Science.gov

Sample records for polycrystalline silicon promise

  1. Thin film polycrystalline silicon: Promise and problems in displays and solar cells

    SciTech Connect

    Fonash, S.J.

    1995-08-01

    Thin film polycrystalline Si (poly-Si) with its carrier mobilities, potentially good stability, low intragrain defect density, compatibility with silicon processing, and ease of doping activation is an interesting material for {open_quotes}macroelectronics{close_quotes} applications such as TFTs for displays and solar cells. The poly-Si films needed for these applications can be ultra-thin-in the 500{Angstrom} to 1000{Angstrom} thickness range for flat panel display TFTs and in the 4{mu}m to 10{mu}m thickness range for solar cells. Because the films needed for these microelectronics applications can be so thin, an effective approach to producing the films is that of crystallizing a-Si precursor material. Unlike cast materials, poly-Si films made this way can be produced using low temperature processing. Unlike deposited poly-Si films, these crystallized poly-Si films can have grain widths that are much larger than the film thickness and almost atomically smooth surfaces. This thin film poly-Si crystallized from a-Si precursor films, and its promise and problems for TFTs and solar cells, is the focus of this discussion.

  2. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  3. Casting larger polycrystalline silicon ingots

    SciTech Connect

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  4. Losses in polycrystalline silicon waveguides

    NASA Astrophysics Data System (ADS)

    Foresi, J. S.; Black, M. R.; Agarwal, A. M.; Kimerling, L. C.

    1996-04-01

    The losses of polycrystalline silicon (polySi) waveguides clad by SiO2 are measured by the cutback technique. We report losses of 34 dB/cm at a wavelength of 1.55 μm in waveguides fabricated from chemical mechanical polished polySi deposited at 625 °C. These losses are two orders of magnitude lower than reported absorption measurements for polySi. Waveguides fabricated from unpolished polySi deposited at 625 °C exhibit losses of 77 dB/cm. We find good agreement between calculated and measured losses due to surface scattering.

  5. Polycrystalline Silicon: a Biocompatibility Assay

    SciTech Connect

    Pecheva, E.; Fingarova, D.; Pramatarova, L.; Hikov, T.; Laquerriere, P.; Bouthors, Sylvie; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-21

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  6. Polycrystalline silicon study: Low-cost silicon refining technology prospects and semiconductor-grade polycrystalline silicon availability through 1988

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Ferber, R.; Lutwack, R.; Lorenz, J. H.; Pellin, R.

    1984-01-01

    Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed.

  7. Hydrogen migration in polycrystalline silicon

    SciTech Connect

    Nickel, N.H.; Jackson, W.B.; Walker, J.

    1996-03-01

    Hydrogen migration in solid-state crystallized and low-pressure chemical-vapor-deposited (LPCVD) polycrystalline silicon (poly-Si) was investigated by deuterium diffusion experiments. The concentration profiles of deuterium, introduced into the poly-Si samples either from a remote D plasma or from a deuterated amorphous-silicon layer, were measured as a function of time and temperature. At high deuterium concentrations the diffusion was dispersive depending on exposure time. The dispersion is consistent with multiple trapping within a distribution of hopping barriers. The data can be explained by a two-level model used to explain diffusion in hydrogenated amorphous silicon. The energy difference between the transport level and the deuterium chemical potential was found to be about 1.2{endash}1.3 eV. The shallow levels for hydrogen trapping are about 0.5 eV below the transport level, while the deep levels are about 1.5{endash}1.7 eV below. The hydrogen chemical potential {mu}{sub H} decreases as the temperature increases. At lower concentrations, {mu}{sub H} was found to depend markedly on the method used to prepare the poly-Si, a result due in part to the dependence of crystallite size on the deposition process. Clear evidence for deuterium deep traps was found only in the solid-state crystallized material. The LPCVD-grown poly-Si, with columnar grains extending through the film thickness, displayed little evidence of deep trapping, and exhibited enhanced D diffusion. Many concentration profiles in the columnar LPCVD material indicated complex diffusion behavior, perhaps reflecting spatial variations of trap densities, complex formation, and/or multiple transport paths. Many aspects of the diffusion in poly-Si are consistent with diffusion data obtained in amorphous silicon. {copyright} {ital 1996 The American Physical Society.}

  8. Polycrystalline silicon ion sensitive field effect transistors

    NASA Astrophysics Data System (ADS)

    Yan, F.; Estrela, P.; Mo, Y.; Migliorato, P.; Maeda, H.; Inoue, S.; Shimoda, T.

