Science.gov

Sample records for polyaniline films conducting

  1. Doping dependence of electrical and thermal conductivity of nanoscale polyaniline thin films

    NASA Astrophysics Data System (ADS)

    Jin, Jiezhu; Wang, Qing; Haque, M. A.

    2010-05-01

    We performed simultaneous characterization of electrical and thermal conductivity of 55 nm thick polyaniline (PANI) thin films doped with different levels of camphor sulfonic acids (CSAs). The effect of the doping level is more pronounced on electrical conductivity than on thermal conductivity of PANIs, thereby greatly affecting their ratio that determines the thermoelectric efficiency. At the 60% (the molar ratio of CSA to phenyl-N repeat unit of PANI) doping level, PANI exhibited the maximum electrical and thermal conductivity due to the formation of mostly delocalized structures. Whereas polarons are the charge carriers responsible for the electrical conduction, phonons are believed to play a dominant role in the heat conduction in nanoscale doped PANI thin films.

  2. Nanoscale electrical and mechanical characteristics of conductive polyaniline network in polymer composite films.

    PubMed

    Jafarzadeh, Shadi; Claesson, Per M; Sundell, Per-Erik; Pan, Jinshan; Thormann, Esben

    2014-11-12

    The presence and characteristics of a connected network of polyaniline (PANI) within a composite coating based on polyester acrylate (PEA) has been investigated. The bulk electrical conductivity of the composite was measured by impedance spectroscopy. It was found that the composite films containing PANI have an electrical conductivity level in the range of semiconductors (order of 10(-3) S cm(-1)), which suggests the presence of a connected network of the conductive phase. The nanoscopic distribution of such a network within the cured film was characterized by PeakForce tunneling atomic force microscopy (AFM). This method simultaneously provides local information about surface topography and nanomechanical properties, together with electrical conductivity arising from conductive paths connecting the metallic substrate to the surface of the coating. The data demonstrates that a PEA-rich layer exists at the composite-air interface, which hinders the conductive phase to be fully detected at the surface layer. However, by exposing the internal structure of the composites using a microtome, a much higher population of a conductive network of PANI, with higher elastic modulus than the PEA matrix, was observed and characterized. Local current-voltage (I-V) spectroscopy was utilized to investigate the conduction mechanism within the nanocomposite films, and revealed non-Ohmic characteristics of the conductive network. PMID:25295701

  3. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    NASA Astrophysics Data System (ADS)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  4. Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films

    NASA Astrophysics Data System (ADS)

    El-Sayed, Somyia; Abel-Baset, Tarob; Elfadl, Azza Abou; Hassen, Arafa

    2015-05-01

    Nanosilica (NS) was synthesized by a sol-gel method and mixed with 0.98 polyvinyl alcohol (PVA)/0.02 polyaniline (PANI) in different amounts to produce nanocomposite films. High-resolution transmission electron microscopy (HR-TEM) revealed the average particle size of the NS to be ca. 15 nm. Scanning electron microscopy (SEM) showed that the NS was well-dispersed on the surface of the PVA/PNAI films. The Fourier transform infrared (FTIR) spectra of the samples showed a significant change in the intensity of the characteristic peak of the functional groups in the composite films with the amount of NS added. The absorbance and refractive index (n) of the composites were studied in the UV-vis range, and the optical energy band gap, Eg, and different optical parameters were calculated. The dielectric loss modulus, M″ and ac conductivity, σac, of the samples were studied within 300-425 K and 0.1 kHz-5 MHz, respectively. Two relaxation peaks were observed in the frequency dependence of the dielectric loss modulus, M″. The behavior of σac(f) for the composite films indicated that the conduction mechanism was correlated barrier hopping (CBH). The results of this work are discussed and compared with those of previous studies of similar composites.

  5. Conducting carbonized polyaniline nanotubes

    NASA Astrophysics Data System (ADS)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  6. Conducting carbonized polyaniline nanotubes.

    PubMed

    Mentus, Slavko; Cirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 degrees C min(-1) up to a maximum temperature of 800 degrees C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 microm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 microm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm(-1), increased to 0.7 S cm(-1) upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy. PMID:19471087

  7. Conducting polyaniline nanowire electrode junction

    NASA Astrophysics Data System (ADS)

    Gaikwad, Sumedh; Bodkhe, Gajanan; Deshmukh, Megha; Patil, Harshada; Rushi, Arti; Shirsat, Mahendra D.; Koinkar, Pankaj; Kim, Yun-Hae; Mulchandani, Ashok

    2015-03-01

    In this paper, a synthesis of conducting polyaniline nanowires electrode junction (CPNEJ) has been reported. Conducting polyaniline nanowires electrode junction on Si/SiO2 substrate (having 3 μm gap between two gold microelectrodes) is prepared. Polyaniline nanowires with diameter (ca. 140 nm to 160 nm) were synthesized by one step electrochemical polymerization using galvanostatic (constant current) technique to bridge this gap. The surface morphology of CPNEJ was studied by scanning electron microscope (SEM). The synthesized CPNEJ is an excellent platform for biosensor applications.

  8. Heat conduction in conducting polyaniline nanofibers

    NASA Astrophysics Data System (ADS)

    Nath, Chandrani; Kumar, A.; Syu, K.-Z.; Kuo, Y.-K.

    2013-09-01

    Thermal conductivity and specific heat of conducting polyaniline nanofibers are measured to identify the nature of heat carrying modes combined with their inhomogeneous structure. The low temperature thermal conductivity results reveal crystalline nature while the high temperature data confirm the amorphous nature of the material suggesting heterogeneous model for conducting polyaniline. Extended acoustic phonons dominate the low temperature (<100 K) heat conduction, while localized optical phonons hopping, assisted by the extended acoustic modes, account for the high temperature (>100 K) heat conduction.

  9. Blood coagulation and platelet adhesion on polyaniline films.

    PubMed

    Humpolíček, Petr; Kuceková, Zdenka; Kašpárková, Věra; Pelková, Jana; Modic, Martina; Junkar, Ita; Trchová, Miroslava; Bober, Patrycja; Stejskal, Jaroslav; Lehocký, Marián

    2015-09-01

    Polyaniline is a promising conducting polymer with still increasing application potential in biomedicine. Its surface modification can be an efficient way how to introduce desired functional groups and to control its properties while keeping the bulk characteristics of the material unchanged. The purpose of the study was to synthetize thin films of pristine conducting polyaniline hydrochloride, non-conducting polyaniline base and polyaniline modified with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) and investigate chosen parameters of their hemocompatibility. The modification was performed either by introduction of PAMPSA during the synthesis or by reprotonation of polyaniline base. The polyaniline hydrochloride and polyaniline base had no impact on blood coagulation and platelet adhesion. By contrast, the polyaniline reprotonated with PAMPSA completely hindered coagulation thanks to its interaction with coagulation factors Xa, Va and IIa. The significantly lower platelets adhesion was also found on this surface. Moreover, this film maintains its conductivity at pH of 6, which is an improvement in comparison with standard polyaniline hydrochloride losing most of its conductivity at pH of 4. Polyaniline film with PAMPSA introduced during synthesis had an impact on platelet adhesion but not on coagulation. The combined conductivity, anticoagulation activity, low platelet adhesion and improved conductivity at pH closer to physiological, open up new possibilities for application of polyaniline reprotonated by PAMPSA in blood-contacting devices, such as catheters or blood vessel grafts. PMID:26119372

  10. Enhanced thermal stability under DC electrical conductivity retention and visible light activity of Ag/TiO₂@polyaniline nanocomposite film.

    PubMed

    Ansari, Mohd Omaish; Khan, Mohammad Mansoob; Ansari, Sajid Ali; Raju, Kati; Lee, Jintae; Cho, Moo Hwan

    2014-06-11

    The development of organic-inorganic photoactive materials has resulted in significant advancements in heterogeneous visible light photocatalysis. This paper reports the synthesis of visible light-active Ag/TiO2@Pani nanocomposite film via a simple biogenic-chemical route. Electrically conducting Ag/TiO2@Pani nanocomposites were prepared by incorporating Ag/TiO2 in N-methyl-2-pyrrolidone solution of polyaniline (Pani), followed by the preparation of Ag/TiO2@Pani nanocomposite film using solution casting technique. The synthesized Ag/TiO2@Pani nanocomposite was confirmed by UV-visible spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The Ag/TiO2@Pani nanocomposite film showed superior activity towards the photodegradation of methylene blue under visible light compared to Pani film, even after repeated use. Studies on the thermoelectrical behavior by DC electrical conductivity retention under cyclic aging techniques showed that the Ag/TiO2@Pani nanocomposite film possessed a high combination of electrical conductivity and thermal stability. Because of its better thermoelectric performance and photodegradation properties, such materials might be a suitable advancement in the field of smart materials in near future. PMID:24836114

  11. Elastomeric Conducting Polyaniline Formed Through Topological Control of Molecular Templates.

    PubMed

    Ding, Hangjun; Zhong, Mingjiang; Wu, Haosheng; Park, Sangwoo; Mohin, Jacob W; Klosterman, Luke; Yang, Zhou; Yang, Huai; Matyjaszewski, Krzysztof; Bettinger, Christopher John

    2016-06-28

    A strategy for creating elastomeric conducting polyaniline networks is described. Simultaneous elastomeric mechanical properties (E < 10 MPa) and electronic conductivities (σ > 10 S cm(-1)) are achieved via molecular templating of conjugated polymer networks. Diblock copolymers with star topologies processed into self-assembled elastomeric thin films reduce the percolation threshold of polyaniline synthesized via in situ polymerization. Block copolymer templates with star topologies produce elastomeric conjugated polymer composites with Young's moduli ranging from 4 to 12 MPa, maximum elongations up to 90 ± 10%, and electrical conductivities of 30 ± 10 S cm(-1). Templated polyaniline films exhibit Young's moduli up to 3 orders of magnitude smaller compared to bulk polyaniline films while preserving comparable bulk electronic conductivity. Flexible conducting polymers have prospective applications in devices for energy storage and conversion, consumer electronics, and bioelectronics. PMID:27175931

  12. Mechanically driven activation of polyaniline into its conductive form.

    PubMed

    Baytekin, Bilge; Baytekin, H Tarik; Grzybowski, Bartosz A

    2014-07-01

    Mechanical treatment of polymers produces surface cations and anions which, as demonstrated here for the first time, can drive chemical reactions. In particular, it is shown that such a mechanical treatment transforms nonconductive polyaniline into its conductive form. These results provide a mechanical means of patterning conductive polymers and also coating small polymer objects with conductive polyaniline films preventing accumulation of static electricity. PMID:24824971

  13. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    NASA Astrophysics Data System (ADS)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  14. Electrochemical and resonance Raman spectroscopic characterization of polyaniline and polyaniline-metalloporphyrin electrode films

    SciTech Connect

    Macor, K.A.; Su, Y.O.; Miller, L.A.; Spiro, T.G.

    1987-08-12

    Characteristics of electropolymerized aniline and metallotetrakis(2-aminophenyl)porphine (metallo-2-TAPP) films are described. Aniline polymerized from methylene chloride solution by oxidative cycling at a platinum electrode shows characteristic two-wave or one-wave cycle voltammograms when scanned in pH 1 aqueous solution, depending on the positive potential sweep limit. Similar CV's are produced when the solution contains metallo-TAPP's, except that additional waves associated with metalloporphyrin redox processes are superimposed. The absorption spectra of the films formed on transparent SnO/sub 2/ electrodes showed characteristic metalloporphyrin Soret absorption bands, with red shifts relative to the solution spectra, due to axial coordination and/or excitonic effects. Raman spectra are reported for films polymerized from aniline, aniline-/sup 15/N, aniline-N,N-d/sub 2/, and aniline-d/sub 5/. The replacement of strong aniline bands at 1000 and 1029 cm/sup -1/ with bands in the films at 1190 and 1200 cm/sup -1/ is diagnostic for para-substituted aniline units in the polymer. The films show a strong /sup 15/N-sensitive band at 1525 cm/sup -1/, which is absent in aniline but present in p-phenylenediamine. Thus the electrochemical and spectroscopic characteristics of the TAPP films are fully consistent with unmodified porphyrin units contained within a polyaniline polymer. Porphyrin radical cation formation is insufficient to induce polymerization if the potential is lower than that required for aniline oxidation. Films containing Mn(2-TAPP) show a Mn/sup 3+/2+/ wave at approx.-0.2 V, negative of the polyaniline redox waves, when the electrode is in contact with nonaqueous or aqueous electrolyte. The metalloporphyrin redox process does not require electronic conduction through the polyaniline framework. 21 references. 8 figures.

  15. An emulsion polymerization process for soluble and electrically conductive polyaniline

    SciTech Connect

    Kinlen, P.J.; Ding, Y.; Graham, C.R.; Liu, J.; Remsen, E.E.

    1998-07-01

    A new emulsion process has been developed for the direct synthesis of the emeraldine salt of polyaniline (PANI) that is soluble in organic solvents. The process entails forming an emulsion composed of water, a water soluble organic solvent (e.g., 2-butoxyethanol), a water insoluble organic acid (e.g., dinonylnaphthalene sulfonic acid) and aniline. Aniline is protonated by the organic acid to form a salt which partitions into the organic phase. As oxidant (ammonium peroxydisulfate) is added, PANI salt forms in the organic phase and remains soluble. As the reaction proceeds, the reaction mixture changes from an emulsion to a two phase system, the soluble PANI remaining in the organic phase. With dinonylnaphthalene sulfonic acid (DNNSA) as the organic acid, the resulting product is truly soluble in organic solvents such as xylene and toluene (not a dispersion), of high molecular weight (M{sub w} > 22,000), film forming and miscible with many polymers such as polyurethanes, epoxies and phenoxy resins. As cast, the polyaniline film is only moderately conductive, (10{sup {minus}5} S/cm), however treatment of the film with surfactants such as benzyltriethylammonium chloride (BTEAC) or low molecular weight alcohols and ketones such as methanol and acetone increases the conductivity 2--3 orders of magnitude.

  16. Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films

    NASA Astrophysics Data System (ADS)

    Rami, Soukaina

    Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic medium by studying their electrochemical properties. These films were fabricated using two deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization of these films was done using techniques such as Fourier Transform Infrared Spectroscopy (FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films. However, for the dye incorporated films, since there was an addition in the synthesis of the material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1 layer PANI showed compact film morphology, comparing to other PANI films, which displayed a fiber-like structure. Finally, the electrochemical properties of these thin films were studied using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in

  17. Organic Solar Cells Based on Electrodeposited Polyaniline Films

    NASA Astrophysics Data System (ADS)

    Inoue, Kei; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2012-04-01

    Polyaniline thin films as hole transporting layers were fabricated on transparent indium-tin-oxide electrodes by electrodeposition of aniline in an aqueous H2SO4 electrolyte solution. Emerald-green polyaniline films were obtained, which showed stable redox waves. A mixed solution of polythiophene and fullerene derivative was spin-coated onto the electrodeposited polyaniline film. After the modification of titanium oxide film on the surface of the polythiophene/fullerene layer, an aluminum electrode was fabricated by vacuum deposition. The obtained solar cells generated stable photocurrent and photovoltage under light illumination.

  18. Modification of conductive polyaniline with carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Sedaghat, Sajjad; Alavijeh, Mahdi Soleimani

    2014-08-01

    The synthesis of polyaniline/single-wall nanotube, polyaniline/multi-wall nanotube and polyaniline/single-wall nanotube/graphen nanosheets nanocomposites by in situ polymerization are reported in this study. The substrates were treated with a mixture of concentrated sulfuric acid and concentrated nitric acid before usage to functionalize with carboxylic and hydroxyl groups. Aniline monomers are adsorbed and polymerized on the surface of these fillers. Structural analysis using scanning electron microscopy showed that nanomaterials dispersed into polymer matrix and made tubular structures with diameters several tens to hundreds nanometers depending on the polyaniline content. These nanocomposites can be used for production of excellent electrode materials applications in high-performance supercapacitors.

  19. Electronic conduction in polyaniline-polyethylene oxide and polyaniline-Nafion blends: Relation to morphology and protonation level

    SciTech Connect

    Sixou, B.; Travers, J.P.

    1997-08-01

    We present a comprehensive study of the transport properties in polyaniline-Nafion and polyaniline-polyethylene oxide, lithium trifluoromethane sulfonimide complex blends, together with a careful characterization of the morphology and the polyaniline protonation level. They include conductivity measurements as a function of both the polyaniline content of the blends and the temperature for a given composition. We show that percolation theory can account for the data provided that hopping and tunneling are taken into account. Moreover, in the polyaniline-Nafion blends, the variation of the polyaniline protonation level with the blend composition appears as a crucial parameter. The leading conduction mechanism is shown to be a hopping process between highly conducting polyaniline grains, the parameters of which are determined by the blend composition, and the protonation level. {copyright} {ital 1997} {ital The American Physical Society}

  20. Deposition of polyaniline film onto porous silicon layer

    SciTech Connect

    Parkhutik, V.P.; Martinez-Duart, J.M.; Callegja, R.D.; Matveeva, E.M.

    1993-12-31

    Presently porous silicon (PS) layers are being considered a promising visible light emitting sources. Current research concentrates on the understanding of the nature of the light emission and the development of practical luminescent devices. The last goal is to find an appropriate solid contact to the rough surface of PS layers to ensure high electric conductivity and transparency. The aim of this work is to study the deposition of polyaniline (PANI) films onto porous silicon layers as an alternative to indium tin oxide (ITO) as the electrode.

  1. Impressive electromagnetic shielding effects exhibited by highly ordered, micrometer thick polyaniline films

    NASA Astrophysics Data System (ADS)

    Mohan, Ranjini R.; Varma, Sreekanth J.; Sankaran, Jayalekshmi

    2016-04-01

    The present work highlights the remarkably high shielding effectiveness of about 68 dB, exhibited by highly ordered and doped polyaniline films, in the microwave frequency range 4-12 GHz, obtained by self-stabilized dispersion polymerization as the synthesis route. The observed shielding effectiveness is found to depend quite sensitively on the electrical conducting properties, which are predominantly controlled by the nature and concentration of the dopants. The structural and morphological characterization of the films using XRD and TEM techniques reveals surprisingly high extent of crystallinity, which contributes significantly towards enhancing the electrical conductivity of the films. Most of the available reports on the microwave response of conducting polymer film samples deal with much thicker films, compared to the micrometer thick films of the present studies. The shielding effectiveness of acid doped, micrometer thick polyaniline films reported in the present work far exceeds most of the previously reported values and meets the commercial requirements.

  2. Electrochemical preparation of Photosystem I-polyaniline composite films for biohybrid solar energy conversion.

    PubMed

    Gizzie, Evan A; LeBlanc, Gabriel; Jennings, G Kane; Cliffel, David E

    2015-05-13

    In this work, we report for the first time the entrapment of the biomolecular supercomplex Photosystem I (PSI) within a conductive polymer network of polyaniline via electrochemical copolymerization. Composite polymer-protein films were prepared on gold electrodes through potentiostatic electropolymerization from a single aqueous solution containing both aniline and PSI. This study demonstrates the controllable integration of large membrane proteins into rapidly prepared composite films, the entrapment of such proteins was observed through photoelectrochemical analysis. PSI's unique function as a highly efficient biomolecular photodiode generated a significant enhancement in photocurrent generation for the PSI-loaded polyaniline films, compared to pristine polyaniline films, and dropcast PSI films. A comprehensive study was then performed to separately evaluate film thickness and PSI concentration in the initial polymerization solution and their effects on the net photocurrent of this novel material. The best performing composite films were prepared with 0.1 μM PSI in the polymerization solution and deposited to a film thickness of 185 nm, resulting in an average photocurrent density of 5.7 μA cm(-2) with an efficiency of 0.005%. This photocurrent output represents an enhancement greater than 2-fold over bare polyaniline films and 200-fold over a traditional PSI multilayer film of comparable thickness. PMID:25897977

  3. Conducting polymers and corrosion: Part 2 -- Polyaniline on aluminum alloys

    SciTech Connect

    Tallman, D.E.; Pae, Y.; Bierwagen, G.P.

    2000-04-01

    The electrochemical behavior of conducting polyaniline coatings on various aluminum alloys subjected to immersion in dilute Harrison solution (0.35% ammonium sulfate [(NH{sub 4}){sub 2}SO{sub 4}], 0.05% sodium chloride [NaCl]) was studied. Electrochemical impedance spectroscopy revealed that the charge-transfer resistance (R{sub ct}) of polyaniline-coated alloys increased as a function of immersion time. Polyaniline-coated platinum did not exhibit a significant increase in impedance under similar conditions, indicating that an active metal in contact with the polyaniline is required for the observed increase in R{sub ct}. A similar pattern of increasing R{sub ct} was observed for Alodine (Product A)-treated Al 7075T-6 (UNS A97075) alloys. Mean current and mean potential values obtained from electrochemical noise measurements also suggest a substantial electrochemical interaction between the polyaniline and the aluminum alloy during the early stages of immersion. Polarization experiments and open-circuit potential measurements revealed an ennobling of aluminum alloys to higher potential in the presence of polyaniline coatings. The corrosion protection afforded by a polyaniline/epoxy two-coat system on Al 2024T-3 (UNS A92024) alloy also was evaluated using impedance spectroscopy and compared with that for a single coat of epoxy on untreated and Product A-treated Al2024T-3 alloy. The Product A treatment and the polyaniline coating were found to increase the lifetime of the epoxy topcoat, although these two-coating systems exhibited rather different variations in low-frequency impedance with immersion time. A mechanism consistent with these observations was suggested.

  4. Electrical resistance response of polyaniline films to water, ethanol, and nitric acid solution

    NASA Astrophysics Data System (ADS)

    Yin, Hong-Xing; Li, Meng-Meng; Yang, H.; Long, Yun-Ze; Sun, Xin

    2010-08-01

    This paper reports on electrical resistance vs. aging time for the response of polyaniline films under exposure to water, ethanol and nitric acid (HNO3) solution. Camphor sulfonic acid-doped polyaniline films were prepared by a “doping-dedoping-redoping" method, the morphology and microstructures of the films were characterized by a scanning electron microscope and an x-ray diffractometer, the electrical resistance was measured by a four-probe method. It was found that a lower amount of water molecules infiltrating the film can decrease the film's resistance possibly due to an enhancement of charge carrier transfer between polyaniline chains, whereas excessive water molecules can swell inter-chain distances and result in a quick increase of resistance. The resistance of the film under exposure to ethanol increases and becomes much larger than the original value. However, HNO3 solution can decrease the film's resistance sharply possibly owing to doping effect of protonic acid. These results can help to understand the conduction mechanism in polyaniline films, and also indicate that the films have potential application in chemical sensors.

  5. Polyaniline: a conductive polymer coating for durable nanospray emitters

    PubMed

    Maziarz; Lorenz; White; Wood

    2000-07-01

    Despite the tremendous sensitivity and lower sample requirements for nanospray vs. conventional electrospray, metallized nanospray emitters have suffered from one of two problems: low mechanical stability (leading to emitter failure) or lengthy, tedious production methods. Here, we describe a simple alternative to metallized tips using polyaniline (PANI), a synthetic polymer well known for its high conductivity, anticorrosion properties, antistatic properties, and mechanical stability. A simple method for coating borosilicate emitters (1.2 mm o.d.) pulled to fine tapers (4 +/- 1 microm) with water-soluble and xylene-soluble dispersions of conductive polyaniline (which allows for electrical contact at the emitter outlet) is described. The polyaniline-coated emitters show high durability and are resistant to electrical discharge, likely because of the thick (yet optically transparent) coatings; a single emitter can be used over a period of days for multiple samples with no visible indication of the destruction of the polyaniline coating. The optical transparency of the coating also allows the user to visualize the sample plug loaded into the emitter. Examples of nanospray using coatings of the water-soluble and xylene-soluble polyaniline dispersions are given. A comparison of PANI-coated and gold-coated nanospray emitters to conventional electrospray ionization (ESI) show that PANI-coated emitters provide similar enhanced sensitivity that gold-coated emitters exhibit vs. conventional ESI. PMID:10883822

  6. Effect of morphology on the electrical transport properties of polyaniline films for electronic applications

    SciTech Connect

    Hardaker, S.S.; Eaiprasertsak, K.; Yon, J.; Gregory, R.V.; Tessema, G.X.

    1998-07-01

    Although it is well known that the oxidation state of polyaniline is an important characteristic, there are few reports of its influence on the development of morphology and electrical properties in fibers and films. In this work, differential scanning calorimetry is used in conjunction with measurements of temperature dependence of conductivity and thermoelectric power to elucidate the intimate relationship between structure and properties. By increasing the amount of chemical reduction of polyaniline solutions, films are repaired which exhibit a thermal transition between 300 and 385 C, indicative of melting. Increasing the chemical reduction also increases the conductivity of iodine doped films. The most reduced film exhibited a semiconductor transport mechanism, while the other films could be modeled with a quasi-one dimensional variable range hopping mechanism. The temperature dependence of conductivity also showed increasing order for increasing reduction, consistent with the DSC results.

  7. Cysteine modified polyaniline films improve biocompatibility for two cell lines.

    PubMed

    Yslas, Edith I; Cavallo, Pablo; Acevedo, Diego F; Barbero, César A; Rivarola, Viviana A

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using l-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV-visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86°±1 to 90°±1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. PMID:25842107

  8. Electrodeposited conductive polypyrrole/polyaniline composite film for the corrosion protection of copper bipolar plates in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Pan, T. J.; Zuo, X. W.; Wang, T.; Hu, J.; Chen, Z. D.; Ren, Y. J.

    2016-01-01

    A conductive composite coating consisting of an inner polypyrrole (PPY) layer and an outer polyaniline (PANI) layer is prepared on a copper substrate by an electrochemical synthesis. Potential application of these composite coatings in a proton exchange membrane fuel cell (PEMFC) is evaluated. The corrosion performance of the copper substrate without and with the polymer coatings in the acidic solutions containing H2SO4 (0.2 M), HCl (0.1 M) and HF (3 ppm) is investigated by electrochemical impedance spectroscopy, polarization and open-circuit potential measurements. The results indicate that both the bilayered PPY/PANI and the single PPY coating can increase the corrosion potential of copper substrate by more than 250 mV (SCE), and effectively decrease the corrosion current density by an order of magnitude in comparison with the uncoated copper substrate. Long-term test further confirms that the bilayered PPY/PANI coating with acceptable contact resistance provides better protection for the substrate than the single PPY coating. The bilayered structure with different ion-permselective nature may serve as an effective physical barrier to the inward penetration of corrosive species.

  9. Sulfonated polyaniline, a conducting polymer electrode for ion transfer batteries

    SciTech Connect

    Barbero, C.; Miras, M.C.; Koetz, R.; Haas, O.

    1994-12-31

    Sulfonated polyaniline (SPAN) was synthesized by sulfonation of polyaniline base with f6ming sulfuric acid. The polymer films were characterized by XPS, FFIR and UV-vis-NIR. XPS in combination with FTIR shows that the preparation procedure leads to a ca. 47% sulfonation of an otherwise unchanged polyaniline backbone. Electrodes modified with SPAN films exhibited two redox steps in aqueous as well as in nonaqueous electrolytes. Probe Beam Deflection and Quartz Crystal Microbalance were used to study the ion exchange mechanism. Protons are predominantly expelled during the first and second oxidation steps in acidic aqueous solution, accompanied by a counterflux of solvent. In nonaqueous electrolyte, expulsion of cations seems to be the dominant flux during SPAN oxidation, while solvent counterflux plays a significant role. The specific charge of SPAN films was found to be ca. 37 Ah/kg in aqueous solution (only first redox process used) and ca. 68 Ah/kg in nonaqueous media (both redox processes). Based on their experimental results, an estimation for a practical SPAN/Li battery would have 50% more specific energy than a PANI/Li one.

  10. Comparison of chemically and electrochemically synthesized polyaniline films

    SciTech Connect

    Hatchett, D.W.; Josowicz, M.; Janata, J.

    1999-12-01

    The electrochemical growth of thick ({approximately}2 mm) emeraldine, polyaniline (PANI{sup E}) films from solutions containing 2 M HBF{sub 4} and 0.25 M aniline is demonstrated. Electrochemically and chemically prepared PANI{sup E} films, cast from formic acid solutions, are compared. The combination of electrochemical results with Fourier transform infrared spectroscopic data indicates that pure and homogeneous standard material can be reproducibly prepared electrochemically.

  11. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    NASA Astrophysics Data System (ADS)

    Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.

    2016-07-01

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  12. Processable Conducting Polyaniline, Carbon Nanotubes, Graphene and Their Composites

    NASA Astrophysics Data System (ADS)

    Wang, Kan

    Good processability is often required for applications of conducting materials like polyaniline (PANI), carbon nanotubes (CNTs) and graphene. This can be achieved by either physical stabilization or chemical functionalization. Functionalization usually expands the possible applications for the conducting materials depending on the properties of the functional groups. Processable conducting materials can also be combined with other co-dissolving materials to prepare composites with desired chemical and physical properties. Polyanilines (PANI) doped with dodecylbenzenesulfonic acid (DBSA) are soluble in many organic solvents such as chloroform and toluene. Single wall carbon nanotubes (SWCNTs) can be dispersed into PANI/DBSA to form homogeneous solutions. PANI/DBSA functions as a conducting surfactant for SWCNTs. The mixture can be combined with two-parts polyurethanes that co-dissolve in the organic solvent to produce conducting polymer composites. The composite mixtures can be applied onto various substrates by simple spray-on methods to obtain transparent and conducting coatings. Graphene, a single layer of graphite, has drawn intense interest for its unique properties. Processable graphene has been produced in N-methyl-2-pyrrolidone (NMP) by a one-step solvothermal reduction of graphite oxide without the aid of any reducing reagent and/or surfactant. The as-synthesized graphene disperses well in a variety of organic solvents such as dimethylsulfoxide (DMSO), ethanol and tetrahydrogenfuran (THF). The conductivity of solvothermal reduced graphite oxide is comparable to hydrazine reduced graphite oxide. Attempts were made to create intrinsically conducting glue comparable to mussel adhesive protiens using polyaniline and graphene. Mussels can attach to a variety of substrates under water. Catechol residue in 3,4-dihydroxyphenylalanine (L-DOPA) is the key to the wet adhesion. Tyrosine and phosphoserine with primary alkyl amine groups also participate in adhesion. A

  13. Effect of displacement on resistance and capacitance of polyaniline film

    NASA Astrophysics Data System (ADS)

    Khasan Sanginovich, Karimov; Muhammad Tariq, Saeed; Fazal, Ahmad Khalid; Syed, Abdul Moiz

    2011-04-01

    This paper investigates the properties of displacement sensors based on polyaniline (PANI) films. About 1 wt% of PANI micropowder is mixed and stirred in a solution of 90 wt% water and 10 wt% alcohol at room temperature. The films of PANI are deposited from solution by drop-casting on Ag electrodes, which are preliminary deposited on glass substrates. The thicknesses of the PANI films are in the range of 20 μm-80 μm. A displacement sensor with polyaniline film as an active material is designed and fabricated. The investigations showed that, on average, the AC resistance of the sensor decreases by 2 times and the capacitance accordingly increases by 1.6 times as the displacement changes in the range of 0 mm-0.5 mm. The polyaniline is the only active material of the displacement sensor. The resistance and capacitance of the PANI changes under the pressure of spring and elastic rubber, and this pressure is created by the downward movement of the micrometer.

  14. Preparation of highly conductive, self-assembled gold/polyaniline nanocables and polyaniline nanotubes.

    PubMed

    Huang, Kun; Zhang, Yuanjian; Long, Yunze; Yuan, Junhua; Han, Dongxue; Wang, Zhijuan; Niu, Li; Chen, Zhaojia

    2006-07-01

    One-dimensional gold/polyaniline (Au/PANI-CSA) coaxial nanocables with an average diameter of 50-60 nm and lengths of more than 1 mum were successfully synthesized by reacting aniline monomer with chlorauric acid (HAuCl(4)) through a self-assembly process in the presence of D-camphor-10-sulfonic acid (CSA), which acts as both a dopant and surfactant. It was found that the formation probability and the size of the Au/PANI-CSA nanocables depends on the molar ratio of aniline to HAuCl(4) and the concentration of CSA, respectively. A synergistic growth mechanism was proposed to interpret the formation of the Au/PANI-CSA nanocables. The directly measured conductivity of a single gold/polyaniline nanocable was found to be high (approximately 77.2 S cm(-1)). Hollow PANI-CSA nanotubes, with an average diameter of 50-60 nm, were also obtained successfully by dissolving the Au nanowire core of the Au/PANI-CSA nanocables. PMID:16628760

  15. Flexible conductive nanocellulose combined with silicon nanoparticles and polyaniline.

    PubMed

    Park, Minsung; Lee, Dajung; Shin, Sungchul; Kim, Hyun-Joong; Hyun, Jinho

    2016-04-20

    Here we describe a unique conductive bacterial cellulose (BC) composite with silicon nanoparticles (SiNPs) and polyaniline. BC was used as a template for binding SiNPs resulting in a very promising anode material for Li-ion rechargeable batteries that showed a high specific capacity. The surfaces of the SiNPs were modified with phytic acid to enhance the binding of aniline monomer to the surface. A conformal coating of polyaniline (PANi) was formed on the modified SiNPs by in situ polymerization of aniline monomers. We also found that the phytic acid on the SiNPs was critical to ensure encapsulation of SiNPs with PANi. In addition, the phosphoric acid-tagged surface of the SiNPs enhanced the adhesion of SiNPs to the BC fibers. The resulting three dimensional network of BC was flexible and provided stress dissipation in the conductive BC composites. Flexural testing of conductive BC composites showed stable electrical conductivity even after repetitive bending over 100 times. PMID:26876826

  16. Nickel coated flyash (Ni-FAC) cenosphere doped polyaniline composite film for electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Bora, Pritom J.; Vinoy, K. J.; Ramamurthy, Praveen C.; Kishore; Madras, Giridhar

    2015-03-01

    A solid waste material fly ash cenosphere (FAC) was nickel coated and polyaniline in situ polymerized at -30 ± 2 °C in nitrogen atmosphere. A thin film of this composite material was prepared by solution processing and surface morphology/topography was studied. High electromagnetic shielding effectiveness (SE) was obtained for this film; 59 ± 4 μm and 133 ± 4 μm films show an average of 38 and 60 dB SE, respectively, in the frequency range 8.2-12.4 GHz (X-band). Unlike PANI film, the SE of these composite films is high at high frequency. The presence of magneto dielectric microsphere (Ni-FAC) increases the heterogeneity of the composite film in an efficient way for EMI shielding by changing film topography and increasing ac conductivity and permeability.

  17. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, Israel; Gottesfeld, Shimshon; Sabatani, Eyal

    1992-01-01

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventioonally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  18. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1992-04-28

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

  19. NMR evidence for the metallic nature of highly conducting polyaniline

    SciTech Connect

    Kolbert, A.C. Department of Chemistry, University of California, Berkeley, California 94720 ); Caldarelli, S. ); Thier, K.F. Department of Chemistry, University of California, Berkeley, California 94720 ); Sariciftci, N.S. ); Cao, Y. ); Heeger, A.J. )

    1995-01-15

    Polyaniline doped with camphor sulphonic acid (PANI-CSA) has been shown to yield a material that, after casting from solution in [ital meta]-cresol, exhibits a temperature-independent magnetic susceptibility [Y. Cao, P. Smith, and A. J. Heeger, Synth. Met. 48, 91 (1992); N. S. Sariciftici, A. J. Heeger, and Y. Cao, Phys. Rev. B 49, 5988 (1994)]. We report recent [sup 13]C NMR experiments on uniformly [sup 13]C-enriched PANI-CSA in which the [sup 13]C spin-lattice relaxation rates are shown to obey a modified Korringa relation for relaxation via the hyperfine coupling to conduction electrons. This observation of Korringa relaxation in polyaniline provides strong evidence for a metallic state in this material. An estimate is made of the Korringa enhancement factor that provides a measure of the degree of electron-electron correlations present. Two-dimensional spin-exchange experiments are also reported, which show that the [sup 13]C NMR signal results from a heterogeneity in the sample over at least a 30-A distance scale. These results are discussed in terms of the spatial extent of the doping-induced defect.

  20. Novel microstructure in spin coated polyaniline thin films

    NASA Astrophysics Data System (ADS)

    Verma, Deepak; Dutta, V.

    2007-05-01

    Polyaniline (Pani) thin films doped with camphor sulfonic acid (CSA) have been deposited on glass substrates using the spin coating technique. Pani is chemically synthesized by an oxidation method at ~0 °C. Pani-CSA films show a hexagonal structure in scanning electron micrographs, which occurs due to the crystalline growth of CSA. A dense hexagonal structure is visible for film deposited at 800 rpm, but it becomes sparser as the revolutions per minute are increased (1200, 1500 and 2000 rpm). Electronic transition of quinoid units cause an absorption shoulder at ~900 nm for films deposited at 1200, 1500 and 2000 rpm, which is not observed for film deposited at 800 rpm.

  1. Novel microstructure in spin coated polyaniline thin films.

    PubMed

    Verma, Deepak; Dutta, V

    2007-05-01

    Polyaniline (Pani) thin films doped with camphor sulfonic acid (CSA) have been deposited on glass substrates using the spin coating technique. Pani is chemically synthesized by an oxidation method at ∼0 °C. Pani-CSA films show a hexagonal structure in scanning electron micrographs, which occurs due to the crystalline growth of CSA. A dense hexagonal structure is visible for film deposited at 800 rpm, but it becomes sparser as the revolutions per minute are increased (1200, 1500 and 2000 rpm). Electronic transition of quinoid units cause an absorption shoulder at ∼900 nm for films deposited at 1200, 1500 and 2000 rpm, which is not observed for film deposited at 800 rpm. PMID:21690993

  2. Elaboration of m-cresol polyamide12/ polyaniline composite films for antistatic applications

    SciTech Connect

    Mezdour, D.; Tabellout, M.; Bardeau, J.-F; Sahli, S.

    2013-12-16

    The present work deals with the preparation of transparent antistatic films from an extreme dilution of an intrinsically conducting polymer (ICP) with not coloured polymers. Our approach is based on the chemical polymerization of a very thin layer of Polyaniline (PANI) around particles of an insulating polymer (PA12). Films were obtained by dissolving the synthesized core-shell particles in m-Cresol. The electric property and structure relationships were investigated by using dielectric relaxation spectroscopy, X-ray diffraction and micro-Raman spectroscopy. Composite films exhibited a well established dc conductivity over all the frequency range for 10 wt. % of PANI concentration related to the conductive properties of the PANI clusters. X-ray diffraction data show broader and lower intensity of PA12 peaks when increasing PANI content, probably due to the additional doping effect of m- cresol. The doping of PA12/PANI films with Dodecyl benzene sulfonic acid (DBSA) was unequivocally verified by Raman spectroscopy.

  3. Effect of polyaniline to enhance lithium iron phosphate conductivity

    NASA Astrophysics Data System (ADS)

    Wijayati, Anissa; Susanti, Susan; Rahayu, Iman; Hidayat, Sahrul

    2016-02-01

    Lithium cobalt oxide is commonly used as secondary battery. One of the disadvantages of lithium cobalt oxide is highly toxicity waste. One of the promising cathode is lithium iron phosphate (LiFePO4). But it has poor conductivity (10-9 S/cm), so conductive material must be added to improve its conductivity. The present paper aims to study the effect of Polyaniline (PANI) and PVDF to enhance lithium iron phosphate conductivity. PANI was prepared through interfacial polymerization. Hydrochloric acid, ammonium persulfate, and toluene were used as dopant, oxidant, and organic solvent respectively. Their morphology was confirmed by scanning electron microscopy (SEM), molecular structure was investigated by Infrared Spectroscopy, and conductivity was confirmed by four point probes method. The composite products have conductivities in the range 9.14 × 10-3 - 6.2×10-1 S/cm. This result is expected to provide an alternative conductive material that can improve the conductivity of lithium iron phosphate, as well as the alternative cathode which is environmental friendly, and no harmful waste.

  4. Polyaniline/poly acid acrylic thin film composites: a new gamma radiation detector

    SciTech Connect

    Lima Pacheco, Ana P.; Araujo, Elmo S.; Azevedo, Walter M. de

    2003-03-15

    In this paper, we present a new and straightforward route to prepare polyaniline/poly acid acrylic (PAA) thin film composites in large areas and on almost any surface. This method was developed to improve the mechanical and adherence properties of polyaniline devices used as ionization radiation sensors. The route consists of the combination of the metal oxidant with polymer acid to form a highly homogeneous and viscous paste, which can be easily spread over any surface. In the second step, an aniline acid solution is brought in contact with the dried paste where polymerization occurs, yielding a high homogeneous and conducting polymer composite. The UV-visible absorption and infrared analysis confirm that a polyaniline/PAA complex is obtained. The four-point conductivity measurements show that the composite conductivity {rho} is the order of 5 {omega}{sup -1} cm{sup -1}. Preliminary gamma radiation interaction with the composite shows that the doped composite exhibits a linear response that can be used in the development of real-time radiation sensors for the dose range from 0 to 5000 Gy.

  5. On the mechanism of electrochemical switching in films of polyaniline

    SciTech Connect

    Gottesfeld, S.; Redondo, A.; Feldberg, S.W.

    1987-01-01

    Polyaniline (PA) films can be formed on a Pt electrode by galvanostatic oxidation of the monomer in HCl solutions. The film thus formed undergoes a quasi reversible conversion between a bleached and a colored form as the applied potential is changed between e.g. 0 and 0.5 V vs. a silver wire. This process requires transfer of both electrons and ions to (or from) sites distributed within the PA film. In principle, three possible anodic conversion modes can be envisaged for the PA films: (A) coloration develops from the film/substrate interface towards the film/solution interface; (B) coloration develops from the film/solution interface towards the film/substrate interface; and (C) coloration develops uniformly throughout the volume of the film. Ellipsometric measurements recorded during a scan of the potential through the region of film conversion yield an 'ellipsometric conversion curve' that can serve as a good criterion for distinguishing between the coloration modes (A), (B), and (C) described above.

  6. Fabrication of superhydrophobic polyaniline films with rapidly switchable wettability

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoyan; Zhang, Zhaozhu; Men, Xuehu; Yang, Jin; Xu, Xianghui; Zhu, Xiaotao; Xue, Qunji

    2011-10-01

    A superhydrophobic polyaniline (PANI) film has been fabricated by using a facile one-step spraying method. The PANI was synthesized via in situ doping polymerization in the presence of perfluorooctanoic acid (PFOA) as the dopant. The water contact angle of this superhydrophobic surface reaches to 156°. Both the surface chemical compositions and morphological structures were analyzed. A granular morphology of PANI with a moderate amount of nanofibers was obtained. Moreover, a rapid surface wettability transition between superhydrophobicity and superhydrophilicity can be observed when it is doped with PFOA and de-doped with base. The mechanism for this tunable wettability has been discussed in detail.

  7. On the Efect of the Oxidative Reagents on the Conductivity of Polyaniline/MMT Nanocomposites

    NASA Astrophysics Data System (ADS)

    Garcia-Bernabé, A.; Gil-Agustí, M.; Ortega, G.; Llovera, P.; Almarza, A.; Vázquez, S.; Amantia, D.; Aubouy, L.

    2010-06-01

    The synthesis of polyaniline has been reported using three different oxidative reagents: ammonium persulfate, potassium iodate and potassium iodate+sodium hypochlorite. This polyaniline has been used to prepare several nanocomposites with different percentage of Montmorillonite. The DC conductivity of the nanocomposites was determined by impedance spectroscopy. The oxidative reagent that gives higher conductivity is ammonium persulfate. The temperature dependence of the conductivity was studied.

  8. Synthesis of mesoporous carbon-silica-polyaniline and nitrogen-containing carbon-silica films and their corrosion behavior in simulated proton exchange membrane fuel cells environment

    NASA Astrophysics Data System (ADS)

    Wang, Tao; He, Jianping; Sun, Dun; Guo, Yunxia; Ma, Yiou; Hu, Yuan; Li, Guoxian; Xue, Hairong; Tang, Jing; Sun, Xin

    In this study, polyaniline is deposited onto mesoporous carbon-silica-coated 304 stainless steel using electropolymerization method. Variation of the electropolymerization time and applied potential can affect the growth of polyaniline, and lead to different structural and electrochemical properties of the films. Nitrogen-containing groups are successfully introduced onto the mesoporous carbon-silica film by pyrolyzing treatment under N 2 atmosphere and the electrical conductivity is improved observably compared with the carbon-silica film. The electrochemical properties of the mesoporous carbon-silica-polyaniline films and nitrogen-containing carbon-silica composite films are examined by using potentiodynamic polarization, potentiostatic polarization and electrochemical impedance spectroscopy. The corrosion tests in 0.5 M H 2SO 4 system display that the carbon-silica-polyaniline films show the optimal protective performance. However, according to potentiostatic polarization process, nitrogen-containing carbon-silica film with a water contact angle 95° is extremely stable and better for the protection of stainless steel in simulated fuel cell environment compared to carbon-silica-polyaniline film. Therefore, the nitrogen-containing carbon-silica-coated 304 stainless steel is a promising candidate for bipolar plate materials in PEMFCs.

  9. Electrochemical supercapacitors from conducting polyaniline-graphene platforms.

    PubMed

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2014-06-18

    Energy storage devices such as electrochemical supercapacitors, with high power and energy densities are required to address the colossal energy requirements against the backdrop of global warming and the looming energy crisis. Nanocarbon, particularly two-dimensional graphene and graphene-based conducting polymer composites are promising electrode materials for such energy storage devices. Owing to their environmental stability, the low cost of polymers with high electroactivity and pseudocapacitance, such composite hybrids are expected to have wide implications in next generation clean and efficient energy systems. In this feature article, an overview of current research and important advances over the past four years on the development of conducting polyaniline (PANI)-graphene based composite electrodes for electrochemical supercapacitors are highlighted. Particular emphasis is made on the design, fabrication and assembly of nanostructured electrode architectures comprising PANI and graphene along with metal oxides/hydroxides and carbon nanotubes. Comments on the challenges and perspectives towards rational design and synthesis of graphene-based conducting polymer composites for energy storage are discussed. PMID:24797734

  10. Gellan gum-graft-polyaniline--An electrical conducting biopolymer.

    PubMed

    Karthika, J S; Vishalakshi, B; Naik, Jagadish

    2016-01-01

    Grafting of polyaniline (PANI) on to gellan gum (GG) was carried out in the presence of catalytic amount of ammonium peroxydisulfate (APS) as oxidant/initiator under mild acidic conditions by microwave irradiation technique. The grafting condition was optimized by varying the microwave power, exposure time and the composition of the reaction mixture. The graft copolymer GG-g-PANI was characterized by FTIR, TGA, UV/vis, (1)H NMR and SEM techniques. The characteristic peaks at 1506, 1462, 1070 and 830 cm(-1) in the IR spectrum and signals at 7.3, 7.2, 7.1 and 4.0 δ in the (1)H NMR spectrum confirms the grafting process. The TGA data reveals GG-g-PANI to be thermally less stable than GG. The optimum grafting was observed when the reaction mixture containing 0.066 mmol APS, 0.1M aniline, 1M hydrochloric acid and 0.1g/dL GG was exposed to 80 W microwave power for 40s. The DC and AC conductivity of the GG-g-PANI were measured using the 'Two-point probe' method based on which the dielectric properties were evaluated. GG-g-PANI exhibited appreciable electrical conductivity, which increased with the extent of grafting. The results indicate threefold increase in DC conductivity of graft copolymer as compared to GG. PMID:26526174

  11. Effect of HCl doping on optoelectrical and LPG sensing properties of nanostructured polyaniline thin films

    NASA Astrophysics Data System (ADS)

    Upadhye, Deepak S.; Huse, Nanasaheb P.; Sharma, Ramphal

    2016-05-01

    Nanostructure Polyaniline thin films doped with 0.5 M, 0.7 M, and 1 M of HCL were synthesized by simple and inexpensive chemical oxidative polymerization technique at room temperature. All prepared thin films of Polyaniline were characterized by optical absorbance study by UV-visible spectroscopy. The absorbance spectrum of Polyaniline shows three fundamental peaks at 356, 419 and 820 nm with increase in absorption intensity. The electrical study shows magnitude of resistance of HCL doped Polyaniline is dependent on doping level. Furthermore, the thin film of Polyaniline was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents irregular granular morphology. In order to investigate LPG sensing properties, I-V characteristics of the Polyaniline films doped with 0.5 M, 0.7 M, and 1 M of HCL were recorded at room temperature in presence of air and 100 ppm of LPG. The observed values of sensitivity found to be 7.21%, 9.85% and 17.46 % for 0.5 M, 0.75 M, and 1.0 M of HCL doped Polyaniline thin films respectively

  12. Conductive polyurethane composites containing polyaniline-coated nano-silica.

    PubMed

    Liu, Bo-Tau; Syu, Jhan-Rong; Wang, De-Hua

    2013-03-01

    In this study, we used 1.2-Aminopropyltriethoxysilane (APTS) as a coupling agent to synthesize silica-polyaniline (PANI) core-shell nanoparticles. The core-shell nanoparticles and PANI oligomers were reacted with isocyanates to prepare the conductive polyurethane (PU)-PANI-silica nanocomposites. The core-shell-nanoparticle structure shows significant enhancement on electrical properties of the conductive nanocomposites even though only 0.0755-wt.% PANI was coated on the nano-silica. The surface resistance of the nanocomposite containing 5 wt.% PANI can reduce to ~10(8) Ω/sq, lowering two orders in contrast to the nanocomposite without the core-shell structure. In comparison with the neat PU, tensile strength and elongation of the nanocomposite containing silica-PANI core-shell nanoparticles can increase 3.1 and 3.8 times, respectively. We suspect that the extraordinary enhancement of electrical and mechanical properties may result from the fact that contact probability among PANI moieties and chemical bonding between particles and PU matrix increase due to the PANI coated on the surface of silica. PMID:23261334

  13. Optical and electronic properties of layer-by-layer and composite polyaniline-cadmium selenide quantum dot films

    NASA Astrophysics Data System (ADS)

    Ayub, Ambreen; Shakoor, Abdul; Elahi, Asmat; Rizvi, Tasneem Zahra

    2015-08-01

    Two organic-inorganic hybrid films of intrinsically conducting polymer; polyaniline and cadmium selenide quantum dots were prepared. One by layer-by-layer deposition of polyaniline and cadmium selenide films on PEDOT-PSS/ITO coated glass substrate (ITO/PEDOT-PSS/PANI/CdSe) and other by depositing polyaniline-cadmium selenide quantum dots composite film on the same substrate (ITO/PEDOT-PSS/PANI-CdSe) using spin coating technique. Pure polyaniline, cadmium selenide quantum dots and their composites thus obtained were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and UV/VIS/NIR absorption spectroscopy. The surface morphologies were studied by Scanning Electron Microscopy (SEM). The diode performance parameters were compared and contrasted for the two devices obtained by different deposition routes. J-V characteristics of these devices showed a rectifying contact with Al metal, however with variation in performance parameters like barrier height, ideality factor and reverse saturation current the ITO/PEDOT-PSS/PANI-CdSe/Al device exhibited better diode performance as compared to ITO/PEDOT-PSS/PANI/CdSe/Al device.

  14. Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor

    PubMed Central

    Lin, Huijuan; Li, Li; Ren, Jing; Cai, Zhenbo; Qiu, Longbin; Yang, Zhibin; Peng, Huisheng

    2013-01-01

    Polyaniline composite films incorporated with aligned multi-walled carbon nanotubes (MWCNTs) are synthesized through an easy electrodeposition process. These robust and electrically conductive films are found to function as effective electrodes to fabricate transparent and flexible supercapacitors with a maximum specific capacitance of 233 F/g at a current density of 1 A/g. It is 36 times of bare MWCNT sheet, 23 times of pure polyaniline and 3 times of randomly dispersed MWCNT/polyaniline film under the same conditions. The novel supercapacitors also show a high cyclic stability. PMID:23443325

  15. Polyaniline nanowire synthesis templated by DNA

    NASA Astrophysics Data System (ADS)

    Nickels, Patrick; Dittmer, Wendy U.; Beyer, Stefan; Kotthaus, Jörg P.; Simmel, Friedrich C.

    2004-11-01

    DNA-templated polyaniline nanowires and networks are synthesized using three different methods. The resulting DNA/polyaniline hybrids are fully characterized using atomic force microscopy, UV-vis spectroscopy and current-voltage measurements. Oxidative polymerization of polyaniline at moderate pH values is accomplished using ammonium persulfate as an oxidant, or alternatively in an enzymatic oxidation by hydrogen peroxide using horseradish peroxidase, or by photo-oxidation using a ruthenium complex as photo-oxidant. Atomic force microscopy shows that all three methods lead to the preferential growth of polyaniline along DNA templates. With ammonium persulfate, polyaniline can be grown on DNA templates already immobilized on a surface. Current-voltage measurements are successfully conducted on DNA/polyaniline networks synthesized by the enzymatic method and the photo-oxidation method. The conductance is found to be consistent with values measured for undoped polyaniline films.

  16. Study on the preparation and structural performance of polyaniline/PP conductive fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Wang, Lijiu

    2007-07-01

    Polyaniline/PP conductive fiber was obtained by in-situ adsorption polymerization. In this work, we discussed the influence of these reaction factors such as adulteration acid concentration, oxidizer concentration, polyaniline monomer content and reaction time to the polymerization and conduct property. In the meanwhile, surface handling with plasma have also been compared for examining the change of polymerization and conduct property. FT-IR spectra analysis and the physic mechanical properties have been used to investigate the structure and properties of conductive fibers. The result shows that with this method of polymerization the conductive property is superior and the conductivity can be reached by 4.5KΩ.

  17. Polyaniline-carbon nanotube composite film for cholesterol biosensor.

    PubMed

    Dhand, Chetna; Arya, Sunil K; Datta, Monika; Malhotra, B D

    2008-12-15

    Nanocomposite film composed of polyaniline (PANI) and multiwalled carbon nanotubes (MWCNT), prepared electrophoretically onto indium tin oxide (ITO)-coated glass plate, was used for covalent immobilization of cholesterol oxidase (ChOx) via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. Results of linear sweep voltammetric measurements reveal that ChOx/PANI-MWCNT/ITO bioelectrode can detect cholesterol in the range of 1.29 to 12.93 mM with high sensitivity of 6800 nA mM(-1) and a fast response time of 10 s. Photometric studies for ChOx/PANI-MWCNT/ITO bioelectrode indicate that it is thermally stable up to 45 degrees C and has a shelf life of approximately 12 weeks when stored at 4 degrees C. The results of these studies have implications for the application of this interesting matrix (PANI-MWCNT) toward the development of other biosensors. PMID:18817744

  18. Bacteria counting method based on polyaniline/bacteria thin film.

    PubMed

    Zhihua, Li; Xuetao, Hu; Jiyong, Shi; Xiaobo, Zou; Xiaowei, Huang; Xucheng, Zhou; Tahir, Haroon Elrasheid; Holmes, Mel; Povey, Malcolm

    2016-07-15

    A simple and rapid bacteria counting method based on polyaniline (PANI)/bacteria thin film was proposed. Since the negative effects of immobilized bacteria on the deposition of PANI on glass carbon electrode (GCE), PANI/bacteria thin films containing decreased amount of PANI would be obtained when increasing the bacteria concentration. The prepared PANI/bacteria film was characterized with cyclic voltammetry (CV) technique to provide quantitative index for the determination of the bacteria count, and electrochemical impedance spectroscopy (EIS) was also performed to further investigate the difference in the PANI/bacteria films. Good linear relationship of the peak currents of the CVs and the log total count of bacteria (Bacillus subtilis) could be established using the equation Y=-30.413X+272.560 (R(2)=0.982) over the range of 5.3×10(4) to 5.3×10(8)CFUmL(-1), which also showed acceptable stability, reproducibility and switchable ability. The proposed method was feasible for simple and rapid counting of bacteria. PMID:26921555

  19. Polyaniline films photoelectrochemically reduce CO2 to alcohols.

    PubMed

    Hursán, Dorottya; Kormányos, Attila; Rajeshwar, Krishnan; Janáky, Csaba

    2016-07-01

    In this communication, we demonstrate that polyaniline, the very first example of an organic semiconductor, is a promising photocathode material for the conversion of carbon dioxide (CO2) to alcohol fuels. CO2 is a greenhouse gas; thus using solar energy to convert CO2 to transportation fuels (such as methanol or ethanol) is a value-added approach to simultaneous generation of alternative fuels and environmental remediation of carbon emissions. Insights into its unique behavior obtained from photoelectrochemical measurements and adsorption studies, together with spectroscopic data, are presented. Through a comparative study involving various conducting polymers, a set of criteria is developed for an organic semiconductor to function as a photocathode for generation of solar fuels from CO2. PMID:27345191

  20. EFFECTS OF TRITIUM GAS EXPOSURE ON THE GLASS TRANSITION TEMPERATURE OF EPDM ELASTOMER AND ON THE CONDUCTIVITY OF POLYANILINE

    SciTech Connect

    Clark, E; Marie Kane, M

    2008-12-12

    Four formulations of EPDM (ethylene-propylene diene monomer) elastomer were exposed to tritium gas initially at one atmosphere and ambient temperature for between three and four months in closed containers. Material properties that were characterized include density, volume, mass, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. EPDM samples released significant amounts of gas when exposed to tritium, and the glass transition temperature increased by about 3 C. during the exposure. Effects of ultraviolet and gamma irradiation on the surface electrical conductivity of two types of polyaniline films are also documented as complementary results to planned tritium exposures. Future work will determine the effects of tritium gas exposure on the electrical conductivity of polyaniline films, to demonstrate whether such films can be used as a sensor to detect tritium. Surface conductivity was significantly reduced by irradiation with both gamma rays and ultraviolet light. The results of the gamma and UV experiments will be correlated with the tritium exposure results.

