used as a signal-receiving apparatus, much like a radio-frequency identification tag, for detecting nearby objects. PMID:23650263

  17. Polyaniline fibers, films, and powders: X-ray studies of crystallinity and stress-induced preferred orientation

    SciTech Connect

    Fischer, J.E.; Zhu, Q.; Tang, X.; Scherr, E.M.; MacDiarmid, A.G. . Lab. for Research on the Structure of Matter); Cajipe, V.B. . Inst. des Materiaux des Nantes)

    1994-08-29

    Powder (hk0) and four-circle X-ray diffractometry are used to study the effects of hot-stretching on films and fibers of the emeralidine base form of polyaniline (EB-II). It is shown definitively that hot-stretching induces nucleation of new crystalline material rather than growth and/or orientation of pre-existing crystallites. The diffuse scattering from amorphous EB-II is dominated by short-range interchain correlations and develops preferred orientation in response to stretching but with a broader mosaic than the crystalline phase. For the maximally-stretched samples, the crystal fractions was determined by accounting for the different mosaic distributions of crystalline and amorphous phases, correcting for the mass of N-methylphenazolinium plasticizer and ruling out any significant contribution from NMP diffuse scattering to the amorphous EB-II profiles. Films stretched to L/L[sub 0] = 4.25 contain no more than 4% crystalline material while fibers with L/L[sub 0] = 4.5 are 24--30% crystalline. These fractional crystallinity values are significantly small than found for EB-II powder (60%). More importantly, these results have implications for models of electric properties which invoke interchain interactions.

  18. Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Yan, Jun; Fan, Zhuangjun; Wei, Tong; Zhang, Milin; Jing, Xiaoyan

    2014-02-01

    A facile approach has been developed to fabricate mesoporous PANI film on ultra-thin graphene nanosheet (G-mPANI) hybrid by in situ polymerization using graphene-mesoporous silica composite as template. Due to its mesoporous structure, over-all conductive network, G-mPANI electrode displays a specific capacitance of 749 F g-1 at 0.5 A g-1 with excellent rate capability (remains 73% even at 5.0 A g-1), much higher than that of pristine PANI electrode (315 F g-1 at 0.5 A g-1, 39% retention at 5.0 A g-1) in 1 mol L-1 H2SO4 aqueous solution. More interestingly, the G-mPANI hybrid can maintain 88% of its initial capacitance compared to 45% for pristine PANI after 1000 cycles, suggesting a superior electrochemical cyclic stability.

  19. Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band

    NASA Astrophysics Data System (ADS)

    Singh, Avanish Pratap; Anoop Kumar, S.; Chandra, Amita; Dhawan, S. K.

    2011-06-01

    β-Naphthalene sulphonic acid (β-NSA) doped polyaniline (PANI)-flyash (FA) composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37-21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D-VRH model. SEM images demonstrate that β-NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ'- iɛ″) and permeability (μ*=μ'- iμ″) of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21) using theoretical calculations given in Nicholson-Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 - 12.4 GHz) & Ku-Band (12.4 - 18 GHz) frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.

  20. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    NASA Astrophysics Data System (ADS)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua

    2016-01-01

    In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu2O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu2O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV-vis light irradiation, which is much higher than that of either the single component (Cu2O nanoparticles), or two component systems (RGO/Cu2O composite hydrogel and PANI/Cu2O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu2O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu2O in photocatalytic process. The product of this work would provide a new sight for the construction of UV-vis light responsive photocatalyst with high performance.

  1. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Liping; Wang, Ying; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie; Guo, Jia

    Calcium carbide (CaC 2)-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N 2 sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g -1 measured by cyclic voltammetry at 1 mV s -1. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles.

  2. Humidity sensing with doped polyaniline

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa; Chakane, Sanjay D. S.; Bhoraskar, S. V.; Samui, A. B.; Krishnamurthy, V. N.

    2001-03-01

    Polyaniline (PANI) was doped with different dopants like camphosulphoric acid (CSA), diphenyl phosphate (DPPH), Sulphonic acid (S) and Maleic acid (MAC) by chemical method. The samples were prepared in the form of pellets as well as films. Polyaniline doped with Maleic acid was found to be mechanically and chemically stable as compared to other dopants and therefore the effect of humidity on conductivity was further investigated. Films prepared out of styrene buryl acrylate copolymer with different concentrations of PANI Maleic acid were used for sensing humidity ranging between 20% to 90% relative humidity. A maximum change in the conductivity of three to four orders of magnitude was obtained for the Maleic acid doped polyaniline pellet while two orders of magnitude change was obtained for the film samples over the range of humidity measured.

  3. Synthesis, structure and electrochemical properties of polyaniline/MoO{sub 3} nanobelt composite for lithium battery

    SciTech Connect

    Mohan, Varishetty Madhu; Chen, Wen; Murakami, Kenji

    2013-02-15

    Graphical abstract: Hydrothermal method was introduced for the synthesis of MoO{sub 3} nanobelts and polyaniline (PANI)/MoO{sub 3} nanobelt composites. The structure and morphology of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared radiation (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. We can see the presence of polyaniline on the MoO{sub 3} nanobelts surface in the TEM pictures as shown in Fig. (a). The pure MoO{sub 3} nanobelts exhibit the initial specific capacity 276 mAhg{sup −1}, whereas PANI/MoO{sub 3} nanobelt composite shows little low initially 228 mAhg{sup −1} after that it has more stabilized specific capacity with increasing cycle numbers as shown in Fig. (b). The cyclic voltammograms of the PANI/MoO{sub 3} nanobelt composite show better cyclic performance compared to pure MoO{sub 3} nanobelts. The electrochemical impedance spectres were studied for both the pure and PANI/MoO{sub 3} samples at 2.0 and 3.5 potentials. The role of the PANI polymeric component of the composite material seems to be the stabilization of the specific capacity due to probable homogeneous distribution of the induced stress during cycling. Display Omitted Highlights: ► Hydrothermal synthesis of MoO{sub 3}, PANI/MoO{sub 3} nanobelts. ► Samples were characterised by XRD, FTIR, DSC, SEM, TEM, CV and impedance. ► MoO{sub 3} nanobelts cathode battery shows initial specific capacity 276 mAhg{sup −1}. ► PANI/MoO{sub 3} nanobelts show initial specific capacity 228 mAhg{sup −1} but high stability. ► PANI/MoO{sub 3} sample studies by impedance at the potentials of 2.0 and 3.5 V. -- Abstract: The MoO{sub 3} nanobelts and polyaniline (PANI)/MoO{sub 3} nanobelt composite were synthesized using hydrothermal method. The crystal structure and morphology of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared radiation (FTIR), scanning electron microscopy (SEM) and

  4. Hollow-spherical composites of Polyaniline/Cobalt Sulfide/Carbon nanodots with enhanced magnetocapacitance and electromagnetic wave absorption capabilities

    NASA Astrophysics Data System (ADS)

    Ge, Chuanjun; Zhang, Xiang; Liu, Jian; Jin, Feng; Liu, Jichang; Bi, Hong

    2016-08-01

    Hollow-spherical composites of polyaniline/cobalt sulfide/carbon nanodots (PANI/CoS/CDs-0.5T) have been synthesized by in situ polymerization under an applied magnetic field (MF) of 0.5 T. As a control, PANI/CoS/CDs-0T composites have been synthesized without a MF. Both composites acting as electrodes present obvious magnetocapacitances at a scan rate of 100 mV s-1 while the electrochemical cell tested under an external MF of 0.5 T. Notably, PANI/CoS/CDs-0.5T composites show larger magnetocapacitances than PANI/CoS/CDs-0T composites at different scan rates from 5 to 100 mV s-1. Electrochemical impedance spectroscopy (EIS) results indicate that MF can reduce charge transfer resistance at electrode/electrolyte interface. More importantly, PANI/CoS/CDs-0.5T composites show a much stronger electromagnetic wave (EMW) absorbing capability than PANI/CoS/CDs-0T in the range of 2-18 GHz which is attributed to an increased dielectric loss and a magnetic loss in low frequency range of 2-12.5 GHz. MF-induced ferromagnetic nanodomains of Co2+ clusters in the PANI/CoS/CDs-0.5T composites increase the complex permittivity and create more interfacial polarizations or the Maxwell-Wagner effect, which leads to increased dielectric loss. Compared with PANI/CoS/CDs-0T composites with diamagnetic behaviour, MF-induced weak ferromagnetism of CoS in the PANI/CoS/CDs-0.5T composites has caused additional magnetic loss. This work provides an efficient way for modulating electrochemical or electromagnetic properties of inorganic/polymer nanocomposites by employing an external MF.

  5. Identification of salicylic acid using surface modified polyurethane film using an imprinted layer of polyaniline.

    PubMed

    Sreenivasan, K

    2007-02-01

    The surface of polyurethane (PU) was modified by coating a thin layer of polyaniline (PAN) by oxidizing aniline using ammonium persulfate. Affinity sites for salicylic acid (SA) were created in the coated layer by non-covalent imprinting method. The imprinted layer adsorbed SA five times more compared to the nonimprinted surface reflecting the creation of affinity sites specific to SA on the surface. The equilibrium was attained relatively faster indicating that a material of this kind is suitable for sensing applications. The selectivity in recognizing the print molecule by the imprinted surface was assessed by comparing the extent of uptake of other structurally resembling molecules namely O-amino benzoic acid and acetyl salicylic acid. The selectivity factor was found to be 22 and 16.5. The adsorbed SA was detected using the technique of Fourier transform attenuated total internal reflection infrared spectroscopy (FT-ATR-IR). The results show that molecularly imprinted surface in combination with FT-IR is a useful approach for the sensing applications. PMID:17386557

  6. One-step preparation of silver-polyaniline nanotube composite for non-enzymatic hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Lorestani, Farnaz; Shahnavaz, Zohreh; Nia, Pooria Moozarm; Alias, Y.; Manan, Ninie S. A.

    2015-08-01

    A modified glassy carbon electrode with silver nanoparticles-polyaniline nanotubes (AgNPs-PANINTs) composite is used as a non-enzymatic nanobiosensor for detecting hydrogen peroxide (H2O2). The electrocatalytic activity for the reduction was strongly affected by the concentration of silver ammonia solution in the nanocomposites, with the best electrocatalytic activity observed for the composite of 6:1 volume ratios of PANI to Ag(NH3)2OH (0.04 M). Field emission scanning electron microscope images and their size distribution diagrams indicated that using the silver ammonia complex instead of silver nitrate caused uniform distribution of nanometer-sized silver nanoparticles with a narrow size distribution in the composite. The corresponding calibration curve for the current response showed a linear detection range of 0.1-90 mM (R2 = 0.9986), while the limit of detection was estimated to be 0.2 μM at the signal to noise ratio of 3.

  7. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery.

    PubMed

    Wang, Xiaohong; Zhang, Wuxing; Huang, Yunhui; Xia, Tian; Lian, Yongfu

    2016-06-01

    Lithium iron phosphate (LiFePO4) has been evaluated as the most promising cathode material for the next generation lithium-ion batteries because of its high operating voltage, good cycle performance, low cost, and environmentally friendly safety. However, pure LiFePO4 shows poor reversible capacity and charge/discharge performance at high current density. Many methods including optimization of particle size, introduction of coating carbon and conductive polymer, and the doping of metal and halogen ions have been developed to improve its electrochemical performance. In this study, conductive polymer polyaniline (PANI), active carbon and LiFePO4 (C-LFP/PANI) composite cathodes were successfully prepared by chemical oxidation method. Electrochemical performance shows that a remarkable improvement in capacity and rate performance can be achieved in the C-LFP/PANI composite cathodes with an addition of HCI. In comparison with C-LFP cathode, the C-LFP/PANI doped with HCl composite exhibits ca. 15% and 26% capacity enhancement at 0.2 C and 10 C, respectively. PMID:27427742

  8. The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Sankar, Kalimuthu Vijaya; Selvan, Ramakrishnan Kalai

    2015-02-01

    The ternary MnFe2O4/graphene/polyaniline (PANI) composite was successfully prepared for the negative electrode in hybrid supercapacitors. The MnFe2O4 particles are synthesized by polymer assisted solution combustion method without any high temperature calcinations. Similarly, the flexible graphene and PANI are prepared by eco-friendly hydrothermal and in situ polymerization method, respectively. The presence of possible functional groups and the existence of individual constituents in the composite were identified through Fourier transform infra-red spectra (FT-IR) and Raman spectra. Transmission electron microscope (TEM) image reveals that the MnFe2O4 particles are dispersed on the flexible graphene sheet and are wrapped by PANI. The ternary composite electrode delivered a specific capacitance of 241 F g-1 at 0.5 mA cm-2, which was 7.5 times higher than MnFe2O4. The calculated b-value elucidates that the charge storage mechanism in the ternary system is based on the capacitive behavior rather than intercalation. The increase in ratio between capacitive and intercalation current with respect to scan rate corroborates that the pseudocapacitive charge storage mechanism is dominant. Further, the fabricated hybrid supercapacitor provides the maximum specific capacitance and energy density of 48.5 F g-1 at 0.5 mA cm-2 and 17 Wh kg-1, respectively. In addition, the hybrid supercapacitor exhibits excellent cyclic stability of up to 5000 successive cycles.

  9. Photoluminescence and Raman spectroscopy studies on polyaniline/PbI{sub 2} composite

    SciTech Connect

    Baibarac, M.; Baltog, I.; Lefrant, S.

    2009-04-15

    Functionalization of PbI{sub 2} with conjugated polymers (polyaniline-emeraldine base (PANI-EB) or polyaniline-emeraldine salt (PANI-ES)) is demonstrated by Raman and luminescence studies. PbI{sub 2}/PANI hybrid material was prepared by electrochemical polymerization of aniline onto the PbI{sub 2} modified Pt electrode and mechanico-chemical reaction between the two constituents. PANI interacting with the PbI{sub 2} gives rise to new Raman bands at 80, 144 and 170 cm{sup -1}. First line reveals the formation of 'stacking faults' that disrupt the I-Pb-I layers stacking along the c axis by the insertion of polymer molecules. The bands at 144 and 170 cm{sup -1} are attributed to the vibrational mode associated with Pb-NHR''{sub 2} (R''=C{sub 6}H{sub 4}) bond. The functionalization of PbI{sub 2} with PANI-EB brings forth the PANI-ES form. Depending on the semiconducting (PANI-EB) or conducting (PANI-ES) properties of the polymer in the PbI{sub 2}/PANI intercalated material, a partial or total collection of the charges generated under band to band irradiation is revealed by photoluminescence studies. - Graphical abstract: Experimental illustration of the extending along the c axis of a PbI{sub 2} single crystal by an intercalation process. In (a) is shown a crystal slide cleaved from a Bridgman-grown PbI{sub 2} crystal ingot and in (b) the same sample intercalated with pyridine obtained after an exposure for 24 h in a saturated atmosphere of pyridine.

  10. Electronic conduction in polyaniline-polyethylene oxide and polyaniline-Nafion blends: Relation to morphology and protonation level

    SciTech Connect

    Sixou, B.; Travers, J.P.

    1997-08-01

    We present a comprehensive study of the transport properties in polyaniline-Nafion and polyaniline-polyethylene oxide, lithium trifluoromethane sulfonimide complex blends, together with a careful characterization of the morphology and the polyaniline protonation level. They include conductivity measurements as a function of both the polyaniline content of the blends and the temperature for a given composition. We show that percolation theory can account for the data provided that hopping and tunneling are taken into account. Moreover, in the polyaniline-Nafion blends, the variation of the polyaniline protonation level with the blend composition appears as a crucial parameter. The leading conduction mechanism is shown to be a hopping process between highly conducting polyaniline grains, the parameters of which are determined by the blend composition, and the protonation level. {copyright} {ital 1997} {ital The American Physical Society}

  11. Novel Hybrid Materials with High Stability for Electrically Switched Ion Exchange: Carbon Nanotubes/Polyaniline/Nickel Hexacyanoferrate Nanocomposites

    SciTech Connect

    Lin, Yuehe; Cui, Xiaoli

    2005-04-21

    A novel and stable carbon nanotubes /polyaniline /nickel hexacyanoferrates composite film has been synthesized with electrodeposition method, and the possibility for removing cesium through an electrically switched ion exchange has been evaluated in a mixture containing NaNO3 and CsNO3.

  12. An intimately bonded titanate nanotube-polyaniline-gold nanoparticle ternary composite as a scaffold for electrochemical enzyme biosensors.

    PubMed

    Liu, Xiaoqiang; Zhu, Jie; Huo, Xiaohe; Yan, Rui; Wong, Danny K Y

    2016-03-10

    In this work, titanate nanotubes (TNTs), polyaniline (PANI) and gold nanoparticles (GNPs) were assembled to form a ternary composite, which was then applied on an electrode as a scaffold of an electrochemical enzyme biosensor. The scaffold was constructed by oxidatively polymerising aniline to produce an emeraldine salt of PANI on TNTs, followed by gold nanoparticle deposition. A novel aspect of this scaffold lies in the use of the emeraldine salt of PANI as a molecular wire between TNTs and GNPs. Using horseradish peroxidase (HRP) as a model enzyme, voltammetric results demonstrated that direct electron transfer of HRP was achieved at both TNT-PANI and TNT-PANI-GNP-modified electrodes. More significantly, the catalytic reduction current of H2O2 by HRP was ∼75% enhanced at the TNT-PANI-GNP-modified electrode, compared to that at the TNT-PANI-modified electrode. The heterogeneous electron transfer rate constant of HRP was found to be ∼3 times larger at the TNT-PANI-GNP-modified electrode than that at the TNT-PANI-modified electrode. Based on chronoamperometric detection of H2O2, a linear range from 1 to 1200 μM, a sensitivity of 22.7 μA mM(-1) and a detection limit of 0.13 μM were obtained at the TNT-PANI-GNP-modified electrode. The performance of the biosensor can be ascribed to the superior synergistic properties of the ternary composite. PMID:26893086

  13. Preparation and characterization of nano-composites with carbon nanotubes and core-shell type polyaniline for the conductive colloidal ink

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin; Varadan, Vijay K.

    2012-04-01

    Printing method for electronics elements fabrication has attractive advantages such as low material consumption, high speed fabrication, and low temperature process. The stable conductive ink is the most important factor for the fabrication of printed electronics elements with high resolution. These materials are widely used as fillers in conductive inks; metal particles, conductive polymers, and carbon materials. Among these materials, the carbon nanotubes (CNTs) are extremely attractive filler for printed electronics due to its superior electrical properties, extra high mechanical properties, and excellent chemical stability. In this research, nano-composites which are composed of multi wall carbon nanotubes (MWCNTs) and polyaniline core-shell type particles were synthesized and formulated into electrically conductive colloidal inks. The poly(acrylonitrile-co-itaconic acid-co-methylacrylate) nanoparticles were used as cores. And this core was coated with polyaniline. The surface treatments for MWCNTs were applied to make the stable nano-composites. The experimental conditions were optimized to achieve high miscibility between MWCNTs and polyaniline coated particles. Their structure and surface morphology of the nanocomposites were characterized by Scanning Electron Microscopy. And four point probe automatic resistivity meter was used to measure the conductivities of the nanocomposites.

  14. A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review

    PubMed Central

    Ali, Shah R.; Parajuli, Rishi R.; Balogun, Yetunde; Ma, Yufeng; He, Huixin

    2008-01-01

    Most of the current techniques for in vivo detection of dopamine exploit the ease of oxidation of this compound. The major problem during the detection is the presence of a high concentration of ascorbic acid that is oxidized at nearly the same potential as dopamine on bare electrodes. Furthermore, the oxidation product of dopamine reacts with ascorbic acid present in samples and regenerates dopamine again, which severely limits the accuracy of the detection. Meanwhile, the product could also form a melanin-like insulating film on the electrode surface, which decreases the sensitivity of the electrode. Various surface modifications on the electrode, new materials for making the electrodes, and new electrochemical techniques have been exploited to solve these problems. Recently we developed a new electrochemical detection method that did not rely on direct oxidation of dopamine on electrodes, which may naturally solve these problems. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid)/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The high affinity binding of dopamine to the boronic acid groups of the polymer affects the electrochemical properties of the polyaniline backbone, which act as the basis for the transduction mechanism of this non-oxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in a physiologically-relevant buffer, and the large surface area of the carbon nanotubes increased the density of the boronic acid receptors. The high sensitivity and selectivity of the sensor show excellent promise toward molecular diagnosis of Parkinson's disease. In this review, we will focus on the discussion of this novel detection approach, the new interferences in this detection approach, and how to eliminate these

  15. Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits.

    PubMed

    Wang, Hong; Yi, Su-in; Pu, Xiong; Yu, Choongho

    2015-05-13

    Electrical conductivity and thermopower of isotropic materials typically have inversely proportional correlation because both are strongly affected in the opposite way by the electronic carrier concentration. This behavior has been one of the major hurdles in developing high-performance thermoelectrics whose figure-of-merit enhances with large thermopower and high electrical conductivity. Here we report a promising method of simultaneously improving both properties with polyaniline (PANI) composites filled by carbon nanotubes (CNTs). With addition of double-wall CNTs (DWCNTs), the electronic mobility of PANI doped with camphorsulfonic acid (PANI-CSA) was raised from ∼0.15 to ∼7.3 cm(2)/(V s) (∼50 time improvement) while the carrier concentration was decreased from ∼2.1 × 10(21) to ∼5.6 × 10(20) cm(-3) (∼4 time reduction). The larger increase of mobility increased electrical conductivity despite the carrier concentration reduction that enlarges thermopower. The improvement in the carrier mobility could be attributed to the band alignment that attracts hole carriers to CNTs whose mobility is much higher than that of PANI-CSA. The electrical conductivity of the PANI-CSA composites with 30-wt % DWCNTs was measured to be ∼610 S/cm with a thermopower value of ∼61 μV/K at room temperature, resulting in a power factor value of ∼220 μW/(m K(2)), which is more than two orders higher than that of PANI-CSA as well as the highest among those of the previously reported PANI composites. Further study may result in high performance thermoelectric organic composites uniquely offering mechanical flexibility, light weight, low toxicity, and easy manufacturing. unlike conventional inorganic semiconductors. PMID:25894982

  16. Structural and optical study of spin-coated camphorsulfonic acid-doped polyaniline/titanium-di-oxide nanoparticles hybrid thin films

    NASA Astrophysics Data System (ADS)

    Geethalakshmi, D.; Muthukumarasamy, N.; Balasundaraprabhu, R.

    2015-06-01

    Polyaniline (PANI) doped with Camphorsulfonic acid (CSA) has been prepared by chemical oxidative polymerization and blend with titanium-di-oxide (TiO2) nanoparticles prepared by sol-gel method to form CSA-doped PANI/TiO2 hybrid thin films. The properties of as-deposited and heat-treated (100 °C) hybrid thin films having different PANI:TiO2 weight ratios (1:0.5, 1:1, and 1:2) have been compared. FTIR study indicated that chemical bonding between CSA-doped PANI and TiO2 has been formed. XRD studies reveal that the as-deposited hybrid thin films are of amorphous nature and heat-treatment of such films initiates crystallization. SEM study shows that as-deposited hybrid films are rough; increase in TiO2 ratio and heat-treatment increased the roughness due to coalescing and agglomeration. UV-visible absorbance of hybrid films shows its characteristic peak in the visible region along with a peak in UV range and its intensity increased with TiO2 ratio and heat-treatment due to agglomeration of TiO2 particles. Photoluminescence spectra revealed that emission occurs in visible region (495 nm) for as-deposited hybrid thin film and this emission increased with TiO2 ratio and heat-treatment of hybrid films.

  17. Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite.

    PubMed

    Feng, Xue; Cheng, Huijun; Pan, Yiwen; Zheng, Hao

    2015-08-15

    A biosensor was fabricated by immobilizing glucose oxidase (GOD) into nanostructured graphene (GRA)-conducting polyaniline (PANI) nanocomposite, which was based on electrochemical polymerization of aniline in GRA synthesized by using electrochemical expansion of graphite in propylene carbonate electrolyte. Scanning electron spectroscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the morphology and performance of the as-prepared biosensor, respectively. Amperometric measurements were carried out to optimize test conditions (pH and applied potential) of the biosensor. Under the optimal conditions, the biosensor showed a linear range from 10.0 μM to 1.48 mM (R(2)=0.9988) with a sensitivity of 22.1 μA mM(-1) cm(-2), and a detection limit of 2.769 μM (S/N=3). The apparent Michaelis-Menten constant (KM(a)) was estimated to be 3.26 mM. The interference from glycine (Gly), D-galactose (D-Gal), urea (Urea), L-phenylalanine (L-Phe), ascorbic acid (AA), and L-tyrosine (L-Tyr) was also investigated. The results indicated that the biosensor exhibit high sensitivity and superior selectivity, providing a hopeful candidate for glucose biosensing. PMID:25845333

  18. Water-processable laponite/polyaniline/graphene oxide nanocomposites for energy applications.

    PubMed

    Ramphal, Isaac A; Hagerman, Michael E

    2015-02-01

    Graphene-polyaniline (GP) nanocomposites have demonstrated remarkable ability as supercapacitive materials and are typically synthesized via chemical reduction of graphene oxide/polyaniline (GOP) precursors. We report the formation of novel nanomaterials combining GOP nanocomposites with Laponite nanodisks. Host-guest interactions within GOP systems were studied with and without Laponite nanoparticle templating agents. Incorporating Laponite clay into the composite synthesis enhances aqueous dispersibility as well as facilitates the casting of homogeneous films. Structural and morphological characterization confirmed porous heterointerfaces and control of polymer and nanoclay loading. These results may enable the development of flexible supercapacitive and solar nanocomposites with improved device utility, water dispersibility, and film processability. We demonstrate that these films can be easily cast and that the composites maintain their electrical transport properties. PMID:25569226

  19. Enhanced electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Moon, San; Jung, Young Hwa; Kim, Do Kyung

    2015-10-01

    Due to the extraordinarily high theoretical capacity of sulfur (1675 mAh g-1), the lithium-sulfur (Li-S) battery has been considered a promising candidate for future high-energy battery applications. Li-S batteries, however, have suffered from limited cycle lives, mainly due to the formation of soluble polysulfides, which prevent the practical application of this attractive technology. The encapsulation of sulfur with various conductive materials has addressed this issue to some extent. Nevertheless, most approaches still present partial encapsulation of sulfur and moreover require a large quantity of conductive material (typically, >30 wt%), making the use of sulfur less desirable from the viewpoint of capacity. Here, we address these chronic issues of Li-S cells by developing a graphene oxide-sulfur composite with a thin crosslinked polyaniline (PANI) layer. Graphene oxide nanosheets with large surface area, high conductivity and a uniform conductive PANI layer, which are synthesized by a layer-by-layer method, have a synergetic interaction with a large portion of the sulfur in the active material. Furthermore, a simple crosslinking process efficiently prevents polysulfide dissolution, resulting in unprecedented electrochemical performance, even with a high sulfur content (∼75%): a high capacity retention of ∼80% is observed, in addition to 97.53% of the average Coulombic efficiency being retained after 500 cycles. The performance we demonstrate represents an advance in the field of lithium-sulfur batteries for applications such as power tools.

  20. Synergy between polyaniline and OMt clay mineral in Langmuir-Blodgett films for the simultaneous detection of traces of metal ions.

    PubMed

    de Barros, Anerise; Ferreira, Mariselma; Constantino, Carlos José Leopoldo; Bortoleto, José Roberto Ribeiro; Ferreira, Marystela

    2015-04-01

    We report on Langmuir-Blodgett (LB) films made with emeraldine salt polyaniline (PAni-ES) and organophilic montmorillonite clay mineral (OMt), where synergy between the components was reached to yield an enhanced performance in detecting trace levels of cadmium (Cd(2+)), lead (Pb(2+)) and copper (Cu(2+)). Detection was carried out using square wave anodic stripping (SWAS) voltammetry with indium tin oxide (ITO) electrodes modified with LB films of PAni-ES/OMt nanocomposite, whose data were compared to those obtained with electrodes coated with neat PAni-ES and neat OMt LB films. The enhanced performance in the nanocomposite may be attributed to the stabilizing and ordering effect promoted by OMt in PAni-ES Langmuir films, which then led to more homogeneous LB films. According to X-ray diffraction data, the stacking of OMt layers was preserved in the LB films and therefore the PAni-ES chains did not cause clay mineral exfoliation. Instead, OMt affected the polaronic state of PAni-ES as indicated in UV-vis, Raman and FTIR spectra, also consistent with the changes observed for the Langmuir films. Taken together these results do indicate that semiconducting polymers and clay minerals may be combined for enhancing the electrical properties of nanostructures for sensing and related applications. PMID:25761908

  1. Electrical and structural characterization of plasma polymerized polyaniline/TiO2 heterostructure diode: a comparative study of single and bilayer TiO2 thin film electrode.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik

    2011-04-01

    A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers. PMID:21776701

  2. Film Formation Mechanism and Electrochemical Characterization of V2O5 Xerogel Intercalated by Polyaniline

    NASA Astrophysics Data System (ADS)

    Zhu, Q. Y.; Jin, A. P.; Chen, W.; Reddy, Ch. V. S.; Liu, H. X.; Zhao, X. J.

    2006-06-01

    The nanocomposite films are prepared from a V2O5 sol and aniline by sol-gel method, followed by anode electrophoresis deposition (EDP), and characterized by IR and NMR, cyclic voltammetry and ac-impedance spectroscopy, etc. IR spectroscopy and NMR results demonstrate the presence of PANI in its emeraldine salt form, as the xerogel is formed by negatively charged ribbons, V2O5 act as a counterion to compensate the positive charge present on the nitrogen atoms. Electrochemical impedance data at -0.7 V show that the Li+ diffusion coefficient in the (PANI)0.51·V2O5·1.30H2O film is 2.92×10-11 cm2·s-1, in contrast to the value of 5.10×10-12 cm2·s-1 obtained for V2O5 and the electronic conductivity of the nanocomposite increases compared to V2O5.

  3. Multilayer Films Electrodes Consisted of Cashew Gum and Polyaniline Assembled by the Layer-by-Layer Technique: Electrochemical Characterization and Its Use for Dopamine Determination

    PubMed Central

    Barros, Sergio Bitencourt Araújo; Leite, Cleide Maria da Silva; de Brito, Ana Cristina Facundo; Dos Santos Júnior, José Ribeiro; Zucolotto, Valtencir; Eiras, Carla

    2012-01-01

    We take advantage of polyelectrolyte feature exhibited by natural cashew gum (Anacardium occidentale L.) (CG), found in northeast Brazil, to employ it in the formation of electroactive nanocomposites prepared by layer-by-layer (LbL) technique. We used polyaniline unmodified (PANI) or modified with phosphonic acid (PA), PANI-PA as cationic polyelectrolyte. On the other hand, the CG or polyvinyl sulfonic (PVS) acids were used as anionic polyelectrolytes. The films were prepared with PANI or PANI-PA intercalated with CG or with PVS alternately resulting in four films with different sequences: PANI/CG PANI-PA/CG, PANI/PVS and PANI-PA/PVS, respectively. Analysis by cyclic voltammetry (CV) of the films showed that the presence of gum increases the stability of the films in acidic medium. The performance of the modified electrode of PANI-PA/CG was evaluated in electro analytical determination of dopamine (DA). The tests showed great sensitivity of the film for this analyte that was detected at 10−5 mol L−1. PMID:22505924

  4. Graphene/heparin template-controlled polyaniline nanofibers composite for high energy density supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Moniruzzaman Sk, Md; Yue, Chee Yoon; Jena, Rajeeb Kumar

    2014-12-01

    Graphene/PANI nanofibers composites are prepared for the first time using a novel in situ polymerization method based on the chemical oxidative polymerization of aniline using heparin as a soft template. The even dispersion of individual graphene sheet within the polymer nanofibers matrix enhances the kinetics for both charge transfer and ion transport throughout the electrode. This novel G25PNF75 composite (weight ratio of GO:PANI = 25:75) shows a high specific capacitance of 890.79 F g-1 and an excellent energy density of 123.81 Wh kg-1 at a constant discharge current of 0.5 mA. The composite exhibits excellent cycle life with 88.78% specific capacitance retention after 1000 charge-discharge cycles. The excellent performance of the composite is due to the synergistic combination of graphene which provides good electrical conductivity and mechanical stability, and PANI nanofiber which provides good redox activity that consequently contributed such high energy density.

  5. Thin film dielectric composite materials

    DOEpatents

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  6. Electrochemical Tailoring of Fibrous Polyaniline and Electroless Decoration with Gold and Platinum Nanoparticles.

    PubMed

    Abdelhamid, Muhammad E; Snook, Graeme A; O'Mullane, Anthony P

    2016-09-01

    Presented in this work is a facile and quick electrochemical method for controlling the morphology of thick polyaniline (PANi) films, without the use of templates. By stepping the polymerization potential from high voltages to a lower (or series of lower) voltage(s), we successfully controlled the morphology of the polymer, and fibrous structures, unique to each potential step, were achieved. In addition, the resultant film was tested electrochemically for its viability as an electrode material for flexible batteries and supercapacitors. Furthermore, the PANi film was decorated with gold and platinum nanoparticles via an electroless deposition process for possible electrocatalytic applications, whereby the oxidation of hydrazine at the composite was investigated. PMID:27531044

  7. Synthesis of nanostructured polyaniline

    NASA Astrophysics Data System (ADS)

    Surwade, Sumedh P.

    The organization of my thesis is as follows: (a) Chapter III describes the synthesis of bulk quantities of polyaniline nanofibers in one step using a simple and versatile high ionic strength aqueous system (HCl/NaCl) that permits the use of pure H2O2 as a mild oxidant without any added metal or enzyme catalyst. Polyaniline nanofibers obtained are highly conducting, sigma˜1--5 S/cm, and spectroscopically similar to conventional polyaniline synthesized using stronger oxidants. The synthesis method is further extended to the synthesis of oligoanilines of controlled molecular weight, e.g., aniline tetramer, octamer, and hexadecamer. Microns long tetramer nanofibers are synthesized using this method. (b) Chapter IV describes the mechanism of nanofiber formation in polyaniline. It is proposed that the surfaces such as the walls of the reaction vessel and/or intentionally added surfaces play a dramatic role in the evolution of nanofibrillar morphology. Nucleation sites on surfaces promote the accumulation of aniline dimer that reacts further to yield aniline tetramer, which (surprisingly) is entirely in form of nanofibers and whose morphology is transcribed to the bulk by a double heterogeneous nucleation mechanism. This unexpected phenomenon could form the basis of nanofiber formation in all classes of precipitation polymerization systems. (c) Chapter V is the mechanistic study on the formation of oligoanilines during the chemical oxidation of aniline in weakly acidic, neutral or basic media using peroxydisulfate oxidant. It is proposed that the reaction proceeds via the intermediacy of benzoquinone monoimine that is formed as a result of a Boyland-Sims rearrangement of aniline. The initial role of peroxydisulfate is to provide a pathway for the formation of benzoquinone monoimine intermediate that is followed by a conjugate Michael-type addition reaction with aniline or sulfated anilines. The products isolated in pH 2.5--10.0 buffers are intermediate species at various

  8. Sensing element for detection of polar organic vapours on the base of polyaniline-composite - Effect of substrate surface area

    NASA Astrophysics Data System (ADS)

    Olejnik, Robert; Gorakh Babar, Dipak; Slobodian, Petr; Matyas, Jiri

    2016-03-01

    Conductive polymer polyaniline (PANI) was synthesized by oxidative polymerization of aniline hydrochloride as a source of aniline and ammonium persulfate as an oxidation agent. The polymerization process is relatively easy and cheap. The reaction was carried out in presence of polymer substrate, in our case polyethylene terephthalate (PET) as a representative of smooth surface substrate and polyvinylidenfluoride (PVDF) nanofibers membrane as a representative of porous substrate. Both these substrates were covered by polyaniline (PANI) and used as a sensing element for organic vapors detection. The detection was made by measuring and the record of the change of resistivity during adsorption and desorption of saturated vapors. The result shows that sensitivity decreases with increasing polarity of chosen solvent in order N,N- Dimethylformamide (DMF), N,N-Dimethylacetamide (DMAc) and Dimethyl sulfoxide (DMSO). The PANI base sensing element on PVDF substrate improves sensitivity, selectivity and it also has good reversibility and repeatability.

  9. Novel facile method for obtaining CdSe/polyaniline/C60 composite materials.

    PubMed

    Rusen, Edina; Diacon, Aurel; Mocanu, Alexandra; Nistor, Leona Cristina

    2016-01-01

    This study presents a novel method for the oxidative polymerization of aniline (ANI) by employing fullerene C60/cadmium selenide (CdSe) quantum dots, as promoting agent of the polymerization system. The polymerization initiation mechanism is based on the difference between the HOMO-LUMO energy levels of the components which permits the formation of a continuous donor-acceptor exchange. Both the polymerization reaction evolution and the molecular weights of the obtained polymers have been characterized. The novelty of the paper consists in the synthesis of a novel nano-composite material through a novel polymerization technique. The resulting material containing PANI, CdSe quantum dots and C60 has been characterized by UV-Vis, NIR, fluorescence, TEM and GPC analyses. PMID:27572228

  10. Novel facile method for obtaining CdSe/polyaniline/C60 composite materials

    PubMed Central

    Rusen, Edina; Diacon, Aurel; Mocanu, Alexandra; Nistor, Leona Cristina

    2016-01-01

    This study presents a novel method for the oxidative polymerization of aniline (ANI) by employing fullerene C60/cadmium selenide (CdSe) quantum dots, as promoting agent of the polymerization system. The polymerization initiation mechanism is based on the difference between the HOMO-LUMO energy levels of the components which permits the formation of a continuous donor-acceptor exchange. Both the polymerization reaction evolution and the molecular weights of the obtained polymers have been characterized. The novelty of the paper consists in the synthesis of a novel nano-composite material through a novel polymerization technique. The resulting material containing PANI, CdSe quantum dots and C60 has been characterized by UV-Vis, NIR, fluorescence, TEM and GPC analyses. PMID:27572228

  11. Automated Composites Processing Technology: Film Module

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce

    2004-01-01

    NASA's Marshall Space Flight Center (MSFC) has developed a technology that combines a film/adhesive laydown module with fiber placement technology to enable the processing of composite prepreg tow/tape and films, foils or adhesives on the same placement machine. The development of this technology grew out of NASA's need for lightweight, permeation-resistant cryogenic propellant tanks. Autoclave processing of high performance composites results in thermally-induced stresses due to differences in the coefficients of thermal expansion of the fiber and matrix resin components. These stresses, together with the reduction in temperature due to cryogen storage, tend to initiate microcracking within the composite tank wall. One way in which to mitigate this problem is to introduce a thin, crack-resistant polymer film or foil into the tank wall. Investigation into methods to automate the processing of thin film or foil materials into composites led to the development of this technology. The concept employs an automated film supply and feed module that may be designed to fit existing fiber placement machines, or may be designed as integral equipment to new machines. This patent-pending technology can be designed such that both film and foil materials may be processed simultaneously, leading to a decrease in part build cycle time. The module may be designed having a compaction device independent of the host machine, or may utilize the host machine's compactor. The film module functions are controlled by a dedicated system independent of the fiber placement machine controls. The film, foil, or adhesive is processed via pre-existing placement machine run programs, further reducing operational expense.

  12. Aptameric Recognition-Modulated Electroactivity of Poly(4-Styrenesolfonic Acid)-Doped Polyaniline Films for Single-Shot Detection of Tetrodotoxin

    PubMed Central

    Fomo, Gertrude; Waryo, Tesfaye T.; Sunday, Christopher E.; Baleg, Abd A.; Baker, Priscilla G.; Iwuoha, Emmanuel I.