    2005-01-01

    We report the operation of polycrystalline silicon ion sensitive field effect transistors. These devices can be fabricated on inexpensive disposable substrates such as glass or plastics and are, therefore, promising candidates for low cost single-use intelligent multisensors. In this work we have developed an extended gate structure with a Si3N4 sensing layer. Nearly ideal pH sensitivity (54mV /pH) and stable operation have been achieved. Temperature effects have been characterized. A penicillin sensor has been fabricated by functionalizing the sensing area with penicillinase. The sensitivity to penicillin G is about 10mV/mM, in solutions with concentration lower than the saturation value, which is about 7 mM.

  9. Process Research of Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1984-01-01

    A passivation process (hydrogenation) that will improve the power generation of solar cells fabricated from presently produced, large grain, cast polycrystalline silicon (Semix), a potentially low cost material are developed. The first objective is to verify the operation of a DC plasma hydrogenation system and to investigate the effect of hydrogen on the electrical performance of a variety of polycrystalline silicon solar cells. The second objective is to parameterize and optimize a hydrogenation process for cast polycrystalline silicon, and will include a process sensitivity analysis. The sample preparation for the first phase is outlined. The hydrogenation system is described, and some early results that were obtained using the hydrogenation system without a plasma are summarized. Light beam induced current (LBIC) measurements of minicell samples, and their correlation to dark current voltage characteristics, are discussed.

  10. Process for Polycrystalline film silicon growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2001-01-01

    A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.

  11. Process Research On Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J. H.; Culik, J. S.

    1982-01-01

    The mechanisms limiting performance in polycrystalline silicon was determined. The initial set of experiments in this task entails the fabrication of cells of various thicknesses for four different bulk resistivities between 0.1 and 10 omega-cm. The results for the first two lots are presented.

  12. Phosphorus diffusion in polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Losee, D. L.; Lavine, J. P.; Trabka, E. A.; Lee, S.-T.; Jarman, C. M.

    1984-02-01

    The diffusion of phosphorus in crystallized amorphous Si layers was studied with secondary-ion mass spectroscopy. A two-dimensional diffusion model is used to find effective grain (Dg) and grain-boundary (Dgb) diffusion coefficients. This simplified model leads to Dgb ≤ 10Dg, which is significantly lower than what has been deduced from conventional, larger grained polysilicon. Our result is consistent with specific-gravity measurements, which found a significantly lower ``mass defect'' for layers deposited amorphous and subsequently crystallized as compared to initially polycrystalline layers.

  13. Polycrystalline silicon on tungsten substrates

    NASA Technical Reports Server (NTRS)

    Bevolo, A. J.; Schmidt, F. A.; Shanks, H. R.; Campisi, G. J.

    1979-01-01

    Thin films of electron-beam-vaporized silicon were deposited on fine-grained tungsten substrates under a pressure of about 1 x 10 to the -10th torr. Mass spectra from a quadrupole residual-gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. During separate silicon depositions, the atomically clean substrates were maintained at various temperatures between 400 and 780 C, and deposition rates were between 20 and 630 A min. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition, and annealing. Auger depth profiling, X-ray analysis, and SEM in the topographic and channeling modes were utilized to characterize the samples with respect to silicon-metal interface, interdiffusion, silicide formation, and grain size of silicon. The onset of silicide formation was found to occur at approximately 625 C. Above this temperature tungsten silicides were formed at a rate faster than the silicon deposition. Fine-grain silicon films were obtained at lower temperatures.

  14. Hydrogen migration in phosphorous doped polycrystalline silicon

    SciTech Connect

    Nickel, N.H.; Kaiser, I.

    1998-12-31

    Hydrogen diffusion in phosphorous doped polycrystalline silicon was investigated by deuterium diffusion experiments. The presence of phosphorous enhances hydrogen diffusion. For high hydrogen concentrations the activation energy of the effective diffusion-coefficient amounts to 0.25--0.35 eV. At low hydrogen concentrations diffusion is governed by deep traps that are present in an appreciable concentration of 6 {times} 10{sup 18}--10{sup 19} cm{sup {minus}3}. The hydrogen chemical-potential, {mu}{sub H}, decreases with increasing temperature at a rate of {approx}0.002 eV/K. The data are discussed in terms of a two-level model used to describe hydrogen diffusion in amorphous and undoped polycrystalline silicon.