  1. Lightweight polyaniline-cobalt coated fly ash cenosphere composite film for electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Bora, Pritom J.; Vinoy, K. J.; Ramamurthy, Praveen C.; Kishore; Madras, Giridhar

    2016-07-01

    Thermal power plant's solid environmental waste fly ash cenosphere (FAC) is cobalt coated chemically and functionalized by in situ synthesis of polyaniline (PANI) under nitrogen atmosphere at -30 ± 2 °C and characterized by various techniques. The electromagnetic interference shielding effectiveness (EMI SE) of free standing PANI/Co-FAC (PCC) films prepared by solution casting indicates an appreciable shielding. The most effective average EMI SE of ~ 30 dB was obtained for 89 ± 3 µm thicker flexible film over the frequency range of 12.4-18 GHz (Ku-band). Mechanistically, EMI shielding due to absorption was found to be dominant. The obtained shielding effectiveness due to absorbance (SE A) of PCC film is nearly two times higher than PC film. The microwave conductivity (s) of PCC film (157-184 Sm-1) is much higher than PC film (118-142 Sm-1). Moreover, the high EM attenuation constant (α) value of PCC film indicates excellent suitability of EMI shielding due to absorption.

  2. Nanocarbonic transparent conductive films.

    PubMed

    Roth, Siegmar; Park, Hye Jin

    2010-07-01

    This tutorial review discusses the contradictory material properties of electrical conductivity and optical transparency for the examples of graphene films and carbon nanotube networks. It is argued that for homogeneous films both properties are linked by basic laws of physics and that for perfect monoatomic layers conductivity and transparency can be calculated from the fine structure constant. To beat these limitations, inhomogeneous films are required, such as graphene with an array of holes or nanotube networks. An overview is given on literature values of transparency and conductivity, both for graphene films and for nanotube networks. PMID:20502813

  3. Synthesis, characterization and low temperature electrical conductivity of Polyaniline/NiFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Prasanna, G. D.; Prasad, V. B.; Jayanna, H. S.

    2015-02-01

    Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity cRT decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.

  4. Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Lang, Xingyou; Zhang, Ling; Fujita, Takeshi; Ding, Yi; Chen, Mingwei

    2012-01-01

    We report three-dimensional bicontinuous nanoporous Au/polyaniline (PANI) composite films made by one-step electrochemical polymerization of PANI shell onto dealloyed nanoporous gold (NPG) skeletons for the applications in electrochemical supercapacitors. The NPG/PANI based supercapacitors exhibit ultrahigh volumetric capacitance (∼1500 F cm-3) and energy density (∼0.078 Wh cm-3), which are seven and four orders of magnitude higher than these of electrolytic capacitors, with the same power density up to ∼190 W cm-3. The outstanding capacitive performances result from a novel nanoarchitecture in which pseudocapacitive PANI shells are incorporated into pore channels of highly conductive NPG, making them promising candidates as electrode materials in supercapacitor devices combing high-energy storage densities with high-power delivery.

  5. Growth, Morphology, and Electrical Characterization of Polyaniline-ZnO Nano-composite Langmuir-Blodgett Thin Films

    NASA Astrophysics Data System (ADS)

    Bhullar, Gurpreet Kaur; Kaur, Ramneek; Raina, K. K.

    2015-10-01

    Polyaniline (PANi)-zinc oxide (ZnO) nano-composites were prepared by chemical polymerization of aniline doped with ZnO nanoparticles. Surface pressure-area ( π-A) isotherms for the PANi-ZnO nano-composite revealed phase transformations of the monolayer during compression. Langmuir-Blodgett (LB) films of PANi and PANi-ZnO nano-composite were characterized by use of UV-visible (UV-Vis) and Fourier-transform infrared spectroscopy, atomic force microscopy, and conductive atomic force microscopy (C-AFM). Local current-voltage ( I- V) characteristics revealed the current range for PANi-ZnO nano-composite LB films was larger than that for PANi LB films. Conductive data images were recorded to investigate charge-transport current inhomogeneities in the LB films.

  6. Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Patil, U. V.; Ramgir, Niranjan S.; Karmakar, N.; Bhogale, A.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.; Kothari, D. C.

    2015-06-01

    Thin films of copper nanoparticles intercalated-polyaniline nanocomposites (NC) have been deposited at room temperatures by in situ oxidative polymerization of aniline in the presence of different concentrations of Cu nanoparticles. The response characteristics of the NC thin films toward different gases namely NH3, CO, CO2, NO and CH4 were examined at room temperature. Both pure polyaniline (PANI) and NC films exhibited a selective response toward NH3. Incorporation of Cu nanoparticles resulted in an improvement of the sensors response and response kinetics. The response and the recovery times of composite film toward 50 ppm of NH3 were 7 and 160 s, respectively. Additionally, the NC sensor film could reversibly detect as low as 1 ppm of NH3 concentrations. The enhanced response of NC films toward NH3 is attributed to the deprotonation and reprotonation processes as also supported by Raman investigations.

  7. Improved morphology in electrochemically grown conducting polymer films

    SciTech Connect

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1990-12-31

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  8. Electromechanical behavior of polyaniline/poly (vinyl alcohol) blend films under static, dynamic and time-dependent strains

    NASA Astrophysics Data System (ADS)

    Akhilesan, S.; Lakshmana Rao, C.; Varughese, S.

    2014-07-01

    We report on the experimentally observed electrical conductivity enhancement in polyaniline/poly (vinyl alcohol) blend films under uniaxial tensile loading. Polyaniline (PANI) is an intrinsically conducting polymer, which does not form stretchable free-standing films easily and hence its electromechanical characterization is a challenge. Blending of PANI with other insulating polymers is a good choice to overcome the processability problem. We report the electromechanical response of solution blended and HCl doped PANI/PVA blends subjected to uniaxial, static, dynamic and time-dependent tensile loading. The demonstrated viscoelastic and morphological contributions of the component polymers to the electrical conductivity behavior in these blends could lead to interesting applications in strain sensors and flexible electronics. The reversibility of the electromechanical response under dynamic strain is found to increase in blends with higher PANI content. Time-dependent conductivity studies during mechanical stress relaxation reveal that variations in the micro-domain ordering and the relative relaxation rate of the individual polymer phases can give rise to interesting electrical conductivity changes in PANI blends. From morphological and electrical conductivity studies, we show that PANI undergoes primary and secondary agglomeration behavior in these blends that contributes to the changes in conductivity behavior during the deformation. A 3D variable range hopping (VRH) process, which uses a deformable core and shell concept based on blend morphology analysis, is used to explain the experimentally observed electromechanical behavior.

  9. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors.

    PubMed

    Meng, Yuena; Wang, Kai; Zhang, Yajie; Wei, Zhixiang

    2013-12-23

    A highly flexible graphene free-standing film with hierarchical structure is prepared by a facile template method. With a porous structure, the film can be easily bent and cut, and forms a composite with another material as a scaffold. The 3D graphene film exhibits excellent rate capability and its capacitance is further improved by forming a composite with polyaniline nanowire arrays. The flexible hierarchical composite proves to be an excellent electrode material for flexible supercapacitors. PMID:24123419

  10. Optical and mechanical properties of vacuum evaporated vapour chopped polyaniline thin film

    NASA Astrophysics Data System (ADS)

    Yadav, J. B.; Puri, R. K.; Puri, V.

    2007-08-01

    The paper reports the effect of chopping the vapour flow on properties of vacuum evaporated polyaniline thin films synthesized by aqueous polymerization pathway. The chopper was a metallic vane of V-shaped cut out placed between the substrate and boat in the path of evaporated vapour. It interrupted the flow of vapour at a constant rate. Fourier Transform Infra-red (FTIR) studies indicated that the vacuum evaporated films are more in reduced form and contain short chain oligomers. Improved adhesion and reduced intrinsic stress of polyaniline thin film due to chopping are obtained. Higher transmittance and lower refractive index films resulted due to the process of chopping as compared to the deposited films. Chopping also produces smoother surface morphology.

  11. Structural, optical and electrical properties of CdS–polyaniline Langmuir–Blodgett films

    SciTech Connect

    Das, Nayan Mani Roy, Dhrubojyoti Gupta, P. S.; Gupta, M.; Ganesan, V.

    2014-04-24

    Structural, optical and electrical properties study of the cadmium sulphide (CdS) incorporated polyaniline (PANI) thin films with varying layers have been carried out. It is seen that layer variation enhances the particle mean sizes with quenching of photoluminescence and an increase in rectifying nature of current-voltage measurements.

  12. Prevention of corrosion with polyaniline

    NASA Technical Reports Server (NTRS)

    MacDiarmid, Alan G. (Inventor); Ahmad, Naseer (Inventor)

    1997-01-01

    Methods for improving the corrosion inhibition of a metal or metal alloy substrate surface are provided wherein the substrate surface is coated with a polyaniline film. The polyaniline film coating is applied by contacting the substrate surface with a solution of polyaniline. The polyaniline is dissolved in an appropriate organic solvent and the solvent is allowed to evaporate from the substrate surface yielding the polyaniline film coating.

  13. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    SciTech Connect

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  14. Polyaniline modified flexible conducting paper for cancer detection

    NASA Astrophysics Data System (ADS)

    Kumar, Saurabh; Sen, Anindita; Kumar, Suveen; Augustine, Shine; Yadav, Birendra K.; Mishra, Sandeep; Malhotra, Bansi D.

    2016-05-01

    We report results of studies relating to the fabrication of a flexible, disposable, and label free biosensing platform for detection of the cancer biomarker (carcinoembryonic antigen, CEA). Polyaniline (PANI) has been electrochemically deposited over gold sputtered paper (Au@paper) for covalent immobilization of monoclonal carcinoembryonic antibodies (anti-CEA). The bovine serum albumin (BSA) has been used for blocking nonspecific binding sites at the anti-CEA conjugated PANI/Au@Paper. The PANI/Au@Paper, anti-CEA/PANI/Au@Paper, and BSA/anti-CEA/PANI/Au@Paper platforms have been characterized using scanning electron microscopy, X-ray diffraction, Fourier transmission infrared spectroscopy, chronoamperometry, and electrochemical impedance techniques. The results of the electrochemical response studies indicate that this BSA/anti-CEA/PANI/Au@paper electrode has sensitivity of 13.9 μA ng-1 ml cm2, shelf life of 22 days, and can be used to estimate CEA in the range of 2-20 ng ml-1. This paper sensor has been validated by detection of CEA in serum samples of cancer patients via immunoassay technique.

  15. Superstructure fiber Bragg gratings with coated polyaniline film for ammonia detecting

    NASA Astrophysics Data System (ADS)

    Ai, Long; Mau, Jiang-Chiou; Liu, Wen-Fung; Fu, Ming-Yue; Chen, Tzu-Chiang

    2007-05-01

    In this paper, we proposed a chemical-gas fiber sensor based on the poly-aniline film coated on the surface of an etched fiber grating and experimentally demonstrated for detecting ammonia gas. This sensing mechanism is based on the testing gas to interact with the poly-aniline coating film on the surface of the fiber grating to cause the thin-film index change and then to create the Bragg wavelength shift or grating reflectivity variation. The sensitivity and response time of this sensor for measuring ammonia gas are around 0.73 nm per percent concentration and tens of mini-seconds respectively, which depend on the optical characteristics of fiber grating, the diameter of fiber cladding, and the constituents of chemical sensing film. This sensor may provide a simple, reliable, repeatable and non-destructive fiber sensing technique.

  16. Dielectric spectroscopy of polyaniline

    SciTech Connect

    Calleja, R.D.; Matveeva, E.M.

    1993-12-31

    Polyaniline films (PANI) are being considered as attractive new galvanic sources, electrochromic displays, chemical sensors, etc. So far much work has been done to study their optical, electrochemical and electrical properties. However, there are still doubts about the basic electric conductivity mechanisms of PANI. The aim of this paper is to study the influence of water molecules and acid anions on the properties of PANI films by dielectric spectroscopy.

  17. Stable Two-Dimensional Conductance Switch of Polyaniline Molecule Connecting to Graphene Nanoribbons

    PubMed Central

    Fan, Zhi-Qiang; Chen, Ke-Qiu

    2014-01-01

    Incorporating the characteristics of the single-layer graphene nanoribbon and the polyaniline molecule, we theoretically design a two-dimensional molecular device and investigate its transport properties by applying nonequilibrium Green's functions in combination with density-functional theory. The calculated results reveal that the arrangements of frontier molecular orbitals and the energy gap between the HOMO and the LUMO of an isolated polyaniline molecule are different between its two isolable states: full reduced leucoemeraldine base and full oxidized pernigraniline base. When a polyaniline molecule connects to two graphene nanoribbons as a two-dimensional molecular device, the conductance of its full oxidized pernigraniline base is much higher than the conductance of its full reduced leucoemeraldine base. The switch ratios of two bases' currents almost maintain a constant value before 0.8 V. In other word, the conductance switch behavior in our device is stable in a big bias region which makes it have a broader application in future logic and memory devices. PMID:25099203

  18. Humidity sensing with doped polyaniline

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa; Chakane, Sanjay D. S.; Bhoraskar, S. V.; Samui, A. B.; Krishnamurthy, V. N.

    2001-03-01

    Polyaniline (PANI) was doped with different dopants like camphosulphoric acid (CSA), diphenyl phosphate (DPPH), Sulphonic acid (S) and Maleic acid (MAC) by chemical method. The samples were prepared in the form of pellets as well as films. Polyaniline doped with Maleic acid was found to be mechanically and chemically stable as compared to other dopants and therefore the effect of humidity on conductivity was further investigated. Films prepared out of styrene buryl acrylate copolymer with different concentrations of PANI Maleic acid were used for sensing humidity ranging between 20% to 90% relative humidity. A maximum change in the conductivity of three to four orders of magnitude was obtained for the Maleic acid doped polyaniline pellet while two orders of magnitude change was obtained for the film samples over the range of humidity measured.

  19. Effects of thickness, dopant type and doping levels of flexible nanoscale polyaniline films on responses to gases

    NASA Astrophysics Data System (ADS)

    Sinha, Mousumi; Panda, Siddhartha

    2015-07-01

    While doped nanoscale (sub-100 nm) polyaniline films have shown interesting behavior with respect to electrical conductivities and thermal sensing, there has been scant attention to responses of such films to gases. In this work, a detailed study on the effects of film thicknesses, doping levels and dopant types on the responses to different gases is presented. The responses to NO2 were higher than to NO and NH3, and the films were unresponsive to N2, O2, CO2 and H2. The responses to NO2 and NH3 increased with decrease in film thickness below about 50 nm and were prominent at lower doping levels, and also were dependent on the type of dopant used. Explanations for the experimental observations were provided based on energy considerations. The modulation of the calculated LUMO levels and band gaps, and the Fermi energy levels at lower film thicknesses and doping levels correlated well with the responses. As the transfer of electrons resulting in the formation of the charge complex depends on the difference between the Fermi level of the film and the Mulliken electronegativity of the gas molecules, this difference in the energy levels also correlated with the effects of different gases and different dopants. Limited tests on the effect of water vapor were conducted.

  20. Enhancement of photoelectric catalytic activity of TiO{sub 2} film via Polyaniline hybridization

    SciTech Connect

    Wang Yajun; Xu Jing; Zong Weizheng; Zhu Yongfa

    2011-06-15

    A Polyaniline (PANI)/TiO{sub 2} film coated on titanium foil was successfully prepared using the sol-gel method followed by a facile chemisorption. Compared with pristine TiO{sub 2}, the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation rates of 2,4-dichlorophenol (2,4-DCP) with the PANI/TiO{sub 2} film were enhanced by 22.2% and 57.5%, respectively. 2,4-DCP can be mineralized more effectively in the presence of PANI/TiO{sub 2} film. The best PEC degradation efficiency of 2,4-DCP with the PANI/TiO{sub 2} film was acquired at an external potential of 1.5 V with a layer of 1 nm thick PANI. The PANI/TiO{sub 2} film was characterized by Raman spectra, Fourier transform infrared spectra (FT-IR), Auger electron spectroscopy (AES), and electrochemical analysis. These results indicated that there was a chemical interaction on the interface of PANI and TiO{sub 2}. This interaction may be of significance to promote the migration efficiency of carriers and induce a synergetic effect to enhance the PC and PEC activities. - Graphical abstract: The effect of PANI content on 2,4-DCP degradation with initial concentration of 50 mg/L, external potential=1.5 V. Inset: degradation rate constants of various PANI/TiO{sub 2} films. Highlights: > Polyaniline/TiO{sub 2} film was prepared using the sol-gel method followed by chemisorption. > Photoelectrocatalytic degradation rate of 2,4-dichlorophenol was enhanced by 57.5%. > The modification of Polyaniline to TiO{sub 2} film caused a rapid charge separation. > Best degradation efficiency was acquired at 1.5 V with 1 nm thick PANI.

  1. Ferromagnetic Conducting Lignosulfonic Acid-doped Polyaniline Nanocomposites

    NASA Technical Reports Server (NTRS)

    Viswansthan, Tito (Inventor); Berry, Brian (Inventor)

    2004-01-01

    A conductive ferromagnetic composition of matter comprising sulfonated lignin or a sulfonated polyflavonoid, or derivatives thereof, and ferromagnetic iron oxide particles is disclosed. Among the uses of the composition is to shield electromagnetic radiation. The ferromagnetic iron oxide particles of the composition are surprisingly stable to acid, and are easily and inexpensively formed from iron cations in solution.

  2. Magnetoactive feature of in-situ polymerised polyaniline film developed on the surface of manganese-zinc ferrite

    NASA Astrophysics Data System (ADS)

    Babayan, V.; Kazantseva, N. E.; Sapurina, I.; Moučka, R.; Vilčáková, J.; Stejskal, J.

    2012-07-01

    A polyaniline film exhibits magnetoactive properties when deposited on the surface of multidomain particles of manganese-zinc ferrite during in-situ polymerisation of aniline. This is reflected in the increased coercivity and thermomagnetic stability of an in-situ prepared composite compared with bare ferrite and its mixed composite with polyaniline. In addition, the deposition of a polyaniline film results in a shift of the complex-permeability dispersion region towards ultrahigh frequency band. These changes in the magnetic properties of polyaniline-coated ferrite are attributed to the increased value of the inner demagnetisation factor, which results from stress-induced magnetic anisotropy due to the pinning of domain walls appearing on the surface of ferrite. This study is focused on the mechanism of pinning of domain walls and its influence on the magnetic properties of in-situ prepared composites in terms of the molecular mechanism of oxidative polymerisation of aniline. Ferrite stimulates the propagation of polyaniline chains, which start to grow on the domain walls on the ferrite surface. It leads to the pinning of domain walls and restricts their mobility in a magnetic field. The further increase in the coercivity and the resonance frequency of polyaniline-coated ferrite due to film shrinkage after deprotonation of polyaniline makes it obvious that polyaniline coating induces elastic stresses in a ferrite particle that stimulate the growth of the effective magnetic anisotropy. Stress-induced magnetic anisotropy contributes to the reorientation of the magnetisation vectors in domains with respect to the new directions of easy magnetisation, given by magnetoelastic stresses, which leads to complex changes in the magnetic properties of in-situ prepared composites.

  3. A spectroelectrochemical study on single-oscillator model and optical constants of sulfonated polyaniline film.

    PubMed

    Caglar, Mujdat; Ilican, Saliha; Caglar, Yasemin; Sahin, Yücel; Yakuphanoglu, Fahrettin; Hür, Deniz

    2008-11-15

    The optical properties of sulfonated polyaniline (SPAN) thin film prepared by electrochemical method have been investigated. Polychromic behavior of SPAN thin film (transparent yellow-green-dark blue) was observed when the cyclic voltammograms were taken between -0.25 V and +1.90 V (vs. Ag/AgCl, sat.) during the growth of polyaniline film. In situ UV-vis spectra of the polymers-indium tin oxide (ITO) glass electrode were taken during the oxidation of the polymers at different applied potentials. The direct band gap values of SPAN thin film changed from 3.771 eV to 3.874 eV with the applied potentials. From in situ UV-vis spectra, the optical constants such as refractive index and dielectric constant of the SPAN thin film were determined. The important changes in absorption edge, refractive index and the dielectric constant were observed due to the applied potentials. The refractive index dispersion curves of the film obey the single-oscillator model and oscillator parameters changed with the applied potentials. The most significant result of the present work is in situ spectroelectrochemical method, which can be used to modify the optical band gaps and constants. PMID:18337162

  4. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering.

    PubMed

    Zhao, Xin; Li, Peng; Guo, Baolin; Ma, Peter X

    2015-10-15

    Biomaterials with injectability, conductivity and antibacterial effect simultaneously have been rarely reported. Herein, we developed a new series of in situ forming antibacterial conductive degradable hydrogels using quaternized chitosan (QCS) grafted polyaniline with oxidized dextran as crosslinker. The chemical structures, morphologies, electrochemical property, conductivity, swelling ratio, rheological property, in vitro biodegradation and gelation time of hydrogels were characterized. Injectability was verified by in vivo subcutaneous injection on a Sprague Dawley rat. The antibacterial activity of the hydrogels was firstly evaluated employing antibacterial assay using Escherichia coli and Staphylococcus aureus in vitro. The hydrogels containing polyaniline showed enhanced antibacterial activity compared to QCS hydrogel, especially for hydrogels with 3 wt% polyaniline showing 95 kill% and 90kill% for E. coli and S. aureus, respectively. Compared with QCS hydrogel, the hydrogels with 3 wt% polyaniline still showed enhanced antibacterial activity for E. coli in vivo. The adipose-derived mesenchymal stem cells (ADMSCs) were used to evaluate the cytotoxicity of the hydrogels and hydrogels with polyaniline showed better cytocompatibility than QCS hydrogel. The electroactive hydrogels could significantly enhance the proliferation of C2C12 myoblasts compared to QCS hydrogel. This work opens the way to fabricate in situ forming antibacterial and electroactive degradable hydrogels as a new class of bioactive scaffolds for tissue regeneration applications. PMID:26272777

  5. Styrene-Butadiene Co-Polymer Based Highly Conducting and Flexible Polymer Composite Film with Low Percolation Threshold

    NASA Astrophysics Data System (ADS)

    Mathew, Anisha Mary; Neena, P.

    2011-10-01

    Conducting polymer composites are finding novel applications in various fields especially in device technology. In this work an effort has been made to synthesize polyaniline-synthetic rubber (Styrene-butadiene rubber) composite via ex-situ technique and its electrochemical properties are investigated. Highly conducting emeraldine form of polyaniline (20 S/cm) is prepared by the oxidative polymerization of aniline in aqueous acidic (CSA) media using ammonium peroxydisulfate as oxidizing agent. These composite films are characterized by UV-Visible spectroscopy to investigate their optical properties. The dc conductivity studies indicate that these composite films show extremely low percolation threshold.

  6. Observation of a deuteron nuclear magnetic resonance Knight shift in conductive polyaniline

    NASA Astrophysics Data System (ADS)

    Goddard, Yanina A.; Vold, Robert L.; Cross, Jennifer; Espe, Matthew P.; Hoatson, Gina L.

    2005-02-01

    Solid state deuteron magic angle spinning nuclear magnetic resonance spectra of conductive ring-deuterated polyaniline consist of two peaks, one at the same chemical shift as the insulating form of the polymer and the second shifted by 5.8±1 ppm. The magnitude of the shift is field and temperature independent and is identified as a Knight shift. The deuterons undergoing a Knight shift originate from both the crystalline and amorphous regions of the sample, implying that conduction is mediated by delocalized polarons in both these regions. Spin count experiments demonstrate that in highly conductive samples, signal is lost not only by dephasing due to the proximity of localized unpaired electrons but also to high rf reflectance.

  7. Novel poly (vinyl butyral) (PVB)/polyaniline-cenosphere composite film for EMI shielding

    NASA Astrophysics Data System (ADS)

    Bora, Pritom J.; Shahidsha, N.; Madras, Giridhar; Kishore, Ramamurthy, Praveen C.

    2016-05-01

    in-situ synthesis of polyaniline (PANI)/fly ash cenosphere (hollow microspheres) composite was carried out under nitrogen atmosphere at -30±2 °C. Investigated electromagnetic shielding effectiveness (EMI SE) of free standing PVB/PANI-cenosphere (PVBPC) composite films prepared by solution casting indicates an ap preciable shielding. The most effective EMI SE of 30.3 dB was obtained for 197±3 µm thicker flexible film over the frequency range 8.2-12.4 GHz. Mechanistically, absorption was found to be dominant. The obtained shielding effectiveness due to absorbance (SEA) of PVBPC film is more than two times higher than PVB/PANI composite film. In the presence of hollow PANI-cenospheres in PVB matrix the time average power of incident electromagnetic wave decreases resulting in an increase of absorbance.

  8. Structural organization of films based on polyaniline/polysulfonic acid complexes depending on the synthesis method

    SciTech Connect

    Simagina, L. V. Gaynutdinov, R. V.; Stepina, N. D.; Sorokina, K. L.; Morozova, O. V.; Shumakovich, G. P.; Yaropolov, A. I.; Tolstikhina, A. L.

    2010-07-15

    The optical properties and morphology of complexes based on polyaniline (PANI) and poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS), depending on their synthesis conditions, have been characterized by UV-visible spectroscopy and atomic force microscopy. The dependence of the electron absorption spectra of PANI/PAMPS complexes and the surface topography of their films on the initiation way of PANI formation (chemical and enzymatic) and the use of promoters of aniline polymerization has been investigated. The aniline polymerization kinetics with and without polymerization promoters has been studied. All PANI/PAMPS complexes are found to have a nanocomposite time-stable structure.

  9. Fabrication of polyaniline/polyimide composite fibers with electrically conductive properties

    NASA Astrophysics Data System (ADS)

    Lv, Pengxia; Zhao, Yong; Liu, Fangfang; Li, Guomin; Dai, Xuemin; Ji, Xiangling; Dong, Zhixin; Qiu, Xuepeng

    2016-03-01

    A series of polyaniline/polyimide (PANi/PI) composite fibers was prepared via dry-jet wet spinning followed by in situ polymerization growth. The resultant composite fibers showed good mechanical properties with a tensile strength of 0.90 GPa, a tensile modulus of 6.79 GPa, and an elongation at break of 14.63%. Thermogravimetric and thermal mechanical analyses revealed that the composite fibers had considerably good thermal stabilities in air and nitrogen atmospheres, as well as good size stabilities at 50-150 °C. Current-voltage curves indicated the transformation from electric insulation to electrical conductivity along the fiber axial direction. The composite fibers exhibited a sensitive response to immersion in solutions with different pH values. This work provides a simple approach to fabricate PANi/PI composite fibers that could be applied in the antistatic textile and military industries.

  10. Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study

    NASA Astrophysics Data System (ADS)

    Papathanassiou, Anthony N.; Mykhailiv, Olena; Echegoyen, Luis; Sakellis, Ilias; Plonska-Brzezinska, Marta E.

    2016-07-01

    The complex electric modulus and the ac conductivity of carbon nano-onion/polyaniline composites were studied from 1 mHz to 1 MHz at isothermal conditions ranging from 15 K to room temperature. The temperature dependence of the electric modulus and the dc conductivity analyses indicate a couple of hopping mechanisms. The distinction between thermally activated processes and the determination of cross-over temperature were achieved by exploring the temperature dependence of the fractional exponent of the dispersive ac conductivity and the bifurcation of the scaled ac conductivity isotherms. The results are analyzed by combining the granular metal model (inter-grain charge tunneling of extended electron states located within mesoscopic highly conducting polyaniline grains) and a 3D Mott variable range hopping model (phonon assisted tunneling within the carbon nano-onions and clusters).

  11. Development of Conducting Polyaniline/ Poly(Lactic Acid) Nanofibers by Electrospinning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultrafine fibers consisting of blends of polyaniline doped with p-toluene sulfonic acid and poly(L-lactic acid) were prepared by electrospinning. The presence of polyaniline resulted in fibers with diameters as thin as 100– 200 nm and a significant reduction of bead formation. These fibers were visu...

  12. Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Zang, Xiaobei; Li, Xiao; Zhu, Miao; Li, Xinming; Zhen, Zhen; He, Yijia; Wang, Kunlin; Wei, Jinquan; Kang, Feiyu; Zhu, Hongwei

    2015-04-01

    We report the design and preparation of graphene and polyaniline (PANI) woven-fabric composite films by in situ electropolymerization. The introduction of PANI greatly improves the electrochemical properties of solid-state supercapacitors which possess capacitances as high as 23 mF cm-2, and exhibit excellent cycling stability with ~100% capacitance retention after 2000 cycles. The devices have displayed superior flexibility with improved areal specific capacitances to 118% during deformation.We report the design and preparation of graphene and polyaniline (PANI) woven-fabric composite films by in situ electropolymerization. The introduction of PANI greatly improves the electrochemical properties of solid-state supercapacitors which possess capacitances as high as 23 mF cm-2, and exhibit excellent cycling stability with ~100% capacitance retention after 2000 cycles. The devices have displayed superior flexibility with improved areal specific capacitances to 118% during deformation. Electronic supplementary information (ESI) available: SEM image, Raman spectrum and electrochemical characterizations. See DOI: 10.1039/c5nr00584a

  13. Cost-effective and highly sensitive cholesterol microsensors with fast response based on the enzyme-induced conductivity change of polyaniline

    NASA Astrophysics Data System (ADS)

    Fang, Kuan-Chung; Chu, Chia-Ho; Hsu, Chen-Pin; Kang, Yen-Wen; Fang, Jung-Ying; Hsu, Chia-Hsien; Huang, Yu-Fen; Chen, Chih-Chen; Li, Sheng-Shian; Andrew Yeh, J.; Yao, Da-Jeng; Wang, Yu-Lin

    2014-09-01

    In this study, a cost-effective and highly sensitive cholesterol microsensor, which is consisted of cholesterol oxidase (ChOx), horseradish peroxidase (HRP), and polyaniline (PANI), was developed based on the enzyme-induced conductivity change of PANI with fast response. Hydrogen peroxide is produced via the reaction between cholesterol and ChOx, which was immobilized in a dialysis membrane. The produced hydrogen peroxide can oxidize HRP, which can be reduced by oxidizing PANI, thus resulting in decreased conductivity of the polyaniline thin film. The reduced HRP can be oxidized again by hydrogen peroxide and the cycle of the oxidation/reduction continues until all hydrogen peroxide are reacted, leading to the high sensitivity of the sensor due to the signal contributed from all hydrogen peroxide molecules. Cholesterol was detected near the physiological concentrations ranging from 100 mg/dl to 400 mg/dl with the cholesterol microsensors. The results show linear relation between cholesterol concentration and the conductivity change of the PANI. The microsensor showed no response to cholesterol when the PANI was standalone without cholesterol oxidase immobilized, indicating that the enzymatic reaction is required for cholesterol detection. The simple process of the sensor fabrication allows the sensor to be cost-effective and disposable usage. This electronic cholesterol microsensor is promising for point-of-care health monitoring in cholesterol level with low cost and fast response.

  14. Cost-effective and highly sensitive cholesterol microsensors with fast response based on the enzyme-induced conductivity change of polyaniline

    SciTech Connect

    Fang, Kuan-Chung; Chu, Chia-Ho; Hsu, Chen-Pin; Kang, Yen-Wen; Fang, Jung-Ying; Chen, Chih-Chen; Li, Sheng-Shian; Andrew Yeh, J.; Yao, Da-Jeng; Wang, Yu-Lin; Hsu, Chia-Hsien; Huang, Yu-Fen

    2014-09-15

    In this study, a cost-effective and highly sensitive cholesterol microsensor, which is consisted of cholesterol oxidase (ChOx), horseradish peroxidase (HRP), and polyaniline (PANI), was developed based on the enzyme-induced conductivity change of PANI with fast response. Hydrogen peroxide is produced via the reaction between cholesterol and ChOx, which was immobilized in a dialysis membrane. The produced hydrogen peroxide can oxidize HRP, which can be reduced by oxidizing PANI, thus resulting in decreased conductivity of the polyaniline thin film. The reduced HRP can be oxidized again by hydrogen peroxide and the cycle of the oxidation/reduction continues until all hydrogen peroxide are reacted, leading to the high sensitivity of the sensor due to the signal contributed from all hydrogen peroxide molecules. Cholesterol was detected near the physiological concentrations ranging from 100 mg/dl to 400 mg/dl with the cholesterol microsensors. The results show linear relation between cholesterol concentration and the conductivity change of the PANI. The microsensor showed no response to cholesterol when the PANI was standalone without cholesterol oxidase immobilized, indicating that the enzymatic reaction is required for cholesterol detection. The simple process of the sensor fabrication allows the sensor to be cost-effective and disposable usage. This electronic cholesterol microsensor is promising for point-of-care health monitoring in cholesterol level with low cost and fast response.

  15. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  16. Preparation, characterization and electrochromic properties of composite thin films incorporation of polyaniline

    NASA Astrophysics Data System (ADS)

    Farasat, Mahshid; Golzan, M. Maqsood; Farhadi, Khalil; Shojaei, S. H. Reza; Gheisvandi, Sorayya

    2016-05-01

    Two different electrochromic composite films consisting of aniline/sodium molybdate (S1) and aniline/ferric nitrate (S2) were obtained by electrochemical polymerization method on indium tin oxide (ITO) coated glass substrates in oxalic acid (H2C2O4ṡ2H2O) aqueous solution. The electrochromic properties of the resulting thin films were investigated by spectroelectrochemical measurement and cyclic voltammetry (CV). Under a square electrical potential, they show capacitive current characteristic and represent electrochromic performance, with maximum optical attenuations (ΔT%) of 30.8% at 355nm and 28.3% at 400nm for aniline/ferric nitrate and aniline/sodium molybdate thin films, respectively. Optical behavior of thin films was examined by UV-Vis spectrophotometry technique. The doped films indicated multiple color changes (yellow; green; and bluish green). The spectra also showed that produced layers have high absorption of UV radiation with respect to pure polyaniline (PANI) films. The optical band gap energy of PANI film decreased by dopant injection. Due to their decent transparency and electrochromic behavior, they are promising materials for electrochromic devices.

  17. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzhi; Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin; Hu, Chenglong

    2016-03-01

    Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV-vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C4H9)4N+ under the positive and negative potentials as comparison with the small Li+ ion.

  18. Enhancement of Electrochromic Durability of a Film Made of Silica-Polyaniline Core-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Lee, Heungyeol; Kim, Hohyeong; Kim, Gyuntak; Mun, Gyeongjin

    Enhancing the operation life time or the electrochemical durability is one of the key issues in electrochromic material studies. It is generally accepted that the inorganic-organic hybrid structure is one of the effective ways to enhance the chemical stability of the material. In this study, an electrochromic film made of silica-polyaniline core-shell composite nanoparticles was tested. The composite particles were prepared through a chemical dispersion polymerization of aniline in an aqueous colloidal solution of silica. The synthesized particles were then dispersed into ethanol and the solution was deposited onto an Indium Tin Oxide (ITO)-coated glass substrate. The electrochromic characterization on the prepared films was performed using the cyclovoltammetry and the optical response to a switching potential. The results showed that the inorganic-organic core-shell hybrid nanoparticle could be a promising choice for the enhancement of electrochromic durability.

  19. Thermally conductive of nanofluid from surfactant doped polyaniline nanoparticle and deep eutectic ionic liquid

    NASA Astrophysics Data System (ADS)

    Siong, Chew Tze; Daik, Rusli; Hamid, Muhammad Azmi Abdul

    2014-09-01

    Nanofluid is a colloidal suspension of nano-size particles in a fluid. Spherical shape dodecylbenzenesulfonic acid doped polyaniline (DBSA-PANI) nanoparticles were synthesized via reverse micellar polymerization in isooctane with average size of 50 nm- 60 nm. The aim of study is to explore the possibility of using deep eutectic ionic liquid (DES) as a new base fluid in heat transfer application. DES was prepared by heating up choline chloride and urea with stirring. DES based nanofluids containing DBSA-PANI nanoparticles were prepared using two-step method. Thermal conductivity of nanofluids was measured using KD2 Pro Thermal Properties Analyzer. When incorporated with DBSA-PANI nanoparticles, DES with water was found to exhibit a bigger increase in thermal conductivity compared to that of the pure DES. The thermal conductivity of DES with water was increased by 4.67% when incorporated with 0.2 wt% of DBSA-PANI nanoparticles at 50°C. The enhancement in thermal conductivity of DES based nanofluids is possibly related to Brownian motion of nanoparticles as well as micro-convection of base fluids and also interaction between dopants and DES ions.

  20. Graphene/polyaniline/poly(4-styrenesulfonate) hybrid film with uniform surface resistance and its flexible dipole tag antenna application.

    PubMed

    Shin, Keun-Young; Cho, Sunghun; Jang, Jyongsik

    2013-11-25

    A graphene/polyaniline/poly(4-styrenesulfonate) (G/PANI/PSS)-based conducting paste is successfully fabricated by introducing a PANI/PSS nanofiller into a multilayer graphene matrix by mechanical blending. As a compatibilizer, the PSS binder increases the dispersibility, interfacial interactions, and mechanical interlocking between the multilayer graphene matrix and PANI, thereby allowing surface resistance with narrow distribution. High concentrations of this PSS binder, obtained using ex situ polymerization, further improve the adhesion of the hybrid film to a flexible substrate. The minimum surface resistance of the screen-printed G/PANI/PSS hybrid film is approximately 10 Ω sq(-1) for a 70 μm uniform thickness. When bent to angles of -30°, the flexible hybrid film exhibits an approximately 6% decrease in surface resistance. The surface resistance after 500 bending cycles increases by only 10 Ω sq(-1) , which is 14 times that of smaller, graphene-based thin films. The micropatterned, screen-printed G/PANI/PSS hybrid film is evaluated as a practical dipole tag antenna. High-resolution patterns are formed in the hybrid film by the inherently high surface tension and the properties of grains within the domain-based structure. The G/PANI/PSS-based dipole tag antenna has a bandwidth of 28.7 MHz, a high transmitted power efficiency of 98.5%, and a recognition distance of 0.42 m at a mean frequency of 910 MHz. These characteristics indicate that the G/PANI/PSS-based dipole tag antenna could be used as a signal-receiving apparatus, much like a radio-frequency identification tag, for detecting nearby objects. PMID:23650263

  1. Novel electrically conducting 2-hydroxyethylcellulose/polyaniline nanocomposite cryogels: Synthesis and application in tissue engineering.

    PubMed

    Petrov, Petar; Mokreva, Pavlina; Kostov, Ivan; Uzunova, Veselina; Tzoneva, Rumiana

    2016-04-20

    Novel electrically conducting 2-hydroxyethylcellulose/polyaniline (HEC/PANI) nanocomposite cryogels were fabricated via the combination of cryogenic treatment and photochemical crosslinking. PANI nanofillers (one-dimentional tubes and three-dimentional particles) were synthesized via oxidative polymerization of aniline in aqueous media and, then, embedded in the HEC matrix. The effect of PANI content and morphology on the gel fraction yield and electrical conductivity of material was studied. Nanocomposite cryogels of high gel fraction yield (65-95%) and rather high electrical conductivity (0.02-0.1S/m) were obtained by using a relatively small amount (0.5-3wt.% to HEC) of pre-formed PANI nanofillers. The behavior of L929 cells adhered on HEC/PANI cryogels in the presence of electric field were also investigated. Cytotoxicity test showed very good survival and proliferation of cells on cryogels, while the electrical stimulation triggered changes in cell morphology as well as a specific alignment of cells in parallel to the electrical field. PMID:26876861

  2. Electrical conductivity of microwave heated polyaniline nanotubes and possible mechanism of microwave absorption by materials.

    PubMed

    Murai, Takahiro; Fukasawa, Ryo; Muraoka, Tohru; Takauchi, Hiroyuki; Gotoh, Yasuo; Takizawa, Tokihiro; Matsuse, Takehiro

    2009-01-01

    In the course of experiments to perform deprotonation and carbonization of doped polyaniline (PANI) nanotubes (NTs) by irradiating directly 2.45 GHz microwave (MW) in our microwave heating system (MWHS), we have discovered that the PANI-NTs self heat by absorbing the MW but the temperature of the PANI-NTs stops rising around 300 degrees C in spite of the heightened MW power Furthermore, we have found that the MW irradiated PANI-NTs have transferred from electrical conductor to insulator depending on the temperature of the PANI-NTs. By measuring electron spin resonance (ESR) spectra of the MW heated PANI-NTs, the existence of the unpaired electrons is shown to have a strong correlation between the degree of MW absorption and the transition in the electrical conductivities. In order to deprotonate and carbonize further the PANI-NTs, we have performed heat treatment for the PANI-NTs up to a temperature (T(HT)) of about 1200 degrees C in the same MWHS using carbon fiber which self heats by absorbing MW. The chemical transformations in the PANI-NTs induced by the heat treatments are discussed by measuring the X-ray photoelectron spectroscopy (XPS) spectra. Finally, the temperature dependence of electrical conductivities of the PANI-NTs are measured in order to investigate the mechanism of electrical conduction of the heat treated PANI-NTs. PMID:21384721

  3. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors.

    PubMed

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m(2) g(-1)) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics. PMID:27249547

  4. Enhancement of photoelectric catalytic activity of TiO 2 film via Polyaniline hybridization

    NASA Astrophysics Data System (ADS)

    Wang, Yajun; Xu, Jing; Zong, Weizheng; Zhu, Yongfa

    2011-06-01

    A Polyaniline (PANI)/TiO 2 film coated on titanium foil was successfully prepared using the sol-gel method followed by a facile chemisorption. Compared with pristine TiO 2, the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation rates of 2,4-dichlorophenol (2,4-DCP) with the PANI/TiO 2 film were enhanced by 22.2% and 57.5%, respectively. 2,4-DCP can be mineralized more effectively in the presence of PANI/TiO 2 film. The best PEC degradation efficiency of 2,4-DCP with the PANI/TiO 2 film was acquired at an external potential of 1.5 V with a layer of 1 nm thick PANI. The PANI/TiO 2 film was characterized by Raman spectra, Fourier transform infrared spectra (FT-IR), Auger electron spectroscopy (AES), and electrochemical analysis. These results indicated that there was a chemical interaction on the interface of PANI and TiO 2. This interaction may be of significance to promote the migration efficiency of carriers and induce a synergetic effect to enhance the PC and PEC activities.

  5. New membrane technologies: Nanotube membranes for biotechnological applications and polyaniline films for corrosion inhibition

    NASA Astrophysics Data System (ADS)

    Gasparac, Rahela

    polyaniline (PANI) films passivate stainless steel surfaces in highly corrosive H2SO 4 solution. A variety of experimental methods including measurements of the open circuit potential, Auger depth profiling, and the scanning reference electrode technique (SRET) was used. These studies have shown that passivation is achieved because the oxidized and protically-doped emeraldine-salt form of PANI holds the potential of the underlying stainless steel electrode in the passive region. Because of this electrostatic mechanism of corrosion inhibition, the entire stainless steel surface does not have to be coated with PANI in order to achieve passivation.

  6. Processing and formulation of inkjet printable conducting polyaniline based ink for low cost, flexible humidity sensors using untreated polymeric substrate

    NASA Astrophysics Data System (ADS)

    Kulkarni, Milind V.; Apte, Sanjay K.; Naik, Sonali D.; Ambekar, Jalindar D.; Kale, Bharat B.

    2012-03-01

    Conducting polymer, polyaniline based aqueous inkjet printable ink has been synthesized by a single-step chemical polymerization technique. Sulfonic acids were used as a dopant during the in situ polymerization process. This is a single-step polymerization process for the direct synthesis of conducting emeraldine salt phase of the polymer as an ink formulation. Ammonium persulfate was used as an oxidizing agent to initiate the polymerization. The synthesized polyaniline ink formulation was characterized by UV-vis and FT-IR spectroscopic analysis. The presence of a very sharp peak at 800 nm represents the presence of the conducting emeraldine salt phase of the polymer. This is further supported by FT-IR spectroscopic characterization. The viscosity of the ink was measured by using a Brookfield viscometer. Successive trials were performed for the printing of interdigitated patterns on the flexible untreated polymer substrate using an HP inkjet printer. The printed sensor was subjected to humidity sensing measurements. The change in the resistance with change in the % relative humidity (RH) was observed. The synthesized polyaniline based ink can be considered as a good candidate for a variety of inkjet printed low cost electronics devices.

  7. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    NASA Astrophysics Data System (ADS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  8. Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Sun, Li-Jie; Luan, Feng; Liang, Ying; Li, Yat; Liu, Xiao-Xia

    We report the synthesis and pseudocapacitive studies of a composite film (PANI-ND-MnO 2) of polyaniline (PANI) and manganese oxide (MnO 2) nanoparticles. To enhance the interaction of MnO 2 and PANI, the surfaces of MnO 2 nanoparticles were modified by a silane coupling reagent, triethoxysilylmethyl N-substituted aniline (ND42). The composite film was obtained via controlled electro-co-polymerization of aniline and N-substituted aniline grafted on surfaces of MnO 2 nanoparticles (ND-MnO 2) on a carbon cloth in a electrolyte of 0.5 M H 2SO 4 and 0.6 M (NaPO 3) 6. In comparison to similarly prepared PANI film, the incorporation of MnO 2 nanoparticles substantially increases the effective surface area of the film by reducing the size of rod-like PANI aggregates and avoiding the entanglement of these PANI nanorods. Significantly, we observed significant enhancement of specific capacitance in PANI-ND-MnO 2 film compared to PANI-MnO 2 film prepared in a similar condition, indicating that the presence of the coupling reagent can improve the electrochemical performance of PANI composite film. A symmetric model capacitor has been fabricated by using two PANI-ND-MnO 2 nanocomposite films as electrodes. The PANI-ND-MnO 2 capacitor showed an average specific capacitance of ∼80 F g -1 and a stable coulombic efficiency of ∼98% over 1000 cycles. The results demonstrated that PANI-ND-MnO 2 nanocomposites are promising materials for supercapacitor electrode and the importance of designing and manipulating the interaction between PANI and MnO 2 for fundamentally improving capacitive properties.

  9. Spectroscopic study of the highly homogeneous polyaniline film formation on gold support

    NASA Astrophysics Data System (ADS)

    Morávková, Zuzana; Stejskal, Jaroslav; Trchová, Miroslava

    2016-01-01

    The oxidation of aniline with ammonium peroxydisulfate in the aqueous solution of acetic acid has two subsequent phases: the oxidation of the neutral aniline molecules at low acidity, which was followed by the oxidation of the anilinium cations after the acidity became higher. The final polyaniline film deposited on immersed surfaces is usually contaminated with semi-crystalline oligomers which precipitated during induction period from the reaction medium. To obtain a homogeneous film, which is important in the fabrication of many molecular electronic devices, we have studied the course of aniline oxidation in a view of new experimental evidence. In the unique series of experiments, the silicon or gold supports have been immersed in the reaction mixture at crucial stages of oxidation reaction, and the deposits at the end of the reaction were analyzed. The growth of a highly homogenous film on the gold-coated glass substrate immersed in the reaction mixture at the end of the polymerization period has been observed. The molecular structure of the products was monitored with UV-visible, infrared, and Raman spectroscopies. The possible mechanism of the film formation and the molecular mechanism of the surface interaction of chemisorbed aniline oligomers with gold support are proposed.

  10. Spectroscopic study of the highly homogeneous polyaniline film formation on gold support.

    PubMed

    Morávková, Zuzana; Stejskal, Jaroslav; Trchová, Miroslava

    2016-01-01

    The oxidation of aniline with ammonium peroxydisulfate in the aqueous solution of acetic acid has two subsequent phases: the oxidation of the neutral aniline molecules at low acidity, which was followed by the oxidation of the anilinium cations after the acidity became higher. The final polyaniline film deposited on immersed surfaces is usually contaminated with semi-crystalline oligomers which precipitated during induction period from the reaction medium. To obtain a homogeneous film, which is important in the fabrication of many molecular electronic devices, we have studied the course of aniline oxidation in a view of new experimental evidence. In the unique series of experiments, the silicon or gold supports have been immersed in the reaction mixture at crucial stages of oxidation reaction, and the deposits at the end of the reaction were analyzed. The growth of a highly homogenous film on the gold-coated glass substrate immersed in the reaction mixture at the end of the polymerization period has been observed. The molecular structure of the products was monitored with UV-visible, infrared, and Raman spectroscopies. The possible mechanism of the film formation and the molecular mechanism of the surface interaction of chemisorbed aniline oligomers with gold support are proposed. PMID:26231780

  11. Metallic-like Wilson ratio in the polyaniline hydrochloride conducting polymer

    SciTech Connect

    Limelette, P.; Schmaltz, B.; Tran Van, F.; Brault, D.

    2015-03-28

    We report on the calorimetric and magnetic properties of the polyaniline hydrochloride in order to discuss its metallicity. Both the specific heat and the magnetic susceptibility χ have been investigated as a function of temperature from 300 K down to 2 K. The measurements of the specific heat have allowed us to determine the electronic Sommerfeld coefficient γ and the temperature dependence of the susceptibility has revealed a Pauli-like component. By combining χ and γ, the dimensionless Wilson ratio R{sub W}∝χ/γ demonstrates that the universal free electrons limit is reached above 100 K as a strong check of the metallicity of this conducting polymer. By removing the Pauli component from the measured susceptibility, the resulting contribution displays below 100 K a well-defined Curie-like component in agreement with a few percents of spins localized by disorder at low temperatures. These results are therefore consistent with an electronic itinerancy, namely, a metallic state even in the presence of disorder.

  12. Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite.

    PubMed

    Feng, Xue; Cheng, Huijun; Pan, Yiwen; Zheng, Hao

    2015-08-15

    A biosensor was fabricated by immobilizing glucose oxidase (GOD) into nanostructured graphene (GRA)-conducting polyaniline (PANI) nanocomposite, which was based on electrochemical polymerization of aniline in GRA synthesized by using electrochemical expansion of graphite in propylene carbonate electrolyte. Scanning electron spectroscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the morphology and performance of the as-prepared biosensor, respectively. Amperometric measurements were carried out to optimize test conditions (pH and applied potential) of the biosensor. Under the optimal conditions, the biosensor showed a linear range from 10.0 μM to 1.48 mM (R(2)=0.9988) with a sensitivity of 22.1 μA mM(-1) cm(-2), and a detection limit of 2.769 μM (S/N=3). The apparent Michaelis-Menten constant (KM(a)) was estimated to be 3.26 mM. The interference from glycine (Gly), D-galactose (D-Gal), urea (Urea), L-phenylalanine (L-Phe), ascorbic acid (AA), and L-tyrosine (L-Tyr) was also investigated. The results indicated that the biosensor exhibit high sensitivity and superior selectivity, providing a hopeful candidate for glucose biosensing. PMID:25845333

  13. Synthesis of highly conductive cotton fiber/nanostructured silver/polyaniline composite membranes for water sterilization application

    NASA Astrophysics Data System (ADS)

    Abu-Thabit, Nedal Y.; Basheer, Rafil A.

    2014-09-01

    Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500-1000 nm size giving a membrane electrical resistance in the range of 10-30 Ohm sq-1. However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2-10 Ohm sq.-1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 107-108 CFU mL-1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h-1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected.

  14. Thin-film microelectric arrays for amperometric enzyme biosensors with electrochemically synthesized glucose oxidase-polyaniline membrane

    NASA Astrophysics Data System (ADS)

    Dzyadevich, Sergei V.; Rossokhaty, Victor K.; Shram, Nataly; Shul'ga, Alexander A.; Soldatkin, Alexey P.; Strikha, Vitaly I.

    1994-10-01

    An amperometric glucose biosensor was fabricated by the electrochemical polymerization of aniline onto a gold electrodes in presence of glucose oxidase in phosphate buffer solution, pH 7.0. Aniline is easily polymerized forming a thin film, which adheres tightly on the electrodes surface. During the electropolymerization process the enzyme was entrapped into the polyaniline film being able to catalyze the hydrolysis of glucose. The experiments were performed to determine the optimal condition for polyaniline-glucose oxidase film preparation. Glucose can be determined by the biosensor in the concentration range 10-4 M to 2 X 10-2 M. The linearity of the biosensor response was observed from 2 X 10-4 M to 6 X 10-3 M glucose, which demonstrated that the internal diffusion of substrates and products of reaction through the polyaniline layer to the electrodes surface was the main limiting factor controlling the response value. The method of electropolymerization was found to have several advantage in comparison with other approaches especially for further mass manufacturing of the biosensors.

  15. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m2 g-1) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics.A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully

  16. Electrical and structural characterization of plasma polymerized polyaniline/TiO2 heterostructure diode: a comparative study of single and bilayer TiO2 thin film electrode.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik

    2011-04-01

    A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers. PMID:21776701

  17. Correlation between Raman spectroscopy and electrical conductivity of graphite/polyaniline composites reacted with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Aymen, Mannai; Sami, Saidi; Ahmed, Souissi; Fethi, Gmati; Abdellatif, Belhadj Mohamed

    2013-08-01

    The aim of this work is to correlate the Raman spectroscopic studies to the electrical properties of graphite/polyaniline composites (G/PANI) reacted with hydrogen peroxide. Raman spectroscopic studies have been performed for G/PANI composites with different graphite weight concentrations (y% = 0, 10, 20, 50). As expected, Raman bands situated at 1350 and 1580 cm-1 coming from graphite lattice appear, and their intensity increases with increasing graphite concentrations. The measured Raman region (1170-1800 cm-1) of PANI reacted with hydrogen peroxide was convoluted and fitted with seven Lorentzian curves. Three Lorentzian curves centred at 1609, 1578 and 1336 cm-1 are investigated. We find that the band at 1578 cm-1 attributed to the C=C stretching vibration in the quinonoid ring (Q) is slightly shifted to 1584 cm-1 and its intensity increases during the reaction with hydrogen peroxide. However, the peaks at 1609 and 1336 cm-1 attributed respectively to the C-C stretching of the benzenoid ring (B) and C-N+. vibration of delocalized polaronic structures (protonation band—PB), keep the same position and their intensities decrease. This could be interpreted as a deprotonation of imines nitrogen atoms in PANI. These results were correlated with the electrical percolation behaviour which occurs in the composite. Indeed, the electrical conductivity of G/PANI composites treated with H2O2 increases with increasing G weight concentration, only when this later becomes higher than a critical concentration yc known as the percolation threshold. We find that the percolation behaviour is linked to the intensity decrease of B and PB bands and to the intensity increase of Q band.

  18. Synthesis of diphenylalanine/polyaniline core/shell conducting nanowires by peptide self-assembly.

    PubMed

    Ryu, Jungki; Park, Chan Beum

    2009-01-01

    Breaking the mold: Self-assembled peptide nanowires were used as a template for the synthesis of hollow polyaniline (PANI) nanotubes (see scanning electron microscopy images). The thickness and the morphology of the PANI nanostructures could be controlled readily either by varying the reaction time or by applying multiple PANI coatings. PMID:19466726

  19. DC electrical conductivity retention and electrical compensation of polyaniline by TiO2 at higher loading percentages in polyaniline@TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Ansari, Mohd Omaish; Khan, Mohammad Mansoob; Ansari, Sajid Ali; Cho, Moo Hwan

    2015-07-01

    Electrically conductive HCl-doped polyaniline (Pani)@titanium dioxide (TiO2) nanocomposites were prepared by the in-situ oxidative polymerization of aniline in the presence of different amounts of TiO2 nanoparticles. The synthesized Pani@TiO2 nanocomposites were characterized by transmission electron microscopy, X-ray diffraction, UV-visible spectroscopy, and thermogravimetric analysis. The stability of the Pani@TiO2 nanocomposites in terms of their electrical conductivity retention was examined under isothermal and cyclic aging conditions, and compared with that of pure Pani. The Pani@TiO2 nanocomposites showed higher thermal stability than pure Pani. The effect of competitive doping/de-doping by TiO2 was examined at different Pani to TiO2 weight ratios. TiO2 at a higher weight percentage was found to be involved in the de-doping type of interaction with Pani, leading to its neutralization, which was found to be similar to the dedoping phenomenon, as in the case of neutralization in basic media. The novel mechanism for this de-doping type of interaction of TiO2 with Pani has also been proposed. [Figure not available: see fulltext.