    2015-01-01

    The work being reported is the first electrochemical sensor for tetrodotoxin (TTX). It was developed on a glassy carbon electrodes (C) that was modified with poly(4-styrenesolfonic acid)-doped polyaniline film (PANI/PSSA). An amine-end functionalized TTX-binding aptamer, 5′-NH2-AAAAATTTCACACGGGTGCCTCGGCTGTCC-3′ (NH2-Apt), was grafted via covalent glutaraldehyde (glu) cross-linking. The resulting aptasensor (C//PANI+/PSSA-glu-NH2-Apt) was interrogated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in sodium acetate buffer (NaOAc, pH 4.8) before and after 30 min incubation in standard TTX solutions. Both CV and EIS results confirmed that the binding of the analyte to the immobilized aptamer modulated the electrochemical properties of the sensor: particularly the charge transfer resistance (Rct) of the PANI+/PSSA film, which served as a signal reporter. Based on the Rct calibration curve of the TTX aptasensor, the values of the dynamic linear range (DLR), sensitivity and limit of detection (LOD) of the sensor were determined to be 0.23–1.07 ng·mL−1 TTX, 134.88 ± 11.42 Ω·ng·mL−1 and 0.199 ng·mL−1, respectively. Further studies are being planned to improve the DLR as well as to evaluate selectivity and matrix effects in real samples. PMID:26370994

  13. Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Lixia; Song, Huaihe; Zhang, Qincang; Yao, Jingyuan; Chen, Xiaohong

    Polyaniline (PANI) loaded ordered mesoporous carbon (OMC) composites were prepared via different processes, involving the in situ polymerization of aniline in the presence of OMC or its precursor and the direct physical mixing method. On the basis of analyzing the morphologies and structures of these three OMC/PANI composites, the influence of compounding processes on the electrochemical properties as electrodes for supercapacitors was first investigated. It was observed that regardless of compounding process, two distinct electrochemical behaviors took place on all of the composite electrodes, including a redox reaction with insertion and deinsertion of electrolyte ions, and electrostatic attraction at the electrode/electrolyte interface. Additionally, these OMC/PANI composites showed higher specific capacitances compared with pure OMC and PANI. Most significantly, the in situ synthesized OMC/PANI composite using OMC as a starting material exhibited the highest specific capacitance of 747 F g -1 at a current density of 0.1 A g -1 and excellent rate capability, which was attributed to the high degree of dispersion of PANI and the contact of PANI with electrolyte as well as the double fixing effects of surface and mesopore of OMC on PANI.

  14. Excellent electromagnetic wave absorption property of quaternary composites consisting of reduced graphene oxide, polyaniline and FeNi3@SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ding, Xiao; Huang, Ying; Wang, Jianguo; Wu, Haiwei; Liu, Panbo

    2015-12-01

    The electromagnetic wave absorption properties of the quaternary composites consisting of reduced graphene oxide (rGO), polyaniline (PANI), FeNi3@SiO2 (FeNi3 nanocrystals encapsulated in SiO2) nanoparticles had never been reported. In this case, we prepared FeNi3@SiO2@rGO-PANI quaternary composites and TEM results shows spherical nanoparticles are well distributed on the surface of rGO-PANI nanosheets. The investigation of the electromagnetic wave absorbability reveals that the quaternary composites exhibit wide absorption bandwidth and enhanced electromagnetic wave absorption properties. The absorption bandwidth with reflection loss less than -10 dB (90% attenuation) is up to 6.64 GHz (10.08-10.80 GHz, 12.08-18.0 GHz), and the maximum reflection loss reaches about -40.18 dB at 14.0 GHz with the thickness of 2.4 mm. It is believed that the FeNi3@SiO2@rGO-PANI composites can serve as excellent electromagnetic wave absorbent and can be widely used in practice.

  15. Chitosan mediated synthesis of core/double shell ternary polyaniline/Chitosan/cobalt oxide nano composite-as high energy storage electrode material in supercapacitors

    NASA Astrophysics Data System (ADS)

    Vellakkat, Mini; Hundekkal, Devendrappa

    2016-01-01

    Nanostructured ternary composite of polyaniline (PANI), Co3O4 nanoparticles, and Chitosan (CS) has been prepared by an in situ chemical oxidation method, and the nanocomposites (CPAESCO) were used as supercapacitor electrodes. The Co3O4 nanoparticles are uniformly coated with CS and PANI layers in it. Different techniques (Fourier transform infrared spectrophotometry, x-ray diffraction, thermal gravimetric analysis, UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy and electro chemical analysis-cyclic voltammetry, galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy) were used to analyse the optical, structural, thermal, chemical and supercapacitive aspects of the nanocomposites. Core/double shell ternary composite electrode exhibits significantly increased specific capacitance than PANI/Co3O4 or PANI/CS binary composites in supercapacitors. The ternary nanocomposite with 40% nanoparticle exhibits a highest specific capacitance reaching 687 F g-1, Energy density of (95.42 Wh kg-1 at 1 A g-1) and power density of (1549 W kg-1 at 3 A g-1) and outstanding cycling performance, with, 91% capacitance retained over 5000 cycles. It is found that this unique bio compatible nano composite with synergy is a new multifunctional material which will be useful in the design of supercapacitor electrodes and other energy conversion devices too.

  16. Thermal Conductivity of Carbon Nanotube Composite Films

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  17. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.

    PubMed

    Sarker, Ashis K; Hong, Jong-Dal

    2012-08-28

    Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices

  18. Direct measurement of colloidal interactions between polyaniline surfaces in a UV-curable coating formulation: the effect of surface hydrophilicity/hydrophobicity and resin composition.

    PubMed

    Jafarzadeh, Shadi; Claesson, Per M; Pan, Jinshan; Thormann, Esben

    2014-02-01

    The interactions between polyaniline particles and polyaniline surfaces in polyester acrylate resin mixed with 1,6-hexanediol diacrylate monomer have been investigated using contact angle measurements and the atomic force microscopy colloidal probe technique. Polyaniline with different characteristics (hydrophilic and hydrophobic) were synthesized directly on spherical polystyrene particles of 10 μm in diameter. Surface forces were measured between core/shell structured polystyrene/polyaniline particles (and a pure polystyrene particle as reference) mounted on an atomic force microscope cantilever and a pressed pellet of either hydrophilic or hydrophobic polyaniline powders, in resins of various polymer:monomer ratios. A short-range purely repulsive interaction was observed between hydrophilic polyaniline (doped with phosphoric acid) surfaces in polyester acrylate resin. In contrast, interactions between hydrophobic polyaniline (doped with n-decyl phosphonic acid) were dominated by attractive forces, suggesting less compatibility and higher tendency for aggregation of these particles in liquid polyester acrylate compared to hydrophilic polyaniline. Both observations are in agreement with the conclusions from the interfacial energy studies performed by contact angle measurements. PMID:24400981

  19. Electroless Ag coating of fly ash cenospheres using polyaniline activator

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Qin; Li, Ying; Xu, Hui; Zhai, Jianping

    2009-11-01

    The electroless Ag coating of fly ash cenospheres employing polyaniline activator was investigated after polyaniline activator was coated on the surfaces of the cenosphere particles by in situ chemical polymerization. The composites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, UV-visible absorption spectroscopy, x-ray diffraction and thermogravimetric analysis (TGA). The results indicate that a small amount of polyaniline activator was deposited in a discontinuous way on the surfaces of the cenosphere particles. Due to the activation of polyaniline, relatively compact and continuous Ag layer with a thickness of about 4 µm was obtained under the given electroless plating condition. The possible interaction between polyaniline and silver ions and the mechanism of Ag deposition were also investigated by the x-ray photoelectron spectroscopy technique.

  20. Colloidal polyaniline

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.

  1. Mechanically driven activation of polyaniline into its conductive form.

    PubMed

    Baytekin, Bilge; Baytekin, H Tarik; Grzybowski, Bartosz A

    2014-07-01

    Mechanical treatment of polymers produces surface cations and anions which, as demonstrated here for the first time, can drive chemical reactions. In particular, it is shown that such a mechanical treatment transforms nonconductive polyaniline into its conductive form. These results provide a mechanical means of patterning conductive polymers and also coating small polymer objects with conductive polyaniline films preventing accumulation of static electricity. PMID:24824971

  2. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites

    NASA Astrophysics Data System (ADS)

    Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Ali Syed, Junaid; Wang, Xiangyu; Meng, Xiangkang

    2016-02-01

    Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles).

  3. Nanostructured multifunctional electromagnetic materials from the guest-host inorganic-organic hybrid ternary system of a polyaniline-clay-polyhydroxy iron composite: preparation and properties.

    PubMed

    Reena, Viswan L; Pavithran, Chorappan; Verma, Vivek; Sudha, Janardhanan D

    2010-03-01

    A nanostructured electromagnetic polyaniline-polyhydroxy iron-clay composite (PPIC) was prepared by oxidative radical emulsion polymerization of aniline in the presence of polyhydroxy iron cation (PIC) intercalated clays. Morphological observation through SEM, TEM, and AFM suggested the formation of self-assembled nanospheres of PIC with self-assembled PANI engulfed over PIC, and the presence of iron in PPIC was confirmed by the EDS analysis. XRD studies revealed that PPIC are comprised of exfoliated clay layers with PIC in the distorted spinel structure. Magnetic property measurements showed that saturation magnetization increased from 7.3 x 10(-3) to 2.5 emu/g upon varying the amount of PHIC content from 0 to 10%. Electrical conductivity measurements with the same composition were observed to be in the range of 3.0 x 10(-2) to 1.1 S/cm. Thermal stability studies using TGA in combination with DTG suggested that PPICs were thermally stable up to 350 degrees C. The interaction among clay layers, PIC, and PANI chains in PPIC were manifested from the studies made by FTIR and DSC analysis. The prospects for the direct application of this material are developing low-cost chemical sensors and also processable electromagnetic interference shielding materials for high technological applications. PMID:20136090

  4. Competitive adsorption of Reactive Orange 16 and Reactive Brilliant Blue R on polyaniline/bacterial extracellular polysaccharides composite--a novel eco-friendly polymer.

    PubMed

    Janaki, V; Vijayaraghavan, K; Ramasamy, A K; Lee, Kui-Jae; Oh, Byung-Taek; Kamala-Kannan, Seralathan

    2012-11-30

    The performance of polyaniline/extracellular polymeric substances (Pn/EPS) composite as an adsorbent to remove the anionic reactive dyes, Reactive Brilliant Blue R (RBBR) and Reactive Orange 16 (RO), was investigated in single and binary systems. The pH(pzc) of Pn/EPS composite was calculated as 3.7 through potentiometric mass titration method. Electrostatic interaction between the dye anion and the nitrogen present in the polymer was identified as a major mechanism in adsorption process. Single component isotherms followed the Langmuir model with the maximum adsorption capacity of 0.5775 mmol g(-1) for RBBR and 0.4748 mmol g(-1) for RO. In binary system, both the reactive dye anions compete with each other and resulted in lower uptake. Binary adsorption data were interpreted well by the Sheindorf-Rehbun-Sheintuch equation as compared to extended Langmuir model with constant interaction factor. Kinetic analysis of single solute followed pseudo-first order model. Thermodynamic studies computed that RBBR and RO adsorption was endothermic, spontaneous, and feasible process. PMID:23036702

  5. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites.

    PubMed

    Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Syed, Junaid Ali; Wang, Xiangyu; Meng, Xiangkang

    2016-01-01

    Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles). PMID:26883179

  6. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites

    PubMed Central

    Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Ali Syed, Junaid; Wang, Xiangyu; Meng, Xiangkang

    2016-01-01

    Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles). PMID:26883179

  7. Polyaniline coated carbon nanotube/graphene "sandwich" hybrid and its high-k epoxy composites with low dielectric loss and percolation threshold

    NASA Astrophysics Data System (ADS)

    Wang, Tongxing; Yuan, Li; Liang, Guozheng; Gu, Aijuan

    2015-12-01

    Fabricating high-k conductor/polymer composites with low dielectric loss and percolation threshold is still a challenge, while the electric conductor is the key factor of determining the dielectric behavior of composites. A novel hybridized conductor with "sandwich" structure (rPANI@CNT-rGO) and active groups was prepared by introducing polyaniline coated carbon nanotube (rPANI@CNT) on the surface of reduced graphene oxide (rGO) through electrostatic and π-π conjugate forces. And the rPANI@CNT-rGO hybrids with different loadings of rPANI@CNT were introduced into epoxy resin (EP) to prepare a series of rPANI@CNT-0.75rGO/EP composites; meanwhile rPANI@CNT and rGO were mechanically blended with EP to prepare rPANI@CNT/0.75rGO/EP composites for comparison. rPANI@CNT/0.75rGO/EP composites have low dielectric constant (10-20), whereas the dielectric constant at 100 Hz of the 7rPANI@CNT-0.75rGO/EP composite with 0.75 wt% rPANI@CNT is as high as 210, much larger than those of rPANI@CNT/EP, 0.75rGO/EP and rPANI@CNT/0.75rGO/EP composites. Meanwhile, the dielectric loss at 100 Hz of 7rPANI@CNT-0.75rGO/EP composite is only 17% of that of 0.75rGO/EP, indicating that the dielectric behavior of rPANI@CNT-0.75rGO/EP composites is not originated from a simple addition of basic components, but has an obvious synergistic effect. The percolation threshold of rPANI@CNT-0.75rGO/EP composites is only 1.1 wt%. The origin of these attractive dielectric properties was revealed through systematically discussing the structures and simulated circuits of rPANI@CNT-0.75rGO/EP composites.

  8. Synthesis and characterization of an electro-deposited polyaniline-bismuth telluride nanocomposite - A novel thermoelectric material

    SciTech Connect

    Chatterjee, Krishanu; Suresh, Asaithambi; Ganguly, Saibal; Kargupta, Kajari; Banerjee, Dipali

    2009-12-15

    The present work consists of synthesis and characterization of a novel thermoelectric material polyaniline (PANI)-bismuth telluride (Bi{sub 2}Te{sub 3}) nanocomposite using simultaneous electrochemical reactions and deposition method. The inorganic bismuth nitrate has been used as a dopant for polyaniline to achieve high electrical conductivity. A semi-batch mode of operation has been employed to control the rate of deposition of an individual component and thus the molecular architecture of the composite. The electro-deposited composite film on ITO coated glass substrate has been characterized by X-ray diffraction analysis (XRD), FTIR analysis, scanning electron microscope (SEM), and transmission electron microscope (TEM). The microscopic analysis reveals the formation of rod-like nanostructures of diameter less than 100 nm. It has been found that smaller molecules of Bi{sub 2}Te{sub 3} are dispersed in the macromolecules of PANI. The nanocomposite has been characterized by thermoelectric power.

  9. Stable, concentrated solutions of polyaniline using amines as gel inhibitors

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2002-01-01

    Stable, concentrated solutions of high-molecular weight polyaniline using amines as gel inhibitors. Certain amine compounds (gel inhibitors) are used to form highly concentrated, stable solutions of the emeraldine base form of polyaniline in numerous organic solvents from which coatings, films and fibers are readily prepared without problems associated with rapid gelation which occurs when concentrated solutions are attempted without the use of the gel inhibitors of the present invention. Tertiary amines are used to solubilize low-molecular weight fractions (M.sub.w <120,000, M.sub.n <30,000) of the pernigraniline, emeraldine, and leucoemeraldine oxidation states of polyaniline as concentrated (>20 wt. %) polyaniline solutions, while primary and secondary amines are used to produce solutions having 15-40 wt % of high-molecular weight polyaniline [M.sub.w.gtoreq.120,000, M.sub.n.gtoreq.30,000]. Concentrated solutions of polyaniline co-polymers or ring and/or nitrogen-substituted polyanilines may also be prepared.

  10. One-step synthesis and characterization of polyaniline nanofiber/silver nanoparticle composite networks as antibacterial agents.

    PubMed

    Poyraz, Selcuk; Cerkez, Idris; Huang, Tung Shi; Liu, Zhen; Kang, Litao; Luo, Jujie; Zhang, Xinyu

    2014-11-26

    Through a facile and effective seeding polymerization reaction via a one-step redox/complexation process, which took place in aqueous medium at ambient temperature, silver nanoparticles (Ag NPs) embedded polyaniline nanofiber (PANI NF) networks were synthesized as antibacterial agents. During the reaction, not only NF morphology formation of the resulting conducting polymers (CPs) but also amplification of the aqueous silver nitrate (AgNO3) solutions' oxidative potentials were managed by vanadium pentoxide (V2O5) sol-gel nanofibers, which acted as well-known nanofibrous seeding agents and the auxiliary oxidative agent at the same time. The PANI/Ag nanocomposites were proven to exhibit excellent antibacterial property against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Antibacterial property performance and average life span of the nanocomposite network were optimized through the homogeneous distribution/embedment of Ag NPs within one-dimensional (1-D) PANI NF matrix. The antibacterial efficacy tests and nanocomposite material characterization results further indicated that the sole components of PANI/Ag have a synergistic effect to each other in terms of antibacterial property. Thus, this well-known catalytic seeding approach via a one-step oxidative polymerization reaction can be considered as a general methodology and a substantial fabrication tool to synthesize Ag NP decorated nanofibrillar PANI networks as advanced antibacterial agents. PMID:25365660

  11. [Amperometric enzyme biosensor with a glucose oxidase-polyaniline membrane].

    PubMed

    Dziadevich, S V; Doldatkin, A P; Rossokhatyĭ, V K; Shram, N F; Shul'ga, A A; Strikha, V I

    1994-01-01

    An amperometric glucose biosensor was made by electrochemical polymerization of aniline onto the gold electrodes in presence of the enzyme glucose oxidase in the phosphate buffer solution with pH 7.0. Aniline is easily polymerized forming a thin film, which adheres tightly on the electrodes surface. During the electropolymerization process glucose oxidase was entrapped into polyaniline film which then became the catalyst of the enzyme reaction of glucose hydrolysis. Experiments were performed to determine optimal conditions of polyaniline-glucose oxidase film preparation. Glucose was amperometrically determined with the electrochemically fabricated biosensor in the concentration range 10(-4) M to 2 x 10(-2) M. The linearity of the enzyme electrode response ranged from 2 x 10(-4) M to 6 x 10(-3) M. The electrochemical synthesis of a polyaniline-enzyme thin film a high-technologic one and this permits fabricating various microbiosensors and multisensors in the continuous technological cycle. PMID:7754558

  12. Electroplating of nanostructured polyaniline-polypyrrole composite coating in a stainless-steel tube for on-line in-tube solid phase microextraction.

    PubMed

    Asiabi, Hamid; Yamini, Yadollah; Seidi, Shahram; Esrafili, Ali; Rezaei, Fatemeh

    2015-06-01

    In this work, a novel and efficient on-line in-tube solid phase microextraction method followed by high performance liquid chromatography was developed for preconcentration and determination of trace amounts of parabens. A nanostructured polyaniline-polypyrrole composite was electrochemically deposited on the inner surface of a stainless steel tube and used as the extraction phase. Several important factors that influence the extraction efficiency, including type of solid-phase coating, extraction and desorption times, flow rates of the sample solution and eluent, pH, and ionic strength of the sample solution were investigated and optimized. Under the optimal conditions, the limits of detection were in the range of 0.02-0.04 μg L(-1). This method showed good linearity for parabens in the range of 0.07-50 μg L(-1), with coefficients of determination better than 0.998. The intra- and inter-assay precisions (RSD%, n=3) were in the range of 5.9-7.0% and 4.4-5.7% at three concentration levels of 2, 10, and 20 μg L(-1), respectively. The extraction recovery values for the spiked samples were in the acceptable range of 80.3-90.2%. The validated method was successfully applied for analysis of methyl-, ethyl-, and propyl parabens in some water, milk, and juice samples. PMID:25913328

  13. Poly(aniline) in corrosion resistant coatings

    SciTech Connect

    McAndrew, T.P.; Miller, S.A.; Gilicinski, A.G.; Robeson, L.M.

    1996-10-01

    During the past two decades, one of the most active fields of solid-state science has been electrically conductive polymers. These are polymers which are insulators as prepared, but which can be converted to polymers having many or all the properties of a metal, by virtue of appropriate chemical/electrochemical oxidation or reduction. Typically, applications examined for electrically conductive polymers have been in areas such as rechargeable batteries and charge dissipative coatings. Recently it has been reported that poly(aniline), in its electrically conductive, protonated form, shows excellent performance as a coating for preventing the corrosion of carbon steel. The present research has shown that in fact, the non-conductive, unprotonated form of poly(aniline) shows even better performance in corrosion prevention than the conductive form. Moreover, it has been shown that poly(aniline) can be blended with other polymers to improve their corrosion resistance performance (e.g., polyimides), or used as a hardener for epoxides or diisocyanates, to give very good corrosion resistant coatings. Poly(aniline) performance is explained in terms of its ability to form dense, adherent films, and create a basic surface on carbon steel surfaces.

  14. Polyaniline-based optical ammonia detector

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2002-01-01

    Electronic absorption spectroscopy of a polyaniline film deposited on a polyethylene surface by chemical oxidation of aniline monomer at room temperature was used to quantitatively detect ammonia gas. The present optical ammonia gas detector was found to have a response time of less than 15 s, a regeneration time of less than 2 min. at room temperature, and a detection limit of 1 ppm (v/v) for ammonia, with a linear dynamic range from 180 ppm to 18,000 ppm.

  15. Method for preparing polyaniline fibers

    DOEpatents

    Mattes, Benjamin R.; Wang, Hsing-Lin

    2000-01-01

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  16. Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance

    PubMed Central

    2012-01-01

    A facile approach to functionalize carbon nanofibers [CNFs] with nanostructured polyaniline was developed via in situ mechanochemical polymerization of polyaniline in the presence of chemically treated CNFs. The nanostructured polyaniline grafting on the CNF was mainly in a form of branched nanofibers as well as rough nanolayers. The good dispersibility and processability of the hybrid nanocomposite could be attributed to its overall nanostructure which enhanced its accessibility to the electrolyte. The mechanochemical oxidation polymerization was believed to be related to the strong Lewis acid characteristic of FeCl3 and the Lewis base characteristic of aniline. The growth mechanism of the hierarchical structured nanofibers was also discussed. After functionalization with the nanostructured polyaniline, the hybrid polyaniline/CNF composite showed an enhanced specific capacitance, which might be related to its hierarchical nanostructure and the interaction between the aromatic polyaniline molecules and the CNFs. PMID:22315992

  17. Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance

    NASA Astrophysics Data System (ADS)

    Du, Xusheng; Liu, Hong-Yuan; Cai, Guipeng; Mai, Yiu-Wing; Baji, Avinash

    2012-02-01

    A facile approach to functionalize carbon nanofibers [CNFs] with nanostructured polyaniline was developed via in situ mechanochemical polymerization of polyaniline in the presence of chemically treated CNFs. The nanostructured polyaniline grafting on the CNF was mainly in a form of branched nanofibers as well as rough nanolayers. The good dispersibility and processability of the hybrid nanocomposite could be attributed to its overall nanostructure which enhanced its accessibility to the electrolyte. The mechanochemical oxidation polymerization was believed to be related to the strong Lewis acid characteristic of FeCl3 and the Lewis base characteristic of aniline. The growth mechanism of the hierarchical structured nanofibers was also discussed. After functionalization with the nanostructured polyaniline, the hybrid polyaniline/CNF composite showed an enhanced specific capacitance, which might be related to its hierarchical nanostructure and the interaction between the aromatic polyaniline molecules and the CNFs.

  18. Effect of Applied Potential on the Electrochemical Deposition of Styrene-Butadiene Co-Polymer Based Conducting Polymer Composite

    NASA Astrophysics Data System (ADS)

    Mathew, Anisha Mary; Neena, P.

    2011-10-01

    Homogeneous conducting polymer composite films with improved electrical properties are synthesized via electrochemical polymerization of polyaniline on Styrene butadiene rubber coated steel electrode. The electrochemical polymerization is carried out by potentiostatic method using an aqueous solution of 0.2 M aniline and 1.5 M sulphuric acid as electrolyte in a single compartment electrochemical cell. The optical studies show successful incorporation of polyaniline into the matrix polymer film. The effect of applied potential on the electrodeposition of composite is studied by cyclic voltammetry and by impedance spectroscopic measurements.

  19. Fabrication of carbon film composites for high-strength structures

    NASA Technical Reports Server (NTRS)

    Preiswerk, P. R.; Lippman, M.

    1972-01-01

    Physical and mechanical properties of fiber composite materials consisting of carbon films are described. Application of carbon film structural composites for constructing microwave filters or optical instruments is proposed. Applications in aerospace and architectural structures for high strength and low density properties are discussed.

  20. Alginate-magnesium aluminum silicate composite films: effect of film thickness on physical characteristics and permeability.

    PubMed

    Pongjanyakul, Thaned; Puttipipatkhachorn, Satit

    2008-01-01

    The different film thicknesses of the sodium alginate-magnesium aluminum silicate (SA-MAS) microcomposite films were prepared by varying volumes of the composite dispersion for casting. Effect of film thickness on thermal behavior, solid-state crystallinity, mechanical properties, water uptake and erosion, and water vapor and drug permeability of the microcomposite films were investigated. The film thickness caused a small change in thermal behavior of the films when tested using DSC and TGA. The crystallinity of the thin films seemed to increase when compared with the thick films. The thin films gave higher tensile strength than the thick films, whereas % elongation of the films was on the contrary resulted in the lower Young's modulus of the films when the film thickness was increased. This was due to the weaker of the film bulk, suggesting that the microscopic matrix structure of the thick films was looser than that of the thin films. Consequently, water uptake and erosion, water vapor permeation and drug diffusion coefficient of the thick films were higher than those of the thin films. The different types of drug on permeability of the films also showed that a positive charge and large molecule of drug, propranolol HCl, had higher lag time and lower diffusion coefficient that acetaminophen, a non-electrolyte and small molecule. This was because of a higher affinity of positive charge drug on MAS in the films. The findings suggest that the evaporation rate of solvent in different volumes of the composite dispersion used in the preparation method could affect crystallinity and strength of the film surface and film bulk of the microcomposite films. This led to a change in water vapor and drug permeability of the films. PMID:17611056

  1. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-05-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8-17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9-5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  2. Site-specific functionalization for chemical speciation of Cr(III) and Cr(VI) using polyaniline impregnated nanocellulose composite: equilibrium, kinetic, and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Jain, Priyanka; Varshney, Shilpa; Srivastava, Shalini

    2015-10-01

    Site-specific functionalizations are the emergent attention for the enhancement of sorption latent of heavy metals. Limited chemistry has been applied for the fabrication of diafunctionalized materials having potential to tether both environmentally stable oxidation states of chromium (Cr(III) and Cr(VI). Polyaniline impregnated nanocellulose composite (PANI-NCC) has been fabricated using click chemistry and explored for the removal of Cr(III) and Cr(VI) from hydrological environment. The structure, stability, morphology, particle size, surface area, hydrophilicity, and porosity of fabricated PANI-NCC were characterized comprehensively using analytical techniques and mathematical tools. The maximum sorption performance of PANI-NCC was procured for (Cr(III): 47.06 mg g-1; 94.12 %) and (Cr(VI): 48.92 mg g-1; 97.84 %) by equilibrating 0.5 g sorbent dose with 1000 mL of 25 mg L-1 chromium conc. at pH 6.5 and 2.5 for Cr(III) and Cr(VI), respectively. The sorption data showed a best fit to the Langmuir isotherm and pseudo-second-order kinetic model. The negative value of ∆ G° (-8.59 and -11.16 kJ mol-1) and ∆ H° (66.46 × 10-1 and 17.84 × 10-1 kJ mol-1), and positive value of ∆ S° (26.66 and 31.46 J mol-1K-1) for Cr(III) and Cr(VI), respectively, reflect the spontaneous, feasibility, and exothermic nature of the sorption process. The application of fabricated PANI-NCC for removing both the forms of chromium in the presence of other heavy metals was also tested at laboratory and industrial waste water regime. These findings open up new avenues in the row of high performance, scalable, and economic nanobiomaterial for the remediation of both forms of chromium from water streams.

  3. America on Film: A Humanities Composition Course.

    ERIC Educational Resources Information Center

    Recchia, Edward

    This paper argues that film courses are useful because they sensitize students both to the artistic qualities of film expression and to equivalent qualities in other forms of expression. The objectives of a film course at Michigan State University are: to develop the students' knowledge of the film medium and through that knowledge develop a…

  4. Electroactivity of transparent composite films from conducting poly(thiophenes)

    SciTech Connect

    Roncali, J.; Garnier, F.

    1988-02-11

    Conducting composite films containing an electropolymerizable conducting polymer such as poly(3-methylthiophene) (PMeT) alloyed with poly(vinyl chloride) (PVC) have been prepared in a one-step process from synthesis media already containing dissolved PVC. This procedure based on the simultaneous electropolymerization and dip-cutting processes allows a large control of the composition, morphology, optical transmittance, conductivity, and electroactivity of the composite films. The growth of PMeT in synthesis media containing dissolved PVC has been analyzed. Increasing the PVC concentration produces a slight decrease of the MeT electropolymerization rate with no apparent modification of the polymerization mechanism. The electrochemical properties of the composite films have been investigated in acetonitrile by using cyclic voltammetry and chronoamperometry. At low scan rate (10 mV/s), the electrochemical responses of the composite films are identical with that of bare PMeT films prepared under the same conditions. At higher scan rates, a dependence of the electroactivity of the films on their PVC content is observed and the electrochemical response turns progressively from an adsorption-like behavior to a diffusion-controlled one. It is shown that the electrolyte concentration used for the synthesis of the composite films is the key factor controlling their electrochemical behavior. The incorporation of PMeT within the PVC matrix does not affect its spectroelectrochemical properties and furthermore leads to an improved electrochemical stability of the film under redox cycling.

  5. Permeable polyaniline articles for gas separation

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2009-07-21

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

  6. Permeable polyaniline articles for gas separation

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2004-09-28

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

  7. Film in the Advanced Composition Classroom: A Tapestry of Style

    ERIC Educational Resources Information Center

    Durst, Pearce

    2015-01-01

    This article advances film as worthy of rhetorical inquiry and deserving of more sustained attention in the advanced composition classroom. The first section identifies various approaches to the "language" of film, which can be adopted to navigate the technical, rhetorical, and cultural concerns needed to compose informed multimodal…

  8. Investigation of methanol oxidation on a highly active and stable Pt–Sn electrocatalyst supported on carbon–polyaniline composite for application in a passive direct methanol fuel cell

    SciTech Connect

    Amani, Mitra; Kazemeini, Mohammad; Hamedanian, Mahboobeh; Pahlavanzadeh, Hassan; Gharibi, Hussein

    2015-08-15

    Highlights: • PtSn/C-PANI performed superior in the MOR compared with a commercial PtRu/C. • Catalytic activity of PtRu/C was highly reduced during the accelerated durability test. • Anode of the PtSn/C-PANI in a passive DMFC lowered methanol crossover by 30%. - Abstract: Polyaniline fiber (PANI) was synthesized and utilized to fabricate a vulcan–polyaniline (C-PANI) composite. Pt/C-PANI and PtSn/C-PANI electro-catalysts with different Pt:Sn atomic ratios were prepared by the impregnation method. These electro-catalysts, along with commercial PtRu/C (Electrochem), were characterized with respect to their structural and electrochemical properties in methanol oxidation reaction (MOR). PtSn(70:30)/C-PANI showed excellent performance in MOR, the obtained maximum current density being about 40% and 50% higher than that for PtRu/C and Pt/C-PANI, respectively. It was also found that the CO tolerance and stability of PtSn(70:30)/C-PANI was considerably higher than that of PtRu/C. Finally, the performance of these two materials was compared in a passive direct methanol fuel cell (DMFC). The DMFC test results demonstrated that the membrane electrode assembly (MEA) prepared using PtSn(70:30)/C-PANI anode catalyst performed more satisfactorily in terms of maximum power density and lower methanol crossover.

  9. Gold absorbing film for a composite bolometer

    NASA Technical Reports Server (NTRS)

    Dragovan, M.; Moseley, S. H.

    1984-01-01

    The principles governing the design of metal films are reviewed, with attention also given to the choice of metals. A description is then given of the characteristics of a bolometer with a gold absorbing film. It is demonstrated that gold is effective as an absorbing film for a millimeter bolometer operated at 1.5 K. At 1.5 K, gold is significantly better than bismuth since gold has a lower heat capacity for the absorbing film. At 0.3 K, gold and bismuth are both suitable. It is pointed out that at temperatures below 0.3 K, a superconducting absorbing film can have a heat capacity low enough not to dominate the heat capacity of the detector; for this reason, it may give better performance than a nonsuperconducting absorbing film.

  10. Synthesis and characterization of polyaniline nanorods/Ce(OH){sub 3}-Pr{sub 2}O{sub 3}/montmorillonite composites through reverse micelle template

    SciTech Connect

    Mo Zunli Zhang Ping; Zuo Dandan; Sun Yaling; Chen Hong

    2008-07-01

    Polyaniline (PANI) nanorods/Ce(OH){sub 3}-Pr{sub 2}O{sub 3}/montmorillonite (MMT) nanocomposites were synthesized via in situ polymerization of aniline monomer through reverse micelle template (RMT) in the presence of montmorillonite and Ce(OH){sub 3}, Pr{sub 2}O{sub 3}. In the experiment, sulphosalicylic acid was used as dopant, aniline was designated as oil phase and the aqueous solution comprising Ce{sup 3+} and Pr{sup 3+} as water phase. The nanocomposites were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy and thermogravimetry-differential thermal analysis (TG-DTA). The results showed that PANI nanorods were synthesized in the interlayer spaces of MMT with uniform spherical rare earth nanoparticles. The thermal stability of the nanocomposites prepared was enhanced drastically compared with pure polyaniline.

  11. Photo-induced polymerization of polyaniline

    SciTech Connect

    Barros, R.A. de; Azevedo, W.M. de; Aguiar, F.M. de

    2003-03-15

    A straightforward route to prepare polyaniline is presented in which photons and metallic ions replace conventional oxidants to promote polymerization of aniline monomer. The photopolymerization methods yield a composite material that has been characterized by its UV, visible and Raman spectroscopic analysis and by scanning electron microscopy and X-ray microanalysis as well. Intriguing forms of silver wires embedded in polyaniline are observed, typically of 1 {mu}m wide and up to 100 {mu}m long. It is shown that the morphology of the resulting conducting polymer strongly depends on the excitation wavelength, while a globular morphology is found for the UV synthesis and a fibrillar one is found for visible light excitation.

  12. English Composition and the Feature Film.

    ERIC Educational Resources Information Center

    Moss, Robert F.

    1985-01-01

    Discusses film-oriented writing classes as a way of expanding student vocabularies and illustrating such literary devices as metaphor, irony, and imagery. Offers guidelines for writing instructors wishing to add films to a course plan, using "King Kong,""The Godfather," and "One Flew Over the Cuckoo's Nest" as examples. (DMM)

  13. Piezoelectric Sol-Gel Composite Film Fabrication by Stencil Printing.

    PubMed

    Kaneko, Tsukasa; Iwata, Kazuki; Kobayashi, Makiko

    2015-09-01

    Piezoelectric films using sol-gel composites could be useful as ultrasonic transducers in various industrial fields. For sol-gel composite film fabrication, the spray coating technique has been used often because of its adaptability for various substrates. However, the spray technique requires multiple spray coating processes and heating processes and this is an issue of concern, especially for on-site fabrication in controlled areas. Stencil printing has been developed to solve this issue because this method can be used to fabricate thick sol-gel composite films with one coating process. In this study, PbTiO3 (PT)/Pb(Zr,Ti)O3 (PZT) films, PZT/PZT films, and Bi4Ti3O12 (BiT)/PZT films were fabricated by stencil printing, and PT/ PZT films were also fabricated using the spray technique. After fabrication, a thermal cycle test was performed for the samples to compare their ultrasonic performance. The sensitivity and signal-to-noise-ratio (SNR) of the ultrasonic response of PT/PZT fabricated by stencil printing were equivalent to those of PT/PZT fabricated by the spray technique, and better than those of other samples between room temperature and 300°C. Therefore, PT/PZT films fabricated by stencil printing could be a good candidate for nondestructive testing (NDT) ultrasonic transducers from room temperature to 300°C. PMID:26688872

  14. Sprayable, Paintable Layer-by-Layer Polyaniline Nanofiber/Graphene Electrodes for Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Kwon, Se Ra; Jeon, Ju-Won; Lutkenhus, Jodie

    2015-03-01

    Sprayable batteries are growing in interest for applications in structural energy storage and power or flexible power. Spray-assisted layer-by-layer (LbL) assembly, in which complementary species are alternately sprayed onto a surface, is particularly amenable toward this application. Here, we report on the fabrication of composite films containing polyaniline nanofibers (PANI NF) and graphene oxide (GO) sheets fabricated via spray-assisted LbL assembly. The resulting films are electrochemical reduced to yield PANI NF/electrochemically reduced graphene (ERGO) electrodes for use as a cathode in non-aqueous energy storage systems. Through the spray-assisted LbL process, the hybrid electrodes could be fabricated 74 times faster than competing dip-assisted LbL assembly. The resulting electrodes are highly porous (0.72 void fraction), and are comprised of 67 wt% PANI NF and 33 wt% ERGO. The sprayed electrodes showed better rate capability, higher specific power, as well as more stable cycle life than dip-assisted LbL electrodes. It is shown here that the spray-assisted LbL approach is well-suited towards the fabrication of paintable electrodes containing polyaniline nanofibers and electrochemically reduced graphene oxide sheets.

  15. Microstructures and thermochromic characteristics of VO2/AZO composite films

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Li, Yi; Yuan, Wenrui; Fang, Baoying; Wang, Xiaohua; Hao, Rulong; Wu, Zhengyi; Xu, Tingting; Jiang, Wei; Chen, Peizu

    2016-05-01

    A vanadium dioxide (VO2) thin film was fabricated on a ZnO doped with Al (AZO) conductive glass by magnetron sputtering at room temperature followed by annealing under air atmosphere. The microstructures and optical properties of the thin film were studied. The results showed that the VO2/AZO composite film was poly-crystalline and the AZO layer did not change the preferred growth orientation of VO2. Compared to the VO2 film fabricated on soda-lime glass substrate through the same process and condition, the phase transition temperature of the VO2/AZO composite film was decreased by about 25 °C, thermal hysteresis width narrowed to 6 °C, the visible light transmittance was over 50%, the infrared transmittances before and after phase transition were 21% and 55%, respectively at 1500 nm.

  16. Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films.

    PubMed

    Juncu, Gheorghe; Stoica-Guzun, Anicuta; Stroescu, Marta; Isopencu, Gabriela; Jinga, Sorin Ion

    2016-08-30

    Composite films of sodium carboxymethyl cellulose and bacterial cellulose (NaCMC-BC) cross-linked with citric acid (CA) were prepared by solution casting method. Ibuprofen sodium salt (IbuNa) has been used to study the mechanism of drug release from composite films. Surface morphology was investigated by scanning electron microscopy (SEM) and proved that the BC content influences the aspect of the films. Fourier transformed infrared spectroscopy (FTIR) revealed specific peaks in IR spectra of composite films which sustain that NaCMC was cross-linked with CA. Starting from swelling observations, the release kinetic of IbuNa was described using a model which neglects the volume expansion due to polymer swelling and which considers non-linear diffusion coefficients for drug and solvent. The IbuNa release is also influenced by BC content, the drug release rate was decreasing with the increase of BC content. PMID:26688041

  17. Composite membranes from photochemical synthesis of ultrathin polymer films

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Martin, Charles R.

    1991-07-01

    THERE has recently been a resurgence of interest in synthetic membranes and membrane-based processes1-12. This is motivated by a wide variety of technological applications, such as chemical separations1-7, bioreactors and sensors8,9, energy conversion10,11 and drug-delivery systems12. Many of these technologies require the ability to prepare extremely thin, defect-free synthetic (generally polymeric) films, which are supported on microporous supports to form composite membranes. Here we describe a method for producing composite membranes of this sort that incorporate high-quality polymer films less than 50-nm thick. The method involves interfacial photopolymerization of a thin polymer film on the surface of the microporous substrate. We have been able to use this technique to synthesize a variety of functionalized ultrathin films based on electroactive, photoactive and ion-exchange polymers. We demonstrate the method here with composite membranes that show exceptional gas-transport properties.

  18. Tuning of wettability of PANI-GNP composites using keV energy ions

    NASA Astrophysics Data System (ADS)

    Lakshmi, G. B. V. S.; Avasthi, D. K.