  15. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1984-01-01

    Results of hydrogen-passivated polycrystalline silicon solar cells are summarized. Very small grain or short minority-carrier diffusion length silicon was used. Hydrogenated solar cells fabricated from this material appear to have effective minority-carrier diffusion lengths that are still not very long, as shown by the open-circuit voltages of passivated cells that are still significantly less than those of single-crystal solar cells. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. However, the open-circuit voltage, which is sensitive to grain boundary recombination, is sometimes 20 to 40 mV less. The goal was to minimize variations in open-circuit voltage and fill-factor caused by defects by passivating these defects using a hydrogenation process. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystaline silicon solar cells.

  16. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1982-01-01

    The investigation of the performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was continued by fabricating a set of minicell wafers on a selection of 10 cm x 10 cm wafers. A minicell wafer consists of an array of small (approximately 0.2 sq cm in area) photodiodes which are isolated from one another by a mesa structure. The junction capacitance of each minicell was used to obtain the dopant concentration, and therefore the resistivity, as a function of position across each wafer. The results indicate that there is no significant variation in resistivity with position for any of the polycrystalline wafers, whether Semix or Wacker. However, the resistivity of Semix brick 71-01E did decrease slightly from bottom to top.

  17. Equilibrium shapes of polycrystalline silicon nanodots

    SciTech Connect

    Korzec, M. D. Wagner, B.; Roczen, M.; Schade, M.; Rech, B.

    2014-02-21

    This study is concerned with the topography of nanostructures consisting of arrays of polycrystalline nanodots. Guided by transmission electron microscopy (TEM) measurements of crystalline Si (c-Si) nanodots that evolved from a “dewetting” process of an amorphous Si (a-Si) layer from a SiO{sub 2} coated substrate, we investigate appropriate formulations for the surface energy density and transitions of energy density states at grain boundaries. We introduce a new numerical minimization formulation that allows to account for adhesion energy from an underlying substrate. We demonstrate our approach first for the free standing case, where the solutions can be compared to well-known Wulff constructions, before we treat the general case for interfacial energy settings that support “partial wetting” and grain boundaries for the polycrystalline case. We then use our method to predict the morphologies of silicon nanodots.

  18. Solution-processed polycrystalline silicon on paper

    SciTech Connect

    Trifunovic, M.; Ishihara, R.; Shimoda, T.

    2015-04-20

    Printing electronics has led to application areas which were formerly impossible with conventional electronic processes. Solutions are used as inks on top of large areas at room temperatures, allowing the production of fully flexible circuitry. Commonly, research in these inks have focused on organic and metal-oxide ink materials due to their printability, while these materials lack in the electronic performance when compared to silicon electronics. Silicon electronics, on the other hand, has only recently found their way in solution processes. Printing of cyclopentasilane as the silicon ink has been conducted and devices with far superior electric performance have been made when compared to other ink materials. A thermal annealing step of this material, however, was necessary, which prevented its usage on inexpensive substrates with a limited thermal budget. In this work, we introduce a method that allows polycrystalline silicon (poly-Si) production directly from the same liquid silicon ink using excimer laser irradiation. In this way, poly-Si could be formed directly on top of paper even with a single laser pulse. Using this method, poly-Si transistors were created at a maximum temperature of only 150 °C. This method allows silicon device formation on inexpensive, temperature sensitive substrates such as polyethylene terephthalate, polyethylene naphthalate or paper, which leads to applications that require low-cost but high-speed electronics.

  19. Polycrystalline silicon semiconducting material by nuclear transmutation doping

    DOEpatents

    Cleland, John W.; Westbrook, Russell D.; Wood, Richard F.; Young, Rosa T.

    1978-01-01

    A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.

  20. Amorphous silicon/polycrystalline thin film solar cells

    SciTech Connect

    Ullal, H.S.

    1991-03-13

    An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

  1. Tribological properties of sintered polycrystalline and single crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Srinivasan, M.