  20. Ultrasound and ionic-liquid-assisted synthesis and characterization of polyaniline/Y2O3 nanocomposite with controlled conductivity.

    PubMed

    Kowsari, E; Faraghi, G

    2010-04-01

    A sonochemical method has been employed to prepare polyaniline-Y(2)O(3) nanocomposite with controlled conductivity with the assistance of an ionic liquid (IL). Ultrasound energy and the IL replace conventional oxidants and metal complexes in promoting the polymerization of aniline monomer for the first time. Structural characterization has revealed that the resulting nanocomposite consists of microspheres of average diameter 3-5 microm. The products were found to consist of regular solid microspheres covered with some 40 nm nanoparticles. Under certain polymerization conditions, polyaniline nanofibers and nanosheet were obtained. The method may open a new pathway for the preparation of nanoscale conducting polymer nanocomposites with the aid of ILs. The conductivity of the product varies with the mass ratio of aniline monomer to Y(2)O(3) and IL. TG curves of the products suggest that the thermal degradation process of the PANI/Y(2)O(3) composites proceeds in two steps and that the composites are more thermally stable than pure PANI. The reaction conditions have been optimized by varying parameters such as the aniline/Y(2)O(3) ratio and the type and amount of IL used. The effect of the ultrasonic irritation time and frequency on the morphology, conductivity and yield were discussed. PMID:20036598

  1. Processable polyaniline/titania nanocomposites with good photocatalytic and conductivity properties prepared via peroxo-titanium complex catalyzed emulsion polymerization approach

    NASA Astrophysics Data System (ADS)

    Li, Yuzhen; Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang

    2013-05-01

    The homogeneous polyaniline (PAni)/TiO2 nanocomposites were successfully synthesized via a facile emulsion polymerization with the assistance of peroxo-titanium complex (PTC), where PTC was used as both the TiO2 precursor and the oxidant for the polymerization of PAni/TiO2 nanocomposites. Comprehensive analysis indicated that anatase TiO2 nanocrystals (about 4-6 nm) were well-dispersed in the PAni chains without aggregation, and the TiO2 were anchored on the polymer chains through chemical interactions, such as Tisbnd Osbnd Nsbnd C and Tisbnd Osbnd C, which made the PAni/TiO2 composite possess better thermal stability. The PAni/TiO2 composite could be well dispersed in common solvent, such as acetone, and stay stability without any precipitation for a month. Since the PAni/TiO2 composite could be well dispersed in common solvent, the PAni/TiO2 dispersion may be coated on the surface of Poly (ethylene terephthalate) (PET) film, showing good processable properties, and the prepared PAni/TiO2/PET films exhibit good photocatalysis and best conductivity (2.08 × 10-2 s cm-1), when the molar ratio of aniline (AN) and Ti in the PAni/TiO2 composite is 1/1. The possible reaction mechanism was also discussed. The facile synthesized method proposed can also be used for the preparation of other conducting polymer/semiconductor nanocomposites.

  2. Modification of inner surface of photonic crystal fibers with self-assembled polyaniline films

    NASA Astrophysics Data System (ADS)

    Pidenko, Sergei A.; Pidenko, Pavel S.; Bondarenko, Sergei D.; Shuvalov, Andrei A.; Burmistrova, Natalia A.; Goryacheva, Irina Y.

    2016-04-01

    Photonic crystal fibers (PCFs) with a hollow core are one of the most promising solid support of fiber-optic sensors. The main advantages of PCF as sensor elements in clinical analysis are minimization of optical interactions from the sample and the ability to analyze small volume of samples. At the same time, low sorption capacity of glass which is the basic material for the fabrication of the PCF, limits their use in the development of biosensors. Modification of the inner surface of the PCF can be the solution of the problem. In this work the synthesis of self-assembled films of polyaniline (PANI) on the inner surface of the PCFs was carried out. The modified PCFs were studied by spectroscopy and electron microscopy. It was found that the covering of the inner surface of the PCFs with PANI leads to a shift of the local maximums of the transmission spectrum PCFs up to 25 nm. These makes possible to design the method of varying of photonic bandgaps location.

  3. Reagentless polyol detection by conductivity increase in the course of self-doping of boronate-substituted polyaniline.

    PubMed

    Andreyev, Egor A; Komkova, Maria A; Nikitina, Vita N; Zaryanov, Nikolay V; Voronin, Oleg G; Karyakina, Elena E; Yatsimirsky, Anatoly K; Karyakin, Arkady A

    2014-12-01

    We report on the novel reagentless and label-free detection principle based on electroactive (conducting) polymers considering sensors for polyols, particularly, saccharides and hydroxy acids. Unlike the majority of impedimetric and conductometric (bio)sensors, which specific and unspecific signals are directed in the same way (resistance increase), making doubtful their real applications, the response of the reported system results in resistance decrease, which is directed oppositely to the background. The mechanism of the resistance decrease is the polyaniline self-doping, i.e., as an alternative to proton doping, an appearance of the negatively charged aromatic ring substituents in polymer chain. Negative charge "freezing" at the boron atom is indeed a result of complex formation with di- and polyols, specific binding. Changes in Raman spectra of boronate-substituted polyaniline after addition of glucose are similar to those caused by proton doping of the polymer. Thermodynamic data on interaction of the electropolymerized 3-aminophenylboronic acid with saccharides and hydroxy acids also confirm that the observed resistance decrease is due to polymer interaction with polyols. The first reported conductivity increase as a specific signal opens new horizons for reagentless affinity sensors, allowing the discrimination of specific affinity bindings from nonspecific interactions. PMID:25363870

  4. Flexible Electrode Design: Fabrication of Freestanding Polyaniline-Based Composite Films for High-Performance Supercapacitors.

    PubMed

    Khosrozadeh, Ali; Darabi, Mohammad Ali; Xing, Malcolm; Wang, Quan

    2016-05-11

    Polyaniline (PANI) is a promising pseudocapacitance electrode material. However, its structural instability leads to low cyclic stability and limited rate capability which hinders its practical applications. In view of the limitations, flexible PANI-based composite films are developed to improve the electrochemical performance of electrode materials. We report in the research a facile and cost-effective approach for fabrication of a high-performance supercapacitor (SC) with excellent cyclic stability and tunable energy and power densities. SC electrode containing a very high mass loading of active materials is a flexible film of PANI, tissue wiper-based cellulose, graphite-based exfoliated graphite (ExG), and silver nanoparticles with potential applications in wearable electronics. The optimum preparation weight ratios of silver nitrate/aniline and ExG/aniline used in the research are estimated to be 0.18 and 0.65 (or higher), respectively. Our results show that an ultrahigh capacitance of 3.84 F/cm(2) (240.10 F/g) at a discharge rate of 5 mA can be achieved. In addition, our study shows that the power density can be increased from 1531.3 to 3000 W/kg by selecting the weight ratio of ExG/aniline to be more than 0.65, with a sacrifice in the energy density. The obtained promising electrochemical properties are found to be mainly attributed to an effective combination of PANI, ExG, cushiony cellulose scaffold, and silver as well as the porosity of the composite. PMID:27116563

  5. Poly(aniline) in corrosion resistant coatings

    SciTech Connect

    McAndrew, T.P.; Miller, S.A.; Gilicinski, A.G.; Robeson, L.M.

    1996-10-01

    During the past two decades, one of the most active fields of solid-state science has been electrically conductive polymers. These are polymers which are insulators as prepared, but which can be converted to polymers having many or all the properties of a metal, by virtue of appropriate chemical/electrochemical oxidation or reduction. Typically, applications examined for electrically conductive polymers have been in areas such as rechargeable batteries and charge dissipative coatings. Recently it has been reported that poly(aniline), in its electrically conductive, protonated form, shows excellent performance as a coating for preventing the corrosion of carbon steel. The present research has shown that in fact, the non-conductive, unprotonated form of poly(aniline) shows even better performance in corrosion prevention than the conductive form. Moreover, it has been shown that poly(aniline) can be blended with other polymers to improve their corrosion resistance performance (e.g., polyimides), or used as a hardener for epoxides or diisocyanates, to give very good corrosion resistant coatings. Poly(aniline) performance is explained in terms of its ability to form dense, adherent films, and create a basic surface on carbon steel surfaces.

  6. Stabilization of polyaniline solutions through additives

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.

    1996-12-10

    A stabilized non-conductive polyaniline solution comprising from about 1 to about 10 percent by weight polyaniline or a polyaniline derivative, from about 90 to about 99 percent by weight N-methylpyrrolidone, and from about 0.5 percent by weight to about 15 percent by weight of a solution stabilizing additive selected from the group consisting of hindered amine light stabilizers, polymeric amines, and dialkylamines, percent by weight of additive based on the total weight of polyaniline or polyaniline derivative is provided together with a method for stabilizing a polyaniline solution. 4 figs.

  7. Magnetic and electromagnetic properties of Pr doped strontium ferrite/polyaniline composite film

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Li, Yuqing; Wang, Yan

    2014-11-01

    This paper reported three acid (including hydrochloric acid HCl, p-toluenesulfonic acid PTS and D-camphor-10-acid CSA) doped SrPr0.2Fe11.8O19/PANI composite film and the HCl-PANI film prepared by a sol-gel method and in-situ oxidative polymerization. The characteristics of the film phase structure, surface morphology, conductivity and magnetic and electromagnetic properties were studied by using XRD, XPS, FESEM, four-probe tester, VSM and Vector Network Analyzer. The resistivity of organic acid doped composite films is higher than that of the HCl doped one. The saturation and remanent magnetization of PTS and HCl doped composite films are greater than the CSA-doped one; however, the coercivity of the three acid doped composite films is basically 5546 Oe. The saturation magnetization, remanent magnetization and coercivity of SrPr0.2Fe11.8O19 film are greater than those of the SrPr0.2Fe11.8O19-PANI composite film. In the frequency range of 8-12 GHz, the dielectric loss of HCl-PANI film is the maximum, and the dielectric loss of SrPr0.2Fe11.8O19 film is the minimum; the magnetic loss of the four films is in descending order as SrPr0.2Fe11.8O19 film, PrSrM/(HCl-PANI) composite film, PrSrM/(CSA-PANI) and HCl-PANI film.

  8. Engineered Molecular Chain Ordering in Single-Walled Carbon Nanotubes/Polyaniline Composite Films for High-Performance Organic Thermoelectric Materials.

    PubMed

    Wang, Liming; Yao, Qin; Xiao, Juanxiu; Zeng, Kaiyang; Qu, Sanyin; Shi, Wei; Wang, Qun; Chen, Lidong

    2016-06-21

    Single-walled carbon nanotubes (SWNTs)/polyaniline (PANI) composite films with enhanced thermoelectric properties were prepared by combining in situ polymerization and solution processing. Conductive atomic force microscopy and X-ray diffraction measurements confirmed that solution processing and strong π-π interactions between the PANI and SWNTs induced the PANI molecules to form a highly ordered structure. The improved degree of order of the PANI molecular arrangement increased the carrier mobility and thereby enhanced the electrical transport properties of PANI. The maximum in-plane electrical conductivity and power factor of the SWNTs/PANI composite films reached 1.44×10(3)  S cm(-1) and 217 μW m(-1)  K(-2) , respectively, at room temperature. Furthermore, a thermoelectric generator fabricated with the SWNTs/PANI composite films showed good electric generation ability and stability. A high power density of 10.4 μW cm(-2)  K(-1) was obtained, which is superior to most reported results obtained in organic thermoelectric modules. PMID:27123885

  9. Electrically Conductive Polyimide Films Containing Gold Surface

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.

    1994-01-01

    Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.

  10. Organic conductive films for semiconductor electrodes

    DOEpatents

    Frank, A.J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  11. Organic conductive films for semiconductor electrodes

    DOEpatents

    Frank, Arthur J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor overcoated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  12. Synthesis of nanostructured polyaniline

    NASA Astrophysics Data System (ADS)

    Surwade, Sumedh P.

    The organization of my thesis is as follows: (a) Chapter III describes the synthesis of bulk quantities of polyaniline nanofibers in one step using a simple and versatile high ionic strength aqueous system (HCl/NaCl) that permits the use of pure H2O2 as a mild oxidant without any added metal or enzyme catalyst. Polyaniline nanofibers obtained are highly conducting, sigma˜1--5 S/cm, and spectroscopically similar to conventional polyaniline synthesized using stronger oxidants. The synthesis method is further extended to the synthesis of oligoanilines of controlled molecular weight, e.g., aniline tetramer, octamer, and hexadecamer. Microns long tetramer nanofibers are synthesized using this method. (b) Chapter IV describes the mechanism of nanofiber formation in polyaniline. It is proposed that the surfaces such as the walls of the reaction vessel and/or intentionally added surfaces play a dramatic role in the evolution of nanofibrillar morphology. Nucleation sites on surfaces promote the accumulation of aniline dimer that reacts further to yield aniline tetramer, which (surprisingly) is entirely in form of nanofibers and whose morphology is transcribed to the bulk by a double heterogeneous nucleation mechanism. This unexpected phenomenon could form the basis of nanofiber formation in all classes of precipitation polymerization systems. (c) Chapter V is the mechanistic study on the formation of oligoanilines during the chemical oxidation of aniline in weakly acidic, neutral or basic media using peroxydisulfate oxidant. It is proposed that the reaction proceeds via the intermediacy of benzoquinone monoimine that is formed as a result of a Boyland-Sims rearrangement of aniline. The initial role of peroxydisulfate is to provide a pathway for the formation of benzoquinone monoimine intermediate that is followed by a conjugate Michael-type addition reaction with aniline or sulfated anilines. The products isolated in pH 2.5--10.0 buffers are intermediate species at various

  13. Effect of multiwalled carbon nanotubes on electrical conductivity and magnetoconductivity of polyaniline

    NASA Astrophysics Data System (ADS)

    Chakraborty, Goutam; Gupta, Kajal; Rana, Dipak; Meikap, Ajit Kumar

    2012-09-01

    An in situ chemical polymerization method was applied in order to prepare polyaniline-multiwalled carbon nanotube (PANI-MWCNT) composites with different concentrations of MWCNT. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, optical absorption and photoluminescence analyses of the composites were performed to investigate the structural, morphological and optical properties of the composites. Electrical transport properties of different PANI-MWCNT composites were investigated in the temperature range 77 K ⩽ T ⩽ 300 K in the presence and also in the absence of a magnetic field up to 1 T. The dc resistivity of the composites follows Mott's variable range hopping theory. Two different slopes have been observed in temperature variation of resistivity, which occurs due to the presence of MWCNT in the polymer matrix. The magnetoconductivity of the samples at different temperatures is negative, which can be explained by the wavefunction shrinkage effect.

  14. Heat Conduction in Novel Electronic Films

    NASA Astrophysics Data System (ADS)

    Goodson, Kenneth E.; Ju, Y. Sungtaek

    1999-08-01

    Heat conduction in novel electronic films influences the performance and reliability of micromachined transistors, lasers, sensors, and actuators. This article reviews experimental and theoretical research on heat conduction in single-crystal semiconducting and superconducting films and superlattices, polycrystalline diamond films, and highly disordered organic and oxide films. The thermal properties of these films can differ dramatically from those of bulk samples owing to the dependence of the material structure and purity on film processing conditions and to the scattering of heat carriers at material boundaries. Predictions and data show that phonon scattering and transmission at boundaries strongly influence the thermal conductivities of single-crystal films and superlattices, although more work is needed to resolve the importance of strain-induced lattice defects. For polycrystalline films, phonon scattering on grain boundaries and associated defects causes the thermal conductivity to be strongly anisotropic and nonhomogeneous. For highly disordered films, preliminary studies have illustrated the influences of impurities on the volumetric heat capacity and, for the case of organic films, molecular orientation on the conductivity anisotropy. More work on disordered films needs to resolve the interplay among atomic-scale disorder, porosity, partial crystallinity, and molecular orientation.

  15. Bi-nanoparticle (CdTe and CdSe) mixed polyaniline hybrid thin films prepared using spin coating technique

    NASA Astrophysics Data System (ADS)

    Verma, Deepak; Dutta, V.

    2009-02-01

    Polyaniline (Pani) films containing CdTe, CdSe, and both nanoparticles were deposited using spin coating technique. Pani was chemically synthesized by oxidation method, whereas surfactant free CdTe and CdSe nanoparticles were prepared using solvothermal method. Binanoparticle films showed an increase in the absorption from 350 nm to the near IR region. Absorption spectra also showed charge transfer complex formation for the binanoparticle hybrid thin films prepared with weight ratio of [Pani (camphor sulfonic acid, CSA):CdTe:CdSe] 200:100:75. Photoluminescence measurement for the bi-nanoparticle hybrid thin films confirmed that the required dissociation of excitons was taking place at the interface. Scanning electron microscopy images showed homogeneity and an interconnected network on the surface of the films prepared with Pani (CSA):CdTe:CdSe weight ratios of 200:100:50 and 200:100:75, respectively. Cyclic voltammetry confirmed better stability for the bi-nanoparticle hybrid films in comparison to Pani film. It also established the process of electrochemical charge transfer between the nanoparticles and the polymer matrix.

  16. Thermal conductivity of sputtered amorphous Ge films

    SciTech Connect

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka

    2014-02-15

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids.

  17. Clay/Polyaniline Hybrid through Diazonium Chemistry: Conductive Nanofiller with Unusual Effects on Interfacial Properties of Epoxy Nanocomposites.

    PubMed

    Jlassi, Khouloud; Chandran, Sarath; Poothanari, Mohammed A; Benna-Zayani, Mémia; Thomas, Sabu; Chehimi, Mohamed M

    2016-04-12

    The concept of conductive network structure in thermoset matrix without sacrificing the inherent mechanical properties of thermoset polymer (e.g., epoxy) is investigated here using "hairy" bentonite fillers. The latter were prepared through the in situ polymerization of aniline in the presence of 4-diphenylamine diazonium (DPA)-modified bentonite (B-DPA) resulting in a highly exfoliated bentonite-DPA/polyaniline (B-DPA/PANI). The nanocomposite filler was mixed with diglycidyl ether of bisphenol A (DGEBA), and the curing agent (4,4'-diaminodiphenylsulfone) (DDS) at high temperature in order to obtain nanocomposites through the conventional melt mixing technique. The role of B-DPA in the modification of the interface between epoxy and B-DPA/polyaniline (B-DPA/PANI) is investigated and compared with the filler B/PANI prepared without any diazonium modification of the bentonite. Synergistic improvement in dielectric properties and mechanical properties points to the fact that the DPA aryl groups from the diazonium precursor significantly modify the interface by acting as an efficient stress transfer medium. In DPA-containing nanocomposites, unique fibril formation was observed on the fracture surface. Moreover, dramatic improvement (210-220%) in fracture toughness of epoxy composite was obtained with B-DPA/PANI filler as compared to the weak improvement of 20-30% noted in the case of the B/PANI filler. This work shows that the DPA diazonium salt has an important effect on the improvement of the interfacial properties and adhesion of DGEBA and clay/PANI nanofillers. PMID:26963747

  18. Hydrogen film/conductive cooling

    NASA Technical Reports Server (NTRS)

    Ewen, R. L.

    1972-01-01

    Small scale nozzle tests using heated nitrogen were run to obtain effectiveness and wall heat transfer data with hydrogen film cooling. Effectiveness data are compared with an entrainment model developed from planar, unaccelerated flow data. Results indicate significant effects due to flow turning and acceleration. With injection velocity effects accounted for explicitly, heat transfer correlation coefficients were found to be the same with and without film cooling when properties are evaluated at an appropriate reference temperature for the local gas composition defined by the coolant effectiveness. A design study for an O2/H2 application with 300 psia (207 N/sq cm) chamber pressure and 1500 lbs (6670 N) thrust indicates an adiabatic wall design requires 4 to 5 percent of the total flow as hydrogen film cooling. Internal regenerative cooling designs were found to offer no reduction in coolant requirements.

  19. A Simple Visual Ethanol Biosensor Based on Alcohol Oxidase Immobilized onto Polyaniline Film for Halal Verification of Fermented Beverage Samples

    PubMed Central

    Kuswandi, Bambang; Irmawati, Titi; Hidayat, Moch Amrun; Jayus; Ahmad, Musa

    2014-01-01

    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%–0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification. PMID:24473284

  20. A simple visual ethanol biosensor based on alcohol oxidase immobilized onto polyaniline film for halal verification of fermented beverage samples.

    PubMed

    Kuswandi, Bambang; Irmawati, Titi; Hidayat, Moch Amrun; Jayus; Ahmad, Musa

    2014-01-01

    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%-0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification. PMID:24473284

  1. Preparation and characterization of nano-composites with carbon nanotubes and core-shell type polyaniline for the conductive colloidal ink

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin; Varadan, Vijay K.

    2012-04-01

    Printing method for electronics elements fabrication has attractive advantages such as low material consumption, high speed fabrication, and low temperature process. The stable conductive ink is the most important factor for the fabrication of printed electronics elements with high resolution. These materials are widely used as fillers in conductive inks; metal particles, conductive polymers, and carbon materials. Among these materials, the carbon nanotubes (CNTs) are extremely attractive filler for printed electronics due to its superior electrical properties, extra high mechanical properties, and excellent chemical stability. In this research, nano-composites which are composed of multi wall carbon nanotubes (MWCNTs) and polyaniline core-shell type particles were synthesized and formulated into electrically conductive colloidal inks. The poly(acrylonitrile-co-itaconic acid-co-methylacrylate) nanoparticles were used as cores. And this core was coated with polyaniline. The surface treatments for MWCNTs were applied to make the stable nano-composites. The experimental conditions were optimized to achieve high miscibility between MWCNTs and polyaniline coated particles. Their structure and surface morphology of the nanocomposites were characterized by Scanning Electron Microscopy. And four point probe automatic resistivity meter was used to measure the conductivities of the nanocomposites.

  2. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  3. Experiments On Transparent Conductive Films For Spacecraft

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Rutledge, Sharon K.; De Groh, Kim K.; Hung, Ching-Cheh; Malave-Sanabria, Tania; Hambourger, Paul; Roig, David

    1995-01-01

    Report describes experiments on thin, transparent, electrically conductive films made, variously, of indium tin oxide covered by magnesium fluoride (ITO/MgF2), aluminum-doped zinc oxide (AZO), or pure zinc oxide (ZnO). Films are candidates for application to such spacecraft components, including various optoelectronic devices and window surfaces that must be protected against buildup of static electric charge. On Earth, such films useful on heat mirrors, optoelectronic devices, gas sensors, and automotive and aircraft windows.

  4. Anisotropic conducting films for electromagnetic radiation applications

    DOEpatents

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  5. Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band

    NASA Astrophysics Data System (ADS)

    Singh, Avanish Pratap; Anoop Kumar, S.; Chandra, Amita; Dhawan, S. K.

    2011-06-01

    β-Naphthalene sulphonic acid (β-NSA) doped polyaniline (PANI)-flyash (FA) composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37-21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D-VRH model. SEM images demonstrate that β-NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ'- iɛ″) and permeability (μ*=μ'- iμ″) of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21) using theoretical calculations given in Nicholson-Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 - 12.4 GHz) & Ku-Band (12.4 - 18 GHz) frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.

  6. Improving Electrical Conductivity, Thermal Stability, and Solubility of Polyaniline-Polypyrrole Nanocomposite by Doping with Anionic Spherical Polyelectrolyte Brushes

    NASA Astrophysics Data System (ADS)

    Su, Na

    2015-07-01

    The extent to which anionic spherical polyelectrolyte brushes (ASPB) as dopant improved the performance of polyaniline-polypyrrole (PANI-PPy) nanocomposite was investigated. Different characterization and analytical methods including Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD) confirmed that ASPB serving as dopant could improve the comprehensive properties of PANI-PPy nanocomposite. It was different from dopants such as SiO2, poly(sodium- p-styrenesulfonate) (PSS), and canonic spherical polyelectrolyte brushes (CSPB) which only enhanced the performance of PANI-PPy nanocomposite on one or two sides. The electrical conductivity of (PANI-PPy)/ASPB nanocomposite at room temperature was 8.3 S/cm, which was higher than that of PANI-PPy (2.1 S/cm), (PANI-PPy)/PSS (6.8 S/cm), (PANI-PPy)/SiO2 (7.2 S/cm), and (PANI-PPy)/CSPB (2.2 S/cm). Meanwhile, (PANI-PPy)/ASPB nanocomposite possessed enhanced thermal stability and good solubility. In addition, the effects of polymerization temperature, the molecular weight of grafted polyelectrolyte brushes, and storage time on electrical conductivity were discussed.

  7. Exploding conducting film laser pumping apparatus

    DOEpatents

    Ware, Kenneth D.; Jones, Claude R.

    1986-01-01

    Exploding conducting film laser optical pumping apparatus. The 342-nm molecular iodine and the 1.315-.mu.m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  8. Dislocation electrical conductivity of synthetic diamond films

    SciTech Connect

    Samsonenko, S. N. Samsonenko, N. D.

    2009-05-15

    A relationship between the electric resistance of single-crystal homoepitaxial and polycrystalline diamond films and their internal structure has been investigated. It is established that the electrical conductivity of undoped homoepitaxial and polycrystalline diamond films is directly related to the dislocation density in them. A relation linking the resistivity {rho} ({approx}10{sup 13}-10{sup 15} {omega} cm) with the dislocation density {gamma} ({approx}10{sup 14}-4 x 10{sup 16} m{sup -2}) is obtained. The character of this correlation is similar for both groups of homoepitaxial and polycrystalline diamond films. Thin ({approx}1-8 {mu}m) homoepitaxial and polycrystalline diamond films with small-angle dislocation boundaries between mosaic blocks exhibit dislocation conductivity. The activation energy of dislocation acceptor centers was calculated from the temperature dependence of the conductivity and was found to be {approx}0.3 eV. The conduction of thick diamond films (h > 10 {mu}m) with the resistivity {rho} {approx} 10{sup 8} {omega} cm is determined by the conduction of intercrystallite boundaries, which have a nondiamond hydrogenated structure. The electronic properties of the diamond films are compared with those of natural semiconductor diamonds of types IIb and Ic, in which dislocation acceptor centers have activation energies in the range 0.2-0.35 eV and are responsible for hole conduction.

  9. Polyaniline nanofilms as a base for novel optical sensor structures

    NASA Astrophysics Data System (ADS)

    Vasinek, Vladimir; Bocheza, Jiri; Hejduk, Stanislav; Latal, Jan; Koudelka, Petr; Vitasek, Jan

    2011-10-01

    Polyaniline hydrochloride was prepared by the oxidation of aniline hydrochloride with ammonium peroxodisulfate in dilute hydrochloric acid. The polyaniline films were produced during the polymerization on the microscope glass surfaces immersed in the reaction mixture. The thin film was created and its thickness has been about 100 nm. We have measured the spectral transmittance together with temperature changes. The polyaniline thin film is conductive and we observed changes in optical transmittance spectra and reflective spectra with electric current. Optical spectra have been measured in range from 380 nm to 1010 nm. The electric conductivity has been changed with silicate substrate. This substrate influenced the free electrons distribution and therefore the optical properties of polyaniline. Due to electric current going through the nanofilm its sensitivity to temperature has been increased. We also observed two specific spectral windows. The first one was characterized by its insensitivity to temperature; the second one has been temperature sensitive. The central wavelength of insensitive window is about 500nm. This property can be the base for novel sensors structures. We used Ocean Optics USB spectrometer for evaluation of spectral changes. Wideband white light halogen source from the same manufacturer has been applied as a light source. Small polarizing dependence of reflected light has been observed too.

  10. Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits.

    PubMed

    Wang, Hong; Yi, Su-in; Pu, Xiong; Yu, Choongho

    2015-05-13

    Electrical conductivity and thermopower of isotropic materials typically have inversely proportional correlation because both are strongly affected in the opposite way by the electronic carrier concentration. This behavior has been one of the major hurdles in developing high-performance thermoelectrics whose figure-of-merit enhances with large thermopower and high electrical conductivity. Here we report a promising method of simultaneously improving both properties with polyaniline (PANI) composites filled by carbon nanotubes (CNTs). With addition of double-wall CNTs (DWCNTs), the electronic mobility of PANI doped with camphorsulfonic acid (PANI-CSA) was raised from ∼0.15 to ∼7.3 cm(2)/(V s) (∼50 time improvement) while the carrier concentration was decreased from ∼2.1 × 10(21) to ∼5.6 × 10(20) cm(-3) (∼4 time reduction). The larger increase of mobility increased electrical conductivity despite the carrier concentration reduction that enlarges thermopower. The improvement in the carrier mobility could be attributed to the band alignment that attracts hole carriers to CNTs whose mobility is much higher than that of PANI-CSA. The electrical conductivity of the PANI-CSA composites with 30-wt % DWCNTs was measured to be ∼610 S/cm with a thermopower value of ∼61 μV/K at room temperature, resulting in a power factor value of ∼220 μW/(m K(2)), which is more than two orders higher than that of PANI-CSA as well as the highest among those of the previously reported PANI composites. Further study may result in high performance thermoelectric organic composites uniquely offering mechanical flexibility, light weight, low toxicity, and easy manufacturing. unlike conventional inorganic semiconductors. PMID:25894982

  11. Self-assembled multilayers of electroactive polymers: From highly conducting transparent thin films to light emitting diodes

    SciTech Connect

    Fou, A.; Onitsuka, O.; Ferreira, M.

    1995-12-01

    Layer-by-layer self-assembly has recently emerged as a most versatile means of processing conjugated polymers into ultrathin films with unprecedented control over thicknesses and molecular architectures. Multilayer heterostructures have been designed and fabricated from various combinations of conjugated polyions, p-type conducting polymers, sulfonated fullerenes, conjugated polymer precursors, molecular dyes, and a variety of nonconjugated polyions to study properties unique to the supramolecular organizations created. In this paper, we use layer-by-layer self-assembly to fabricate extremely thin, highly conductive films of p-doped conjugated polymers such as polypyrrole and polyaniline. Also complex multilayer heterostructures based on polyphenylene vinylene (PPV) are fabricated to study the intermolecular interactions between the PPV and other components of the film which give rise to {open_quotes}tunable{close_quotes} photoluminescence behavior. Finally, thin film light-emitting devices based on self-assembled PPV active layers are presented.

  12. Electrically conducting polyimide film containing tin complexes

    NASA Technical Reports Server (NTRS)

    St. Clair, Anne K. (Inventor); Ezzell, Stephen A. (Inventor); Taylor, Larry T. (Inventor); Boston, Harold G. (Inventor)

    1996-01-01

    Disclosed is a thermally-stable SnO.sub.2 -surfaced polyimide film wherein the electrical conductivity of the SnO.sub.2 surface is within the range of about 3.0.times.10.sup.-3 to about 1.times.10.sup.-2 ohms.sup.-1,. Also disclosed is a method of preparing this film from a solution containing a polyamic acid and SnCl.sub.4 (DMSO).sub.2.

  13. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.

    PubMed

    Sarker, Ashis K; Hong, Jong-Dal

    2012-08-28

    Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices

  14. Thermal conductivities of thin, sputtered optical films

    SciTech Connect

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO{sub 2}/Si{sub 3}N{sub 4}){sup n} and Al(Al{sub 2}O{sub 3}/AIN){sup n}. Sputtered films of more conventional materials like SiO{sub 2}, Al{sub 2}O{sub 3}, Ta{sub 2}O{sub 5}, Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented.

  15. Polyaniline fibers, films, and powders: X-ray studies of crystallinity and stress-induced preferred orientation

    SciTech Connect

    Fischer, J.E.; Zhu, Q.; Tang, X.; Scherr, E.M.; MacDiarmid, A.G. . Lab. for Research on the Structure of Matter); Cajipe, V.B. . Inst. des Materiaux des Nantes)

    1994-08-29

    Powder (hk0) and four-circle X-ray diffractometry are used to study the effects of hot-stretching on films and fibers of the emeralidine base form of polyaniline (EB-II). It is shown definitively that hot-stretching induces nucleation of new crystalline material rather than growth and/or orientation of pre-existing crystallites. The diffuse scattering from amorphous EB-II is dominated by short-range interchain correlations and develops preferred orientation in response to stretching but with a broader mosaic than the crystalline phase. For the maximally-stretched samples, the crystal fractions was determined by accounting for the different mosaic distributions of crystalline and amorphous phases, correcting for the mass of N-methylphenazolinium plasticizer and ruling out any significant contribution from NMP diffuse scattering to the amorphous EB-II profiles. Films stretched to L/L[sub 0] = 4.25 contain no more than 4% crystalline material while fibers with L/L[sub 0] = 4.5 are 24--30% crystalline. These fractional crystallinity values are significantly small than found for EB-II powder (60%). More importantly, these results have implications for models of electric properties which invoke interchain interactions.

  16. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance.

    PubMed

    Xia, X H; Tu, J P; Zhang, J; Wang, X L; Zhang, W K; Huang, H

    2008-11-19

    A highly porous NiO/polyaniline (PANI) composite film was prepared on ITO glass by combining the chemical bath deposition and electro-polymerization methods, successively. The porous NiO film acts as a template for the preferential growth of PANI along NiO flakes, and the NiO/PANI composite film has an intercrossing net-like morphology. The electrochromic performance of the NiO/PANI composite film was investigated in 1 M LiClO(4)+1 mM HClO(4)/propylene carbonate (PC) by means of transmittance, cyclic voltammetry (CV) and chronoamperometry (CA) measurements. The NiO/PANI thin film exhibits a noticeable electrochromism with reversible color changes from transparent yellow to purple and presents quite good transmittance modulation with a variation of transmittance up to 56% at 550 nm. The porous NiO/polyaniline (PANI) composite film also shows good reaction kinetics with fast switching speed, and the response time for oxidation and reduction is 90 and 110 ms, respectively. PMID:21836256

  17. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance

    NASA Astrophysics Data System (ADS)

    Xia, X. H.; Tu, J. P.; Zhang, J.; Wang, X. L.; Zhang, W. K.; Huang, H.

    2008-11-01

    A highly porous NiO/polyaniline (PANI) composite film was prepared on ITO glass by combining the chemical bath deposition and electro-polymerization methods, successively. The porous NiO film acts as a template for the preferential growth of PANI along NiO flakes, and the NiO/PANI composite film has an intercrossing net-like morphology. The electrochromic performance of the NiO/PANI composite film was investigated in 1 M LiClO4+1 mM HClO4/propylene carbonate (PC) by means of transmittance, cyclic voltammetry (CV) and chronoamperometry (CA) measurements. The NiO/PANI thin film exhibits a noticeable electrochromism with reversible color changes from transparent yellow to purple and presents quite good transmittance modulation with a variation of transmittance up to 56% at 550 nm. The porous NiO/polyaniline (PANI) composite film also shows good reaction kinetics with fast switching speed, and the response time for oxidation and reduction is 90 and 110 ms, respectively.

  18. Electric-field-induced metastable state of electrical conductivity in polyaniline nanoparticles polymerized in nanopores of a MIL-101 dielectric matrix

    NASA Astrophysics Data System (ADS)

    Romanenko, A. I.; Dybtsev, D. N.; Fedin, V. P.; Aliev, S. B.; Limaev, K. M.

    2015-01-01

    Conducting polyaniline PANI has been obtained inside dielectric nanoporous coordination polymer MIL-101. The application of an electric field transforms both bulk PANI and nanocomposite PANI@MIL to a metastable high-conductive state. After a decrease in the applied electric field, PANI and PANI@MIL relax toward a state low-conductive stable by the law ln[σ( t)/σ(τ)] = -( t/τ) n , which is typical of disordered systems with the characteristic time τ of about six hours for PANI and with three times larger time for composite PANI@MIL. The temperature dependences of the electrical conductivity σ( T) of the samples in both high- and low-ohmic states are described by the fluctuation-induced conductivity model. Significant changes in relaxation processes and in the parameters of the fluctuation-induced tunneling conduction in nanocomposite PANI@MIL are due to a decrease in the sizes of polyaniline particles in the MIL-101 matrix to nanometers.

  19. Thermal Conductivity in Nanocrystalline Ceria Thin Films

    SciTech Connect

    Marat Khafizov; In-Wook Park; Aleksandr Chernatynskiy; Lingfeng He; Jianliang Lin; John J. Moore; David Swank; Thomas Lillo; Simon R. Phillpot; Anter El-Azab; David H. Hurley

    2014-02-01

    The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.

  20. Electrically conductive palladium containing polyimide films

    NASA Technical Reports Server (NTRS)

    Taylor, L. T.; St.clair, A. K.; Carver, V. C.; Furtsch, T. A. (Inventor)

    1982-01-01

    Lightweight, high temperature resistant, electrically conductive, palladium containing polyimide films and methods for their preparation are described. A palladium (II) ion-containing polyamic acid solution is prepared by reacting an aromatic dianhydride with an equimolar quantity of a palladium II ion-containing salt or complex and the reactant product is cast as a thin film onto a surface and cured at approximately 300 C to produce a flexible electrically conductive cyclic palladium containing polyimide. The source of palladium ions is selected from the group of palladium II compounds consisting of LiPdCl4, PdS(CH3)2Cl2Na2PdCl4, and PdCl2. The films have application to aerodynamic and space structures and in particular to the relieving of space charging effects.

  1. High quality transparent conducting oxide thin films

    DOEpatents

    Gessert, Timothy A.; Duenow, Joel N.; Barnes, Teresa; Coutts, Timothy J.

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  2. Film Formation Mechanism and Electrochemical Characterization of V2O5 Xerogel Intercalated by Polyaniline

    NASA Astrophysics Data System (ADS)

    Zhu, Q. Y.; Jin, A. P.; Chen, W.; Reddy, Ch. V. S.; Liu, H. X.; Zhao, X. J.

    2006-06-01

    The nanocomposite films are prepared from a V2O5 sol and aniline by sol-gel method, followed by anode electrophoresis deposition (EDP), and characterized by IR and NMR, cyclic voltammetry and ac-impedance spectroscopy, etc. IR spectroscopy and NMR results demonstrate the presence of PANI in its emeraldine salt form, as the xerogel is formed by negatively charged ribbons, V2O5 act as a counterion to compensate the positive charge present on the nitrogen atoms. Electrochemical impedance data at -0.7 V show that the Li+ diffusion coefficient in the (PANI)0.51·V2O5·1.30H2O film is 2.92×10-11 cm2·s-1, in contrast to the value of 5.10×10-12 cm2·s-1 obtained for V2O5 and the electronic conductivity of the nanocomposite increases compared to V2O5.

  3. Method for preparing polyaniline fibers

    DOEpatents

    Mattes, Benjamin R.; Wang, Hsing-Lin

    2000-01-01

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  4. Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Yan, Jun; Fan, Zhuangjun; Wei, Tong; Zhang, Milin; Jing, Xiaoyan

    2014-02-01

    A facile approach has been developed to fabricate mesoporous PANI film on ultra-thin graphene nanosheet (G-mPANI) hybrid by in situ polymerization using graphene-mesoporous silica composite as template. Due to its mesoporous structure, over-all conductive network, G-mPANI electrode displays a specific capacitance of 749 F g-1 at 0.5 A g-1 with excellent rate capability (remains 73% even at 5.0 A g-1), much higher than that of pristine PANI electrode (315 F g-1 at 0.5 A g-1, 39% retention at 5.0 A g-1) in 1 mol L-1 H2SO4 aqueous solution. More interestingly, the G-mPANI hybrid can maintain 88% of its initial capacitance compared to 45% for pristine PANI after 1000 cycles, suggesting a superior electrochemical cyclic stability.

  5. Thermal Conductivity of Carbon Nanotube Composite Films

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  6. A Conducting Polymer Film Stronger Than Aluminum

    NASA Astrophysics Data System (ADS)

    Shi, Gaoquan; Jin, Shi; Xue, Gi; Li, Cun

    1995-02-01

    Polythiophene (Pth) was electrochemically deposited onto stainless steel substrate from freshly distilled boron fluoride-ethyl ether containing 10 millimoles of thiophene per liter. The free-standing Pth film obtained at an applied potential of 1.3 volts (versus Ag/AgCl) had a conductivity of 48.7 siemens per centimeter. Its tensile strength (1200 to 1300 kilograms per square centimeter) was greater than that of aluminium (1000 to 1100 kilograms per square centimeter). This Pth film behaves like a metal sheet and can be easily cut into various structures with a knife or a pair of scissors.

  7. Amperometric creatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film.

    PubMed

    Yadav, Sandeep; Kumar, Ashok; Pundir, C S

    2011-12-15

    A mixture of commercial creatinine amidohydrolase (CA), creatine amidinohydrolase (CI), and sarcosine oxidase (SO) was coimmobilized covalently via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry onto carboxylated multiwalled carbon nanotube (c-MWCNT)/polyaniline (PANI) nanocomposite film electrodeposited over the surface of a platinum (Pt) electrode. A creatinine biosensor was fabricated using enzyme/c-MWCNT/PANI/Pt as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and electrochemical impedance spectroscopy (EIS). The biosensor detected creatinine levels as low as 0.1 μM, estimated at a signal-to-noise ratio of 3, within 5s at pH 7.5 and 35°C. The optimized biosensor showed a linear response range of 10 to 750 μM creatinine with sensitivity of 40 μA/mM/cm(2). The fabricated biosensor was successfully employed for determination of creatinine in human serum. The biosensor showed only 15% loss in its initial response after 180 days when stored at 4°C. PMID:21906581

  8. Identification of salicylic acid using surface modified polyurethane film using an imprinted layer of polyaniline.

    PubMed

    Sreenivasan, K

    2007-02-01

    The surface of polyurethane (PU) was modified by coating a thin layer of polyaniline (PAN) by oxidizing aniline using ammonium persulfate. Affinity sites for salicylic acid (SA) were created in the coated layer by non-covalent imprinting method. The imprinted layer adsorbed SA five times more compared to the nonimprinted surface reflecting the creation of affinity sites specific to SA on the surface. The equilibrium was attained relatively faster indicating that a material of this kind is suitable for sensing applications. The selectivity in recognizing the print molecule by the imprinted surface was assessed by comparing the extent of uptake of other structurally resembling molecules namely O-amino benzoic acid and acetyl salicylic acid. The selectivity factor was found to be 22 and 16.5. The adsorbed SA was detected using the technique of Fourier transform attenuated total internal reflection infrared spectroscopy (FT-ATR-IR). The results show that molecularly imprinted surface in combination with FT-IR is a useful approach for the sensing applications. PMID:17386557

  9. Oriented ZnO nanorods grown on a porous polyaniline film as a novel coating for solid-phase microextraction.

    PubMed

    Zeng, Jingbin; Zhao, Cuiying; Chong, Fayun; Cao, Yingying; Subhan, Fazle; Wang, Qianru; Yu, Jianfeng; Zhang, Maosheng; Luo, Liwen; Ren, Wei; Chen, Xi; Yan, Zifeng

    2013-12-01

    In this work, oriented ZnO nanorods (ZNRs) were in situ hydrothermally grown on a porous polyaniline (PANI) film to function as a solid-phase microextraction (SPME) coating. Scanning electron microscopy (SEM) study revealed that the majority of oriented ZNRs grew from pores of PANI matrix, which protected the ZNRs from easily peeling off during operation. Furthermore, in this process, a thin layer of PANI was found to cover the ZNRs, which can enlarge the effective surface area of the composite coating. This ZNRs/PANI composite coating combined the merits of both ZNRs and PANI and, thus, has several advantages over that of sole PANI film and ZNRs coating such as improved extraction efficiency for benzene homologues, enhanced mechanical stability and longer service life (over 150 cycles of SPME-GC operation). Coupled with gas chromatography-flame ionization detector (GC-FID), the optimized SPME-GC-FID method was used for the analysis of six benzene homologues in water samples. The calibration curves were linear from 1 to 1000μgL(-1) for each analyte, and the limits of detection were between 0.001 and 0.024μgL(-1). Single fiber repeatability and fiber-to-fiber reproducibility were in the range of 1.3-6.8% and 5.3-11.2%, respectively. The spiked recoveries at 100 and 5μgL(-1) for three environmental water samples were in the range of 79.8-115.4% and 73.7-117.4%, respectively. PMID:24182864

  10. Manufacturing conductive polyaniline/graphite nanocomposites with spent battery powder (SBP) for energy storage: A potential approach for sustainable waste management.

    PubMed

    Duan, Xiaojuan; Deng, Jinxing; Wang, Xue; Guo, Jinshan; Liu, Peng

    2016-07-15

    A potential approach for sustainable waste management of the spent battery material (SBM) is established for manufacturing conductive polyaniline (PANI) nanocomposites as electrode materials for supercapacitors, following the principle of "What comes from the power should be used for the power". The ternary nanocomposites (G/MnO2/PANI) containing PANI, graphite powder (G) and remanent MnO2 nanoparticles and the binary nanocomposites of polyaniline and graphite powder (G/PANI) are synthesized by the chemical oxidative polymerization of aniline in hydrochloric aqueous solution with the MnO2 nanoparticles in the spent battery powder (SBP) as oxidant. The G/PANI sample, which was prepared with MnO2/aniline mole ratio of 1:1 with 1.0mL aniline in 50mL of 1.0molL(-1) HCl, exhibits the electrical conductivity of 22.22Scm(-1), the highest specific capacitance up to 317Fg(-1) and the highest energy density of 31.0 Wh kg(-1), with retention of as high as 84.6% of its initial capacitance after 1000 cycles, indicating good cyclic stability. PMID:27041443

  11. Latex-like water-borne polyaniline for coating applications

    SciTech Connect

    Liu, H.; Clark, R.; Yang, S.C.

    1998-07-01

    The authors report the synthesis of a polymeric complex of polyaniline that is dispersed in water as a stable suspension. The polymer, PAN:PVME-MLA, is a molecular complex of polyaniline and poly(vinylmethylether-co-maleic acid). The synthetic process leads to a stable latex-like suspension in water. The water-borne conducting polymer, once dried as a thin film on a substrate, is not dissolvable by water or other solvents. An example of piece-dyeing process is presented to show its potential for electrostatic dissipation of textile products. Another example illustrates that the material may be used as electroactive thin-films for electrochromic windows and for rechargeable battery applications.

  12. Counter-ions dynamics in highly plastic and conducting compounds of poly(aniline). A quasi-elastic neutron scattering study.

    PubMed

    Djurado, David; Bée, Marc; Sniechowski, Maciej; Howells, Spencer; Rannou, Patrice; Pron, Adam; Travers, J P; Luzny, Wojciech

    2005-03-21

    Proton dynamics in films of poly(aniline) "plastdoped" with di-esters of sulfophthalic (or sulfosuccinic) acids have been investigated by using quasi-elastic neutron scattering techniques. A broad time range (10(-13)-10(-9) s) has been explored by using four different spectrometers. In this time range, the dynamics is exclusively due to protons attached to the flexible tails of the counter-ions. A model of limited diffusion in spheres whose radii are distributed in size gives a realistic view of the geometry of molecular motions. However, it is found that the characteristic times of these motions are widely distributed over several orders of magnitude. The time decay of the intermediate scattering function is well described by a time power law. This behaviour is qualitatively discussed in connection with the structure of the systems and by comparison with other so-called complex systems. PMID:19791338

  13. Properties of conductive thick-film inks

    NASA Technical Reports Server (NTRS)

    Holtze, R. F.

    1972-01-01

    Ten different conductive inks used in the fabrication of thick-film circuits were evaluated for their physical and handling properties. Viscosity, solid contents, and spectrographic analysis of the unfired inks were determined. Inks were screened on ceramic substrates and fired for varying times at specified temperatures. Selected substrates were given additional firings to simulate the heat exposure received if thick-film resistors were to be added to the same substrate. Data are presented covering the (1) printing characteristics, (2) solderability using Sn-63 and also a 4 percent silver solder, (3) leach resistance, (4) solder adhesion, and (5) wire bonding properties. Results obtained using different firing schedules were compared. A comparison was made between the various inks showing general results obtained for each ink. The changes in firing time or the application of a simulated resistor firing had little effect on the properties of most inks.

  14. Immunosensing of Atrazine with Antibody-Functionalized Cu-MOF Conducting Thin Films.

    PubMed

    Bhardwaj, Sanjeev K; Bhardwaj, Neha; Mohanta, Girish C; Kumar, Pawan; Sharma, Amit L; Kim, Ki-Hyun; Deep, Akash

    2015-12-01

    This work reports the assembly of thin films of a silica (SiO2)-modified copper-metal organic framework, Cu3(BTC)2 [Cu3(BTC)2@SiO2, BTC = benzene-1,3,5-tricarboxylic acid] on a conducting substrate of NH2-BDC [NH2-BDC = 2-aminobenzene-1,4-dicarboxylic acid] doped polyaniline (PANI). Assembled Cu3(BTC)2@SiO2/BDC-PANI thin films displayed electrical conductivity in the range of 35 μA. These thin films were conjugated with antiatrazine antibodies to create a novel immunosensing platform. Various structural and spectral characteristics of the synthesized material and its bioconjugate were investigated. The developed immunosensor was used for the conductometric sensing of atrazine. The detection of atrazine was achieved with a high sensor sensitivity (limit of detection = 0.01 nM) and specificity in the presence of diverse pesticides (e.g., endosulfan, parathion, paraoxon, malathion, and monochrotophos). PMID:26558291

  15. Thermochromic effect in synthetic opal/polyaniline composite structures

    NASA Astrophysics Data System (ADS)

    Rahman, F.; Khokhar, A. Z.

    2009-02-01

    The design and construction of a novel storage/indicator bilayer system is described where ammonia gas stored in a porous material can be used to dope a colour-changing polyaniline film. Both reversible and irreversible colour change effects are possible. A thin synthetic opal film is coupled to a polyaniline film in a parallel plate glass cell with ammonia gas adsorbed on the silica balls that form the opal structure. When heated and cooled, ammonia reversibly exchanges between the opal and polyaniline films causing a very distinct change in the colour of the polyaniline film. This thermochromic effect is also electrically detectable because of the large concomitant change in the resistivity of the polyaniline film that accompanies its colour change.

  16. Photoinduced conductivity changes in polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Gonon, P.; Prawer, S.; Jamieson, D.

    1996-02-01

    We report that the dark electrical properties of polycrystalline chemical vapor deposition diamond films are modified after exposure to UV light. UV illumination gives rise to an increase in the dark conductivity and to a change in the I-V characteristic from Iα exp (aV) for the as-grown material to IαV2 following UV irradiation. Thermally stimulated currents corresponding to an activation energy of about 1.9 eV are observed after UV illumination. The effects of UV irradiation can be totally reversed by thermal annealing and partially reversed by exposing the samples to white light.

  17. Investigation of the properties of polyacrylamide-polyaniline composite and its application as a battery electrode

    SciTech Connect

    Bhat, N.V.; Joshi, N.V. . Dept. of Chemical Technology)

    1993-11-20

    The composite films of polyacrylamide and polyaniline were prepared by polymerizing aniline using ammonium persulfate as an initiator in an aqueous solution containing poly-acrylamide. A film was then cast from this solution. The structural, dynamic mechanical, electrical, and thermal properties of these films have been studied. The infrared spectrum shows the presence of polyacrylamide as well as polyaniline in the composite film. The thermal analysis shows that the composite degrades slower than does the polyacrylamide alone. The dynamic mechanical analysis indicates that there is an increase in the glass transition temperature after the composite formation. The electrical conductivity has been found to increase by more than eight orders of magnitude. These composite films have also been suitably used as electrodes in secondary batteries.

  18. Transparent, Weakly Conductive Films for Space Applications

    NASA Technical Reports Server (NTRS)

    Griffin, John; Morgan, Ashraf; Hambourger, Paul D.

    2004-01-01

    Electrically insulating spacecraft surfaces are vulnerable to nonuniform charge buildup due to particles emitted by the sun. On Mars, insulating surfaces of exploration vehicles and structures will be affected by dust coatings possibly held in place by triboelectric surface charge. Application of a conductive film may be a solution to the charging problem, but the coating must be highly transparent if used on solar panels, lenses, etc. Sheet resistivity requirements depend on the application and are in the range 10(exp 2) - 10(exp 8) ohms/square. Co-deposited indium tin oxide (ITO) and MgF2 is promising, with high transparency, tailorable electrical properties, and durability to atomic oxygen. Due to ITO's relatively narrow bandgap (approximately 3.5 eV), the film might absorb enough ultraviolet to protect polymeric substrates. Recent work on dual-magnetron-sputtered ITO-MgF2 showed that a variety of polymeric substrates can be coated at room temperature. However, the sheet resistivity is very sensitive to composition, suggestive of a percolation transition. This could be a serious problem for large-scale coating production. We will report on attempts to control film composition by plasma emission monitoring of the ITO and MgF2 guns.

  19. Transparent, Weakly Conductive Films for Space Applications

    NASA Astrophysics Data System (ADS)

    Griffin, John; Morgan, Ashraf; Hambourger, Paul

    2004-10-01

    Electrically insulating spacecraft surfaces are vulnerable to nonuniform charge buildup due to particles emitted by the sun. On Mars, insulating surfaces of exploration vehicles and structures will be affected by dust coatings possibly held in place by triboelectric surface charge. Application of a conductive film may be a solution to the charging problem, but the coating must be highly transparent if used on solar panels, lenses, etc. Sheet resistivity requirements depend on the application and are in the range 10^2-10^8 ohms/square. Co-deposited indium tin oxide (ITO) and MgF2 is promising, with high transparency, tailorable electrical properties, and durability to atomic oxygen.(Joyce A. Dever et al., NASA TM 1998-208499 (August 1998).) Due to ITO's relatively narrow bandgap ( ˜3.5 eV), the film might absorb enough ultraviolet to protect polymeric substrates. Recent work on dual-magnetron-sputtered ITO-MgF2 showed that a variety of polymeric substrates can be coated at room temperature.(Thomas Cashman et al., Vacuum Technology & Coating, September 2003, p. 38.) However, the sheet resistivity is very sensitive to composition, suggestive of a percolation transition. This could be a serious problem for large-scale coating production. We will report on attempts to control film composition by plasma emission monitoring of the ITO and MgF2 guns. Supported by NASA Glenn Research Center, Cooperative Agreements NCC3-1033 and NCC3-1065.

  20. Structural and optical study of spin-coated camphorsulfonic acid-doped polyaniline/titanium-di-oxide nanoparticles hybrid thin films

    NASA Astrophysics Data System (ADS)

    Geethalakshmi, D.; Muthukumarasamy, N.; Balasundaraprabhu, R.

    2015-06-01

    Polyaniline (PANI) doped with Camphorsulfonic acid (CSA) has been prepared by chemical oxidative polymerization and blend with titanium-di-oxide (TiO2) nanoparticles prepared by sol-gel method to form CSA-doped PANI/TiO2 hybrid thin films. The properties of as-deposited and heat-treated (100 °C) hybrid thin films having different PANI:TiO2 weight ratios (1:0.5, 1:1, and 1:2) have been compared. FTIR study indicated that chemical bonding between CSA-doped PANI and TiO2 has been formed. XRD studies reveal that the as-deposited hybrid thin films are of amorphous nature and heat-treatment of such films initiates crystallization. SEM study shows that as-deposited hybrid films are rough; increase in TiO2 ratio and heat-treatment increased the roughness due to coalescing and agglomeration. UV-visible absorbance of hybrid films shows its characteristic peak in the visible region along with a peak in UV range and its intensity increased with TiO2 ratio and heat-treatment due to agglomeration of TiO2 particles. Photoluminescence spectra revealed that emission occurs in visible region (495 nm) for as-deposited hybrid thin film and this emission increased with TiO2 ratio and heat-treatment of hybrid films.