    2016-07-01

    Polyaniline nanofiber composites with various nanomaterials have several applications in electrochemical biosensors. The surface properties of these composites coated electrodes play crucial role in enzyme absorption and analyte detection process. In the present study, Polyaniline-Graphene nanopowder (PANI-GNP) composites were prepared by rapid-mixing polymerization method. The films were prepared on ITO coated glass substrates and irradiated with 42 keV He+ ions produced by indigenously fabricated accelerator at IUAC, New Delhi. The films were characterized before and after irradiation by SEM, Raman spectroscopy and contact angle measurements. The as-prepared films show superhydrophilic nature and after irradiation the films show highly hydrophobic nature with water contact angle (135°). The surface morphology was studied by SEM and structural changes were studied by Raman spectra. The surface morphological modifications induced by keV energy ions helps in tuning the wettability at different ion fluences.

  19. Polyaniline nanofilms as a base for novel optical sensor structures

    NASA Astrophysics Data System (ADS)

    Vasinek, Vladimir; Bocheza, Jiri; Hejduk, Stanislav; Latal, Jan; Koudelka, Petr; Vitasek, Jan

    2011-10-01

    Polyaniline hydrochloride was prepared by the oxidation of aniline hydrochloride with ammonium peroxodisulfate in dilute hydrochloric acid. The polyaniline films were produced during the polymerization on the microscope glass surfaces immersed in the reaction mixture. The thin film was created and its thickness has been about 100 nm. We have measured the spectral transmittance together with temperature changes. The polyaniline thin film is conductive and we observed changes in optical transmittance spectra and reflective spectra with electric current. Optical spectra have been measured in range from 380 nm to 1010 nm. The electric conductivity has been changed with silicate substrate. This substrate influenced the free electrons distribution and therefore the optical properties of polyaniline. Due to electric current going through the nanofilm its sensitivity to temperature has been increased. We also observed two specific spectral windows. The first one was characterized by its insensitivity to temperature; the second one has been temperature sensitive. The central wavelength of insensitive window is about 500nm. This property can be the base for novel sensors structures. We used Ocean Optics USB spectrometer for evaluation of spectral changes. Wideband white light halogen source from the same manufacturer has been applied as a light source. Small polarizing dependence of reflected light has been observed too.

  20. Stabilization of polyaniline solutions

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.

    1993-12-01

    Adding hindered amine light stabilizers (HALS) to N-methyl- pyrrolidinone (NMP) solutions of polyaniline delays gelation. It is hypothesized that HALS act in some manner other than as traditional antioxidants in preventing gelation; the secondary amine functional group appears to play a critical role, perhaps by disrupting the physical crystallization network that may contribute to gelation. Pyrrolidine, a secondary amine, or ammonia is an effective cosolvent with NMP in dissolving PAn-EB (emeraldine base). 6 refs, 4 figs.

  1. The sorption of influenza viruses and antibiotics on carbon nanotubes and polyaniline nanocomposites

    NASA Astrophysics Data System (ADS)

    Ivanova, V. T.; Katrukha, G. S.; Timofeeva, A. V.; Ilyna, M. V.; Kurochkina, Y. E.; Baratova, L. A.; Sapurina, I. Yu; Ivanov, V. F.

    2011-04-01

    The decontamination of the solutions from micropatogens and drug delivery are the important problems of modern life. It was shown that carbon nanotubes, polyaniline and their composites can interact with antibiotics-polypeptides and some viruses (pandemic strain of influenza viruses A(H1N1)v circulated in Russia in 2009-2010. During a short time drug and viruses can be absorbed by polyaniline and removed from aqueous solutions at the normal conditions. Polyaniline composites can be useful for the preparation of drug delivery and virus control filters and also in biotechnology for the improvement the methods of antibiotics purification.

  2. Conducting carbonized polyaniline nanotubes

    NASA Astrophysics Data System (ADS)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  3. Conducting carbonized polyaniline nanotubes.

    PubMed

    Mentus, Slavko; Cirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 degrees C min(-1) up to a maximum temperature of 800 degrees C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 microm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 microm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm(-1), increased to 0.7 S cm(-1) upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy. PMID:19471087

  4. Compositional depth profiling of TaCN thin films

    SciTech Connect

    Adelmann, Christoph; Conard, Thierry; Franquet, Alexis; Brijs, Bert; Munnik, Frans; Burgess, Simon; Witters, Thomas; Meersschaut, Johan; Kittl, Jorge A.; Vandervorst, Wilfried; Van Elshocht, Sven

    2012-07-15

    The composition profiling of thin TaCN films was studied. For the composition profile determination using x-ray photoemission spectrometry (XPS) in combination with Ar sputtering, preferential sputtering effects of N with respect to Ta and C were found to lead to inaccurate elemental concentrations. Sputter yield calculations for the given experimental conditions allowed for the correction of a part of the error, leading to fair accuracy by reference-free measurements. Further improvement of the accuracy was demonstrated by the calibration of the XPS compositions against elastic recoil detection analysis (ERDA) results. For Auger electron spectrometry (AES) in combination with Ar sputtering, accurate results required the calibration against ERDA. Both XPS and AES allowed for a reliable and accurate determination of the compositional profiles of TaCN-based thin films after calibration. Time-of-flight secondary-ion mass spectrometry was also used to assess the composition of the TaCN films. However, the analysis was hampered by large matrix effects due to small unintentional oxygen contents in the films. Energy-dispersive x-ray spectrometry is also discussed, and it is shown that an accurate reference-free measurement of the average film concentration can be achieved.

  5. Novel hybrid multifunctional magnetoelectric porous composite films

    NASA Astrophysics Data System (ADS)

    Martins, P.; Gonçalves, R.; Lopes, A. C.; Venkata Ramana, E.; Mendiratta, S. K.; Lanceros-Mendez, S.

    2015-12-01

    Novel multifunctional porous films have been developed by the integration of magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride)-Trifuoroethylene (P(VDF-TrFE)), taking advantage of the synergies of the magnetostrictive filler and the piezoelectric polymer. The porous films show a piezoelectric response with an effective d33 coefficient of -22 pC/N-1, a maximum magnetization of 12 emu g-1 and a maximum magnetoelectric coefficient of 9 mV cm-1 Oe-1. In this way, a multifunctional membrane has been developed suitable for advanced applications ranging from biomedical to water treatment.

  6. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  7. Composite polymeric film and method for its use in installing a very thin polymeric film in a device

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  8. Structural and magnetic properties of Co-C composite films and Co/C multilayer films

    NASA Astrophysics Data System (ADS)

    Shi, J.; Azumi, M.; Nittono, O.

    CoC composite films and Co/C multilayer films have been prepared by a method incorporating ion beam sputtering and plasma chemical vapor deposition. It has been found that the structure and magnetic properties of both the Co-C composite and the Co/C multilayer films depend strongly on the substrate temperature during deposition. The Co-C composite film deposited at room temperature is amorphous, with relatively low saturation magnetization and coercivity. On the other hand, the film deposited at 250 °C is composed of fine Co crystallites separated by amorphous C or Co-C phase. As a result, both the saturation magnetization and coercivity are increased compared with the film deposited at room temperature. When deposited at room temperature, the Co/C multilayer film exhibits good periodicity, with a period of 70 nm (Co: 40 nm, C: 30 nm) and sharp and flat Co-C interfaces. High magnetization (602 emu/cm3) and low coercivity (1.6 Oe) are obtained for such a film. However, increasing the substrate temperature to 250 °C was found to be detrimental to the magnetic properties due to the formation of cobalt carbide at the Co-C interface.

  9. Electret behaviour of Polypropylene/KNO3 composite films

    NASA Astrophysics Data System (ADS)

    Mancheva, R. D.; Kiradzhiyska, D. D.; Viraneva, A. P.; Yovcheva, T. A.; Galikhanov, M. F.

    2016-03-01

    Polypropylene (PP) is commonly used as a coating of medical implants because of good mechanical and electrical properties. In the present paper the influence of two factors (time storage and temperature storage) on the surface potential decay of PP composite films was investigated. PP composite films with different weight concentrations of the KNO3 particles - 0 wt.%, 2 wt.% and 4 wt.% were investigated. The samples were charged in a positive or in a negative corona by means of a corona triode system and the time dependences of the surface potential were studied for 120 days. The effect of temperature storage on the surface potential was also investigated. The results obtained show a significant change in the electrets behavior of the composite films after the inclusion of KNO3 particles with different concentration into the PP matrix.

  10. The effective flux through a thin-film composite membrane

    NASA Astrophysics Data System (ADS)

    Bruna, M.; Chapman, S. J.; Ramon, G. Z.

    2015-05-01

    Composite membrane structures, used extensively in separation processes, comprise an ultra-thin selective polymer film cast over a porous support, whose pores partially obstruct transport out of the top film. Here, we model the composite as a finite thickness slab with a periodic array of circular absorbing patches in an otherwise reflective surface and study the effective transport properties of the composite. We obtain an analytical approximation for the effective diffusive flux as a function of the geometrical parameters, namely the film thickness, the support porosity and the pore size. We find a good agreement with full numerical solutions, and that a good effective rate is achievable with a relatively small number of pores.

  11. New renewable resource amphiphilic molecular design for size-controlled and highly ordered polyaniline nanofibers.

    PubMed

    Anilkumar, P; Jayakannan, M

    2006-06-20

    We demonstrate here, for the first time, a unique strategy for conducting polyaniline nanofibers based on renewable resources. Naturally available cardanol, which is an industrial waste and main pollutant from the cashew nut industry, is utilized for producing well-defined polyaniline nanofibers. A new amphiphilic molecule is designed and developed from cardanol, which forms a stable emulsion with aniline for a wide composition range in water (1:1 to 1:100 dopant/aniline mole ratio) to produce polyaniline nanofibers. The scanning electron microscopy and transmission electron microscopy analysis of the nanofibers reveals that the dopant/aniline ratio plays a major role in determining the shape and size of polyaniline nanofibers. The nanofiber length increases with the increase in the dopant/aniline ratio, and perfectly linear, well-defined nanofibers of lengths as long as 7-8 muM were produced. The amphiphilic dopant has a built-in head-to-tail geometry and effectively penetrates into the polyaniline chains to form highly organized nanofibers. Wide-angle X-ray diffraction (WXRD) spectra of the nanofibers showed a new peak at 2theta = 6.3 (d spacing = 13.9 A) corresponding to the three-dimensional solid-state ordering of polyaniline-dopant chains, and this peak intensity increases with increase in the nanofiber length. The comparison of morphology and WXRD reveals that high ordering in polyaniline chains results in the formation of long, well-defined nanofibers, and this direct correlation for the polyaniline nanofibers with solid-state ordering has been established. The conductivity of the polyaniline nanofibers also increases with increase in the solid-state ordering rather than increasing with the extent of doping. The polyaniline nanofibers are freely soluble in water and possess high environmental and thermal stability up to 300 degrees C for various applications. PMID:16768535

  12. Composite elastic magnet films with hard magnetic feature

    NASA Astrophysics Data System (ADS)

    Wang, Weisong; Yao, Zhongmei; Chen, Jackie C.; Fang, Ji

    2004-10-01

    Hard magnetic materials with high remnant magnetic moment, Mr, have unique advantages that can achieve bi-directional (push-pull) movement in an external magnetic field. This paper presents the results on the fabrication and testing of novel composite elastic permanent magnet films. The microsize hard barium ferrite powder, NdFeB powder, and different silicone elastomers have been used to fabricate various large elongation hard magnetic films. Three different fabrication methods, screen-coating processing, moulding processing and squeegee-coating processing, have been investigated, and the squeegee-coating process was proven to be the most successful method. The uniform composite elastic permanent magnet films range from 40 µm to 216 µm in thickness have been successfully fabricated. These films were then magnetized in the thickness direction after fabrication. They exhibited permanent magnet behaviour; for instance, the film (0.640 mm3 in volume) made of polydimethyl siloxane (PDMS) and hard barium ferrite powders is measured to give a coercive force, Hc, of 3.24 × 105 A m-1 and Mr of 1.023 × 10-5 A m2, and the film (0.504 mm3 in volume) made of PDMS and NdFeB powders gives 1.55 × 105 A m-1 Hc and 8.081 × 10-5 A m2 Mr. These composite elastic permanent magnet films' mechanical properties, like Young's modulus and deflection force, have been evaluated. To validate the films' Young's modulus, a finite-element computer simulation (ANSYS®) is used and one film is chosen whose Young's modulus (16.60 MPa) is confirmed by the simulation results with ANSYS®. The large elongation composite elastic permanent magnet film provides an excellent diaphragm material, which plays an important role in the micropump or valve. The movement of the 126 µm thick film with 4.5 mm diameter made of PDMS and NdFeB powders has been tested in a 0.21 Tesla external magnetic field. It was proven to have large deflection of 125 µm.

  13. Conducting polyaniline nanowire electrode junction

    NASA Astrophysics Data System (ADS)

    Gaikwad, Sumedh; Bodkhe, Gajanan; Deshmukh, Megha; Patil, Harshada; Rushi, Arti; Shirsat, Mahendra D.; Koinkar, Pankaj; Kim, Yun-Hae; Mulchandani, Ashok

    2015-03-01

    In this paper, a synthesis of conducting polyaniline nanowires electrode junction (CPNEJ) has been reported. Conducting polyaniline nanowires electrode junction on Si/SiO2 substrate (having 3 μm gap between two gold microelectrodes) is prepared. Polyaniline nanowires with diameter (ca. 140 nm to 160 nm) were synthesized by one step electrochemical polymerization using galvanostatic (constant current) technique to bridge this gap. The surface morphology of CPNEJ was studied by scanning electron microscope (SEM). The synthesized CPNEJ is an excellent platform for biosensor applications.

  14. Flexible composite film for printed circuit board

    NASA Technical Reports Server (NTRS)

    Yabe, K.; Asakura, M.; Tanaka, H.; Soda, A.

    1982-01-01

    A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed.

  15. Stabilization of polyaniline solutions through additives

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.

    1996-12-10

    A stabilized non-conductive polyaniline solution comprising from about 1 to about 10 percent by weight polyaniline or a polyaniline derivative, from about 90 to about 99 percent by weight N-methylpyrrolidone, and from about 0.5 percent by weight to about 15 percent by weight of a solution stabilizing additive selected from the group consisting of hindered amine light stabilizers, polymeric amines, and dialkylamines, percent by weight of additive based on the total weight of polyaniline or polyaniline derivative is provided together with a method for stabilizing a polyaniline solution. 4 figs.

  16. Physical and mechanical properties of modified bacterial cellulose composite films

    NASA Astrophysics Data System (ADS)

    Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri

    2016-02-01

    To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.

  17. Nanocellulose-Zeolite Composite Films for Odor Elimination.

    PubMed

    Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart

    2015-07-01

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit. PMID:26061093

  18. Graphene/Ionic liquid composite films and ion exchange.

    PubMed

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  19. Graphene/Ionic Liquid Composite Films and Ion Exchange

    NASA Astrophysics Data System (ADS)

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-06-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force.

  20. Enhanced electrocaloric effect in composition gradient bilayer thick films

    NASA Astrophysics Data System (ADS)

    Hou, Ying; Yang, Lu; Qian, Xiaoshi; Zhang, Tian; Zhang, Q. M.

    2016-03-01

    We report the enhanced electrocaloric (EC) response over a broad temperature range in composition gradient Ba(ZrTi)O3 based bilayer thick films. A large EC temperature change of -4.9 K under an electric field of 10 MV/m around room temperature, large electrocaloric coefficient ΔT/ΔE = 0.49 × 10-6 K m V-1 were observed in the BaZr0.17Ti0.83O3/BaZr0.20Ti0.80O3 bilayer thick films, which are improved compared with BaZr0.20Ti0.80O3 and BaZr0.17Ti0.83O3 homogeneous bilayer films. The result reveals the potential of the composition gradient bilayer structure in improving the electrocaloric effect, which may provide an effective route to achieve large EC temperature change under a low electric field.

  1. Graphene/Ionic Liquid Composite Films and Ion Exchange

    PubMed Central

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  2. Gelatin-Pectin Composite Films from Polyion Complex Hydrogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composite films from gelatin and low-methoxyl pectin were prepared by either ionic complexation or covalent cross-linking. The ionic interactions between positively charged gelatin and negatively charged pectin produced physically reversible hydrogels. The resultant homogeneous gels had improved mec...

  3. Action of colloidal silica films on different nano-composites

    NASA Astrophysics Data System (ADS)

    Abdalla, S.; Al-Marzouki, F.; Obaid, A.; Gamal, S.

    Nano-composite films have been the subject of extensive work to develop the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nano-particles size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that form an insulating film between conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of 4 high pure amorphous polymer films: polymethylmethacrylate (PMMA), polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher break down performance is a character of polyimide PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer.

  4. Fabrication and Characterization of Amorphous/Nanocrystalline Thin Film Composite

    NASA Astrophysics Data System (ADS)

    Newton, Benjamin S.

    Combining the absorption abilities of amorphous silicon and the electron transport capabilities of crystalline silicon would be a great advantage to not only solar cells but other semiconductor devices. In this work composite films were created using molecular beam epitaxy and electron beam deposition interchangeably as a method to create metallic precursors. Aluminum induced crystallization techniques were used to convert an amorphous silicon film with a capping layer of aluminum nanodots into a film composed of a mixture of amorphous silicon and nanocrystalline silicon. This layer was grown into the amorphous layer by cannibalizing a portion of the amorphous silicon material during the aluminum induced crystallization. Characterization was performed on films and metallic precursors utilizing SEM, TEM, ellipsometry and spectrophotometer.

  5. Study of polyaniline coated CuFe2O4 nanoparticles and their application in biosensor

    NASA Astrophysics Data System (ADS)

    Sharma, Uma Shankar; Shah, Rashmi

    2016-05-01

    Polyaniline coated with nanoferrite particles has attractive application in enzyme less biosensor. In this paper, we have reported the synthesis of copper ferrite by Chemical Coprecipitation method and polymerization of polyaniline by oxidation method. The polyaniline-ferrite composite was characterized by different techniques such as XRD and VSM. The XRD pattern confirmed the presence of cubic phase and particles size in nano scale. The magnetic properties were studied by vibrating sample magnetometer (VSM) technique at room temperature. The higher values of saturation magnetization attributed to the cation distribution change from normal to spinel structure. Some Fe3+ ions drifted from octahedral site to tetrahedral site through the conversion of some Fe2+ ions to Fe3+ ions with super-exchange interactions and gives rise to saturation magnetization. The saturation magnetization of polyaniline coated CuFe2O4 using ammonium nitrate is much less than by polyaniline coated CuFe2O4 using ammonium peroxidisulphate. The saturation magnetization Ms of the nanocomposite is dependent on the volume fraction of the magnetic ferrite particles and on the contribution of the non-magnetic polyaniline coated layer. Polyaniline worked as an immobilization layer in the enzyme less biosensor because enzyme less biosensor is not affected by environmental factor.

  6. Latex-like water-borne polyaniline for coating applications

    SciTech Connect

    Liu, H.; Clark, R.; Yang, S.C.

    1998-07-01

    The authors report the synthesis of a polymeric complex of polyaniline that is dispersed in water as a stable suspension. The polymer, PAN:PVME-MLA, is a molecular complex of polyaniline and poly(vinylmethylether-co-maleic acid). The synthetic process leads to a stable latex-like suspension in water. The water-borne conducting polymer, once dried as a thin film on a substrate, is not dissolvable by water or other solvents. An example of piece-dyeing process is presented to show its potential for electrostatic dissipation of textile products. Another example illustrates that the material may be used as electroactive thin-films for electrochromic windows and for rechargeable battery applications.

  7. Preparation of nanosize polyaniline and its utilization for microwave absorber.

    PubMed

    Abbas, S M; Dixit, A K; Chatterjee, R; Goel, T C

    2007-06-01

    Polyaniline powder in nanosize has been synthesized by chemical oxidative route. XRD, FTIR, and TEM were used to characterize the polyaniline powder. Crytallite size was estimated from XRD profile and also ascertained by TEM in the range of 15 to 20 nm. The composite absorbers have been prepared by mixing different ratios of polyaniline into procured polyurethane (PU) binder. The complex permittivity (epsilon' - jepsilon") and complex permeability (mu' - jmu") were measured in X-band (8.2-12.4 GHz) using Agilent network analyzer (model PNA E8364B) and its software module 85071 (version 'E'). Measured values of these parameters were used to determine the reflection loss at different frequencies and sample thicknesses, based on a model of a single layered plane wave absorber backed by a perfect conductor. An optimized polyaniline/PU ratio of 3:1 has given a minimum reflection loss of -30 dB (99.9% power absorption) at the central frequency 10 GHz and the bandwidth (full width at half minimum) of 4.2 GHz over whole X-band (8.2 to 12.4 GHz) in a sample thickness of 3.0 mm. The prepared composites can be fruitfully utilized for suppression of electromagnetic interference (EMI) and reduction of radar signatures (stealth technology). PMID:17655005

  8. Special Polymer/Carbon Composite Films for Detecting SO2

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ryan, Margaret; Yen, Shiao-Pin; Kisor, Adam; Jewell, April; Shevade, Abhijit; Manatt, Kenneth; Taylor, Charles; Blanco, Mario; Goddard, William

    2008-01-01

    A family of polymer/carbon films has been developed for use as sensory films in electronic noses for detecting SO2 gas at concentrations as low as 1 part per million (ppm). Most previously reported SO2 sensors cannot detect SO2 at concentrations below tens of ppm; only a few can detect SO2 at 1 ppm. Most of the sensory materials used in those sensors (especially inorganic ones that include solid oxide electrolytes, metal oxides, and cadmium sulfide) must be used under relatively harsh conditions that include operation and regeneration at temperatures greater than 100 C. In contrast, the present films can be used to detect 1 ppm of SO2 at typical opening temperatures between 28 and 32 C and can be regenerated at temperatures between 36 and 40 C. The basic concept of making sensing films from polymer/carbon composites is not new. The novelty of the present family of polymer/carbon composites lies in formulating the polymer components of these composites specifically to optimize their properties for detecting SO2. First-principles quantum-mechanical calculations of the energies of binding of SO2 molecules to various polymer functionalities are used as a guide for selecting polymers and understanding the role of polymer functionalities in sensing. The polymer used in the polymer-carbon composite is a copolymer of styrene derivative units with vinyl pyridine or substituted vinyl pyridine derivative units. To make a substituted vinyl pyridine for use in synthesizing such a polymer, poly(2-vinyl pyridine) that has been dissolved in methanol is reacted with 3-chloropropylamine that has been dissolved in a solution of methanol. The methanol is then removed to obtain the copolymer. Later, the copolymer can be dissolved in an appropriate solvent with a suspension of carbon black to obtain a mixture that can be cast and then dried to obtain a sensory film.

  9. Boron Nitride Surface Activity as Route to Composite Dielectric Films.

    PubMed

    Cui, Zhenhua; Cao, Zhen; Ma, Rui; Dobrynin, Andrey V; Adamson, Douglas H

    2015-08-12

    The propensity of boron nitride sheets to stack creates obstacles for their application as multifunctional materials despite their unique thermal, mechanical, and electrical properties. To address this challenge, we use a combination of molecular dynamics simulations and experimental techniques to demonstrate surfactant-like properties of BN sheets at the interface between immiscible solvents. The spreading of two-dimensional BN sheets at a high-energy oil/water interface lowers the free energy of the system, creating films of overlapping BN sheets that are more thermodynamically favorable than stacked sheets. Coating such films onto polymers results in composite materials with exceptional barrier and dielectric properties. PMID:26214048

  10. Transport properties of polyaniline-cellulose-acetate blends

    NASA Astrophysics Data System (ADS)

    Planès, Jérôme; Wolter, Andreas; Cheguettine, Yasmina; Proń, Adam; Genoud, Françoise; Nechtschein, Maxime

    1998-09-01

    Transport properties of polyaniline (PANI)-cellulose acetate (CA) conducting blends have been investigated at various length scales and temperatures. We report on the results of dc and ac conductivity measurements, magnetoresistance and electron-spin resonance (ESR) performed on composite films with PANI weight fraction p ranging from the percolation threshold-pc~=0.1%-to a few percent. Three different PANI doping agents have been tested, namely, camphor sulfonic acid (CSA), di(i-octyl phosphate) (DiOP) and phenyl phosphonic acid (PPA). The percolative behavior of σdc resembles that of published results on PANI/PMMA blends. The onset frequency ωξ of the dispersion in σac appears to follow the scaling law: ωξ~σzdc with z~=1. The temperature dependence is of the form of lnσ(T)~-(T0/T)γ the exponent decreasing from 0.75 to 0.5 with increasing p. The microscopic metallic character of transport is found in ESR and microwave measurements. Spin-dependent conductivity is inferred from the (B/T)2 universal behavior of magnetoresistance. Those results are discussed in conjunction with the ongoing debate on the nature of disorder in conducting polymers-homogeneous versus heterogeneous.

  11. Electromagnetic radiation absorbers and modulators comprising polyaniline

    DOEpatents

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  12. Sulfonated polyaniline, a conducting polymer electrode for ion transfer batteries

    SciTech Connect

    Barbero, C.; Miras, M.C.; Koetz, R.; Haas, O.

    1994-12-31

    Sulfonated polyaniline (SPAN) was synthesized by sulfonation of polyaniline base with f6ming sulfuric acid. The polymer films were characterized by XPS, FFIR and UV-vis-NIR. XPS in combination with FTIR shows that the preparation procedure leads to a ca. 47% sulfonation of an otherwise unchanged polyaniline backbone. Electrodes modified with SPAN films exhibited two redox steps in aqueous as well as in nonaqueous electrolytes. Probe Beam Deflection and Quartz Crystal Microbalance were used to study the ion exchange mechanism. Protons are predominantly expelled during the first and second oxidation steps in acidic aqueous solution, accompanied by a counterflux of solvent. In nonaqueous electrolyte, expulsion of cations seems to be the dominant flux during SPAN oxidation, while solvent counterflux plays a significant role. The specific charge of SPAN films was found to be ca. 37 Ah/kg in aqueous solution (only first redox process used) and ca. 68 Ah/kg in nonaqueous media (both redox processes). Based on their experimental results, an estimation for a practical SPAN/Li battery would have 50% more specific energy than a PANI/Li one.

  13. Composition and structure of sputter deposited erbium hydride thin films

    SciTech Connect

    ADAMS,DAVID P.; ROMERO,JUAN A.; RODRIGUEZ,MARK A.; FLORO,JERROLD A.; BANKS,JAMES C.

    2000-05-10

    Erbium hydride thin films are grown onto polished, a-axis {alpha} Al{sub 2}O{sub 3} (sapphire) substrates by reactive ion beam sputtering and analyzed to determine composition, phase and microstructure. Erbium is sputtered while maintaining a H{sub 2} partial pressure of 1.4 x 10{sup {minus}4} Torr. Growth is conducted at several substrate temperatures between 30 and 500 C. Rutherford backscattering spectrometry (RBS) and elastic recoil detection analyses after deposition show that the H/Er areal density ratio is approximately 3:1 for growth temperatures of 30, 150 and 275 C, while for growth above {approximately}430 C, the ratio of hydrogen to metal is closer to 2:1. However, x-ray diffraction shows that all films have a cubic metal sublattice structure corresponding to that of ErH{sub 2}. RBS and Auger electron that sputtered erbium hydride thin films are relatively free of impurities.

  14. Influence of film composition on the transition temperature of FeRh films

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Chen, X. Z.; Zhou, X. J.; Wang, Y. Y.; Pan, F.; Song, C.

    2016-03-01

    We investigate the influences of film composition, tuned by argon growth pressure and palladium doping, on antiferromagnetic to ferromagnetic transition temperatures of FeRh films. Employing complementary characterizations we show that the CsCl-type FeRh grows on MgO (100) substrate epitaxially with a controllable transition temperature. Lower argon pressure, a suitable palladium doping are found to effectively decrease the transition temperature. In addition, the exploration about the influence of post-annealing time on un-doped FeRh films indicates that annealing procedure is helpful to improve the growth quality. The optimized growth parameter provides an opportunity to deposit ultrathin FeRh films (5 nm) with a clear antiferromagnetic to ferromagnetic transition. The manipulation of the transition temperature of FeRh would advance its use in antiferromagnetic spintronics.

  15. Thin film composition with biological substance and method of making

    DOEpatents

    Campbell, Allison A.; Song, Lin

    1999-01-01

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphus structures, organic crystalline structures, and organic amorphus structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobal, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflamatory, steriod, nonsteriod anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor the compositions listed above.

  16. Electrophoretic deposition of tannic acid-polypyrrolidone films and composites.

    PubMed

    Luo, Dan; Zhang, Tianshi; Zhitomirsky, Igor

    2016-05-01

    Thin films of polyvinylpyrrolidone (PVP)-tannic acid (TA) complexes were prepared by a conceptually new strategy, based on electrophoretic deposition (EPD). Proof of concept investigations involved the analysis of the deposition yield, FTIR and UV-vis spectroscopy of the deposited material, and electron microscopy studies. The analysis of the deposition mechanism indicated that the limitations of the EPD in the deposition of small phenolic molecules, such as TA, and electrically neutral polymers, similar to PVP, containing hydrogen-accepting carbonyl groups, can be avoided. The remarkable adsorption properties of TA and film forming properties of the PVP-TA complexes allowed for the EPD of materials of different types, such as huntite mineral platelets and hydrotalcite clay particles, TiO2 and MnO2 oxide nanoparticles, multiwalled carbon nanotubes, TiN and Pd nanoparticles. Moreover, PVP-TA complexes were used for the co-deposition of different materials and formation of composite films. In another approach, TA was used as a capping agent for the hydrothermal synthesis of ZnO nanorods, which were then deposited by EPD using PVP-TA complexes. The fundamental adsorption and interaction mechanisms of TA involved chelation of metal atoms on particle surfaces with galloyl groups, π-π interactions and hydrogen bonding. The films prepared by EPD can be used for various applications, utilizing functional properties of TA, PVP, inorganic and organic materials of different types and their composites. PMID:26878711

  17. Ambient-Temperature Sputtering Of Composite Oxide Films

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1992-01-01

    Technique for deposition of homogeneous films of multicomponent oxides on substrates at ambient temperature based on sequential sputter deposition of individual metal components, as alternating ultra-thin layers, from multiple targets. Substrates rotated over sputtering targets of lead, zirconium, and titanium. Dc-magnetron sputtering of constituent metals in reactive ambient of argon and oxygen leads to formation of the respective metal oxides intermixed on extremely fine scale in desired composition. Compatible with low-temperature microelectronic processing.

  18. Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI).

    PubMed

    Gao, Yang; Chen, Changlun; Tan, Xiaoli; Xu, Huan; Zhu, Kairuo

    2016-08-15

    Polyaniline (PANI) was modified onto 3D flower-like molybdenum disulfide (MoS2) to prepare a novel organic-inorganic hybrid material, PANI@MoS2. PANI@MoS2 was characterized by scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results indicate that PANI was modified onto MoS2. PANI@MoS2 was applied as an adsorbent to remove Cr(VI) from aqueous solutions, and the adsorption isotherms fit well to the Langmuir model; the maximum removal capacity of Cr(VI) by PANI@MoS2 was 526.3 and 623.2mg/g at pH 3.0 and 1.5, respectively. PANI@MoS2 exhibited an enhanced removal capacity of Cr(VI) in comparison with bare MoS2 and other adsorbents. The adsorption of Cr(VI) on PANI@MoS2 might be attributed to the complexation between the amine and imine groups on the surface of PANI@MoS2 with Cr(VI). This study implies that the hybrid material PANI@MoS2 is a potential adsorbent for Cr(VI) removal from large volumes of aqueous solutions. PMID:27209391

  19. Hierarchical core/shell structure of MnO2@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors.

    PubMed

    Yang, MinHo; Hong, Seok Bok; Choi, Bong Gill

    2015-11-28

    Hierarchical core/shell structured arrays of MnO2@polyaniline (PANI) nanosheets are successfully deposited on the surface of carbon fiber paper (CFP) by a two-step method of a redox reaction-assisted deposition of MnO2 and post electrodeposition of PANI. The CFP is used as a three-dimensional (3D) current collector to ensure 3D transport of ions and electrons with a large surface area. In addition, the electrodeposition technique enables conformal and thin coating of a layer of PANI across the entire MnO2 nanosheet. The MnO2@PANI on the CFP shows a unique architecture for efficient ion diffusion pathways in hierarchical porous structures and rapid electron transfer through PANI coated layers. The MnO2@PANI/CFP can be applied as a binder- and carbon-free electrode for supercapacitors. Evaluation of the electrochemical performance revealed that the as-prepared electrodes have a high value of specific capacitance (437 F g(-1) at 1 A g(-1)), high rate capability (62.4% retention at 15 A g(-1)), and good cycle life (∼100% at sequential current densities of 1 and 5 A g(-1) over 3000 cycles). PMID:26486195

  20. Directed self-assembly in laponite/CdSe/polyaniline nanocomposites.

    PubMed

    Kehlbeck, Joanne D; Hagerman, Michael E; Cohen, Brian D; Eliseo, Jennifer; Fox, Melissa; Hoek, William; Karlin, David; Leibner, Evan; Nagle, Emily; Nolan, Michael; Schaefer, Ian; Toney, Alexandra; Topka, Michael; Uluski, Richard; Wood, Charles

    2008-09-01

    Laponite films provide versatile inorganic scaffolds with materials architectures that direct the self-assembly of CdSe quantum dots (QDs or EviTags) and catalytic surfaces that promote the in situ polymerization of polyaniline (PANI) to yield novel nanocomposites for light emitting diodes (LEDs) and solar cell applications. Water-soluble CdSe EviTags with varying, overlapping emission wavelengths in the visible spectrum were incorporated using soft chemistry routes within Na-Laponite host film platforms to achieve broadband emission in the visible spectrum. QD concentrations, composition and synthesis approach were varied to optimize photophysical properties of the films and to mediate self-assembly, optical cascading and energy transfer. In addition, aniline tetramers coupled to CdSe (QD-AT) surfaces using a dithioate linker were embedded within Cu-Laponite nanoscaffolds and electronically coupled to PANI via vapor phase exposure. Nanotethering and specific host-guest and guest-guest interactions that mediate nanocomposite photophysical behavior were probed using electronic absorption and fluorescence spectroscopies, optical microscopy, AFM, SEM, powder XRD, NMR and ATR-FTIR. Morphology studies indicated that Lap/QD-AT films synthesized using mixed solvent, layer by layer (LbL) methods exhibited anisotropic supramolecular structures with unique mesoscopic ordering that affords bifunctional networks to optimize charge transport. PMID:18661961

  1. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    NASA Astrophysics Data System (ADS)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  2. Determination of trace/ultratrace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyaniline-graphene oxide composite.

    PubMed

    Su, Shaowei; Chen, Beibei; He, Man; Hu, Bin; Xiao, Zuowei

    2014-02-01

    A novel Fe3O4@SiO2@polyaniline-graphene oxide composite (MPANI-GO) was prepared through a simple noncovalent method and applied to magnetic solid phase extraction (MSPE) of trace rare earth elements (REEs) in tea leaves and environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The prepared MPANI-GO was characterized by transmission electron microscopy and vibrating sample magnetometer. Various parameters affecting MPANI-GO MSPE of REEs have been investigated. Under the optimized conditions, the limits of detection (LODs, 3σ) for REEs were in the range of 0.04-1.49 ng L(-1) and the relative standard deviations (RSDs, c=20 ng L(-1), n=7) were 1.7-6.5%. The accuracy of the proposed method was validated by analyzing a Certified Reference Material of GBW 07605 tea leaves. The method was also successfully applied for the determination of trace REEs in tea leaves and environmental water samples. The developed MPANI-GO MSPE-ICP-MS method has the advantages of simplicity, rapidity, high sensitivity, high enrichment factor and is suitable for the analysis of trace REEs in samples with complex matrix. PMID:24401441

  3. Film/Adhesive Processing Module for Fiber-Placement Processing of Composites

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce

    2007-01-01

    An automated apparatus has been designed and constructed that enables the automated lay-up of composite structures incorporating films, foils, and adhesives during the automated fiber-placement process. This apparatus, denoted a film module, could be used to deposit materials in film or thin sheet form either simultaneously when laying down the fiber composite article or in an independent step.

  4. Actuation behavioral studies on polyaniline-cellophane based electroactive paper

    NASA Astrophysics Data System (ADS)

    Deshpande, Shripad D.; Kim, Jaehwan; Song, Chunsuk; Li, Qubo

    2005-05-01

    In the present investigations, we have fabricated the electromechanical actuators using conducting Polyaniline and Cellophane paper. The actuation behaviour of two types of paper actuators namely bi-layer and tri-layer in air medium are presented in this paper. The electro generation of polyaniline was carried out in propylene carbonate medium in the presence of dichloro acetic acid (DCA). The displacement in tri-layer devices, are more than that of bi-layer counter parts. The explanation towards this type of actuation behavior is given. Actuation behavioral studies were mainly focused on the effect of various dopant ions namely Cl-, ClO4-, BF4- and PF6-. The effect of varying film thickness and change in relative humidity are also addressed in this communication. The possible working mechanism has been discussed.

  5. Determining polytype composition of silicon carbide films by UV ellipsometry

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.

    2016-02-01

    A universal ellipsometric model is proposed that describes the optical properties of silicon carbide (SiC) films grown on Si substrates by the method of atomic substitution due to a chemical reaction between the substrate and gaseous carbon monoxide. According to the proposed three-layer model, Si concentration decreases in a stepwise manner from the substrate to SiC film surface. The ellipsometric curves of SiC/Si(111), SiC/Si(100), and SiC/Si(110) samples grown under otherwise identical conditions have been measured in a 1.35-9.25 eV range using a VUV-VASE (J.A. Woollam Co.) ellipsometer with a rotating analyzer. Processing of the obtained spectra in the framework of the proposed model allowed the polytype composition of SiC films to be determined for the first time. It is established that SiC grown on Si(111) is predominantly cubic, while SiC on Si(110) is predominantly hexagonal (with cubic polytype admixture) and SiC on Si(100) has a mixed polytype composition.

  6. One-step synthesis of magnetic chitosan polymer composite films

    NASA Astrophysics Data System (ADS)

    Cesano, Federico; Fenoglio, Gaia; Carlos, Luciano; Nisticò, Roberto

    2015-08-01

    In this study, a magnetic iron oxide-chitosan composite film is synthesized by one-step method and thoroughly investigated in order to better understand its inorganic/organic properties. A deep physico-chemical characterization of the magnetic films has been performed. In particular, the material composition was evaluated by means of XRD and ATR-FTIR spectroscopy, whereas the thermal stability and the subsequent inorganic phase transitions involving iron oxide species were followed by TGA analyses carried out at different experimental conditions (i.e. inert and oxidative atmosphere). The magnetic properties of the films were tested at the bulk and at the surface level, performing respectively magnetization hysteresis curve and magnetic force microscopy (MFM) surface mapping. Results indicate that the synthesized material can be prepared through a very simple synthetic procedure and suggests that it can be successfully applied for instance to environmental applications, such as the adsorption of contaminants from solid and liquid media thanks to its pronounced magnetic properties, which favour its recover.

  7. Enhanced electrochemical supercapacitor properties with synergistic effect of polyaniline, graphene and AgxO

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Pan, Lujun; Asif, Muhammad; Mahmood, Zafar; Khan, M. A.; Fu, Xin

    2016-05-01

    The graphene-Ag2O/polyaniline (GAP) composite has been synthesized by in-situ polymerization. It has been observed that Ag2O nanoparticles exist on the porous spongy background of PANI (polyaniline). The optimized composition of the synthesized composite exhibits an extraordinary specific capacitance of 1572 Fg-1 at 0.05 Ag-1 current density and good cyclic stability of 85% over 3000 charge-discharge cycles. The extraordinary electrochemical performance indicates the positive synergistic effect of PANI, graphene and Ag2O. The Ag2O nanoparticles might be responsible for improved electrical conductivity, and graphene might contribute in enhancing the electrochemical stability of the PANI electrode.