  1. EDITORIAL: On display with transparent conducting films On display with transparent conducting films

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-03-01

    Transparent conducting films were already featuring in scientific literature over one hundred years ago. In 1894 Aryton and Mather described a conducting varnish for coating the screens of electric apparatus so they would not charge when accidentally brushed by a coat sleeve or other material [1]. Their method began with a similar approach to that used to make savoury jellies; by dissolving gelatine in vinegar, after which less palatable ingredients were incorporated including sulphuric acid and an antisulphuric enamel. While the search for transparent conducting films continued to attract other researchers, the same problem remained: the transparency would be compromised if the film was too thick, and the conductivity would be compromised if the film was too thin. In the early 1950s Gillham and Preston reported that thin gold films sputtered on bismuth oxide and heated resulted in a material that successfully combined the previously mutually exclusive properties of transparency and conductivity [2]. Other oxide films were also found to favourably combine these properties, including tin oxide, as reported by Ishiguro and colleagues in Japan in 1958 [3]. Today tin oxide doped with indium (ITO) has become the industry standard for transparent conducting films in a range of applications including photovoltaic technology and displays. It is perhaps the mounting ubiquity of electronic displays as a result of the increasingly digitised and computerised environment of the modern day world that has begun to underline the main drawback of ITO: expense. In this issue, a collaboration of researchers in Korea present an overview of graphene as a transparent conducting material with the potential to replace ITO in a range of electronic and optoelectronic applications [4]. One of the first innovations in optical microscopy was the use of dyes. This principle first came into practice with the use of ultraviolet light to reveal previously indistinguishable features. As explained

  2. Transparent conducting thin films for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Malave-Sanabria, Tania; Hambourger, Paul; Rutledge, Sharon K.; Roig, David; Degroh, Kim K.; Hung, Ching-Cheh

    1994-01-01

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10(exp 2) to 10(exp 11) ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10(exp 7) to 10(exp 11) ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  3. Electrically conductive palladium-containing polyimide films

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Furtsch, T. A.; Taylor, L. T.

    1981-01-01

    Palladium addition makes light, flexible film with low resistivity to relieve space charging. Polyimide film is prepared in four steps: preparation of polyamic acid in polar solvent; addition of soluable palladium complex salt; fabrication of film of "palladium polyamic acid" solution; and thermal imidization of film to palladium-containing polyimide by 300 C heating. Lowered resistivities were achieved without loss in film flexibility or increase in film weight.

  4. Synergy between polyaniline and OMt clay mineral in Langmuir-Blodgett films for the simultaneous detection of traces of metal ions.

    PubMed

    de Barros, Anerise; Ferreira, Mariselma; Constantino, Carlos José Leopoldo; Bortoleto, José Roberto Ribeiro; Ferreira, Marystela

    2015-04-01

    We report on Langmuir-Blodgett (LB) films made with emeraldine salt polyaniline (PAni-ES) and organophilic montmorillonite clay mineral (OMt), where synergy between the components was reached to yield an enhanced performance in detecting trace levels of cadmium (Cd(2+)), lead (Pb(2+)) and copper (Cu(2+)). Detection was carried out using square wave anodic stripping (SWAS) voltammetry with indium tin oxide (ITO) electrodes modified with LB films of PAni-ES/OMt nanocomposite, whose data were compared to those obtained with electrodes coated with neat PAni-ES and neat OMt LB films. The enhanced performance in the nanocomposite may be attributed to the stabilizing and ordering effect promoted by OMt in PAni-ES Langmuir films, which then led to more homogeneous LB films. According to X-ray diffraction data, the stacking of OMt layers was preserved in the LB films and therefore the PAni-ES chains did not cause clay mineral exfoliation. Instead, OMt affected the polaronic state of PAni-ES as indicated in UV-vis, Raman and FTIR spectra, also consistent with the changes observed for the Langmuir films. Taken together these results do indicate that semiconducting polymers and clay minerals may be combined for enhancing the electrical properties of nanostructures for sensing and related applications. PMID:25761908

  5. Transparent Conductive Oxides in Thin Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Hamelmann, Frank U.

    2014-11-01

    This paper show results from the development of transparent conductive oxides (TCO's) on large areas for the use as front electrode in thin film silicon solar modules. It is focused on two types of zinc oxide, which are cheap to produce and scalable to a substrate size up to 6 m2. Low pressure CVD with temperatures below 200°C can be used for the deposition of boron doped ZnO with a native surface texture for good light scattering, while sputtered aluminum doped ZnO needs a post deposition treatment in an acid bath for a rough surface. The paper presents optical and electrical characterization of large area samples, and also results about long term stability of the ZnO samples with respect to the so called TCO corrosion.

  6. Graphene-carbon nanotube hybrid transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kholmanov, Iskandar N.; Kim, TaeYoung; Domingues, Sergio H.; Kim, Jin-Young; Tan, Cheng; Magnuson, Carl W.; Li, Huifeng; Piner, Richard; Ruoff, Rodney S.

    2013-06-01

    Graphene films grown by chemical vapor deposition of hydrocarbon gases on metal surfaces have been integrated with single-walled carbon nanotube (SWNT) films. Using simple thin film fabrication methods and the sequential deposition of these two components we obtained graphene/SWNT hybrid films with good structural quality. Obtained graphene/SWNT films possess opto-electrical properties better than that of pure graphene or SWNT films, making them promising for transparent conductive film (TCF) applications. The hybrid films have been tested as a transparent electrode in electrochromic (EC) devices to replace indium tin oxide (ITO) TCFs.

  7. Electropolymerization of Uniform Polyaniline Nanorod Arrays on Conducting Oxides as Counter Electrodes in Dye-Sensitized Solar Cells.

    PubMed

    He, Ziming; Liu, Jing; Khoo, Si Yun; Tan, Timothy Thatt Yang

    2016-01-01

    Conventional techniques for the synthesis of oriented polyaniline (PANI) nanostructures are often complex or time consuming. Through an innovative reduced graphene oxide (rGO) modified FTO and a low-potential electropolymerization strategy, the rapid and template-free growth of a highly ordered PANI nanorod array on the FTO substrate is realized. The highly ordered nanostructure of the PANI array leads to a high electrocatalytic activity and chemical stability. The importance of the polymerization potential and rGO surface modification to achieve this nanostructure is revealed. Compared to platinum, the PANI nanorod array exhibits an enhanced performance and stability as counter electrodes in dye-sensitized solar cells, with a 17.6 % enhancement in power conversion efficiency. PMID:26732134

  8. A Sensitivity Analysis of a Thin Film Conductivity Estimation Method

    SciTech Connect

    McMasters, Robert L; Dinwiddie, Ralph Barton

    2010-01-01

    An analysis method was developed for determining the thermal conductivity of a thin film on a substrate of known thermal properties using the flash diffusivity method. In order to determine the thermal conductivity of the film using this method, the volumetric heat capacity of the film must be known, as determined in a separate experiment. Additionally, the thermal properties of the substrate must be known, including conductivity and volumetric heat capacity. The ideal conditions for the experiment are a low conductivity film adhered to a higher conductivity substrate. As the film becomes thinner with respect to the substrate or, as the conductivity of the film approaches that of the substrate, the estimation of thermal conductivity of the film becomes more difficult. The present research examines the effect of inaccuracies in the known parameters on the estimation of the parameter of interest, the thermal conductivity of the film. As such, perturbations are introduced into the other parameters in the experiment, which are assumed to be known, to find the effect on the estimated thermal conductivity of the film. A baseline case is established with the following parameters: Substrate thermal conductivity 1.0 W/m-K Substrate volumetric heat capacity 106 J/m3-K Substrate thickness 0.8 mm Film thickness 0.2 mm Film volumetric heat capacity 106 J/m3-K Film thermal conductivity 0.01 W/m-K Convection coefficient 20 W/m2-K Magnitude of heat absorbed during the flash 1000 J/m2 Each of these parameters, with the exception of film thermal conductivity, the parameter of interest, is varied from its baseline value, in succession, and placed into a synthetic experimental data file. Each of these data files is individually analyzed by the program to determine the effect on the estimated film conductivity, thus quantifying the vulnerability of the method to measurement errors.

  9. Infrared surface plasmon polariton on polyaniline-graphite composite

    NASA Astrophysics Data System (ADS)

    Shahzad, Monas; Medhi, Gautam; Maukonen, Doug; Yesiltas, Mehmet; Peale, R. E.; Buchwald, Walter R.; Cleary, Justin; Liao, Yi; Alber, Candace; Johns, Valentine K.; Hegishte, Rahul; Boreman, Glen D.

    2012-06-01

    Conducting polymers are potentially useful materials in sensor applications. Polyaniline is one of the most promising of these materials due to high conductivity and plasma frequencies as high as the mid-infrared. The application of this material is still limited because of low conductivity. In this paper, we chemically prepared a composite of co-doped polyaniline with hydrochloric acid and MSA (methane sulfonic acid) in aqueous solution with both colloidal and nano-graphite. Solutions of the composite material were prepared in m-cresol and NMP (N-mthyle-2-pyrrolidone), which are common organic solvents. This approach resulted in material with conductivity higher than either intrinsic polyaniline or graphite alone. The solution of the composite was spin coated on suitable substrates. The thicknesses of the films were measured using atomic force microscope (AFM). Fourier transform infrared spectra (FTIR) and micro-Raman spectra were collected to confirm the composition and determine the infrared thickness. Surface plasmon resonances for grating patterns of this composite material were calculated using experimental determined infrared (IR) ellipsometry data. The goal is to identify a material which has potential application for surface plasmons resonance sensing with high sensitivity and selectivity in IR range.

  10. Optical conductivity of topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.; Peeters, F. M.

    2015-05-07

    We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k·p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi{sub 2}Se{sub 3}-based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy ℏω<200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200<ℏω<300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value σ{sub 0}=e{sup 2}/(8ℏ) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime (ℏω>300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF.

  11. Actuation behavioral studies on polyaniline-cellophane based electroactive paper

    NASA Astrophysics Data System (ADS)

    Deshpande, Shripad D.; Kim, Jaehwan; Song, Chunsuk; Li, Qubo

    2005-05-01

    In the present investigations, we have fabricated the electromechanical actuators using conducting Polyaniline and Cellophane paper. The actuation behaviour of two types of paper actuators namely bi-layer and tri-layer in air medium are presented in this paper. The electro generation of polyaniline was carried out in propylene carbonate medium in the presence of dichloro acetic acid (DCA). The displacement in tri-layer devices, are more than that of bi-layer counter parts. The explanation towards this type of actuation behavior is given. Actuation behavioral studies were mainly focused on the effect of various dopant ions namely Cl-, ClO4-, BF4- and PF6-. The effect of varying film thickness and change in relative humidity are also addressed in this communication. The possible working mechanism has been discussed.

  12. EDITORIAL: On display with transparent conducting films On display with transparent conducting films

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-03-01

    Transparent conducting films were already featuring in scientific literature over one hundred years ago. In 1894 Aryton and Mather described a conducting varnish for coating the screens of electric apparatus so they would not charge when accidentally brushed by a coat sleeve or other material [1]. Their method began with a similar approach to that used to make savoury jellies; by dissolving gelatine in vinegar, after which less palatable ingredients were incorporated including sulphuric acid and an antisulphuric enamel. While the search for transparent conducting films continued to attract other researchers, the same problem remained: the transparency would be compromised if the film was too thick, and the conductivity would be compromised if the film was too thin. In the early 1950s Gillham and Preston reported that thin gold films sputtered on bismuth oxide and heated resulted in a material that successfully combined the previously mutually exclusive properties of transparency and conductivity [2]. Other oxide films were also found to favourably combine these properties, including tin oxide, as reported by Ishiguro and colleagues in Japan in 1958 [3]. Today tin oxide doped with indium (ITO) has become the industry standard for transparent conducting films in a range of applications including photovoltaic technology and displays. It is perhaps the mounting ubiquity of electronic displays as a result of the increasingly digitised and computerised environment of the modern day world that has begun to underline the main drawback of ITO: expense. In this issue, a collaboration of researchers in Korea present an overview of graphene as a transparent conducting material with the potential to replace ITO in a range of electronic and optoelectronic applications [4]. One of the first innovations in optical microscopy was the use of dyes. This principle first came into practice with the use of ultraviolet light to reveal previously indistinguishable features. As explained

  13. Macrodispersion of multi-walled carbon nanotubes for conductive films.

    PubMed

    Kim, Duckjong; Zhu, Lijing; Kim, Jae-Hyun; Han, Chang-Soo; Baik, Seunghyun

    2012-04-01

    Understanding of the effect of the multi-walled carbon nanotube (MWCNT) dispersion process on physical properties of MWCNT film is crucial in process optimization of MWCNT film-based products. In the present work, the electrical conduction property of MWCNT films according to various conditions in MWCNT dispersion is investigated. Spectroscopic analysis of dispersed MWCNTs show that the electrical resistance of the MWCNT conductive film is affected by an increase in the electrical contacts between adjacent CNTs due to CNT debundling and physical damage caused by ultrasonic processing. Based on the two conflicting parameters, dispersion guidelines for highly conductive MWCNT film are presented. PMID:22849134

  14. Multilayer Films Electrodes Consisted of Cashew Gum and Polyaniline Assembled by the Layer-by-Layer Technique: Electrochemical Characterization and Its Use for Dopamine Determination

    PubMed Central

    Barros, Sergio Bitencourt Araújo; Leite, Cleide Maria da Silva; de Brito, Ana Cristina Facundo; Dos Santos Júnior, José Ribeiro; Zucolotto, Valtencir; Eiras, Carla

    2012-01-01

    We take advantage of polyelectrolyte feature exhibited by natural cashew gum (Anacardium occidentale L.) (CG), found in northeast Brazil, to employ it in the formation of electroactive nanocomposites prepared by layer-by-layer (LbL) technique. We used polyaniline unmodified (PANI) or modified with phosphonic acid (PA), PANI-PA as cationic polyelectrolyte. On the other hand, the CG or polyvinyl sulfonic (PVS) acids were used as anionic polyelectrolytes. The films were prepared with PANI or PANI-PA intercalated with CG or with PVS alternately resulting in four films with different sequences: PANI/CG PANI-PA/CG, PANI/PVS and PANI-PA/PVS, respectively. Analysis by cyclic voltammetry (CV) of the films showed that the presence of gum increases the stability of the films in acidic medium. The performance of the modified electrode of PANI-PA/CG was evaluated in electro analytical determination of dopamine (DA). The tests showed great sensitivity of the film for this analyte that was detected at 10−5 mol L−1. PMID:22505924

  15. Preparation of Electrically Conductive Polymeric Membranes

    NASA Astrophysics Data System (ADS)

    Encinas, J. C.; Castillo-Ortega, M. M.; Rodríguez, F.; Castaño, V. M.

    2015-10-01

    Cellulose acetate porous membranes, coated with polyaniline, were chemically modified with polyelectrolytes to produce films of varying and controlled porosity and electrical conductivity. The highest electrical conductivity was obtained in membranes prepared with poly(styrene sulfonate) with large pore sizes. The electrical properties as well as scanning electron microscopy (SEM) images are discussed.

  16. Thin transparent conducting films of cadmium stannate

    DOEpatents

    Wu, Xuanzhi; Coutts, Timothy J.

    2001-01-01

    A process for preparing thin Cd.sub.2 SnO.sub.4 films. The process comprises the steps of RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a first substrate; coating a second substrate with a CdS layer; contacting the Cd.sub.2 SnO.sub.4 layer with the CdS layer in a water- and oxygen-free environment and heating the first and second substrates and the Cd.sub.2 SnO.sub.4 and CdS layers to a temperature sufficient to induce crystallization of the Cd.sub.2 SnO.sub.4 layer into a uniform single-phase spinel-type structure, for a time sufficient to allow full crystallization of the Cd.sub.2 SnO.sub.4 layer at that temperature; cooling the first and second substrates to room temperature; and separating the first and second substrates and layers from each other. The process can be conducted at temperatures less than 600.degree. C., allowing the use of inexpensive soda lime glass substrates.

  17. Exploding conducting film laser pumping apparatus

    DOEpatents

    Ware, K.D.; Jones, C.R.

    1984-04-27

    The 342-nm molecular iodine and the 1.315-..mu..m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  18. Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor

    NASA Astrophysics Data System (ADS)

    Halab Shaeli Iessa, K.; Zhang, Yan; Zhang, Guoan; Xiao, Fei; Wang, Shuai

    2016-01-01

    We report the development of three-dimensional (3D) porous sponge-like ionic liquid (IL)-graphene hybrid material by integrating IL molecules and graphene nanosheets via self-assembly process. The as-obtained IL-graphene architecture possesses high surface area, efficient electron transport network and fast charge transfer kinetics owing to its highly porous structure, and unique hydrophilic properties derived from the IL anion on its surface, which endows it with high desire for supercapacitor application. Redox-active polyaniline (PANI) nanorods are further decorated on IL-graphene scaffold by electropolymerization. When utilized as freestanding 3D electrode for supercapacitor, the resultant PANI modified IL-graphene (PANI-IL-graphene) electrode exhibits a specific capacitance up to 662 F g-1 at the current density of 1.0 A g-1, with a high capacitance retention of 73.7% as current densities increase from 1.0 to 20 A g-1, and the capacitance degradation is less than 7.0% after 5000 charge-discharge cycles at 10 A g-1.

  19. p-type conduction in sputtered indium oxide films

    SciTech Connect

    Stankiewicz, Jolanta; Alcala, Rafael; Villuendas, Francisco

    2010-05-10

    We report p-type conductivity in intrinsic indium oxide (IO) films deposited by magnetron sputtering on fused quartz substrates under oxygen-rich ambient. Highly oriented (111) films were studied by x-ray diffraction, optical absorption, and Hall effect measurements. We fabricated p-n homojunctions on these films.

  20. Structural and Electrical Characterization of Protonic Acid Doped Polyaniline

    NASA Astrophysics Data System (ADS)

    Shaktawat, Vinodini; Saxena, Narendra S.; Sharma, Kananbala; Sharma, Thaneshwar P.

    2008-04-01

    Polyaniline doped with different protonic acids were chemically synthesized using ammonium persulfate (APS) as an oxidant. These samples were characterized through X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, which confirms the amorphous nature and acid doping, respectively. Electrical conduction in these samples has been studied through the measurement of I-V characteristics at room temperature as well as in the temperature range from 313 K to 413 K. So obtained characteristic curves were found to be nonlinear. The conductivity of phosphoric acid doped polyaniline sample is higher as compared to HCl doped polyaniline and pure polyaniline. Temperature dependence of conductivity suggests a semiconducting nature with increase in temperature. Activation energies have been found to be 50.86, 25.74 and 21.05 meV for pure polyaniline (base), polyaniline doped with hydrochloric, phosphoric acid, respectively.

  1. Real-Time Deposition Monitor for Ultrathin Conductive Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline

    2011-01-01

    A device has been developed that can be used for the real-time monitoring of ultrathin (2 or more) conductive films. The device responds in less than two microseconds, and can be used to monitor film depositions up to about 60 thick. Actual thickness monitoring capability will vary based on properties of the film being deposited. This is a single-use device, which, due to the very low device cost, can be disposable. Conventional quartz/crystal microbalance devices have proven inadequate to monitor the thickness of Pd films during deposition of ultrathin films for hydrogen sensor devices. When the deposited film is less than 100 , the QCM measurements are inadequate to allow monitoring of the ultrathin films being developed. Thus, an improved, high-sensitivity, real-time deposition monitor was needed to continue Pd film deposition development. The new deposition monitor utilizes a surface acoustic wave (SAW) device in a differential delay-line configuration to produce both a reference response and a response for the portion of the device on which the film is being deposited. Both responses are monitored simultaneously during deposition. The reference response remains unchanged, while the attenuation of the sensing path (where the film is being deposited) varies as the film thickness increases. This device utilizes the fact that on high-coupling piezoelectric substrates, the attenuation of an SAW undergoes a transition from low to very high, and back to low as the conductivity of a film on the device surface goes from nonconductive to highly conductive. Thus, the sensing path response starts with a low insertion loss, and as a conductive film is deposited, the film conductivity increases, causing the device insertion loss to increase dramatically (by up to 80 dB or more), and then with continued film thickness increases (and the corresponding conductivity increases), the device insertion loss goes back down to the low level at which it started. This provides a

  2. Electrically conducting novel polymer films containing pi-stacks

    NASA Astrophysics Data System (ADS)

    Duan, Robert Gang

    1997-12-01

    The primary focus of this thesis is to expand our knowledge of ion radicals of π-dimers and π- stacks in solutions and apply these insights in the development and understanding of new electrically conducting polymers. Two types of the conducting polymers were investigated. The first is the conducting polymer composites embedded with π-stacks of ion radicals. Flexible and air stable n-typed conducting thin films were prepared from imide/poly(vinyl alcohol) aqueous solutions. Conducting thin films of terthiophene/poly(methyl methacrylate) were cast from hexafluoro-2-propanol. Effects of casting conditions on the morphology and conductivity of the films were investigated. These films were fully characterized by UV- vis, NIR, IR, XRD, SEM and ESR. In the second type of conducting polymer system, PAMAM dendrimers generation 1 through 5 were peripherally modified with cationically substituted naphthalene diimide anion radicals. NMR, UV, IR, CV and Elemental Analysis were used to characterize modified dendrimers. Reduction with sodium dithionite in solution showed anion radicals were aggregated into π-dimers and π- stacks. Formamide was used to cast conducting dendrimer films. ESCA, SEM and optical microscope were used to study the composition and the morphology of the films. XRD showed complete amorphous nature of these films. NIR revealed that the π-stack aggregation depend strongly on the casting temperature and the degree of reduction. Four- probe co-liner conductivity of the films is on the order of 10-2 to 10-1/ S/ cm-1. ESR and conductivity measurements also revealed the isotropic nature of the conductivity. Conductivity/humidity relationship was discovered by accidental breathing over the films. Using a home-made controlled humidity device and PACERTM hygrometer, the conductivity of the films can be varied quickly and reversibly within two orders of a magnitude. This phenomenon was probed with NIR, XRD and quartz crystal microbalance techniques. These

  3. Design and Fabrication of Molecular Assemblies of Conductive Polymers

    NASA Astrophysics Data System (ADS)

    Cheung, Josephine Ho-Wah

    Two new methods of fabricating multilayer Langmuir -Blodgett (LB) thin films of electrically conductive polyaniline and a novel method of constructing molecular assemblies of polyaniline via the spontaneous adsorption (SA) technique were developed. Quantitative transmission/reflection Fourier transform infrared spectroscopy, polarized ultraviolet -visible spectroscopy and X-ray diffraction techniques were used to examine the structure and composition of multilayer thin films. In the structural study of LB films fabricated from 3-octadecyl pyrrole (3-ODP), 3-octadecanoyl pyrrole (3-ODOP) and polypyrrole/3-ODOP (PPY/3-ODOP), the level of order and orientation were found to be affected by the intermolecular and intramolecular interactions between molecules. For the manipulation of polyaniline using the LB technique, stable and easily transferrable LB monolayers were formed at the air-water interface by mixing polyaniline in its emeraldine-base form (PANb) with two processing aids. Films fabricated from the PANb/StA mixture were found to be phase separated with domains of polyaniline and stearic acid while those from the PANb/PI blend were found to be miscible. Both polyaniline LB films were rendered conductive by doping with 1 M HCl or HCl vapor. Multilayer polyaniline films were also constructed via a SA process. The multilayer buildup of doped polyaniline and sulfonated polystyrene (PANi/SPS) is facilitated by the electrostatic attraction between the delocalized positive -charged defects along the PANi backbone and the negative charges present in the ionizable pendant sulfonic acid groups of the SPS. Uniform multilayer thin films with thicknesses between 20 A and 100 A were constructed on different surfaces with complex topologies. Conductivities in the level of 0.1-1 S/cm were achieved by doping the multilayer PANi/SPS films with 1 M HCl. This level of conductivity was achieved by films with as few as 4 layers of PANi/SPS, that is, films with thicknesses of about

  4. Polyelectrolyte multilayers impart healability to highly electrically conductive films.

    PubMed

    Li, Yang; Chen, Shanshan; Wu, Mengchun; Sun, Junqi

    2012-08-28

    Healable, electrically conductive films are fabricated by depositing Ag nanowires on water-enabled healable polyelectrolyte multilayers. The easily achieved healability of the polyelectrolyte multilayers is successfully imparted to the Ag nanowire layer. These films conveniently restore electrical conductivity lost as a result of damage by cuts several tens of micrometers wide when water is dropped on the cuts. PMID:22807199

  5. Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films

    ERIC Educational Resources Information Center

    Sun, Luyi; O'Reilly, Jonathan Y.; Tien, Chi-Wei; Sue, Hung-Jue

    2008-01-01

    A simple and effective approach to prepare conductive polystyrene/carbon nanofiber (PS/CNF) nanocomposite films via a solution dispersion method is presented. Inexpensive CNF, which has a structure similar to multi-walled carbon nanotubes, is chosen as a nanofiller in this experiment to achieve conductivity in PS films. A good dispersion is…

  6. Rapid synthesis of flexible conductive polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Blattmann, C. O.; Sotiriou, G. A.; Pratsinis, S. E.

    2015-03-01

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5 × 104 S cm-1), even during repetitive bending.

  7. Rapid synthesis of flexible conductive polymer nanocomposite films.

    PubMed

    Blattmann, C O; Sotiriou, G A; Pratsinis, S E

    2015-03-27

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5  × 10(4) S cm(-1)), even during repetitive bending. PMID:25736387

  8. Conductive layer for biaxially oriented semiconductor film growth

    DOEpatents

    Findikoglu, Alp T.; Matias, Vladimir

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  9. Aptameric Recognition-Modulated Electroactivity of Poly(4-Styrenesolfonic Acid)-Doped Polyaniline Films for Single-Shot Detection of Tetrodotoxin

    PubMed Central

    Fomo, Gertrude; Waryo, Tesfaye T.; Sunday, Christopher E.; Baleg, Abd A.; Baker, Priscilla G.; Iwuoha, Emmanuel I.

    2015-01-01

    The work being reported is the first electrochemical sensor for tetrodotoxin (TTX). It was developed on a glassy carbon electrodes (C) that was modified with poly(4-styrenesolfonic acid)-doped polyaniline film (PANI/PSSA). An amine-end functionalized TTX-binding aptamer, 5′-NH2-AAAAATTTCACACGGGTGCCTCGGCTGTCC-3′ (NH2-Apt), was grafted via covalent glutaraldehyde (glu) cross-linking. The resulting aptasensor (C//PANI+/PSSA-glu-NH2-Apt) was interrogated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in sodium acetate buffer (NaOAc, pH 4.8) before and after 30 min incubation in standard TTX solutions. Both CV and EIS results confirmed that the binding of the analyte to the immobilized aptamer modulated the electrochemical properties of the sensor: particularly the charge transfer resistance (Rct) of the PANI+/PSSA film, which served as a signal reporter. Based on the Rct calibration curve of the TTX aptasensor, the values of the dynamic linear range (DLR), sensitivity and limit of detection (LOD) of the sensor were determined to be 0.23–1.07 ng·mL−1 TTX, 134.88 ± 11.42 Ω·ng·mL−1 and 0.199 ng·mL−1, respectively. Further studies are being planned to improve the DLR as well as to evaluate selectivity and matrix effects in real samples. PMID:26370994

  10. Stretchable transistors with buckled carbon nanotube films as conducting channels

    DOEpatents

    Arnold, Michael S; Xu, Feng

    2015-03-24

    Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.

  11. Tuning carbon nanotube assembly for flexible, strong and conductive films

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang

    2015-02-01

    Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction

  12. Photovoltaic device having light transmitting electrically conductive stacked films

    DOEpatents

    Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.

    1990-07-10

    A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.

  13. Modelling heat conduction in polycrystalline hexagonal boron-nitride films

    NASA Astrophysics Data System (ADS)

    Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon

    2015-08-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.

  14. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.

    PubMed

    Mortazavi, Bohayra; Pereira, Luiz Felipe C; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  15. Modelling heat conduction in polycrystalline hexagonal boron-nitride films

    PubMed Central

    Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  16. In situ measurement of conductivity during nanocomposite film deposition

    NASA Astrophysics Data System (ADS)

    Blattmann, Christoph O.; Pratsinis, Sotiris E.

    2016-05-01

    Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (Tg) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing Tg. Proper selection of the host polymer in combination with in situ resistance monitoring therefore enable the optimal preparation of conductive nanocomposite films.

  17. Electroactivity of transparent composite films from conducting poly(thiophenes)

    SciTech Connect

    Roncali, J.; Garnier, F.

    1988-02-11

    Conducting composite films containing an electropolymerizable conducting polymer such as poly(3-methylthiophene) (PMeT) alloyed with poly(vinyl chloride) (PVC) have been prepared in a one-step process from synthesis media already containing dissolved PVC. This procedure based on the simultaneous electropolymerization and dip-cutting processes allows a large control of the composition, morphology, optical transmittance, conductivity, and electroactivity of the composite films. The growth of PMeT in synthesis media containing dissolved PVC has been analyzed. Increasing the PVC concentration produces a slight decrease of the MeT electropolymerization rate with no apparent modification of the polymerization mechanism. The electrochemical properties of the composite films have been investigated in acetonitrile by using cyclic voltammetry and chronoamperometry. At low scan rate (10 mV/s), the electrochemical responses of the composite films are identical with that of bare PMeT films prepared under the same conditions. At higher scan rates, a dependence of the electroactivity of the films on their PVC content is observed and the electrochemical response turns progressively from an adsorption-like behavior to a diffusion-controlled one. It is shown that the electrolyte concentration used for the synthesis of the composite films is the key factor controlling their electrochemical behavior. The incorporation of PMeT within the PVC matrix does not affect its spectroelectrochemical properties and furthermore leads to an improved electrochemical stability of the film under redox cycling.

  18. Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors.

    PubMed

    Memon, Mushtaque A; Bai, Wei; Sun, Jinhua; Imran, Muhammad; Phulpoto, Shah Nawaz; Yan, Shouke; Huang, Yong; Geng, Jianxin

    2016-05-11

    Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through in situ electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm(-2)), high cycling stability, and remarkable capacitive stability to deformation, due to the unique electrode structures. PMID:27110720

  19. Laser damage mechanisms in conductive widegap semiconductor films.

    PubMed

    Yoo, Jae-Hyuck; Menor, Marlon G; Adams, John J; Raman, Rajesh N; Lee, Jonathan R I; Olson, Tammy Y; Shen, Nan; Suh, Joonki; Demos, Stavros G; Bude, Jeff; Elhadj, Selim

    2016-08-01

    Laser damage mechanisms of two conductive wide-bandgap semiconductor films - indium tin oxide (ITO) and silicon doped GaN (Si:GaN) were studied via microscopy, spectroscopy, photoluminescence (PL), and elemental analysis. Nanosecond laser pulse exposures with a laser photon energy (1.03 eV, 1064 nm) smaller than the conductive films bandgaps were applied and radically different film damage morphologies were produced. The laser damaged ITO film exhibited deterministic features of thermal degradation. In contrast, laser damage in the Si:GaN film resulted in highly localized eruptions originating at interfaces. For ITO, thermally driven damage was related to free carrier absorption and, for GaN, carbon complexes were proposed as potential damage precursors or markers. PMID:27505731

  20. Detection of Secondhand Cigarette Smoke via Nicotine Using Conductive Polymer Films

    PubMed Central

    2013-01-01

    Introduction: The 2006 U.S. Surgeon General’s Report found that there is no safe level of exposure to secondhand smoke (SHS). Many smokers attempt to protect others from exposure to SHS; however, it is difficult to assess effectiveness of these behavior changes. There is a need for personal monitoring devices that provide real-time SHS exposure data; at present, there is no device that measures ambient nicotine levels in real time. The development of such a sensor is the objective of this research. Methods: A nicotine sensing film comprising the conductive polymer polyaniline was linked with a reporting layer, recording changes in chemiresistance due to adsorption of nicotine. Experiments were carried out in a microprocessor-controlled smoking chamber using sidestream smoke from standard reference cigarettes; up to 10 cigarettes were smoked simultaneously. The exposure chamber was calibrated for total suspended particle, carbon monoxide, and nicotine concentrations. Results: We found significant real-time increases in the resistance of films upon exposure to SHS. The sensors were shown to be sensitive to the number of cigarettes consumed and ambient nicotine and demonstrated reasonable recovery between measurements. The sensors have sufficient sensitivity to detect off-gassing of nicotine or “thirdhand smoke.” Conclusions: A sensing element has been developed that can reliably detect secondhand and thirdhand tobacco smoke in real time through the adsorption of ambient nicotine vapor. The device was calibrated to the number of smoked cigarettes and to nicotine concentration. Development of integrated personal sensors to record exposure to SHS using this technology is currently underway. PMID:23482719

  1. Ion-Conducting Polymer Films as Chemical Sensors

    SciTech Connect

    Hughes, R.C.; Patel, S.V.; Pfeifer, K.B.; Yelton, W.G.

    1999-05-03

    Solid Polymer Electrolytes (SPE) are widely used in batteries and fuel cells because of the high ionic conductivity that can be achieved at room temperature. The ions are usually Li or protons, although other ions can be shown to conduct in these polymer films. There has been very little work on using these films as chemical sensors. We have found that thin films of polymers like polyethyleneoxide (PEO) are very sensitive to low concentrations of volatile organic compounds (VOCS) like common solvents. We will present impedance spectroscopy of PEO films in the frequency range 0.01 Hz to 1 MHz for different concentrations of VOCS. We find that the measurement frequency is important for distinguishing ionic conductivity from the double layer capacitance and parasitic capacitances.

  2. Interface Thermal Conductance Between Metal Films and Copper

    NASA Astrophysics Data System (ADS)

    Zheng, Hai; Jagannadham, K.

    2014-05-01

    Transient thermo-reflectance measurements were made on metals films deposited on Cu film. The Cu film was deposited on Si (001) and sapphire (0001) substrates. The metal films that were deposited include Al, Au, Sn, Zn, and In. The results were modeled using one-dimensional heat equation to determine thermal conductance of interfaces between the metal film and Cu (film/Cu) and Cu and Si (Cu/Si), or Cu and sapphire (Cu/sapphire) in each sample. The results were used to determine the importance of microstructural parameters such as surface roughness, lattice mismatch, solid solubility, and surface energy of the metal film on Cu. The experimental values of interface thermal conductance, although smaller in magnitude, were interpreted in terms of the predicted values by diffuse mismatch model after including the effect of the microstructural parameters. In particular, interface roughness, lattice mismatch, solid solubility, and wettability were found to be important parameters as these are responsible for good atomic level contact between the metal film and Cu.

  3. Fabrication and characterization of solid-state, conducting polymer actuators

    SciTech Connect

    Xie, J.; Sansinena, J. M.; Gao, J.; Wang, H. L.

    2004-01-01

    We report here the fabrication and characterization of solid-state, conducting polymer actuators. The electrochemical activity of polyaniline (PANI) thin film coated with solid-state polyelectrolyte is very similar to the polyaniline thin film in an aqueous solution. The solid-state actuator is adhere to a lever arm of an force transducer and the force generation is measured in real time. The force generated by the actuator is found to be length dependent. However, the overall torques generated by the actuators with different lengths remains essentially the same. The effect of stimulation signals such as voltage, current, on the bending angle and displacement is also studied using square wave potential.

  4. High carrier concentration p-type transparent conducting oxide films

    DOEpatents

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  5. Modulating conductivity, environmental stability of transparent conducting nanotube films on flexible substrates by interfacial engineering.

    PubMed

    Han, Joong Tark; Kim, Jun Suk; Jeong, Hae Deuk; Jeong, Hee Jin; Jeong, Seung Yol; Lee, Geon-Woong

    2010-08-24

    We have characterized the previously undescribed parameters for engineering the electrical properties of single-walled carbon nanotube (SWCNT) films for technological applications. First, the interfacial tension between bare SWCNT network films and a top coating passivation material was shown to dictate the variability of the films' sheet resistance (R(s)) after application of the top coating. Second, the electrical stability of the coated SWCNT films was affected by the mismatch between the CTE of the supporting substrate and the SWCNT network film. An upshift in the Raman G-band spectrum of SWCNTs on bare PET suggested that compressive strain was induced by the CTE mismatch after heating and cooling. These findings provide important guidelines for the choice of substrate and passivation coating materials that promote environmental stability in SWCNT-based transparent conductive films. PMID:20731438

  6. Slightly Conductive Transparent Films for Space Applications: Manufacturability and Durability

    NASA Technical Reports Server (NTRS)

    Uppala, N.; Griffin, J.; Vemulapalli, J.; Hambourger, P. D.

    2001-01-01

    Highly transparent, slightly conductive films of co-deposited indium tin oxide (ITO) and MgF, have possible applications for environmental protection of exterior surfaces of spacecraft. Reliable preparation of films with the desired sheet resistivity (approximately 10(exp 8) ohms/square) is difficult because the electrical properties of ITO-Mg F, are highly dependent on film composition. We have investigated the use of plasma emission monitoring to improve the reproducibility of films prepared by RF magnetron sputtering. While considerable improve ment was observed, it appears that some in-situ electrical or optica l characterization will be needed for reliable production coating wit h ITO-MgF,. We have also done further evaluation of a possibly undesi rable photoconductive effect previously observed in these films.

  7. Enhanced film conductance of silver nanowire-based flexible transparent & conductive networks by bending

    NASA Astrophysics Data System (ADS)

    Xia, Xingda; Yang, Bingchu; Zhang, Xiang; Zhou, Conghua

    2015-07-01

    Bending is usually used to test durability of flexible transparent and conductive films. Due to the large stress incurred by this technique, bending has always been observed to deteriorate conductance of electrodes such as indium tin oxide film. In contrast, we here demonstrate that bending could be used to improve conductance of silver nanowire-based flexible transparent and conductive films. The enhanced conductance is due to improved contact between nanowires, which was favored by the hydrogen bond formed between residential polyvinylpyrrolidone (PVP) on silver nanowire and TiOx nanoparticles pre-coated on the substrate. The enhanced conductance was found to be affected by bending direction; bending towards the substrate not only yielded quicker decrease in sheet resistance, but also showed better film conductance than bending towards the nanowires. Then, with assistance of surface modification of substrate and ultra-long silver nanowires (averaged at 124 μm, maximum at 438 μm), optoelectronic performance of 90.2% (transmittance at 550 nm) and 12.5 Ω sq-1 (sheet resistance) has been achieved by bending. Such performance was better than commercialized flexible ITO films, and even competed with that obtained from thermal annealing at temperature of 200 °C. Moreover, Fourier transfer infrared (FTIR) spectroscopy study showed strong coordination between C=O (heterocyclic ring of PVP) and silver atoms, showing obvious capping behavior of PVP on silver nanowires.

  8. Radiation induced in-situ generation of conductivity in the blends of polyaniline-base with chlorinated-polyisoprene

    NASA Astrophysics Data System (ADS)

    Uzun, Cengiz; Ilgın, Pınar; Güven, Olgun

    2010-03-01

    Radiation induced acid doping of PANI to generate electrical conductivity was achieved by radiation induced HCl release from chlorinated-polyisoprene (ClPIP). Blends of PANI with ClPIP were prepared by mechanical mixing/grinding in the composition range of 9-43% ClPIP by weight and pelletized under 10 t press. The pellets were irradiated in 60Co Gammacell in air at room temperature to doses up to 300 kGy. The maximum electrical conductivity increase was observed for the blend PANI43 which changed from 10 -10 to 10 -4 S cm -1 when it was irradiated to 300 kGy dose. Radiation induced changes on the blends were also studied by UV-vis spectroscopy using reflection technique and FTIR spectroscopy. The broad absorption band in the visible range (630 nm) increased by increasing irradiation dose. The band (1110 cm -1) in the IR spectra which is indicative of conductivity showed linear correlation with irradiation dose.

  9. Thermal contact conductance across filled polyimide films at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Phelan, P. E.

    1999-12-01

    Thermal contact resistance arises in the region of contact where two solid specimens are pressed together. The thermal resistance can be controlled by inserting an interstitial material at the interface, such as Kapton MT, a polyimide film containing alumina particles, which has a relatively low thermal resistance, but yet a high voltage standoff capability. The thermal resistance consists of two components: thermal contact resistance at the copper/Kapton MT interfaces, and the thermal conduction resistance across the Kapton MT film. The measured thermal resistance at low temperatures indicates that increasing the contact pressure reduces the thermal resistance, to a limit determined by the film conduction resistance. The effects of the contact pressure, the average interface temperature and the thickness of the interstitial layer are evaluated. A novel dimensionless correlation is derived from the experimental results that describes the thermal contact conductance of joints which include a soft interstitial material, at cryogenic temperatures.

  10. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films

    PubMed Central

    Kim, Semin; Jang, Lindy K.; Park, Hyun S.; Lee, Jae Young

    2016-01-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive molecule. Efficient and fast PPY electrodeposition with dopamine (PDA/PPY) was found; the resultant PDA/PPY films exhibited greatly increased adhesion strengths of up to 3.7 ± 0.8 MPa and the modified electrodes had electrochemical impedances two to three orders of magnitude lower than that of an unmodified electrode. This electrochemical deposition of adhesive and conductive PDA/PPY offers a facile and versatile electrode modification for various applications, such as biosensors and batteries. PMID:27459901

  11. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films.

    PubMed

    Kim, Semin; Jang, Lindy K; Park, Hyun S; Lee, Jae Young

    2016-01-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive molecule. Efficient and fast PPY electrodeposition with dopamine (PDA/PPY) was found; the resultant PDA/PPY films exhibited greatly increased adhesion strengths of up to 3.7 ± 0.8 MPa and the modified electrodes had electrochemical impedances two to three orders of magnitude lower than that of an unmodified electrode. This electrochemical deposition of adhesive and conductive PDA/PPY offers a facile and versatile electrode modification for various applications, such as biosensors and batteries. PMID:27459901

  12. Magnetic Transparent Conducting Oxide Film And Method Of Making

    DOEpatents

    Windisch, Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2006-03-14

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 O·cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450° C. in air. An increase in film resistivity was found upon substitution of other cations (e.g., Zn2+, Al3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo2O4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity.

  13. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films

    NASA Astrophysics Data System (ADS)

    Kim, Semin; Jang, Lindy K.; Park, Hyun S.; Lee, Jae Young

    2016-07-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive molecule. Efficient and fast PPY electrodeposition with dopamine (PDA/PPY) was found; the resultant PDA/PPY films exhibited greatly increased adhesion strengths of up to 3.7 ± 0.8 MPa and the modified electrodes had electrochemical impedances two to three orders of magnitude lower than that of an unmodified electrode. This electrochemical deposition of adhesive and conductive PDA/PPY offers a facile and versatile electrode modification for various applications, such as biosensors and batteries.

  14. Processing dependent thermal conductivity of nanoporous silica xerogel films

    NASA Astrophysics Data System (ADS)

    Jain, Anurag; Rogojevic, Svetlana; Ponoth, Shom; Gill, William N.; Plawsky, Joel L.; Simonyi, Eva; Chen, Shyng-Tsong; Ho, P. S.

    2002-03-01

    Sintered xerogel films (porous SiO2) show a much higher thermal conductivity than other low dielectric constant (low-K) materials available for the same value of K. The thermal conductivity of xerogels which we have processed using different methods is compared with that of other low-K materials such as silica hybrid (silsesquioxanes) and polymeric low-K materials. The methods used were: (1) single solvent (ethanol) method, (2) binary solvent (mixture of ethanol and ethylene glycol) method, (3) sintering. For the xerogel films, we show that process history is as important as the chemistry of the solid matrix or the porosity in determining the thermal conductivity. The thermal conductivity, measured by the 3-ω method or the photothermal deflection method, is affected by phonon scattering, which in turn is effected by the size and distribution of pores and particles and the presence of imperfections such as interfaces, substituted chemical species, impurities, microcracks, and microporosity. The thermal conductivity extrapolated to zero porosity for porous sintered xerogel films approaches that of thermally grown SiO2 indicating the least phonon scattering of all processing methods. For these films, the elastic modulus is proportional to thermal conductivity squared, in agreement with theories developed for materials with few defects and a connected matrix.

  15. Phonon heat conduction in nano and microporous thin films

    NASA Astrophysics Data System (ADS)

    Song, David Won-Jun

    In this dissertation, the phonon size effect in the experimental and theoretical studies of random and periodic porous media are reported. First, a literature review on the past modeling studies on porous media are presented that covers both the earlier works that use the traditional effective medium approach and the few existing recent works that consider the low-dimensional effects. Next, the experimental characterization of the cross-plane thermal conductivity of randomly nano-porous bismuth thin films is presented. Fabricated in search for more efficient thermoelectric materials, the nanoporous bismuth films use nano-scale pores to impede phonon transport more than electron transport. Their cross-plane thermal conductivity characterization using the differential 3o technique revealed an order-of-magnitude reduction in the thermal conductivity values of the porous bismuth over those of non-porous bismuth films and a potential for the independent tuning of their electrical conductivity and thermal conductivity, but the defect-laden structure was difficult to model. Therefore, a new study was undertaken that focused on simpler periodic micro-porous single-crystal silicon membranes. A batch of such membranes were fabricated from both a plain silicon wafer and a silicon-on-insulator wafer using MEMS techniques, including bulk chemical etching and deep-reactive ion etching. The resulting samples contained periodically arranged pores of controlled dimension and orientation, but the pore dimension and orientation was varied from sample to sample to experimentally isolate the phonon size effect due to pore boundary scattering. The in-plane thermal conductivity of the microporous silicon membranes is characterized by a modified version of Volklein's DC method. The resulting thermal conductivity reduction in porous films compared to the solid silicon film strongly suggest phonon size effect. The three-dimensional phonon transport in porous silicon membranes were modeled

  16. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    SciTech Connect

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S.

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  17. Conformations of polyaniline in polymer blends

    NASA Astrophysics Data System (ADS)

    Laska, Jadwiga

    2004-09-01

    Conformational studies of polyaniline (PANi) in its doped, i.e. conducting form, have been performed. The main goal of this study was to determine how the conformations depend on a dopant, solvent and a polymer matrix in polyaniline blends with classic polymers such as poly(methyl methacrylate), polystyrene, cellulose derivatives, polyamides, etc. The obtained results shown that even slight changes in polymer conformations can be easily checked by means of UV-vis-NIR or NIR only spectroscopy. On the basis of the described results, prediction of macroscopic properties of PANi samples, for example, conductivity, at the stage of preparation is possible.

  18. Strain-controlled thermal conductivity in ferroic twinned films

    PubMed Central

    Li, Suzhi; Ding, Xiangdong; Ren, Jie; Moya, Xavier; Li, Ju; Sun, Jun; Salje, Ekhard K. H.

    2014-01-01

    Large reversible changes of thermal conductivity are induced by mechanical stress, and the corresponding device is a key element for phononics applications. We show that the thermal conductivity κ of ferroic twinned thin films can be reversibly controlled by strain. Nonequilibrium molecular dynamics simulations reveal that thermal conductivity decreases linearly with the number of twin boundaries perpendicular to the direction of heat flow. Our demonstration of large and reversible changes in thermal conductivity driven by strain may inspire the design of controllable thermal switches for thermal logic gates and all-solid-state cooling devices. PMID:25224749

  19. Laser diode with thermal conducting, current confining film

    NASA Technical Reports Server (NTRS)

    Hawrylo, Frank Z. (Inventor)

    1980-01-01

    A laser diode formed of a rectangular parallelopiped body of single crystalline semiconductor material includes regions of opposite conductivity type indium phosphide extending to opposite surfaces of the body. Within the body is a PN junction at which light can be generated. A stripe of a conductive material is on the surface of the body to which the P type region extends and forms an ohmic contact with the P type region. The stripe is spaced from the side surfaces of the body and extends to the end surfaces of the body. A film of germanium is on the portions of the surface of the P type region which is not covered by the conductive stripe. The germanium film serves to conduct heat from the body and forms a blocking junction with the P type region so as to confine the current through the body, across the light generating PN junction, away from the side surfaces of the body.

  20. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  1. Synthesis of novel electrically conducting polymers: Potential conducting Langmuir-Blodgett films and conducting polymers on defined surfaces

    NASA Technical Reports Server (NTRS)

    Zimmer, Hans

    1993-01-01

    Based on previous results involving thiophene derived electrically conducting polymers in which it was shown that thiophene, 3-substituted thiophenes, furans, and certain oligomers of these compounds showed electrical conductivity after polymerization. The conductivity was in the order of up to 500 S/cm. In addition, these polymers showed conductivity without being doped and most of all they were practically inert toward ambient conditions. They even could be used in aqueous media. With these findings as a guide, a number of 3-long-chain-substituted thiophenes and 1-substituted-3-long-chain substituted pyrrols were synthesized as monomers for potential polymeric electrically conducting Langmuir-Blodgett films.

  2. Sensors employing Functionalized Conducting Polymer Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Tanese, M. C.; Torsi, L.; Cioffi, N.; Sabbatini, L.; Zambonin, P. G.

    2003-12-01

    Functionalized conducting polymers are employed as active layers in sensors with a thin film transistor (TFT) device structure. Such devices can work as multi-parameter sensors with responses that are fast, repeatable and reversible at room temperature. In this work, a strategy is proposed to enhance the chemical selectivity of organic TFT sensors, by selecting active layers that are made of conducting polymers bearing chemically different substituents. A modulation of the devices sensitivity towards analytes such as alcohols and ketones is demonstrated.

  3. Electrochemical formation of a composite polymer-aluminum oxide film

    NASA Astrophysics Data System (ADS)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the

  4. Highly conductive grain boundaries in copper oxide thin films

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Klein, Andreas; Fortunato, Elvira

    2016-06-01

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu2O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu2O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu2O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  5. Segmentation of conducting domains in PEDOT:PSS films induced by an additive for conductivity enhancement

    NASA Astrophysics Data System (ADS)

    Unuma, Takeya; Yoshikawa, Muneki; Nakamura, Arao; Kishida, Hideo

    2016-05-01

    We investigate the relationship between the morphology and in-plane conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films made from aqueous dispersions with/without ethylene glycol additive. Nanometer-scale current images of the films obtained using a conductive atomic-force microscope reveal that PEDOT-rich highly conducting domains are segmented into smaller ones — with the total area of these domains being nearly constant — for larger percentages of ethylene glycol leading to higher in-plane conductivities. The in-plane transport mechanism is found to have a strong dependence on the effective thickness of insulating barriers formed by excess PSS between neighboring highly conducting domains.

  6. Electrical Conductivity of Thick Films Made from Silver Methylcarbamate Paste

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Jiang, Min; Zeng, Xiaoyan

    2013-10-01

    We have explored the electrical conductivity of thick films made from silver methylcarbamate paste using metallic silver as the electrically conductive phase. The paste was composed of 30 wt.% to 90 wt.% organic vehicle and 10 wt.% to 70 wt.% functional phase precursor (silver methylcarbamate). After the paste was sintered, films with thickness of 4.50 μm to 12.70 μm were obtained, in which the elemental percentage of silver varied from about 5 wt.% to above 99 wt.%. Experiments showed that both the electrical conductivity and the elemental percentage were mainly affected by the initial silver content in the paste and the parameters of the sintering process. For given sintering conditions, higher initial silver content led to higher elemental percentage of silver, improving the electrical conductivity of the thick film. The conditions of the sintering process had a significant influence on the evaporation and decomposition rates of the paste components, the elemental percentage of silver, and the microstructure of the thick film. Higher temperatures, longer times, lower heating rates, and more oxygen-rich sintering atmospheres were found to accelerate the evaporation and decomposition and increase the elemental percentage of silver, both of which served to enhance the electrical conductivity. For initial silver contents less than about 10 wt.%, the lowest electrical resistivity of the thick film only reached the order of 10-4 Ω cm, irrespective of the sintering conditions. For contents between 10 wt.% and 25 wt.%, it was possible to attain lowest resistivity values on the order of 10-5 Ω cm. Above 25 wt.%, the lowest resistivity could reach 10-6 Ω cm, comparable to that of bulk silver.

  7. Highly Conducting Transparent Indium-Doped Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Ghosh, Subhasis

    2014-09-01

    Highly conducting transparent indium-doped zinc oxide (IZO) thin films have been achieved by controlling different growth parameters using radio frequency magnetron sputtering. The structural, electrical, and optical properties of the IZO thin films have been investigated for varied indium content and growth temperature ( T G) in order to find out the optimum level of doping to achieve the highest conducting transparent IZO thin films. The highest mobility and carrier concentration of 11.5 cm2/V-s and 3.26 × 1020 cm-3, respectively, have been achieved in IZO doped with 2% indium. It has been shown that as T G of the 2% IZO thin films increase, more and more indium atoms are substituted into Zn sites leading to shift in (002) peaks towards higher angles which correspond to releasing the stress within the IZO thin film. The minimum resistivity of 5.3 × 10-4 Ω-cm has been achieved in 2% indium-doped IZO grown at 700°C.

  8. Stable, concentrated solutions of polyaniline using amines as gel inhibitors

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2002-01-01

    Stable, concentrated solutions of high-molecular weight polyaniline using amines as gel inhibitors. Certain amine compounds (gel inhibitors) are used to form highly concentrated, stable solutions of the emeraldine base form of polyaniline in numerous organic solvents from which coatings, films and fibers are readily prepared without problems associated with rapid gelation which occurs when concentrated solutions are attempted without the use of the gel inhibitors of the present invention. Tertiary amines are used to solubilize low-molecular weight fractions (M.sub.w <120,000, M.sub.n <30,000) of the pernigraniline, emeraldine, and leucoemeraldine oxidation states of polyaniline as concentrated (>20 wt. %) polyaniline solutions, while primary and secondary amines are used to produce solutions having 15-40 wt % of high-molecular weight polyaniline [M.sub.w.gtoreq.120,000, M.sub.n.gtoreq.30,000]. Concentrated solutions of polyaniline co-polymers or ring and/or nitrogen-substituted polyanilines may also be prepared.

  9. Ionic conduction in different hydrated V2O5 film

    NASA Astrophysics Data System (ADS)

    Saatci, A. Evrim; Gökdemir, F. Pınar; Menda, U. Deneb; Kavak, Pelin; Özdemir, Orhan; Kutlu, Kubilay

    2012-09-01

    Because of the layered structure of vanadium pentoxide films (V2O5), approved by XRD measurement, sensitized from different hydrated V2O5.nH2O sols, demonstrated anisotropic conductivities in current voltage (I-V) measurement. Conductivity values, originated from electronic and ionic conductions, differed provided that measurements were performed in a direction parallel to the ribbons rather than perpendicular to them. The overall electrical conductivity of V2O5nH2O sols mainly depended on the hydration state n and the amount of reduced V4+ ions in which n was determined around 4-6 [1] from the basal distance (17.6 Å) through XRD measurement while V4+ ions were determined through FTIR analysis. Electronic conduction prevailed in dehydrated V2O50.5H2O sols whereas non-stoichiometric vanadium pentoxide was a mixed-valence compound and its electronic properties arised from electron hopping between V4+ and V5+ ions so-called "small polaron model". Indeed, reduction/oxidation peaks in lithium (Li+) intercalation by cyclic voltammograms (CV) indicated the V4+ and V5+ ions in V2O5 sols. Temperature dependent I-V analysis showed Arheniuss type activation energy, EA, and located in between 0.3-0.5 eV; proposing ionic conduction rather than electronic conduction, specifically proton diffusion in V2O5 film. Indeed, hydration state greater than 0.5 predicted ionic conduction [1].

  10. Research on pattern-induced transparent conductive films

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohong; Fang, Zongbao; Zhang, Heng; Chen, Linsen

    2012-11-01

    Indium tin Oxide (ITO) is widely used in touch panel as a conductive material. However, it is fragile and has low transparency in low resistance. In this paper, a ITO-free transparent conductive film (TCF) has been proposed. Micronano structured patterns are designed to induce the silver paste composed by nano silver particles and organic solvents, which form the circuit of touch panel sensor conveniently. Mesh patterns are fabricated by UV nanoimprinting technology to form microgrooves on flexible polymer films coated by UV adhesive such as PET (polyethylene terephthalate). And then nano silver ink is filled into the grooves which constitute the conductive area of the TCF. The optical performance including the transmittance and haze of the TCF is tested. Finally, the TCF with the transmittance 87% and the square resistance less than 50 Ω/sq will be obtained, which can satisfy the applications in touch panel devices.

  11. On excess conductivity of wide superconducting films with phase slippage

    SciTech Connect

    Kulikovsky, A.; Erganokov, Kh.; Bielska-Lewandowska, H.

    1997-02-01

    Properties of wide superconducting tin films in the resistive current state with phase slippage have been studied experimentally. The authors have observed a region of excess conductivity on the current-voltage characteristics of the samples. Experimental results were discussed in view of the theory establishing the relationship between an interference term of the total current and excess current in weak superconductors. They derived the equation to evaluate the inelastic scattering time of superconductor {tau}{sub E} using the excess current of wide films with phase slippage. Their {tau}{sub E} values are in a good agreement with those obtained by other methods.

  12. Influence of film thickness on laser ablation threshold of transparent conducting oxide thin-films

    NASA Astrophysics Data System (ADS)

    Rung, S.; Christiansen, A.; Hellmann, R.

    2014-06-01

    We report on a comprehensive study of the laser ablation threshold of transparent conductive oxide thin films. The ablation threshold is determined for both indium tin oxide and gallium zinc oxide as a function of film thickness and for different laser wavelengths. By using a pulsed diode pumped solid state laser at 1064 nm, 532 nm, 355 nm and 266 nm, respectively, the relationship between optical absorption length and film thickness is studied. We find that the ablation threshold decreases with increasing film thickness in a regime where the absorption length is larger than the film thickness. In turn, the ablation threshold increases in case the absorption length is smaller than the film thickness. In particular, we observe a minimum of the ablation threshold in a region where the film thickness is comparable to the absorption length. To the best of our knowledge, this behaviour previously predicted for thin metal films, has been unreported for all three regimes in case of transparent conductive oxides, yet. For industrial laser scribing processes, these results imply that the efficiency can be optimized by using a laser where the optical absorption length is close to the film thickness.

  13. Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness

    PubMed Central

    2014-01-01

    We report on the out-of-plane thermal conductivities of epitaxial Fe3O4 thin films with thicknesses of 100, 300, and 400 nm, prepared using pulsed laser deposition (PLD) on SiO2/Si substrates. The four-point probe three-omega (3-ω) method was used for thermal conductivity measurements of the Fe3O4 thin films in the temperature range of 20 to 300 K. By measuring the temperature-dependent thermal characteristics of the Fe3O4 thin films, we realized that their thermal conductivities significantly decreased with decreasing grain size and thickness of the films. The out-of-plane thermal conductivities of the Fe3O4 films were found to be in the range of 0.52 to 3.51 W/m · K at 300 K. For 100-nm film, we found that the thermal conductivity was as low as approximately 0.52 W/m · K, which was 1.7 to 11.5 order of magnitude lower than the thermal conductivity of bulk material at 300 K. Furthermore, we calculated the temperature dependence of the thermal conductivity of these Fe3O4 films using a simple theoretical Callaway model for comparison with the experimental data. We found that the Callaway model predictions agree reasonably with the experimental data. We then noticed that the thin film-based oxide materials could be efficient thermoelectric materials to achieve high performance in thermoelectric devices. PMID:24571956

  14. [Amperometric enzyme biosensor with a glucose oxidase-polyaniline membrane].

    PubMed

    Dziadevich, S V; Doldatkin, A P; Rossokhatyĭ, V K; Shram, N F; Shul'ga, A A; Strikha, V I

    1994-01-01

    An amperometric glucose biosensor was made by electrochemical polymerization of aniline onto the gold electrodes in presence of the enzyme glucose oxidase in the phosphate buffer solution with pH 7.0. Aniline is easily polymerized forming a thin film, which adheres tightly on the electrodes surface. During the electropolymerization process glucose oxidase was entrapped into polyaniline film which then became the catalyst of the enzyme reaction of glucose hydrolysis. Experiments were performed to determine optimal conditions of polyaniline-glucose oxidase film preparation. Glucose was amperometrically determined with the electrochemically fabricated biosensor in the concentration range 10(-4) M to 2 x 10(-2) M. The linearity of the enzyme electrode response ranged from 2 x 10(-4) M to 6 x 10(-3) M. The electrochemical synthesis of a polyaniline-enzyme thin film a high-technologic one and this permits fabricating various microbiosensors and multisensors in the continuous technological cycle. PMID:7754558

  15. Interfacial Structure Dependent Spin Mixing Conductance in Cobalt Thin Films.

    PubMed

    Tokaç, M; Bunyaev, S A; Kakazei, G N; Schmool, D S; Atkinson, D; Hindmarch, A T

    2015-07-31

    Enhancement of Gilbert damping in polycrystalline cobalt thin-film multilayers of various thicknesses, overlayered with copper or iridium, was studied in order to understand the role of local interface structure in spin pumping. X-ray diffraction indicates that cobalt films less than 6 nm thick have strong fcc(111) texture while thicker films are dominated by hcp(0001) structure. The intrinsic damping for cobalt thicknesses above 6 nm is weakly dependent on cobalt thickness for both overlayer materials, and below 6 nm the iridium overlayers show higher damping enhancement compared to copper overlayers, as expected due to spin pumping. The interfacial spin mixing conductance is significantly enhanced in structures where both cobalt and iridium have fcc(111) structure in comparison to those where the cobalt layer has subtly different hcp(0001) texture at the interface. PMID:26274431

  16. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, Rointan; Nath, Prem

    1982-01-01

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment.

  17. Electrochemical deposition of highly-conducting metal dithiolene films.

    PubMed

    Allwright, Emily; Silber, Georg; Crain, Jason; Matsushita, Michio M; Awaga, Kunio; Robertson, Neil

    2016-05-31

    Electrochemical deposition has been used to prepare a thin film of neutral 4',4-(3-alkyl)-thiophene-5',5-hydogen-nickel and copper dithiolenes (Ni-C2, Cu-C2). The application of molecular electrodeposition provides a means to solution process molecular semiconductors of poor solubility, which results from the strong intermolecular interaction required for charge transport. Both Ni-C2 and Cu-C2 form continuous thin films that show intense NIR absorptions, extending to 1800 nm and 2000 nm respectively giving evidence for the strong intermolecular interactions in the solid state. Both films are highly conducting and temperature dependence of resistance gave an activation energy of 0.42 eV and 0.072 eV respectively, with the near-metallic behaviour of Cu-C2 attributed to the additional presence of an unpaired electron. PMID:27184422

  18. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, R.; Nath, P.

    1982-06-22

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation is disclosed. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment. 1 fig.

  19. Colloidal polyaniline

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.

  20. Nanostructured anion conducting block copolymer electrolyte thin films

    NASA Astrophysics Data System (ADS)

    Arges, Christopher; Kambe, Yu; Nealey, Paul

    Lamellae forming block copolymer electrolyte (BCE) thin-films with perpendicular aligned orientation were registered with high fidelity over large areas via a self-assembly process followed by a novel chemical vapor infiltration reaction (CVIR) technique. In this scheme, poly(styrene- b-2-vinyl pyridine) (PS bP2VP) block copolymers were self-assembled with perpendicular orientations on neutral chemical brushes using solvent vapor annealing. The ionic groups were selectively introduced into the P2VP block via a Menshutkin reaction that converted the nitrogen in the pyridine to n-methylpyridinium - anion carrier groups. FTIR-ATR and XPS tools confirmed the formation of the aforementioned ionic moieties post CVIR process and structure imaging tools (e.g., SEM and AFM imaging, GI-SAXS and RSOXs) established that incorporation of the ionic groups did not alter the self-assembled nanostructured films nor did subsequent ion-exchange processes. Electrochemical impedance spectroscopy determined the in-plane ion conductivity of different counteranions in the BCE thin films and alteration to the symmetry of the block copolymer film substantially improved (or hindered) BCE ion conductivity if the P2VP block's volume fraction was slightly greater than (or less than) 0.5. U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357.

  1. Systematic tuning of the conduction mechanisms in ferroelectric thin films.

    PubMed

    Levasseur, D; Bouyssou, E; De Paolis, R; Rousseau, A; Coccetti, F; Guegan, G; Payan, S; Maglione, M

    2013-12-11

    We have investigated the macroscopic and microscopic properties of large sets of Ba0.7Sr0.3TiO3 thin films including several substitution rates of manganese. Thanks to a high degree of control of the processing parameters at each stage we have been able to find a link between the dc leakage current and the low and high frequency dielectric permittivity and losses. We supplemented these macroscopic observations with in depth investigations of the defect states through x-ray photoelectron spectroscopy. We found that both the leakage current and the extrinsic dielectric parameters arise from a large density of charged point defects related to oxygen vacancies. At the outer surfaces of the films, the density of such charged defects is so high that it can raise the Fermi level to close to the conduction band. Such degradation of the films' performance can be relieved by appropriate manganese substitution for the titanium host ions. Such doping is able to move back the Fermi level to close to the center of the bandgap thus changing the conduction process from interfacial Schottky to bulk Poole Frenkel and decreasing the extrinsic losses. This beneficial effect was already inferred in ceramics and thin films but we have established a clear link between the macroscopic parameters and the microscopic defect state. This model can be transferred to many high permittivity oxides. PMID:24196859

  2. Simulation of conductivity of polymer films on metal surface

    NASA Astrophysics Data System (ADS)

    Maksimova, O. G.; Maksimov, A. V.; Baidganov, A. R.

    2015-09-01

    In this paper, protective properties of polymer films are analyzed. The simulation is performed by means of the Monte-Carlo method on the basis of three-dimensional lattice model of polymer system with orientational interactions [1]. Initially, configuration of polymer system is calculated by the Metropolis algorithm taking into account the characteristics of the internal structure (constants of intermolecular interactions etc.), temperature regime and metal quality. Further, for the study of conductivity, the motion of charged particles within the proposed lattice model is investigated on the basis of the calculated configuration. The interaction energy of the oxygen atom with eight neighboring links of polymer chains and electric double layer on the metallic surface is accounted. The direction of movement of charged particles is calculated by the Monte-Carlo method according to the energy advantage of its position. This method allows to calculate the number of charged particles passing through the polymer film and reaching the metal sheet surface. The dependences of conductivity on temperature, film thickness, and distance between molecular layers are obtained. It is shown that there is an optimum density for the given film thickness at which it possesses protective properties. The adequacy of the developed mathematical models and calculated dependences are verified by comparison with laboratory data and production testing.

  3. Highly conducting ZnSe films by reactive magnetron sputtering

    NASA Technical Reports Server (NTRS)

    Nouhi, A.; Stirn, R. J.

    1986-01-01

    This paper presents the results of an effort to deposit high-conductivity ZnSe on glass and conducting SnO2-coated glass substrates by reactive magnetron sputter deposition, using pure metal sputter targets of Zn and dopants such as In, Ga, and Al. Clear yellow ZnSe films were successfully obtained. By using substrate temperatures as low as 150 C, cosputtered dopants, and sputter parameters and H2Se injection rates which maximize the Zn-to-Se ratio in the films, ZnSe bulk resistivities have been lowered by up to seven orders of magnitude, reaching values as low as 20 ohm cm. The most effective dopant to data has been In, cosputtered with Zn in amounts leading to In atomic concentrations as high as 1.4 percent. Atomic-absorption measurements show an average 49.9/48.9 ratio of Zn to Se.

  4. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films

    PubMed Central

    Worfolk, Brian J.; Andrews, Sean C.; Park, Steve; Reinspach, Julia; Liu, Nan; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-01-01

    With consumer electronics transitioning toward flexible products, there is a growing need for high-performance, mechanically robust, and inexpensive transparent conductors (TCs) for optoelectronic device integration. Herein, we report the scalable fabrication of highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin films via solution shearing. Specific control over deposition conditions allows for tunable phase separation and preferential PEDOT backbone alignment, resulting in record-high electrical conductivities of 4,600 ± 100 S/cm while maintaining high optical transparency. High-performance solution-sheared TC PEDOT:PSS films were used as patterned electrodes in capacitive touch sensors and organic photovoltaics to demonstrate practical viability in optoelectronic applications. PMID:26515096

  5. Magnetic transparent conducting oxide film and method of making

    DOEpatents

    Windisch, Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2004-07-13

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 .OMEGA..multidot.cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450.degree. C. in air. Films deposited on sapphire substrates exhibit a refractive index of about 1.7 and are relatively transparent in the wavelength region from 0.6 to 10.0 .mu.m. They are also magnetic. The electrical and spectroscopic properties of the oxides have been studied as a function of x=Co/(Co+Ni) ratio. An increase in film resistivity was found upon substitution of other cations (e.g., Zn.sup.2+, Al.sup.3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo.sub.2 O.sub.4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity. The influence of cation charge state and site occupancy in the spinel structure markedly affects calculated electron band structures and contributes to a reduction of p-type conductivity, the formation of polarons, and the reduction in population of mobile charge carriers that tend to limit transmission in the infrared.

  6. Electrical conduction and deep levels in polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Gonon, P.; Deneuville, A.; Fontaine, F.; Gheeraert, E.

    1995-12-01

    We have studied the dark conductivity (field, temperature, and frequency dependence), and the photoconductivity in undoped polycrystalline diamond films. Detailed analysis reveals that either of two alternative models can be invoked to explain all the observed features of the dark conductivity. The first model is a Hill-type hopping conduction involving the presence of discrete acceptor states located at 0.91 eV above the valence band with a density around 1017 cm-3. The second model involves the presence of a band-tail of acceptor states extending about 1 eV above the valence band. In this case, variable range hopping conduction dominates at low fields with a density of states at the Fermi level around 5×1015 cm-3 eV-1, while space charge limited currents dominate at high fields. The states controlling the dark conductivity give rise to photoconduction with a threshold around 0.85 eV and a peak at 1.1 eV. The shape of the photoconductivity spectrum suggests that lattice relaxation (with a Franck-Condon shift around 0.08 eV) occurs at these states. Peaks in the photoconductivity at 1.4 eV and at 1.9 eV give evidence for the presence of deeper states in these films.

  7. Submicron Mapping of Thermal Conductivity of Thermoelectric Thin Films

    NASA Astrophysics Data System (ADS)

    Lo, Hsinyi; Ram, Rajeev J.

    2012-06-01

    A tool for evaluating thin-film thermal conductivity to submicron spatial resolution has been developed. The micro-instrumentation utilizes the thermoreflectance (TR) technique to characterize thermal conductivity and material uniformity. The instrument consists of a heating element for creating temperature gradients and an Invar bar with in situ temperature monitoring for heat flux measurements. The thin-film sample is sandwiched between the heater and Invar bar while a microscope is used to direct light onto a cross-section of the sample and reflected light is collected with a camera. By using this technique, we can achieve submicron spatial resolution for thermal conductivity and eliminate contributions from thermal contact resistance, thereby also eliminating the need for sample preparation other than cleaving. The method offers temperature resolution of 10 mK, spatial resolution of 200 nm, and thermal conductivity measurement with 0.01 ± 0.001 W/mK resolution. The thermal conductivity of a 0.6% ErAs:InGaAlAs thermoelectric (TE) element, prepared by molecular beam epitaxy (MBE) growth, obtained with the new instrument is 2.3 W/mK, while the average thermal conductivity obtained with the 3-omega method is 2.5 W/mK. Energy-dispersive x-ray (EDX) spectroscopy is also used to prove that the elemental composition has uniformity consistent with the material variation observed by the TR technique. Moreover, a temperature profile across a 0.6% ErAs:InGaAlAs TE element on InP substrate is imaged. Two different slopes, corresponding to different thermal conductivities, have been observed, showing that the thermal conductivity of the TE element is lower than that of the InP substrate as expected.

  8. Polyaniline-based optical ammonia detector

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2002-01-01

    Electronic absorption spectroscopy of a polyaniline film deposited on a polyethylene surface by chemical oxidation of aniline monomer at room temperature was used to quantitatively detect ammonia gas. The present optical ammonia gas detector was found to have a response time of less than 15 s, a regeneration time of less than 2 min. at room temperature, and a detection limit of 1 ppm (v/v) for ammonia, with a linear dynamic range from 180 ppm to 18,000 ppm.

  9. Electrical and thermal properties of graphite/polyaniline composites

    SciTech Connect

    Bourdo, Shawn E.; Warford, Brock A.; Viswanathan, Tito

    2012-12-15

    A composite of a carbon allotrope (graphite) and an inherently conducting polymer, polyaniline (PANI), has been prepared that exhibits an electrical conductivity greater than either of the two components. An almost 2-fold increase in the bulk conductivity occurs when only a small mass fraction of polyaniline exists in the composite (91% graphite/ 9% polyaniline, by mass). This increase in dc electrical conductivity is curious since in most cases a composite material will exhibit a conductivity somewhere between the two individual components, unless a modification to the electronic nature of the material occurs. In order to elucidate the fundamental electrical properties of the composite we have performed variable temperature conductivity measurements to better understand the nature of conduction in these materials. The results from these studies suggest a change in the mechanism of conduction as the amount of polyaniline is increased in the composite. Along with superior electrical properties, the composites exhibit an increase in thermal stability as compared to the graphite. - Graphical abstract: (Left) Room temperature electrical conductivity of G-PANI composites at different mass ratios. (Right) Electrical conductivity of G-PANI composites at temperatures from 5 K to 300 K. Highlights: Black-Right-Pointing-Pointer Composites of graphite and polyaniline have been synthesized with unique electrical and thermal properties. Black-Right-Pointing-Pointer Certain G-PANI composites are more conductive and more thermally stable than graphite alone. Black-Right-Pointing-Pointer G-PANI composites exhibit a larger conductivity ratio with respect to temperature than graphite alone.

  10. Corrosion protection mechanism of polyaniline blended organic coating on steel

    SciTech Connect

    Sathiyanarayanan, S.; Jeyaram, R.; Muthukrishnan, S.; Venkatachari, G.

    2009-07-01

    Epoxy-coal tar coatings are widely used to protect steel structures exposed to marine atmosphere due to their good barrier property. However, the presence of micropores and microcracks formed during the coating formation leads to failure of the coating due to permeation of corrosive ions. In recent years, it has been established that the coatings containing polyaniline (PANI) is able to protect pinholes and defects due to its passivating ability. Hence, a study has been made on the effect of polyaniline content (1 and 3%) in epoxy-coal tar coating on the corrosion protection of steel in 3% NaCl solution by electrochemical impedance spectroscopy (EIS) studies. Both phosphate- and chloride-doped polyanilines were prepared by a chemical oxidative polymerization method. From EIS studies, it has been found that the resistance value of the coatings containing 1 and 3% phosphate-doped polyaniline and 3% chloride-doped polyaniline pigmented coatings are similar to 10{sup 9} {Omega} cm{sup 2} even after 90 days exposure to NaCl solution, which are two orders high in comparison to that of conventional coal tar epoxy coatings. Besides, the conducting state of polyaniline has been found to be decreased after exposure to NaCl solution due to redox property of PANI. X-ray photoelectron spectroscopy studies have shown that polyaniline forms a complex layer with iron beneath the coating along with iron oxide.

  11. Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films

    PubMed Central

    2014-01-01

    Since the discovery of graphene, the quest for two-dimensional (2D) materials has intensified greatly. Recently, a new family of 2D transition metal carbides and carbonitrides (MXenes) was discovered that is both conducting and hydrophilic, an uncommon combination. To date MXenes have been produced as powders, flakes, and colloidal solutions. Herein, we report on the fabrication of ∼1 × 1 cm2 Ti3C2 films by selective etching of Al, from sputter-deposited epitaxial Ti3AlC2 films, in aqueous HF or NH4HF2. Films that were about 19 nm thick, etched with NH4HF2, transmit ∼90% of the light in the visible-to-infrared range and exhibit metallic conductivity down to ∼100 K. Below 100 K, the films’ resistivity increases with decreasing temperature and they exhibit negative magnetoresistance—both observations consistent with a weak localization phenomenon characteristic of many 2D defective solids. This advance opens the door for the use of MXenes in electronic, photonic, and sensing applications. PMID:24741204

  12. Electrical conductivity of the polycrystalline films of p-terphenyl

    NASA Astrophysics Data System (ADS)

    Tkaczyk, S. W.

    1999-04-01

    Some results of p-terphenyl thin films investigations are presented. The mechanism of DC conductivity within unordered polycrystalline structures of p-terphenyl was investigated. The measurements were carried out for p-terphenyl films' thickness varying from 2 micrometers up to 15 micrometers . During the experiment the polarization voltage and temperature were changed from 0 to 200 V and 15 to 325 K, respectively. The p-terphenyl films were supplied with gold and aluminum electrodes. The obtained results and their analysis indicate that the injection of charge from the electrodes into the area of the investigated material proceeds by field- and thermoemission. The charge transport through the material's bulk is controlled by traps (hopping mechanism and Poole- Frenkel phenomenon). The determined values of the activation energy are in the range of kT (for the hopping area at low temperatures) through 0.06 eV in the range of 100 - 200 K to about 0.6 eV in the metallic conductivity area (220 - 320 K).

  13. Processible Polyaniline Copolymers and Complexes.

    NASA Astrophysics Data System (ADS)

    Liao, Yun-Hsin

    1995-01-01

    Polyaniline (PANI) is an intractable polymer due to the difficulty of melt processing or dissolving it in common solvents. The purpose of the present investigation was to prepare a new class of conducting polyanilines with better solubility both in base and dope forms by (1) adding external salt to break aggregated chains, (2) introducing ring substituted units onto the backbone without disturbing the coplanar structure, and (3) complexing with polymeric dopants to form a soluble polymer complex. Aggregation of PANI chains in dilute solution was investigated in N-methyl-2-pyrrolidinone (NMP) by light scattering, gel permeation chromatography, and viscosity measurements. The aggregation of chains resulted in a negative second virial coefficient in light scattering measurement, a bimodal molecular weight distribution in gel permeation chromatography, and concave reduced viscosity curves. The aggregates can be broken by adding external salt, which resulting in a higher reduced viscosity. The driving force for aggregation is assumed to be a combination of hydrogen bonding between the imine and amine groups, and the rigidity of backbone. The aggregation was modeled to occur via side-on packing of PANI chains. The ring substituted PANI copolymers, poly(aniline -co-phenetidine) were synthesized by chemical oxidation copolymerization using ammonium persulfate as an oxidant. The degree of copolymerization declined with an increasing feed of o-phenetidine in the reaction mixture. The o-phenetidine had a higher reactivity than aniline in copolymerization resulting in a higher content of o-phenetidine in copolymers. The resulting copolymers can be readily dissolved in NMP up to 20% (w/w), and other common solvents, and solutions possess a longer gelation time. The highly soluble copolymer with 20 mole % o-phenetidine in the backbone has same order of conductivity as the unsubstituted PANI after it is doped by HCl. Complexation of PANI and polymeric dopant, poly

  14. Thermal conductivity in nanostructured films: from single cellulose nanocrystals to bulk films.

    PubMed

    Diaz, Jairo A; Ye, Zhijiang; Wu, Xiawa; Moore, Arden L; Moon, Robert J; Martini, Ashlie; Boday, Dylan J; Youngblood, Jeffrey P

    2014-11-10

    We achieved a multiscale description of the thermal conductivity of cellulose nanocrystals (CNCs) from single CNCs (∼0.72-5.7 W m(-1) K(-1)) to their organized nanostructured films (∼0.22-0.53 W m(-1) K(-1)) using experimental evidence and molecular dynamics (MD) simulation. The ratio of the approximate phonon mean free path (∼1.7-5.3 nm) to the lateral dimension of a single CNC (∼5-20 nm) suggested a contribution of crystal-crystal interfaces to polydisperse CNC film's heat transport. Based on this, we modeled the thermal conductivity of CNC films using MD-predicted single crystal and interface properties along with the degree of CNC alignment in the bulk films using Hermans order parameter. Film thermal conductivities were strongly correlated to the degree of CNC alignment and the direction of heat flow relative to the CNC chain axis. The low interfacial barrier to heat transport found for CNCs (∼9.4 to 12.6 m(2) K GW(-1)), and their versatile alignment capabilities offer unique opportunities in thermal conductivity control. PMID:25286405

  15. Highly conducting graphene sheets and Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Li, Xiaolin; Zhang, Guangyu; Bai, Xuedong; Sun, Xiaoming; Wang, Xinran; Wang, Enge; Dai, Hongjie

    2008-09-01

    Graphene is an intriguing material with properties that are distinct from those of other graphitic systems. The first samples of pristine graphene were obtained by `peeling off' and epitaxial growth. Recently, the chemical reduction of graphite oxide was used to produce covalently functionalized single-layer graphene oxide. However, chemical approaches for the large-scale production of highly conducting graphene sheets remain elusive. Here, we report that the exfoliation-reintercalation-expansion of graphite can produce high-quality single-layer graphene sheets stably suspended in organic solvents. The graphene sheets exhibit high electrical conductance at room and cryogenic temperatures. Large amounts of graphene sheets in organic solvents are made into large transparent conducting films by Langmuir-Blodgett assembly in a layer-by-layer manner. The chemically derived, high-quality graphene sheets could lead to future scalable graphene devices.

  16. Inkjet-printed energy storage device using graphene/polyaniline inks

    NASA Astrophysics Data System (ADS)

    Xu, Yanfei; Hennig, Ingolf; Freyberg, Dieter; James Strudwick, Andrew; Georg Schwab, Matthias; Weitz, Thomas; Chih-Pei Cha, Kitty

    2014-02-01

    In this work, graphene/polyaniline (NGP/PANI) inks are formulated; inkjet printing technology is then used to produce NGP/PANI thin-film electrodes from these inks. With this inkjet printing, good control over a number of key film properties including pattern geometry, pattern location, film thickness, and electrical conductivity is achieved. Two-electrode supercapacitors are fabricated using these thin-film electrodes. Electrochemical measurements with a 1 M H2SO4 electrolyte yield a maximum specific capacitance of 82 F g-1, power density of 124 kW kg-1 and energy density of 2.4 Wh kg-1 when a scan rate of 20 mV s-1 is applied. The supercapacitors show a long cycle life over 1000 cycles.

  17. Flexible and conductive MXene films and nanocomposites with high capacitance

    PubMed Central

    Ling, Zheng; Ren, Chang E.; Zhao, Meng-Qiang; Yang, Jian; Giammarco, James M.; Qiu, Jieshan; Barsoum, Michel W.; Gogotsi, Yury

    2014-01-01

    MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. Herein, Ti3C2Tx MXene was mixed with either a charged polydiallyldimethylammonium chloride (PDDA) or an electrically neutral polyvinyl alcohol (PVA) to produce Ti3C2Tx/polymer composites. The as-fabricated composites are flexible and have electrical conductivities as high as 2.2 × 104 S/m in the case of the Ti3C2Tx/PVA composite film and 2.4 × 105 S/m for pure Ti3C2Tx films. The tensile strength of the Ti3C2Tx/PVA composites was significantly enhanced compared with pure Ti3C2Tx or PVA films. The intercalation and confinement of the polymer between the MXene flakes not only increased flexibility but also enhanced cationic intercalation, offering an impressive volumetric capacitance of ∼530 F/cm3 for MXene/PVA-KOH composite film at 2 mV/s. To our knowledge, this study is a first, but crucial, step in exploring the potential of using MXenes in polymer-based multifunctional nanocomposites for a host of applications, such as structural components, energy storage devices, wearable electronics, electrochemical actuators, and radiofrequency shielding, to name a few. PMID:25389310

  18. Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems

    NASA Astrophysics Data System (ADS)

    Ankireddy, Krishnamraju; Menon, Akanksha K.; Iezzi, Brian; Yee, Shannon K.; Losego, Mark D.; Jur, Jesse S.

    2016-07-01

    Printed electronics is being explored as a rapid, facile means for manufacturing thermoelectric generators (TEGs) that can recover useful electrical energy from waste heat. This work examines the relevant electrical conductivity, thermal resistance, thermovoltage, and Seebeck coefficient of printed films for use in such printed flexible TEGs. The thermoelectric performance of TEGs printed using commercially relevant nickel, silver, and carbon inks is evaluated. The microstructure of the printed films is investigated to better understand why the electrical conductivity and Seebeck coefficient are degraded. Thermal conduction is shown to be relatively insensitive to the type of metalized coating and nearly equivalent to that of an uncoated polymer substrate. Of the commercially available conductive ink materials examined, carbon-nickel TEGs are shown to exhibit the highest thermovoltage, with a value of 10.3 μV/K. However, silver-nickel TEGs produced the highest power generation of 14.6 μW [from 31 junctions with temperature difference (ΔT) of 113°C] due to their low electrical resistance. The voltage generated from the silver-nickel TEG was stable under continuous operation at 275°C for 3 h. We have also demonstrated that, after a year of storage in ambient conditions, these devices retain their performance. Notably, the electrical conductivity and Seebeck coefficient measured for individual materials were consistent with those measured from actual printed TEG device structures, validating the need for further fundamental materials characterization to accelerate flexible TEG device optimization.

  19. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    NASA Astrophysics Data System (ADS)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  20. Silver nanowires/polycarbonate composites for conductive films

    NASA Astrophysics Data System (ADS)

    Moreno, I.; Navascues, N.; Irusta, S.; Santamaría, J.

    2012-09-01

    Silver nanowires (AgNW) with an aspect ratio of 85 were synthesized by a solvothermal process. The AgNW were characterized by SEM and XRD techniques. Nanocomposites of these silver nanowires in a polycarbonate matrix were prepared by simple solution mixing procedure in a concentration filler range 0-4.35 wt%. The obtained films were around 18 μm thick, optical microscopy and SEM characterization showed good dispersion of the nanowires in the polymeric matrix. The obtained composites presented low percolation threshold (0.04 wt%) and the maximum conductivity at 4.35 wt% filler loading was 2.3×10-2 S/cm.

  1. Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film

    SciTech Connect

    Linde, Felix; Sekhar Yadavalli, Nataraja; Santer, Svetlana

    2013-12-16

    We report on conductivity behavior of very thin gold layer deposited on a photosensitive polymer film. Under irradiation with light interference pattern, the azobenzene containing photosensitive polymer film undergoes deformation at which topography follows a distribution of intensity, resulting in the formation of a surface relief grating. This process is accompanied by a change in the shape of the polymer surface from flat to sinusoidal together with a corresponding increase in surface area. The gold layer placed above deforms along with the polymer and ruptures at a strain of 4%. The rupturing is spatially well defined, occurring at the topographic maxima and minima resulting in periodic cracks across the whole irradiated area. We have shown that this periodic micro-rupturing of a thin metal film has no significant impact on the electrical conductivity of the films. We suggest a model to explain this phenomenon and support this by additional experiments where the conductivity is measured in a process when a single nanoscopic scratch is formed with an AFM tip. Our results indicate that in flexible electronic materials consisting of a polymer support and an integrated metal circuit, nano- and micro cracks do not alter significantly the behavior of the conductivity unless the metal is disrupted completely.

  2. Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film

    NASA Astrophysics Data System (ADS)

    Linde, Felix; Sekhar Yadavalli, Nataraja; Santer, Svetlana

    2013-12-01

    We report on conductivity behavior of very thin gold layer deposited on a photosensitive polymer film. Under irradiation with light interference pattern, the azobenzene containing photosensitive polymer film undergoes deformation at which topography follows a distribution of intensity, resulting in the formation of a surface relief grating. This process is accompanied by a change in the shape of the polymer surface from flat to sinusoidal together with a corresponding increase in surface area. The gold layer placed above deforms along with the polymer and ruptures at a strain of 4%. The rupturing is spatially well defined, occurring at the topographic maxima and minima resulting in periodic cracks across the whole irradiated area. We have shown that this periodic micro-rupturing of a thin metal film has no significant impact on the electrical conductivity of the films. We suggest a model to explain this phenomenon and support this by additional experiments where the conductivity is measured in a process when a single nanoscopic scratch is formed with an AFM tip. Our results indicate that in flexible electronic materials consisting of a polymer support and an integrated metal circuit, nano- and micro cracks do not alter significantly the behavior of the conductivity unless the metal is disrupted completely.

  3. Effect of Applied Potential on the Electrochemical Deposition of Styrene-Butadiene Co-Polymer Based Conducting Polymer Composite

    NASA Astrophysics Data System (ADS)

    Mathew, Anisha Mary; Neena, P.

    2011-10-01

    Homogeneous conducting polymer composite films with improved electrical properties are synthesized via electrochemical polymerization of polyaniline on Styrene butadiene rubber coated steel electrode. The electrochemical polymerization is carried out by potentiostatic method using an aqueous solution of 0.2 M aniline and 1.5 M sulphuric acid as electrolyte in a single compartment electrochemical cell. The optical studies show successful incorporation of polyaniline into the matrix polymer film. The effect of applied potential on the electrodeposition of composite is studied by cyclic voltammetry and by impedance spectroscopic measurements.

  4. Device and method for measuring thermal conductivity of thin films

    NASA Technical Reports Server (NTRS)

    Amer, Tahani R. (Inventor); Subramanian, Chelakara (Inventor); Upchurch, Billy T. (Inventor); Alderfer, David W. (Inventor); Sealey, Bradley S. (Inventor); Burkett, Jr., Cecil G. (Inventor)

    2001-01-01

    A device and method are provided for measuring the thermal conductivity of rigid or flexible, homogeneous or heterogeneous, thin films between 50 .mu.m and 150 .mu.m thick with relative standard deviations of less than five percent. The specimen is sandwiched between like material, highly conductive upper and lower slabs. Each slab is instrumented with six thermocouples embedded within the slab and flush with their corresponding surfaces. A heat source heats the lower slab and a heat sink cools the upper slab. The heat sink also provides sufficient contact pressure onto the specimen. Testing is performed within a vacuum environment (bell-jar) between 10.sup.-3 to 10.sup.-6 Torr. An anti-radiant shield on the interior surface of the bell-jar is used to avoid radiation heat losses. Insulation is placed adjacent to the heat source and adjacent to the heat sink to prevent conduction losses. A temperature controlled water circulator circulates water from a constant temperature bath through the heat sink. Fourier's one-dimensional law of heat conduction is the governing equation. Data, including temperatures, are measured with a multi-channel data acquisition system. On-line computer processing is used for thermal conductivity calculations.

  5. Laser Processing of Carbon Nanotube Transparent Conducting Films

    NASA Astrophysics Data System (ADS)

    Mann, Andrew

    Transparent conducting films, or TCFs, are 2D electrical conductors with the ability to transmit light. Because of this, they are used in many popular electronics including smart phones, tablets, solar panels, and televisions. The most common material used as a TCF is indium tin oxide, or ITO. Although ITO has great electrical and optical characteristics, it is expensive, brittle, and difficult to pattern. These limitations have led researchers toward other materials for the next generation of displays and touch panels. The most promising material for next generation TCFs is carbon nanotubes, or CNTs. CNTs are cylindrical tubes of carbon no more than a few atoms thick. They have different electrical and optical properties depending on their atomic structure, and are extremely strong. As an electrode, they conduct electricity through an array of randomly dispersed tubes. The array is highly transparent because of gaps between the tubes, and size and optical properties of the CNTs. Many research groups have tried making CNT TCFs with opto-electric properties similar to ITO but have difficultly achieving high conductivity. This is partly attributed to impurities from fabrication and a mix of different tube types, but is mainly caused by low junction conductivity. In functionalized nanotubes, junction conductivity is impaired by covalently bonded molecules added to the sidewalls of the tubes. The addition of this molecule, known as functionalization, is designed to facilitate CNT dispersion in a solvent by adding properties of the molecule to the CNTs. While necessary for a good solution, functionalization decreases the conductivity in the CNT array by creating defects in the tube's structures and preventing direct inter-carbon bonding. This research investigates removing the functional coating (after tube deposition) by laser processing. Laser light is able to preferentially heat the CNTs because of their optical and electrical properties. Through local conduction

  6. Research on resistance properties of conductive layer materials of microchannel plate film dynode

    NASA Astrophysics Data System (ADS)

    Peng, Ling-ling; Duanmu, Qingduo; Yang, Ji-kai; Wang, Guo-zheng

    2015-03-01

    Silicon Microchannel Plate - MCP - is a new image multiplier devices based semiconductor process technology. Compared with the traditional glass MCP, Silicon MCP has an advantage in technology that the dynode materials and the substrate materials are separate. At the same time, the dynode preparation process and the microchannel arrays are also separate. Two different dynode conductive layer films are prepared: polysilicon conductive films prepared by low pressure chemical vapor deposition (LPCVD) and AZO thin films coated by atomic layer deposition (ALD). The conductive films coated by ALD are superior to dynode conductive films prepared by LPCVD. By comparing the resistivity of conductive polysilicon thin film and AZO thin film of different Al concentrations doped, AZO thin film of different Al concentrations doped is a more suitable conductive layer dynode material to satisfy the MCP conductive layer resistivity requirements.

  7. Synthesis and characterization of an electro-deposited polyaniline-bismuth telluride nanocomposite - A novel thermoelectric material

    SciTech Connect

    Chatterjee, Krishanu; Suresh, Asaithambi; Ganguly, Saibal; Kargupta, Kajari; Banerjee, Dipali

    2009-12-15

    The present work consists of synthesis and characterization of a novel thermoelectric material polyaniline (PANI)-bismuth telluride (Bi{sub 2}Te{sub 3}) nanocomposite using simultaneous electrochemical reactions and deposition method. The inorganic bismuth nitrate has been used as a dopant for polyaniline to achieve high electrical conductivity. A semi-batch mode of operation has been employed to control the rate of deposition of an individual component and thus the molecular architecture of the composite. The electro-deposited composite film on ITO coated glass substrate has been characterized by X-ray diffraction analysis (XRD), FTIR analysis, scanning electron microscope (SEM), and transmission electron microscope (TEM). The microscopic analysis reveals the formation of rod-like nanostructures of diameter less than 100 nm. It has been found that smaller molecules of Bi{sub 2}Te{sub 3} are dispersed in the macromolecules of PANI. The nanocomposite has been characterized by thermoelectric power.

  8. Microwave Conductivity Spectroscopy for Fe(Se,Te) Thin Films

    NASA Astrophysics Data System (ADS)

    Nabeshima, Fuyuki; Nagasawa, Kosuke; Asami, Daisuke; Sawada, Yuichi; Imai, Yoshinori; Maeda, Atsutaka

    Iron chalcogenide superconductors Fe(Se,Te) have very small ɛF and are considered to be in the BCS-BEC crossover regime. Since Ginzburg number, Gi =(kBTc /ɛF) 4 , which is the relative temperature width of the superconducting fluctuation region, is large for materials in the BCS-BEC crossover regime, large superconducting fluctuations are expected in Fe(Se,Te). In order to investigate superconducting fluctuations in these materials we have performed microwave conductivity spectroscopy on Fe(Se,Te) thin films. Superfluid density of an Fe(Se,Te) film with Tczero =17 K took finite values above 25 K. This temperature is much higher than Tc estimated by the dc measurement, suggesting strong superconducting fluctuations in Fe(Se,Te). A dynamic scaling analysis of complex fluctuation conductivity revealed that the superconducting fluctuations of Fe(Se,Te) exhibit a 2-dimensional behavior, while BKT transition was not observed. We will also report on the thickness dependence and the Te content dependence of the superconducting fluctuation Partially supported by the Japan Society for the Promotion of Science (JSPS) Research Fellowship for Young Scientists and by JSPS KAKENHI Grant Numbers 15K17697.

  9. Electrochemical deposition of conducting ruthenium oxide films from solution

    SciTech Connect

    Anderson, D.P.; Warren, L.F.

    1984-02-01

    In the last decade, ruthenium oxide, RuO /sub x/ (x less than or equal to 2), has been used extensively as the active anode electrocatalyst constituent for Cl/sub 2/ and O/sub 2/ evolution reactions, in chlorate production, and in metal electrowinning from mixed chloride-sulfate solutions. More recently, this material has been incorporated in several light-induced water electrolysis schemes and apparently possesses the ability to inhibit CdS photocorrosion by acting as a hole scavenger. The numerous applications for this catalyst material certainly warrant further studies of its electrochemical properties on a variety of substrates, e.g., semiconductors. The lack of a simple technique for controlled deposition of ruthenium oxide onto conducting substrates prompted us to investigate an electrochemical approach to this problem. We describe here a new way to electrochemically deposit conducting films of hydrated ruthenium oxide from an aqueous solution of the benzeneruthenium (II)aqua complex. The films slowly dissolve in aqueous electrolytes upon potential cycling, yet appear to be catalytic with regards to water oxidation.

  10. Permeable polyaniline articles for gas separation

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2009-07-21

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

  11. Permeable polyaniline articles for gas separation

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2004-09-28

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

  12. Preparation and electrochemical properties of polyaniline nanofibers using ultrasonication

    SciTech Connect

    Manuel, James; Kim, Miso; Fapyane, Deby; Chang, In Seop; Ahn, Hyo-Jun; Ahn, Jou-Hyeon

    2014-10-15

    Highlights: • Nanofibrous structured polyaniline (PANI) was prepared by simple ultrasonication. • PANI nanofibers prepared at 5 °C are uniform with an average diameter of 50 nm. • The conductivity is increased by 2 × 10{sup 8} times after doping with LiClO{sub 4}. • The cell with PANI-LiClO{sub 4} shows good cycle performance at high current densities. - Abstract: Polyaniline nanofibers have been successfully prepared by applying ultrasonic irradiation during oxidative polymerization of aniline in dilute hydrochloric acid and evaluated for suitability in lithium cells after doping with lithium perchlorate salt. Polyaniline nanofibers are confirmed by Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, and transmission electron microscopy, and the efficiency of doping is confirmed by DC conductivity measurements at different temperatures. Electrochemical properties of nanofibers are evaluated, of which a remarkable increase in cycle stability is achieved when compared to polyaniline prepared by simple oxidative polymerization of aniline. The cell with nanofibrous polyaniline doped with LiClO{sub 4} delivers an initial discharge capacity value of 86 mA h g{sup −1} at 1 C-rate which is about 60% of theoretical capacity, and the capacity is slightly lowered during cycle and reaches 50% of theoretical capacity after 40 cycles. The cell delivers a stable and higher discharge capacity even at 2 C-rate compared to that of the cell prepared with bulk polyaniline doped with LiClO{sub 4}.

  13. Conducting molecular composites of polypyrrole with electroactive polymeric dopantions

    SciTech Connect

    Cameron, D.A.; Reynolds, J.R.

    1996-10-01

    Polypyrrole is one of the most widely used and studied electroactive polymers due to its good conductivity and stability in air. A variety of low molecular weight and polymeric ions have been used as charge compensating dopants in conductive polypyrrole in its oxidized state. In this work we report the electro-polymerization of polypyrrole films incorporating electroactive N-substituted polyaniline polyelectrolytes as dopant ions.

  14. Structural control over conductivity and conduction type in thin films of polyphenylquinones

    SciTech Connect

    Svetlichnyi, V. M.; Aleksandrova, E. L.; Tameev, A. R.; Miagkova, L. A.; Matyushina, N. V.

    2012-04-15

    Carrier transport in newly synthesized 2,6-polyphenylquinolines containing an oxygen or phenylamine bridge group between phenylquinoline moieties and alkylated derivatives of carbazole or indolo[3,2-b]carbazole as an arylene radical has been studied. Both electron and hole transport is observed in films of all the polymers studied, with mobility on the order of 10{sup -16} cm{sup 2} V{sup -1} s{sup -1}, which increases on passing from an oxygen-to a phenylamine-type bridging group and from carbazole-to indolocarbazole-based derivatives. It is demonstrated that the conductivity and conduction type can be controlled by varying the type (oxygen or phenylamine) of bridging group between the phenylquinoline moieties or by the selection of an arylene radical.

  15. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    NASA Astrophysics Data System (ADS)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  16. Transparent conductive thin-film encapsulation layers (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Behrendt, Andreas; Gahlmann, Tobias; Trost, Sara; Polywka, Andreas; Görrn, Patrick; Riedl, Thomas

    2015-10-01

    Gas diffusion barriers (GDB) are inevitable to protect sensitive organic materials or devices against ambient gases. Typically, thin-film gas diffusion barriers are insulators, e.g. Al2O3 or multilayers of Al2O3/ZrO2, etc.. A wide range of applications would require GDB which are at the same time transparent and electrically conductive. They could serve as electrode and moisture barrier simultaneously, thereby simplifying production. As of yet, work on transparent conductive GDB (TCGDBs) is very limited. TCGDBs based on ZnO prepared by atomic layer deposition (ALD) have been reported. Due to the chemical instability of ZnO, it turns out that their electrical conductivity severely deteriorates by orders of magnitude upon exposure to damp heat conditions after very short time. We will show that these issues can be overcome by the use of tin oxide (SnO2). Conductivities of up to 300 S/cm and extremely low water vapor transmission rates (WVTR) on the order of 10-6 g/(m2 day) can been achieved in SnOx layers prepared by ALD at low temperatures (<150°C). A sandwich of SnOx/Ag/SnOx is shown to provide an average transmittance of 82% and a low sheet resistance of 9 Ohm/sq. At the same time the resulting electrodes are extremely robust. E.g., while unprotected Cu and Ag electrodes degrade within a few minutes at 85°C/85%rH (e.g. Cu lost 7 orders of magnitude in electrical conductivity), sandwich structures of SnOx/(Cu or Ag)/SnOx remain virtually unchanged even after 100 h. The SnOx in this work will also provide corrosion protection for the metal in case of harsh processing steps on top these electodes (e.g. acidic). We demonstrate the application of these TCGDBs as electrodes for organic solar cells and OLEDs.

  17. In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: characterization and application for a glucose amperometric biosensor.

    PubMed

    Zhong, Huaan; Yuan, Ruo; Chai, Yaqin; Li, Wenjuan; Zhong, Xia; Zhang, Yu

    2011-07-15

    A new glucose amperometric biosensor, based on electrodeposition of platinum nanoparticles onto the surface of multi-wall carbon nanotube (MWNT)-polyaniline (PANI) nanocomposites, and then immobilizing glucose oxidase (GOD) with covalent interaction and adsorption effect, was constructed in this paper. Firstly, the MWNT-PANI nanocomposites had been synthesized by in situ polymerization and were characterized through transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and ultraviolet and visible (UV-vis) absorption spectra. The assembled process of the modified electrode was probed by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Chronoamperometry was used to study the electrochemical performance of the resulting biosensor. The glucose biosensor exhibited a linear calibration curve over the range from 3.0 μM to 8.2mM, with a detection limit of 1.0 μM and a high sensitivity of 16.1 μA mM(-1). The biosensor also showed a short response time (within 5s). Furthermore, the reproducibility, stability and interferences of the biosensor were also investigated. PMID:21645677

  18. [Synthesis of particle-free silver conductive ink and investigation of fabrication of conductive film by printing].

    PubMed

    Nie, Xiao-Lei; Wang, Hong; Zou, Jing

    2012-11-01

    Particle-free conductive ink was prepared, taking silver citrate as conductive metal precursor, sec-butylamine as complexing agent and ethanol as media adjusting the viscosity and wettability. The ink could be printed on PET substrate by gravure printing, and silver conductive film with high electrical conductivity was obtained after thermal treated at low temperature. Silver citrate, silver citrate based conductive ink and silver conductive film were characterized with EDS, STA, IR, XRD, SEM and four point probe method. The results of STA showed that the mass of the conductive ink came to constant at 132 degrees C which is much lower than that of silver citrate (210 degrees C); the results of SEM and XRD showed that the silver conductive film cured at 150 C was constituted by compact silver nano particles with high purity; the result of four point probe method showed that its sheet resistance was 1.83 omega x square(-1). PMID:23387185

  19. Thin film conductive polymer for microactuator and micromuscle applications

    SciTech Connect

    Lee, A.P.; Hong, K.; Trevino, J.; Northrup, M.A.

    1994-04-14

    Conductive polymer/polyimide bimorphic microcantilevers have been actuated vertically (out-of-plane) upon the volumetric changes induced by electrochemical doping of the polymer. The microcantilevers that are 200-500 {mu}m in length and 50-100 {mu}m in width can be fully extended from a circularly-curled geometry, and thus generate more than 100 {mu}m displacement. Dynamically the microcantilevers have been driven as fast as 1.2 Hz and the polymer was stable for over a week stored in air and light. Residual stresses in the polymer film is estimated to be as high as 254 MPa, and actuation stresses are as high as 50 MPa.

  20. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; Lee, K. M.; Chang, W. S.; Kim, D. S.; Rhee, G. H.; Choi, T. Y.

    2013-03-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m-1 K-1 at room temperature.

  1. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor.

    PubMed

    Shrestha, R; Lee, K M; Chang, W S; Kim, D S; Rhee, G H; Choi, T Y

    2013-03-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m(-1) K(-1) at room temperature. PMID:23556837

  2. Conductance Thin Film Model of Flexible Organic Thin Film Device using COMSOL Multiphysics

    NASA Astrophysics Data System (ADS)

    Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    We developed a virtual model to analyze the electrical conductivity of multilayered thin films placed above a graphene conducting and flexible polyethylene terephthalate (PET) substrate. The organic layers of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole conducting layer, poly(3-hexylthiophene-2,5-diyl) (P3HT), as a p-type, phenyl-C61-butyric acid methyl ester (PCBM) and as n-type, with aluminum as a top conductor. COMSOL Multiphysics was the software we used to develop the virtual model to analyze potential variations and conductivity through the thin-film layers. COMSOL Multiphysics software allows simulation and modeling of physical phenomena represented by differential equations such as heat transfer, fluid flow, electromagnetism, and structural mechanics. In this work, using the AC/DC, electric currents module we defined the geometry of the model and properties for each of the six layers: PET/graphene/PEDOT:PSS/P3HT/PCBM/aluminum. We analyzed the model with varying thicknesses of graphene and active layers (P3HT/PCBM). This simulation allowed us to analyze the electrical conductivity, and visualize the model with varying voltage potential, or bias across the plates, useful for applications in solar cell devices.

  3. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    NASA Astrophysics Data System (ADS)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  4. Enhanced Thermoelectric Properties of Polyaniline Nanofilms Induced by Self-Assembled Supramolecules.

    PubMed

    Wang, Liming; Yao, Qin; Xiao, Juanxiu; Zeng, Kaiyang; Shi, Wei; Qu, Sanyin; Chen, Lidong

    2016-07-01

    Polyaniline (PANI) is one of the most promising candidates for flexible organic thermoelectric (TE) applications owing to its relatively low cost and high stability. Herein, the self-assembled supramolecule (SAS) (3,6-dioctyldecyloxy-1,4-benzenedicarboxylic acid) was used as an additive and was introduced into PANI films as a template. Raman spectroscopy, X-ray diffraction, and conductive atomic force microscopy analyses demonstrated that the highly ordered chain structure of PANI was achieved by chemical interactions between PANI and the SAS. Moreover, the ordered regions in the PANI-SAS film increased with a decrease in the film thickness. Consequently, the TE properties of PANI-SAS films were not only much higher than those of PANI films, but they also increased with a decrease in film thickness. The maximum TE power factor of the PANI-SAS film reached 31 μW m(-1)  K(-2) , which is approximately six times higher than the power factor of a PANI film with a similar thickness. This work offers a promising way to prepare PANI thin films with enhanced TE properties. PMID:27237453

  5. Structural study of TiO{sub 2}-based transparent conducting films

    SciTech Connect

    Hitosugi, T.; Yamada, N.; Nakao, S.; Hatabayashi, K.; Shimada, T.; Hasegawa, T.

    2008-07-15

    We have investigated microscopic structures of sputter and pulsed laser deposited (PLD) anatase Nb-doped TiO{sub 2} transparent conducting films, and discuss what causes the degradation of resistivity in sputter-deposited films. Cross-sectional transmission electron microscope and polarized optical microscope images show inhomogeneous intragrain structures and small grains of {approx}10 {mu}m in sputter-deposited films. From comparison with PLD films, these results suggest that homogeneous film growth is the important factor to obtain highly conducting sputter-deposited film.

  6. Enhanced sheet conductivity of Langmuir-Blodgett assembled graphene thin films by chemical doping

    NASA Astrophysics Data System (ADS)

    Matković, Aleksandar; Milošević, Ivana; Milićević, Marijana; Tomašević-Ilić, Tijana; Pešić, Jelena; Musić, Milenko; Spasenović, Marko; Jovanović, Djordje; Vasić, Borislav; Deeks, Christopher; Panajotović, Radmila; Belić, Milivoj R.; Gajić, Radoš

    2016-03-01

    We demonstrate a facile fabrication technique for highly conductive and transparent thin graphene films. Sheet conductivity of Langmuir-Blodgett assembled multi-layer graphene films is enhanced through doping with nitric acid, leading to a fivefold improvement while retaining the same transparency as un-doped films. Sheet resistivity of such chemically improved films reaches 10 {{k}}{{Ω }}/\\square , with optical transmittance 78% in the visible. When the films are encapsulated, the enhanced sheet conductivity effect is stable in time. In addition, stacking of multiple layers, as well as the dependence of the sheet resistivity upon axial strain have been investigated.

  7. Photo-induced polymerization of polyaniline

    SciTech Connect

    Barros, R.A. de; Azevedo, W.M. de; Aguiar, F.M. de

    2003-03-15

    A straightforward route to prepare polyaniline is presented in which photons and metallic ions replace conventional oxidants to promote polymerization of aniline monomer. The photopolymerization methods yield a composite material that has been characterized by its UV, visible and Raman spectroscopic analysis and by scanning electron microscopy and X-ray microanalysis as well. Intriguing forms of silver wires embedded in polyaniline are observed, typically of 1 {mu}m wide and up to 100 {mu}m long. It is shown that the morphology of the resulting conducting polymer strongly depends on the excitation wavelength, while a globular morphology is found for the UV synthesis and a fibrillar one is found for visible light excitation.

  8. Stabilization of polyaniline solutions

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.

    1993-12-01

    Adding hindered amine light stabilizers (HALS) to N-methyl- pyrrolidinone (NMP) solutions of polyaniline delays gelation. It is hypothesized that HALS act in some manner other than as traditional antioxidants in preventing gelation; the secondary amine functional group appears to play a critical role, perhaps by disrupting the physical crystallization network that may contribute to gelation. Pyrrolidine, a secondary amine, or ammonia is an effective cosolvent with NMP in dissolving PAn-EB (emeraldine base). 6 refs, 4 figs.

  9. Transparent electrically conducting thin films for spacecraft temperature control applications

    NASA Technical Reports Server (NTRS)

    Hass, G.; Heaney, J. B.; Toft, A. R.

    1979-01-01

    Thin transparent films of In2O3 or In2O3 + SnO2 prepared by evaporation or sputtering have been tested for use as surface layers for spacecraft temperature control coatings. The films are intended to prevent nonuniform electric charge buildup on the spacecraft exterior. Film thicknesses of 300 to 500 A were found to be optimal in terms of durability and minimum impact on the solar absorptance and the thermal emissivity of the underlayers. As a verification of their suitability for long-duration space missions, the films were subjected to simulated solar UV plus proton irradiation in a vacuum.

  10. Thermally activated band conduction and variable range hopping conduction in Cu2ZnSnS4 thin films

    NASA Astrophysics Data System (ADS)

    Zubair Ansari, Mohd; Khare, Neeraj

    2015-01-01

    The temperature dependence of electrical conductivity of the Cu2ZnSnS4 (CZTS) thin films has been measured in order to identify the dominant conduction mechanism. These CZTS film have been deposited by ultrasonic assisted chemical vapor deposition method at different substrate temperatures in a single step process. All the films exhibit p-type semiconducting behaviour. In the high temperature range (> 250 K), the dominance of thermally activated band conduction is observed, whereas in the lower temperature region (250-70 K), the hopping conduction is present. Detailed analysis of the temperature dependence of conductivity of the films reveals that in the temperature range from 250-170 K, nearest neighbour hopping dominates, whereas in the lower temperature region (170-70 K), the dominant hopping conduction is Mott's 3D variable range hopping and not Efros-Shklovskii variable range hopping. The value of Mott's temperature is found to decrease for the CZTS films deposited at higher temperature, which has been attributed to enhanced density of states at the Fermi level.

  11. Synthesis and electrical properties of polyaniline/iota-carrageenan biocomposites.

    PubMed

    Vega-Rios, Alejandro; Olmedo-Martínez, Jorge L; Farías-Mancilla, Bárbara; Hernández-Escobar, Claudia A; Zaragoza-Contreras, E Armando

    2014-09-22

    Polyaniline/iota-carrageenan (ι-CGN) biocomposites were synthesized via in situ methodology using ammonium persulfate as the oxidizing agent. Both ionic (band at 1131 cm(-1)) and hydrogen bond (bands at 2500 and 3500 cm(-1)) interactions between polyaniline and ι-CGN were determined by infrared spectroscopy. Such intermolecular interactions provided the biocomposites with a cross-linked structure that provided the materials with hydrogel behavior. Biocomposite electro-conductivity, determined by the 4-probe technique, was in the range of semiconductors (10(-3) to 10(-2) S cm(-1)); whereas electro-activity, assessed by cyclic voltammetry, showed the oxidation-reduction transitions typical of polyaniline. Based on the properties of polyaniline and ι-CGN, some applications for the new materials in the field of biosensor design, electrochemical capacitors, or tissue engineering scaffolds are possible. It is worth saying that both electro-conductive and electro-active properties of polyaniline/ι-CGN biocomposites are reported here for the first time. PMID:24906731

  12. A new family of Langmuir-Blodgett films of tetracyanoquinodimethane charge transfer salts: Pristine and iodine doped conducting films

    NASA Astrophysics Data System (ADS)

    Vandevyer, M.; Richard, J.; Barraud, A.; Ruaudel-Teixier, A.; Lequan, M.; Lequan, R. M.