  8. Combinatorial thin film composition mapping using three dimensional deposition profiles.

    PubMed

    Suram, Santosh K; Zhou, Lan; Becerra-Stasiewicz, Natalie; Kan, Kevin; Jones, Ryan J R; Kendrick, Brian M; Gregoire, John M

    2015-03-01

    Many next-generation technologies are limited by material performance, leading to increased interest in the discovery of advanced materials using combinatorial synthesis, characterization, and screening. Several combinatorial synthesis techniques, such as solution based methods, advanced manufacturing, and physical vapor deposition, are currently being employed for various applications. In particular, combinatorial magnetron sputtering is a versatile technique that provides synthesis of high-quality thin film composition libraries. Spatially addressing the composition of these thin films generally requires elemental quantification measurements using techniques such as energy-dispersive X-ray spectroscopy or X-ray fluorescence spectroscopy. Since these measurements are performed ex-situ and post-deposition, they are unable to provide real-time design of experiments, a capability that is required for rapid synthesis of a specific composition library. By using three quartz crystal monitors attached to a stage with translational and rotational degrees of freedom, we measure three-dimensional deposition profiles of deposition sources whose tilt with respect to the substrate is robotically controlled. We exhibit the utility of deposition profiles and tilt control to optimize the deposition geometry for specific combinatorial synthesis experiments. PMID:25832242

  9. Combinatorial thin film composition mapping using three dimensional deposition profiles

    NASA Astrophysics Data System (ADS)

    Suram, Santosh K.; Zhou, Lan; Becerra-Stasiewicz, Natalie; Kan, Kevin; Jones, Ryan J. R.; Kendrick, Brian M.; Gregoire, John M.

    2015-03-01

    Many next-generation technologies are limited by material performance, leading to increased interest in the discovery of advanced materials using combinatorial synthesis, characterization, and screening. Several combinatorial synthesis techniques, such as solution based methods, advanced manufacturing, and physical vapor deposition, are currently being employed for various applications. In particular, combinatorial magnetron sputtering is a versatile technique that provides synthesis of high-quality thin film composition libraries. Spatially addressing the composition of these thin films generally requires elemental quantification measurements using techniques such as energy-dispersive X-ray spectroscopy or X-ray fluorescence spectroscopy. Since these measurements are performed ex-situ and post-deposition, they are unable to provide real-time design of experiments, a capability that is required for rapid synthesis of a specific composition library. By using three quartz crystal monitors attached to a stage with translational and rotational degrees of freedom, we measure three-dimensional deposition profiles of deposition sources whose tilt with respect to the substrate is robotically controlled. We exhibit the utility of deposition profiles and tilt control to optimize the deposition geometry for specific combinatorial synthesis experiments.

  10. Transparent megahertz circuits from solution-processed composite thin films

    NASA Astrophysics Data System (ADS)

    Liu, Xingqiang; Wan, Da; Wu, Yun; Xiao, Xiangheng; Guo, Shishang; Jiang, Changzhong; Li, Jinchai; Chen, Tangsheng; Duan, Xiangfeng; Fan, Zhiyong; Liao, Lei

    2016-04-01

    Solution-processed amorphous oxide semiconductors have attracted considerable interest in large-area transparent electronics. However, due to its relative low carrier mobility (~10 cm2 V-1 s-1), the demonstrated circuit performance has been limited to 800 kHz or less. Herein, we report solution-processed high-speed thin-film transistors (TFTs) and integrated circuits with an operation frequency beyond the megahertz region on 4 inch glass. The TFTs can be fabricated from an amorphous indium gallium zinc oxide/single-walled carbon nanotube (a-IGZO/SWNT) composite thin film with high yield and high carrier mobility of >70 cm2 V-1 s-1. On-chip microwave measurements demonstrate that these TFTs can deliver an unprecedented operation frequency in solution-processed semiconductors, including an extrinsic cut-off frequency (fT = 102 MHz) and a maximum oscillation frequency (fmax = 122 MHz). Ring oscillators further demonstrated an oscillation frequency of 4.13 MHz, for the first time, realizing megahertz circuit operation from solution-processed semiconductors. Our studies represent an important step toward high-speed solution-processed thin film electronics.Solution-processed amorphous oxide semiconductors have attracted considerable interest in large-area transparent electronics. However, due to its relative low carrier mobility (~10 cm2 V-1 s-1), the demonstrated circuit performance has been limited to 800 kHz or less. Herein, we report solution-processed high-speed thin-film transistors (TFTs) and integrated circuits with an operation frequency beyond the megahertz region on 4 inch glass. The TFTs can be fabricated from an amorphous indium gallium zinc oxide/single-walled carbon nanotube (a-IGZO/SWNT) composite thin film with high yield and high carrier mobility of >70 cm2 V-1 s-1. On-chip microwave measurements demonstrate that these TFTs can deliver an unprecedented operation frequency in solution-processed semiconductors, including an extrinsic cut-off frequency (f

  11. Superior piezoelectric composite films: taking advantage of carbon nanomaterials.

    PubMed

    Saber, Nasser; Araby, Sherif; Meng, Qingshi; Hsu, Hung-Yao; Yan, Cheng; Azari, Sara; Lee, Sang-Heon; Xu, Yanan; Ma, Jun; Yu, Sirong

    2014-01-31

    Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently found numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We here investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. The carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of the epoxy. GnPs have been proved to be far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by the GnPs' high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. The reduced acoustic impedance mismatch resulting from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications. PMID:24398819

  12. Investigations on silver/polyaniline electrodes for electrochemical supercapacitors.

    PubMed

    Patil, Dipali S; Shaikh, J S; Pawar, S A; Devan, R S; Ma, Y R; Moholkar, A V; Kim, J H; Kalubarme, R S; Park, C J; Patil, P S

    2012-09-14

    Polyaniline (PANI) and silver doped polyaniline (Ag/PANI) thin films were deposited on stainless steel substrates by a dip coating technique. To study the effect of doping concentration of Ag on the specific capacitance of PANI the concentration of Ag was varied from 0.3 to 1.2 weight percent. Fourier transform-infrared and Fourier transform-Raman spectroscopy, and energy dispersion X-ray techniques were used for the phase identification and determination of the doping content in the PANI films, respectively. The surface morphology of the films was examined by Field Emission Scanning Electron Microscopy, which revealed a nanofiber like structure for PANI and nanofibers with bright spots of Ag particles for the Ag/PANI films. There was decrease in the room temperature electrical resistivity of the Ag/PANI films of the order of 10(2) with increasing Ag concentration. The supercapacitive behavior of the electrodes was tested in a three electrode system using 1.0 M H(2)SO(4) electrolyte. The specific capacitance increased from 285 F g(-1) (for PANI) to 512 F g(-1) for Ag/PANI at 0.9 weight percent doping of Ag, owing to the synergic effect of PANI and silver nanoparticles. This work demonstrates a simple strategy of improving the specific capacitance of polymer electrodes and may also be easily adopted for other dopants. PMID:22850931

  13. Droplet manipulation on a liquid crystal and polymer composite film

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Tsou, Yu-Shih; Chu, Ting-Yu; Chen, Jun-Lin

    2010-08-01

    A droplet manipulation on a switchable surface using a liquid crystal and polymer composite film (LCPCF) based on phase separation is developed recently. The wettability of LCPCF is electrically tunable because of the orientation of liquid crystal directors anchored among the polymer grains. A droplet on LCPCF can be manipulated owning to the wettability gradient induced by spatially orientation of LC directors. We discuss the droplet manipulation on LCPCF and demonstrate several applications of LCPCF, such as polarizer-free displays, and human semen sensing.

  14. Silver nanowires/polycarbonate composites for conductive films

    NASA Astrophysics Data System (ADS)

    Moreno, I.; Navascues, N.; Irusta, S.; Santamaría, J.

    2012-09-01

    Silver nanowires (AgNW) with an aspect ratio of 85 were synthesized by a solvothermal process. The AgNW were characterized by SEM and XRD techniques. Nanocomposites of these silver nanowires in a polycarbonate matrix were prepared by simple solution mixing procedure in a concentration filler range 0-4.35 wt%. The obtained films were around 18 μm thick, optical microscopy and SEM characterization showed good dispersion of the nanowires in the polymeric matrix. The obtained composites presented low percolation threshold (0.04 wt%) and the maximum conductivity at 4.35 wt% filler loading was 2.3×10-2 S/cm.

  15. Optical properties and residual stress in Nb-Si composite films prepared by magnetron cosputtering.

    PubMed

    Tang, Chien-Jen; Porter, Glen Andrew; Jaing, Cheng-Chung; Tsai, Fang-Ming

    2015-02-01

    This paper investigates Nb-Si metal composite films with various proportions of niobium in comparison to pure Nb films. Films were prepared by two-target RF-DC magnetron cosputtering deposition. The optical properties and residual stress were analyzed. A composition of Nb(0.74)Si(0.26) was chosen toward the design and fabrication of solar absorbing coatings having a high absorption in a broad wavelength range, a low residual stress, and suitable optical constants. The layer thicknesses and absorption characteristics of the Nb-Si composite films adhere more closely to the design than other coatings made of dielectric film materials. PMID:25967812

  16. Transparent megahertz circuits from solution-processed composite thin films.

    PubMed

    Liu, Xingqiang; Wan, Da; Wu, Yun; Xiao, Xiangheng; Guo, Shishang; Jiang, Changzhong; Li, Jinchai; Chen, Tangsheng; Duan, Xiangfeng; Fan, Zhiyong; Liao, Lei

    2016-04-21

    Solution-processed amorphous oxide semiconductors have attracted considerable interest in large-area transparent electronics. However, due to its relative low carrier mobility (∼10 cm(2) V(-1) s(-1)), the demonstrated circuit performance has been limited to 800 kHz or less. Herein, we report solution-processed high-speed thin-film transistors (TFTs) and integrated circuits with an operation frequency beyond the megahertz region on 4 inch glass. The TFTs can be fabricated from an amorphous indium gallium zinc oxide/single-walled carbon nanotube (a-IGZO/SWNT) composite thin film with high yield and high carrier mobility of >70 cm(2) V(-1) s(-1). On-chip microwave measurements demonstrate that these TFTs can deliver an unprecedented operation frequency in solution-processed semiconductors, including an extrinsic cut-off frequency (f(T) = 102 MHz) and a maximum oscillation frequency (f(max) = 122 MHz). Ring oscillators further demonstrated an oscillation frequency of 4.13 MHz, for the first time, realizing megahertz circuit operation from solution-processed semiconductors. Our studies represent an important step toward high-speed solution-processed thin film electronics. PMID:27009830

  17. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life.

    PubMed

    Xiao, Lifen; Cao, Yuliang; Xiao, Jie; Schwenzer, Birgit; Engelhard, Mark H; Saraf, Laxmikant V; Nie, Zimin; Exarhos, Gregory J; Liu, Jun

    2012-03-01

    A novel vulcanized polyaniline nanotube/sulfur composite was prepared successfully via an in situ vulcanization process by heating a mixture of polyaniline nanotube and sulfur at 280 °C. The electrode could retain a discharge capacity of 837 mAh g(-1) after 100 cycles at a 0.1 C rate and manifested 76% capacity retention up to 500 cycles at a 1 C rate. PMID:22278978

  18. Characterization of whey protein-carboxymethylated chitosan composite films with and without transglutaminase treatment.

    PubMed

    Jiang, Shu-Juan; Zhang, Xuan; Ma, Ying; Tuo, Yanfeng; Qian, Fang; Fu, Wenjia; Mu, Guangqing

    2016-11-20

    Edible composite packaging has the advantage of complementary functional properties over its each bio-components. However, reports on whey protein concentrates (WPC)-carboxymethylated chitosan (CMC) composite films have not yet been released. To investigate the preparation of WPC-CMC composite films and its functional properties, four types of WPC-CMC composite films were prepared with and without Transglutaminase (TGase) treatment by mixing WPC aqueous solutions (10%, w/v) with CMC aqueous solutions (3%, w/v) at WPC to CMC volume ratios of (100:0), (75:25), (50:50), and (25:75). SDS-PAGE confirmed that TGase catalyzed crosslinking of whey protein. Results revealed that CMC incorporation conferred a smooth and even surface microstructure on the films and markedly improved the transparency, water barrier properties, mechanical properties and solubility of the composite film. Furthermore, TGase resulted in an improvement in the water vapor barrier properties and mechanical properties of WPC-CMC (75:25 and 50:50, v/v) composite films, and there was no impairment of thermal stability of composite films. Therefore, TGase successfully facilitated the formation of WPC-CMC composite films with some improved functional properties. This offers potential applications as an alternative approach to the preparation of edible packaging films. PMID:27561482

  19. Improved photoluminescence property of CTAB assisted polyaniline-AlZnO nanocomposite

    NASA Astrophysics Data System (ADS)

    Mitra, Mousumi; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2015-06-01

    Polyaniline-Al doped ZnO ((PANI-AlZnO:: 70:30) nanocomposite was prepared via in situ chemical oxidative polymerization, while the hexagonal powder of AlZnO was synthesized via sol-gel technique, using Hexadecyltrimethylammonium bromide (CTAB) as a capping agent. The prepared nanocomposite was characterized by High resolution transmission electron microscopy (HRTEM), EDAX, X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectra. The optical property of the nanomaterials is examined by photoluminescence (PL) spectra analysis. The XRD pattern confirms the formation of Al doped ZnO as well as PANI. The HRTEM images of the composite showed the formation of hexagonal AlZnO embedded in polyaniline matrix. EDAX spectrum shows the compositional analysis of the nanocomposite. FTIR spectra confirm the formation of nanocomposite of PANI and hexagonal AlZnO. The PL intensity of the nanocomposite is improved as compared to pure AlZnO.

  20. Electrorheological properties of polyaniline-vanadium oxide nanostructures suspended in silicone oil

    NASA Astrophysics Data System (ADS)

    Goswami, Sumita; Brehm, Tiago; Filonovich, Sergej; Cidade, Maria Teresa

    2014-10-01

    In the present work, organic/inorganic hybrid nanostructures comprised of polyaniline and vanadium oxide were synthesized via a simple hydrothermal technique. The polyaniline/vanadium oxide hybrid morphology was tailored from rods to spheres by controlling the relative concentration of the reactants. The synthesized composites were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) for structural and morphological analyses. Electrorheological (ER) properties of the as-prepared nanocomposites suspended in silicone oil were investigated by a rotational viscometer under both steady and dynamic shear. The ER activity of the composite material suspensions showed higher ER effects for the product with the rod-like structures than for the product with the sphere-like structures. The typical ER behaviour showed by the polyaniline-vanadium oxide nanocomposites demonstrated their potential application as an ER smart material.

  1. Improved photoluminescence property of CTAB assisted polyaniline-AlZnO nanocomposite

    SciTech Connect

    Mitra, Mousumi; Banerjee, Dipali; Kargupta, Kajari; Ganguly, Saibal

    2015-06-24

    Polyaniline-Al doped ZnO ((PANI-AlZnO:: 70:30) nanocomposite was prepared via in situ chemical oxidative polymerization, while the hexagonal powder of AlZnO was synthesized via sol-gel technique, using Hexadecyltrimethylammonium bromide (CTAB) as a capping agent. The prepared nanocomposite was characterized by High resolution transmission electron microscopy (HRTEM), EDAX, X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectra. The optical property of the nanomaterials is examined by photoluminescence (PL) spectra analysis. The XRD pattern confirms the formation of Al doped ZnO as well as PANI. The HRTEM images of the composite showed the formation of hexagonal AlZnO embedded in polyaniline matrix. EDAX spectrum shows the compositional analysis of the nanocomposite. FTIR spectra confirm the formation of nanocomposite of PANI and hexagonal AlZnO. The PL intensity of the nanocomposite is improved as compared to pure AlZnO.

  2. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    SciTech Connect

    Tan, Y.M.; Lim, S.H.; Tay, B.Y.; Lee, M.W.; Thian, E.S.

    2015-09-15

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.

  3. Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se₂/ZnS thin film solar cells.

    PubMed

    Tan, Xiao-Hui; Chen, Yu; Liu, Ye-Xiang

    2014-05-20

    Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se₂ (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased. PMID:24922214

  4. Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extruded composite films from 20% pectin and 80% polylactic acids (PLA) were developed and nisin was loaded into films by a diffusion post extrusion. Inhibitory activities of the films against Listeria monocytogenes were evaluated in brain heart infusion (BHI) broth, liquid egg white and orange juic...

  5. Layered TiO2 :PVK nano-composite thin films for photovoltaic applications. TiO2 :PVK nano-composite thin films

    NASA Astrophysics Data System (ADS)

    Kaune, G.; Wang, W.; Metwalli, E.; Ruderer, M.; Roßner, R.; Roth, S. V.; Müller-Buschbaum, P.

    2008-05-01

    The influence of the solvent used for spin-coating on the homogeneity of poly(N-vinylcarbazole) (PVK) films is investigated. Homogenous films are obtained only by the use of toluene, solution in tetrahydrofuran (THF) and chloroform results in radially oriented inhomogeneities and films prepared by use of N-methylpyrrolidone and dimethylacetamide show particle formation during spin-coating. Layered nano-composite thin films are prepared by spin-coating a PVK film on top of a nano-structured titanium dioxide ( TiO2 layer. The TiO2 thin films are prepared by a sol-gel process using an amphiphilic copolymer as structure-directing agent. Structural characterisation of the TiO2 :PVK nano-composite films is done by field emission scanning electron microscopy (FESEM) and grazing-incidence small-angle scattering (GISAXS). Bare TiO2 films are probed for comparison. Light is basically only absorbed in the ultraviolet regime and absorption slightly increases upon addition of PVK, which makes the layered TiO2 :PVK nano-composite thin films good candidates for UV photovoltaic devices. Furthermore, absorption remains stable over a period of several days.

  6. Acoustic properties of alumina colloidal/polymer nano-composite film on silicon.

    PubMed

    Zhang, Rui; Cao, Wenwu; Zhou, Qifa; Cha, Jung Hyui; Shung, K Kirk; Huang, Yuhong

    2007-03-01

    Alumina colloidal/polymer composite films on silicon substrates have been successfully fabricated using the sol-gel method, in which the crystallite sizes of alumina are between 20 and 50 nm. The density and ultrasonic phase velocities in these films with different alumina ratios from 14% to 32% were measured at the desired operating frequency. We have proved that the density, acoustic phase velocities, and hence the acoustic impedance of the nano-composite films increase with the alumina content, which gives us another option of tailoring the acoustic impedance of the nano-composite film for making the matching layer of high-frequency medical ultrasonic transducers. PMID:17375816

  7. Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy.

    PubMed

    Liu, Yuanming; Lam, Kwok Ho; Kirk Shung, K; Li, Jiangyu; Zhou, Qifa

    2013-05-14

    Conventional composite sol-gel method has been modified to enhance the piezoelectric performance of ceramic thick films. Lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT) thick films were fabricated using the modified sol-gel method for ultrasonic transducer applications. In this work, piezoresponse force microscopy was employed to evaluate the piezoelectric characteristics of PZT and PMN-PT composite sol-gel thick films. The images of the piezoelectric response and the strain-electric field hysteresis loop behavior were measured. The effective piezoelectric coefficient (d33,eff) of the films was determined from the measured loop data. It was found that the effective local piezoelectric coefficient of both PZT and PMN-PT composite films is comparable to that of their bulk ceramics. The promising results suggest that the modified composite sol-gel method is a promising way to prepare the high-quality, crack-free ceramic thick films. PMID:23798771

  8. Detection of Carbon Monoxide Using Polymer-Carbon Composite Films

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Ryan, Margaret A.; Lara, Liana M.

    2011-01-01

    A carbon monoxide (CO) sensor was developed that can be incorporated into an existing sensing array architecture. The CO sensor is a low-power chemiresistor that operates at room temperature, and the sensor fabrication techniques are compatible with ceramic substrates. Sensors made from four different polymers were tested: poly (4-vinylpryridine), ethylene-propylene-diene-terpolymer, polyepichlorohydrin, and polyethylene oxide (PEO). The carbon black used for the composite films was Black Pearls 2000, a furnace black made by the Cabot Corporation. Polymers and carbon black were used as received. In fact, only two of these sensors showed a good response to CO. The poly (4-vinylpryridine) sensor is noisy, but it does respond to the CO above 200 ppm. The polyepichlorohydrin sensor is less noisy and shows good response down to 100 ppm.

  9. Construction of a Polyaniline Nanofiber Gas Sensor

    ERIC Educational Resources Information Center

    Virji, Shabnam; Weiller, Bruce H.; Huang, Jiaxing; Blair, Richard; Shepherd, Heather; Faltens, Tanya; Haussmann, Philip C.; Kaner, Richard B.; Tolbert, Sarah H.

    2008-01-01

    The electrical properties of polyaniline changes by orders of magnitude upon exposure to analytes such as acids or bases, making it a useful material for detection of these analytes in the gas phase. The objectives of this lab are to synthesize different diameter polyaniline nanofibers and compare them as sensor materials. In this experiment…

  10. Self-assembled cylindrical and vesicular molecular templates for polyaniline nanofibers and nanotapes.

    PubMed

    Anilkumar, P; Jayakannan, M

    2009-08-27

    We report a soft template approach based on a custom-designed novel surfactant-cum-dopant for size and shape tuning of polyaniline nanomaterials such as nanofibers and nanotapes via emulsion and dispersion polymerization routes. A new amphiphilic 4-(3-dodecyl-8-enylphenyloxy) butane sulfonic acid was synthesized by ring-opening of butanesultone with renewable resource cardanol. The new amphiphilic dopant forms spherical micelles in water and its critical micelle concentration was determined by dye encapsulation and surface tension methods. In the emulsion route, the amphiphilic dopant complexed with aniline to produce cylindrical micellar aggregates that template exclusively for polyaniline nanofibers. The dispersion of aniline+dopant in water/toluene solvent mixture produces vesicles that selectively template for polyaniline nanotapes. The mechanism of the polyaniline nanomaterials formation was investigated by dynamic light scattering (DLS) and high-resolution transmission electron microscopy (HR-TEM). DLS of the polymerization templates in water proved the presence of micrometer range aggregates, and TEM images confirmed the shape of the cylindrical and vesicular templates. The polyaniline nanomaterials were found soluble in water and polar organic solvents for structural characterization and composition analysis by 1H NMR spectroscopy. Absorbance spectra of the nanomaterials showed free carrier tail above 900 nm in the near IR region for the delocalization of electrons in the polaron band corresponding to expanded conformation of polyaniline chains. Wide angle X-ray diffraction showed two new peaks at low angle region with d-spacing of 26.5 and 13.6 A corresponding to lamellar ordering of polyaniline chains followed by interdigitations of the amphiphilic dopant in the nanomaterials. PMID:19642663

  11. Organic memory device with polyaniline nanoparticles embedded as charging elements

    NASA Astrophysics Data System (ADS)

    Kim, Yo-Han; Kim, Minkeun; Oh, Sewook; Jung, Hunsang; Kim, Yejin; Yoon, Tae-Sik; Kim, Yong-Sang; Ho Lee, Hyun

    2012-04-01

    Polyaniline nanoparticles (PANI NPs) were synthesized and fabricated as charging elements for organic memory devices. The PANI NPs charging layer was self-assembled by epoxy-amine bonds between 3-glycidylpropyl trimethoxysilane functionalized dielectrics and PANI NPs. A memory window of 5.8 V (ΔVFB) represented by capacitance-voltage hysteresis was obtained for metal-pentacene-insulator-silicon capacitor. In addition, program/erase operations controlled by gate bias (-/+90 V) were demonstrated in the PANI NPs embedded pentacene thin film transistor device with polyvinylalcohol dielectric on flexible polyimide substrate. These results can be extended to development of fully organic-based electronic device.

  12. Mechanical and microstructural properties of "wet" alginate and composite films containing various carbohydrates.

    PubMed

    Harper, B Allison; Barbut, Shai; Smith, Alexandra; Marcone, Massimo F

    2015-01-01

    Composite "wet" alginate films were manufactured from alginate-carbohydrate solutions containing 5% alginate and 0.25% pectin, carrageenan (kappa or iota), potato starch (modified or unmodified), gellan gum, or cellulose (extracted or commercial). The "wet" alginate films were used as a model to understand co-extruded alginate sausage casings that are currently being used by several sausage manufacturers. The mechanical, optical, and microstructural properties of the calcium cross-linked composite films were explored. In addition, the water holding capacity and textural profile analysis properties of the alginate-carbohydrate gels were studied. The results indicate that the mechanical properties of "wet" alginate films/casings can be modified by adding various carbohydrates to them. Alginate films with pectin, carrageenan, and modified potato starch had significantly (P < 0.05) greater elongation values than pure alginate films. The alginate-pectin films also had greater (P < 0.05) tensile strengths than the pure alginate films. Alginate films with extracted cellulose, commercial cellulose, and modified potato starch had lower (P < 0.05) puncture force, distance, and work values than the alginate control films. Transmission electron microscopy images showed a very uniform alginate network in the control films. Several large cellulose fibers were visible in the films with extracted cellulose, while the cellulose fibers in the films with commercial cellulose were difficult to distinguish. Despite these apparent differences in cellulose fiber length, the 2 cellulose films had similar puncture and tensile properties. PMID:25471730

  13. Thin metal film-polymer composite for efficient optoacoustic generation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Taehwa; Guo, L. Jay

    2016-03-01

    Photoacoustic (PA) conversion of metal film absorbers is known to be inefficient because of their low thermal expansion and high light reflectance, as compared to polymeric materials containing light absorbing fillers. Specifically, the PA signal for metal films is typically an order of magnitude lower than those for PDMS-based composites consisting of carbon materials such as carbon blacks, carbon nanotubes, and carbon fibers. However, the carbon-PDMS composites have several disadvantages, e.g., difficulty in controlling film thickness, aggregation of the carbon fillers, and poor patternablility. To overcome these issues and achieve comparable PA amplitudes, a polymer-metal film composite was developed consisting of a thin metal absorber and adjacent transparent polymer layers. The proposed structure shows efficient PA conversion. The measured PA amplitude of the metal film composite is an order of magnitude higher than that of metal-only samples, and comparable to those of the carbon-PDMS composites. The enhanced PA conversion is accomplished by using metal film of a few tens of nanometers, which greatly facilitates heat transfer from the metal film to the surrounding polymers. Moreover, integrating the metal film composite with a photonic cavity can compensate light absorption loss of the thinner metal film. Theoretical and experimental analysis is conducted for understanding the mechanism behind such improvement. This strategy could be implemented for spatial PA signal patterns, especially for deep tissue PA imaging of implants or image-guiding tools. Furthermore, this approach also provides a guideline for designing photoacoustic transmitters and contrast agents.

  14. Film Delivery Module For Fiber Placement Fabrication of Hybridized Composite Structures

    NASA Technical Reports Server (NTRS)

    Hulcher, Anthony Bruce; Young, Greg

    2005-01-01

    A new fabrication technology has been developed at the NASA Marshall Space Flight Center that will allow for the fabrication of hybridized composite structures using fiber placement processing. This technology was originally developed in response to a need to address the issue of hydrogen permeation and microcracking in cryogenic propellant tanks. Numerous thin polymeric and metallized films were investigated under low temperatures conditions for use as barrier films in a composite tank. Manufacturing studies conducted at that time did not address the processing issues related to fabrication of a hybridized tank wall. A film processing head was developed that will allow for the processing of thin polymeric and metallized films, metallic foils, and adhesives using fiber placement processing machinery. The film head is designed to enable the simultaneous processing of film materials and composite tape/tow during the composite part layup process and is also capable of processing the film during an independent operation. Several initial demonstrations were conducted to assess the performance of the film module device. Such assessments included film strip lay-up accuracy, capability to fabricate panels having internal film liners, and fabrication of laminates with embedded film layers.

  15. An emulsion polymerization process for soluble and electrically conductive polyaniline

    SciTech Connect

    Kinlen, P.J.; Ding, Y.; Graham, C.R.; Liu, J.; Remsen, E.E.

    1998-07-01

    A new emulsion process has been developed for the direct synthesis of the emeraldine salt of polyaniline (PANI) that is soluble in organic solvents. The process entails forming an emulsion composed of water, a water soluble organic solvent (e.g., 2-butoxyethanol), a water insoluble organic acid (e.g., dinonylnaphthalene sulfonic acid) and aniline. Aniline is protonated by the organic acid to form a salt which partitions into the organic phase. As oxidant (ammonium peroxydisulfate) is added, PANI salt forms in the organic phase and remains soluble. As the reaction proceeds, the reaction mixture changes from an emulsion to a two phase system, the soluble PANI remaining in the organic phase. With dinonylnaphthalene sulfonic acid (DNNSA) as the organic acid, the resulting product is truly soluble in organic solvents such as xylene and toluene (not a dispersion), of high molecular weight (M{sub w} > 22,000), film forming and miscible with many polymers such as polyurethanes, epoxies and phenoxy resins. As cast, the polyaniline film is only moderately conductive, (10{sup {minus}5} S/cm), however treatment of the film with surfactants such as benzyltriethylammonium chloride (BTEAC) or low molecular weight alcohols and ketones such as methanol and acetone increases the conductivity 2--3 orders of magnitude.

  16. Fabrication and performances of AI/CuO nano composite films for ignition application

    NASA Astrophysics Data System (ADS)

    Li, Yong; Gao, Yun; Jia, Xin; Zhou, Bin; Shen, Rui-Qi

    2015-07-01

    In an effort to explore the application possibility of composite films in ignition field, Al/CuO was fabricated on semiconductor bridge (SCB) chip by ion beam sputtering technique. Surface morphology and elemental composition of the composite films were analysed by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Spatial size and duration of the products was detected with the open-air combustion experiment. The results showed that the prepared composite films surface is smooth, flat, and uniform. Element weight ratio meets the design requirements. And the chemical reaction of the Al/CuO nCFs improves output performances of ignition chip.

  17. Composite film fabricated on biomedical material with corona streamer plasma processing to mitigate bacterial adhesion

    NASA Astrophysics Data System (ADS)

    Alhamarneh, Ibrahim; Pedrow, Patrick; Eskhan, Asma; Abu-Lail, Nehal

    2011-10-01

    Composite films might control bacterial adhesion and concomitant biofouling that afflicts biomedical materials. Different size molecules of polyethylene glycol (PEG) with nominal molecular weights 600, 2000, and 20000 g/mol were used to synthesize composite films with plasma processing and dip-coating procedures on surgical-grade 316L stainless steel. Before dip-coating, the substrate was pre-coated with plasma-polymerized di(ethylene glycol) vinyl ether (pp-EO2V) in an atmospheric pressure corona streamer plasma reactor. The PEG dip-coating step followed immediately in the same chamber due to the finite lifetime of radicals associated with freshly deposited pp-EO2V. Morphology of the composite film was investigated with an ESEM. FTIR confirmed incorporation of pp-EO2V and PEG species into the composite film. More investigations on the composite film were conducted by XPS measurements. Adhesion of the composite film was evaluated with a standard peel-off test. Stability of the composite film in buffer solution was evaluated by AFM. AFM was also used to measure the film roughness and thickness. Polar and non-polar contact angle measurements were included.

  18. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.

    PubMed

    Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo

    2012-09-26

    Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites. PMID:22900673

  19. Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of ultrathin block copolymer films.

    PubMed

    Huang, Changchun; Wen, Gangyao; Li, Jingdan; Wu, Tao; Wang, Lina; Xue, Feifei; Li, Hongfei; Shi, Tongfei

    2016-09-15

    Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (<20nm thick) were mainly investigated by atomic force microscopy. Surface chemical analysis of the ultrathin films annealed for different times were performed using X-ray photoelectron spectroscopy and contact angle measurement. With the annealing of acetone vapor, dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time. PMID:27309943

  20. Nanostructured graphene/Fe₃O₄ incorporated polyaniline as a high performance shield against electromagnetic pollution.

    PubMed

    Singh, Kuldeep; Ohlan, Anil; Pham, Viet Hung; R, Balasubramaniyan; Varshney, Swati; Jang, Jinhee; Hur, Seung Hyun; Choi, Won Mook; Kumar, Mukesh; Dhawan, S K; Kong, Byung-Seon; Chung, Jin Suk

    2013-03-21

    The development of high-performance shielding materials against electromagnetic pollution requires mobile charge carriers and magnetic dipoles. Herein, we meet the challenge by building a three-dimensional (3D) nanostructure consisting of chemically modified graphene/Fe3O4(GF) incorporated polyaniline. Intercalated GF was synthesized by the in situ generation of Fe3O4 nanoparticles in a graphene oxide suspension followed by hydrazine reduction, and further in situ polymerization with aniline to form a polyaniline composite. Spectroscopic analysis demonstrates that the presence of GF hybrid structures facilitates strong polarization due to the formation of a solid-state charge-transfer complex between graphene and polyaniline. This provides proper impedance matching and higher dipole interaction, which leads to the high microwave absorption properties. The higher dielectric loss (ε'' = 30) and magnetic loss (μ'' = 0.2) contribute to the microwave absorption value of 26 dB (>99.7% attenuation), which was found to depend on the concentration of GF in the polyaniline matrix. Moreover, the interactions between Fe3O4, graphene and polyaniline are responsible for superior material characteristics, such as excellent environmental (chemical and thermal) degradation stability and good electric conductivity (as high as 260 S m(-1)). PMID:23400248

  1. Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films.

    PubMed

    Mittal, Aanchal; Garg, Sangeeta; Kohli, Deepak; Maiti, Mithu; Jana, Asim Kumar; Bajpai, Shailendra

    2016-10-20

    Barley husk (BH) was graft copolymerized by palmitic acid. The crystalline behavior of BH decreased after grafting. Poly vinyl alcohol (PVA)/starch (St) blend film, urea formaldehyde cross linked PVA/St films and composite films containing natural BH, grafted BH were prepared separately. The effect of urea/starch ratio, content of BH and grafted BH on the mechanical properties, water uptake (%), and biodegradability of the composite films was observed. With increase in urea: starch ratio from 0 to 0.5 in the blend, tensile strength of cross linked film increased by 40.23% compared to the PVA/St film. However, in grafted BH composite film, the tensile strength increased by 72.4% than PVA/St film. The degradation rate of natural BH composite film was faster than PVA/St film. Various films were characterized by SEM, FT-IR and thermal analysis. PMID:27474641

  2. Preparation of Polypyrrole-Protein Composite Films and the Electrochemically Controlled Release of Proteins.

    PubMed

    Jin, Juan; Huang, Zhongbing; Yin, Guangfu; Lin, Jiangli; Li, Qiuping; Han, Donghui

    2016-03-01

    It is fabricated that an electrically controlled release system based on the (poly-L-lactic acid)-mixed polypyrrole (PLLA-PPy) films through casting film of PPy and PLLA mixed solution on the glass plate, in which polyglutamic acid (PGlu)-doped PPy nanoparticles (NPs) with -50 nm diameter are synthesized via chemical oxidation. Surface conductivity of the composite film is (3.33 ± 2.01) x 10(-3) S/cm. Bovine serum albumin (BSA), as a model protein drug, is chemically linked onto the composite film via carbodiimide chemistry due to the good surface nano-structure of PLLA-PPy film. The releases of BSA from PLLA-PPy film under constant current and constant voltage can be achieved using the two-electrode electrochemical system. 6 h accumulative releases of BSA are 276 μg/cm2 and 176 μg/cm2 under 3 mA and 1 V electrical stimulation, respectively, accompanied with de-doping of PGlu and separation of a part of PPy NPs from the composite film. The results of cell experiment indicate that PGlu-doped PPy NPs in the prepared composite film have good cyto-compatibility. These results suggest that PPy-PLLA composite film would be able to be applied in the construction of degradable protein-drug-loaded scaffold for nerve tissue repair. PMID:27455630

  3. Incorporation of polyaniline nanofibres on graphene oxide by interfacial polymerization pathway for supercapacitor

    NASA Astrophysics Data System (ADS)

    Male, Umashankar; Srinivasan, Palaniappan; Singu, Bal Sydulu

    2015-09-01

    The aim of this work is to improve the supercapacitor performance of polyaniline (PANI). Polyaniline nano fibres are incorporated into graphene oxide (GO) layers by interfacial polymerization pathway, wherein PANI fibres are intercalated into GO layers and also cover the GO. PANI-GO hybrid composite is obtained in semi-crystalline form with good conductivity (1.7 S cm-1). The specific capacitance for PANI-GO (365 F g-1) is found to be higher than PANI (280 F g-1). At the energy density of 15 W h kg-1, the power density of PANI-GO (632 W kg-1) is higher than PANI (283 W kg-1).

  4. Evaluation of the Mechanical Properties and Drug Permeability of Chitosan/Eudragit RL Composite Film

    PubMed Central

    Kouchak, Maryam; Handali, Somayeh; Naseri Boroujeni, Basireh

    2014-01-01

    Objectives The aim of this study was to design and evaluate a chitosan-based film that has properties required for successful wound dressing, and can control drug penetration and maintenance time in the location. Methods Several formulations of a film containing chitosan (3%) and different concentrations of Eudragit RL (0.5%, 1%, and 1.5%) were prepared using the casting/solvent evaporating technique. Mechanical properties, water vapor transmission rate (WVTR), oxygen permeability, water uptake, and nitrofurazone permeability through the films were investigated. Results The study results showed that by increasing the Eudragit RL content of composite films, their thickness and tensile strength were enhanced, while their elongation was decreased. No significant difference was observed between the oxygen permeability, WVTR, and water uptake results of pure chitosan films and different composite films containing Eudragit RL. Nitrofurazone permeability of chitosan films was increased by the inclusion of Eudragit RL in composite films, while by increasing the concentration of Eudragit RL, the permeation rate of drug was decreased. Conclusion In conclusion, addition of Eudragit RL can improve mechanical properties of chitosan films without any undesirable effect on their water uptake, oxygen permeability, and WVTR qualities. The permeation rate of drugs through the composite films can be modified by changing Eudragit RL/chitosan ratio. PMID:25737826

  5. KNN/BNT Composite Lead-Free Films for High-Frequency Ultrasonic Transducer Applications

    PubMed Central

    Lau, Sien Ting; Ji, Hong Fen; Li, Xiang; Ren, Wei; Zhou, Qifa; Shung, K. Kirk

    2011-01-01

    Lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) films have been fabricated by a composite sol-gel technique. Crystalline KNN fine powder was dispersed in the BNT precursor solution to form a composite slurry which was then spin-coated onto a platinum-buffered Si substrate. Repeated layering and vacuum infiltration were applied to produce 5-μm-thick dense composite film. By optimizing the sintering temperature, the films exhibited good dielectric and ferroelectric properties comparable to PZT films. A 193-MHz high-frequency ultrasonic transducer fabricated from this composite film showed a −6-dB bandwidth of approximately 34%. A tungsten wire phantom was imaged to demonstrate the capability of the transducer. PMID:21244994

  6. Electrical properties of silicon schottky diodes containing metal films of various compositions

    SciTech Connect

    Pashaev, I. G.

    2013-06-15

    Au{sub x}Ti{sub 100{sub -}} {sub x}/n-Si Schottky diodes are fabricated and studied; in addition, the electrical properties of diodes containing metal films with varying composition (x = 0, 14, 30, 38, 60, 80, and 100) are also studied. Using X-ray phase analysis, it is established that the film of Au{sub 38}Ti{sub 62} composition has the amorphous structure, while the remaining films Au{sub x}Ti{sub 100-x} possess the polycrystalline structure. The main parameters of the Schottky diodes are determined in relation to the composition and structure of the metal films. As a result, it is shown that the electrical properties of Au{sub x}Ti{sub 100-x}/n-Si Schottky diodes are related to variations in the composition and structure of metal films.

  7. Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells.