    1987-12-01

    A new family of semiamphiphilic tetracyanoquinodimethane (TCNQ) ionic salts of nonconjugated cations, namely octadecyl-dimethylsulfonium, octadecyl-methyl-ethyl-sulfonium, and octadecyl-trimethylphosphonium labeled a, b, and c, respectively, has been synthetized. Langmuir-Blodgett (LB) films are built up from these three compounds, which are mixed with octadecylurea in a molar ratio 1/1, in order to improve the stability of the film at the water surface. The structural properties of the transferred films are thoroughly investigated by linear dichroism in the IR and UV-visible ranges, together with ESR spectroscopy. In the films of the three compounds, the polar sheets contain (TCNQ- • )2 dimers, which are the largely prevalent species. The molecular planes of these dimers are found to be roughly parallel to the substrate. Moreover, a strong in-plane orientation of the dimers is found in films of compound c. This phenomenon is thought to be related to an overall flow orientation of rod-shaped crystallites in the floating film, during the high speed downstroke of the substrate across the film. Advantage is taken from the high and well-controlled thinness of LB films to make iodine vapor diffuse into the films and convert the precursor films into conducting ones. The iodination process leads for the three salts to a stable ternary conducting compound located in the polar planes of the LB assembly. Correlatively, it induces a strong molecular reorganization in the films: the TCNQ molecules stand on edge with their long molecular axis perpendicular to the substrate. In spite of this considerable rearrangement arising from iodination, we notice that the strong in-plane anisotropy observed in pristine films of c is retained in conducting films of the iodinated c compound. Beside these structural results, the IR spectra of conducting films are reminiscent of these of highly conducting, but not metallic-like, organic conductors. The conductivity of the films is estimated

  13. Formation of large-scale flexible transparent conductive films using evaporative migration characteristics of Au nanoparticles.

    PubMed

    Higashitani, Ko; McNamee, Cathy E; Nakayama, Masaki

    2011-03-15

    To sustain the growing demand of transparent conductive films for wide applications, such as flat panel displays, a much more cost-effective film is required over the widely used indium tin oxide film. Here we developed a promising method to manufacture a cost-effective flexible transparent conductive film of high performance by first making grid-iron patterns of thin lines on a large scale using evaporative migration characteristics of gold nanoparticles, and then by burying the grid-iron pattern into a poly(ethylene terephthalate) film. PMID:21265505

  14. Fabrication of transparent conductive electrode film using thermal roll-imprinted Ag metal grid and coated conductive polymer.

    PubMed

    Yu, Jong-Su; Jo, Jeongdai; Yoon, Seong-Man; Kim, Do-Jin

    2012-02-01

    In this study, to fabricate a low-resistance and high optical transparent conductive electrode (TCE) film, the following steps were performed: the design and manufacture of an electroforming stamp mold, the fabrication of thermal-roll imprinted (TRI) poly-carbonate (PC) patterned films, the manufacture of high-conductivity and low-resistance Ag paste which was filled into patterned PC film using a doctor blade process and then coated with a thin film layer of conductive polymer by a spin coating process. As a result of these imprinting processes the PC films obtained a line width of 10 +/- 0.5 Mm, a channel length of 500 +/- 2 microm, and a pattern depth of 7.34 +/- 0.5 microm. After the Ag paste was used to fill part of the patterned film with conductive polymer coating, the following parameters were obtained: a sheet resistance of 9.65 Omega/sq, optical transparency values were 83.69% at a wavelength of 550 nm. PMID:22629916

  15. Enhanced ionic conduction at the film/substrate interface in LiI thin films grown on sapphire(0001)

    SciTech Connect

    Lubben, D.; Modine, F.A.

    1993-12-01

    The ionic conductivity of LiI thin films grown on sapphire(0001) substrates has been studied in-situ during deposition as a function of film thickness and deposition conditions. LiI films were produced at room temperature by sublimation in an ultra-high-vacuum system. The conductivity of the LiI parallel to the film/substrate interface was determined from frequency-dependent impedance measurements as a function of film thickness using Au interdigital electrodes deposited on the sapphire surface. The measurements show a conduction of {approximately}5 times the bulk value at the interface which gradually decreases as the film thickness is increased beyond 100 nm. This interfacial enhancement is not stable but anneals out with a characteristic log of time dependence. Fully annealed films have an activation energy for conduction ({sigma}T) of {approximately}0.47{plus_minus}.03 eV, consistent with bulk measurements. The observed annealing behavior can be fit with a model based on dislocation motion which implies that the increase in conduction near the interface is not due to the formation of a space-charge layer as previously reported but to defects generated during the growth process. This explanation is consistent with the behavior exhibited by CaF{sub 2} films grown under similar conditions.

  16. Deposition of transparent, conductive tin oxide films on glass using a radio-frequency induction heater.

    PubMed

    Solano, I; Schwoebel, P R

    2009-12-01

    Tin oxide films are often used as transparent, conductive coatings on glass in the scientific research setting. The standard approach of depositing these films in an oven leads to poor visibility of the substrate and thus inhibits the ready formation of uniform, low resistivity films. In this note we describe a simple tin oxide film deposition technique using a radio-frequency induction heater that allows for in situ visualization of the deposition process and resulting film. Uniform films having resistivities as low as 2 mohm cm with transmittances of approximately 85% in the visible light spectrum were readily deposited. PMID:20059179

  17. Dark and photo-conductivity of doctor-bladed CZTS films above room temperature

    NASA Astrophysics Data System (ADS)

    Ghediya, Prashant R.; Chaudhuri, Tapas K.

    2015-11-01

    The temperature variation of electrical conductivity of Cu2ZnSnS4 (CZTS) films in the dark and under light has been studied in the temperature range of 350-500 K. CZTS films were deposited on glass substrates by doctor-blade printing from microwave-processed nanoparticle ink. X-ray diffraction and Raman spectroscopy confirm the formation of kesterite CZTS. Thermoelectric measurements show the films are basically p-type. The electrical conductivity of CZTS films increases with temperature and it is found to be thermally activated. An analysis of the temperature variation of dark and illuminated conductivity reveals that the transport of holes in these films is due to the thermionic emission over grain boundary barriers. The films are photoconducting in nature. Under illumination, the grain boundary barrier height of these films decreases due to photogenerated charge carriers.

  18. Electron transport and defect structure in highly conducting reactively sputtered ultrathin tin oxide films

    SciTech Connect

    Bansal, Shikha; Pandya, Dinesh K. Kashyap, Subhash C.

    2014-02-24

    Electrical conduction behavior of ultrathin (5–110 nm) SnO{sub 2} films reactively sputtered at 150–400 °C substrate temperatures is presented. The surface roughness studies revealed that the films with lower thickness were smoother (≤0.6 nm). Stoichiometry/defect structure of the films obtained from X-ray photoelectron spectroscopy data and electron mobility are found to be dependent on film thickness and substrate temperature. The observed increase in conductivity of semi-metallic films with decrease in film thickness is attributed to changes in defect structure and surface roughness. Highest value of conductivity of about 715 Ω{sup −1} cm{sup −1} is obtained for 5 nm thick films deposited at 300 °C.

  19. Transport properties of polyaniline-cellulose-acetate blends

    NASA Astrophysics Data System (ADS)

    Planès, Jérôme; Wolter, Andreas; Cheguettine, Yasmina; Proń, Adam; Genoud, Françoise; Nechtschein, Maxime

    1998-09-01

    Transport properties of polyaniline (PANI)-cellulose acetate (CA) conducting blends have been investigated at various length scales and temperatures. We report on the results of dc and ac conductivity measurements, magnetoresistance and electron-spin resonance (ESR) performed on composite films with PANI weight fraction p ranging from the percolation threshold-pc~=0.1%-to a few percent. Three different PANI doping agents have been tested, namely, camphor sulfonic acid (CSA), di(i-octyl phosphate) (DiOP) and phenyl phosphonic acid (PPA). The percolative behavior of σdc resembles that of published results on PANI/PMMA blends. The onset frequency ωξ of the dispersion in σac appears to follow the scaling law: ωξ~σzdc with z~=1. The temperature dependence is of the form of lnσ(T)~-(T0/T)γ the exponent decreasing from 0.75 to 0.5 with increasing p. The microscopic metallic character of transport is found in ESR and microwave measurements. Spin-dependent conductivity is inferred from the (B/T)2 universal behavior of magnetoresistance. Those results are discussed in conjunction with the ongoing debate on the nature of disorder in conducting polymers-homogeneous versus heterogeneous.

  20. Biofield-effect protein-sensor: Plasma functionalization of polyaniline, protein immobilization, and sensing mechanism

    NASA Astrophysics Data System (ADS)

    Cho, Chae-Ryong; Lee, Hyun-Uk; Ahn, Kyun; Jeong, Se-Young; Choi, Jun-Hee; Kim, Jinwoo; Cho, Jiung

    2014-06-01

    We report the fabrication of a biofield-effect protein-sensor (BioFEP) based on atmospheric-pressure plasma (AP) treatment of a conducting polyaniline (PANI) film. Successive H2 and O2 AP (OHAP) treatment generated dominant hydrophilic -OH and O=CO- functional groups on the PANI film surface, which served as strong binding sites to immobilize bovine serum albumin (BSA) protein molecules. The output current changes of the BioFEP as a function of BSA concentration were obtained. The resistance of the OHAP surface could be sensitively increased from 2.5 × 108 Ω to 2.0 × 1012 Ω with increasing BSA concentrations in the range of 0.025-4 μg/ml. The results suggest that the method is a simple and cost-effective tool to determine the concentration of BSA by measuring electrical resistance.

  1. Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties.

    PubMed

    Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue

    2015-12-11

    Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications. PMID:26574401

  2. Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue

    2015-12-01

    Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications.

  3. A novel approach in controlling the conductivity of thin films using molecular layer deposition

    NASA Astrophysics Data System (ADS)

    Lushington, Andrew; Liu, Jian; Bannis, Mohammad N.; Xiao, Biwei; Lawes, Stephen; Li, Ruying; Sun, Xueliang

    2015-12-01

    Here we present a novel way to grow aluminum alkoxide films with tunable conductivity with molecular level accuracy with the use of molecular layer deposition (MLD). Alternating exposures of trimethylaluminum (TMA), ethylene glycol (EG), and terephthaloyl chloride (TC) are used to grow the aluminium alkoxide films. Control over film composition was accomplished by alternating cycles of EG and TC between cycles of TMA and EG. In this fashion the aluminum to carbon ratio can be accurately controlled. These films were then pyrolyzed under a reducing atmosphere to yield a conductive Al2O3/carbon composite. Raman spectroscopy determined that nanocrystalline sp2-graphitic carbon was formed following pyrolysis while sheet resistance measurements determined that conductivity of the film is directly related to aluminium-carbon ratio. To further elucidate the origin of conductivity within the film, synchrotron based XPS was performed.

  4. New renewable resource amphiphilic molecular design for size-controlled and highly ordered polyaniline nanofibers.

    PubMed

    Anilkumar, P; Jayakannan, M

    2006-06-20

    We demonstrate here, for the first time, a unique strategy for conducting polyaniline nanofibers based on renewable resources. Naturally available cardanol, which is an industrial waste and main pollutant from the cashew nut industry, is utilized for producing well-defined polyaniline nanofibers. A new amphiphilic molecule is designed and developed from cardanol, which forms a stable emulsion with aniline for a wide composition range in water (1:1 to 1:100 dopant/aniline mole ratio) to produce polyaniline nanofibers. The scanning electron microscopy and transmission electron microscopy analysis of the nanofibers reveals that the dopant/aniline ratio plays a major role in determining the shape and size of polyaniline nanofibers. The nanofiber length increases with the increase in the dopant/aniline ratio, and perfectly linear, well-defined nanofibers of lengths as long as 7-8 muM were produced. The amphiphilic dopant has a built-in head-to-tail geometry and effectively penetrates into the polyaniline chains to form highly organized nanofibers. Wide-angle X-ray diffraction (WXRD) spectra of the nanofibers showed a new peak at 2theta = 6.3 (d spacing = 13.9 A) corresponding to the three-dimensional solid-state ordering of polyaniline-dopant chains, and this peak intensity increases with increase in the nanofiber length. The comparison of morphology and WXRD reveals that high ordering in polyaniline chains results in the formation of long, well-defined nanofibers, and this direct correlation for the polyaniline nanofibers with solid-state ordering has been established. The conductivity of the polyaniline nanofibers also increases with increase in the solid-state ordering rather than increasing with the extent of doping. The polyaniline nanofibers are freely soluble in water and possess high environmental and thermal stability up to 300 degrees C for various applications. PMID:16768535

  5. Conducting and Optical Properties of Transparent Conducting Indium-Doped Zinc Oxide Thin Films by Sol-Gel Processing

    SciTech Connect

    Huang, S.; Kaydanova, T.; Miedaner, A.; Ginley, D.S.

    2004-01-01

    Transparent conducting oxides were successfully prepared from mixed zinc nitrate hexahydrate and indium nitrate hydrate solutions in ethylene glycol using sol-gel technique. The In content in the film was varied (0, 2, 10, 20, 40, 75 and 100 atom %). Films were prepared by spin coating of the liquid precursors followed by thermal decomposition at 400° C after each layer. According to X-ray diffraction (XRD) measurements, the pure ZnO and pure InO films (0 and at 100 % In) were crystalline as-deposited. The crystallinity was suppressed in mixed compositions such that the films with compositions between 10 and 75 at % were amorphous. All the films were transparent with the transmission cut-off frequency near 400 nm, which is characteristic of TCO materials. All as-deposited films were conductive with 0 and 100 atom % In having the lowest resistivities. The resistivity of all compositions were improved by post-deposition reducing anneal in pure Ar at 300° C. The lowest resistivity of 0.2 Ωcm was obtained for the pure ZnO after Ar anneal. It was two-orders of magnitude higher than reported in the literature for the In-doped ZnO, which was attributed to the low processing temperature. The resistivities of as-deposited and annealed in Ar films were increased by consequent air anneal at 300° C.

  6. Transparent and conductive electrodes based on unpatterned, thin metal films

    NASA Astrophysics Data System (ADS)

    O'Connor, Brendan; Haughn, Chelsea; An, Kwang-Hyup; Pipe, Kevin P.; Shtein, Max

    2008-12-01

    Transparent electrodes composed of ultrathin, unpatterned metal films are investigated in planar heterojunction (PHJ) and bulk heterojunction organic photovoltaic (OPV) cells. Optimal electrode composition and thickness are deduced from electrical and optical models and experiments, enabling a PHJ-OPV cell to be realized using a silver anode, achieving power conversion efficiency parity with an analogous cell that uses an indium tin oxide anode. Beneficial aspects of smooth, unpatterned metal films as transparent electrodes in OPV cells are also discussed in the text.

  7. Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making

    DOEpatents

    Wu, Xuanzhi; Coutts, Timothy J.; Sheldon, Peter; Rose, Douglas H.

    1999-01-01

    A photovoltaic device having a substrate, a layer of Cd.sub.2 SnO.sub.4 disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd.sub.2 SnO.sub.4, and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd.sub.2 SnO.sub.4, and depositing an electrically conductive film onto the thin film of semiconductor materials.

  8. Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making

    DOEpatents

    Wu, X.; Coutts, T.J.; Sheldon, P.; Rose, D.H.

    1999-07-13

    A photovoltaic device is disclosed having a substrate, a layer of Cd[sub 2]SnO[sub 4] disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd[sub 2]SnO[sub 4], and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd[sub 2]SnO[sub 4] layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd[sub 2]SnO[sub 4], and depositing an electrically conductive film onto the thin film of semiconductor materials. 10 figs.

  9. Water vapor effects on theTeO 2/Tethin film conductance

    NASA Astrophysics Data System (ADS)

    Suehara, Shigeru; Hatano, Touichi; Nukui, Akihiko

    1996-07-01

    An investigation of water vapor effects on the electrical conductivity of aTeO 2/Tethin film is carried out. TeO 2 evaporated from the BN boat was deposited onto the Te film. TeO 2 and Te layers are of 30 nm thick and 100 nm thick, respectively. Electrical conductance measurements of theTeO 2/Tethin film were performed in the chamber maintained at constant temperatures. The conductance of theTeO 2/Tethin film in wet argon is lower than that in dry argon. These phenomena suggest that theTeO 2/Tethin film can be applied to a new humidity sensor. The desorption rate constant analysis reveals that the activation energy of the H 2O desorption is ca. 32 kJ/mol, which indicates weak-chemical adsorption of H 2O molecules on theTeO 2/Tethin film surface.

  10. Dependence of Thermal Conductivity on Thickness in Single-Walled Carbon Nanotube Films.

    PubMed

    Lee, Kyung-Min; Shrestha, Ramesh; Dangol, Ashesh; Chang, Won Seok; Coker, Zachary; Choi, Tae-Youl

    2016-01-01

    Herein, we report experimentally dependence of thermal conductivity on thickness of single walled carbon nanotubes (SWNTs) thin films; the measurements are based on the micropipette thermal sensor technique. Accurate and well resolved measurements of thermal conductivity made by the micropipette sensor showed a correlated behavior of thickness and thermal conductivity of CNT films that thermal conductivity decreased as thickness increased. The thickness dependence is explained by reduction of mean free path (MFP), which is induced by more intertubular junctions in more dense-packed carbon nanotube (CNT) networks; the thicker SWCNT films were revealed to have higher density. PMID:27398564

  11. High performance NH 3 gas sensor based on ordered conducting polymer ultrathin film

    NASA Astrophysics Data System (ADS)

    Xu, Jianhua; Jiang, Yadong; Yu, Junsheng; Yang, Yajie; Ying, Zhihua

    2008-02-01

    Conducting polymer ultrathin film shows promising future for gas sensor application due to their high conductivity and excellent doping/dedoping performance. In this work, based on an modified Langmuir-Blodgett film method, ultrathin conducting poly(3,4-ethylene dioxythiophene) (PEDOT) film was fabricated. The PEDOT ultathin film was characterized by UV-Vis absorption spectrum, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The results showed small PEDOT grains distributed in polymer LB films after the polymerization of monomer. This ultrathin film exhibited an electrical conductivity about 1.2 Scm -1, and the conductivity increased and decreased to 16.8 and 0.03 Scm -1 after doping and dedoping treatment. The interaction or response of films coated QCM to NH 3 have been tested and it has been found that sensitivity of the composite films on QCM showed better sensitivity than bulk material. To the same analyte concentration, it increased with the increasing number of LB layers coated onto QCMS before 80 layers, and then a decrease of sensitivity of QCM was observed after the layer number exceeded 80 layers. The interaction mechanisms between the ultrathin film and analyte vapor were also included.

  12. Silver Nanowire Transparent Conductive Films with High Uniformity Fabricated via a Dynamic Heating Method.

    PubMed

    Jia, Yonggao; Chen, Chao; Jia, Dan; Li, Shuxin; Ji, Shulin; Ye, Changhui

    2016-04-20

    The uniformity of the sheet resistance of transparent conductive films is one of the most important quality factors for touch panel applications. However, the uniformity of silver nanowire transparent conductive films is far inferior to that of indium-doped tin oxide (ITO). Herein, we report a dynamic heating method using infrared light to achieve silver nanowire transparent conductive films with high uniformity. This method can overcome the coffee ring effect during the drying process and suppress the aggregation of silver nanowires in the film. A nonuniformity factor of the sheet resistance of the as-prepared silver nanowire transparent conductive films could be as low as 6.7% at an average sheet resistance of 35 Ω/sq and a light transmittance of 95% (at 550 nm), comparable to that of high-quality ITO film in the market. In addition, a mechanical study shows that the sheet resistance of the films has little change after 5000 bending cycles, and the film could be used in touch panels for human-machine interactive input. The highly uniform and mechanically stable silver nanowire transparent conductive films meet the requirement for many significant applications and could play a key role in the display market in a near future. PMID:27054546

  13. Synthesis and characterization of polyaniline-hexaferrite composites

    NASA Astrophysics Data System (ADS)

    Khursheed, Tooba; Islam, M. U.; Asif Iqbal, M.; Ali, Irshad; Shakoor, Abdul; Awan, M. S.; Iftikhar, Aisha; Azhar Khan, Muhammad; Naeem Ashiq, Muhammad

    2015-11-01

    Polyaniline was synthesized by chemical polymerization using aniline as monomer, and Y-type hexaferrite with composition (Co2Mn2Sr1.66Nd0.4Fe10O22) was prepared by co-precipitation assisted by surfactant. Three composites of Polyaniline with different ferrite ratios were prepared by mechanical blending. The synthesized samples were characterized by X-Ray diffraction, Scanning electron microscopy and electrical measurements. The XRD analysis reveals that no second phase was observed in Y-type hexagonal ferrite. In PANI-Ferrite composites, significant changes in resistivity, real and imaginary part of complex permittivity were observed with the increase of ferrite in the polyaniline matrix. At low frequencies the magnitude of dielectric constant and complex permittivity is high with few relaxation peaks. AC conductivity of PANI-Ferrite composites increase with the increase of frequency following Jonscher law. The resistivity and activation energy were found to show similar behavior.

  14. Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors.

    PubMed

    Chen, Yanan; Fu, Kun; Zhu, Shuze; Luo, Wei; Wang, Yanbin; Li, Yiju; Hitz, Emily; Yao, Yonggang; Dai, Jiaqi; Wan, Jiayu; Danner, Valencia A; Li, Teng; Hu, Liangbing

    2016-06-01

    Solution processed, highly conductive films are extremely attractive for a range of electronic devices, especially for printed macroelectronics. For example, replacing heavy, metal-based current collectors with thin, light, flexible, and highly conductive films will further improve the energy density of such devices. Films with two-dimensional building blocks, such as graphene or reduced graphene oxide (RGO) nanosheets, are particularly promising due to their low percolation threshold with a high aspect ratio, excellent flexibility, and low cost. However, the electrical conductivity of these films is low, typically less than 1000 S/cm. In this work, we for the first time report a RGO film with an electrical conductivity of up to 3112 S/cm. We achieve high conductivity in RGO films through an electrical current-induced annealing process at high temperature of up to 2750 K in less than 1 min of anneal time. We studied in detail the unique Joule heating process at ultrahigh temperature. Through a combination of experimental and computational studies, we investigated the fundamental mechanism behind the formation of a highly conductive three-dimensional structure composed of well-connected RGO layers. The highly conductive RGO film with high direct current conductivity, low thickness (∼4 μm) and low sheet resistance (0.8 Ω/sq.) was used as a lightweight current collector in Li-ion batteries. PMID:27148884

  15. a Conduction Model Describing Particle-Particle Interaction in the Case of Surface Conducting Particles

    NASA Astrophysics Data System (ADS)

    Gonon, P.; Foulc, J.-N.; Atten, P.

    We propose an analytical conduction model describing particle-particle interactions for the case of electrorheological fluids based on surface conducting particles. The system consisting of two contacting spheres immersed in a dielectric liquid is modeled by a distributed impedances network, from which we derive analytical expressions for the potential at the spheres surface, for the electric field in the liquid phase, and finally for the interaction force. The theoretical interaction force is compared with experimental results obtained on insulating spheres coated with a thin conducting polyaniline film. A good agreement is found between the theory and experiment.

  16. Evidence of weak ferromagnetism in doped plasticized polyaniline (PANI-DDoESSA)0.5 from electron spin resonance measurements.

    PubMed

    Santana, V T; Nascimento, O R; Djurado, D; Travers, J P; Pron, A; Walmsley, L

    2013-03-20

    X-band electron spin resonance (ESR) measurements have been performed on a conducting free-standing film of polyaniline plasticized and protonated with di-n-dodecyl ester of sulfosuccinic acid (DDoESSA). The magnetic field was applied parallel and perpendicular to the plane of the film. At around 75 K a transition is observed from Pauli susceptibility to a localized state in which the spin 1/2 polarons behave as spin 1/2 dimers. A rough estimation of the intradimer and interdimer exchange constants is obtained. Below 5 K, ESR data reveal a weak ferromagnetism with the Dzyaloshinskii-Moriya vector mainly oriented in the plane of the film. The existence of a relatively well-defined n-fold axis along the chain direction in the crystalline regions confers a symmetry compatible with such analysis. PMID:23423800

  17. Impact of molecular orientation on thermal conduction in linear-chain polymer films

    SciTech Connect

    Kurabayashi, K.; Goodson, K.E.

    1999-07-01

    Polymer films are serving as passive regions in fast logic circuits and as active regions in organic optoelectronic devices, such as light-emitting diodes. Recent data illustrated the strong anisotropy in the thermal conductivity of polyimide films of thickness near one micrometer, with the in-plane value larger by a factor of approximately five. This manuscript extends previous theoretical work on heat conduction in stretched bulk polymers to model the conductivity anisotropy in linear-chain polymer films. Predictions are based on the standard deviation of the angle of molecular orientation with respect to the film in-plane direction, which can be investigated using birefringence data, and the expected conductivity anisotropy in a material with perfectly-aligned strands. The modeling and previous data indicate that the anisotropy factor could increase to a value larger than 10 for polyimide films much thinner than 1 micrometer.

  18. Thermal conductivities of sub-micron Bi2Te3 films sputtered on anisotropic substrates

    NASA Astrophysics Data System (ADS)

    Yan, Dan; Wu, Ping; Zhang, Shiping; Pei, Yili; Yang, Fan; Wang, Li

    2016-07-01

    Approximately 450 nm thick Bi2Te3 films were deposited on flat Al2O3 substrate and nanochannel alumina (NCA) templates with different pore diameters through radio-frequency magnetron sputtering. The structure and morphology of Bi2Te3 films were investigated by x-ray diffraction and field-emission scanning electron microscopy. Moreover, the thermal conductivities of the films deposited on anisotropic substrates were evaluated by micro-Raman method combined with numerical simulation and optimization conducted by COMSOL Multiphysics. The thermal conductivities of Bi2Te3 films deposited on NCA templates with discontinuous Φ20 and Φ100 nm pores and flat Al2O3 substrate were 0.80, 0.99 and 1.54 Wm‑1 K‑1, respectively. The lower thermal conductivities of Bi2Te3 films deposited on NCA templates are attributed to much smaller grain size, bottom porous layers, and rougher surfaces through analysis.

  19. Temperature dependent thermal conductivity of pure silica MEL and MFI zeolite thin films

    NASA Astrophysics Data System (ADS)

    Fang, Jin; Huang, Yi; Lew, Christopher M.; Yan, Yushan; Pilon, Laurent

    2012-03-01

    This paper reports the temperature dependent cross-plane thermal conductivity of pure silica zeolite (PSZ) MFI and MEL thin films measured using the 3ω method between 30 and 315 K. PSZ MFI thin films were b-oriented, fully crystalline, and had a 33% microporosity. PSZ MEL thin films consisted of MEL nanoparticles embedded in a nonuniform and porous silica matrix. They featured porosity, relative crystallinity, and particle size ranging from 40% to 59%, 23% to 47%, and 55 to 80 nm, respectively. Despite their crystallinity, MFI films had smaller thermal conductivity than that of amorphous silica due to strong phonon scattering by micropores. In addition, the effects of increased relative crystallinity and particle size on thermal conductivity of MEL thin films were compensated by the simultaneous increase in porosity. Finally, thermal conductivity of MFI zeolite was predicted and discussed using the Callaway model based on the Debye approximation.

  20. Measurement of the optical properties of a transparent, conductive carbon nanotube film using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Kuwahara, Masashi; Kim, Yeji; Azumi, Reiko

    2015-07-01

    We have measured the complex refractive indices of a transparent, conductive carbon nanotube film by spectroscopic ellipsometry at wavelengths of 300-1700 nm (this includes the visible range). The film was produced on a quartz substrate by the doctor-blade method using single-walled carbon nanotube-polymer ink. The imaginary part of the complex refractive index of the film was found to be lower than 0.09 over the entire wavelength range. This film has a large advantage as a transparent, flexible, and conductive material.

  1. Continuous production of flexible carbon nanotube-based transparent conductive films

    NASA Astrophysics Data System (ADS)

    Fraser, I. Stuart; Motta, Marcelo S.; Schmidt, Ron K.; Windle, Alan H.

    2010-08-01

    This work shows a simple, single-stage, scalable method for the continuous production of high-quality carbon nanotube-polymer transparent conductive films from carbon feedstock. Besides the ease of scalability, a particular advantage of this process is that the concentration of nanotubes in the films, and thus transparency and conductivity, can be adjusted by changing simple process parameters. Therefore, films can be readily prepared for any application desired, ranging from solar cells to flat panel displays. Our best results show a surface resistivity of the order of 300 Ω square-1 for a film with 80% transparency, which is promising at this early stage of process development.

  2. Thermal Contact Conductance Analysis of Nitride and Carbonitride Thin Film Coatings for Thermal Interface Material Application

    NASA Astrophysics Data System (ADS)

    Subramani, Shanmugan; Thing, Lee Yuan; Devarajan, Mutharasu

    2015-12-01

    In order to reduce and maintain the bond line thickness between substrate and LED package, solid thin film with good thermal conductivity is suggested as thermal interface material and the proposed film thickness is about less than 1 µ. The surface parameter such as roughness and hardness is a key factor which alters the contact conductance between the two matt surfaces. Consequently, filtered vacuum cathodic arc deposited nitride thin films (CrN, TiN, AlTiN, and TiCN) on copper substrate were tested for thermal interface material applications in electronic packaging. The thermal contact conductance of the prepared thin films was evaluated using surface properties such as microhardness and surface roughness. The results were verified with the theoretical model. The measured microhardness and surface roughness of CrN thin film are 17 GPa (low) and 0.768 µm (high), respectively. The measured thermal contact conductance of all thin films showed linear properties for applied pressure and very close to the values of theoretical model. High value in thermal contact conductance of about 256 W/m2 K was noticed with CrN thin film at 1100 kPa. The percentage of deviation for our measured contact conductance value from the theoretical model value was decreasing for the increased contact pressure and observed low value (7 pct) for CrN thin film at 1100 kPa. The thermal conductivity of all thin films was also calculated from the conductance model and observed high value (19.34 W/mK) with CrN thin film.

  3. Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors.

    PubMed

    Gong, Shu; Lai, Daniel T H; Wang, Yan; Yap, Lim Wei; Si, Kae Jye; Shi, Qianqian; Jason, Naveen Noah; Sridhar, Tam; Uddin, Hemayet; Cheng, Wenlong

    2015-09-01

    Wearable and highly sensitive strain sensors are essential components of electronic skin for future biomonitoring and human machine interfaces. Here we report a low-cost yet efficient strategy to dope polyaniline microparticles into gold nanowire (AuNW) films, leading to 10 times enhancement in conductivity and ∼8 times improvement in sensitivity. Simultaneously, tattoolike wearable sensors could be fabricated simply by a direct "draw-on" strategy with a Chinese penbrush. The stretchability of the sensors could be enhanced from 99.7% to 149.6% by designing curved tattoo with different radius of curvatures. We also demonstrated roller coating method to encapusulate AuNWs sensors, exhibiting excellent water resistibility and durability. Because of improved conductivity of our sensors, they can directly interface with existing wireless circuitry, allowing for fabrication of wireless flexion sensors for a human finger-controlled robotic arm system. PMID:26301770

  4. Composite membranes prepared from cation exchange membranes and polyaniline and their transport properties in electrodialysis

    SciTech Connect

    Sata, Tshikatsu; Ishii, Yuuko; Kawamura, Kohei; Matsusaki, Koji

    1999-02-01

    A cation exchange membrane was modified with polyaniline by polymerizing aniline with ammonium peroxodisulfate on the membrane surfaces, producing a membrane with polyaniline layers on both surfaces or a membrane with a single polyaniline layer on the surface. The modified membranes, composite membranes, showed sodium ion permselectivity in electrodialysis compared with divalent cations at an optimum polymerization time. The electronic conductivity of dry membranes showed a maximum (ca. 5 {times} 10{sup {minus}3} S/cm) at the same polymerization time as the time to attain a maximum value of the sodium ion permselectivity. Because emeraldine-based polyaniline is conductive and has a cationic charge, the sodium ion permselectivity is based on the difference in the electrostatic repulsion forces of the cationic charge on the membrane surface of a desalting side to divalent cations and sodium ions. In fact, the selective permeation of sodium ions appeared only when the layer faced the desalting side of the membrane, and was affected by dissociation of polyaniline. Further oxidized polyaniline, pernigraniline-based polyaniline, did not affect the permselectivity between cations, and the diffusion coefficient of neutral molecules, urea, increased with increasing polymerization time. Sodium ion permselectivity was maintained with repeated electrodialysis.

  5. Persistent Conductivity in Post-Growth Doped ZnO Films Following Pulsed UV Laser Irradiation

    SciTech Connect

    Wang, Lisa J.; Exarhos, Gregory J.

    2010-12-30

    Solution and rf sputter deposited doped ZnO films were subjected to cumulative 4-nsec pulses of 355 nm light from a pulsed Nd:YAG laser at fluences between 5 and 150 mJ/cm2. Film densification, change in refractive index, and an increase in conductivity were observed following room temperature irradiation in air, a carbon monoxide reducing environment, or under vacuum. At fluences between 20 and 80 mJ/cm2, the films did not damage catastrophically under irradiation and high visible transparency persisted. The increase in conductivity is attributed to creation of oxygen vacancies and subsequent promotion of free carriers into the conduction band. Effects were most pronounced in films treated in vacuum. All treated films became insulating again upon equilibration in air at room temperature after several days. Films were characterized by means of UV-VIS-NIR transmission spectroscopy, Raman spectroscopy and Hall measurements. Analysis of interference fringes in measured transmission spectra allowed evaluation of optical properties. Raman measurements showed an increase of LO mode intensity with respect to TO mode intensity as the films became more conducting in accord with previous work. Results of this study are not only important for continued development of transparent conducting oxides, but also provide compelling evidence for the role of free carriers as initiators of the laser damage process in these wide bandgap metal oxide films.

  6. Deposition and post-processing techniques for transparent conductive films

    DOEpatents

    Christoforo, Mark Greyson; Mehra, Saahil; Salleo, Alberto; Peumans, Peter

    2015-01-13

    In one embodiment, a method is provided for fabrication of a semitransparent conductive mesh. A first solution having conductive nanowires suspended therein and a second solution having nanoparticles suspended therein are sprayed toward a substrate, the spraying forming a mist. The mist is processed, while on the substrate, to provide a semitransparent conductive material in the form of a mesh having the conductive nanowires and nanoparticles. The nanoparticles are configured and arranged to direct light passing through the mesh. Connections between the nanowires provide conductivity through the mesh.

  7. Hybrid Transparent Conductive Films of Multilayer Graphene and Metal Grid for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Kim, Sung Man; Walker, Bright; Seo, Jung Hwa; Kang, Seong Jun

    2013-12-01

    Organic solar cells (OSCs) were fabricated on hybrid transparent conductive films consisting of multilayer graphene (MLG) and metal grids. MLG was transferred onto Ag grids to form hybrid transparent conductive films. The optical transmittance was found to be 87% at a wavelength of 550 nm, while the sheet resistance was measured to be 28 +/-7.9 Ω/square. The device characteristics of OSCs prepared on the hybrid films include an open circuit voltage of 0.58 V, a short circuit current of 8.05 mA/cm2, a fill factor of 51%, and a power conversion efficiency (PCE) of 2.38%. The PCE shows 11% improvement compared with that of OSCs fabricated using MLG films without Ag grids. This improvement can be attributed to the reduced sheet resistance of the hybrid film. These results indicate that hybrid films comprising MLG deposited on Ag grids constitute a promising transparent electrode for improving performance in OSCs.

  8. Transparent conductive reduced graphene oxide thin films produced by spray coating

    NASA Astrophysics Data System (ADS)

    Shi, HongFei; Wang, Can; Sun, ZhiPei; Zhou, YueLiang; Jin, KuiJuan; Yang, GuoZhen

    2015-01-01

    Reduced graphene oxide thin films were fabricated on quartz by spray coating method using a stable dispersion of reduced graphene oxide in N,N-Dimethylformamide. The dispersion was produced by chemical reduction of graphene oxide, and the film thickness was controlled with the amount of spray volume. AFM measurements revealed that the thin films have near-atomically flat surface. The chemical and structural parameters of the samples were analyzed by Raman and XPS studies. It was found that the thin films show electrical conductivity with good optical transparency in the visible to near infrared region. The sheet resistance of the films can be significantly reduced by annealing in vacuum and reach 58 kΩ with a light transmittance of 68.69% at 550 nm. The conductive transparent properties of the reduced graphene oxide thin films would be useful to develop flexible electronics.

  9. Engineered doped and codoped polyaniline gas sensors synthesized in N,N,dimethylformamide media

    NASA Astrophysics Data System (ADS)

    Arenas, M. C.; Sánchez, Gabriela; Nicho, M. E.; Elizalde-Torres, Josefina; Castaño, V. M.

    2012-03-01

    Conducting Polyaniline films (Pani) on Corning glass substrates, produced using either an in-situ doping process or a co-doping process, were prepared by the oxidative polymerization of aniline in N,N,dimethylformamide. Bicyclic aliphatic camphorsulfonic acid (CSA), aromatic toluenesulfonic acid (TSA) and carboxylic trifluoroacetic acid (TFA) were employed as doping agents, and CSA mixed with TSA and CSA mixed with TFA were employed as the co-doping materials. The topography of the Pani films was analyzed by atomic-force microscopy (AFM), and their doping and oxidizing states were characterized by Fourier-transform infrared (FT-IR) spectroscopy and optical (UV-Vis) spectroscopy. Flower-like clusters, microfibers, and nanofibers were obtained by doping with CSA, TSA, and the mix of both (CSATSA), respectively. The flower-like morphology limits the conductivity of the film while the microfiber morphology leads to a highly conductive film. The conductivity of the films increases with the doping level, coil-like conformation of the chain and the protonation of the imine in quinoid units. The codoped process reduces the roughness of the CSA-doped films by 50%, but the conductivity depends on the acid type used for this process (TSA or TFA). The optical gas sensor response of the films is related to both the morphology and the degree of protonation. In this study, Pani with a microfiber morphology obtained from TSA-doping is the most sensitive to ammonia gas sensing, and Pani with flower-like morphology is the least sensitive.

  10. Formation of Electrically Conducting Polypyrrole Fine Lines in Arachidic Acid Langmuir-Blodgett Films

    NASA Astrophysics Data System (ADS)

    Sha, Seimei; Hirata, Nobuaki; Ikezaki, Kazuo; Kaihatu, Minoru; Moriizumi, Toyosaka

    1995-07-01

    A new method is proposed for preparing electrically conducting fine lines in Langmuir-Blodgett films: during transference of arachidic acid L film containing pyrrole monomers to an indium-tin-oxide (ITO)-coated glass substrate, a voltage was applied between the ITO and the platinum counterelectrode dipped in the water subphase. From microscopic observations and conductivity measurements, it was confirmed that conducting filaments of polypyrrole were formed by this new method along the contact line between the substrate and the water surface by electrochemical polymerization of pyrrole monomers in an arachidic L film.

  11. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    SciTech Connect

    Jagannadham, Kasichainula

    2015-05-15

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600 °C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600 °C. TiN film deposited at 600 °C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600 °C on Si(111) wafer but the film deposited at 500 °C showed cubic CrN and hexagonal Cr{sub 2}N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600 °C. Nitride film of tungsten deposited at 600 °C on Si(100) wafer was nitrogen deficient, contained both cubic W{sub 2}N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500 °C were nonstoichiometric and contained cubic W{sub 2}N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600 °C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films.

  12. Fabrication of biocompatible electro-conductive silk films with natural compounds for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Dimitrakakis, Nikolaos

    In the present study electro conductive natural compounds are incorporated in silk based films, and the effects on film conductivity and dissolution are studied. Natural conducting compounds melanin and riboflavin were blended with silk to increase conductivity. Other compounds such as Fe(0) powder ferrofluid and NaCl solution also improved conductivity. Film properties and dissolution were studied for the different blends, and tuned using addition of glycerol and horseradish peroxidase cross-linking. Techniques such as electrospinning, doctor blade, spin coating, and paper-like film fabrication techniques were also explored to generate films with controlled dimensions and properties. The findings suggest that the incorporation of riboflavin along with NaCl and glycerol in silk films, along with water vapor annealing results in semiconductor films. More specifically, the two compositions of the films that exhibited highest conductivity contain 2 % w/v silk, 20 % w/v glycerol, 2 % w/v polyethylene oxide (PEO), 30 % v/v phosphate buffered saline (PBS) and 5 % w/v silk, 20 % w/v glycerol, 10 % w/v NaCl with conductivities of 5.72*10-2 S/m and 5.96*10-2 S/m at 20 °C. When silk is doped with riboflavin, NaCl, and glycerol, semiconducting behavior similar to drinking water conductivity is observed. Mass loss studies of the films included the immersion of the films for 7 days in 37° C in PBS. Film processing included samples that were heated for 2 hours in 60 °C immediately after casting, as well as those cured at room temperature. The results indicated that the heated samples provided the lowest mass loss of approximately 27 %. In conclusion, the present study demonstrates the correlation between composition and processing of silk films with their conductivity. These semiconductive films have the potential to be applied in tissue engineering applications such as nerve conduits, where conductivity plays an instrumental role in tissue restoration.

  13. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement. PMID:26736028

  14. Transparent conducting CeO{sub 2}-SiO{sub 2} thin films

    SciTech Connect

    Zhu, B.; Luo, Z.; Xia, C.

    1999-08-01

    A new type of transparent thin films, based on two-phase materials of CeO{sub 2}-SiO{sub 2}, was developed. The films were prepared on indium time oxide (ITO)-coated glass via a sol-gel process. A study of cyclic voltammetry was conducted on the films, using an electrolyte of 1 M LiClO{sub 4} in propylene carbonate. Li{sup +} insertion/disinsertion took place in the film. For a 24 nm thick GeO{sub 2}-SiO{sub 2} film with 50% silica, the capacity of the charge exchange reached 6--7 nC/CM{sup 2}. After 380 cycles, the charge density dropped by {approximately}30%. In both Li{sup +}-intercalated and free states, the films were highly transparent for visible light. Such films have potential application in counter-electrodes for electrochromic smart windows and other electrochemical devices.

  15. Langmuir-Schaefer films of a poly(o-anisidine) conducting polymer for sensors and displays

    NASA Astrophysics Data System (ADS)

    Paddeu, Sergio; Ram, Manoj Kumar; Carrara, Sandro; Nicolini, Claudio

    1998-09-01

    Langmuir-Schaefer (LS) films of poly(o-anisidine) (POAS) were fabricated and characterized by means of Brewster-angle microscopy, ellipsometry and electrochemical techniques. The studied optical, cyclic voltammetric and ellipsometric properties of films underlined a regular deposition up to at least 40 monolayers of POAS conducting polymer. The development of surface irregularities beyond 40 monolayers in LS films showed an electrochemical kinetic similar to electrodeposited films. More importantly, the electrochemical kinetic in a small number of monolayers was indicative of the fast transfer process of the electrons. The nature of anions caused meaningful changes in the redox properties of POAS LS films. The electrochromic switching response time and diffusion coefficient of the LS films were estimated through electrochemical surveying. Later, POAS LS films were used as a sensing element for a survey of 0.1 ppm of acid in water through conductimetric measurement.

  16. π-Conjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions

    PubMed Central

    Gu, Cheng; Huang, Ning; Chen, Youchun; Qin, Leiqiang; Xu, Hong; Zhang, Shitong; Li, Fenghong; Ma, Yuguang; Jiang, Donglin

    2015-01-01

    Conjugated microporous polymers are a unique class of polymers that combine extended π-conjugation with inherent porosity. However, these polymers are synthesized through solution-phase reactions to yield insoluble and unprocessable solids, which preclude not only the evaluation of their conducting properties but also the fabrication of thin films for device implementation. Here, we report a strategy for the synthesis of thin films of π-conjugated microporous polymers by designing thiophene-based electropolymerization at the solution–electrode interface. High-quality films are prepared on a large area of various electrodes, the film thickness is controllable, and the films are used for device fabrication. These films are outstanding hole conductors and, upon incorporation of fullerenes into the pores, function as highly efficient photoactive layers for energy conversions. Our film strategy may boost the applications in photocatalysis, energy storage, and optoelectronics. PMID:26418672

  17. Effect of light on hopping conduction in kesterite CZTS thin films

    NASA Astrophysics Data System (ADS)

    Ghediya, Prashant R.; Chaudhuri, Tapas K.; Ray, Jaymin R.

    2016-05-01

    Mott variable range hopping conduction in dip-coated CZTS thin films has been studied in the temperature range of 77 to 150 K in dark and under different light intensities. The films were basically p-type and photoconducting. Various hopping parameters such as, Mott characteristic temperature, density of states at Fermi level, hopping distance and hopping energy of the CZTS films were investigated for different light intensities.

  18. Preparation Of Transparent Conducting Zinc Oxide Films By RF Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Vasanelli, L.; Valentini, A.; Losacco, A.

    1986-09-01

    Transparent conducting zinc oxide films have been prepared by reactive sputtering in an Ar/H2 mixture. The optical and electrical properties of the films are presented and discussed. The effects of some post-deposition thermal treatment have been also investigated. ZnO/CdTe heterojunctions have .been prepared by sputtering ZnO films on CdTe single crystals. The photovoltaic conversion efficiencies of the obtained solar cells was 6.8%.

  19. Controlling the adhesion of conducting polymer films with patterned self-assembled monolayers

    SciTech Connect

    Rozsnyai, L.F.; Wrighton, M.S.

    1996-02-01

    A photosensitive self-assembled monolayer (SAM) is selectively irradiated to fabricate a pattern on an Au electrode, and a thin film of aniline or 3-methylthiophene is deposited on it by electopolymerization. Adhesion of the polymer films can be controlled by the monolayer terminal group. Applying tape to the sample and peeling it away selectively removes the conducting polymer film to the tape in a near-micron resolution pattern. 14 refs., 1 fig.

  20. Electrical transport and thermochromic properties of polyaniline/chitosan/Co3O4 ternary nano composite

    NASA Astrophysics Data System (ADS)

    V, Mini; Kamath, Archana; S, Raghu; Chapi, Sharanappa; H, Devendrappa

    2015-06-01

    A new Polyaniline/ chitosan/ Co3O4 (CPAESCO) ternary nanocomposite is prepared by in situ oxidation polymerization of aniline in the presence of (NH4)2S2O8, chitosan and Co3O4. The Structural, Thermal, Optical and Electrical features of Polyaniline (PANI), Polyaniline/ chitosan (CPANI) and CPAESCO were analyzed using FT-IR, TGA, UV-vis analysis and Impedance spectroscopy by varying temperature. The results show that the introduction of the Co3O4 nanoparticles into CPANI matrix enhanced its properties. Mott's parameters show 3D -VRH Type conduction in it.

  1. PEDOT/PSS-Halloysite Nanotubes (HNTs) Hybrid Films: Insulating HNTs Enhance Conductivity of the PEDOT/PSS Films

    NASA Astrophysics Data System (ADS)

    Yan, Hu; Zhang, Ping; Li, Juan; Zhao, Xiao-Li; Zhang, Ke; Zhang, Bing

    2015-12-01

    We have for the first time found that completely insulating Halloysite nanotubes (HNTs) significantly enhance electrical conductivity of PEDOT/PSS films by simply mixing. Based on this accident finding we have created highly porous and conductive PEDOT/PSS films hybridized with the HNTs. Through further optimization of the mixing condition we have obtained flexible and conductive hybrid films with high specific surface area. Based on experimental evidences we proposed a plausible mechanism of the phenomenon where the PEDOT/PSS colloidal particle with particle size of several tens nanometers well pack at the nano-channels into well-ordered structures of PEDOT/PSS particles, which show conductivity as higher as several order of magnitude than that of PEDOT/PSS particles in outside of the HNTs.

  2. PEDOT/PSS-Halloysite Nanotubes (HNTs) Hybrid Films: Insulating HNTs Enhance Conductivity of the PEDOT/PSS Films.

    PubMed

    Yan, Hu; Zhang, Ping; Li, Juan; Zhao, Xiao-Li; Zhang, Ke; Zhang, Bing

    2015-01-01

    We have for the first time found that completely insulating Halloysite nanotubes (HNTs) significantly enhance electrical conductivity of PEDOT/PSS films by simply mixing. Based on this accident finding we have created highly porous and conductive PEDOT/PSS films hybridized with the HNTs. Through further optimization of the mixing condition we have obtained flexible and conductive hybrid films with high specific surface area. Based on experimental evidences we proposed a plausible mechanism of the phenomenon where the PEDOT/PSS colloidal particle with particle size of several tens nanometers well pack at the nano-channels into well-ordered structures of PEDOT/PSS particles, which show conductivity as higher as several order of magnitude than that of PEDOT/PSS particles in outside of the HNTs. PMID:26686395

  3. PEDOT/PSS-Halloysite Nanotubes (HNTs) Hybrid Films: Insulating HNTs Enhance Conductivity of the PEDOT/PSS Films

    PubMed Central

    Yan, Hu; Zhang, Ping; Li, Juan; Zhao, Xiao-Li; Zhang, Ke; Zhang, Bing

    2015-01-01

    We have for the first time found that completely insulating Halloysite nanotubes (HNTs) significantly enhance electrical conductivity of PEDOT/PSS films by simply mixing. Based on this accident finding we have created highly porous and conductive PEDOT/PSS films hybridized with the HNTs. Through further optimization of the mixing condition we have obtained flexible and conductive hybrid films with high specific surface area. Based on experimental evidences we proposed a plausible mechanism of the phenomenon where the PEDOT/PSS colloidal particle with particle size of several tens nanometers well pack at the nano-channels into well-ordered structures of PEDOT/PSS particles, which show conductivity as higher as several order of magnitude than that of PEDOT/PSS particles in outside of the HNTs. PMID:26686395

  4. Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films.

    PubMed

    Kim, D J; Connell, J G; Seo, S S A; Gruverman, A

    2016-04-15

    Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO3 and Pb(Zr,Ti)O3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects. PMID:26933770

  5. Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films

    NASA Astrophysics Data System (ADS)

    Kim, D. J.; Connell, J. G.; Seo, S. S. A.; Gruverman, A.

    2016-04-01

    Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO3 and Pb(Zr,Ti)O3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects.

  6. ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Hongsingthong, Aswin; Krajangsang, Taweewat; Afdi Yunaz, Ihsanul; Miyajima, Shinsuke; Konagai, Makoto

    2010-05-01

    We successfully increased the haze value of zinc oxide (ZnO) films fabricated using metal-organic chemical vapor deposition (MOCVD) by conducting glass-substrate etching before film deposition. It was found that with increasing the glass treatment time, the surface morphology of ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like multi texture. Further, the rms roughness and the haze value of the films increased remarkably. Using ZnO films with a high haze value as front transparent conductive oxide (TCO) films in hydrogenated microcrystalline silicon (µc-Si:H) solar cells, we improved the quantum efficiency of these cells particularly in the long-wavelength region.

  7. Switchable photoluminescence liquid crystal coated bacterial cellulose films with conductive response.

    PubMed

    Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Ribeiro, Sidney J L

    2016-06-01

    Three different low molecular weight nematic liquid crystals (LCs) were used to impregnate bacterial cellulose (BC) film. This simple fabrication pathway allows to obtain highly transparent BC based films. The coating of BC film with different liquid crystals changed transmittance spectra in ultraviolet-visible region and allows to design UVC and UVB shielding materials. Atomic force microscopy results confirmed that liquid crystals coated BC films maintain highly interconnected three-dimensional network characteristic of BC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the three-dimensional network of BC nanofibers. Investigated BC films maintain nematic liquid crystal properties being switchable photoluminiscence as a function of temperature during repeatable heating/cooling cycles. Conductive response of the liquid crystal coated BC films was proved by tunneling atomic force microscopy measurement. Moreover, liquid crystal coated BC films maintain thermal stability and mechanical properties of the BC film. Designed thermoresponsive materials possessed interesting optical and conductive properties opening a novel simple pathway of fabrication liquid crystal coated BC films with tuneable properties. PMID:27083359

  8. A study on the wet etching behavior of AZO (ZnO:Al) transparent conducting film

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Jian, Y. C.; Jiang, J. H.

    2008-02-01

    This paper studies the wet etching behavior of AZO (ZnO:Al) transparent conducting film with tetramethylammonium hydroxide (TMAH). The optimum optoelectronic film is prepared first using designated RF power, film thickness and controlled annealing heat treatment parameters. The AZO film is then etched using TMAH etchant and AZ4620 photoresist with controlled etchant concentration and temperature to examine the etching process effect on the AZO film optoelectronic properties. The experimental results show TMAH:H 2O = 2.38:97.62 under 45 °C at the average etch rate of 22 nm/min as the preferred parameters. The activation energy drops as the TMAH concentration rises, while the etch rate increases along with the increase in TMAH concentration and temperature. After lithography, etching and photoresist removal, the conductivity of AZO film dramatically drops from 2.4 × 10 -3 Ω cm to 3.0 × 10 -3 Ω cm, while its transmittance decreases from 89% to 83%. This is due to the poor chemical stability of AZO film against AZ4620 photoresist, leading to an increase in surface roughness. In the photoresist postbaking process, carbon atoms diffused within the AZO film produce poor crystallinity. The slight decreases in zinc and aluminum in the thin film causes a carrier concentration change, which affect the AZO film optoelectronic properties.

  9. Effects of compatability on the conductivity of conducting polymer blends

    SciTech Connect

    Liu, Mingjun; Nowak, C.K.; Gregory, R.V.

    1995-12-01

    The electrical conductivity of chemically synthesized polyaniline (PANI) blends with nylon 6,6 and polystyrene was measured. The conductivities of the top and bottom of the films cast from blend solutions were found to differ. This effect was most pronounced at low percent loadings of PANI. The maximum difference in conductivity between two sides of the same film was found to be five orders of magnitude in the case of a 5% PANI blend with polystyrene. In this case the conductive polymer appears to be rich on one side of the film rather than more homogeneously dispersed on both sides. SEM provides evidence for the formation of a percolation cluster on one side of the film which is most notable in polystyrene blends. X-ray and FTIR indicated that greater interaction between PANI and nylon 6,6 than PANI and polystyrene. It is proposed that the magnitude of the variation in conductivity between the two sides of the film depends on the compatibility of the conducting and insulating host polymers.

  10. Optical approach to thermopower and conductivity measurements in thin-film semiconductors

    SciTech Connect

    Dersch, H.; Amer, N.M.

    1984-08-01

    An optical beam deflection technique is applied to measure the Joule and Peltier heat generated by electric currents through thin-film semiconductors. The method yields a spatially resolved conductivity profile and allows the determination of Peltier coefficients. Results obtained on doped hydrogenated amorphous silicon films are presented.

  11. Selective Etching via Soft Lithography of Conductive Multilayered Gold Films with Analysis of Electrolyte Solutions

    ERIC Educational Resources Information Center

    Gerber, Ralph W.; Oliver-Hoyo, Maria T.

    2008-01-01

    This experiment is designed to expose undergraduate students to the process of selective etching by using soft lithography and the resulting electrical properties of multilayered films fabricated via self-assembly of gold nanoparticles. Students fabricate a conductive film of gold on glass, apply a patterned resist using a polydimethylsiloxane…

  12. Transparent conducting films of CdSe(ZnS) core(shell) quantum dot xerogels.

    PubMed

    Korala, Lasantha; Li, Li; Brock, Stephanie L

    2012-09-01

    A method of fabricating sol-gel quantum dot (QD) films is demonstrated, and their optical, structural and electrical properties are evaluated. The CdSe(ZnS) xerogel films remain quantum confined, yet are highly conductive (10(-3) S cm(-1)). This approach provides a pathway for the exploitation of QD gels in optoelectronic applications. PMID:22801641

  13. Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin film

    NASA Technical Reports Server (NTRS)

    West, W. C.; Whitacre, J. F.; Lim, J. R.

    2004-01-01

    Sputter deposition of LiPON films directly onto high Li+ conductivity solid electrolyte plates has been investigated as a means to minimize the reactivity of the plates to metallic Li. The LiPON films were shown to effectively passivate the plates in contact with metallic Li, in contrast to unpassivated plates that reacted immediately in contact with Li metal.

  14. New Anti-Corrosive Coatings with Resin-Bonded Polyaniline and Related Electroactive Groups

    NASA Technical Reports Server (NTRS)

    Weil, Edward D.

    1997-01-01

    molecule associated with conductivity are not necessary for the anticorrosion action. Also, signtficantly, small molecular weight aromatic diamines and diimines resembling the reduced and the oxidized repeating unit in polyaniline showed an interesting degree of anticorrosive activity, suggesting that the polymeric feature of polyaniline is not necessary for anticorrosion action.

  15. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    DOEpatents

    Mattes, Benjamin R.; Wang, Hsing-Lin

    1999-11-09

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (between 15% and 30% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  16. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    DOEpatents

    Mattes, Benjamin R.; Wang, Hsing-Lin

    2000-01-01

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  17. Silver nanowire/polyaniline composite transparent electrode with improved surface properties

    SciTech Connect

    Kumar, A.B.V. Kiran; Jiang, Jianwei; Bae, Chang Wan; Seo, Dong Min; Piao, Longhai Kim, Sang-Ho

    2014-09-15

    Highlights: • AgNWs/PANI transparent electrode was prepared by layer-by-layer coating method. • The surface roughness of the electrode reached to 6.5 nm (root mean square). • The electrode had reasonable sheet resistance (25 Ω/□) and transmittance (83.5%). - Abstract: Silver nanowires (AgNWs) are as potential candidates to replace indium tin oxide (ITO) in transparent electrodes because of their preferred conducting and optical properties. However, their rough surface properties are not favorable for the fabrication of optoelectronic devices, such as displays and thin-film solar cells. In the present investigation, AgNWs/polyaniline composite transparent electrodes with better surface properties were successfully prepared. AgNWs were incorporated into polyaniline:polystyrene sulfonate (PANI:PSS) by layer-by-layer coating and mechanical pressing. PANI:PSS decreased the surface roughness of the AgNWs electrode by filling the gap of the random AgNWs network. The transparent composite electrode had decreased surface roughness (root mean square 6.5 nm) with reasonable sheet resistance (25 Ω/□) and transmittance (83.5%)

  18. Enhanced charge transport in highly conducting PEDOT-PSS films after acid treatment

    NASA Astrophysics Data System (ADS)

    Shiva, V. Akshaya; Bhatia, Ravi; Menon, Reghu

    The high electrical conductivity, good stability, high strength, flexibility and good transparency of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS), make it useful for many applications including polymeric anodes for organic photovoltaics, light-emitting diodes, flexible electrodes, supercapacitors, electrochromic devices, field-effect transistors and antistatic-coatings. However, the electrical conductivity of PEDOT-PSS has to be increased significantly for replacement of indium tin oxide (ITO) as the transparent electrode in optoelectronic devices. The as prepared (pristine) PEDOT-PSS film prepared from the PEDOT-PSS aqueous solution usually has conductivity below 1Scm-1, remarkably lower than ITO. Significant conductivity enhancement has been observed on transparent and conductive PEDOT-PSS films after a treatment with inorganic acids. Our study investigates the charge transport in pristine and H2SO4, HNO3, HCl treated PEDOT-PSS films. We have treated the films with various concentrations of acids to probe the effect of the acid treatment on the conduction mechanism. The study includes the measurement of dc and electric field dependent conductivity of films in the temperature range of 4.2K-300K. We have also performed magneto-resistance measurements in the range of 0-5T. An enhancement by a factor of~103 has been observed in the room temperature conductivity. The detailed magneto-transport studies explain the various mechanisms for the conductivity enhancement observed.

  19. Preparation of conductive PDDA/(PEDOT:PSS) multilayer thin film: influence of polyelectrolyte solution composition.

    PubMed

    Jurin, F E; Buron, C C; Martin, N; Filiâtre, C

    2014-10-01

    Self-assembled multilayer films made of PEDOT:PSS poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) and PDDA poly(diallyldimethylammonium chloride) were prepared using layer-by-layer method. In order to modify the growth regime of the multilayer, to fabricate an electrical conductive film and to control its thickness, the effects of pH, type of electrolyte, ionic strength and polyelectrolyte concentration were investigated. Optical reflectometry measurements show that the pH of the solutions has no effect on the film growth while the adsorbed amount increases more rapidly when BaCl2 is used instead of NaCl as electrolyte. An increase in the ionic strength (with NaCl) induces a change in the growth regime from a linear to an exponential one at low polyelectrolyte concentration. As UV-vis measurements indicate, no decomplexation of PEDOT was recorded after film preparation. With polyelectrolyte concentration below 1 g L(-1), no conductive films were obtained even if 50 bilayers were deposited. A conductive film was prepared with a polyelectrolyte concentration of 1 g L(-1) and the measured conductivity was 0.3 S m(-1). A slight increase in conductivity was recorded when BaCl2 was used probably due to a modification of the film structure. PMID:24984072

  20. Dimensional effects on the tunneling conductivity of gold-implanted nanocomposite films

    NASA Astrophysics Data System (ADS)

    Grimaldi, C.; Cattani, M.; Salvadori, M. C.

    2015-03-01

    We study the dependence of the electrical conductivity on the gold concentration of Au-implanted polymethylmethacrylate (PMMA) and alumina nanocomposite thin films. For Au contents larger than a critical concentration, the conductivity of Au-PMMA and Au-alumina is well described by percolation in two dimensions, indicating that the critical correlation length for percolation is larger than the thickness of the films. Below the critical loading, the conductivity is dominated by tunneling processes between isolated Au particles dispersed in PMMA or alumina continuous matrices. Using an effective medium analysis of the tunneling conductivity, we show that Au-PMMA behaves as a tunneling system in two dimensions, as the film thickness is comparable to the mean Au particle size. On the contrary, the conductivity of Au-alumina films is best described by tunneling in three dimensions, although the film thickness is only a few times larger than the particle size. We interpret the enhancement of the effective dimensionality of Au-alumina films in the tunneling regime as due to the larger film thickness as compared to the mean interparticle distances.

  1. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures

    PubMed Central

    Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M.; Eastman, Jeffrey A.

    2016-01-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment. PMID:27283250

  2. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures.

    PubMed

    Veal, Boyd W; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M; Eastman, Jeffrey A

    2016-01-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment. PMID:27283250

  3. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M.; Eastman, Jeffrey A.

    2016-06-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment.

  4. Thermal conductivity and mechanical properties of AlN-based thin films

    NASA Astrophysics Data System (ADS)

    Moraes, V.; Riedl, H.; Rachbauer, R.; Kolozsvári, S.; Ikeda, M.; Prochaska, L.; Paschen, S.; Mayrhofer, P. H.

    2016-06-01

    While many research activities concentrate on mechanical properties and thermal stabilities of protective thin films, only little is known about their thermal properties being essential for the thermal management in various industrial applications. Based on the 3ω-method, we show the influence of Al and Cr on the temperature dependent thermal conductivity of single-phase cubic structured TiN and single-phase wurtzite structured AlN thin films, respectively, and compare them with the results obtained for CrN thin films. The dc sputtered AlN thin films revealed a highly c-axis oriented growth for deposition temperatures of 250 to 700 °C. Their thermal conductivity was found to increase strongly with the film thickness, indicating progressing crystallization of the interface near amorphous regions during the sputtering process. For the 940 nm AlN film, we found a lower boundary for the thermal conductivity of 55.3 W m-1 K-1 . By the substitution of only 10 at. % Al with Cr, κ significantly reduces to ˜5.0 W m-1 K-1 , although the single-phase wurtzite structure is maintained. The single-phase face centered cubic TiN and Ti0.36Al0.64N thin films exhibit κ values of 3.1 W m-1 K-1 and 2.5 W m-1 K-1 , respectively, at room temperature. Hence, also here, the substitutional alloying reduces the thermal conductivity, although at a significantly lower level. Single-phase face centered cubic CrN thin films show κ values of 3.6 W m-1 K-1 . For all nitride based thin films investigated, the thermal conductivity slightly increases with increasing temperature between 200 and 330 K. This rather unusual behavior is based on the high defect density (especially point defects) within the thin films prepared by physical vapor deposition.

  5. Ultrathin free-standing close-packed gold nanoparticle films: Conductivity and Raman scattering enhancement

    NASA Astrophysics Data System (ADS)

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post

  6. Microwave absorptions of ultrathin conductive films and designs of frequency-independent ultrathin absorbers

    SciTech Connect

    Li, Sucheng; Anwar, Shahzad; Lu, Weixin; Hang, Zhi Hong; Hou, Bo E-mail: phyhoubo@gmail.com; Shen, Mingrong; Wang, Chin-Hua

    2014-01-15

    We study the absorption properties of ultrathin conductive films in the microwave regime, and find a moderate absorption effect which gives rise to maximal absorbance 50% if the sheet (square) resistance of the film meets an impedance matching condition. The maximal absorption exhibits a frequency-independent feature and takes place on an extremely subwavelength scale, the film thickness. As a realistic instance, ∼5 nm thick Au film is predicted to achieve the optimal absorption. In addition, a methodology based on metallic mesh structure is proposed to design the frequency-independent ultrathin absorbers. We perform a design of such absorbers with 50% absorption, which is verified by numerical simulations.

  7. Transparent conducting C60:LiF nanocomposite thin films for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Q.; Huang, C. J.; Ogundimu, T.; Lu, Z. H.

    2007-09-01

    C60:LiF nanocomposite thin films were synthesized by physical vapor coevaporation. It is found that the nano-composite films are extremely conductive even at high LiF concentrations of up to 75wt% and that the films form Ohmic contacts with Al electrodes. IR measurements showed evidence of charge transfer from LiF to C60. Scanning electron microscope studies showed that C60:LiF (75wt%) nanocomposite forms uniform films. Compared with an archetypical tris(8-hydroxyquinolinato)alumina based device, OLEDs with the C60:LiF composite electron transport materials have lower driving voltages and higher power efficiencies.

  8. Conductive atomic force microscopy study of local electronic transport in ZnTe thin films

    SciTech Connect

    Kshirsagar, Sachin D.; Krishna, M. Ghanashyam; Tewari, Surya P.

    2013-02-05

    ZnTe thin films obtained by the electron beam evaporation technique were subjected to thermal annealing at 500 Degree-Sign C for 2 hours. The as deposited films were amorphous but transformed to the crystalline state under influence of the thermal treatment. There is increase in optical absorption due to the heat treatment caused by increase in free carrier concentration. Conductive atomic force microscopy shows the presence of electronic inhomogeneities in the films. This is attributed to local compositional variations in the films. I-V analysis in these systems indicates formation of Schottky junction at the metal semiconductor (M-S) interface.

  9. Spectral imaging method for studying Physarum polycephalum growth on polyaniline surface.

    PubMed

    Dimonte, A; Fermi, F; Berzina, T; Erokhin, V

    2015-08-01

    The features of spectrophotometric scanner, generally exploited in the artwork field, are here considered in a non-conventional context to characterize the networks created by Physarum polycephalum slime mold during its motion on glass substrates covered with polyaniline: a polymer that varies its color and conductive properties according to the redox state. The used technique allowed the investigation of the effects coming out from the interaction between P. polycephalum and polyaniline. Thus, the contactless method of the analysis of polyaniline conductivity state resulted from the slime mold metabolism was suggested. Indeed, it is here demonstrated that P. polycephalum can modify properties of polyaniline due to its internal activity in contact zones. PMID:26042684

  10. Effects of hydrogen atoms on surface conductivity of diamond film

    SciTech Connect

    Liu, Fengbin Cui, Yan; Qu, Min; Di, Jiejian

    2015-04-15

    To investigate the effects of surface chemisorbed hydrogen atoms and hydrogen atoms in the subsurface region of diamond on surface conductivity, models of hydrogen atoms chemisorbed on diamond with (100) orientation and various concentrations of hydrogen atoms in the subsurface layer of the diamond were built. By using the first-principles method based on density functional theory, the equilibrium geometries and densities of states of the models were studied. The results showed that the surface chemisorbed hydrogen alone could not induce high surface conductivity. In addition, isolated hydrogen atoms in the subsurface layer of the diamond prefer to exist at the bond centre site of the C-C bond. However, such a structure would induce deep localized states, which could not improve the surface conductivity. When the hydrogen concentration increases, the C-H-C-H structure and C-3H{sub bc}-C structure in the subsurface region are more stable than other configurations. The former is not beneficial to the increase of the surface conductivity. However, the latter would induce strong surface states near the Fermi level, which would give rise to high surface conductivity. Thus, a high concentration of subsurface hydrogen atoms in diamond would make significant contributions to surface conductivity.

  11. Measurement of the thermal conductivity of dielectric thin solid films with a thermal comparator

    SciTech Connect

    Amsden, C.A.; Gilman, S.E.; Jacobs, S.D.; Torok, J.S.

    1988-04-01

    Low thermal conductivity has important implications for electric and optical applications, where heat deposited in a thin layer must be dissipated to prevent damage. Models which account for thermal transport in thin film structures may have no predictive value if they employ bulk conductivity data. Most techniques utilized to measure the thermal conductivity of thin solid films are difficult and time consuming. The method we have developed is relatively rapid, nondestructive, and is capable of evaluating the samples in a conventional film on substrate geometry. Our thermal conductivity apparatus consists of a control and readout module, signal processing equipment, and an environmentally isolated sample chamber enclosing a sample stage. The commercial unit was converted into a high precision device by temperature controlling both the samples and the sample stage, and by performing averaging of the output signal. The thermal conductivity values obtained are below those of bulk solids. In addition, the conductivities seem to increase with increasing film thickness. Titania seems to have a higher thermal conductivity when deposited by ion-beam sputtering rather than electron-beam evaporation. Some of the electron-beam films were crazed, indicating high levels of stress. The effect of stress and crazing on thermal conductivity is not readily apparent. 11 refs., 1 fig., 1 tab.

  12. Remarkable enhancement of the electrical conductivity of carbon nanostructured thin films after compression.

    PubMed

    Georgakilas, Vasilios; Koutsioukis, Apostolos; Petr, Martin; Tucek, Jiri; Zboril, Radek

    2016-06-01

    In this work, we demonstrate a significant improvement in the electrical conductivity of carbon nanostructured thin films, composed of graphene nanosheets and multiwalled carbon nanotubes, by compression/polishing. It is shown that the sheet resistance of compressed thin films of carbon nanostructures and hybrids is remarkably decreased in comparison with that of as-deposited films. The number of the interconnections, the distance between the nanostructures as well as their orientation are highly altered by the compression favoring the electrical conductivity of the compressed samples. PMID:27215186

  13. Effect of potential on the conductivity of electrodeposited Cu2O film

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Han, Juan; Ning, Xiaohui; Tang, Hongsheng

    2015-09-01

    The conductivity (i.e., n-type or p-type) of Cu2O films is controlled by the electrodeposition potential. A slightly acidic solution (pH 4.93) containing cupric acetate and sodium dodecyl sulfate (SDS) is used. Photoelectrochemical measurements at zero bias indicate that the Cu2O films deposited at the potentials of 0.00 V and -0.05 V generate the ntype photocurrents and the films deposited at the potentials negative than -0.10 V generate the p-type photocurrents. The X-ray diffraction (XRD) results show that the n-type films are pure Cu2O, however, the metallic copper appear in the ptype Cu2O films. Mott-Schottky measurements show that the donor concentrations of the n-type Cu2O films decrease and the acceptor concentrations of the p-type Cu2O films increase with the decrease of the deposition potential. The SDS molecules adsorbed on electrode surface and the SDS micelles block the diffusion of Cu2+ ions, resulting in a low diffusion rate of Cu2+ ions. Under this circumstance, the growth of Cu2O films are affected significantly by the overpotential. When the potential is positive than -0.05 V, oxygen vacancies are formed in the films leading to the n-type conductivity; however, when the potential is negative than -0.10 V, the Cu2+ ions are reduced to Cu+ rapidly and part of Cu2+ are reduced to metallic copper, the diffused Cu2+ ions to supply to the growth of Cu2O films are insufficient, hence copper vacancies are formed in the films resulting in the p-type conductivity.

  14. Ultrahigh conductivity of large area suspended few layer graphene films

    NASA Astrophysics Data System (ADS)

    Rouhi, Nima; Wang, Yung Yu; Burke, Peter J.

    2012-12-01

    Room-temperature (atmospheric-pressure) electrical conductivity measurements of wafer-scale, large-area suspended (few layer) graphene membranes with areas up to 1000 μm2 (30 μm × 30 μm) are presented. Multiple devices on one wafer can be fabricated with high yield from the same chemical vapor deposition grown graphene sheet, transferred from a nickel growth substrate to large opening in a suspended silicon nitride support membrane. This represents areas two to orders of magnitude larger than prior transport studies on any suspended graphene device (single or few layer). We find a sheet conductivity of ˜2500 e2/h (or about 10 Ω/sq) of the suspended graphene, which is an order of magnitude higher than any previously reported sheet conductance of few layer graphene.

  15. Adhesion, Modulus and Thermal Conductivity of Porous Epoxy Film on Silicon Wafers

    NASA Astrophysics Data System (ADS)

    Jagannadham, K.

    2016-07-01

    An 8 μm epoxy film deposited on a 350 μm Si (100) Si wafer with a 0.4 μm Au transducer film deposited on top of the polymer film was used to evaluate the thermal conductivity, the modulus of the porous film, and the initiation of spalling upon laser beam irradiation on the back side of the Si wafer. The polymer films were characterized for pore microstructure using scanning electron microscopy and energy dispersive spectrometry. The polymer films were characterized using transient thermo reflectance (TTR) with laser beams illuminating the Au layer. The TTR signal from the polymer film showed only the thermal component and was characteristic of variations associated with thermal conduction into the film. To induce spalling, the back side was illuminated with a Nd-YAG laser beam with a 532 nm wavelength, pulse energy density 1.8 J/cm2, and a repetition rate of 10 Hz for 10 s in conjunction with TTR measurements on the front side. The TTR signal from the polymer film subjected to laser beam incidence from the backside of the Si wafer showed both the thermal and the acoustic components. The acoustic component was used to detect the initial stages of spalling or delamination. The acoustic oscillations were modeled using a modified wave equation to determine the velocity of sound and the modulus of the film. The results were also used to determine the effect of porosity on the modulus of the polymer film. The TTR signal was found to be very sensitive to detection of delamination without complete separation of the film.

  16. Study of the structure and mechanical properties of pure and doped polyaniline

    NASA Astrophysics Data System (ADS)

    Shaktawat, Vinodini; Saxena, N. S.; Sharma, Kananbala

    2011-03-01

    Polyaniline (PANI) doped with different protonic acids was chemically synthesized using ammonium persulfate as an oxidant. These samples were characterized through scanning electron microscopy-energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy, which confirms the acid doping. Variation of complex elastic modulus and mechanical loss factor (tan δ) has been studied with temperature of pellet of conducting PANI. It has been observed that complex modulus decreases with temperature due to thermal expansion of films. On the other hand, tan δ increases up to characteristic temperature, beyond which it shows a decreasing trend towards melting. The phase transition temperature of pure PANI is 106.1°C and is shifted to higher temperatures i.e. 137.1°C, 134°C, 138.8°C, 118.3°C, and 109.7°C with doping of PANI by protonic acids.

  17. Characteristics and Mechanisms in Ion-Conducting Polymer Films as Chemical Sensors

    SciTech Connect

    HUGHES,ROBERT C.; YELTON,WILLIAM G.; PFEIFER,KENT B.; PATEL,SANJAY V.

    2000-07-12

    Solid Polymer Electrolytes (SPE) are widely used in batteries and fuel cells because of the high ionic conductivity that can be achieved at room temperature. The ions are usually Li or protons, although other ions can be shown to conduct in these polymer films. There has been very little published work on SPE films used as chemical sensors. The authors have found that thin films of polymers like polyethylene oxide (PEO) are very sensitive to low concentrations of volatile organic compounds (VOCs) such as common solvents. Evidence of a new sensing mechanism involving the percolation of ions through narrow channels of amorphous polymer is presented. They present impedance spectroscopy of PEO films in the frequency range 0.0001 Hz to 1 MHz for different concentrations of VOCs and relative humidity. They find that the measurement frequency is important for distinguishing ionic conductivity from the double layer capacitance and the parasitic capacitance.

  18. Extracting the effective mass of electrons in transparent conductive oxide thin films using Seebeck coefficient

    SciTech Connect

    Wang, Yaqin; Zhu, Junhao; Tang, Wu

    2014-05-26

    A method is proposed that combines Seebeck coefficient and carrier concentration to determine the electron effective mass of transparent conductive oxide (TCO) thin films. Experiments were conducted to test the validity of this approach on the transparent conductive Ga-doped ZnO thin films deposited by magnetron sputtering. An evident agreement of the calculated electron effective mass of the films is observed between the proposed approach and the previous studies. Besides, the optical carrier concentration and mobility derived from the calculated electron effective mass and spectroscopic ellipsometry using a complex dielectric function are consistent with those from direct Hall-effect measurement. The agreements suggest that Seebeck coefficient can serve as an alternative tool for extracting the effective mass of electrons in TCO films.

  19. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework

    SciTech Connect

    Cai, SL; Zhang, YB; Pun, AB; He, B; Yang, JH; Toma, FM; Sharp, ID; Yaghi, OM; Fan, J; Zheng, SR; Zhang, WG; Liu, Y

    2014-09-16

    Despite the high charge-carrier mobility in covalent organic frameworks (COFs), the low intrinsic conductivity and poor solution processability still impose a great challenge for their applications in flexible electronics. We report the growth of oriented thin films of a tetrathiafulvalene-based COF (TTF-COF) and its tunable doping. The porous structure of the crystalline TTF-COF thin film allows the diffusion of dopants such as I-2 and tetracyanoquinodimethane (TCNQ) for redox reactions, while the closely packed 2D grid sheets facilitate the cross-layer delocalization of thus-formed TTF radical cations to generate more conductive mixed-valence TTF species, as is verified by UV-vis-NIR and electron paramagnetic resonance spectra. Conductivity as high as 0.28 S m(-1) is observed for the doped COF thin films, which is three orders of magnitude higher than that of the pristine film and is among the highest for COF materials.

  20. Thin film method of conducting lithium-ions

    DOEpatents

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-11-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O-CeO{sub 2}-SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  1. Thin film method of conducting lithium-ions

    DOEpatents

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-11-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  2. Temperature dependence of thermal conductivity of VO2 thin films across metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Kizuka, Hinako; Yagi, Takashi; Jia, Junjun; Yamashita, Yuichiro; Nakamura, Shinichi; Taketoshi, Naoyuki; Shigesato, Yuzo

    2015-05-01

    Thermal conductivity of a 300-nm-thick VO2 thin film and its temperature dependence across the metal-insulator phase transition (TMIT) were studied using a pulsed light heating thermoreflectance technique. The VO2 and Mo/VO2/Mo films with a VO2 thickness of 300 nm were prepared on quartz glass substrates: the former was used for the characterization of electrical properties, and the latter was used for the thermal conductivity measurement. The VO2 films were deposited by reactive rf magnetron sputtering using a V2O3 target and an Ar-O2 mixture gas at 645 K. The VO2 films consisted of single phase VO2 as confirmed by X-ray diffraction and electron beam diffraction. With increased temperature, the electrical resistivity of the VO2 film decreased abruptly from 6.3 × 10-1 to 5.3 × 10-4 Ω cm across the TMIT of around 325-340 K. The thermal conductivity of the VO2 film increased from 3.6 to 5.4 W m-1 K-1 across the TMIT. This discontinuity and temperature dependence of thermal conductivity can be explained by the phonon heat conduction and the Wiedemann-Franz law.

  3. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    NASA Astrophysics Data System (ADS)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  4. Fluorine compounds for doping conductive oxide thin films

    SciTech Connect

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  5. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.

    PubMed

    Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo

    2012-09-26

    Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites. PMID:22900673

  6. Press-Printed Conductive Carbon Black Nanoparticle Films for Molecular Detection at the Microscale.

    PubMed

    Della Pelle, Flavio; Vázquez, Luis; Del Carlo, Michele; Sergi, Manuel; Compagnone, Dario; Escarpa, Alberto

    2016-08-26

    Carbon black nanoparticle (CBNP) press-transferred film-based transducers for the molecular detection at the microscale level were proposed for the first time. Current-sensing atomic force microscopy (CS-AFM) revealed that the CBNP films were effectively press-transferred, retaining their good conductivity. A significant correlation between the morphology and the resistance was observed. The highest resistance was localized at the top of the press-transferred film protrusions, whereas low values are usually obtained at the deep crevices or grooves. The amount of press-transferred CBNPs is the key parameter to obtain films with improved conductivity, which is in good agreement with the electrochemical response. In addition, the conductivity of such optimum films was not only Ohmic; in fact, tunneling/hopping contributions were observed, as assessed by CS-AFM. The CBNP films acted as exclusive electrochemical transducers as evidenced by using two classes of molecules, that is, neurotransmitters and environmental organic contaminants. These results revealed the potential of these CBNP press-transferred films for providing new options in microfluidics and other related micro- and nanochemistry applications. PMID:27460290

  7. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    SciTech Connect

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-02-04

    Tungsten oxide (WO{sub x}) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 Multiplication-Sign 10{sup -4} S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO{sub x}-based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 Multiplication-Sign 10{sup 6}, a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm{sup 2}/V s was realized. Our results demonstrated that WO{sub x}-based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  8. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-02-01

    Tungsten oxide (WOx) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10-4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WOx-based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 106, a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm2/V s was realized. Our results demonstrated that WOx-based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  9. Reinforced carbon nanotubes as electrically conducting and flexible films for space applications.

    PubMed

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Hanein, Yael

    2014-11-26

    Chemical vapor deposition (CVD)-grown entangled carbon nanotube (CNT) sheets are characterized by high electrical conductivity and durability to bending and folding. However, since freestanding CNT sheets are mechanically weak, they cannot be used as stand-alone flexible films. In this work, polyimide (PI) infiltration into entangled cup-stacked CNT (CSCNT) sheets was studied to form electrically conducting, robust, and flexible films for space applications. The infiltration process preserved CNTs' advantageous properties (i.e., conductivity and flexibility), prevented CNT agglomeration, and enabled CNT patterning. In particular, the CNT-PI films exhibited ohmic electrical conductance in both the lateral and vertical directions, with a sheet resistivity as low as 122 Ω/□, similar to that of as-grown CNT sheets, with minimal effect of the insulating matrix. Moreover, this high conductivity was preserved under mechanical and thermal manipulations. These properties make the reported CNT-PI films excellent candidates for applications where flexibility, thermal stability, and electrical conductivity are required. Particularly, the developed CNT-PI films were found to be durable in space environment hazards such as high vacuum, thermal cycling, and ionizing radiation, and hence they are suggested as an alternative for the electrostatic discharge (ESD) protection layer in spacecraft thermal blankets. PMID:25366559

  10. Ultrasensitive electrochemical immunosensor for carbohydrate antigen 72-4 based on dual signal amplification strategy of nanoporous gold and polyaniline-Au asymmetric multicomponent nanoparticles.

    PubMed

    Fan, Haixia; Guo, Zhankui; Gao, Liang; Zhang, Yong; Fan, Dawei; Ji, Guanglei; Du, Bin; Wei, Qin

    2015-02-15

    A sandwich electrochemical immunosensor is described for carbohydrate antigen 72-4 (CA72-4) based on a dual amplification strategy with nanoporous gold (NPG) film as the sensor platform and polyaniline-Au asymmetric multicomponent nanoparticles (PANi-Au AMNPs) as labels. In this study, the second anti-CA72-4 antibody (Ab2) adsorbed onto the Au of the PANi-Au AMNPs, which could be simply synthesized by interfacial reaction and have many characteristics of polyaniline and Au nanoparticle, such as well-controlled size, high conductivity, biocompatibility and catalysis. NPG film was used as electrode substrate material to fix a large number of antibodies, due to its unique properties: good biocompatibility, high conductivity, large surface area, and stability. The synergetic of NPG film and PANi-Au AMNPs could increase signal response, and significantly improve sensitivity of the immunosensor. The proposed immunosensor exhibited a wide linear range from 2 to 200 U/mL, with a detection limit of 0.10 U/mL CA72-4, good reproducibility, selectivity and stability. This new type of labels for immunosensors may provide many potential applications in the detection of carbohydrate antigen in immunoassays. PMID:25194795

  11. Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films

    DOE PAGESBeta

    Farrow, Tim; Yang, Nan; Doria, Sandra; Belianinov, Alex; Jesse, Stephen; Arruda, Thomas M.; Balestrino, Giuseppe; Kalinin, Sergei V.; Kumar, Amit

    2015-03-17

    Spatial variability of conductivity in ceria is explored using scanning probe microscopy with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggest the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunnelingmore » barriers« less

  12. Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films

    SciTech Connect

    Farrow, Tim; Yang, Nan; Doria, Sandra; Belianinov, Alex; Jesse, Stephen; Arruda, Thomas M.; Balestrino, Giuseppe; Kalinin, Sergei V.; Kumar, Amit

    2015-03-17

    Spatial variability of conductivity in ceria is explored using scanning probe microscopy with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggest the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers

  13. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  14. Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films

    SciTech Connect

    Farrow, Tim; Kumar, Amit; Yang, Nan; Doria, Sandra; Balestrino, Giuseppe; Belianinov, Alex; Jesse, Stephen; Kalinin, Sergei V.; Arruda, Thomas M.

    2015-03-01

    Spatial variability of conductivity in ceria is explored using scanning probe microscopy with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO{sub 2}. Data suggest the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers.

  15. Mott variable range hopping conduction mechanism in single-phase CZTS thin film

    NASA Astrophysics Data System (ADS)

    Ansari, Mohd Zubair; Khare, Neeraj

    2015-06-01

    Single-phase Cu2ZnSnS4 (CZTS) thin film has been deposited by ultrasonic assisted chemical vapor deposition method on glass substrate at 325 °C substrate temperature. The temperature dependent of electrical conductivity of the CZTS thin film has been measured in order to identify the dominant conduction mechanism. In the high temperature range, the dominance of thermally activated band conduction is observed, whereas in the lower temperature region (70K-230K) the Mott 3D Variable Range Hopping is found to dominate.

  16. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes.

    PubMed

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-01-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials. PMID:26831759

  17. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    PubMed Central

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-01-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials. PMID:26831759

  18. Electrical conductivity and optical properties of tellurium-rich Ge-Sb-Te films

    NASA Astrophysics Data System (ADS)

    Dzhurkov, V.; Fefelov, S.; Arsova, D.; Nesheva, D.; Kazakova, L.

    2014-12-01

    The Ge-Sb-Te based (GST) films are intensively studied because they are suitable for reversible phase-change storage media. Ge2Sb2Te5 films are most frequently used for memory applications while Te enriched GST films are also promising but not well studied. In this work Te enriched GST films with two different compositions and various thicknesses (120 - 750 nm) were prepared by thermal evaporation of previously synthesized Ge15Sb5Te80 and Ge15Sb15Te70 glasses. Optical transmission and electrical conductivity measurements in sandwich and planar contact configuration were carried out. Temperature measurements of the planar electrical conductivity were performed in the range 77 - 300 K. Values of around 0.7 eV have been determined for the optical band gap of both compositions; the film refractive index is in the range 3.8 - 4.5. The sandwich conductivity is in the interval (2.5 - 5)×10-4 (Ω.cm)-1 while the planar conductivity is around 104 times greater. The obtained results are discussed in terms of existence of an amorphous volume part as well as a crystalline surface layer in the films.

  19. Remarkable enhancement of the electrical conductivity of carbon nanostructured thin films after compression

    NASA Astrophysics Data System (ADS)

    Georgakilas, Vasilios; Koutsioukis, Apostolos; Petr, Martin; Tucek, Jiri; Zboril, Radek

    2016-06-01

    In this work, we demonstrate a significant improvement in the electrical conductivity of carbon nanostructured thin films, composed of graphene nanosheets and multiwalled carbon nanotubes, by compression/polishing. It is shown that the sheet resistance of compressed thin films of carbon nanostructures and hybrids is remarkably decreased in comparison with that of as-deposited films. The number of the interconnections, the distance between the nanostructures as well as their orientation are highly altered by the compression favoring the electrical conductivity of the compressed samples.In this work, we demonstrate a significant improvement in the electrical conductivity of carbon nanostructured thin films, composed of graphene nanosheets and multiwalled carbon nanotubes, by compression/polishing. It is shown that the sheet resistance of compressed thin films of carbon nanostructures and hybrids is remarkably decreased in comparison with that of as-deposited films. The number of the interconnections, the distance between the nanostructures as well as their orientation are highly altered by the compression favoring the electrical conductivity of the compressed samples. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09025c

  20. Design of molecularly imprinted conducting polymer protein-sensing films via substrate-dopant binding.

    PubMed

    Komarova, Elena; Aldissi, Matt; Bogomolova, Anastasia

    2015-02-21

    Addressing the challenge of protein biosensing using molecularly imprinted polymers (MIP), we have developed and tested a novel approach to creating sensing conducive polymer films imprinted with a protein substrate, ricin toxin chain A (RTA). Our approach for creating MIP protein sensing films is based on a concept of substrate-guided dopant immobilization with subsequent conducting polymer film formation. In this proof-of-concept work we have tested three macromolecular dopants with strong protein affinity, Ponceau S, Coomassie BB R250 and ι-Carrageenan. The films were formed using sequential interactions of the substrate, dopant and pyrrole, followed by electrochemical polymerization. The films were formed on gold array electrodes allowing for extensive data acquisition. The thickness of the films was optimized to allow for efficient substrate extraction, which was removed by a combination of protease and detergent treatment. The MIP films were tested for substrate rebinding using electrochemical impedance spectroscopy (EIS). The presence of macromolecular dopants was essential for MIP film specificity. Out of three dopants tested, RTA-imprinted polypyrrole films doped with Coomassie BB performed with highest specificity towards detection of RTA with a level of detection (LOD) of 0.1 ng ml(-1). PMID:25574520

  1. Compact micro/nano electrohydrodynamic patterning: using a thin conductive film and a patterned template.

    PubMed

    Nazaripoor, Hadi; Koch, Charles R; Sadrzadeh, Mohtada; Bhattacharjee, Subir

    2016-01-28

    The influence of electrostatic heterogeneity on the electric-field-induced destabilization of thin ionic liquid (IL) films is investigated to control spatial ordering and to reduce the lateral dimension of structures forming on the films. Commonly used perfect dielectric (PD) films are replaced with ionic conductive films to reduce the lateral length scales to a sub-micron level in the EHD pattering process. The 3-D spatiotemporal evolution of a thin IL film interface under homogenous and heterogeneous electric fields is numerically simulated. Finite differences in the spatial directions using an adaptive time step ODE solver are used to solve the 2-D nonlinear thin film equation. The validity of our simulation technique is determined from close agreement between the simulation results of a PD film and the experimental results in the literature. Replacing the flat electrode with the patterned one is found to result in more compact and well-ordered structures particularly when an electrode with square block protrusions is used. This is attributed to better control of the characteristic spatial lengths by applying a heterogeneous electric field by patterned electrodes. The structure size in PD films is reduced by a factor of 4 when they are replaced with IL films, which results in nano-sized features with well-ordered patterns over the domain. PMID:26574883

  2. Anisotropic Lithium Ion Conductivity in Single-Ion Diblock Copolymer Electrolyte Thin Films.

    PubMed

    Aissou, Karim; Mumtaz, Muhammad; Usluer, Özlem; Pécastaings, Gilles; Portale, Giuseppe; Fleury, Guillaume; Cloutet, Eric; Hadziioannou, Georges

    2016-02-01

    Well-defined single-ion diblock copolymers consisting of a Li-ion conductive poly(styrenesulfonyllithium(trifluoromethylsulfonyl)imide) (PSLiTFSI) block associated with a glassy polystyrene (PS) block have been synthesized via reversible addition fragmentation chain transfer polymerization. Conductivity anisotropy ratio up to 1000 has been achieved from PS-b-PSLiTFSI thin films by comparing Li-ion conductivities of out-of-plane (aligned) and in-plane (antialigned) cylinder morphologies at 40 °C. Blending of PS-b-PSLiTFSI thin films with poly(ethylene oxide) homopolymer (hPEO) enables a substantial improvement of Li-ion transport within aligned cylindrical domains, since hPEO, preferentially located in PSLiTFSI domains, is an excellent lithium-solvating material. Results are also compared with unblended and blended PSLiTFSI homopolymer (hPSLiTFSI) homologues, which reveals that ionic conductivity is improved when thin films are nanostructured. PMID:26618916

  3. Finite element analysis and equivalent parallel-resistance model for conductive multilayer thin films

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Yi; Juang, Jia-Yang

    2016-07-01

    The standard collinear four-point probe method is an indispensable tool and has been extensively used for characterizing conductive thin films with homogeneous and isotropic electrical properties. In this paper, we conduct three-dimensional (3D) finite element simulations on conductive multilayer films to study the relationship between the reading of the four-point probe and the conductivity of the individual layers. We find that a multilayer film may be modeled as a simple equivalent circuit with multiple resistances, connected in parallel for a wide range of resistivity and thickness ratios, as long as its total thickness is smaller than approximately half of the probe spacing. As a result, we may determine the resistivity of each layer sequentially by applying the four-point probe, with the original correction factor π/ln(2), after deposition of each layer.

  4. Transparent conducting indium doped ZnO films by dc reactive S-gun magnetron sputtering.

    PubMed

    Ye, Z Z; Tang, J F

    1989-07-15

    Transparent conducting ZnO films have been prepared by modified S-gun reactive dc magnetron sputtering using an indium doped Zn target. Films with a resistivity of 1.08 x 10(-3) Omega cm and average transmittance of over 80% in the visible region were obtained. The influence of indium content at the surface of Zn target on the resistivity and transmittance of ZnO films was investigated. Optical properties of ZnO films in the 0.2-2.5-microm range were modeled by the Drude theory of free electrons. The reflectance of ZnO films in the 2.5-26.0-microm region was calculated. PMID:20555606

  5. Conductivity of PEDOT:PSS on Spin-Coated and Drop Cast Nanofibrillar Cellulose Thin Films

    NASA Astrophysics Data System (ADS)

    Valtakari, Dimitar; Liu, Jun; Kumar, Vinay; Xu, Chunlin; Toivakka, Martti; Saarinen, Jarkko J.

    2015-10-01

    Aqueous dispersion of conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) was deposited on spin-coated and drop cast nanofibrillar cellulose (NFC)-glycerol (G) matrix on a glass substrate. A thin glycerol film was utilized on plasma-treated glass substrate to provide adequate adhesion for the NFC-glycerol (NFC-G) film. The effects of annealing temperature, the coating method of NFC-G, and the coating time intervals on the electrical performance of the PEDOT:PSS were characterized. PEDOT:PSS on drop cast NFC-G resulted in 3 orders of magnitude increase in the electrical conductivity compared to reference PEDOT:PSS film on a reference glass substrate, whereas the optical transmission was only slightly decreased. The results point out the importance of the interaction between the PEDOT:PSS and the NFC-G for the electrical and barrier properties for thin film electronics applications.

  6. Thermal Conductivity of Amorphous Indium-Gallium-Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Toru; Yagi, Takashi; Oka, Nobuto; Jia, Junjun; Yamashita, Yuichiro; Hattori, Koichiro; Seino, Yutaka; Taketoshi, Naoyuki; Baba, Tetsuya; Shigesato, Yuzo

    2013-02-01

    We investigated the thermal conductivity of 200-nm-thick amorphous indium-gallium-zinc-oxide (a-IGZO) films. Films with a chemical composition of In:Ga:Zn= 1:1:0.6 were prepared by dc magnetron sputtering using an IGZO ceramic target and an Ar-O2 sputtering gas. The carrier density of the films was systematically controlled from 1014 to >1019 cm-3 by varying the O2 flow ratio. Their Hall mobility was slightly higher than 10 cm2·V-1·s-1. Those films were sandwiched between 100-nm-thick Mo layers; their thermal diffusivity, measured by a pulsed light heating thermoreflectance technique, was ˜5.4×10-7 m2·s-1 and was almost independent of the carrier density. The average thermal conductivity was 1.4 W·m-1·K-1.

  7. Immobilization of silver nanoparticles on exfoliated mica nanosheets to form highly conductive nanohybrid films

    NASA Astrophysics Data System (ADS)

    Chiu, Chih-Wei; Ou, Gang-Bo; Tsai, Yu-Hsuan; Lin, Jiang-Jen

    2015-11-01

    Highly electrically conductive films were prepared by coating organic/inorganic nanohybrid solutions with a polymeric dispersant and exfoliated mica nanosheets (Mica) on which silver nanoparticles (AgNPs) had been dispersed in various components. Transmission electronic microscopy showed that the synthesized AgNPs had a narrow size distribution and a diameter of approximately 20 nm. Furthermore, a 60 μm thick film with a sheet resistance as low as 4.5 × 10-2 Ω/sq could be prepared by controlling the heating temperature and by using AgNPs/POE-imide/Mica in a weight ratio of 20:20:1. During the heating process, the surface color of the hybrid film changed from dark golden to white, suggesting the accumulation of the AgNPs through surface migration and their melting to form an interconnected network. These nanohybrid films have potential for use in various electrically conductive devices.

  8. Enhanced Conductivity in CZTS/Cu(2-x)Se Nanocrystal Thin Films: Growth of a Conductive Shell.

    PubMed

    Korala, Lasantha; McGoffin, J Tyler; Prieto, Amy L

    2016-02-01

    Poor charge transport in Cu2ZnSnS4 (CZTS) nanocrystal (NC) thin films presents a great challenge in the fabrication of solar cells without postannealing treatments. We introduce a novel approach to facilitate the charge carrier hopping between CZTS NCs by growing a stoichiometric Cu2Se shell that can be oxidized to form a conductive Cu2-xSe phase when exposed to air. The CZTS/Cu2Se core/shell NCs with varying numbers of shell monolayers were synthesized by the successive ionic layer adsorption and reaction (SILAR) method, and the variation in structural and optical properties of the CZTS NCs with varying shell thicknesses was investigated. Solid-phase sulfide ligand exchange was employed to fabricate NC thin films by layer-by-layer dip coating and a 2 orders of magnitude rise in dark conductivity (∼10(-3) S cm(-1) at 0 monolayer and ∼10(-1) S cm(-1) at 1.5 monolayers) was observed with an increase in the number of shell monolayers. The approach described herein is the first key step in achieving a significant increase in the photoconductivity of as-deposited CZTS NC thin films. PMID:26745286

  9. Controllable morphology and conductivity of electrodeposited Cu₂O thin film: effect of surfactants.

    PubMed

    Yang, Ying; Han, Juan; Ning, Xiaohui; Cao, Wei; Xu, Wei; Guo, Liejin

    2014-12-24

    Both the morphology and conductivity of Cu2O films are controlled in a facile electrodeposition process by tuning the concentration of surfactants. With the increase of the concentration of sodium dodecyl sulfate (SDS) in the plating solution, the average size of Cu2O crystals increases, and the electrical conductivity of Cu2O films changes from n-type to p-type. When the concentrations of SDS are lower than 0.85 mM, the electrodeposited Cu2O films show n-type conductivity because of the formation of oxygen vacancies or copper atoms. When the concentration of SDS is higher than 1.70 mM, the electrodeposited Cu2O films show p-type conductivity owing to the formation of copper vacancies. The concentrations of both the donors and the acceptors increase with the concentration of SDS. The effects of surfactants on the morphology and conductivity of electrodeposited Cu2O films are attributed to the adsorption of SDS molecules on the electrode substrate occupying the deposition sites of Cu(2+) ions and the adsorption of SDS micelles to Cu(2+) ions hindering the diffusion of Cu(2+) ions to the electrode, which affect the reduction rate of Cu(2+) ions and the formation of oxygen vacancies or copper vacancies during the electrodeposition. PMID:25453498

  10. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Sigdel, A. K.; Gennett, T.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.; Packard, C. E.

    2013-10-01

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter-material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity-growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  11. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  12. Improving the electrical conductivity of PEDOT:PSS films by binary secondary doping

    NASA Astrophysics Data System (ADS)

    Zhu, Zhengyou; Liu, Congcong; Xu, Jingkun; Jiang, Qinglin; Shi, Hui; Liu, Endou

    2016-01-01

    In this work, the electrical conductivity of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) films was effectively enhanced by binary secondary doping. Initially, doping with 5 vol.% dimethyl sulfoxide (DMSO) improved the electrical conductivity from 0.3 S cm-1 to 437 S cm-1 and a further increase to 950 S cm-1 was achieved by adding LiClO4. The conductivity value we report here is one of the highest reported for pretreated PEDOT:PSS films. The obtained maximum electrical conductivity is almost 3000 times higher than that shown by pristine PEDOT:PSS films. The increase in the electrical conductivity is ascribed to the synergistic effect of the two dopants. Fourier transform infrared spectra indicated the absence of any changes to the chemical structure of PEDOT:PSS. Atomic force microscopy images demonstrate an increased surface roughness and suggest the occurrence of conformational changes of PEDOT chains from the coiled to coil-extended one, which is the key reason for the electrical conductivity enhancement. The pretreatments we propose here are rapid, simple and effective for the large-scale preparation of high-conductivity PEDOT:PSS films. [Figure not available: see fulltext.

  13. Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Sood, Aditya; Cho, Jungwan; Hobart, Karl D.; Feygelson, Tatyana I.; Pate, Bradford B.; Asheghi, Mehdi; Cahill, David G.; Goodson, Kenneth E.

    2016-05-01

    While there is a great wealth of data for thermal transport in synthetic diamond, there remains much to be learned about the impacts of grain structure and associated defects and impurities within a few microns of the nucleation region in films grown using chemical vapor deposition. Measurements of the inhomogeneous and anisotropic thermal conductivity in films thinner than 10 μm have previously been complicated by the presence of the substrate thermal boundary resistance. Here, we study thermal conduction in suspended films of polycrystalline diamond, with thicknesses ranging between 0.5 and 5.6 μm, using time-domain thermoreflectance. Measurements on both sides of the films facilitate extraction of the thickness-dependent in-plane ( κ r ) and through-plane ( κ z ) thermal conductivities in the vicinity of the coalescence and high-quality regions. The columnar grain structure makes the conductivity highly anisotropic, with κ z being nearly three to five times as large as κ r , a contrast higher than that reported previously for thicker films. In the vicinity of the high-quality region, κ r and κ z range from 77 ± 10 W/m-K and 210 ± 50 W/m-K for the 1 μm thick film to 130 ± 20 W/m-K and 710 ± 120 W/m-K for the 5.6 μm thick film, respectively. The data are interpreted using a model relating the anisotropy to the scattering on the boundaries of columnar grains and the evolution of the grain size considering their nucleation density and spatial rate of growth. This study aids in the reduction in the near-interfacial resistance of diamond films and efforts to fabricate diamond composites with silicon and GaN for power electronics.

  14. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity

    SciTech Connect

    Lu, XJ; Wu, G; Howard, JW; Chen, AP; Zhao, YS; Daemen, LL; Jia, QX

    2014-08-13

    Anti-perovskite solid electrolyte films were prepared by pulsed laser deposition, and their room-temperature ionic conductivity can be improved by more than an order of magnitude in comparison with its bulk counterpart. The cyclability of Li3OCl films in contact with lithium was evaluated using a Li/Li3OCl/Li symmetric cell, showing self-stabilization during cycling test.

  15. Preparation and characterization of conductive and transparent ruthenium dioxide sol-gel films.

    PubMed

    Allhusen, John S; Conboy, John C

    2013-11-27

    RuO2 conductive thin films were synthesized using the sol-gel method and deposited onto transparent insulating substrates. The optical transmission, film thickness, surface morphology and composition, resistivity, and spectroelectrochemical performance have been characterized. The optical transmission values of these films ranged from 70 to 89% in the visible region and from 56 to 88% in the infrared region. Resistivity values of the RuO2 sol-gel films varied from 1.02 × 10(-3) to 1.13 Ω cm and are highly dependent on the initial solution concentration of RuO2 in the sol-gel. The RuO2 sol-gel films were used as electrodes for the electrochemical oxidation and reduction of ferrocenemethanol. The electrochemical behavior of our novel RuO2 sol-gel films was compared to that of a standard platinum disk electrode and showed no appreciable differences in the half-wave potential (E1/2). The mechanical and chemical stability of the coatings was tested by physical abrasion and exposure to highly acidic, oxidizing Piranha solution. Repeated exposure to these extreme conditions did not result in any appreciable decline in electrochemical performance. Finally, the use of the novel RuO2 sol-gel conductive and transparent films was demonstrated in a spectroelectrochemistry experiment in which the oxidation and reduction of ferrocenemethanol was monitored via UV-vis spectroscopy as the applied potential was cycled. PMID:24221640

  16. Effect of synthesis parameters on the surface morphology of conducting polypyrrole films

    SciTech Connect

    Kaynak, A.

    1997-03-01

    Electronic applications of conducting polypyrrole (PPy) require films with smooth surface morphology. Consistency and quality of an electronic device depend on the polymer surface morphology. Surface morphology of polypyrrole films was investigated by using atomic force and scanning electron microscopy techniques. Synthesis parameters such as dopant concentration and synthesis time and subsequent heat treatment were found to affect the surface morphology of electrochemically synthesized polypyrrole films. Mean height, root-mean-square roughness, and nodule diameter increased with increasing dopant concentration and synthesis time. Lightly doped, semiconducting films had smoother surface morphology with the mean height values as low as 500 A, whereas highly doped conducting films had dendritic surfaces with the mean height values of the nodules reaching several microns. At highest dopant concentrations and/or synthesis times exceeding 2 hours the film surface no longer resembled cauliflowers but a worm-like fibrillar morphology appeared. Fibrils started growing at a dopant concentration of 0.025 M and at 0.05 M the film surface was covered with fibrils with pointed tips.

  17. Improved Transparent Conducting Oxides Boost Performance of Thin-Film Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Today?s thin-film solar cells could not function without transparent conducting oxides (TCOs). TCOs act as a window, both protecting the cell and allowing light to pass through to the cell?s active layers. Until recently, TCOs were seen as a necessary, but static, layer of a thin-film photovoltaic (PV) cell. But a group of researchers at the National Renewable Energy Laboratory (NREL) has identified a pathway to producing improved TCO films that demonstrate higher infrared transparency. To do so, they have modified the TCOs in ways that did not seem possible a few years ago.

  18. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    SciTech Connect

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  19. Ultrathin transparent conductive films of polymer-modified multiwalled carbon nanotubes.

    PubMed

    Bocharova, Vera; Kiriy, Anton; Oertel, Ulrich; Stamm, Manfred; Stoffelbach, François; Jérôme, Robert; Detrembleur, Christophe

    2006-08-01

    Deposition of multiwalled carbon nanotubes modified by poly(2-vinylpyridine) (CNT-g-P2VP) from aqueous dispersions at low pH is an effective method to prepare homogeneous ultrathin films with a tunable CNTs density. A percolation threshold of 0.25 mug/cm2 and a critical exponent alpha = 1.24 have been found from dc conductivity measurements. The sheet resistance value agrees with the percolation theory for 2D films. According to AFM and electrical measurements, even when only 5% of the surface is covered by CNT-g-P2VPs, the sheet resistance is of the order of 1 MOmega/sq, which indicates that conductivity is imparted by a network of an ultralow density. When the film transmittance decreases down to approximately 70% at 550 nm, the occupied surface area is approximately 15% and sheet resistance falls down to approximately 90 kOmega/sq. These data show that undesired in-plane clustering does not occur upon the dispersion casting of the films and that high-quality networks of CNT-g-P2VPs are built up. The electrosteric stabilization of the CNT-g-P2VP dispersions in water at low pH is at the origin of this desired behavior. Although the multiwalled CNT films prepared in this work are less conductive and less transparent than the SWNTs films, they could find applications, e.g., in touch screens, reflective displays, EMI shielding, and static charge dissipation. PMID:16869566

  20. Investigation of nanostructured transparent conductive films grown by rotational-sequential-sputtering

    SciTech Connect

    Lu, Jong-Hong Chen, Bo-Ying; Wang, Chih-Hsuan

    2014-03-15

    This study fabricates three types of nanostructured conductive transparent films using a rotational-sequential-sputtering method. These films include (1) TiO{sub 2}/indium-tin oxide (ITO) and SiO{sub x}/ITO nanomultilayer films, the optical refractive indices of which can be manipulated in the range of 2.42–1.63 at a wavelength of 550 nm with a controlled resistivity range of 1 × 10{sup −3} to 2 × 10{sup −4} Ω·cm. (2) Multilayer ITO films are deposited on polyethylene terephthalate substrates, providing good flexibility and resistivity as low as 5 × 10{sup −4} Ω·cm. Finally, (3) ultrathin ITO films ranging from subnanometer to a few nanometers in thickness enable exploration of ITO film growth and thermal stability. X-ray reflection characterization provides a rapid, non-destructive method to measure the single-layer thicknesses of the nanomultilayer films and ultrathin ITO films at subnanoscale resolution.

  1. Measurement of thin film thermal conductivity using the laser flash method.

    PubMed

    Ruoho, Mikko; Valset, Kjetil; Finstad, Terje; Tittonen, Ilkka

    2015-05-15

    We present a method to measure the in-plane thermal conductivity of thin films by the laser flash technique. The method uses a well-defined structure for the analysis. We have realized the structure by conformal deposition of ZnO films of different thicknesses using atomic layer deposition onto a 20 μm thick ion track etched polycarbonate membrane as substrate. By using this procedure we could determine the thermal conductivity of the deposited thin film from the total thermal diffusivity of the nanocomposite structures. The method has been used to obtain the in-plane thermal conductivity of the deposited ZnO layers within the thickness range of less than 100 nm. PMID:25900909

  2. High-precision micropipette thermal sensor for measurement of thermal conductivity of carbon nanotubes thin film

    NASA Astrophysics Data System (ADS)

    Shrestha, Ramesh

    The thesis describes novel glass micropipette thermal sensor fabricated in cost-effective manner and thermal conductivity measurement of carbon nanotubes (CNT) thin film using the developed sensor. Various micrometer-sized sensors, which range from 2 microm to 30 microm, were produced and tested. The capability of the sensor in measuring thermal fluctuation at micro level with an estimated resolution of +/-0.002°C is demonstrated. The sensitivity of sensors was recorded from 3.34 to 8.86 microV/°C, which is independent of tip size and dependent on the coating of Nickel. The detailed experimental setup for thermal conductivity measurement of CNT film is discussed and 73.418 W/m°C was determined as the thermal conductivity of the CNT film at room temperature.

  3. Measurement of thin film thermal conductivity using the laser flash method

    NASA Astrophysics Data System (ADS)

    Ruoho, Mikko; Valset, Kjetil; Finstad, Terje; Tittonen, Ilkka

    2015-05-01

    We present a method to measure the in-plane thermal conductivity of thin films by the laser flash technique. The method uses a well-defined structure for the analysis. We have realized the structure by conformal deposition of ZnO films of different thicknesses using atomic layer deposition onto a 20 μm thick ion track etched polycarbonate membrane as substrate. By using this procedure we could determine the thermal conductivity of the deposited thin film from the total thermal diffusivity of the nanocomposite structures. The method has been used to obtain the in-plane thermal conductivity of the deposited ZnO layers within the thickness range of less than 100 nm.

  4. Fabrication of ion conductive tin oxide-phosphate amorphous thin films by atomic layer deposition

    SciTech Connect

    Park, Suk Won; Jang, Dong Young; Kim, Jun Woo; Shim, Joon Hyung

    2015-07-15

    This work reports the atomic layer deposition (ALD) of tin oxide-phosphate films using tetrakis(dimethylamino)tin and trimethyl phosphate as precursors. The growth rates were 1.23–1.84 Å/cycle depending upon the deposition temperature and precursor combination. The ionic conductivity of the ALD tin oxide-phosphate films was evaluated by cross-plane impedance measurements in the temperature range of 50–300 °C under atmospheric air, with the highest conductivity measured as 1.92 × 10{sup −5} S cm{sup −1} at 300 °C. Furthermore, high-resolution x-ray photoelectron spectroscopy exhibited two O1s peaks that were classified as two subpeaks of hydroxyl ions and oxygen ions, revealing that the quantity of hydroxyl ions in the ALD tin oxide-phosphate films influences their ionic conductivity.

  5. Tuning thermal conductivity in homoepitaxial SrTiO{sub 3} films via defects

    SciTech Connect

    Brooks, Charles M.; Wilson, Richard B.; Cahill, David G.; Schäfer, Anna; Schubert, Jürgen; Mundy, Julia A.; Holtz, Megan E.; Muller, David A.; Schlom, Darrell G.

    2015-08-03

    We demonstrate the ability to tune the thermal conductivity of homoepitaxial SrTiO{sub 3} films deposited by reactive molecular-beam epitaxy by varying growth temperature, oxidation environment, and cation stoichiometry. Both point defects and planar defects decrease the longitudinal thermal conductivity (k{sub 33}), with the greatest decrease in films of the same composition observed for films containing planar defects oriented perpendicular to the direction of heat flow. The longitudinal thermal conductivity can be modified by as much as 80%—from 11.5 W m{sup −1}K{sup −1} for stoichiometric homoepitaxial SrTiO{sub 3} to 2 W m{sup −1}K{sup −1} for strontium-rich homoepitaxial Sr{sub 1+δ}TiO{sub x} films—by incorporating (SrO){sub 2} Ruddlesden-Popper planar defects.