    PubMed

    Luo, Xiao Gang; Le Wu, Min; Wang, Xiao Xia; Zhong, Xin Hua; Zhao, Ke; Wang, Jian Nong

    2016-02-01

    Realizing the continuous and large scale preparation of particle/carbon nanotube (CNT) composites with enhanced functionalities, and broad applications in energy conversion, harvesting, and storage systems, remains as a big challenge. Here, we report a scalable strategy to continuously prepare particle/CNT composite films in which particles are confined by CNT films. This is achieved by the continuous condensation and deposition of a cylindrical assembly of CNTs on a paper strip and the in situ incorporation of particles during the layer-by-layer deposition process. A Cu/CNT composite film is prepared as an example; such a film exhibits very high power conversion efficiency when it is used as a counter electrode in a solar cell, compared with previous materials under otherwise identical conditions. The proposed method can be extended to other CNT-based composite films with excellent functionalities for wide applications. PMID:26784865

  8. KNN/BNT composite lead-free films for high-frequency ultrasonic transducer applications.

    PubMed

    Lau, Sien Ting; Ji, Hong Fen; Li, Xiang; Ren, Wei; Zhou, Qifa; Shung, K Kirk

    2011-01-01

    Lead-free K(0.5)Na(0.5)NbO(3)/Bi(0.5)Na(0.5)TiO(3) (KNN/ BNT) films have been fabricated by a composite sol-gel technique. Crystalline KNN fine powder was dispersed in the BNT precursor solution to form a composite slurry which was then spin-coated onto a platinum-buffered Si substrate. Repeated layering and vacuum infiltration were applied to produce 5-μm-thick dense composite film. By optimizing the sintering temperature, the films exhibited good dielectric and ferroelectric properties comparable to PZT films. A 193-MHz high-frequency ultrasonic transducer fabricated from this composite film showed a -6-dB bandwidth of approximately 34%. A tungsten wire phantom was imaged to demonstrate the capability of the transducer. PMID:21244994

  9. Effectiveness of silane monomer and gamma radiation on chitosan films and PCL-based composites

    NASA Astrophysics Data System (ADS)

    Sharmin, Nusrat; Khan, Ruhul A.; Dussault, Dominic; Salmieri, Stephane; Akter, Nousin; Lacroix, Monique

    2012-08-01

    Chitosan films were prepared by casting from its 1% (w/w) solution. Tensile strength (TS) and tensile modulus (TM) of chitosan films were found to be 30 MPa and 450 MPa, respectively. Silane monomer (3-aminopropyl tri-methoxysilane) (0.25%, w/w) was added into the chitosan solution (1%, w/w) and films were casted. Then films were exposed to gamma radiation (5-25 kGy) and mechanical properties were investigated. It was found that at 10 kGy, the values of TS and TM were improved significantly. Silane grafted chitosan film reinforced poly(caprolactone) (PCL)-based tri-layer composites were prepared by compression molding. Silane improved interfacial adhesion between chitosan and PCL in composites. Surface of the films was investigated by scanning electron microscope (SEM) and found better morphology for silane grafted films.

  10. Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles.

    PubMed

    Bilbao-Sáinz, Cristina; Avena-Bustillos, Roberto J; Wood, Delilah F; Williams, Tina G; McHugh, Tara H

    2010-03-24

    It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of this work was to enhance these properties by reinforcing the films with microcrystalline cellulose (MCC) at the nano scale level. Three sizes of MCC nanoparticles were incorporated into HPMC edible films at different concentrations. Identical MCC nanoparticles were lipid coated (LC) prior to casting into HPMC/LC-MCC composite films. The films were examined for mechanical and moisture barrier properties verifying how the addition of cellulose nanoparticles affected the water affinities (water adsorption/desorption isotherms) and the diffusion coefficients. The expected reinforcing effect of the MCC was observed: HPMC/MCC and HPMC/LC-MCC films showed up to 53% and 48% increase, respectively, in tensile strength values in comparison with unfilled HPMC films. Furthermore, addition of unmodified MCC nanoparticles reduced the moisture permeability up to 40% and use of LC-MCC reduced this value up to 50%. Water vapor permeability was mainly influenced by the differences in water solubility of different composite films since, in spite of the increase in water diffusivity values with the incorporation of MCC to HPMC films, better moisture barrier properties were achieved for HPMC/MCC and HPMC/LC-MCC composite films than for HPMC films. PMID:20187652

  11. ZrO2-ZnO composite thin films for humidity sensing

    NASA Astrophysics Data System (ADS)

    Velumani, M.; Meher, S. R.; Balakrishnan, L.; Sivacoumar, R.; Alex, Z. C.

    2016-05-01

    ZrO2-ZnO composite thin films were grown by reactive DC magnetron sputtering. X-ray diffraction studies reveal the composite nature of the films with separate ZnO and ZrO2 phase. Scanning electron microscopy studies confirm the nanocrystalline structure of the films. The films were studied for their impedometric relative humidity (RH) sensing characteristics. The complex impedance plot was fitted with a standard equivalent circuit consisting of an inter-granular resistance and a capacitance in parallel. The DC resistance was found to be decreasing with increase in RH.

  12. Investigation of polypyrrole/polyvinyl alcohol-titanium dioxide composite films for photo-catalytic applications

    NASA Astrophysics Data System (ADS)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long; Dan, Yi

    2015-07-01

    Polypyrrole/polyvinyl alcohol-titanium dioxide (PPy/PVA-TiO2) composite films used as photo-catalysts were fabricated by combining TiO2 sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO2 and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet-vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA-TiO2 composite films show better photo-catalytic properties than TiO2 film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA-TiO2 composite film was investigated and the results show that the photo-catalytic activity under both UV and visible light irradiation have no significant decrease after four times of recycle experiments, suggesting that the photo-catalyst film is stable during the photo-catalytic process, which was also confirmed by the XRD pattern and FT-IR spectra of the composite film before and after photo-catalytic.

  13. O2/Ar Plasma Treatment for Enhancing the Biocompatibility of Hydroxyapatite Nanopowder and Polycaprolactone Composite Film.

    PubMed

    Ko, Yeong-Mu; Myung, Sung-Woon; Kim, Byung-Hoon

    2015-08-01

    In this study we performed O2/Ar plasma treatment to remove the polycaprolactone on hydroxyapatite nanopowder and polycaprolactone (HAp-NP/PCL) composite film. After plasma ashing, the HAp-NP was exposed on the composite film. The 25 wt% HAp-NP/PCL treated with plasma showed the hydrophilic surface property with reducing the aging effect. The MTT and ALP results indicated that the plasma etching increased the biocompatibility of HAp-NP/PCL composite film. The present simple plasma etching technique can be applicable in a development of biomaterials. PMID:26369196

  14. Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery

    SciTech Connect

    Polat, B. D.; Eryilmaz, O. L.; Keles, O; Erdemir, A; Amine, Khalil

    2015-10-22

    Compositionally graded and non-graded composite SiCu thin films were deposited by magnetron sputtering technique on Cu disks for investigation of their potentials in lithium ion battery applications. The compositionally graded thin film electrodes with 30 at.% Cu delivered a 1400 mAh g-1 capacity with 80% Coulombic efficiency in the first cycle and still retained its capacity at around 600 mAh g-1 (with 99.9% Coulombic efficiency) even after 100 cycles. On the other hand, the non-graded thin film electrodes with 30 at.% Cu exhibited 1100 mAh g-1 as the first discharge capacity with 78% Coulombic efficiency but the cycle life of this film degraded very quickly, delivering only 250 mAh g-1 capacity after 100th cycles. Not only the Cu content but also the graded film thickness were believed to be the main contributors to the much superior performance of the compositionally graded SiCu films. We also believe that the Cu-rich region of the graded film helped reduce internal stress build-up and thus prevented film delamination during cycling. In particular, the decrease of Cu content from interface region to the top of the coating reduced the possibility of stress build-up across the film during cycling, thus leading to a high electrochemical performance.

  15. Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films.

    PubMed

    Jridi, Mourad; Hajji, Sawssan; Ayed, Hanen Ben; Lassoued, Imen; Mbarek, Aïcha; Kammoun, Maher; Souissi, Nabil; Nasri, Moncef

    2014-06-01

    Physico-chemical and mechanical properties of cuttlefish skin gelatin (G), chitosan (C) from shrimp (Penaeus kerathurus) and composite films (G75/C25, G50/C50, G25/C75) plasticized with glycerol were investigated. The results indicated that chitosan film had higher tensile strength and lower elongation at break when compared with the other films. Composite films show no significant difference in tensile strength (TS), thickness and transparency. The structural properties evaluated by FTIR and DSC showed total miscibility between both polymers. DSC scans showed that the increase of chitosan content in the composite films increases the transition temperature (Tg) and enthalpy (ΔHg) of films. The morphology study of gelatin, chitosan and composite films showed a compact and homogenous structure. In addition, gelatin and G75/C25 films demonstrated a high antioxidant activities monitored by β-carotene bleaching, DPPH radical-scavenging and reducing power activities, while films contained chitosan exhibited higher antimicrobial activity against Gram-positive than Gram-negative bacteria. PMID:24709012

  16. Structural determination and magnetic properties for Co-rubrene composite films on Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Hou, Yong-Jhih; Chang, Cheng-Hsun-Tony; Yang, Chun-Kai; Hsu, Chih-Yu; Jhou, Yen-Wei; Tsay, Jyh-Shen

    2015-11-01

    Because of the potential uses toward low-cost and flexible-substrate-based electronics, semiconducting organic materials have attracted much attention. In this contribution, structures and magnetic properties of Co-rubrene composite films on Si(1 0 0) have been studied by employing atomic force microscopy (AFM) and magneto-optic Kerr effect techniques. For composite films prepared by co-depositions of Co and rubrene on Si(1 0 0), the surface is smooth while a layered distribution of Co atoms is detected. For thick composite films, surfactant effects of rubrene molecules cause smooth surfaces and reduced interaction at the film/Si interface. For thin composite films, the formation of separated Co clusters in the films results in a larger coercive force due to the imperfection introduced by rough interface to impede the magnetization reversal. By increasing the rubrene concentration, more Co/rubrene interfaces are introduced in the composite films and the more rubrene served as a surfactant enhances the quality of the films. These information are valuable for future applications combining organic semiconductor and spintronics.

  17. Graphene patterned polyaniline-based biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Binh Nguyen, Hai; Chuc Nguyen, Van; Nguyen, Van Tu; Thanh Tam Ngo, Thi; Thinh Nguyen, Ngoc; Thu Huyen Dang, Thi; Tran, Dai Lam; Do, Phuc Quan; Nghia Nguyen, Xuan; Phuc Nguyen, Xuan; Khoi Phan, Hong; Phan, Ngoc Minh

    2012-06-01

    This paper describes a glucose electrochemical biosensor, layer-by-layer fabricated from graphene and polyaniline films. Graphene sheets (0.5×0.5 cm2) with the thickness of 5 nm (15 layers) were synthesized by thermal chemical vapor deposition (CVD) under ambient pressure on copper tapes. Then they were transferred into integrated Fe3O4-doped polyaniline (PANi) based microelectrodes. The properties of the nanocomposite films were thoroughly characterized by scanning electron microscopy (SEM), Raman spectroscopy, atomic force microscopy (AFM) and electrochemical methods, such as square wave voltametry (SWV) and chronoamperometry. The above graphene patterned sensor (denoted as Graphene/Fe3O4/PANi/GOx) shows much improved glucose sensitivity (as high as 47 μA mM‑1 cm‑2) compared to a non-graphene one (10–30 μA mM‑1 cm‑2, as previously reported in the literature). It can be expected that this proof-of-concept biosensor could be extended for other highly sensitive biodetection.

  18. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength

    SciTech Connect

    Wang, Wenchao; Wang, Zhipeng; Liu, Yu; Li, Nan; Wang, Wei; Gao, Jianping

    2012-09-15

    Highlights: ► We used and compared different proportion of gelatin and chitosan as reducing agents. ► The mechanical properties of the films are investigated, especially the wet films. ► The cell toxicity of the composite films as biomaterial is carried out. ► The water absorption capabilities of the composite films also studied. -- Abstract: Graphene oxide (GO) was reduced by chitosan/gelatin solution and added to gelatin (Gel) to fabricate reduced graphene oxide/gelatin (RGO/Gel) films by a solvent-casting method using genipin as cross-linking agent. The structure and properties of the films were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and UV–vis spectroscopy. The addition of RGO increased the tensile strength of the RGO/Gel films in both dry and wet states, but decreased their elongation at break. The incorperation of RGO also decreased the swelling ability of the films in water. Cell cultures were carried out in order to test the cytotoxicity of the films. The cells grew and reproduced well on the RGO/Gel films, indicating that the addition of RGO has no negative effect on the compatibility of the gelatin. Therefore, the reduced graphene oxide/gelatin composite is a promising biomaterial with excellent mechanical properties and good cell compatibility.

  19. Processible Polyaniline Copolymers and Complexes.

    NASA Astrophysics Data System (ADS)

    Liao, Yun-Hsin

    1995-01-01

    Polyaniline (PANI) is an intractable polymer due to the difficulty of melt processing or dissolving it in common solvents. The purpose of the present investigation was to prepare a new class of conducting polyanilines with better solubility both in base and dope forms by (1) adding external salt to break aggregated chains, (2) introducing ring substituted units onto the backbone without disturbing the coplanar structure, and (3) complexing with polymeric dopants to form a soluble polymer complex. Aggregation of PANI chains in dilute solution was investigated in N-methyl-2-pyrrolidinone (NMP) by light scattering, gel permeation chromatography, and viscosity measurements. The aggregation of chains resulted in a negative second virial coefficient in light scattering measurement, a bimodal molecular weight distribution in gel permeation chromatography, and concave reduced viscosity curves. The aggregates can be broken by adding external salt, which resulting in a higher reduced viscosity. The driving force for aggregation is assumed to be a combination of hydrogen bonding between the imine and amine groups, and the rigidity of backbone. The aggregation was modeled to occur via side-on packing of PANI chains. The ring substituted PANI copolymers, poly(aniline -co-phenetidine) were synthesized by chemical oxidation copolymerization using ammonium persulfate as an oxidant. The degree of copolymerization declined with an increasing feed of o-phenetidine in the reaction mixture. The o-phenetidine had a higher reactivity than aniline in copolymerization resulting in a higher content of o-phenetidine in copolymers. The resulting copolymers can be readily dissolved in NMP up to 20% (w/w), and other common solvents, and solutions possess a longer gelation time. The highly soluble copolymer with 20 mole % o-phenetidine in the backbone has same order of conductivity as the unsubstituted PANI after it is doped by HCl. Complexation of PANI and polymeric dopant, poly

  20. Polymer compositions, polymer films and methods and precursors for forming same

    DOEpatents

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  1. Preparation and characterization of keratin and chicken egg white-templated luminescent Au cluster composite film

    NASA Astrophysics Data System (ADS)

    Xing, Yao; Liu, Hongling; Yu, Weidong

    2016-02-01

    The characterization of keratin-chicken egg white-templated luminescent Au cluster composite films were studied using fourier-transform infrared spectroscopy (FTIR) to demonstrate and quantify the secondary transformation of composite films. The results showed that the secondary structure of treated films was transformed from disordered structure to ordered conformation including α-helix conformation and β-pleated-sheet conformation due to the increase of protein-templated luminescent Au cluster. The absorption features of treated films were exhibited by the UV-vis spectra. The bule-shift and decreased intensity indicated the change of microenvironment due to the concentration of protein-templated luminescent Au cluster. The transmission electron microscopy images of composite films supported the aggregation resulting from microenvironment. The effect of protein-templated luminescent Au cluster was characterized by the laser scanning confocal microscope (LSCM) images which showed the gradually intensive luminescence with increasing Au cluster and the transformation from the whiskers to nanoparticle.

  2. Paper-like graphene-Ag composite films with enhanced mechanical and electrical properties.

    PubMed

    Gao, Rungang; Hu, Nantao; Yang, Zhi; Zhu, Qirong; Chai, Jing; Su, Yanjie; Zhang, Liying; Zhang, Yafei

    2013-01-01

    In this paper, we have reported that paper-like graphene-Ag composite films could be prepared by a facile and novel chemical reduction method at a large scale. Using ascorbic acid as a reducing agent, graphene oxide films dipped in Ag+ aqueous solutions can be easily reduced along with the decoration of different sizes of Ag particles distributed uniformly. The results reveal that the obtained films exhibit improved mechanical properties with the enhancement of tensile strength and Young's modulus by as high as 82% and 136%, respectively. The electrical properties of graphene-Ag composite films were studied as well, with the sheet resistance of which reaching lower than approximately 600 Ω/□. The graphene-Ag composite films can be expected to find interesting applications in the area of nanoelectronics, sensors, transparent electrodes, supercapacitors, and nanocomposites. PMID:23324465

  3. Fluorescent of C-dot composite thin films and its properties

    SciTech Connect

    Mahen, Ea Cahya Septia Nuryadin, Bebeh W. Iskandar, Ferry Abdullah, Mikrajuddin Khairurrijal

    2014-02-24

    In the present work, we report the preparation of a fluorescent carbon nanodots (C-dots) epoxy composite thin films on a glass substrate. C-dots were prepared directly by a simple hydrothermal method using citric acid as a carbon source. The C-dots solutions were mixed with a transparent epoxy resin to form C-dot epoxy composite. Furthermore, the composite precursor was deposited on the glass substrate using a spin coating method in order to fabricate C-dot epoxy composite thin film. The transmittance intensity of C-dot composite film reached up to 90% in the visible light spectra. Using Swanopoel method, the film thickness of fabricated C-dot composite film was determined at about 1.45 μm, a value lies in a typical range needed for a wide range application. Thus, the C-dot composite film is promising in broadening applications in various fields such as energy conversion, optoelectronics, and display technology.

  4. Investigations of compositional separation in Co-Cr thin film recording media

    NASA Astrophysics Data System (ADS)

    Rogers, D. J.; Maeda, Y.; Takei, K.; Chapman, J. N.; Bernards, J. P. C.; Schrauwen, C. P. G.

    1994-02-01

    We investigated the effect of a Ge underlayer and substrate temperature during film deposition ( Ts) on the compositional distribution in Co 79Cr 21 films using spin echo nuclear magnetic resonance and preferential chemical etching. For films deposited at elevated Ts we observed drastic compositional separation (CS) leading to a Co enriched phase with approximately 5 at% Cr on both Ge and polyester. Chemical etching revealed chrysanthemum pattern (CP) type microstructures. For lower Ts films we observed less marked CS with a distinct etched microstructure in the film deposited on Ge and no clear etched microstructure in the film deposited on polyester. Results from NMR and chemical etching studies agreed very well with those from X-ray microanalysis.

  5. Diamond Composite Films for Protective Coatings on Metals and Method of Formation

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    Composite films consisting of diamond crystallites and hard amorphous films such as diamond-like carbon, titanium nitride, and titanium oxide are provided as protective coatings for metal substrates against extremely harsh environments. A composite layer having diamond crystallites and a hard amorphous film is affixed to a metal substrate via an interlayer including a bottom metal silicide film and a top silicon carbide film. The interlayer is formed either by depositing metal silicide and silicon carbide directly onto the metal substrate, or by first depositing an amorphous silicon film, then allowing top and bottom portions of the amorphous silicon to react during deposition of the diamond crystallites, to yield the desired interlayer structure.

  6. Determination of composition in stoichiometric Co-N ultrathin films by nitrogen plasma sputtering

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Huang, M. S.; Chang, Y. C.; Tsai, T. H.; Lee, Y. H.; Lee, J. C.

    2009-02-01

    This work utilizes low-energy sputtering to incorporate the generated nitrogen plasma into an epitaxial 1.4nm Co film on the surface of a ZnO(002) substrate. In this method, ultrathin Co-N amorphous films were formed. Interestingly, Co is key to the formation of Co-N films. Without the deposition of Co on the ZnO(002), nitride films cannot be formed. Observations of the surface composition of the Co-N films after the firing of a N+ ion beam onto it demonstrated that the surface concentration of Co reduced at the same rate as the reduction in the concentration of N upon successive sputtering. Theoretical calculations based on the Auger peak-to-peak amplitudes established that the composition of the amorphous Co-N thin films may be Co3N2.

  7. UV/thermally driven rewritable wettability patterns on TiO2-PDMS composite films.

    PubMed

    Nakata, Kazuya; Kimura, Hiroaki; Sakai, Munetoshi; Ochiai, Tsuyoshi; Sakai, Hideki; Murakami, Taketoshi; Abe, Masahiko; Fujishima, Akira

    2010-09-01

    Composite films of TiO2 and polydimethylsiloxane (PDMS) are prepared by a sol-gel method, cured with UV irradiation, and then treated in hot water to crystallize the TiO2 in the film. The presence of anatase TiO2 contributes to the photoinduced superhydrophilicity of the film under UV irradiation. Contact angle studies reveal that the TiO2-PDMS composite film recovers its original hydrophobic state. Hydrophobic-superhydrophilic patterns are successfully formed on the films. The wettability patterns can be erased by UV irradiation and thermal treatment. New wettability patterns can be reconstructed, demonstrating that the film exhibits rewritable wettability without the need for organic chemicals. PMID:20712336

  8. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites.

    PubMed

    Jayaramudu, J; Reddy, G Siva Mohan; Varaprasad, K; Sadiku, E R; Sinha Ray, S; Varada Rajulu, A

    2013-04-01

    The development of commercially viable "green products", based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite films. The morphologies of the untreated and 5% NaOH (alkali) treated S. urens fibers were observed by SEM. The effect of 5% NaOH treated S. urens fiber (5, 10, 15 and 20% loading) on the mechanical properties and thermal stability of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has taken place. SUSF/cellulose composite films have great potential in food packaging and for medical applications. PMID:23499104

  9. Growth of BaTiO3-PVDF composite thick films by using aerosol deposition

    NASA Astrophysics Data System (ADS)

    Cho, Sung Hwan; Yoon, Young Joon

    2016-01-01

    Barium titanate (BaTiO3)-polyvinylidene fluoride (PVDF) composite thick films were grown by using aerosol deposition at room temperature with BaTiO3 and PVDF powders. To produce a uniform composition in ceramic and polymer composite films, which show a substantial difference in specific gravity, we used PVDF-coated BaTiO3 powders as the starting materials. An examination of the microstructure confirmed that the BaTiO3 were well distributed in the PVDF matrix in the form of a 0 - 3 compound. The crystallite size in the BaTiO3-PVDF composite thick films was 5 ˜ 50 times higher than that in pure BaTiO3 thick films. PVDF plays a role in suppressing the fragmentation of BaTiO3 powder during the aerosol deposition process and in controlling the relative permittivity.

  10. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels.

    PubMed

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-05-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 ± 16 MPa and a failure strain of 1.8 ± 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 ± 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. PMID:23538717

  11. Preparation of poly(lactic acid) and pectin composite films intended for application in antimicrobial packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composite films of pectin and poly(lactic acid) (PLA) were compounded by extrusion. A model antimicrobial polypeptide, nisin, was loaded into the film by diffusion. The incorporation of pectin into PLA resulted in a heterogeneous biphasic structure as revealed by scanning electronic microscopy, co...

  12. Electrophoretic deposition of hyaluronic acid and composite films for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-06-01

    Hyaluronic acid (HYH) is a natural biopolymer, which has tremendous potential for various biomedical applications. Electrophoretic deposition (EPD) methods have been developed for the fabrication of HYH films and composites. New methods for the immobilization of drugs and proteins have been utilized for the fabrication of organic composites. Electrophoretic deposition enabled the fabrication of organic-inorganic composites containing bioceramics and bioglass in the HYH matrix. It was shown that the deposition yield, microstructure, and composition of the films can be controlled. Potential applications of EPD for the surface modification of biomedical implants and fabrication of biosensors are highlighted.

  13. Modification of conductive polyaniline with carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Sedaghat, Sajjad; Alavijeh, Mahdi Soleimani

    2014-08-01

    The synthesis of polyaniline/single-wall nanotube, polyaniline/multi-wall nanotube and polyaniline/single-wall nanotube/graphen nanosheets nanocomposites by in situ polymerization are reported in this study. The substrates were treated with a mixture of concentrated sulfuric acid and concentrated nitric acid before usage to functionalize with carboxylic and hydroxyl groups. Aniline monomers are adsorbed and polymerized on the surface of these fillers. Structural analysis using scanning electron microscopy showed that nanomaterials dispersed into polymer matrix and made tubular structures with diameters several tens to hundreds nanometers depending on the polyaniline content. These nanocomposites can be used for production of excellent electrode materials applications in high-performance supercapacitors.

  14. Microstructure and characteristics of high-amylose corn starch-chitosan film as affected by composition.

    PubMed

    Feng, Qianqian; Hu, Fei; Qiu, Liping

    2013-06-01

    Edible films composed of high-amylose corn starch and chitosan were developed by casting method. The effects of the ratio of high-amylose corn starch to chitosan, concentration of glycerol and methyl cellulose on the oxygen and carbon dioxide permeation, water vapor transmission, tensile strength and percent elongation at break values of edible composite films were investigated. Film microstructure was characterized by scanning electron microscopy. The results showed that the increase of the ratio of chitosan and content of glycerol in the film forming suspensions both made the structure of films flexible, causing the decrease of tensile strength and increase of percent elongation of composite films, while showing poor water vapor barrier properties as the water vapor transmission values increased. The addition of methyl cellulose as to reinforce the structure of matrix improved the water vapor barrier properties of the edible films with the decrease of water vapor transmission from 1946 to 1668 g/(m(2)·24 h), as well as the mechanical properties were improved as expected, which could be attributed to the differentia of the interaction between methyl cellulose and other components in the film preparation as the concentration ranged from 2% (w/w) to 8% (w/w). Films with different compositions, resulting different microstructures, showed variance in barrier and mechanical properties. PMID:23493788

  15. Experimental Evaluation of Biodegradable Film Compositions Based on Gelatin with Colchicine.

    PubMed

    Bokeriya, L A; Bokeriya, O L; Sivtsev, V S; Novikova, S P; Salokhedinova, R R; Nikolashina, L N; Samsonova, N N; Gorodkov, A Yu; Serov, R A

    2016-07-01

    Biodegradable film compositions based on natural biopolymer gelatin with immobilized colchicine were prepared and their efficiency in prevention of the adhesion process in the pericardium was evaluated on rabbit model of postoperative pericarditis. The use of gelatin-based biodegradable film compositions significantly reduced the intensity of adhesion formation in the pericardial cavity, while immobilization of anti-inflammatory drug colchicine amplified their anti-adhesion activity. PMID:27496036

  16. Faraday rotation of cobalt ferrite nanoparticle polymer composite films at cryogenic temperatures.

    PubMed

    Demir, Veysi; Gangopadhyay, Palash; Norwood, Robert A; Peyghambarian, Nasser

    2014-04-01

    This paper investigates the behavior of the Verdet constant for cobalt ferrite (CoFe₂O₄) nanoparticles polymer composite films at low temperatures using a 532 nm laser source. An experimental setup for Faraday rotation (FR) at low temperatures is introduced and FRs were measured at various temperatures. Verdet constants were deduced from the paramagnetic model for terbium gallium garnet glass where ~4× improvement was observed at 40° K for CoFe₂O₄ composite film. PMID:24787165

  17. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films.

    PubMed

    Gao, Yuan; Chang, Jiang

    2009-08-01

    In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260 degrees C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA/bioactive glass composite films were fabricated using surface modified bioactive glass particles through solvent casting-evaporation method. Surface morphology, mechanical property, and bioactivity were investigated. The results revealed that the inorganic particle distribution and tensile strength of the composite films with modified bioactive glass particles were significantly improved while great bioactive properties were maintained. Scanning electron microscopy (SEM) observation illustrated that the modified bioactive glass particles were homogeneously dispersed in the PDLLA matrix. The maximum tensile strengths of composite films with modified bioactive glass particles were higher than that of composite films with unmodified bioactive glass particles. The bioactivity of the composite films were evaluated by being soaked in the simulated body fluid (SBF) and the SEM observation of the films suggested that the modified composite films were still bioactive in that they could induce the formation of HAp on its surface and the distribution of HAp was even more homogeneous on the film. The results mentioned above indicated that the surface modification of bioactive glasses with dodecyl alcohol was an effective method to prepare PDLLA/bioactive glass composites with enhanced properties. By studying the comparisons of modification effects among the three types of bioactive glasses, we could get the conclusion that the size and morphology of the inorganic particles would greatly affect the modification effects and the properties of composites. PMID:18801895

  18. Flexible conductive nanocellulose combined with silicon nanoparticles and polyaniline.

    PubMed

    Park, Minsung; Lee, Dajung; Shin, Sungchul; Kim, Hyun-Joong; Hyun, Jinho

    2016-04-20

    Here we describe a unique conductive bacterial cellulose (BC) composite with silicon nanoparticles (SiNPs) and polyaniline. BC was used as a template for binding SiNPs resulting in a very promising anode material for Li-ion rechargeable batteries that showed a high specific capacity. The surfaces of the SiNPs were modified with phytic acid to enhance the binding of aniline monomer to the surface. A conformal coating of polyaniline (PANi) was formed on the modified SiNPs by in situ polymerization of aniline monomers. We also found that the phytic acid on the SiNPs was critical to ensure encapsulation of SiNPs with PANi. In addition, the phosphoric acid-tagged surface of the SiNPs enhanced the adhesion of SiNPs to the BC fibers. The resulting three dimensional network of BC was flexible and provided stress dissipation in the conductive BC composites. Flexural testing of conductive BC composites showed stable electrical conductivity even after repetitive bending over 100 times. PMID:26876826

  19. Heat conduction in conducting polyaniline nanofibers

    NASA Astrophysics Data System (ADS)

    Nath, Chandrani; Kumar, A.; Syu, K.-Z.; Kuo, Y.-K.

    2013-09-01

    Thermal conductivity and specific heat of conducting polyaniline nanofibers are measured to identify the nature of heat carrying modes combined with their inhomogeneous structure. The low temperature thermal conductivity results reveal crystalline nature while the high temperature data confirm the amorphous nature of the material suggesting heterogeneous model for conducting polyaniline. Extended acoustic phonons dominate the low temperature (<100 K) heat conduction, while localized optical phonons hopping, assisted by the extended acoustic modes, account for the high temperature (>100 K) heat conduction.

  20. Modeling the mechanics of graphene-based polymer composite film measured by the bulge test

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Jun; Sun, You-yi; Li, Dian-sen; Cao, Yang; Wang, Zuo; Ma, Jing; Zhao, Gui-Zhe

    2015-10-01

    Graphene-based polymer composite films have wide-ranging potential applications, such as in sensors, electromagnetic shielding, absorbing materials, corrosion resistance and so on. In addition, the practical applications of graphene-based polymer composite films are closely related to their mechanical properties. However, the mechanical properties of graphene-based polymer composite films are difficult to characterize with tensile tests. In this paper, the bugle test was used to investigate the mechanical properties of graphene-based polymer composite films. The experimental results show that the Young’s modulus of polymer composite films increases non-linearly with an increase in the doping content of graphene, and viscoelastic deformation is induced under cyclic loading conditions. Moreover, in order to describe their mechanical behavior, an ‘Arruda-Boyce’ finite-strain constitutive model (modified BPA model), based on the strain amplification hypothesis, and a traditional ‘Arruda-Boyce’ model was proposed, which incorporated many of the features of previous theories. The numerical treatment of the modified BPA model associated with finite element analysis is also discussed. This new model is shown to be able to predict the experimentally observed mechanical behavior of graphene based polymer composite films measured by the bugle test effectively.

  1. Preparation technology and electrical explosion characteristics of titanium–boron composites as nanoenergetic films

    NASA Astrophysics Data System (ADS)

    Shenjiang, W. U.; Junhong, S. U.; Dangjuan, L. I.; Junqi, X. U.; Jingwei, L. I. U.

    2016-07-01

    Based on magnetron sputtering deposition technology, Ti and B single thin films are deposited on a Si substrate while varying the sputtering power, the working pressure and the Ar flow conditions. The effect of varying these conditions on the deposition rate, the roughness and the microstructure of these materials is studied. The optimal parameters for preparing Ti and B single thin films are identified according to the experimental and analysis results. Thus, the deposition parameters are optimized to minimize the roughness of the thin films (i.e. sputtering power: 225 and 120 W; working pressure: 0.8 and 0.3 Pa; Ar flow: 100 and 50 sccm for Ti and B thin films, respectively). The compositions and crystal orientation of the Ti and B thin films deposited at these conditions are investigated by x-ray diffraction. These optimized parameters are used while depositing Ti–B thin films on a polyimide substrate. Scanning electron microscopy is used to observe the microstructure of the Ti–B multi-layer nanoenergetic films. A close contact between the Ti film and the substrate is observed along with a clear boundary between the B and Ti films. Finally, the results of an electrical explosion experiment over a Ti–B composite thin film are discussed.

  2. Compositional dependence of Young's moduli for amorphous FeCo-SiO{sub 2} thin films

    SciTech Connect

    Zhang, L.; Xie, J. L.; Deng, L. J.; Guo, Q.; Zhu, Z. W.; Bi, L.

    2011-04-01

    Systematic force-deflection measurements with microcantilevers and a combinatorial-deposition method have been used to investigate the Young's moduli of amorphous composite FeCo-SiO{sub 2} thin films as a function of film composition, with high compositional resolution. It is found that the modulus decreases monotonically with increasing FeCo content. Such a trend can be explained in terms of the metalloid atoms having a significant effect on the Young's moduli of metal-metalloid composites, which is associated with the strong chemical interaction between the metalloid and themetallic atoms rather than that between the metallic components themselves. This work provides an efficient and effective method to study the moduli of magnetic thin films over a largecomposition coverage, and to compare the relative magnitudes of moduli for differentcompositions at high compositional resolution.

  3. Facile Decoration of Polyaniline Fiber with Ag Nanoparticles for Recyclable SERS Substrate.

    PubMed

    Mondal, Sanjoy; Rana, Utpal; Malik, Sudip

    2015-05-20

    Facile synthesis of polyaniline@Ag composite has been successfully demonstrated by a simple solution-dipping method using high-aspect-ratio benzene tetracarboxylic acid-doped polyaniline (BDP) fiber as a nontoxic reducing agent as well as template cum stabilizer. In BDP@Ag composite, BDP fibers are decorated with spherical Ag nanoparticles (Ag NPs), and the population of Ag NPs on BDP fibers is controlled by changing the molar concentration of AgNO3. Importantly, Ag-NP-decorated BDP fibers (BDP@Ag composites) have been evolved as a sensitive materials for the detection of trace amounts of 4-mercaptobenzoic acid and rhodamine 6G as an analyte of surface-enhanced Raman scattering (SERS), and the detection limit is down to nanomolar concentrations with excellent recyclability. Furthermore, synthesized BDP@Ag composites are applied simultaneously as an active SERS substrate and a superior catalyst for reduction of 4-nitrothiophenol. PMID:25912640

  4. Fabrication of a Polyaniline Ultramicroelectrode via a Self Assembled Monolayer Modified Gold Electrode

    PubMed Central

    Bolat, Gulcin; Kuralay, Filiz; Eroglu, Gunes; Abaci, Serdar

    2013-01-01

    Herein, we report a simple and inexpensive way for the fabrication of an ultramicroelectrode and present its characterization by electrochemical techniques. The fabrication of polyaniline UME involves only two steps: modification of a gold (Au) electrode by self assembled monolayers (SAM) and then electrodeposition of polyaniline film on this thiol-coated Au electrode by using cyclic voltammetry and constant potential electrolysis methods. Two types of self-assembled monolayers (4-mercapto-1-butanol, MB, and 11-mercaptoundecanoic acid, MUA) were used, respectively, to see the effect of chain length on microelectrode formation. Microelectrode fabrication and utility of the surface was investigated by cyclic voltammetric measurements in a redox probe. The thus prepared polyaniline microelectrode was then used for DNA immobilization. Discrimination between double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) was obtained with enhanced electrochemical signals compared to a polyaniline-coated Au electrode. Different modifications on the electrode surfaces were examined using scanning electron microscopy (SEM). PMID:23797740

  5. Fundamental aspects of polyimide dry film and composite lubrication: A review

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1982-01-01

    The tribological properties of polyimide dry films and composites are reviewed. Friction coefficients, wear rates, transfer film characteristics, wear surface morphology, and possible wear mechanisms of several different polyimide films, polyimide-bonded solid lubricants, polyimide solid bodies, and polyimide composites are discussed. Such parameters as temperature, type of atmosphere, load, contact stress, and specimen configuration are investigated. Data from an accelerated test device (Pin-on-Disk) are compared to similar data obtained from an end use application test device (plain spherical bearing).

  6. Strong magnetoelectric coupling at microwave frequencies in metallic magnetic film/lead zirconate titanate multiferroic composites

    NASA Astrophysics Data System (ADS)

    Pettiford, C.; Lou, J.; Russell, L.; Sun, N. X.

    2008-03-01

    Strong magnetoelectric coupling was observed at microwave frequencies in metallic magnetic film/lead zirconate titanate [Pb(Zr,Ti)O3] multiferroic composites, in which the magnetic films were either FeCoB or FeGaB with relatively high saturation magnetostriction constants between 40 and 70ppm and narrow ferromagnetic resonance linewidths of ˜20Oe at 10GHz. Large electrostatically induced ferromagnetic resonance frequency shifts of 50-110MHz at ˜2.3GHz were observed. These metallic magnetic film/Pb(Zr ,Ti)O3 multiferroic composites with large electrostatic tunability of the ferromagnetic resonance frequency provide great opportunities for integrated microwave multiferroic devices.

  7. Synthesis and characterization of Ag/PPy composite films via enhanced redox reaction of metal ions

    NASA Astrophysics Data System (ADS)

    Li, Bing; Xu, Yunlong; Chen, Jun; Chen, Guorong; Zhao, Chongjun; Qian, Xiuzhen; Wang, Meng

    2009-10-01

    A facile approach to the formation of Ag/PPy composite film, through the reaction of Ag + and pyrrole monomer, was developed with the help of synergistic effect of NH 3·H 2O on this reaction. Black or gray Ag/PPy film precipitated on the insert wall of the vessel within 0.5 h with this new method. The Ag/PPy composite film has good conductivity (sheet resistance: 0.28 Ω/square) and superhydrophility (contact angle of water, CAW ˜0°). Mechanism involved in the reaction rate acceleration was briefly discussed.

  8. Dielectric and Ferroelectric Performance of Pb(Zr(x)Ti(1-x))O3 Thin Films with Compositional Gradients.

    PubMed

    He, Gang; Zhou, Yongju; Peng, Chao; Zhang, Yao; Pan, Wei

    2015-09-01

    A series of PZT thin films with compositional gradients were fabricated at ease by a combinatorial chemical solution deposition process. Their dielectric and ferroelectric properties are significantly different from uniform composition PZT films, depending on the composition, the span, and the direction of the compositional gradient. Among samples with the same average Zr content, the down-gradient thin films exhibit better dielectric and ferroelectric properties. PZT thin films with a narrow compositional gradient span favour better dielectric and ferroelectric properties. The down-gradient thin film PZT654 with a Zr-rich layer closest to the Pt substrate, in which the average composition is close to the morphotropic phase boundary (MPB, x = 0.52), shows the best dielectric and ferroelectric performance. These distinct thin films with different dielectric and ferroelectric properties could be designed by adjusting factors such as content, span and direction of the compositional gradient. PMID:26716290

  9. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  10. Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles.

    PubMed

    Thérien-Aubin, Héloïse; Lukach, Ariella; Pitch, Natalie; Kumacheva, Eugenia

    2015-04-21

    We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic effect on the structure of CNC-latex films. Latex particles in the rubbery state were easily incorporated in the ordered CNC matrix and improved the structural integrity of its chiral nematic phase. PMID:25792388

  11. Development and characterisation of composite films made of kefiran and starch.

    PubMed

    Motedayen, Ali Akbar; Khodaiyan, Faramarz; Salehi, Esmail Atai

    2013-02-15

    In this study, new edible composite films were prepared by blending kefiran with corn starch. Film-forming solutions of different ratios of kefiran to corn starch (100/0, 70/30, 50/50, 30/70) were cast at room temperature. The effects of starch addition on the resulting films' physical, mechanical and water-vapor permeability (WVP) properties were investigated. Increasing starch content from 0% to 50% (v/v) decreased the WVP of films; however, with further starch addition the WVP increased. Also, this increase in starch content increased the tensile strength and extensibility of the composite films. However, these mechanical properties decreased at higher starch contents. Dynamic mechanical thermal analysis (DMTA) curves showed that addition of starch at all levels increased the glass transition temperature of films. The electron scanning micrograph for the composite film was homogeneous, without signs of phase separation between the components. Thus, it was observed that these two film-forming components were compatible, and that an interaction existed between them. PMID:23194518

  12. Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging.