  6. Flame-driven aerosol synthesis of copper-nickel nanopowders and conductive nanoparticle films.

    PubMed

    Sharma, Munish K; Qi, Di; Buchner, Raymond D; Scharmach, William J; Papavassiliou, Vasilis; Swihart, Mark T

    2014-08-27

    We report the continuous one-step synthesis of bimetallic copper-nickel nanostructured coatings by deposition and sintering of metal nanoparticles produced as an aerosol using a flame driven high temperature reducing jet (HTRJ) process. The HTRJ process allows gas-phase (aerosol) formation of metal nanoparticles from low-cost metal salt precursors. These can be collected as discrete powders for subsequent use in formulating conductive inks or for other applications. However, direct deposition of nanoparticles to form coatings allows measurements of electrical conductivity of films of deposited nanoparticles as a function of composition and sintering temperature, without actually formulating and printing inks. This is the approach taken here for the purpose of screening nanoparticle compositions quickly. We characterized the microstructure and composition of both nanopowders and films and found that their composition consistently matched the ratio of metals in the precursor solution. The electrical conductivity was highest (∼10(4) S/m) for films with 60:40 and 40:60 copper-to-nickel mass ratios. These films maintained their conductivity during extended storage (1 month) under ambient conditions. The oxidation resistance and high conductivity observed here suggest that 60:40 and 40:60 Cu:Ni nanoparticles have promise as lower cost replacements for silver nanoparticles in conductive ink formulations. PMID:25075968

  7. Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles

    PubMed Central

    Wang, Xinyu; Parrish, Kevin D.; Malen, Jonathan A.; Chan, Paddy K. L.

    2015-01-01

    Thermal properties of organic semiconductors play a significant role in the performance and lifetime of organic electronic devices, especially for scaled-up large area applications. Here we employ silver nanoparticles (Ag NPs) to modify the thermal conductivity of the small molecule organic semiconductor, dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT). The differential 3-ω method was used to measure the thermal conductivity of Ag-DNTT hybrid thin films. We find that the thermal conductivity of pure DNTT thin films do not vary with the deposition temperature over a range spanning 24 °C to 80 °C. The thermal conductivity of the Ag-DNTT hybrid thin film initially decreases and then increases when the Ag volume fraction increases from 0% to 32%. By applying the effective medium approximation to fit the experimental results of thermal conductivity, the extracted thermal boundary resistance of the Ag-DNTT interface is 1.14 ± 0.98 × 10−7 m2-K/W. Finite element simulations of thermal conductivity for realistic film morphologies show good agreement with experimental results and effective medium approximations. PMID:26531766

  8. Persistent conductive footprints of 109° domain walls in bismuth ferrite films

    SciTech Connect

    Stolichnov, I.; Iwanowska, M.; Colla, E.; Setter, N.; Ziegler, B.; Gaponenko, I.; Paruch, P.; Huijben, M.; Rijnders, G.

    2014-03-31

    Using conductive and piezoforce microscopy, we reveal a complex picture of electronic transport at weakly conductive 109° domain walls in bismuth ferrite films. Even once initial ferroelectric stripe domains are changed/erased, persistent conductive paths signal the original domain wall position. The conduction at such domain wall “footprints” is activated by domain movement and decays rapidly with time, but can be re-activated by opposite polarity voltage. The observed phenomena represent true leakage conduction rather than merely displacement currents. We propose a scenario of hopping transport in combination with thermionic injection over interfacial barriers controlled by the ferroelectric polarization.

  9. Magnetic force microscopy of conducting nanodots in NiO thin films

    NASA Astrophysics Data System (ADS)

    Meang, Wan Joo; Seo, Jeongdae; Ahn, Yoonho; Son, J. Y.

    2016-03-01

    We report a nanoscale magnetic conducting filament in a resistive random access memory (RRAM) device by the direct investigation of conducting nanobits in NiO thin films using magnetic force microscopy. The conducting nanobit in a NiO RRAM capacitor formed by CAFM and KFM exhibited a typical bistable resistive switching characteristic. The magnetizations of the conducting nanobit were measured as a function of the set-reset switching cycle and as the switching cycles were increased, a strong ferromagnetic signal was observed. The metallic Ni formation in the nanoscale magnetic conducting filament could be a possible reason for the origin of the magnetism. [Figure not available: see fulltext.

  10. Effect of band gap energy on the electrical conductivity in doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Benramache, Said; Belahssen, Okba; Ben Temam, Hachemi

    2014-07-01

    The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 °C. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with dopants' concentration of Al, Co and In. The correlation between the electrical and optical properties with doping level suggests that the electrical conductivity of the films is predominantly estimated by the band gap energy and the concentrations of Al, Co and In. The measurement in the electrical conductivity of doped films with correlation is equal to the experimental value, the error of this correlation is smaller than 13%. The minimum error value was estimated in the cobalt-doped ZnO thin films. This result indicates that such Co-doped ZnO thin films are chemically purer and have far fewer defects and less disorder owing to an almost complete chemical decomposition.

  11. Synthesis of self-assembling carbon nanotube-polyaniline nanocomposite on a flexible graphene-coated substrate for electrochemical electrode applications

    NASA Astrophysics Data System (ADS)

    Han, Jaeseok; Sohn, Jaesang; Cho, Sangeun; Jo, Yongcheol; Kim, Jongmin; Woo, Hyeonseok; Kim, Hyunjung; Inamdar, Akbar I.; Kim, Hyungsang; Im, Hyunsik

    2015-08-01

    Multi-wall carbon nanotube/polyaniline (CNT/PANI) nanocomposite thin films for electrochemical electrode applications are synthesized on flexible graphene-coated indium-tin-oxide (ITO) substrates by using a drop-casting technique. Graphene serves as an adhesion layer between the CNT/PANI nanocomposite film and the flexible ITO substrate. A nanoscale vermicular morphology of PANI films containing well-dispersed CNTs is formed on the surface of graphene. The electrochemical characteristics of the nanocomposite films are investigated in a 0.5-M LiClO4 + PC electrolyte. The electrical conduction of the CNT/PANI/graphene/ITO film is considerably superior to that of a PANI/ITO film. The cyclic voltammogram measurements indicate that the specific capacitance of the CNT/PANI film is ~134 F/g which is ~11% higher than that (~120 F/g) of the pure PANI film. Most importantly, the nominal capacitance loss of the PANI/CNT film (~1.2%) is significantly improved relative to that of the pure PANI film (~18.1%) after 100 charge-discharge cycles. We attribute the considerably improved capacity retention of the flexible CNT/PANI electrode to the graphene adhesion layer.

  12. Laser structuring of conducting films on transparent substrates for electronics devices

    NASA Astrophysics Data System (ADS)

    Račiukaitis, G.

    2008-09-01

    Flat panel displays (FPD), flexible electronics and thin-film photovoltaics are booming in the last few years. Permanent annual growth and huge expectations in the market in the near future stimulate the development of versatile technologies for patterning thin-film materials on rigid and flexible substrates. Utilization of laser radiation provides diversity of processing means for structuring deposited films. The high selectivity and diminishing effect on the surrounding material as well as high speed are required in processing complex multilayered systems in the thin-film photovoltaics. Organic electronics imposes special requirements on the geometrical quality of conductors. The current situation with laser direct writing of thin-films in the production of FPD and solar cells as well as our results are presented. High repetition rate lasers with a short pulse duration offer new possibilities for high efficiency structuring of conducting, semi-conducting and isolating films. Laser structuring with the picosecond and nanosecond pulse duration was applied in shaping the thin films deposited on polymers and glass substrates. Absorption of laser radiation by the film material was essential to initiate its controllable removal. Use of UV laser radiation with fluences close to the ablation threshold made it possible to minimize surface contamination and the recast ridge formation during the ablation process. The flexible technique of patterning was applied in prototyping the components for the OLED matrix, RFID antennas and the thin-film solar cells. Well-defined shapes of isolating trenches and conductor lines were produced by laser ablation with the picosecond pulse duration.

  13. Investigations on silver/polyaniline electrodes for electrochemical supercapacitors.

    PubMed

    Patil, Dipali S; Shaikh, J S; Pawar, S A; Devan, R S; Ma, Y R; Moholkar, A V; Kim, J H; Kalubarme, R S; Park, C J; Patil, P S

    2012-09-14

    Polyaniline (PANI) and silver doped polyaniline (Ag/PANI) thin films were deposited on stainless steel substrates by a dip coating technique. To study the effect of doping concentration of Ag on the specific capacitance of PANI the concentration of Ag was varied from 0.3 to 1.2 weight percent. Fourier transform-infrared and Fourier transform-Raman spectroscopy, and energy dispersion X-ray techniques were used for the phase identification and determination of the doping content in the PANI films, respectively. The surface morphology of the films was examined by Field Emission Scanning Electron Microscopy, which revealed a nanofiber like structure for PANI and nanofibers with bright spots of Ag particles for the Ag/PANI films. There was decrease in the room temperature electrical resistivity of the Ag/PANI films of the order of 10(2) with increasing Ag concentration. The supercapacitive behavior of the electrodes was tested in a three electrode system using 1.0 M H(2)SO(4) electrolyte. The specific capacitance increased from 285 F g(-1) (for PANI) to 512 F g(-1) for Ag/PANI at 0.9 weight percent doping of Ag, owing to the synergic effect of PANI and silver nanoparticles. This work demonstrates a simple strategy of improving the specific capacitance of polymer electrodes and may also be easily adopted for other dopants. PMID:22850931

  14. Aggregates-induced dynamic negative differential resistance in conducting organic films

    NASA Astrophysics Data System (ADS)

    Xie, Xian Ning; Wang, Junzhong; Loh, Kian Ping; Wee, Andrew Thye Shen

    2009-11-01

    This letter reports the negative differential resistance (NDR) behavior of perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride films induced by aggregate formation in the film. It is observed that aggregate-states in the energy gap can by-pass the common charge conduction mode, and electron injection, trapping, and conduction through these states lead to the NDR characteristic. The rate-dependence of NDR is discussed in terms of the transit time and lifetime of the aggregates-states electrons. The quenching of NDR by photoillumination is also observed, and is attributed to the saturation of aggregates-states by photoelectrons.

  15. Determination of charge carrier transport in radio frequency plasma polymerized aniline thin films

    NASA Astrophysics Data System (ADS)

    Sivaraman, Sajeev; Anantharaman, M. R.

    2010-02-01

    The carrier transport mechanism of polyaniline (PA) thin films prepared by radio frequency plasma polymerization is described in this paper. The mechanism of electrical conduction and carrier mobility of PA thin films for different temperatures were examined using the aluminium-PA-aluminium (Al-PA-Al) structure. It is found that the mechanism of carrier transport in these thin films is space charge limited conduction. J-V studies on an asymmetric electrode configuration using indium tin oxide (ITO) as the base electrode and Al as the upper electrode (ITO-PA-Al structure) show a diode-like behaviour with a considerable rectification ratio.

  16. Polymeric complexes of polyaniline as anticorrosion coatings

    SciTech Connect

    Racicot, R.J.; Yang, S.C.; Brown, R.

    1998-07-01

    During the past few years there has been a strong interest in developing conducting polymers as an alternative to the traditional anticorrosion coatings. One of the driving forces for this research comes from the need for an environmentally friendly chromate-free anticorrosion coating for high-strength light weight aluminum alloys. The possibilities for a new scratch-tolerant paint for steel prompted the development of conductive polymer anticorrosion paints. By molecular engineering, the authors have synthesized a double-strand polymeric complex of polyaniline that is suitable as an anticorrosion paint on metals in low pH environments. In this article, the authors will discuss (1) the molecular design for solubility and adhesion, (2) the effectiveness of the electroactive coating under electrochemical impedance tests, and (3) a mechanistic study of the anticorrosion mechanism by examining the polymer/metal interfacial interactions.

  17. Nanostructured metal-polyaniline composites

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  18. Proton conductivity of Y-doped BaZrO 3: Pellets and thin films

    NASA Astrophysics Data System (ADS)

    Pornprasertsuk, Rojana; Kosasang, Onthida; Somroop, Kittichai; Horprathum, Mati; Limnonthakul, Puenisara; Chindaudom, Pongpan; Jinawath, Supatra

    2011-07-01

    Y-doped BaZrO 3 (BYZ) pellets and thin films at various doping concentrations were fabricated by the cold isostatic press and 2-step sputtering techniques, respectively. By using BaCO 3, 3 mol% yttria stabilized zirconia (YSZ), nano-Y 2O 3 powders and 1 wt% ZnO as a sintering aid, 6-40 at% BYZ pellets with no second phase and relative bulk density higher than 97% can be achieved. The highest bulk and grain boundary proton conductivities of the BYZ pellets measured by the electrochemical impedance spectroscopy (EIS) technique were obtained at 10 and 20 at% BYZ, respectively. Due to the absence of the second phase and higher bulk density, our BYZ (1 wt% ZnO) pellets show higher bulk and grain boundary conductivity than several previously reported ZnO-BYZ results. The 2-step sputtering technique for BYZ film fabrication involved two sequential steps as followed: (i) DC sputtered Y onto BaZrO 3 target and (ii) RF sputtered Y-BaZrO 3 target onto SiO 2/Si substrate. EIS results of BYZ thin films also verify the dependence of conductivity on the Y doping concentration and reveal 10 2-10 3 times higher conductivities than those of BYZ pellets even with some YSZ phase present. The high conductivity may arise from several factors such as the surface conduction, low contamination and change of grain boundary structure. Two ionic conduction mechanisms were observed in the thin films (in air): (i) the proton conduction at T ≤ 450 °C and (ii) the oxide ion conduction at T > 450 °C. However, under humidified H 2 atmosphere, the proton conduction was dominant througout the temperature range of this study.

  19. Clear, Conductive, Transparent, Flexible Space Durable Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Watson, Kent A.; Connell, John W.; Delozier, Donavon M.; Smith, Joseph G., Jr.

    2004-01-01

    Space environmentally durable polymeric films with low color and sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have been under investigation as part of a materials development activity. These materials have potential applications on advanced spacecraft, particularly on large, deployable, ultra-light weight Gossamer spacecraft. The approach taken to impart sufficient electrical conductivity into the polymer film while maintaining flexibility is to use single wall carbon nanotubes (SWNTs) as conductive additives. Approaches investigated in our lab involved an in-situ polymerization method, addition of SWNTs to a polymer containing reactive end-groups, and spray coating of polymer surfaces. The work described herein is a summary of the current status of this project. Surface conductivities (measured as surface resistance) in the range sufficient for ESC mitigation were achieved with minimal effects on the physical, thermal, mechanical and optical properties of the films. Additionally, the electrical conductivity was not affected by harsh mechanical manipulation of the films. The chemistry and physical properties of these nanocomposites will be discussed.

  20. Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films.

    PubMed

    Liu, Gang; Ling, Qi-Dan; Teo, Eric Yeow Hwee; Zhu, Chun-Xiang; Chan, D Siu-Hung; Neoh, Koon-Gee; Kang, En-Tang

    2009-07-28

    By varying the carbon nanotube (CNT) content in poly(N-vinylcarbazole) (PVK) composite thin films, the electrical conductance behavior of an indium-tin oxide/PVK-CNT/aluminum (ITO/PVK-CNT/Al) sandwich structure can be tuned in a controlled manner. Distinctly different electrical conductance behaviors, such as (i) insulator behavior, (ii) bistable electrical conductance switching effects (write-once read-many-times (WORM) memory effect and rewritable memory effect), and (iii) conductor behavior, are discernible from the current density-voltage characteristics of the composite films. The turn-on voltage of the two bistable conductance switching devices decreases and the ON/OFF state current ratio of the WORM device increases with the increase in CNT content of the composite film. Both the WORM and rewritable devices are stable under a constant voltage stress or a continuous pulse voltage stress, with an ON/OFF state current ratio in excess of 10(3). The conductance switching effects of the composite films have been attributed to electron trapping in the CNTs of the electron-donating/hole-transporting PVK matrix. PMID:19485330

  1. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Yu, Qingkai; Peng, Peng; Liu, Zhihong; Bao, Jiming; Pei, Shin-Shem

    2012-01-01

    Large-scale and transferable graphene films grown on metal substrates by chemical vapor deposition (CVD) still hold great promise for future nanotechnology. To realize the promise, one of the key issues is to further improve the quality of graphene, e.g., uniform thickness, large grain size, and low defects. Here we grow graphene films on Cu foils by CVD at ambient pressure, and study the graphene nucleation and growth processes under different concentrations of carbon precursor. On the basis of the results, we develop a two-step ambient pressure CVD process to synthesize continuous single-layer graphene films with large grain size (up to hundreds of square micrometers). Scanning electron microscopy and Raman spectroscopy characterizations confirm the film thickness and uniformity. The transferred graphene films on cover glass slips show high electrical conductivity and high optical transmittance that make them suitable as transparent conductive electrodes. The growth mechanism of CVD graphene on Cu is also discussed, and a growth model has been proposed. Our results provide important guidance toward the synthesis of high quality uniform graphene films, and could offer a great driving force for graphene based applications.

  2. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.

    PubMed

    Wu, Wei; Yu, Qingkai; Peng, Peng; Liu, Zhihong; Bao, Jiming; Pei, Shin-Shem

    2012-01-27

    Large-scale and transferable graphene films grown on metal substrates by chemical vapor deposition (CVD) still hold great promise for future nanotechnology. To realize the promise, one of the key issues is to further improve the quality of graphene, e.g., uniform thickness, large grain size, and low defects. Here we grow graphene films on Cu foils by CVD at ambient pressure, and study the graphene nucleation and growth processes under different concentrations of carbon precursor. On the basis of the results, we develop a two-step ambient pressure CVD process to synthesize continuous single-layer graphene films with large grain size (up to hundreds of square micrometers). Scanning electron microscopy and Raman spectroscopy characterizations confirm the film thickness and uniformity. The transferred graphene films on cover glass slips show high electrical conductivity and high optical transmittance that make them suitable as transparent conductive electrodes. The growth mechanism of CVD graphene on Cu is also discussed, and a growth model has been proposed. Our results provide important guidance toward the synthesis of high quality uniform graphene films, and could offer a great driving force for graphene based applications. PMID:22173552

  3. Radio-frequency superimposed direct current magnetron sputtered Ga:ZnO transparent conducting thin films

    NASA Astrophysics Data System (ADS)

    Sigdel, Ajaya K.; Ndione, Paul F.; Perkins, John D.; Gennett, Thomas; van Hest, Maikel F. A. M.; Shaheen, Sean E.; Ginley, David S.; Berry, Joseph J.

    2012-05-01

    The utilization of radio-frequency (RF) superimposed direct-current (DC) magnetron sputtering deposition on the properties of gallium doped ZnO (GZO) based transparent conducting oxides has been examined. The GZO films were deposited using 76.2 mm diameter ZnO:Ga2O3 (5 at. % Ga vs. Zn) ceramic oxide target on heated non-alkaline glass substrates by varying total power from 60 W to 120 W in steps of 20 W and at various power ratios of RF to DC changing from 0 to 1 in steps of 0.25. The GZO thin films grown with pure DC, mixed approach, and pure RF resulted in conductivities of 2200 ± 200 S/cm, 3920 ± 600 S/cm, and 3610 ± 400 S/cm, respectively. X-ray diffraction showed all films have wurtzite ZnO structure with the c-axis oriented perpendicular to the substrate. The films grown with increasing RF portion of the total power resulted in the improvement of crystallographic texture with smaller full-width half maximum in χ and broadening of optical gap with increased carrier concentration via more efficient doping. Independent of the total sputtering power, all films grown with 50% or higher RF power portion resulted in high mobility (˜28 ± 1 cm2/Vs), consistent with observed improvements in crystallographic texture. All films showed optical transmittance of ˜90% in the visible range.

  4. Flexible transparent conductive films combining flexographic printed silver grids with CNT coating

    NASA Astrophysics Data System (ADS)

    Mo, Lixin; Ran, Jun; Yang, Li; Fang, Yi; Zhai, Qingbin; Li, Luhai

    2016-02-01

    A high-performance ITO-free transparent conductive film (TCF) has been made by combining high resolution Ag grids with a carbon nanotube (CNT) coating. Ag grids printed with flexography have a 20 μm line width at a grid interval of 400 μm. The Ag grid/CNT hybrid film exhibits excellent overall performance, with a typical sheet resistance of 14.8 Ω/□ and 82.6% light transmittance at room temperature. This means a 23.98% reduction in sheet resistance and only 2.52% loss in transmittance compared to a pure Ag grid film. Analysis indicates that filling areas between the Ag grids and interconnecting the silver nanoparticles with the CNT coating are the primary reasons for the significantly improved conductivity of the hybrid film that also exhibits excellent flexibility and mechanical strength compared to an ITO film. The hybrid film may fully satisfy the requirements of different applications, e.g. use as the anode of polymer solar cells (PSCs). The J-V curve shows that the power conversion efficiency (PCE) of the PSCs using the Ag grid/CNT hybrid anode is 0.61%, which is 24.5% higher than that of the pure Ag grids with a PCE of 0.49%. Further investigations to improve the performance of the solar cells based on the printed hybrid TCFs are ongoing.

  5. Flexible transparent conductive films combining flexographic printed silver grids with CNT coating.

    PubMed

    Mo, Lixin; Ran, Jun; Yang, Li; Fang, Yi; Zhai, Qingbin; Li, Luhai

    2016-02-12

    A high-performance ITO-free transparent conductive film (TCF) has been made by combining high resolution Ag grids with a carbon nanotube (CNT) coating. Ag grids printed with flexography have a 20 μm line width at a grid interval of 400 μm. The Ag grid/CNT hybrid film exhibits excellent overall performance, with a typical sheet resistance of 14.8 Ω/□ and 82.6% light transmittance at room temperature. This means a 23.98% reduction in sheet resistance and only 2.52% loss in transmittance compared to a pure Ag grid film. Analysis indicates that filling areas between the Ag grids and interconnecting the silver nanoparticles with the CNT coating are the primary reasons for the significantly improved conductivity of the hybrid film that also exhibits excellent flexibility and mechanical strength compared to an ITO film. The hybrid film may fully satisfy the requirements of different applications, e.g. use as the anode of polymer solar cells (PSCs). The J-V curve shows that the power conversion efficiency (PCE) of the PSCs using the Ag grid/CNT hybrid anode is 0.61%, which is 24.5% higher than that of the pure Ag grids with a PCE of 0.49%. Further investigations to improve the performance of the solar cells based on the printed hybrid TCFs are ongoing. PMID:26758939

  6. Growth of highly textured PbTiO3 films on conductive substrate under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Tang, Haixiong; Zhou, Zhi; Bowland, Christopher C.; Sodano, Henry A.

    2015-08-01

    Perovskite structure (ABO3) thin films have wide applications in electronic devices due to their unique properties, including high dielectric permittivity, ferroelectricity and piezoelectric coupling. Here, we report an approach to grow highly textured thick lead titanate (PbTiO3) films on conductive substrates by a two-step hydrothermal reaction. Initially, vertically aligned TiO2 nanowire arrays are grown on fluorine-doped tin oxide (FTO) coated glass, which act as template crystals for conversion to the perovskite structure. The PbTiO3 films are then converted from TiO2 NW arrays by diffusing Pb2+ ions into the template through a second hydrothermal reaction. The dielectric permittivity and piezoelectric coupling coefficient (d33) of the PbTiO3 films are as high as 795 at 1 kHz and 52 pm V-1, respectively. The reported process can also potentially be expanded for the assembly of other complex perovskite ATiO3 (A = Ba, Ca, Cd, etc) films by using the highly aligned TiO2 NW arrays as templates. Therefore, the approach introduced here opens up a new door to synthesize ferroelectric thin films on conductive substrates for application in sensors, actuators, and ultrasonic transducers that are important in various industrial and scientific areas.

  7. Magnetoelectric hexaferrite thin film growth on oxide conductive layer for applications at low voltages

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Vittoria, Carmine

    2016-08-01

    Magnetoelectric (ME) M-type hexaferrite thin films were deposited on conductive oxide layer of Indium-Tin Oxide (ITO) in order to lower applied voltages to observe ME effects at room temperature. The thin film of ME hexaferrites, SrCo2Ti2Fe8O19/ITO buffer layer, were deposited on sapphire substrate using Pulsed Laser Deposition (PLD) technique. The film exhibited ME effects as confirmed by vibrating sample magnetometer (VSM) in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe ME effects were typically 500 V and higher. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1064 G, and coercive field of 20 Oe for these thin films. The change rate in remanence magnetization was measured with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a ME coupling, α, of 5×10-10 s m-1 in SrCo2Ti2Fe8O19 thin films.

  8. Conducting (Si-doped) aluminum nitride epitaxial films grown by molecular beam epitaxy

    SciTech Connect

    Kim, J.G.; Moorthy, M.; Park, R.M.

    1999-07-01

    As a member of the III-V nitride semiconductor family, AlN, which has a direct energy-gap of 6.2eV, has received much attention as a promising material for many applications. However, despite the promising attributes of AlN for various semiconductor devices, research on AlN has been limited and n-type conducting AlN has not been reported. The objective of this research was to understand the factors impacting the conductivity of AlN and to control the conductivity of this material through intentional doping. Prior to the intentional doping study, growth of undoped AlN epilayers was investigated. Through careful selection of substrate preparation methods and growth parameters, relatively low-temperature molecular beam epitaxial growth of AlN films was established which resulted in insulating material. Intentional Si doping during epilayer growth was found to result in conducting films under specific growth conditions. Above a growth temperature of 900 C, AlN films were insulating, however, below a growth temperature of 900 C, the AlN films were conducting. The magnitude of the conductivity and the growth temperature range over which conducting AlN films could be grown were strongly influenced by the presence of a Ga flux during growth. For instance, conducting, Si-doped, AlN films were grown at a growth temperature of 940 C in the presence of a Ga flux while the films were insulating when grown in the absence of a Ga flux at this particular growth temperature. Also, by appropriate selection of the growth parameters, epilayers with n-type conductivity values as large as 0.2 {Omega}{sup {minus}1} cm{sup {minus}1} for AlN and 17 {Omega}{sup {minus}1} cm{sup {minus}1} for Al{sub 0.75}Ga{sub 0.25}N were grown in this work for the first time.

  9. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    NASA Astrophysics Data System (ADS)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε‧) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  10. Characteristics of p-type transparent conductive CuCrO2 thin films

    NASA Astrophysics Data System (ADS)

    Yu, Ruei-Sung; Wu, Chung-Ming

    2013-10-01

    Cu-Cr-O films were prepared using reactive magnetron sputtering deposition followed by annealing at temperatures ranging from 550 to 625 °C in 25 °C increments. Correlations between the optoelectronic and microstructural properties of the p-type CuCrO2 films are discussed. The as-deposited film was amorphous; after annealing at 550 and 575 °C, films adopted mixed CuO and CuCr2O4 phases. Annealing at 600 °C led to the formation of a dominant phase of delafossite CuCrO2. The 625 °C-annealed film was single-phase CuCrO2 which had a bar- and polygonal-like mixed surface appearance, with a root mean square roughness of 17.7 nm. CuCrO2 is an intrinsic p-type semiconductor which exhibits electrical conductivity and transparency over the visible wavelength range. Two higher-energy subband transitions at 3.69 and 4.82 eV were observed in the band structure of CuCrO2. Point defects were the main reason source of hole carrier scattering in the material. The single-phase CuCrO2 film had the lowest resistivity of the films, 4.31 Ω cm, and had a direct band gap of 3.14 eV and light transmittance of 62% at 600 nm.

  11. Preparation of transparent conducting B-doped ZnO films by vacuum arc plasma evaporation

    SciTech Connect

    Miyata, Toshihiro; Honma, Yasunori; Minami, Tadatsugu

    2007-07-15

    Highly transparent and conductive B-doped ZnO (BZO) thin films have been prepared by a newly developed vacuum arc plasma evaporation method that provided high-rate film depositions using sintered BZO pellets and fragments. The obtained electrical and optical properties of the deposited BZO thin films were considerably affected by the deposition conditions as well as the preparation method of the BZO pellets and fragments used. The lowest thin film resistivity was obtained with a B doping content [B/(B+Zn) atomic ratio] of approximately 1 at. %. A resistivity as low as 5x10{sup -4} {omega} cm and an average transmittance above about 80% in the wavelength range of 400-1300 nm were obtained in BZO films prepared with a thickness above approximately 400 nm at a substrate temperature of 200 deg. C. In addition, a low resistivity of 7.97x10{sup -4} {omega} cm and average transmittances above about 80% in the visible wavelength range were obtained in a BZO film prepared at a substrate temperature of 100 deg. C and an O{sub 2} gas flow rate of 10 SCCM (SCCM denotes cubic centimeter per minute at STP). The deposition rate of BZO films was typically 170 nm/min with a cathode plasma power of 4.5 kW.

  12. Conducting films of C60 and C70 by alkali-metal doping

    NASA Astrophysics Data System (ADS)

    Haddon, R. C.; Hebard, A. F.; Rosseinsky, M. J.; Murphy, D. W.; Duclos, S. J.

    1991-03-01

    The preparation is reported of alkali-metal-doped films of C60 and C70 which have electrical conductivities at room temperature comparable to those attained by n-type doped polyacetylene. The highest conductivities observed in the doped films are: 4 S/cm (Cs/C60), 100 (Rb/C60), 500 (K/C60), 20 (Na/C60), 10 (Li/C60), 2 (K/C70). The doping process is reversed on exposure of the films to the atmosphere. At high doping level, the films become more resistive. The conductivity induced in these films is attributed to the formation of energy bands from the pi orbitals of C60 or C70, which become partially filled with carriers on doping. The smaller alkali metal ions should be able to fit into the interstices in the lattice without disrupting the network of contacts between the carbon spheroids. In the case of C60, this would allow the development of an isotropic band structure, and it is proposed that these materials may constitute the first three-dimensional 'organic' conductors.

  13. Bombardment induced ion transport - part IV: ionic conductivity of ultra-thin polyelectrolyte multilayer films.

    PubMed

    Wesp, Veronika; Hermann, Matthias; Schäfer, Martin; Hühn, Jonas; Parak, Wolfgang J; Weitzel, Karl-Michael

    2016-02-14

    The dependence of the ionic conductance of ultra-thin polyelectrolyte multilayer (PEM) films on the temperature and the number of bilayers has been investigated by the recently developed low energy bombardment induced ion transport (BIIT) method. To this end multilayers of alternating poly(sodium 4-styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) layers were deposited on a metal electrode and subsequently bombarded by a low energy potassium ion beam. Ions are transported through the film according to the laws of electro-diffusion towards a grounded backside electrode. They are neutralized at the interface between the polymer film and the metal electrode. The detected neutralization current scales linearly with the acceleration potential of the ion beam indicating Ohmic behavior for the (PAH/PSS)x multilayer, where x denotes the number of bilayers. The conductance exhibits a non-monotonic dependence on the number of bilayers, x. For 2 ≤ x ≤ 8 the conductance increases non-linearly with the number of bilayers. For x ≥ 8 the conductance decreases with increasing number of bilayers. The variation of the conductance is rationalized by a model accounting for the structure dependence of the conductivity. The thinnest sample for which the conductance has been measured is the single bilayer reflecting properties dominated by the interface. The activation energy for the ion transport is 0.49 eV. PMID:26411996

  14. Transparent and flexible conducting hybrid film combined with 3-Aminopropyltriethoxysilane-coated polymer and graphene

    NASA Astrophysics Data System (ADS)

    Jung, Daesung; Ko, Yong-Hun; Cho, Jumi; Adhikari, Prashanta Dhoj; Lee, Su Il; Kim, Yooseok; Song, Wooseok; Jung, Min Wook; Jang, Sung Won; Lee, Seung Youb; An, Ki-Seok; Park, Chong-Yun

    2015-12-01

    A simple approach to fabricate graphene hybrid film consisted of Graphene/3-aminopropyltriethoxysilane (APTES)/polyethylene terephthalate (PET) is presented, using self-assembled monolayers (SAMs) for enhancement of conductivity. The SAMs of APTES was prepared on ultraviolet-ozone (UVO)-irradiated PET films via wet chemical technique. The density of APTES was saturated after UV treatment time of 1 h for PET films; the carrier density and the optical transmittance were 9.3 × 10 12/cm2 and 82% for pristine graphene and 1.16 × 1013/cm2 and 86% for graphene hybrid films, respectively, and experienced at inflection point at 30 min in UV treatment time. This behavior can be explained by surface morphology transition due to coalescence or clustering of mobile and low-molecular-weight oxidized components of PET.

  15. Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates.

    PubMed

    Andrew Ng, M H; Hartadi, Lysia T; Tan, Huiwen; Patrick Poa, C H

    2008-05-21

    Optically transparent and electrically conductive single-walled carbon nanotube (SWNT) thin films were fabricated at room temperature using a dip-coating technique. The film transparency and sheet resistance can be easily tailored by controlling the number of coatings. Aminopropyltriethoxysilane (APTS) was used as an adhesion promoter and, together with surfactant Triton X-100, greatly improved the SWNTs coating. Only five coats were required to obtain a sheet resistance of 2.05 [Formula: see text] and film transparency of 84 %T. The dip-coated film after post-deposition treatment with nitric acid has a sheet resistance as low as 130 [Formula: see text] at 69 %T. This technique is suitable for large-scale SWNT coating at room temperature and can be used on different types of substrates such as glass and plastics. This paper will discuss the role of the adhesion promoter and surfactant in the coating process. PMID:21825746

  16. Sol-gel processing of highly transparent conducting Cd2SnO4 thin films

    NASA Astrophysics Data System (ADS)

    Bel-Hadj-Tahar, Radhouane; Bel-Hadj-Tahar, Noureddine; Belhadj Mohamed, Abdellatif

    2015-03-01

    Polycrystalline thin films of cadmium stannate (Cd2SnO4) (CTO) were coated on corning glass substrates by sol-gel method. The films were fired at different temperatures and annealed in inert ambient (N2) at 680°C. The structural, optical, and electrical properties of dip-coated cadmium-tin-oxide (CTO) thin films are discussed. CTO layers with a Hall mobility of 30 cm2/Vs and a carrier density of 1.4 × 1021 cm-3 resulting in a resistivity of 5 × 10-4 Ω cm have been deposited. Dip-coating conditions must be carefully monitored to produce consistent films. The high electronic conductivity is due to two effective mechanisms of n-type doping: (i) stoichiometric deviation and (ii) self-doping.

  17. Nonreciprocal dispersion of spin waves in ferromagnetic thin films covered with a finite-conductivity metal

    SciTech Connect

    Mruczkiewicz, M.; Krawczyk, M.

    2014-03-21

    We study the effect of one-side metallization of a uniform ferromagnetic thin film on its spin-wave dispersion relation in the Damon–Eshbach geometry. Due to the finite conductivity of the metallic cover layer on the ferromagnetic film, the spin-wave dispersion relation may be nonreciprocal only in a limited wave-vector range. We provide an approximate analytical solution for the spin-wave frequency, discuss its validity, and compare it with numerical results. The dispersion is analyzed systematically by varying the parameters of the ferromagnetic film, the metal cover layer and the value of the external magnetic field. The conclusions drawn from this analysis allow us to define a structure based on a 30 nm thick CoFeB film with an experimentally accessible nonreciprocal dispersion relation in a relatively wide wave-vector range.

  18. Highly conductive and flexible color filter electrode using multilayer film structure

    NASA Astrophysics Data System (ADS)

    Han, Jun Hee; Kim, Dong-Young; Kim, Dohong; Choi, Kyung Cheol

    2016-07-01

    In this paper, a high performance flexible component that serves as a color filter and an electrode simultaneously is suggested. The suggested highly conductive and flexible color filter electrode (CFE) has a multilayer film structure composed of silver (Ag) and tungsten trioxide (WO3). The CFE maintained its color filtering capability even when the films were bent on a polyethylene terephthalate (PET) film. Low sheet resistance of the CFE was obtained using WO3 as a bridge layer that connects two Ag layers electrically. The sheet resistance was less than 2 Ω/sq. and it was negligibly changed after bending the film, confirming the flexibility of the CFE. The CFE can be easily fabricated using a thermal evaporator and is easily patterned by photolithography or a shadow mask. The proposed CFE has enormous potential for applications involving optical devices including large area devices and flexible devices.

  19. Highly transparent and conductive ZnO:Al thin films prepared by vacuum arc plasma evaporation

    NASA Astrophysics Data System (ADS)

    Miyata, Toshihiro; Minamino, Youhei; Ida, Satoshi; Minami, Tadatsugu

    2004-07-01

    A vacuum arc plasma evaporation (VAPE) method using both oxide fragments and gas sources as the source materials is demonstrated to be very effective for the preparation of multicomponent oxide thin films. Highly transparent and conductive Al-doped ZnO (AZO) thin films were prepared by the VAPE method using a ZnO fragment target and a gas source Al dopant, aluminum acethylacetonate (Al(C5H7O2)3) contained in a stainless steel vessel. The Al content in the AZO films was altered by controlling the partial pressure (or flow rate) of the Al dopant gas. High deposition rates as well as uniform distributions of resistivity and thickness on the substrate surface were obtained on large area glass substrates. A low resistivity on the order of 10-4 Ω cm and an average transmittance above 80% in the visible range were obtained in AZO thin films deposited on glass substrates. .

  20. Highly conductive and flexible color filter electrode using multilayer film structure

    PubMed Central

    Han, Jun Hee; Kim, Dong-Young; Kim, Dohong; Choi, Kyung Cheol

    2016-01-01

    In this paper, a high performance flexible component that serves as a color filter and an electrode simultaneously is suggested. The suggested highly conductive and flexible color filter electrode (CFE) has a multilayer film structure composed of silver (Ag) and tungsten trioxide (WO3). The CFE maintained its color filtering capability even when the films were bent on a polyethylene terephthalate (PET) film. Low sheet resistance of the CFE was obtained using WO3 as a bridge layer that connects two Ag layers electrically. The sheet resistance was less than 2 Ω/sq. and it was negligibly changed after bending the film, confirming the flexibility of the CFE. The CFE can be easily fabricated using a thermal evaporator and is easily patterned by photolithography or a shadow mask. The proposed CFE has enormous potential for applications involving optical devices including large area devices and flexible devices. PMID:27373804

  1. Highly conductive and flexible color filter electrode using multilayer film structure.

    PubMed

    Han, Jun Hee; Kim, Dong-Young; Kim, Dohong; Choi, Kyung Cheol

    2016-01-01

    In this paper, a high performance flexible component that serves as a color filter and an electrode simultaneously is suggested. The suggested highly conductive and flexible color filter electrode (CFE) has a multilayer film structure composed of silver (Ag) and tungsten trioxide (WO3). The CFE maintained its color filtering capability even when the films were bent on a polyethylene terephthalate (PET) film. Low sheet resistance of the CFE was obtained using WO3 as a bridge layer that connects two Ag layers electrically. The sheet resistance was less than 2 Ω/sq. and it was negligibly changed after bending the film, confirming the flexibility of the CFE. The CFE can be easily fabricated using a thermal evaporator and is easily patterned by photolithography or a shadow mask. The proposed CFE has enormous potential for applications involving optical devices including large area devices and flexible devices. PMID:27373804

  2. On solutions of Maxwell's equations with dipole sources over a thin conducting film

    NASA Astrophysics Data System (ADS)

    Margetis, Dionisios; Luskin, Mitchell

    2016-04-01

    We derive and interpret solutions of time-harmonic Maxwell's equations with a vertical and a horizontal electric dipole near a planar, thin conducting film, e.g., graphene sheet, lying between two unbounded isotropic and non-magnetic media. Exact expressions for all field components are extracted in terms of rapidly convergent series of known transcendental functions when the ambient media have equal permittivities and both the dipole and observation point lie on the plane of the film. These solutions are simplified for all distances from the source when the film surface resistivity is large in magnitude compared to the intrinsic impedance of the ambient space. The formulas reveal the analytical structure of two types of waves that can possibly be excited by the dipoles and propagate on the film. One of these waves is intimately related to the surface plasmon-polariton of transverse-magnetic polarization of plane waves.

  3. Investigation of optimal silver nanowires film as conductive wires for LED

    NASA Astrophysics Data System (ADS)

    Wu, I. C.; Yang, T. L.; Pan, C. T.; Chen, Y. C.; Hung, K. H.

    2015-03-01

    In the study, the Polyol reduction process was used to fabricate silver nanowires (AgNWs). In the experiment, the ratio of PVP/Ag, silver seed, AgNO3 and the amount of ethylene glycol (EG) were adopted to design orthogonal array with a constant temperature and heating time and the synthesis parameters of AgNWs were obtained. Therefore, the optimal AgNWs solution was obtained, followed by centrifuging to obtain AgNWs which were used to fabricate AgNWs film. The scanning electron microscope (SEM), Fourier Transform Infrared Spectroscope (FTIR), Energy Dispersive Spectrometer (EDS) and four-point probe were used to measure the sheet resistant and transmittance of AgNWs film. Moreover, the AgNWs film was adopted to be the conductive wires of LED. From the experiment results, the synthesis parameter of 15ml EG, 0.01g AgCl, ratio 2 of PVP/Ag and 0.22g AgNO3 could be used to fabricate optimal AgNWs with 45nm average diameter, 5μm average length and aspect ratio of 110. The sheet resistance and transmittance of film fabricated by centrifuged AgNWs was 0.1252 Ω/sq and 70%, respectively. Furthermore, the luminance of LED with conductive wires made of AgNWs film was better than that made of commercial silver plastic. In the future, the AgNWs film can be broadly applied to the conductive films of touch electric products, LCD display and solar panels.

  4. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    SciTech Connect

    Simpson, Lin Jay

    2015-07-28

    Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.

  5. Analysis of variance on thickness and electrical conductivity measurements of carbon nanotube thin films

    NASA Astrophysics Data System (ADS)

    Li, Min-Yang; Yang, Mingchia; Vargas, Emily; Neff, Kyle; Vanli, Arda; Liang, Richard

    2016-09-01

    One of the major challenges towards controlling the transfer of electrical and mechanical properties of nanotubes into nanocomposites is the lack of adequate measurement systems to quantify the variations in bulk properties while the nanotubes were used as the reinforcement material. In this study, we conducted one-way analysis of variance (ANOVA) on thickness and conductivity measurements. By analyzing the data collected from both experienced and inexperienced operators, we found some operation details users might overlook that resulted in variations, since conductivity measurements of CNT thin films are very sensitive to thickness measurements. In addition, we demonstrated how issues in measurements damaged samples and limited the number of replications resulting in large variations in the electrical conductivity measurement results. Based on this study, we proposed a faster, more reliable approach to measure the thickness of CNT thin films that operators can follow to make these measurement processes less dependent on operator skills.

  6. Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation

    NASA Astrophysics Data System (ADS)

    Li, Sucheng; Luo, Jie; Anwar, Shahzad; Li, Shuo; Lu, Weixin; Hang, Zhi Hong; Lai, Yun; Hou, Bo; Shen, Mingrong; Wang, Chinhua

    2015-06-01

    Absorption of microwaves by metallic conductors is typically inefficient, albeit naturally broadband, due to the huge impedance mismatch between metal and free space. Reducing metal to ultrathin profile may improve absorption efficiency, but a maximal 50% absorption limit induced by the field continuity exists. Here, we experimentally show that broadband, perfect (100%) absorption of microwaves can be realized in a single layer of ultrathin conductive film when illuminated coherently by two oppositely directed incident beams. Our experiments keep the field continuity and simultaneously break the 50% limit. Inheriting the intrinsic broadband feature of metals, complete absorption is observed to be frequency independent in microwave experiments from 6 to 18 GHz. Remarkably, this occurs in films with thicknesses that are at the extreme subwavelength scales, ˜λ /10 000 or less. Our work proposes a way to achieve total electromagnetic wave absorption in an ultrawide spectrum of radio waves and microwaves with a simple conductive film.

  7. Electric-field-driven alignment of chiral conductive polymer thin films.

    PubMed

    Tassinari, Francesco; Mathew, Shinto P; Fontanesi, Claudio; Schenetti, Luisa; Naaman, Ron

    2014-04-29

    We investigated the effect of an electric field on the alignment and structural properties of thin films of a chiral polybithiophene-based conductive polymer, functionalized with a protected l-cysteine amino acid. Thin films were obtained by exploiting both drop-casting and spin-coating procedures. The electric properties, the polarized Raman spectrum, the UV-vis spectrum, and the CD spectra were measured as a function of the electric field intensity applied during film formation. It was found that beyond the enhancement of the conductivity observed when the electric field aligns the polymer, the electric field significantly affects the chiral properties and the effect depends on the method of deposition. PMID:24731141

  8. Reduction in thermal conductivity of Bi thin films with high-density ordered nanoscopic pores

    PubMed Central

    2013-01-01

    We prepared two-dimensional Bi thin films with high-density ordered nanoscopic pores by e-beam evaporation of Bi metal. For this structure, we used polystyrene beads ranging from 200 to 750 nm in diameter as an etch mask. The typical hole and neck sizes of the Bi thin films with approximately 50 nm in thickness on SiO2/Si substrates were in the range of 135 to 490 nm and 65 to 260 nm, respectively. By measuring the thermal characteristics through a 3ω technique, we found that the thermal conductivities of nanoporous Bi thin films are greatly suppressed compared with those of corresponding bulk materials. With a decrease in pore size to approximately 135 nm, the thermal conductivity decreased significantly to approximately 0.46 W/m·K at 300 K. PMID:24001222

  9. Highly conducting SrMoO{sub 3} thin films for microwave applications

    SciTech Connect

    Radetinac, Aldin Mani, Arzhang; Ziegler, Jürgen; Alff, Lambert; Komissinskiy, Philipp; Melnyk, Sergiy; Nikfalazar, Mohammad; Zheng, Yuliang; Jakoby, Rolf

    2014-09-15

    We have measured the microwave resistance of highly conducting perovskite oxide SrMoO{sub 3} thin film coplanar waveguides. The epitaxial SrMoO{sub 3} thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3 nm. Layer-by-layer growth could be achieved for film thicknesses up to 400 nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29 μΩ·cm between 0.1 and 20 GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO{sub 3} is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.

  10. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyurethane composite films

    NASA Astrophysics Data System (ADS)

    Son Hoang, Anh

    2011-06-01

    Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in a pure polyurethane resin by grinding in a planetary ball mill. The structure and surface morphology of the MWCNTs and MWCNT/polyurethane composites were studied by filed emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) methods. The electrical conductivity at room temperature and electromagnetic interference (EMI) shielding effectiveness (SE) of the composite films with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in a frequency range of 8–12 GHz (X-band). The experimental results show that with a low MWCNT concentration the composite films could achieve a high conductivity and their EMI SE has a strong dependence on MWCNT content. For the composite films with 22 wt% of MWCNTs, the EMI SE attained an average value of 20 dB, so that the shielding effect reduced the penetrating power to 1%.

  11. Nickel vacancy behavior in the electrical conductance of nonstoichiometric nickel oxide film

    SciTech Connect

    Kim, Dong Soo; Lee, Hee Chul

    2012-08-01

    Nickel vacancy behavior in electrical conductance is systematically investigated using various analysis methods on nickel oxide films deposited at different oxygen partial pressures. The results of Rutherford backscattering, x-ray diffraction, and Auger electron spectroscopy analyses demonstrate that the sputtered nickel oxide films are nickel-deficient. Through the deconvolution of Ni2p and O1s spectra in the x-ray photoelectron spectroscopy data, the number of Ni{sup 3+} ions is found to increase with the O{sub 2} ratio during the deposition. According to the vacancy model, nickel vacancies created from the non-stoichiometry are concluded to produce Ni{sup 3+} ions which lead to an increment of the conductivity of the nickel oxide films due to the increase of the hole concentration.

  12. Current-dependent anisotropic conductivity of locally assembled silver nanoparticles in hybrid polymer films.

    PubMed

    Goel, Pooja; Vinokur, Rostislav; Weichold, Oliver

    2010-12-15

    The electrical behaviour of hybrid poly(ethylene terephthalate) films containing localised, percolating networks of silver nanoparticles separated by pure polymer is studied. The films resemble an array of parallel wires in the submicron range and, thus, exhibit anisotropic conductivity. In the high-conductivity direction at low amplitudes, the films show Ohmic behaviour, while at moderate voltage, non-linearity and a decreasing resistance is observed. The samples were found to heat up during the measurements and the deviation from Ohm's law coincides with the Tg of the polymer. Microstructural analysis of the samples revealed an irreversible agglomeration of the particles at moderate voltages leading to the formation of filaments with higher metallic character than the random particle network. PMID:20843521

  13. In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction

    PubMed Central

    Fluri, Aline; Pergolesi, Daniele; Roddatis, Vladimir; Wokaun, Alexander; Lippert, Thomas

    2016-01-01

    Many properties of materials can be changed by varying the interatomic distances in the crystal lattice by applying stress. Ideal model systems for investigations are heteroepitaxial thin films where lattice distortions can be induced by the crystallographic mismatch with the substrate. Here we describe an in situ simultaneous diagnostic of growth mode and stress during pulsed laser deposition of oxide thin films. The stress state and evolution up to the relaxation onset are monitored during the growth of oxygen ion conducting Ce0.85Sm0.15O2-δ thin films via optical wafer curvature measurements. Increasing tensile stress lowers the activation energy for charge transport and a thorough characterization of stress and morphology allows quantifying this effect using samples with the conductive properties of single crystals. The combined in situ application of optical deflectometry and electron diffraction provides an invaluable tool for strain engineering in Materials Science to fabricate novel devices with intriguing functionalities. PMID:26912416

  14. In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction

    NASA Astrophysics Data System (ADS)

    Fluri, Aline; Pergolesi, Daniele; Roddatis, Vladimir; Wokaun, Alexander; Lippert, Thomas

    2016-02-01

    Many properties of materials can be changed by varying the interatomic distances in the crystal lattice by applying stress. Ideal model systems for investigations are heteroepitaxial thin films where lattice distortions can be induced by the crystallographic mismatch with the substrate. Here we describe an in situ simultaneous diagnostic of growth mode and stress during pulsed laser deposition of oxide thin films. The stress state and evolution up to the relaxation onset are monitored during the growth of oxygen ion conducting Ce0.85Sm0.15O2-δ thin films via optical wafer curvature measurements. Increasing tensile stress lowers the activation energy for charge transport and a thorough characterization of stress and morphology allows quantifying this effect using samples with the conductive properties of single crystals. The combined in situ application of optical deflectometry and electron diffraction provides an invaluable tool for strain engineering in Materials Science to fabricate novel devices with intriguing functionalities.

  15. In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction.

    PubMed

    Fluri, Aline; Pergolesi, Daniele; Roddatis, Vladimir; Wokaun, Alexander; Lippert, Thomas

    2016-01-01

    Many properties of materials can be changed by varying the interatomic distances in the crystal lattice by applying stress. Ideal model systems for investigations are heteroepitaxial thin films where lattice distortions can be induced by the crystallographic mismatch with the substrate. Here we describe an in situ simultaneous diagnostic of growth mode and stress during pulsed laser deposition of oxide thin films. The stress state and evolution up to the relaxation onset are monitored during the growth of oxygen ion conducting Ce0.85Sm0.15O2-δ thin films via optical wafer curvature measurements. Increasing tensile stress lowers the activation energy for charge transport and a thorough characterization of stress and morphology allows quantifying this effect using samples with the conductive properties of single crystals. The combined in situ application of optical deflectometry and electron diffraction provides an invaluable tool for strain engineering in Materials Science to fabricate novel devices with intriguing functionalities. PMID:26912416

  16. Design and fabrication of polymeric nanocomposites with conducting fillers as electronic nanomaterials

    NASA Astrophysics Data System (ADS)

    Mushibe, Eliud Kizito

    The growing demand for small, portable and high performance electronic devices has resulted in research activity for embedded electronic components. This offers prospects for the development of flexible electronic components that combines the use of organic and inorganic materials and can be produced on a roll-to-roll process. This dissertation presents advances in the fabrication and characterization of flexible polymeric nanocomposite thin films. Inorganic and synthetic metal nanostructures with high electrical and dielectric properties were employed as filler materials. The processability of these functional filler materials was achieved by dispersion in conventional polymer matrices such as polystyrene (PS), polymethylmethacrylate (PMMA) and poly(vinylidene fluoride) to afford electroactive polymeric composite materials. In the fabrication of inorganic nanostructures, a Tubes by Fiber Template technique was employed to afford submicron metal and metal oxide tubes. Silver and copper nanostructures were fabricated by electroless deposition on electrospun fiber templates. To obtain hollow, submicron tubes, the sacrificial polymer template materials were removed by a combination of solvent dissolution and thermal degradation under an inert atmosphere. Polyaniline thin film deposited on the fiber template was used as a binding interface to enhance uniform and continuous deposition of the metal. This was instrumental in fabricating tubes with varied wall thicknesses ranging from 50 to 300 nm obtained as a function of plating time. By doping electrically conducting polymers such as polyaniline, the conductivity can be modified. We describe the fabrication of highly conducting polyaniline nanostructures via template free synthesis. A novel approach that involves a combination of hydrochloric acid and camphorsulfonic acid dopant at low concentrations was adopted. This approach afforded nanofibers with diameters of 150 ± 50 nm and high electrical

  17. Printing holes by a dewetting solution enables formation of a transparent conductive film.

    PubMed

    Layani, Michael; Berman, Ruth; Magdassi, Shlomo

    2014-11-12

    We present hereby a general approach for rapid fabrication of large scale, patterned transparent conductive coatings composed of nanoparticles. The approach is based on direct formation of "2D holes" with controllable diameter onto a thin film composed of metal nanoparticles. The holes are formed by inkjet printing a dewetting aqueous liquid, which pushes away the metal nanoparticles, thus forming a transparent array of interconnected conductive rings. PMID:25331032

  18. Origins of conductivity improvement in fluoride-enhanced silicon doping of ZnO films.

    PubMed

    Rashidi, Nazanin; Vai, Alex T; Kuznetsov, Vladimir L; Dilworth, Jonathan R; Edwards, Peter P

    2015-06-01

    Fluoride in spray pyrolysis precursor solutions for silicon-doped zinc oxide (SiZO) transparent conductor thin films significantly improves their electrical conductivity by enhancing silicon doping efficiency and not, as previously assumed, by fluoride doping. Containing only earth-abundant elements, SiZO thus prepared rivals the best solution-processed indium-doped ZnO in performance. PMID:25879727

  19. Heat, Light, and Videotapes: Experiments in Heat Conduction Using Liquid Crystal Film.

    ERIC Educational Resources Information Center

    Bacon, Michael E.; And Others

    1995-01-01

    Presents a range of experiments in heat conduction suitable for upper-level undergraduate laboratories that make use of heat sensitive liquid crystal film to measure temperature contours. Includes experiments mathematically described by Laplace's equation, experiments theoretically described by Poisson's equation, and experiments that involve…

  20. Electrical conduction noise and its correlation with structural properties of Cu2ZnSnS4 thin films

    NASA Astrophysics Data System (ADS)

    Zubair Ansari, Mohd; Munjal, Sandeep; Kumar, Vikram; Khare, Neeraj

    2016-07-01

    Cu2ZnSnS4 (CZTS) thin films have been deposited by ultrasonic assisted chemical vapor deposition in a single step process at different substrate temperatures and structural, morphological, electrical and conduction noise characteristics of the CZTS thin films have been studied. Single phase CZTS thin films are formed at 275 °C and 325 °C deposition temperatures, whereas the CZTS thin film deposited at 375 °C showed secondary phase also. The crystallinity of the films improves and resistivity decreases with the increases of the deposition temperature. The temperature dependent electrical conductivity of the films reveals that in the temperature range 300–250 K, thermally activated conduction is observed. The conduction noise in the CZTS thin films, exhibits 1/f noise in the low frequency region and found to be strongly dependent on the film deposition temperatures. The film deposited at 275 °C and 375 °C shows larger conduction noise, whereas the film deposited at 325 °C shows smaller noise. For the low frequency 1/f noise, the value of α is also found to be the minimum for the film deposited at 325 °C. The higher value of conduction noise in the film deposited at 275 °C is related to poor crystallinity and less compact morphology. For the film deposited at 375 °C, crystallinity and compactness improves, but the presence of the secondary phases seems to be responsible for generating higher noise. The smallest conduction noise of the film deposited at 325 °C is due to single phase film with better crystallinity and smaller trap density ∼5.1 × 1015 cm‑2 eV‑1.