    PubMed

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-07-01

    Carrageenan-based antimicrobial films were developed by incorporation of grape fruit seed extract (GSE) at different concentration into the polymer using a solvent casing method and their physical, mechanical, and antimicrobial properties were examined. The carrageenan/GSE composite films appeared yellowish tint due to the polyphenolic compounds in the GSE. SEM analysis showed rough surface with sponge like structures on the cross section of the films. FT-IR results indicated at GSE had good compatibility with carrageenan. The amorphous structure of polymer films was not changed by the incorporation of GSE. But, the addition of GSE increased moisture content, water vapor permeability, and surface hydrophilicity of the films. The tensile strength and elastic modulus decreased with increasing content of GSE, however, the elongation at break increased significantly up to 6.6μg/mL of GSE then decreased thereafter. Thermal stability of the films was not influenced by GSE incorporation. The carrageenan/GSE composite films exhibited great antibacterial activity against food borne pathogens. These results suggest that the carrageenan-based composite films have a high potential for being used as an antimicrobial or active food packaging applications. PMID:24832986

  13. Nanostructure and Composition of Tribo-Boundary Films Formed in Ionic Liquid Lubrication

    SciTech Connect

    Qu, Jun; Chi, Miaofang; Meyer III, Harry M; Blau, Peter Julian; Dai, Sheng; Luo, Huimin

    2011-01-01

    Since the idea of using ionic liquids (ILs) as lubricants was raised in 2001, many studies have been conducted in this area and results have demonstrated superior lubricating performance for a variety of ionic liquids. It is widely believed that tribochemical reactions occur between the metal surface and the IL during the wear process to form a protective tribo-boundary film on the contact area that reduces friction and wear. However, the study of this critical boundary film has been limited to top surface two-dimensional topography examination and chemical analysis in the literature. A more comprehensive characterization is needed to help understand the film formation process and the lubricating mechanism. This study demonstrated a multi-technique three-dimensional approach to characterize the IL-formed boundary films, including top surface morphology examination, cross section nanostructure characterization, and layered chemical analysis. Characterization was carried out on both ferrous and aluminum surfaces lubricated by an ammonium IL. The focused-ion-beam (FIB) technique enabled TEM/EDS examination on the cross section of the boundary film to provide direct measurement of the film thickness, visualization of the nanostructure, and analysis of composition. In addition, composition-depth profiles were generated using XPS aided by ion-sputtering to reveal the composition change at different levels of the boundary film to investigate the film formation process.

  14. Impedance Spectroscopy Study of Composite Thin Films of Hydrated Polyethylene Glycol

    SciTech Connect

    Al-Hamarneh, Ibrahim F.; Pedrow, Patrick D.; Goheen, Steven C.; Hartenstine, M. J.

    2007-05-01

    A polythelene glycol (PEG) polymer was synthesized using a dip coating procedure on 316L stainless steel (SS) substrate pre coated by radio frequency RF inductively coupled plasma polymerization with di (ethylene glycol) vinyl ether (EO2V) monomer that was used as a primer coat. The primer and PEG composite film was studied with profilometer, visible-light microscope, scanning electron microscope (SEM) and a tape test to evaluate thickness, stability, morphology and adhesion. Response of the PEG composite film to an AC electric perturbation was studied as a function of hydration state using impedance spectroscopy (IS). A resistor/capacitor network was used to interpret the impedance spectra. The capacitance of the PEG film decreased with an exponentially decaying term as dehydration progressed. PEG film capacitance decay was consistent with a model describing water molecules diffusing through the PEG film.

  15. Impedance Spectroscopy Study of Composite Thin Films of Hydrated Polyethylene Glycol

    SciTech Connect

    Al-Hamarneh, Ibrahim F.; Pedrow, Patrick D.; Goheen, Steven C.; Hartenstine, M. J.

    2007-10-01

    A polyethylene glycol (PEG) polymer was synthesized using a dip coating procedure on 316L stainless steel (SS) substrate pre-coated with a primer that consisted of radio frequency RF inductively coupled plasma-polymerized di (ethylene glycol) vinyl ether (EO2V). The primer and PEG composite film was studied with profilometer, optical microscope, scanning electron microscope (SEM), and a tape test to evaluate thickness, coverage, morphology, and adhesion, respectively. Response of the PEG composite film to an applied AC voltage was studied as a function of hydration state using impedance spectroscopy (IS). A resistor/capacitor network was used to interpret the impedance spectra. Electrical capacitance of the PEG film decreased with an exponentially decaying term as dehydration progressed. PEG film capacitance decay was consistent with a model describing water molecules diffusing through the PEG film.

  16. A dense and strong bonding collagen film for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-01

    A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H2O2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  17. Preparation of a porcine plasma protein composite film and its application.

    PubMed

    Lee, Ji-Hyun; Song, Kyung Bin

    2015-01-01

    To use blood released from slaughtering houses, a porcine plasma protein (PPP)/nanoclay composite film was prepared. The tensile strength and elongation at break values of the PPP composite film with 5% nanoclay were 10.01 MPa and 6.55%, respectively. The PPP composite film containing 1% grapefruit seed extract (GSE) was applied to pork meat, and the populations of inoculated Escherichia coli O157:H7 and Listeria monocytogenes in the pork meat packaged with the PPP composite film decreased by 0.8 and 1.0 log CFU/g, respectively, after 7 days of storage compared to the populations of the control. In addition, thiobarbituric acid values in the pork meat packaged with the PPP composite film were less than those of the control sample during storage. These results suggest that the PPP nanocomposite film containing 1% GSE can be used as a packaging material to maintain the quality of pork meat. PMID:25248798

  18. Optical performance of mesostructured composite silica film loaded with organic dye.

    PubMed

    Guli, Mina; Chen, Shijian; Zhang, Dingke; Li, Xiaotian; Yao, Jianxi; Chen, Lei; Xiao, Li

    2014-01-10

    A mesoporous composite silica film loaded with organic dye has been successfully synthesized by a solgel reaction process and a simple postgrafting method at room temperature. The composite film was characterized by x-ray diffraction, transmission electron microscopy, UV-Vis, photoluminescence (PL) spectra, and laser performance, and the results confirmed the existence of dyes in the channels of the silica film. A blue-shift and fluorescence property in the PL spectrum was observed from the composite film compared with that of dye molecules in C₂H₅OH solution. The spectrum narrowing phenomena has been observed when the composite film is pumped at λp=355  nm by a Nd:YAG pulsed laser. A narrower, higher peak was observed in emission spectra from the mesostructured composite silica film compared with the PL spectrum of dye in C₂H₅OH solution. There is a substantial reduction in the full width at half-maximum of the emitting light, which results in peaks with linewidths of 26 nm or more. This collapse of the emission spectrum is one of the signatures of the presence of amplified spontaneous emission. PMID:24514063

  19. Characterization of multilayered and composite edible films from chitosan and beeswax.

    PubMed

    Velickova, Elena; Winkelhausen, Eleonora; Kuzmanova, Slobodanka; Moldão-Martins, Margarida; Alves, Vitor D

    2015-03-01

    Chitosan-based edible films were prepared and subjected to cross-linking reactions using sodium tripolyphosphate and/or to beeswax coating on both films interfaces. In addition, chitosan-beeswax emulsion-based films were produced. The goal of these modifications of the chitosan films was the improvement of their barrier to water vapor and to decrease their affinity to liquid water maintaining or improving the mechanical and optical properties of the original chitosan films. The cross-linking with tripolyphosphate decreased both the water vapor permeability and the water absorption capacity to about 55% and 50% of that of the original chitosan films, respectively. However, there was an increase in the films stiffness, revealed by the increased Young modulus from 42 kPa up to 336 kPa. The multilayered wax-chitosan-wax films exhibited a similar improvement of the barrier properties to water vapor, with the advantage of maintaining the mechanical properties of the original chitosan films. However, these wax-coated films showed a higher water absorption capacity, which is believed to be a consequence of water entry into small pores between the film and the wax layers. Regarding the film samples subjected to cross-linking and further coating with beeswax, a similar behavior as the uncoated cross-linked films was observed. The emulsion-based composite films were characterized by a substantial decrease of the water vapor permeability (40%), along with a decrease in their stiffness. Regarding the optical properties, all films presented a yellowish color with similar values of lightness, chroma, and hue. PMID:24285830

  20. Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage.

    PubMed

    Reesha, K V; Panda, Satyen Kumar; Bindu, J; Varghese, T O

    2015-08-01

    An antimicrobial packaging material was developed by uniformly embedding 1, 3 and 5% chitosan (w/w) in low density polyethylene matrix using maleic anhydride grafted LDPE as a compatible agent. The materials were mixed by compounding and blown into monolayer films via blown film extrusion. The developed films showed good barrier properties against oxygen. Characterization of the composite films with Fourier transform infrared spectroscopy revealed that chitosan and LDPE interacted well with each other. Overall migration showed better release of chitosan adduct from the LDPE matrix which enhanced the antibacterial properties of the films. The interaction between the LDPE/CS and maleic anhydride grafted LDPE had a decreasing effect on the tensile strength and heat sealing properties. Investigation on antimicrobial properties of LDPE/CS films showed 85-100% inhibition of Escherichia coli. Efficacy of LDPE/CS films was evaluated by using them as packaging material for chilled storage of Tilapia (Oreochromis mossambicus). Analysis of storage quality indices (peroxide value, free fatty acid, total volatile base nitrogen and aerobic plate count) revealed good antibacterial property and extension of shelf life of Tilapia in the chitosan incorporated novel composite films compared to virgin LDPE film. PMID:26092060

  1. Property characterization of AlN thin films in composite resonator structure

    NASA Astrophysics Data System (ADS)

    Chen, Qingming; Qin, Lifen; Wang, Qing-Ming

    2007-04-01

    AlN thin films with c-axis orientation have been investigated for fabricating thin film bulk acoustic wave resonators in the past few years. Characterization of thin film material properties including density, elastic modulus, and piezoelectric coefficient is essential in processing study and for predicting the performance of the acoustic devices. In this paper, we present our results on the fabrication of highly c-axis oriented AlN thin films on Pt /Ti/Si (100) substrates by dc reactive magnetron sputtering method. The crystalline structure and the surface morphology of AlN films are characterized by x-ray diffraction and scanning electron microscopy. The effective piezoelectric coefficient d33eff of the AlN films was measured by a laser interferometer method and the piezoelectric coefficient d33 was estimated. A recently developed resonance spectrum method is applied to characterize the electromechanical properties of AlN thin films based on the input electrical impedance equation derived by one-dimensional transmission line theory for composite resonators. Using the experimental impedance spectrum data, the density and elastic constant of the piezoelectric AlN thin film in the four-layer composite resonator structure are evaluated. The calculated results reveal that the piezoelectric coefficient d33, density, and velocity of the c-axis oriented AlN thin film are 4.19pm/V, 3187.3kg/m3, and 10631m/s, respectively.

  2. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    NASA Astrophysics Data System (ADS)

    Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.

    2016-07-01

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  3. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    PubMed Central

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm−2·mM−1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. PMID:26346240

  4. High loading of nanostructured ceramics in polymer composite thick films by aerosol deposition

    PubMed Central

    2012-01-01

    Low temperature fabrication of Al2O3-polyimide composite substrates was carried out by an aerosol deposition process using a mixture of Al2O3 and polyimide starting powders. The microstructures and dielectric properties of the composite thick films in relation to their Al2O3 contents were characterized by X-ray diffraction analysis. As a result, the crystallite size of α-Al2O3 calculated from Scherrer's formula was increased from 26 to 52 nm as the polyimide ratio in the starting powders increased from 4 to 12 vol.% due to the crushing of the Al2O3 powder being reduced by the shock-absorbing effect of the polyimide powder. The Al2O3-polyimide composite thick films showed a high loss tangent with a large frequency dependence when a mixed powder of 12 vol.% polyimide was used due to the nonuniform microstructure with a rough surface. The Al2O3-polyimide composite thick films showed uniform composite structures with a low loss tangent of less than 0.01 at 1 MHz and a high Al2O3 content of more than 75 vol.% when a mixed powder of 8 vol.% polyimide was used. Moreover, the Al2O3-polyimide composite thick films had extremely high Al2O3 contents of 95 vol.% and showed a dense microstructure close to that of the Al2O3 thick films when a mixed powder of 4 vol.% polyimide was used. PMID:22283973

  5. Significant positive magnetoresistance of graphene/carbon composite films prepared by electrospraying and subsequent heat treatment

    NASA Astrophysics Data System (ADS)

    Chen, L. Q.; Liu, X.; Chen, J. T.; Zhang, Z. C.; Li, J. L.; Wang, L. J.; Jiang, W.

    2012-03-01

    Graphene/carbon composite films were prepared by electrospraying a graphene/polyacrylonitrile composite solution on SiO2-coated silicon substrates and subsequent heat treatment. The as-produced graphene/carbon composite films had a porous structure comprising graphene layers. With a magnetic field applied perpendicularly to the sample, an unexpectedly significant positive magnetoresistance attributed to e-e interaction and weak localization has been observed, which constantly increases with the magnetic field in the temperature range of 300-50 K from 0 to 80 kOe.

  6. High-performance flexible hydrogen sensor made of WS2 nanosheet–Pd nanoparticle composite film

    NASA Astrophysics Data System (ADS)

    Kuru, Cihan; Choi, Duyoung; Kargar, Alireza; Liu, Chin Hung; Yavuz, Serdar; Choi, Chulmin; Jin, Sungho; Bandaru, Prabhakar R.

    2016-05-01

    We report a flexible hydrogen sensor, composed of WS2 nanosheet–Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2–Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS2–Pd composite film distinctly outperforms the graphene–Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors.

  7. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyurethane composite films

    NASA Astrophysics Data System (ADS)

    Son Hoang, Anh

    2011-06-01

    Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in a pure polyurethane resin by grinding in a planetary ball mill. The structure and surface morphology of the MWCNTs and MWCNT/polyurethane composites were studied by filed emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) methods. The electrical conductivity at room temperature and electromagnetic interference (EMI) shielding effectiveness (SE) of the composite films with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in a frequency range of 8–12 GHz (X-band). The experimental results show that with a low MWCNT concentration the composite films could achieve a high conductivity and their EMI SE has a strong dependence on MWCNT content. For the composite films with 22 wt% of MWCNTs, the EMI SE attained an average value of 20 dB, so that the shielding effect reduced the penetrating power to 1%.

  8. Mathematical modeling for the composition prediction of compound films grown by ion-assisted deposition technique and its application to TiN x film

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Keun; Colligon, J. S.; Jeong, Sang-Hun

    2004-10-01

    A simple general model has been formulated to explain the composition of compound films during growth simultaneous with ion bombardment. The variables in this model are (a) the sticking probability of the background residual reactive gas in the film, (b) an ion-enhanced sticking probability of these reactive gases arising from ion-enhanced adsorption and mixing and (c) ion implantation of the energetic ions impinging on the growing film. Preferential sputtering of various components in the film is also taken into account. The model is shown to be successful in explaining the experimental variations in the composition of TiN x films produced by ion-assisted growth.

  9. Processable polyaniline/titania nanocomposites with good photocatalytic and conductivity properties prepared via peroxo-titanium complex catalyzed emulsion polymerization approach

    NASA Astrophysics Data System (ADS)

    Li, Yuzhen; Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang

    2013-05-01

    The homogeneous polyaniline (PAni)/TiO2 nanocomposites were successfully synthesized via a facile emulsion polymerization with the assistance of peroxo-titanium complex (PTC), where PTC was used as both the TiO2 precursor and the oxidant for the polymerization of PAni/TiO2 nanocomposites. Comprehensive analysis indicated that anatase TiO2 nanocrystals (about 4-6 nm) were well-dispersed in the PAni chains without aggregation, and the TiO2 were anchored on the polymer chains through chemical interactions, such as Tisbnd Osbnd Nsbnd C and Tisbnd Osbnd C, which made the PAni/TiO2 composite possess better thermal stability. The PAni/TiO2 composite could be well dispersed in common solvent, such as acetone, and stay stability without any precipitation for a month. Since the PAni/TiO2 composite could be well dispersed in common solvent, the PAni/TiO2 dispersion may be coated on the surface of Poly (ethylene terephthalate) (PET) film, showing good processable properties, and the prepared PAni/TiO2/PET films exhibit good photocatalysis and best conductivity (2.08 × 10-2 s cm-1), when the molar ratio of aniline (AN) and Ti in the PAni/TiO2 composite is 1/1. The possible reaction mechanism was also discussed. The facile synthesized method proposed can also be used for the preparation of other conducting polymer/semiconductor nanocomposites.

  10. Multilayer transfer printing of electroactive thin film composites.

    PubMed

    Cebeci, Fevzi Ç; Schmidt, Daniel J; Hammond, Paula T

    2014-11-26

    We demonstrate the high fidelity transfer printing of an electroactive polymer nanocomposite thin film onto a conductive electrode. Polyelectrolyte multilayer thin films of thickness ∼200 nm containing 68 vol % Prussian Blue nanoparticles are assembled on a UV-curable photopolymer stamp and transferred in their entirety onto ITO-coated glass creating ∼2.5 μm-wide line patterns with ∼1.25 μm spacing. AFM and SEM are used to investigate pattern fidelity and morphology, while cyclic voltammetry confirms the electroactive nature of the film and electrical connectivity with the electrode. The patterning strategy presented here could be used to pattern electroactive thin films containing a high density of nanoparticles onto individually addressable microelectrodes for a variety of applications ranging from biosensor arrays to flexible electronics. PMID:25372508

  11. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    NASA Astrophysics Data System (ADS)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  12. Compositional gradients in photopolymer films utilizing kinetic driving forces

    NASA Astrophysics Data System (ADS)

    Cook, Clinton John

    Independent control of the surface and bulk properties is advantageous for many applications such as adhesives, release coatings, and antimicrobial films. Traditional methods for achieving independent control typically require multiple processing steps such as wet-on-wet or wet-on-dry coating methods. Independent control over the surface properties can achieved in a single step utilizing the temporal and spatial control inherent to photopolymerization. Specifically, a co-photopolymerization of monomers with different reactivities in the presence of a light gradient is capable of producing a polymer film with a surface chemistry that differs from the bulk chemistry. The light gradient, produced via the concentration of photoinitiator in the formulation, results in a reaction gradient through the film with the higher rates of reaction occurring in the high light intensity regions of the film. The preferentially reacting monomer adds at a greater rate in the high light intensity regions resulting in non-uniform consumption yielding a concentration gradient. Consequently, diffusion of the preferentially reacting monomer from the bulk to the surface of the film and a counter-diffusion of the other monomer from the surface to the bulk of the film occurs from the non-uniform monomer consumption thus producing a film with a concentration gradient through the depth of the film with the preferentially reacting monomer enriching the high light intensity regions. A variety of kinetic differences capable of producing a stratified film will be presented including inherent monomer reactivity, number of functional groups per monomer, oxygen inhibition, thiol-ene chemistry, and Norrish type two initiation. Additionally, parameters that control the degree of stratification, such as methods of varying polymerization rate and the light gradient, will be examined. Changes in surface properties (such as contact angle, surface hardness, adhesion) and bulk properties (such as mechanical

  13. Study of phase transitions in NbN ultrathin films under composite ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Prikhodko, K.; Gurovich, B.; Dement'eva, M.

    2016-04-01

    This work demonstrates implementation of Selective Displacement of Atoms (SDA) technique to change the crystal structure and atomic composition of thin superconductive film of NbN under low dose composite ion beam irradiation. All structure investigations were performed using High Resolution Transmission Electron Microscopy (HRTEM) technique by the analysis of Fourier transformation of bright field HRTEM images. It was found that composite ion beam irradiation induces the formation of niobium oxynitrides phases.

  14. Synthesis and characterization of CoFe2O4/polyaniline nanocomposites for electromagnetic interference applications.

    PubMed

    Praveena, K; Srinath, S

    2014-06-01

    The Cobalt ferrite (CoFe2O4) powders were synthesized by Co-precipitation method. The as prepared ferrite powders were incorporated into a polyaniline matrix at various volumetric ratios. The as prepared composites of ferrite and polyaniline powders were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM). The particle size of CoFe2O4 is found to be 20 nm. The saturation magnetization (M(s)) of all the composites was found to be decreasing with decrease of ferrite content, while coercivity (H(c)) remained at the value corresponding to pure cobalt ferrite nanopowders. The complex permittivity (epsilon' and epsilon") and permeability (mu' and mu") of composite samples were measured in the range of 1 MHz to 1.1 GHz. The value of epsilon' and mu' found to be increased with ferrite volume concentration. PMID:24738398

  15. Electrochemical and Antimicrobial Properties of Diamondlike Carbon-Metal Composite Films

    SciTech Connect

    MORRISON, M. L.; BUCHANAN, R. A.; LIAW, P. K.; BERRY, C. J.; BRIGMON, R.; RIESTER, L.; JIN, C.; NARAYAN, R. J.

    2005-05-11

    Implants containing antimicrobial metals may reduce morbidity, mortality, and healthcare costs associated with medical device-related infections. We have deposited diamondlike carbon-silver (DLC-Ag), diamondlike carbon-platinum (DLC-Pt), and diamondlike carbon-silver-platinum (DLC-AgPt) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films revealed that the silver and platinum self-assemble into nanoparticle arrays within the diamondlike carbon matrix. The diamondlike carbon-silver film possesses hardness and Young's modulus values of 37 GPa and 331 GPa, respectively. The diamondlike carbon-metal composite films exhibited passive behavior at open-circuit potentials. Low corrosion rates were observed during testing in a phosphate-buffered saline (PBS) electrolyte. In addition, the diamondlike carbon-metal composite films were found to be immune to localized corrosion below 1000 mV (SCE). DLC-silver-platinum films demonstrated exceptional antimicrobial properties against Staphylococcus bacteria. It is believed that a galvanic couple forms between platinum and silver, which accelerates silver ion release and provides more robust antimicrobial activity. Diamondlike carbon-silver-platinum films may provide unique biological functionalities and improved lifetimes for cardiovascular, orthopaedic, biosensor, and implantable microelectromechanical systems.

  16. Myoglobin within graphene oxide sheets and Nafion composite films as highly sensitive biosensor

    PubMed Central

    Guo, Changchun; Sun, Hong; Zhao, X.S.

    2012-01-01

    A highly sensitive biosensor was fabricated by incorporating myoglobin (Mb) within graphene oxide (GO) sheets and Nafion composite films. The stable composite Mb–GO–Nafion films were characterized by electrochemistry, scanning electron microscopy, Fourier transform infrared spectroscopy and UV–vis spectroscopy. It was found that Mb in Mb–GO–Nafion films retained its secondary structure similar to its native states. Cyclic voltammetry of Mb–GO–Nafion films showed a pair of well defined, quasi-reversible peaks at about −0.312 V vs saturated calomel electrode (SCE) at pH 5.5, corresponding to direct electron transfer (DET) between Mb and the glassy carbon electrode. Electrochemical parameter of Mb in Mb–GO–Nafion film such as apparent heterogeneous electron transfer rate constant (ks) and formal potential (Eo′) were obtained. The dependence of Eo′ on solution pH indicated that the DET reaction of Mb was coupled with proton transfer. Mb in the films displayed good electrocatalytic activities towards various substrates such as hydrogen peroxide, nitrite and oxygen, indicating that the composite films have potential applications in fabricating novel biosensors without using mediators. PMID:23576844

  17. Self-lubricating polymer composites and polymer transfer film lubrication for space applications

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1990-01-01

    The use of self-lubricating polymers and polymer composites in space is somewhat limited today. In general, they are only used when other methods are inadequate. There is potential, however, for these materials to make a significant impact on future space missions if properly utilized. Some of the different polymers and fillers used to make self-lubricating composites are surveyed. The mechanisms of composite lubrication and wear, the theory behind transfer film lubricating mechanisms, and some factors which affect polymer composite wear and transfer are examined. In addition, some of the current space tribology application areas for self-lubricating polymer composites and polymer transfer are mentioned.

  18. Interplay Between Thin Film Ferroelectric Composition, Microstructure and Microwave Phase Shifter Performance

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Frederick W.; Romanofsky, Robert R.; Alterovitz, Samuel A.; Miranda, Felix A.

    2003-01-01

    One of the keys to successfully incorporating ferroelectric films into Ku-band (12 to 18 GHz) phase shifters is to establish the composition, microstructure, and thickness required to meet the tuning needs, and tailor the film properties to meet these needs. Optimal performance is obtained when the film composition and device design are such that the device performance is limited by odd mode dielectric losses, and these losses are minimized as much as possible while still maintaining adequate tunability. The parameters required to maintain device performance will vary slightly depending on composition, but we can conclude that the best tuning-to-loss figures of merit (K-factor) are obtained when there is minimal variation between the in-plane and out-of-plane lattice parameters, and the full-width half maximum values of the BSTO (002) peaks are less than approximately 0.04 deg. We have observed that for phase shifters in which the ferroelectric crystalline quality and thickness are almost identical, higher losses are observed in films with higher BaISr ratios. The best performance was observed in phase shifters with Ba:Sr = 30:70. The superiority of this composition was attributed to several interacting factors: the B a: Sr ratio was such that the Curie temperature (180 K) was far removed from room temperature, the crystalline quality of the film was excellent, and there was virtually no difference between the inplane and out-of-plane lattice parameters of the film.

  19. Anomalous hopping conduction in nanocrystalline/amorphous composites and amorphous semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Kakalios, James; Bodurtha, Kent

    Composite nanostructured materials consisting of nanocrystals (nc) embedded within a thin film amorphous matrix can exhibit novel opto-electronic properties. Composite films are synthesized in a dual-chamber co-deposition PECVD system capable of producing nanocrystals of material A and embedding then within a thin film matrix of material B. Electronic conduction in composite thin films of hydrogenated amorphous silicon (a-Si:H) containing nc-germanium or nc-silicon inclusions, as well as in undoped a-Si:H, does not follow an Arrhenius temperature dependence, but rather is better described by an anomalous hopping expression (exp[-(To/T)3/4) , as determined from the ``reduced activation energy'' proposed by Zabrodskii and Shlimak. This temperature dependence has been observed in other thin film resistive materials, such as ultra-thin disordered films of Ag, Bi, Pb and Pd; carbon-black polymer composites; and weakly coupled Au and ZnO quantum dot arrays. There is presently no accepted theoretical understanding of this expression. The concept of a mobility edge, accepted for over four decades, appears to not be necessary to account for charge transport in amorphous semiconductors. Supported by NSF-DMR and the Minnesota Nano Center.

  20. Effects of antibacterial nanostructured composite films on vascular stents: hemodynamic behaviors, microstructural characteristics, and biomechanical properties.

    PubMed

    Cheng, Han-Yi; Hsiao, Wen-Tien; Lin, Li-Hsiang; Hsu, Ya-Ju; Sinrang, Andi Wardihan; Ou, Keng-Liang

    2015-01-01

    The purpose of this research was to investigate stresses resulting from different thicknesses and compositions of hydrogenated Cu-incorporated diamond-like carbon (a-C:H/Cu) films at the interface between vascular stent and the artery using three-dimensional reversed finite element models (FEMs). Blood flow velocity variation in vessels with plaques was examined by angiography, and the a-C:H/Cu films were characterized by transmission electron microscopy to analyze surface morphology. FEMs were constructed using a computer-aided reverse design system, and the effects of antibacterial nanostructured composite films in the stress field were investigated. The maximum stress in the vascular stent occurred at the intersections of net-like structures. Data analysis indicated that the stress decreased by 15% in vascular stents with antibacterial nanostructured composite films compared to the control group, and the stress decreased with increasing film thickness. The present results confirmed that antibacterial nanostructured composite films improve the biomechanical properties of vascular stents and release abnormal stress to prevent restenosis. The results of the present study offer the clinical benefit of inducing superior biomechanical behavior in vascular stents. PMID:24648307

  1. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    SciTech Connect

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S.

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  2. Single-Layer Light-Emitting Diodes Using Organometal Halide Perovskite/Poly(ethylene oxide) Composite Thin Films.

    PubMed

    Li, Junqiang; Bade, Sri Ganesh R; Shan, Xin; Yu, Zhibin

    2015-09-16

    Organometal halide perovskite and poly(ethylene oxide) composite thin films are studied. Single-layer light-emitting diodes using the composite thin film sandwiched between indium tin oxide and indium-gallium eutectic alloy exhibit a low turn-on voltage and high brightness because of the ionic conductivity of the composite film and the formation of a p-i-n homojunction. PMID:26247326

  3. Formulation and evaluation of transdermal composite films of chitosan-montmorillonite for the delivery of curcumin.

    PubMed

    Thakur, Garima; Singh, Amrinder; Singh, Inderbir

    2016-01-01

    Composite transdermal films of chitosan (CS)/montmorillonite K 10 (MMT) clay were prepared for the delivery of curcumin. CS/MMT films were evaluated for various physicochemical parameters. The films were characterized by Fourier transform infrared spectroscopy and X-ray diffraction analysis. Water uptake and swelling ratio of the films was found to decrease with increase in concentration of clay. Mechanical properties of the films were assessed in terms of tensile strength and extensibility using texture analyzer. Increase in tensile strength and reduction in extensibility was reported with increase in the clay content. This was attributed to the formation of intercalated structure and restriction in mobility of CS polymeric chains with the inclusion of clay particles. In vitro drug release study on transdermal films indicated pronounced sustained release of curcumin by the incorporation of clay particles in the CS polymer matrix. Stability study indicated no significant effect on physicochemical properties of films kept at 40°C and 75% RH for 3 months. Overall CS/MMT composite transdermal films exhibited improved mechanical and sustained drug release properties. PMID:27014616

  4. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    SciTech Connect

    Sharma, S. K.; Mohan, S.; Bysakh, S.; Kumar, A.; Kamat, S. V.

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.

  5. Formulation and evaluation of transdermal composite films of chitosan-montmorillonite for the delivery of curcumin

    PubMed Central

    Thakur, Garima; Singh, Amrinder; Singh, Inderbir

    2016-01-01

    Composite transdermal films of chitosan (CS)/montmorillonite K 10 (MMT) clay were prepared for the delivery of curcumin. CS/MMT films were evaluated for various physicochemical parameters. The films were characterized by Fourier transform infrared spectroscopy and X-ray diffraction analysis. Water uptake and swelling ratio of the films was found to decrease with increase in concentration of clay. Mechanical properties of the films were assessed in terms of tensile strength and extensibility using texture analyzer. Increase in tensile strength and reduction in extensibility was reported with increase in the clay content. This was attributed to the formation of intercalated structure and restriction in mobility of CS polymeric chains with the inclusion of clay particles. In vitro drug release study on transdermal films indicated pronounced sustained release of curcumin by the incorporation of clay particles in the CS polymer matrix. Stability study indicated no significant effect on physicochemical properties of films kept at 40°C and 75% RH for 3 months. Overall CS/MMT composite transdermal films exhibited improved mechanical and sustained drug release properties. PMID:27014616

  6. Synthesis, characterization and low temperature electrical conductivity of Polyaniline/NiFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Prasanna, G. D.; Prasad, V. B.; Jayanna, H. S.

    2015-02-01

    Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity cRT decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.

  7. First Orange Fluorescence Composite Film Based on Sm-Substituted Tungstophosphate and Its Electrofluorochromic Performance.

    PubMed

    Gao, Wenmei; Yu, Tian; Du, Yu; Wang, Ruiqiang; Wu, Lixin; Bi, Lihua

    2016-05-11

    We chose a Sm-containing sandwich-type tungstophosphate K3Cs8[Sm(PW11O39)2]·10H2O (SmPW11) as a molecular dyad, which contains photoluminescence and electrochromism components in a skeletal structure, and investigated its electrofluorochromic performance both in solution and in composite films. First, the electrochemical activity and luminescence property of SmPW11 were studied in different pH solutions to determine the optimal pH solution medium; and then, the electrofluorochromic performance of SmPW11 was investigated under the optimized pH solution medium. Subsequently, the composite films containing SmPW11 were prepared on quartz substrates and conductive ITO substrates through a layer-by-layer (LbL) assembly method, using PDDA and PEI as molecular linkers. Characterization methods of the composite films include UV-vis spectra, fluorescence spectroscopy, cyclic voltammetry (CV), bulk electrolysis with coulometry, chronoamperometry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Finally, in situ UV-vis and fluorescence spectroelectrochemical systems were used to research electrofluorochromic properties for the composite films under electrochemical modulation. The results indicate that the composite films display not only orange luminescence emission but also reversible orange luminescence switching behaviors manipulated by the redox process of tungstophosphate species PW11 via the energy transfer between the orange luminescence component Sm and electroreduced species of tungstophosphate PW11. PMID:27088254

  8. Automated Fiber Placement of PEEK/IM7 Composites with Film Interleaf Layers

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce; Banks, William I., III; Pipes, R. Byron; Tiwari, Surendra N.; Cano, Roberto J.; Johnston, Norman J.; Clinton, R. G., Jr. (Technical Monitor)

    2001-01-01

    The incorporation of thin discrete layers of resin between plies (interleafing) has been shown to improve fatigue and impact properties of structural composite materials. Furthermore, interleafing could be used to increase the barrier properties of composites used as structural materials for cryogenic propellant storage. In this work, robotic heated-head tape placement of PEEK/IM7 composites containing a PEEK polymer film interleaf was investigated. These experiments were carried out at the NASA Langley Research Center automated fiber placement facility. Using the robotic equipment, an optimal fabrication process was developed for the composite without the interleaf. Preliminary interleaf processing trials indicated that a two-stage process was necessary; the film had to be tacked to the partially-placed laminate then fully melted in a separate operation. Screening experiments determined the relative influence of the various robotic process variables on the peel strength of the film-composite interface. Optimization studies were performed in which peel specimens were fabricated at various compaction loads and roller temperatures at each of three film melt processing rates. The resulting data were fitted with quadratic response surfaces. Additional specimens were fabricated at placement parameters predicted by the response surface models to yield high peel strength in an attempt to gage the accuracy of the predicted response and assess the repeatability of the process. The overall results indicate that quality PEEK/lM7 laminates having film interleaves can be successfully and repeatability fabricated by heated head automated fiber placement.

  9. Temperature dependence of gas sensing behaviour of TiO{sub 2} doped PANI composite thin films

    SciTech Connect

    Srivastava, Subodh Sharma, Preetam; Singh, M.; Vijay, Y. K.; Sharma, S. S.; Sharma, Vinay; Rajura, Rajveer Singh

    2014-04-24

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO{sub 2} doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO{sub 2} doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO{sub 2} doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  10. Combinatorial matrix-assisted pulsed laser evaporation: Single-step synthesis of biopolymer compositional gradient thin film assemblies

    NASA Astrophysics Data System (ADS)

    Sima, F.; Axente, E.; Sima, L. E.; Tuyel, U.; Eroglu, M. S.; Serban, N.; Ristoscu, C.; Petrescu, S. M.; Toksoy Oner, E.; Mihailescu, I. N.

    2012-12-01

    We introduce a combinatorial approach for the fabrication of organic biopolymer thin films. Structures with compositional gradient are obtained by simultaneous laser vaporization of two distinct targets. Matrix-assisted pulsed laser evaporation deposition method was applied to obtain a compositional library of levan and oxidized levan in form of thin film. The gradient of film composition and structure was demonstrated by infrared spectroscopy while in vitro cell culture assays illustrated characteristic responses of cells to specific surface regions. The method can rapidly generate discrete areas of organic film compositions with improved properties than starting materials.

  11. Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes

    SciTech Connect

    Wang, X. Z.; Li, M. G.; Chen, Y. W.; Cheng, R. M.; Huang, S. M.; Pan, L. K.; Sun, Z.

    2006-07-31

    Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers (CNTs-CNFs) composite film electrodes has been demonstrated. The large area CNTs-CNFs film was directly grown on Ni plate by low pressure and low temperature thermal chemical vapor deposition. The CNTs-CNFs electrodes have great advantages such as low cost, easy operation, long-term reproducibility, and integrity of monolithic CNTs-CNFs film and current collector. Batch-mode experiments at low voltage (0.4-2 V) were conducted in a continuously recycling system to investigate the electrosorption process. Purification of water with good reproducibility was achieved because of optimal pore size distribution of CNTs-CNFs composite films.

  12. Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes

    NASA Astrophysics Data System (ADS)

    Wang, X. Z.; Li, M. G.; Chen, Y. W.; Cheng, R. M.; Huang, S. M.; Pan, L. K.; Sun, Z.

    2006-07-01

    Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers (CNTs-CNFs) composite film electrodes has been demonstrated. The large area CNTs-CNFs film was directly grown on Ni plate by low pressure and low temperature thermal chemical vapor deposition. The CNTs-CNFs electrodes have great advantages such as low cost, easy operation, long-term reproducibility, and integrity of monolithic CNTs-CNFs film and current collector. Batch-mode experiments at low voltage (0.4-2V) were conducted in a continuously recycling system to investigate the electrosorption process. Purification of water with good reproducibility was achieved because of optimal pore size distribution of CNTs-CNFs composite films.

  13. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Leisch, Jennifer; Taylor, Matthew; Stanbery, Billy J.

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  14. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    NASA Astrophysics Data System (ADS)

    Wang, Long-De; Zhang, Tong; Zhang, Xiao-Yang; Song, Yuan-Jun; Li, Ruo-Zhou; Zhu, Sheng-Qing

    2014-03-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence.

  15. Composition and submicron structure of chemically deposited Cu2Se-In2Se3 films

    NASA Astrophysics Data System (ADS)

    Markov, V. F.; Tulenin, S. S.; Maskaeva, L. N.; Kuznetsov, M. V.; Barbin, N. M.

    2012-03-01

    Films of substitutional solid solutions of the Cu2Se-In2Se3 system containing up to 7.5 at. % In have been obtained by chemical deposition from aqueous media. The composition, structure, and morphology of the films have been studied. Data of X-ray diffraction and X-ray photoelectron spectroscopy showed that copper in the solid solution occurs in a single-valence state (Cu+). The deposited layers possess a globular morphology and are nanostructured.

  16. The particle size distribution function in the composite films and microwave magnetic properties

    NASA Astrophysics Data System (ADS)

    Kotov, L.; Ustyugov, V.; Vlasov, V.; Turkov, V.; Lasek, M.; Kalinin, Yu; Sitnikov, A.; Golubev, E.

    2016-04-01

    Nano- and microstructure of {(Co4-Fe4-Zr0.7)x+(A12O3)1-x} (Al series) and {(Co1-Nb0.2-Ta0.05)x+(SiO2)1-x} (A2 series) films was investigated by atomic force microscopy. The distributions of the metallic granules effective size by various concentrations of the metal phase were obtained. Microwave magnetic characteristics of composite films in respect of obtained distributions were calculated.

  17. Phase-field model for compositional and morphological evolution studies in thin film heteroepitaxial systems

    NASA Astrophysics Data System (ADS)

    Singh, Nitin

    A computational tool based on a diffuse-interface approach has been developed to simulate coupled evolution of film surface morphology and compositional evolution during thin film growth. It is well known from numerous experiments especially in Si/Ge and InGaAs/InP thin film systems that relaxation of elastic energy influences the surface morphology during growth. Strain relaxation via composition modulation is also of particular importance in the theory of spinodal decomposition. In this computational model, the influence of coherency stresses, both due to compositional strains (due to the atomic size mismatch of the constituent species) and epitaxial strains on the coupled evolution of composition and morphology of a thin film is considered. The model consists of a film on a substrate system which is in contact with vapor. The film-vapor interface and the compositional interfaces are diffuse in nature, so that it is not necessary to track these interfaces explicitly at each step during evolution. Using a modeling approach that eliminates the need to track sharp interfaces at each step during evolution, not only reduces the computational burden, but also allows for the incorporation of complex physical interaction in the model. The initial focus of the dissertation is on the development of a diffuse-interface model for simulating microstructural evolution in a InxGa 1-xAsySb1-y alloy thin film-substrate system. The regions of instability are mapped on the phase diagram using the regular solution model. The influence of compositional strain and epitaxial strains on microstructure evolution is investigated. The model is further extended to simulate surface morphological evolution and coupled morphology-composition effects. The strain energy in the system is calculated by solving the Cauchy-Navier equations for equilibrium using a linear multigrid method. Generalized nonlinear Cahn-Hilliard equations are used to describe the evolution of the phase-field variables

  18. Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution

    NASA Astrophysics Data System (ADS)

    Singh, Kuldeep; Ohlan, Anil; Pham, Viet Hung; Balasubramaniyan, R.; Varshney, Swati; Jang, Jinhee; Hur, Seung Hyun; Choi, Won Mook; Kumar, Mukesh; Dhawan, S. K.; Kong, Byung-Seon; Chung, Jin Suk

    2013-02-01

    The development of high-performance shielding materials against electromagnetic pollution requires mobile charge carriers and magnetic dipoles. Herein, we meet the challenge by building a three-dimensional (3D) nanostructure consisting of chemically modified graphene/Fe3O4(GF) incorporated polyaniline. Intercalated GF was synthesized by the in situ generation of Fe3O4 nanoparticles in a graphene oxide suspension followed by hydrazine reduction, and further in situ polymerization with aniline to form a polyaniline composite. Spectroscopic analysis demonstrates that the presence of GF hybrid structures facilitates strong polarization due to the formation of a solid-state charge-transfer complex between graphene and polyaniline. This provides proper impedance matching and higher dipole interaction, which leads to the high microwave absorption properties. The higher dielectric loss (ε'' = 30) and magnetic loss (μ'' = 0.2) contribute to the microwave absorption value of 26 dB (>99.7% attenuation), which was found to depend on the concentration of GF in the polyaniline matrix. Moreover, the interactions between Fe3O4, graphene and polyaniline are responsible for superior material characteristics, such as excellent environmental (chemical and thermal) degradation stability and good electric conductivity (as high as 260 S m-1).

  19. Novel green nano composites films fabricated by indigenously synthesized graphene oxide and chitosan.

    PubMed

    Khan, Younus H; Islam, Atif; Sarwar, Afsheen; Gull, Nafisa; Khan, Shahzad M; Munawar, Muhammad A; Zia, Saba; Sabir, Aneela; Shafiq, Muhammad; Jamil, Tahir

    2016-08-01

    Graphene oxide (GO) was indigenously synthesized from graphite using standard Hummers method. Chitosan-graphene oxide green composite films were fabricated by mixing aqueous solution of chitosan and GO using dilute acetic acid as a solvent for chitosan. Chitosan of different viscosity and calculated molecular weight was used keeping amount of GO constant in each composite film. The structural properties, thermal stability and mechanical properties of the composite films were investigated using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and tensile test. FTIR studies revealed the successful synthesis of GO from graphite powder and it was confirmed that homogenous blending of chitosan and GO was promising due to oxygenated functional groups on the surface of GO. XRD indicated effective conversion of graphite to GO as its strong peak observed at 11.06° as compared to pristine graphite which appeared at 26°. Moreover, mechanical analysis confirmed the effect of molecular weight on the mechanical properties of chitosan-GO composites showing that higher molecular weight chitosan composite (GOCC-1000) showed best strength (higher than 3GPa) compared to other composite films. Thermal stability of GOCC-1000 was enhanced for which residual content increased up to 56% as compared to the thermal stability of GOCC-200 whose residue was restricted to only 24%. The morphological analysis of the composites sheets by SEM was smooth having dense structure and showed excellent interaction, miscibility, compatibility and dispersion of GO with chitosan. The prepared composite films find their applications as biomaterials in different biomedical fields. PMID:27112859

  20. Synthesis and characterization of polyaniline as emeraldine salt

    NASA Astrophysics Data System (ADS)

    Gawri, Isha; Khatta, Swati; Singh, K. P.; Tripathi, S. K.

    2016-05-01

    Polyaniline in emeraldine salt (PANI-ES) form was successfully synthesized by oxidative polymerization of aniline using ammonium peroxidisulphate as oxidant in the presence of hydrochloric acid as catalyst under ice bath condition. The as prepared powdered sample was characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Using XRD, the average crystalline size was found to be 5.63 nm and d-spacing corresponding to crystalline peak 2θ = 25.08° had come out to be 4.2 Å. Also FTIR absorption spectra showed all the characteristics bands of PANI -ES. The ohmic contact between the PANI-ES film and the substrate was confirmed by Current-Voltage (I-V) characterization.

  1. Composition measurement of epitaxial Sc x Ga1‑x N films

    NASA Astrophysics Data System (ADS)

    Tsui, H. C. L.; Goff, L. E.; Barradas, N. P.; Alves, E.; Pereira, S.; Palgrave, R. G.; Davies, R. J.; Beere, H. E.; Farrer, I.; Ritchie, D. A.; Moram, M. A.

    2016-06-01

    Four different methods for measuring the compositions of epitaxial Sc x Ga1‑x N films were assessed and compared to determine which was the most reliable and accurate. The compositions of epitaxial Sc x Ga1‑x N films with 0 ≤ x ≤ 0.26 were measured directly using Rutherford backscattering (RBS) and x-ray photoelectron spectroscopy (XPS), and indirectly using c lattice parameter measurements from x-ray diffraction and c/a ratio measurements from electron diffraction patterns. RBS measurements were taken as a standard reference. XPS was found to underestimate the Sc content, whereas c lattice parameter and c/a ratio were not reliable for composition determination due to the unknown degree of strain relaxation in the film. However, the Sc flux used during growth was found to relate linearly with x and could be used to estimate the Sc content.

  2. Method for continuous control of composition and doping of pulsed laser deposited films

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1995-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  3. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  4. Luminescence of europium-doped anode oxide films on titanium-aluminum composites

    NASA Astrophysics Data System (ADS)

    Sokol, V. A.; Pinaeva, M. M.; Gurskaya, E. A.; Stekol'Nikov, A. A.

    2000-03-01

    The luminescence of europium in anode oxide films (AOF) on titanium-aluminum film composites is investigated. It is shown that the intensity distribution in the continuous and line luminescence spectra of europium introduced into the AOF directly in the process of anodic oxidation essentially depends on the sequence of arrangement of the layers of metal films and on the temperature of their heat treatment preceding the process of anodic oxidation. It is established that the nature of the luminescence spectrum of the AOF correlates with the chronovoltammetry diagrams of anodic oxidation. Composites with a high degree of europium doping are found and methods of searching for composites for creating new materials of electronic technology are outlined.

  5. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    SciTech Connect

    Yan, Jing; Jeong, Young Gyu

    2014-08-04

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ∼0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  6. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors.

    PubMed

    Kumar, Nanjundan Ashok; Choi, Hyun-Jung; Shin, Yeon Ran; Chang, Dong Wook; Dai, Liming; Baek, Jong-Beom

    2012-02-28

    An alternative and effective route to prepare conducting polyaniline-grafted reduced graphene oxide (PANi-g-rGO) composite with highly enhanced properties is reported. In order to prepare PANi-g-rGO, amine-protected 4-aminophenol was initially grafted to graphite oxide (GO) via acyl chemistry where a concomitant partial reduction of GO occurred due to the refluxing and exposure of GO to thionyl chloride vapors and heating. Following the deprotection of amine groups, an in situ chemical oxidative grafting of aniline in the presence of an oxidizing agent was carried out to yield highly conducting PANi-g-rGO. Electron microscopic studies demonstrated that the resultant composite has fibrillar morphology with a room-temperature electrical conductivity as high as 8.66 S/cm and capacitance of 250 F/g with good cycling stability. PMID:22276770

  7. Morphology and Composition of Structured, Phase-Separated Behenic Acid-Perfluorotetradecanoic Acid Monolayer Films.

    PubMed

    Rehman, Jeveria; Araghi, Hessamaddin Younesi; He, Anqiang; Paige, Matthew F

    2016-05-31

    The phase separation of immiscible surfactants in mixed monolayer films provides an approach to physically manipulate important properties of thin films, including surface morphology, microscale composition, and mechanical properties. In this work, we predict, based upon existing miscibility studies and their thermodynamic underpinnings described in the literature, the miscibility and film morphology of mixed monolayers comprised of behenic acid (C21H43COOH) and perfluorotetradecanoic acid (C13F27COOH) in various molar ratios. Predictions are tested using a combination of experimental surface characterization methods for probing miscibility and film morphology at the solid/air and air/water interfaces. Film components were immiscible and phase-separated into chemically well-defined domains under a variety of experimental conditions, with monolayer morphology consistent with initial predictions. The extensibility of these basic predictions to other systems is discussed in the context of using these works for different perfluorinated surfactant molecules. PMID:27163482

  8. Nano-mechanical properties of nano-gold/DLC composite thin films

    NASA Astrophysics Data System (ADS)

    Paul, Rajib; Bhadra, Nilanjana; Mukhopadhyay, Anup Kumar; Bhar, Radhaballav; Pal, Arun Kumar

    2014-11-01

    Diamond-like-Carbon composite films, with embedded gold nanoparticles, were deposited onto glass substrates by using capacitively coupled plasma chemical vapour deposition (CCP-CVD) technique. The volume fraction of the metal nanoparticles in the films as well as the size of the nanoparticles was varied by varying the percentage of argon in the methane + argon mixture during the deposition. Bonding environments in these films were obtained from Raman and GIXRD. The nanomechanical and nanotribological properties of the Au-DLC nanocomposite films were evaluated. In situ SPM imaging was utilized to depict deformation characteristics developed during the static and dynamic contact events. Influence of metal incorporation on the extent of sp2/sp3 hybridization and thereby on the nanomechanical and nanotribological properties of the DLC films was studied.

  9. Cationic guar gum orchestrated environmental synthesis for silver nano-bio-composite films.

    PubMed

    Abdullah, Md Farooque; Ghosh, Sumanta Kumar; Basu, Sreyasree; Mukherjee, Arup

    2015-12-10

    This work is meant for environmentally friendly synthesis and functional evaluation of silver nanoparticles in a newer cationic guar biopolymer (GGAA). Assembly of molecules in lower size range (∼ 10 nm) was attained in a biopolymer entrapped bottom-up synthesis. Guar gum is a filming biopolymer. Nanoparticles encaged in cationic guar (GGAgnC) were preserved as films for months without any significant effect on particle size, distribution or plasmonic intensity. The new nano-bio-composite and films were characterized fully in FTIR, XRD, SEM and TEM studies. Silver nanoparticles induced surface water repellency remarkably and lowered moisture permeability. GGAgnC film water contact angle was recorded as 115° while, that in case of GGAA was 59°. GGAgnC expressed intense antimicrobial activity when tested against a range of microorganisms. Immobilized silver nanoparticles in GGAA can feasibly be used as filming microbicidals suitable for textiles, packaging and biomedical device applications. PMID:26428096

  10. Preparation and photocatalytic activity of CeO 2/TiO 2 interface composite film

    NASA Astrophysics Data System (ADS)

    Jiang, Bangtong; Zhang, Shengyi; Guo, Xiaozhu; Jin, Baokang; Tian, Yupeng

    2009-03-01

    The CeO 2/TiO 2 and TiO 2/CeO 2 interface composite films were prepared on glass substrates by the sol-gel process via dip-coating and calcining technique. The scanning electron microscopy (SEM) revealed that the TiO 2 layer has a compact and uniformity glasslike surface with 200 nm in thickness, and the CeO 2 layer has a coarse surface with 240 nm in thickness. The X-ray diffractometer (XRD) analysis showed that the TiO 2 layer is made up of anatase phase, and the CeO 2 layer is structured by cubic fluorite phase. Through a series of photo-degradation experiments, the relationship of the photocatalytic activity with the constituents of the films was studied. In virtue of the efficient interfacial charge separation via the process of electron transfer from TiO 2 to CeO 2, the photocatalytic activity of the CeO 2/TiO 2 composite film is high. Contrarily, the photocatalytic activity of the TiO 2/CeO 2 composite film is low, due to its inert surface made up of CeO 2 with broad bandwidth. Apart from the effect of the film structure, the effect of film thickness on photocatalytic activity was also discussed.

  11. Fabrication of Thermoplastic Composite Laminates Having Film Interleaves By Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, A. B.; Tiwari, S. N.; Marchello, J. M.; Johnston, Norman J. (Technical Monitor)

    2001-01-01

    Experiments were carried out at the NASA Langley Research Center automated Fiber placement facility to determine an optimal process for the fabrication of composite materials having polymer film interleaves. A series of experiments was conducted to determine an optimal process for the composite prior to investigation of a process to fabricate laminates with polymer films. The results of the composite tests indicated that a well-consolidated, void-free laminate could be attained. Preliminary interleaf processing trials were then conducted to establish some broad guidelines for film processing. The primary finding of these initial studies was that a two-stage process was necessary in order to process these materials adequately. A screening experiment was then performed to determine the relative influence of the process variables on the quality of the film interface as determined by the wedge peel test method. Parameters that were found to be of minor influence on specimen quality were subsequently held at fixed values enabling a more rapid determination of an optimal process. Optimization studies were then performed by varying the remaining parameters at three film melt processing rates. The resulting peel data were fitted with quadratic response surfaces. Additional specimens were fabricated at levels of high peel strength as predicted by the regression models in an attempt to gage the accuracy of the predicted response and to assess the repeatability of the process. The overall results indicate that quality laminates having film interleaves can be successfully and repeatably fabricated by automated fiber placement.

  12. Growth of multi-component alloy films with controlled graded chemical composition on sub-nanometer scale

    DOEpatents

    Bajt, Sasa; Vernon, Stephen P.

    2005-03-15

    The chemical composition of thin films is modulated during their growth. A computer code has been developed to design specific processes for producing a desired chemical composition for various deposition geometries. Good agreement between theoretical and experimental results was achieved.

  13. High-speed spherical solid registration by the use of piezoelectric composite films

    NASA Astrophysics Data System (ADS)

    Shunin, V. M.; Nabatov, S. S.; Yakushev, V. V.; Volkov, A. P.

    1996-05-01

    Polarized composite polymer-ceramic films as electric pulses detector of high-speed solids were designed and studied. Films were made of the silicon rubber loaded with modifying agents and piezoelectric ceramic powder. The electrical film responses to impacts of 4-10 mm steel balls accelerated from 0.5 to 2.0 km/s were measured. The gauge generated pulses with rather high amplitude (tens of volts on 50 Ohm resistance) and high time resolution (˜1 μs) between impacts of solids. The pulse amplitude depends on impactor velocity and its diameter. The gauges are suitable for operating under high temperature.

  14. Temperature dependence of the biaxial modulus, intrinsic stress and composition of plasma deposited silicon oxynitride films

    NASA Technical Reports Server (NTRS)

    Harding, David R.; Ogbuji, Linus U. T.; Freeman, Mathieu J.

    1995-01-01

    Silicon oxynitride films were deposited by plasma-enhanced chemical-vapor deposition. The elemental composition was varied between silicon nitride and silicon dioxide: SiO(0.3)N(1.0), SiO(0.7)N(1.6), SiO(0.7)N(1.1), and SiO(1.7)N(0.%). These films were annealed in air, at temperatures of 40-240 C above the deposition temperature (260 C), to determine the stability and behavior or each composition. the biaxial modulus, biaxial intrinsic stress, and elemental composition were measured at discrete intervals within the annealing cycle. Films deposited from primarily ammonia possessed considerable hydrogen (up to 38 at.%) and lost nitrogen and hydrogen at anneal temperatures (260-300 C) only marginally higher than the deposition temperature. As the initial oxygen content increased a different mechanism controlled the behavior or the film: The temperature threshold for change rose to approximately equal to 350 C and the loss of nitrogen was compensated by an equivalent rise in the oxygen content. The transformation from silicon oxynitride to silica was completed after 50 h at 400 C. The initial biaxial modulus of all compositions was 21-3- GPa and the intrinsic stress was -30 to 85 MPa. Increasing the oxygen content raised the temperature threshold where cracking first occurred; the two film compositions with the highest initial oxygen content did not crack, even at the highest temperature (450 C) investigated. At 450 C the biaxial modulus increased to approximately equal to 100 GPa and the intrinsic stress was approximately equal to 200 MPa. These increases could be correlated with the observed change in the film's composition. When nitrogen was replaced by oxygen, the induced stress remained lower than the biaxial strength of the material, but, when nitrogen and hydrogen were lost, stress-relieving microcracking occurred.

  15. Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Delozier, Donavon M.; Connell, John W.; Watson, Kent A.

    2004-01-01

    Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have potential applications on large, deployable, ultra-light weight Gossamer spacecraft as thin film membranes on antennas, solar sails, thermal/optical coatings, multi-layer insulation blankets, etc.. The challenge has been to develop a method to impart robust electrical conductivity into these materials without increasing solar absorptivity (alpha ) or decreasing optical transparency or film flexibility. Since these spacecraft will require significant compaction prior to launch, the film portion of the spacecraft will require folding. The state-of-the-art clear, conductive coating (e.g. indium-tin-oxide, ITO) is brittle and cannot tolerate folding. In this report, doping a polymer with single-walled carbon nanotubes (SWNTs) using two different methods afforded materials with good flexibility and surface conductivities in the range sufficient for ESC mitigation. A coating method afforded materials with minimal effects on the mechanical, optical, and thermo-optical properties as compared to dispersal of SWNTs in the matrix. The chemistry and physical properties of these nanocomposites are discussed.

  16. Carbon nanodots-chitosan composite film: a platform for protein immobilization, direct electrochemistry and bioelectrocatalysis.

    PubMed

    Sheng, Meili; Gao, Yue; Sun, Junyong; Gao, Feng

    2014-08-15

    A novel composite film based on carbon nanodots (CNDs) and chitosan was readily prepared and used as immobilization matrix to entrap a heme protein, hemoglobin (Hb) for direct electrochemistry and bioelectrocatalysis. A modified electrode was obtained by casting Hb-CNDs-chitosan composites on the glassy carbon (GC) electrode surface. Spectroscopic and electrochemical studies showed that Hb entrapped in the composite film remained in its native structures, and CNDs in the film can greatly facilitate DET between the protein and the GC electrode. The electron-transfer kinetics of Hb in composite film was qualitatively evaluated by using the Marcus theory, and the apparent heterogeneous electron-transfer rate constant (ks) was estimated to be 2.39(±0.03)s(-1) with Laviron equations. The modified electrode showed excellent electrocatalytic behavior to the substrate, hydrogen peroxide (H2O2). The linear current response for H2O2 was from 1×10(-6) to 1.18×10(-4)M with a detection limit of 0.27(±0.02)μM at the signal-to-noise ratio of 3, and the apparent Michaelis-Menten constant was 0.067(±0.02)mM. These important features of CNDs-chitosan film have implied to be a promising platform for elaborating bioelectrochemical devices such as biosensors and biofuel cells. PMID:24681154

  17. Topographic guidance based on microgrooved electroactive composite films for neural interface.

    PubMed

    Shi, Xiaoyao; Xiao, Yinghong; Xiao, Hengyang; Harris, Gary; Wang, Tongxin; Che, Jianfei

    2016-09-01

    Topographical features are essential to neural interface for better neuron attachment and growth. This paper presents a facile and feasible route to fabricate an electroactive and biocompatible micro-patterned Single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) composite films (SWNT/PEDOT) for interface of neural electrodes. The uniform SWNT/PEDOT composite films with nanoscale pores and microscale grooves significantly enlarged the electrode-electrolyte interface, facilitated ion transfer within the bulk film, and more importantly, provided topology cues for the proliferation and differentiation of neural cells. Electrochemical analyses indicated that the introduction of PEDOT greatly improved the stability of the SWNT/PEDOT composite film and decreased the electrode/electrolyte interfacial impedance. Further, in vitro culture of rat pheochromocytoma (PC12) cells and MTT testing showed that the grooved SWNT/PEDOT composite film was non-toxic and favorable to guide the growth and extension of neurite. Our results demonstrated that the fabricated microscale groove patterns were not only beneficial in the development of models for nervous system biology, but also in creating therapeutic approaches for nerve injuries. PMID:27295493

  18. Epitaxial composition-graded perovskite films grown by a dual-beam pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Autret-Lambert, Cécile; Sauvage, Thierry; Courtois, Blandine; Wolfman, Jérôme; Gervais, François

    2013-10-01

    We prepared SrTiO3 (STO) to Ba0.6Sr0.4TiO3 (BST06) out-of-plane composition-graded films on STO (100) substrates by means of a dual-beam dual-target pulsed laser deposition technique. In the deposition system, a sliding mirror divides one KrF excimer laser beam into two, realizing the dual-beam of controlled intensity ratio. X-ray diffraction reciprocal space mapping has revealed that the graded films deposited under oxygen pressure at or lower than 1×10-3 mbar were coherently strained with the same in-plane lattice parameter as the substrate. Their composition gradient along the growth direction was confirmed by Rutherford backscattering analysis to be uniform. We deposited BST06 top layers of various thickness on epitaxial composition-graded (ECG) buffer layers and examined their coherency and crystallinity. In comparison with the cases of STO homoepitaxial buffer layers, ECG buffer layers achieved better crystallinity of top BST06 layers, suggesting that the crystallinity of a heteroepitaxially-grown film is affected not only by the in-plane lattice matching but also by the out-of-plane lattice continuity with the substrate. ECG films that bridge compositions of substrate and top layer materials can be useful buffer layers for epitaxial growth of lattice-mismatched oxide films.

  19. Films based on neutralized chitosan citrate as innovative composition for cosmetic application.

    PubMed

    Libio, Illen C; Demori, Renan; Ferrão, Marco F; Lionzo, Maria I Z; da Silveira, Nádya P

    2016-10-01

    In this work, citrate and acetate buffers, were investigated as neutralizers to chitosan salts in order to provide biocompatible and stable films. To choose the appropriate film composition for this study, neutralized chitosan citrate and acetate films, with and without the plasticizer glycerol, were prepared and characterized by thickness, moisture content, degree of swelling, total soluble matter in acid medium, simultaneous thermal analysis and differential scanning calorimetry. Chitosan films neutralized in citrate buffer showed greater physical integrity resulted from greater thicknesses, lower moisture absorbance, lower tendency to solubility in the acid medium, and better swelling capacities. According to thermal analyses, these films had higher interaction with water which is considered an important feature for cosmetic application. Since the composition prepared in citrate buffer without glycerol was considered to present better physical integrity, it was applied to investigate hyaluronic acid release in a skin model. Skins treated with those films, with or without hyaluronic acid, show stratum corneum desquamation and hydration within 10min. The results suggest that the neutralized chitosan citrate film prepared without glycerol promotes a cosmetic effect for skin exfoliation in the presence or absence of hyaluronic acid. PMID:27287105

  20. Preparations and characterization of alginate/silver composite films: Effect of types of silver particles.

    PubMed

    Shankar, Shiv; Wang, Long-Feng; Rhim, Jong-Whan

    2016-08-01

    Alginate-based films reinforced with different types of silver particles such as metallic silver (AgM), silver zeolite (AgZ), citrate reduced silver nanoparticles (AgNP(C)), laser ablated silver nanoparticles (AgNP(LA)), and silver nitrate (AgNO3) were prepared using a solvent casting method and the effect of silver particles on the optical, mechanical, water vapor barrier, and antimicrobial properties the composite films was evaluated. Size and shape of the silver particles were varied depending on the types of silver source and the preparation method. The alginate films incorporated with AgNP(C), AgNP(LA), and AgNO3 showed a characteristic surface plasmon resonance absorption peaks of AgNPs around 420nm. Film properties such as mechanical, optical, and water vapor barrier properties were greatly influenced by the types of AgNPs used. Alginate/AgNPs composite films except AgM and AgNP(LA) incorporated ones exhibited strong antimicrobial activity against two food-borne pathogenic bacteria, Escherichia coli and Listeria monocytogenes. The developed films have a high potential for the application as antimicrobial food packaging films. PMID:27112867

  1. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    PubMed

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging. PMID:24815414

  2. Superconducting properties and chemical composition of NbTiN thin films with different thickness

    SciTech Connect

    Zhang, L.; Peng, W.; You, L. X.; Wang, Z.

    2015-09-21

    In this research, we systematically investigated the superconducting properties and chemical composition of NbTiN thin films prepared on single-crystal MgO substrates. The NbTiN thin films with different thicknesses (4–100 nm) were deposited by reactive DC magnetron sputtering at ambient temperature. We measured and analyzed the crystal structure and thickness dependence of the chemical composition using X-ray diffraction and X-ray photoelectron spectroscopy depth profiles. The films exhibited excellent superconducting properties, with a high superconducting critical temperature of 10.1 K, low resistivity (ρ{sub 20} = 93 μΩ cm), and residual resistivity ratio of 1.12 achieved for 4-nm-thick ultrathin NbTiN films prepared at the deposition current of 2.4 A. The stoichiometry and electrical properties of the films varied gradually between the initial and upper layers. A minimum ρ{sub 20} of 78 μΩ cm and a maximum residual resistivity ratio of 1.15 were observed for 12-nm-thick films, which significantly differ from the properties of NbN films with the same NaCl structure.

  3. Determination of uric acid level by polyaniline and poly (allylamine): Based biosensor.

    PubMed

    Wathoni, Nasrul; Hasanah, Aliya Nur; Gozali, Dolih; Wahyuni, Yeni; Fauziah, Lia Layusa

    2014-01-01

    The uric acid biosensor has been much developed by immobilizing uricase enzyme into the membrane of conductive polymer and the membrane of polyelectrolyte such as polyaniline (PANI) and poly (allylamine) (PAA) respectively. The purpose of this research was to create a new amperometric uric acid biosensor by immobilization of uricase in combination between PANI and PAA membranes. The working electrode was Pt plate (0.5 mm). The auxiliary and the reference electrode were Pt wire 0.4 mm and Ag/AgCl respectively. Uricase, uric acid, PAA, pyrrole and glutaraldehyde were supplied from Sigma. All other chemical was obtained from Merck. The biosensor was created by immobilizing of uricase by a glutaraldehyde crosslinking procedure on PANI composite film on the surface of a platinum electrode while the polyelectrolyte layer of PAA were prepared via layer-by-layer assembly on the electrode, functioning as H2O2-selective film. Standard of deviation, coefficient of variation (CV) and coefficient of correlation (r) analysis were used in this study. The biosensor had a good linearity with a correlation coefficient of 0.993 and it could be used up to 27 times with the CV value of 3.97%. The presence of other compounds such as glucose and ascorbic acid gave 1.3 ± 1.13% and 3.27 ± 2.29% respectively on the interference effect toward the current response of uric acid biosensor. The polymer combination of PANI and PAA can be used as a selective matrix of uric acid biosensor. PMID:24696812

  4. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    NASA Astrophysics Data System (ADS)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  5. Conformations of polyaniline in polymer blends

    NASA Astrophysics Data System (ADS)

    Laska, Jadwiga

    2004-09-01

    Conformational studies of polyaniline (PANi) in its doped, i.e. conducting form, have been performed. The main goal of this study was to determine how the conformations depend on a dopant, solvent and a polymer matrix in polyaniline blends with classic polymers such as poly(methyl methacrylate), polystyrene, cellulose derivatives, polyamides, etc. The obtained results shown that even slight changes in polymer conformations can be easily checked by means of UV-vis-NIR or NIR only spectroscopy. On the basis of the described results, prediction of macroscopic properties of PANi samples, for example, conductivity, at the stage of preparation is possible.

  6. Fiber optic humidity sensor based on the graphene oxide/PVA composite film

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying

    2016-08-01

    Fiber optic humidity sensor based on an in-fiber Mach-Zehnder interferometer (MZI) coated with graphene oxide (GO)/PVA composite film was investigated. The MZI is constructed of two waist-enlarged tapers. The length between two waist-enlarged tapers is 20 mm. By comparing the experiment results of MZI coated with different GO/PVA composite films, composite film formed by the ratio of 0.3 g PVA mixed with 10 ml GO dispersion shows a better performance of relative humidity sensing. By using the molecular structure model of the composited GO/PVA, the operation mechanism between GO/PVA composite film and water molecules was illustrated. The sensitivity of 0.193 dB/%RH with a linear correlation coefficient of 99.1% and good stability under the relative humidity range of 25-80% was obtained. Temperature effect on the proposed fiber optic humidity sensor was also considered and analyzed. According to the repetitive experimental results, the proposed humidity sensor shows a good repeatability.

  7. Three-dimensional microporous polypyrrole/polysulfone composite film electrode for supercapacitance performance

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Shi, Yanlong; Jin, Shuping

    2015-10-01

    The three-dimensional microporous polypyrrole/polysulfone (PPY/PSF) composite film was fabricated via a simple polymerization method. The morphology structure and chemical composition of the composite film were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The electrochemical properties of the composite film electrode were evaluated by cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. The material exhibits excellent capacitance performance including high capacitance of 500 F g-1 at 0.3 A g-1 current density, good cycle stability in 800 continuous cycles (only 4.5% decay after 800 cycles at 0.3 A g-1), and low inter resistance. The good property of the PPY/PSF electrode should be attributed to its structural features, including two-layer microporous structure which facilitates the penetration of electrolytes into the inner surface, high surface area which provides more active sites. These results show that the composite film is a promising candidate for high energy electrochemical capacitors.

  8. Modification of natural matrix lac-bagasse for matrix composite films

    NASA Astrophysics Data System (ADS)

    Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono

    2016-02-01

    Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.

  9. Improved thermal stability of polylactic acid (PLA) composite film via PLA-β-cyclodextrin-inclusion complex systems.

    PubMed

    Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck

    2015-11-01

    The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films. PMID:26299710

  10. Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Tigelaar, D. M.; Watson, K. A.; Smith, J. G., Jr.; Lillehei, P. T.; Connell, J. W.

    2004-01-01

    Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge build-up have been under investigation as part of a materials development activity. In the work described herein, single-walled carbon nanotubes (SWNT) solutions were dispersed in solutions of a novel ionomer in N,N-dimethylacetamide resulting in homogenous suspensions or quasi-solutions. The ionomer was used to aid in the dispersal of SWNTs in to a soluble, low color space environmentally durable polyimide. The use of the ionomer as a dispersant enabled the nanotubes to be dispersed at loading levels up to 3 weight % in a polyimide solution without visual agglomeration. The films were further characterized for their electrical and mechanical properties.

  11. Compositional and moisture content effects on the biodegradability of zein/ethylcellulose films.

    PubMed

    Romero-Bastida, Claudia A; Flores-Huicochea, Eduardo; Martin-Polo, Martha O; Velazquez, Gonzalo; Torres, J Antonio

    2004-04-21

    The effect of moisture content and film composition on biodegradability is the focus of this study. Flexible films were first characterized for the effect on water sorption isotherms of relative humidity, temperature, zein content, and the addition of the plasticizers stearic acid, poly(ethylene glycol), or etoxylated ricine oil. Zein/ethylcellulose (EC) mixture films had a behavior between that for pure zein and EC films, which had the lowest water sorption. For films with plasticizer, the lowest water sorption at 25 degrees C was observed for those with stearic acid. Biodegradability of zein/EC films, evaluated using bacterial cultures selected for their zein proteolytic activity and isolated from a local solid waste landfill and a lagoon, showed no plasticizer effect even though its effect on moisture content was significant. Large differences were observed at different film zein concentration with the highest biodegradability for 100% zein. However, biodegradability did not mimic the water sorption behavior of zein/EC mixture films. PMID:15080626

  12. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.

    PubMed

    Oun, Ahmed A; Rhim, Jong-Whan

    2015-01-01

    Crystalline cellulose nanofibril (CNF) was isolated from cotton linter pulp using an acid hydrolysis method and used as a filler to reinforce sodium carboxymethyl cellulose (CMC) film. The CNF was in rod shape with the diameter of 23-38 nm and the length of 125-217 nm and crystallinity index (CI) was 0.89. The effect of CNF concentration (1, 3, 5, and 10 wt% based on CMC) on the optical, morphological, mechanical, water vapor barrier, surface hydrophobicity, and thermal properties of the nanocomposites were studied. The CNF was evenly distributed in the polymer matrix to form smooth and flexible films indicating the CNF is highly compatible with the CMC. The tensile strength (TS) and elastic modulus (EM) of CMC film increased by 23% and 27%, respectively, while the elongation (E) decreased by 28% with 5 wt% of CNF inclusion. The WVP of CMC film decreased at low content of CNF, and increased with increase in CNF content, then decreased but to the same level of the control CMC film with the inclusion of 10 wt% of CNF. Transparency of CMC film decreased slightly from 87.7% to 86.2% with 5 wt% of CNF. The CMC/CNF composite films have a high potential to be used as an edible coating or packaging films for the extension of shelf life of fresh and minimally processed fruits and vegetables. PMID:25965462

  13. Chitosan and polyvinyl alcohol composite films containing nitrofurazone: preparation and evaluation

    PubMed Central

    Kouchak, Maryam; Ameri, Abdolghani; Naseri, Basireh; Kargar Boldaji, Sara

    2014-01-01

    Objective(s): The aim of this study was to insert nitrofurazone in a chitosan membrane to be used as a wound dressing. Materials and Methods: Several blend films using chitosan (Cs) and polyvinyl alcohol (PVA), containing nitrofurazone were prepared by means of casting/solvent evaporating technique. Different characteristics such as mechanical properties, water vapor transmission rate (WVTR), oxygen permeability (OP), swelling ability (SW), differential scanning calorimetric (DSC), drug release profiles and antibacterial activity of the films were investigated. Results: The results showed that nitrofurazone decreased tensile strength, OP and SW of Cs films, while increased WVTR. Addition of PVA at any concentration improved mechanical properties, reduced WVTR, and increased OP and SW of nitrofurazone-loaded Cs films. The latter films showed higher activity against Pseudomonas aeruginosa than drug-free chitosan films. Conclusion: The presence of PVA improves many properties of Cs-nitrofurazone films and makes them more desirable as dressing material for burn wounds. Although nitrofurazone alone is ineffective against P. aeruginosa, it is able to increase antibacterial effect of chitosan in composite films. PMID:24592302

  14. Preparation of sensitive and recyclable porous Ag/TiO2 composite films for SERS detection

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyi; Yu, Jiajie; Yang, Jingying; Lv, Xiang; Wang, Tianhe

    2015-12-01

    Porous Ag/TiO2 composite films were prepared by spin coating of titania on normal glass slides and subsequent photochemical deposition of silver nanoparticles (AgNPs). The films were characterized by XRD and FESEM to reveal micro structural and morphological differences between films obtained under varied conditions. The SERS properties of these films were investigated using aqueous crystal violet (CV) as probe molecules. The results indicate that the content of polyethylene glycol (PEG) and photo-reduction time had significant influences on both the microstructure and SERS performance of Ag/TiO2 films. The highest SERS sensitivity that allowed as low as 10-10 M aqueous CV to be detected, was achieved with the PEG/(C4H9O)4Ti molar ratio being 0.08% and with 30 min of UV irradiation. With this film a linear relationship was established through experiment between SERS intensity and CV concentration from 10-10 to 10-5 M, which could be used as a calibration curve for CV concentration measurement. In addition, the film could be reused as a SERS substrate for up to four times without significantly losing SERS sensitivity if a simple regeneration was followed. It is visualized that the Ag/TiO2 film on glass has potentials for being developed into a practical SERS substrate with high sensitivity and good reusability.

  15. Controlling Size of Gold Clusters in Polyaniline from Top-Down and from Bottom-Up

    SciTech Connect

    Saheb, Amir H.; Smith, Jon A.; Josowicz, Mira A.; Janata, Jiri; Baer, Donald R.; Engelhard, Mark H.

    2008-09-15

    Polyaniline forms a strong complex with chloroaurate at the protonated imine sites. Here we report on electrochemical procedure that allows preparation of gold clusters by adding gold atoms one-by-one (“bottom up” approach). It is contrasted with the “top down” approach in which the growth of multi-atom Au clusters was also controlled electrochemically. Our results confirm that both the amount and the size of gold clusters affects the properties of the composite material.

  16. High-throughput combinatorial study of local stress in thin film composition spreads.

    PubMed

    Woo, Noble C; Ng, Bryan G; van Dover, R Bruce

    2007-07-01

    We investigate the stresses in thin films with sub-millimeter lateral spatial resolution using a dense array of prefabricated cantilever beams prepared by microelectromechanical-system techniques. Stress induced deflection of the cantilever is interrogated by an optical (laser/position sensitive detector) measurement system. Composition spread films are deposited on the cantilever array using a three gun on-axis magnetron cosputtering system. The position dependent composition is inferred using rate calibrations and verified by electron microprobe/energy dispersive spectroscopy. We demonstrate the function of this system using an Fe-Ni-Al composition spread with approximately 1 at. % resolution. This approach allows for measurement of the composition dependence of other electromechanical properties such as the martensitic phase transition temperature of traditional and ferromagnetic shape-memory alloys, as well as the properties of hydrogen storage materials and the magnetic response of magnetostrictive materials. PMID:17672739

  17. Preparation of Device-Quality Cu(In, Ga)Se2 Thin Films Deposited by Coevaporation with Composition Monitor

    NASA Astrophysics Data System (ADS)

    Kohara, Naoki; Negami, Takayuki; Nishitani, Mikihiko; Wada, Takahiro

    1995-09-01

    The chemical composition of Cu(In, Ga)Se2 (CIGS) thin film was monitored in real time during the physical vapor deposition. The temperature of growing CIGS film was found to depend on the composition ratio of Cu/(In+Ga) when the film was deposited under constant heating power. The composition monitoring system can be easily applied to a 3-stage deposition process of the CIGS films. The solar cells (active area: 1 cm2) fabricated by using the obtained CIGS absorber layer showed an efficiency of 15.4% under standard AM 1.5 illumination.

  18. Synthesis and characterization of polyaniline and polyaniline - Carbon nanotubes nanostructures for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Bavio, Marcela A.; Acosta, Gerardo G.; Kessler, Teresita

    2014-01-01

    Nanostructures of polyaniline (PANI) and PANI with embedded carbon nanotubes (CNT) were synthesized through a chemical method of self-organization. An oxidative polymerization process was performed in the monomer acid solution with the presence of a surfactant and the addition of multi-walled CNT. The CNT were added with and without pretreatment, CNTf and CNTnf, respectively. Furthermore, ammonium persulfate and sodium dodecyl sulfate were incorporated to the reaction solution as dispersant and oxidizing agents, respectively. Different nanostructures such as nanoparticles or nanotubes were obtained depending on the CNT added, and characterized by scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy, infrared spectroscopy and electrochemical techniques. Spectroscopy results showed variations in the observed bands of the synthetized nanostructures attributed to changes in the molecular structures, to the state of doped PANI reached during polymerization and to the stabilization of these links by hydrogen bridge interactions. PANI and PANI-CNT composites were evaluated by electrochemical techniques to test their behavior in relation to supercapacitors properties. PANI-CNTf nanocomposites displayed improved capacitive properties in H2SO4 solutions, namely 1744 F g-1at 2 A g-1. Also, the specific capacitance was strongly influenced by the developed morphologies. These characteristics point to their feasible application as supercapacitors materials.

  19. Fluorine-containing composition for forming anti-reflection film on resist surface and pattern formation method

    DOEpatents

    Nishi, Mineo; Makishima, Hideo

    1996-01-01

    A composition for forming anti-reflection film on resist surface which comprises an aqueous solution of a water soluble fluorine compound, and a pattern formation method which comprises the steps of coating a photoresist composition on a substrate; coating the above-mentioned composition for forming anti-reflection film; exposing the coated film to form a specific pattern; and developing the photoresist, are provided. Since the composition for forming anti-reflection film can be coated on the photoresist in the form of an aqueous solution, not only the anti-reflection film can be formed easily, but also, the film can be removed easily by rinsing with water or alkali development. Therefore, by the pattern formation method according to the present invention, it is possible to form a pattern easily with a high dimensional accuracy.

  20. Composition and Structure Control of Cu-Al-O Films Prepared by Reactive Sputtering and Annealing

    NASA Astrophysics Data System (ADS)

    Tsuboi, Nozomu; Itoh, Yuji; Ogata, Junya; Kobayashi, Satoshi; Shimizu, Hidehiko; Kato, Keizo; Kaneko, Futao

    2007-01-01

    Cu-Al-O films were prepared on quartz glass substrates at 500-700 °C by sputtering the Cu and Al targets alternately on atomic-layer scale under an Ar-diluted O2 (5-20%) gas atmosphere, and then annealed at 1050 °C under a nitrogen atmosphere. The [Cu]/[Al] ratio was controlled by changing the Cu and Al deposition periods. The composition of as-deposited films corresponded to the slightly oxygen-rich region of the CuO-CuAl2O4-Al2O3 system. Films as-deposited at 500 °C had an amorphous structure, while films as-deposited at 700 °C had CuAl2O4 and CuO phases. After thermal annealing in a nitrogen atmosphere, the composition of the films approached that of the Cu2O-CuAlO2-Al2O3 system line, causing a noticeable appearance of the CuAlO2 phase along with the disappearance of the CuAl2O4 and CuO phases. Cu- and Al-rich annealed films had in addition a Cu2O phase and an amorphous Al2O3 phase, respectively. All annealed films exhibited p-type conductivity. The annealed films with [Cu]/[Al]≈ 1 had an absorption edge corresponding to the energy gap of CuAlO2. These results indicate that the change in the Cu ion from divalent to monovalent through nitrogen annealing results in the preparation of transparent conductive films dominated by CuAlO2.

  1. Rapid composition analysis of compound semiconductor thin film solar cell by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kim, C. K.; In, J. H.; Jeong, S. H.

    2014-03-01

    The characteristics of laser-induced breakdown spectroscopy (LIBS) such as short measurement time and no sample preparation provide clear advantages over other analytical techniques for rapid elemental analysis at manufacturing sites where the composition of products need to be determined in real-time for process monitoring or quality control. Thin film solar cells based on CuIn1-xGaxSe2 (CIGS), polycrystalline compound semiconductor material, have unique advantages of high efficiency (>20%), long-term stability, and low manufacturing cost over other types of solar cell. The electrical and optical properties of the thin CIGS films are closely related to the concentration ratios among its major constituent elements Cu, In, Ga and Se such as Ga/(Ga + In) and Cu/(Ga + In), and thus an accurate measurement of the composition of CIGS thin films has been an issue among CIGS solar cell researchers, requiring a fast and reliable technique for composition analysis. This paper presents the results of nanosecond (ns) and femtosecond (fs) laser based LIBS analysis of thin CIGS films. The critical issues for LIBS analysis of CIGS thin films such are discussed in comparison with ns- and fs-LIBS measurement results. The calibration of LIBS signal intensity ratios with respect to reference concentration data is carried out and the results of optimal line selection for LIBS analysis, depth profiling capability, and reproducibility are discussed.

  2. Synthesis of ZrSiN composite films using a plasma focus device

    NASA Astrophysics Data System (ADS)

    R., Ahmad; Hussain, T.; A. Khan, I.; S. Rawat, R.

    2014-06-01

    ZrSiN thin films are synthesized by using plasma focus through various numbers of focus shots (10, 20, and 30), with samples placed at 9 cm away from the tip of the anode. Crystal structures, surface morphologies, and elemental compositions of ZrSiN films are characterized by an X-ray diffractometer (XRD) and scanning electron microscope (SEM) attached with energy dispersive X-ray spectroscopy (EDS). XRD patterns confirm the formations of polycrystalline ZrSiN films. Crystallinity of nitride increases with the increase of focus shot number. The average crystallite size of zirconium nitride increases from 27 ± 3 nm to 73 ± 8 nm and microstrain decreases from 2.28 to 1.0 with the increase of the focus shot number. SEM results exhibit the formations of granular and oval-shaped microstructures, depending on the number of focus shots. EDS results confirm the presences of silicon, zirconium, nitrogen, and oxygen in the composite films. The content values of Zr and N in the composite films increase with the increase of the focus shot number.

  3. Mechanical and barrier properties of guar gum based nano-composite films.

    PubMed

    Saurabh, Chaturbhuj K; Gupta, Sumit; Bahadur, Jitendra; Mazumder, S; Variyar, Prasad S; Sharma, Arun

    2015-06-25

    Guar gum based nano-composite films were prepared using organically modified (cloisite 20A) and unmodified (nanofil 116) nanoclays. Effect of nanoclay incorporation on mechanical strength, water vapor barrier property, chromatic characteristics and opacity of films was evaluated. Nano-composites were characterized using X-ray scattering, FTIR and scanning electron microscopy. A nanoclay concentration dependent increase in mechanical strength and reduction in water vapor transmission rate was observed. Films containing nanofil 116 (2.5% w/w guar gum) and closite 20A (10% w/w guar gum) demonstrated a 102% and 41% higher tensile strength, respectively, as compared to the control. Lower tensile strength of cloisite 20A films as compared to nanofil 116 films was due to its incompatibility with guar gum. X-ray scattering analysis revealed that interstitial spacing between nanofil 116 and cloisite 20A sheets increased due to intercalation by guar gum polymer. This resulted in improved mechanical and barrier properties of nano-composites compared to control. PMID:25839796

  4. A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and honey.

    PubMed

    Ghiasvand, Alireza; Dowlatshah, Samira; Nouraei, Nadia; Heidari, Nahid; Yazdankhah, Fatemeh

    2015-08-01

    A mechanically hard and cohesive porous fiber, with large surface area, for more strong attachment of the coating was provided by platinizing a stainless steel wire. Then, the platinized stainless steel fiber was coated with a multiwalled carbon nanotube/polyaniline (MWCNT/PANI) nanocomposite using electrophoretic deposition (EPD) method and applied for the extraction of thymol and carvacrol with direct-immersion solid-phase microextraction (DI-SPME) method followed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV) quantification. To provide a larger coarse surface for the tightened attachment of coating on the fiber, a stainless steel wire was platinized using a suitable optimized EPD method. Different experimental parameters were studied and the optimal conditions were obtained as: pH of the sample solution: 2; extraction time: 60min; salt content in the sample solution: 1% w/v NaNO3; desorption time: 60min; type and volume of the desorption solvent: acetonitrile, 100μL. Under the optimized conditions, limits of detection (LODs) were 0.6 and 0.8μgmL(-1) for thymol and carvacrol, respectively. Linear dynamic range (LDR) for the calibration curves of both analytes were 1-80μgmL(-1). Relative standard deviation (RSD%, n=6) was 6.8 for thymol and 12.7 for carvacrol. The proposed fiber was successfully applied for the recovery and determination of thymol and carvacrol in thyme, savory, and honey samples. PMID:26138604

  5. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    NASA Astrophysics Data System (ADS)

    Dinh, D. A.; Hui, K. S.; Hui, K. N.; Cho, Y. R.; Zhou, Wei; Hong, Xiaoting; Chun, Ho-Hwan

    2014-04-01

    A green facile chemical approach to control the dimensions of Ag nanoparticles-graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO3 and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N2/H2 gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips.

  6. Direct evidence for compositional fluctuation in sputtered Co-Cr thin films

    NASA Astrophysics Data System (ADS)

    Hono, K.; Maeda, Y.; Li, J.-L.; Sakurai, T.

    1992-05-01

    Nano-scale concentration fluctuations in sputtered Co-23 at% Cr magnetic thin films were analyzed by atom probe field ion microscopy (APFIM). The atom probe concentration depth profile obtained from the film which was deposited on the W tip at 200°C clearly showed that the composition fluctuated significantly. The concentration of the Cr enriched region was in the range of 30-40 at% Cr, while that of the Cr depleted region was in the range of 5-10 at% Cr. This result proves that compositional fluctuations are present inside the grains of the Co-Cr sputtered film as suggested by the TEM observation of the chrysanthemum-like pattern (CP) structure.

  7. Sensitive electrochemical detection of Salmonella with chitosan-gold nanoparticles composite film.

    PubMed

    Xiang, Cuili; Li, Ran; Adhikari, Bimalendu; She, Zhe; Li, Yongxin; Kraatz, Heinz-Bernhard

    2015-08-01

    An ultrasensitive electrochemical immunosensor for detection of Salmonella has been developed based on using high density gold nanoparticles (GNPs) well dispersed in chitosan hydrogel and modified glassy carbon electrode. The composite film has been oxidized in NaCl solution and used as a platform for the immobilization of capture antibody (Ab1) for biorecognition. After incubation in Salmonella suspension and horseradish peroxidase (HRP) conjugated secondary antibody (Ab2) solution, a sandwich electrochemical immunosensor has been constructed. The electrochemical signal was obtained and improved by comparing the composite film with chitosan film. The result has shown that the constructed sensor provides a wide linear range from 10 to 10(5) CFU/mL with a low detection limit of 5 CFU/mL (at the ratio of signal to noise, S/N=3:1). Furthermore, the proposed immunosensor has demonstrated good selectivity and reproducibility, which indicates its potential in the clinical diagnosis of Salmonella contaminations. PMID:26048833

  8. Properties of dry film lubricants prepared by spray application of aqueous starch-oil composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous dispersions of starch-soybean oil (SBO) and starch-jojoba oil (JO) composites, prepared by excess steam jet cooking, form effective dry film lubricants when applied as thick coatings to metal surfaces by doctor blade. This application method necessitates long drying times, is wasteful, requ...

  9. Composition-Dependent Luminescent Properties of GeO2-Eu2O3-Ag Films

    NASA Astrophysics Data System (ADS)

    Bokshyts, Yu. V.

    2013-05-01

    An effect of Eu3+-precursor on the luminescent properties of GeO2-Eu2O3-Ag films was studied. This effect can be attributed to the different phase compositions of europium compounds after heat treatment and the change of structural parameters of the environment for europium ions.

  10. Composite films from pectin and fish skin gelatin or soybean flour protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composite films were prepared from pectin and fish skin gelatin (FSG) or pectin and soybean flour protein (SFP). The inclusion of protein promoted molecular interactions, resulting in a well-organized homogeneous structure, as revealed by scanning electron microscopy and fracture-acoustic emission ...

  11. Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films.

    PubMed

    Liu, Gang; Ling, Qi-Dan; Teo, Eric Yeow Hwee; Zhu, Chun-Xiang; Chan, D Siu-Hung; Neoh, Koon-Gee; Kang, En-Tang

    2009-07-28

    By varying the carbon nanotube (CNT) content in poly(N-vinylcarbazole) (PVK) composite thin films, the electrical conductance behavior of an indium-tin oxide/PVK-CNT/aluminum (ITO/PVK-CNT/Al) sandwich structure can be tuned in a controlled manner. Distinctly different electrical conductance behaviors, such as (i) insulator behavior, (ii) bistable electrical conductance switching effects (write-once read-many-times (WORM) memory effect and rewritable memory effect), and (iii) conductor behavior, are discernible from the current density-voltage characteristics of the composite films. The turn-on voltage of the two bistable conductance switching devices decreases and the ON/OFF state current ratio of the WORM device increases with the increase in CNT content of the composite film. Both the WORM and rewritable devices are stable under a constant voltage stress or a continuous pulse voltage stress, with an ON/OFF state current ratio in excess of 10(3). The conductance switching effects of the composite films have been attributed to electron trapping in the CNTs of the electron-donating/hole-transporting PVK matrix. PMID:19485330

  12. Nonlinear saturable absorption of nanoscaled Bi2Te3/PMMA composite film

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhang, Hang; Wei, Rongfei; Ma, Zhijun; Qiu, Jianrong; Zhang, Mei; Zeng, Qingguang; Liu, A.'lei; He, Ruihui

    2016-07-01

    In order to increase metallic state of surface and elevate dispersion of Bi2Te3 nanoparticles, we synthesized nanoscaled Bi2Te3 with a size of 91.4±2.2 nm via a hydrothermal method. Bi2Te3 nanoparticles exhibit narrow distribution in size and uniform dispersion in several solvents, such as ethanol and polymethyl methacrylate (PMMA) solution. A Bi2Te3/PMMA flexible composite film was fabricated to further guarantee the uniformity of dispersion during the application. An open-aperture Z-scan technique was utilized to verify saturable absorption response of the Bi2Te3/PMMA composite film under 130 fs pulse at a wavelength of 800 nm. The nonlinear absorption coefficient β was fitted to be ~10-11 m / W , and the value of β slightly increased as the incident laser strengthened. A modulation depth of 15.1% and a saturation intensity of 18.9 GW/cm2 for the composite film were also calculated. Our investigation suggests that the nanoscaled Bi2Te3/PMMA composite film could potentially be applied in large-energy laser pulses due to its high saturable intensity, and which might enlarge the application range of topological insulator (TI) materials.

  13. Graphene synthesis from graphite/Ni composite films grown by sputtering

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Yang, Seung Bum; Shin, Dong Yeol; Kim, Chang Oh; Kim, Sung; Choi, Suk-Ho; Paek, Sang-Hyon

    2012-08-01

    Graphite/Ni composite films have been deposited on SiO2/Si (100) wafers by varying their graphite concentration ( n G ) and thickness (t) from 2 to 12 wt% and 40 to 400 nm, respectively, in a RF sputtering system, subsequently annealed at 900 °C for 4 min, and then slowly cooled to room temperature to form graphene layers on Ni surfaces. Several structural-analysis techniques reveal the optimum n G (˜8 wt%) and t (˜160 nm) of the composite films for the synthesis of fewest-layer, defect-minimized graphene. At the annealing temperature, carbon atoms diffuse out from the composite film, followed by their precipitation as graphene on the Ni layer as the carbon solubility limit in Ni is reached during the cooling period. Based on this mechanism, the optimum conditions are explained. Our approach provides an advantage in that the number of layers can be simply tuned by varying n G and t of the composite films.

  14. Doped SnO₂ transparent conductive multilayer thin films explored by continuous composition spread.

    PubMed

    Lee, Jin Ju; Ha, Jong-Yoon; Choi, Won-Kook; Cho, Yong Soo; Choi, Ji-Won

    2015-04-13

    Mn-doped SnO₂ thin films were fabricated by a continuous composition spread (CCS) method on a glass substrate at room temperature to find optimized compositions. The fabricated materials were found to have a lower resistivity than pure SnO₂ thin films because of oxygen vacancies generated by Mn doping. As Mn content was increased, resistivity was found to decrease for limited doping concentrations. The minimum thin film resistivity was 0.29 Ω-cm for a composition of 2.59 wt % Mn-doped SnO₂. The Sn-O vibrational stretching frequency in FT-IR showed a blue shift, consistent with oxygen deficiency. Mn-doped SnO₂/Ag/Mn-doped SnO₂ multilayer structures were fabricated using this optimized composition deposited by an on-axis radio frequency (RF) sputter. The multilayer transparent conducting oxide film had a resistivity of 7.35 × 10⁻⁵ Ω-cm and an average transmittance above 86% in the 550 nm wavelength region. PMID:25761303

  15. A novel method to fabricate high permeance, high selectivity thin-film composite membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report a thin-film composite (TFC) membrane fabrication method based on transfer of a pre-formed, cured active layer onto a microporous support. This method can be used with supports of relatively high pore size and porosity, thus reducing mass transfer resistance from the support. Ethanol-select...

  16. Thick film magnetic nanoparticulate composites and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Ma, Xinqing (Inventor); Zhang, Yide (Inventor); Ge, Shihui (Inventor); Zhang, Zongtao (Inventor); Yan, Dajing (Inventor); Xiao, Danny T. (Inventor)

    2009-01-01

    Thick film magnetic/insulating nanocomposite materials, with significantly reduced core loss, and their manufacture are described. The insulator coated magnetic nanocomposite comprises one or more magnetic components, and an insulating component. The magnetic component comprises nanometer scale particles (about 1 to about 100 nanometers) coated by a thin-layered insulating phase. While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase provides the desired soft magnetic properties, the insulating material provides high resistivity, which reduces eddy current loss.

  17. A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film

    SciTech Connect

    Hsieh, Bao-Yu; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning; Zhu, Jiadeng; Zhang, Xiangwu

    2015-01-12

    The photoacoustic effect has been broadly applied to generate high frequency and broadband acoustic waves using lasers. However, the efficient conversion from laser energy to acoustic power is required to generate acoustic waves with high intensity acoustic pressure (>10 MPa). In this study, we demonstrated laser generated high intensity acoustic waves using carbon nanofibers–polydimethylsiloxane (CNFs-PDMS) thin films. The average diameter of the CNFs is 132.7 ± 11.2 nm. The thickness of the CNFs film and the CNFs-PDMS composite film is 24.4 ± 1.43 μm and 57.9 ± 2.80 μm, respectively. The maximum acoustic pressure is 12.15 ± 1.35 MPa using a 4.2 mJ, 532 nm Nd:YAG pulsed laser. The maximum acoustic pressure using the CNFs-PDMS composite was found to be 7.6-fold (17.62 dB) higher than using carbon black PDMS films. Furthermore, the calculated optoacoustic energy conversion efficiency K of the prepared CNFs-PDMS composite thin films is 15.6 × 10{sup −3 }Pa/(W/m{sup 2}), which is significantly higher than carbon black-PDMS thin films and other reported carbon nanomaterials, carbon nanostructures, and metal thin films. The demonstrated laser generated high intensity ultrasound source can be useful in ultrasound imaging and therapy.

  18. Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester

    NASA Astrophysics Data System (ADS)

    Bhunia, Ritamay; Das, Shirsendu; Dalui, Saikat; Hussain, Shamima; Paul, Rajib; Bhar, Radhaballav; Pal, Arun Kumar

    2016-07-01

    Nanogenerators (NGs) which harvest energy from mechanical vibration have attracted more attention in the past decade. Piezoelectric materials are the most promising candidates for developing NGs. Flexible free-standing nano-ZnO/PVDF composite films are prepared by incorporating different amounts of nano-ZnO fillers in PVDF matrix using sol-gel technique. Poled films show enhanced dielectric constant. The above free-standing films, with appropriate contacts, are subjected to energy harvesting studies. The output voltage increases with nano-ZnO loading in the PVDF matrix and shows enhanced effect for the poled films. Piezoelectric properties are investigated by measuring the piezoelectric charge constant ( d 33) and piezoelectric voltage constant ( g 33). A maximum AC output voltage ~4 V and output power of the order of few nanowatts are recorded for the nanogenerator which is used to light a red LED using a rectifying circuit through the discharging of a capacitor.

  19. Highly Sensitive and Reproducible SERS Performance from Uniform Film Assembled by Magnetic Noble Metal Composite Microspheres.

    PubMed

    Niu, Chunyu; Zou, Bingfang; Wang, Yongqiang; Cheng, Lin; Zheng, Haihong; Zhou, Shaomin

    2016-01-26

    To realize highly sensitive and reproducible SERS performance, a new route was put forward to construct uniform SERS film by using magnetic composite microspheres. In the experiment, monodisperse Fe3O4@SiO2@Ag microspheres with hierarchical surface were developed and used as building block of SERS substrate, which not only realized fast capturing analyte through dispersion and collection under external magnet but also could be built into uniform film through magnetically induced self-assembly. By using R6G as probe molecule, the as-obtained uniform film exhibited great improvement on SERS performance in both sensitivity and reproducibility when compared with nonuniform film, demonstrating the perfect integration of high sensitivity of hierarchal noble metal microspheres and high reproducibility of ordered microspheres array. Furthermore, the as-obtained product was used to detect pesticide thiram and also exhibited excellent SERS performance for trace detection. PMID:26731200

  20. Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films.

    PubMed

    Wang, Yuemeng; Liu, Anjun; Ye, Ran; Wang, Wenhang; Li, Xin

    2015-01-01

    The effects of transglutaminase (TGase) on the rheological profiles and interactions of gelatin-calcium carbonate solutions were studied. In addition, mechanical properties, water vapour permeability and microstructures of gelatin-calcium carbonate films were also investigated and compared. Fluorescence data suggested that the interaction of TGase and gelation-calcium carbonate belonged to a static quenching mechanism, and merely one binding site between TGase and gelatin-calcium carbonate was identified. Moreover, differential scanning calorimetry (DSC), the mechanical properties and the water vapour permeability studies revealed that TGase favoured the strong intramolecular polymerisation of the peptides in gelatin. The microstructures of the surfaces and cross sections in gelatin-calcium carbonate films were shown by scanning electron microscope (SEM) micrographs. The results of the fourier transform infrared spectroscopy (FTIR) indicated that TGase caused conformational changes in the proteins films. Therefore, TGase successfully facilitated the formation of gelatin-calcium carbonate composite films. PMID:25053075

  1. The usefulness of a LiMn 2O 4 composite as an active cathode material in lithium batteries

    NASA Astrophysics Data System (ADS)

    Fonseca, C. Polo; Neves, S.

    The synthesis and electrochemical properties of a lithium manganese spinel, a LiMn 2O 4 film and a LiMn 2O 4/polyaniline (PAni)/PVDF composite film were investigated. The materials were characterized using X-ray diffraction, differential thermal analysis, scanning electron microscopy and BET surface area analysis. The intercalation/deintercalation lithium was investigated using electrochemical impedance spectroscopy, cyclic voltammetry and charge/discharge cycles. The use of PAni as an electronic conductor and electroactive material optimized the process of lithium intercalation/deintercalation in this film. The stabilized lithium extraction capacity of the LiMn 2O 4/PAni/PVDF composite was significantly higher than for the LiMn 2O 4 film (138 and 52 mA h g -1, respectively).

  2. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    PubMed

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications. PMID:27028268

  3. Structural and Electrical Characterization of Protonic Acid Doped Polyaniline

    NASA Astrophysics Data System (ADS)

    Shaktawat, Vinodini; Saxena, Narendra S.; Sharma, Kananbala; Sharma, Thaneshwar P.

    2008-04-01

    Polyaniline doped with different protonic acids were chemically synthesized using ammonium persulfate (APS) as an oxidant. These samples were characterized through X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, which confirms the amorphous nature and acid doping, respectively. Electrical conduction in these samples has been studied through the measurement of I-V characteristics at room temperature as well as in the temperature range from 313 K to 413 K. So obtained characteristic curves were found to be nonlinear. The conductivity of phosphoric acid doped polyaniline sample is higher as compared to HCl doped polyaniline and pure polyaniline. Temperature dependence of conductivity suggests a semiconducting nature with increase in temperature. Activation energies have been found to be 50.86, 25.74 and 21.05 meV for pure polyaniline (base), polyaniline doped with hydrochloric, phosphoric acid, respectively.

  4. Vibration analysis of magnetostrictive thin-film composite cantilever actuator

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Shang, Xinchun

    2016-09-01

    The transverse vibration of a composed cantilever beam with magnetostrictive layer is analyzed, which is employed to simulate dynamic response of an actuator. The high-order shear deformation theory of beam and the coupling magnetoelastic constitutive relationship are introduced to construct the governing equations, all interface conditions between magnetostrictive film and elastic substrate as well as the free stress condition on the top and bottom surfaces of the beam can be satisfied. In order to demonstrate validity of the presented mathematical modeling, the verification examples are also given. Furthermore, the effect of geometry and material parameters on dynamic characteristics of magnetostrictive cantilever beam, such as the nature frequency and amplitude, is discussed. Moreover, through computing the magneto-mechanical coupling factor of the beam structure, the variation tendency curves of the factor along with different parameters and frequencies of magnetostrictive cantilever beam actuator have been presented. These numerical results should be useful for the design of beam-type with magnetostrictive thin-film actuators.

  5. Composite film polarizer based on the oriented assembly of electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Hu, Zhongliang; Ma, Zhijun; Peng, Mingying; He, Xin; Zhang, Hang; Li, Yang; Qiu, Jianrong

    2016-04-01

    Polarizers are widely applied in antiglare glasses, planner displays, photography filters and optical communications, etc. In this investigation, we propose a new strategy for the preparation of a flexible film polarizer based on the electrospinning technique. An aligned assembly of polyvinyl acetate (PVA) nanofibers was electrospun and collected by a fast-rotating drum, then soaked in polymethyl methacrylate (PMMA) solution and dried thoroughly to obtain a transparent PVA-PMMA composite film polarizer. The morphology, structure and optical performance of the PVA nanofibers and the film polarizers were characterized with a scanning electron microscope, UV-vis-IR spectrometer and polarized Raman spectra, etc. The PVA-PMMA film polarizer demonstrated efficient polarizing activity toward visible and near-infrared light, while keeping fair transparency in the range of 400-1400 nm. Due to the protection from the hydrophobic PMMA matrix, the PVA-PMMA film polarizers show high moisture resistance, making it applicable in a humid environment. Considering the scalability and versatility of the strategy employed here, the PVA-PMMA film polarizer prepared could replace the conventional film polarizers in a wide range of applications.

  6. Composite film polarizer based on the oriented assembly of electrospun nanofibers.

    PubMed

    Hu, Zhongliang; Ma, Zhijun; Peng, Mingying; He, Xin; Zhang, Hang; Li, Yang; Qiu, Jianrong

    2016-04-01

    Polarizers are widely applied in antiglare glasses, planner displays, photography filters and optical communications, etc. In this investigation, we propose a new strategy for the preparation of a flexible film polarizer based on the electrospinning technique. An aligned assembly of polyvinyl acetate (PVA) nanofibers was electrospun and collected by a fast-rotating drum, then soaked in polymethyl methacrylate (PMMA) solution and dried thoroughly to obtain a transparent PVA-PMMA composite film polarizer. The morphology, structure and optical performance of the PVA nanofibers and the film polarizers were characterized with a scanning electron microscope, UV-vis-IR spectrometer and polarized Raman spectra, etc. The PVA-PMMA film polarizer demonstrated efficient polarizing activity toward visible and near-infrared light, while keeping fair transparency in the range of 400-1400 nm. Due to the protection from the hydrophobic PMMA matrix, the PVA-PMMA film polarizers show high moisture resistance, making it applicable in a humid environment. Considering the scalability and versatility of the strategy employed here, the PVA-PMMA film polarizer prepared could replace the conventional film polarizers in a wide range of applications. PMID:26894877

  7. Fabrication and characterization of piezoelectric micromachined ultrasonic transducers with thick composite PZT films.

    PubMed

    Wang, Zhihong; Zhu, Weiguang; Zhu, Hong; Miao, Jianmin; Chao, Chen; Zhao, Changlei; Tan, Ooi Kiang

    2005-12-01

    Ferroelectric microelectromechanical systems (MEMS) has been a growing area of research in past decades, in which ferroelectric films are combined with silicon technology for a variety of applications, such as piezo-electric micromachined ultrasonic transducers (pMUTs), which represent a new approach to ultrasound detection and generation. For ultrasound-radiating applications, thicker PZT films are preferred because generative force and response speed of the diaphragm-type transducers increase with increasing film thickness. However, integration of 4- to 20-microm thick PZT films on silicon wafer, either the deposition or the patterning, is still a bottleneck in the micromachining process. This paper reports on a diaphragm-type pMUT. A composite coating technique based on chemical solution deposition and high-energy ball milled powder has been used to fabricate thick PZT films. Micromachining of the pMUTs using such thick films has been investigated. The fabricated pMUT with crack-free PZT films up to 7-microm thick was evaluated as an ultrasonic transmitter. The generated sound pressure level of up to 120 dB indicates that the fabricated pMUT has very good ultrasound-radiating performance and, therefore, can be used to compose pMUT arrays for generating ultrasound beam with high directivity in numerous applications. The pMUT arrays also have been demonstrated. PMID:16463494

  8. Sequentially evaporated thin Y-Ba-Cu-O superconductor films: Composition and processing effects

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin films of YBa2Cu3O(7-beta) have been grown by sequential evaporation of Cu, Y, and BaF2 on SrTiO3 and MgO substrates. The onset temperatures were as high as 93 K while T sub c was 85 K. The Ba/Y ratio was varied from 1.9 to 4.0. The Cu/Y ratio was varied from 2.8 to 3.4. The films were then annealed at various times and temperatures. The times ranged from 15 min to 3 hr, while the annealing temperatures used ranged from 850 C to 900 C. A good correlation was found between transition temperature (T sub c) and the annealing conditions; the films annealed at 900 C on SrTiO3 had the best T sub c's. There was a weaker correlation between composition and T sub c. Barium poor films exhibitied semiconducting normal state resistance behavior while barium rich films were metallic. The films were analyzed by resistance versus temperature measurements and scanning electron microscopy. The analysis of the films and the correlations are reported.

  9. Electrically Conducting Polymer-Copper Sulphide Composite Films, Preparation by Treatment of Polymer-Copper (2) Acetate Composites with Hydrogen Sulfide

    NASA Technical Reports Server (NTRS)

    Yamamoto, Takakazu; Kamigaki, Takahira; Kubota, Etsuo

    1988-01-01

    Polymer copper sulfide composite films were prepared by treatment of polymer poly(vinyl chloride), poly(acrylonitrile), copolymer of vinyl chloride and vinyl acetate (90:10), and ABS resin copper (2) acetate composites with hydrogen sulfide. The films showed electrical conductivity higher than 0.015 S/cm when they contained more than 20 wt percent of copper sulfide. A poly(acrylonitrile)-copper sulfide composite film containing 40 to 50 wt percent of copper sulfide showed electrical conductivity of 10 to 150.0 S/cm and had relatively high mechanical strength to be used in practical purposes.

  10. Perfluorocyclobutyl polymer thin-film composite membrane fabrication, plasticization and physical aging

    NASA Astrophysics Data System (ADS)

    Zhou, Jinxiang

    My research consists of three parts: 1) study of perfluorocyclobutyl (PFCB) thin film formation, 2) development and characterization of PFCB thin-film composite membranes, and 3) elucidation of the roles that plasticization and physical aging play on PFCB thin-film performance. In part 1, I conducted comprehensive research to understand how PFCB thin films form by the method of dip coating. Through the control of solvents, polymer solution concentrations, and withdrawal speeds, a series of PFCB thin films were formed on silicon wafers. Film thickness and refractive index were characterized by ellipsometry. Results suggested that when the withdrawal speeds are higher than 50 mm/min, film thickness increases with increasing withdrawal speeds, as it is predicted in the proposed extension of the Landau-Levich model. When the withdrawal speeds are lower than 50 mm/min, film thickness increases with decreasing withdrawal speeds, which could be explained by the phenomenon of PFCB surface excess. Subsequent surface tension studies proved the existence of this surface excess. Surface images of these films were measured by atomic force microscope. Films prepared from tetrahydrofuran and chloroform yielded uniform nanolayers. However, films prepared using acetone as solvent yielded a partial dewetting pattern, which could be explained by a surface depletion layer of pure solvent between the bulk PFCB/acetone solution and the substrate. Based on the knowledge generated in part 1, I developed, from scratch, procedures to prepare PFCB TFC membranes that were free of major defects. I used mathematical models based on resistance in series to predict composite membrane performance. In many cases, surface defects are the major reason for poor separation ability of TFC membranes. Mathematical analysis showed that the surface defects are less critical in thinner films but are still an important factor causing selectivity loss. Surface defects occur mainly from polymer dewetting on the

  11. Stimuli-responsive polyaniline coated silica microspheres and their electrorheology

    NASA Astrophysics Data System (ADS)

    Park, Dae Eun; Choi, Hyoung Jin; Vu, Cuong Manh

    2016-05-01

    Silica/polyaniline (PANI) core–shell structured microspheres were synthesized by coating the surface of silica micro-beads with PANI and applied as a candidate inorganic/polymer composite electrorheological (ER) material. The silica micro-beads were initially modified using N-[(3-trimethoxysilyl)-propyl] aniline to activate an aniline functional group on the silica surface for a better PANI coating. The morphology of the PANI coating on the silica surface was examined by scanning electron microscopy and the silica/PANI core–shell structure was confirmed by transmission electron microscopy. The chemical structure of the particles was confirmed by Fourier transform infrared spectroscopy. Rotational rheometry was performed to confirm the difference in the ER properties between pure silica and silica/PANI microsphere-based ER fluids when dispersed in silicone oil.

  12. Biomimetic heterogeneous multiple ion channels: a honeycomb structure composite film generated by breath figures

    NASA Astrophysics Data System (ADS)

    Han, Keyu; Heng, Liping; Wen, Liping; Jiang, Lei

    2016-06-01

    We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields.We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields. Electronic supplementary information (ESI) available: Pore size distribution histograms of the AAO substrates; SEM images of the side view of pure AAO membranes and top view of the flat PI/AAO composite film; the current-time curves of the flat composite film; the current-voltage characteristics curves of pure AAO nanochannels with different mean pore diameters; CA of the two surfaces of the composite PI/AAO film, the structural formula of the polymer polyimide resin (PI), and solid surface zeta potential. See DOI: 10.1039/c6nr02506d

  13. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Changxin; Zhang, Song; Ni, Yuwei; Huang, Jie

    2008-07-01

    Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in pure acrylic emulsion by ultrasonication to prepare MWCNT/polyacrylate composites applied on building interior wall for electromagnetic interference (EMI) shielding applications. The structure and surface morphology of the MWCNTs and MWCNT/polyacrylate composites were studied by field emission scanning microscopy (FESEM) and transmission electron microscopy (TEM). The electrical conductivity at room temperature and EMI shielding effectiveness (SE) of the composite films on concrete substrate with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in two different frequency ranges of 100-1000 MHz (radio frequency range) and 8.2-12.4 GHz (X-band). The experimental results show that a low mass concentration of MWCNTs could achieve a high conductivity and the EMI SE of the MWCNT/polyacrylate composite films has a strong dependence on MWCNTs content in both two frequency ranges. The SE is higher in X-band than that in radio frequency range. For the composite films with 10 wt.% MWCNTs, the EMI SE of experiment agrees well with that of theoretical prediction in far field.

  14. Magnetic Composite Thin Films of Fe xO y Nanoparticles and Photocrosslinked Dextran Hydrogels

    NASA Astrophysics Data System (ADS)

    Brunsen, Annette; Utech, Stefanie; Maskos, Michael; Knoll, Wolfgang; Jonas, Ulrich

    2012-04-01

    Magnetic hydrogel composites are promising candidates for a broad field of applications from medicine to mechanical engineering. Here, surface-attached composite films of magnetic nanoparticles (MNP) and a polymeric hydrogel (HG) were prepared from magnetic iron oxide nanoparticles and a carboxymethylated dextran with photoreactive benzophenone substituents. A blend of the MNP and the dextran polymer was prepared by mixing in solution, and after spin-coating and drying the blend film was converted into a stable MNP-HG composite by photocrosslinking through irradiation with UV light. The bulk composite material shows strong mobility in a magnetic field, imparted by the MNPs. By utilizing a surface layer of a photoreactive adhesion promoter on the substrates, the MNP-HG films were covalently immobilized during photocrosslinking. The high stability of the composite was documented by rinsing experiments with UV-Vis spectroscopy, while surface plasmon resonance and optical waveguide mode spectroscopy was employed to investigate the swelling behavior in dependence of the nanoparticle concentration, the particle type, and salt concentration.

  15. Carrot fiber (CF) composite films for antioxidant preservation: Particle size effect.

    PubMed

    Idrovo Encalada, Alondra M; Basanta, Maria F; Fissore, Eliana N; De'Nobili, Maria D; Rojas, Ana M

    2016-01-20

    The effect of particle size (53, 105 and 210 μm) of carrot fiber (CF) on their hydration properties and antioxidant capacity as well as on the performance of the CF-composite films developed with commercial low methoxyl pectin (LMP) was studied. It was determined that CF contained carotenoids and phenolics co-extracted with polysaccharides (80%), rich in pectins (15%). CF showed antioxidant activity and produced homogeneous calcium-LMP-based composites. The 53-μm-CF showed the lowest hydration capability and produced the least elastic and deformable composite film due probably to CF bridged by calcium-crosslinked LMP chains. Antioxidant activity associated to the loaded CF was found in composites. When L-(+)-ascorbic acid (AA) was also loaded, its hydrolytic stability increased with the decrease in CF-particle size, showing the lowest stability in the 0%-CF- and 210 μm-CF-LMP films. Below ≈ 250 μm, the particle size determined the hydration properties of pectin-containing CF, affecting the microstructure and water mobility in composites. PMID:26572445

  16. Effect of Multiwall Carbon Nanotubes on Electrical and Structural Properties of Polyaniline

    NASA Astrophysics Data System (ADS)

    Nagaraja, M.; Mahesh, H. M.; Manjanna, J.; Rajanna, K.; Kurian, M. Z.; Lokesh, S. V.

    2012-07-01

    Polyaniline (PANI) and PANI/CNT (multiwall carbon nanotubes, CNT) composites were prepared using an oxidative chemical polymerization method with ammonium persulfate and dodecyl benzene sulfonic acid as the oxidizing agent and surfactant, respectively. Fourier-transform infrared spectroscopy spectra illustrate the presence of PANI in the composite and show that some interaction exists between PANI and CNT. Embedding of CNT in the PANI matrix is confirmed by scanning electron micrography. Conductivity of the PANI/CNT composites was higher than that of pure PANI, and the maximum conductivity obtained was 4.44 S/cm at 20 wt.% CNT.

  17. Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol) carbon nanotube composite films

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tao, Xiaoming; Xue, Pu; Cheng, Xiaoyin

    2005-12-01

    Tensile tests were carried out on free-standing composite films of poly(vinyl alcohol) (PVA) and multiwall carbon nanotubes (MWNTs) for different loading levels. Results show that overall mechanical properties of the composite were greatly improved as compared to the neat PVA film. For PVA-based materials at significant high loading level such as 9.1 wt.% MWNTs, considerable increases in Young's modulus, tensile strength and toughness by factors of 4.5, 2.7 and 4.1, respectively, were achieved. Raman, SEM, TEM, and DSC techniques were used to evaluate the PVA/MWNTs composite system. Strong acid-modification of the pristine MWNTs and the subsequent ultrasonication processing allowed good distribution of the nanotubes in the matrix. SEM together with DSC result shows apparent good wetting of the nanotubes by the PVA matrix, which are supportive of good interfacial bonding between the modified carbon nanotubes and the hosting polymer matrix.

  18. Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications

    NASA Astrophysics Data System (ADS)

    Shannigrahi, S. R.; Pramoda, K. P.; Nugroho, F. A. A.

    2012-01-01

    Phase pure single phase ferrite powders of (NixR1-x)0.5Zn0.5Fe2O4 (R=Mn, Co, Cu; x=0, 0.5) were manufactured using microwave sintering at 930 °C for 10 min in air atmosphere. The powders were characterized for their structure, microstructure, thermal, and magnetic properties. Selected powders were used as fillers to prepare their composite films using polymethyl methacrylate polymers as matrix. The composite films were prepared using the melt blending approach and were tested for their microstructure, thermal, and magnetic hysteresis loop as well as 3D magnetic field space mappings using an electromagnetic compatibility scanner. Among the studied ferrites, cobalt doped ferrites and their composites showed the best electromagnetic interference (EMI) shielding effectiveness value and have potential for practical EMI shielding applications.

  19. Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: Mechanical and optical properties.

    PubMed

    Cai, Jie; Chen, Jingyao; Zhang, Qian; Lei, Miao; He, Jingren; Xiao, Anhong; Ma, Chengjie; Li, Sha; Xiong, Hanguo

    2016-04-20

    Uniaxially aligned cellulose nanofibers (CNFs), which are fabricated by electrospinning of cellulose acetate derived from bamboo cellulose (B-CA) followed by deacetylation, were used as reinforcements to make optically transparent composite films. We examined the effects of B-CA concentration and electrospinning parameters (e.g. spinning distance, and collection speed) on fiber morphology and orientation, which act on mechanical-to-optical properties of the CNFs-reinforced composites. Consequently, the resultant composite film exhibits high visible-light transmittance even with high fiber content, as well as improved mechanical properties. The understanding obtained from this study may facilitate the development of novel nanofibrous materials for various optical uses. PMID:26876850

  20. Composition of sputtered NiTiX shape-memory and superelastic thin films

    NASA Astrophysics Data System (ADS)

    Grummon, D. S.; Lagrange, T.

    2003-10-01

    Obtaining desired mechanical and transformational properties in shape-memory and superelastic alloys in the NiTiX system (X=Cu, Hf, Pd, Pt, etc.) requires very tight control of alloy composition. While this is not difficult to achieve in melt-solidification, the sputtering process involves a number of mechanisms, such as preferential resputtering, or species-dependent divergence of the sputter flux, which may cause film composition to deviate from that of the sputter cathode. Of particular concern is the tendency for composition to vary with position on the substrate, and to drift over time as the sputter cathode erodes. Neither problem can be addressed by simple adjustment of the cathode composition. In this paper we consider the often-observed tendency for sputtered TiNi films to be deficient in Ti relative to the cathode composition. A preliminary model is presented which simulates the effect of differential angular distribution of the sputter flux between Ti and Ni by adopting a modified cosine law [1] in which the elemental flux is proportional to \\cosθ/(ρ_i sin^2θ+\\cos^2θ). It is found that different species-dependent values of ρ_i, for Ni and Ti respectively, have only modest effect on in-plane composition gradients and time-evolution of composition, but that a systematic Ti deficiency is readily produced by setting ρ_Ti<ρ_Ni.