    1982-01-01

    Tribological studies and X-ray photoelectron spectroscopy analyses were conducted with sintered polycrystalline and single crystal silicon carbide surfaces in sliding contact with iron at various temperatures to 1500 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on both the friction properties and the surface chemistry of silicon carbide. The main contaminants on the as received sintered polycrystalline silicon carbide surfaces are adsorbed carbon, oxygen, graphite, and silicon dioxide. The surface revealed a low coefficient of friction. This is due to the presence of the graphite on the surface. At temperatures of 400 to 600 C graphite and copious amount of silicon dioxide were observed on the polycrystalline silicon carbide surface in addition to silicon carbide. At 800 C, the amount of the silicon dioxide decreased rapidly and the silicon carbide type silicon and carbon peaks were at a maximum intensity in the XPS spectra. The coefficients of friction were high in the temperature range 400 to 800 C. Small amounts of carbon and oxygen contaminants were observed on the as received single crystal silicon carbide surface below 250 C. Silicon carbide type silicon and carbon peaks were seen on the silicon carbide in addition to very small amount of graphite and silicon dioxide at temperatures of 450 to 800 C.

  2. Deposited silicon photonics: Optical interconnect devices in polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Preston, Kyle Jonathan

    Silicon photonics has tremendous potential to provide high-bandwidth and low-power data communication for applications such as computing and telecommunication, over length scales ranging from 100 kilometers over fiber to centimeter-length on-chip waveguides. Many silicon photonic building blocks have been demonstrated to date, but critical work remains to determine the best approaches for integrating together silicon photonics with microelectronics. In this thesis, I explore a novel method for integration of silicon photonics on the CMOS platform by using a deposited material: polycrystalline silicon. I will show the first demonstrations of electrically-active optical filters, modulators, and photodetectors in this material. In principle, this material platform would allow for the integration of silicon photonic devices and systems on top of any substrate, including complex CMOS and memory chips or even glass and plastic substrates. In Chapter 1, I introduce the state-of-the-art in silicon photonics, describe several integration schemes under development, and introduce the idea of using deposited materials. In Chapter 2, I demonstrate the use of polysilicon to make integrated microring resonators, and show the integration of different silicon materials together. Chapter 3 discusses the use of polysilicon as both an optical waveguiding layer and an electrode material in slot waveguides for the application of light emitters. Chapter 4 demonstrates the use of a pump-probe experiment to measure the free carrier lifetime in the material and demonstrate all-optical modulation. In Chapter 5, I demonstrate the first high-speed integrated electro-optic modulator in polysilicon, a necessary device for optical transmitters. In Chapter 6, I show how defects inside the same material enable integrated photodetectors at near-infrared telecommunication wavelengths. Chapter 7 shows initial results in adapting the material processing for lower temperatures, necessary for integration

  3. Effect of copper impurity on polycrystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Koliwad, K. M.

    1978-01-01

    The presence of copper impurity, up to 10 to the 15th atoms/cc, in single crystal silicon has been shown to have no deleterious effect on the p-n junction solar cell performance. However, in polycrystalline silicon, copper atoms tend to migrate to the defect sites because of the structural sensitive properties of copper. This study was undertaken to investigate the influence of this behavior of copper impurity on the performance of p-n junction solar cells fabricated from structurally imperfect silicon. Two sets of polycrystalline silicon substrates containing copper were examined. In one set of samples, copper was incorporated during growth, whereas in the other, copper was diffused. Solar cells were fabricated on both the sets of substrates by a standard process. Dark and light I-V and spectral response characteristics of the cells were measured and compared with copper-free polycrystalline silicon solar cells. The results and the model are discussed.

  4. Defect behavior of polycrystalline solar cell silicon

    SciTech Connect

    Schroder, D.K.; Park, S.H.; Hwang, I.G.; Mohr, J.B.; Hanly, M.P.

    1993-05-01

    The major objective of this study, conducted from October 1988 to September 1991, was to gain an understanding of the behavior of impurities in polycrystalline silicon and the influence of these impurities on solar cell efficiency. The authors studied edge-defined film-fed growth (EFG) and cast poly-Si materials and solar cells. With EFG Si they concentrated on chromium-doped materials and cells to determine the role of Cr on solar cell performance. Cast poly-Si samples were not deliberately contaminated. Samples were characterized by cell efficiency, current-voltage, deep-level transient spectroscopy (DLTS), surface photovoltage (SPV), open-circuit voltage decay, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy measurements. They find that Cr forms Cr-B pairs with boron at room temperature and these pairs dissociate into Cr{sub i}{sup +} and B{sup {minus}} during anneals at 210{degrees}C for 10 min. Following the anneal, Cr-B pairs reform at room temperature with a time constant of 230 h. Chromium forms CrSi{sub 2} precipitates in heavily contaminated regions and they find evidence of CrSi{sub 2} gettering, but a lack of chromium segregation or precipitation to grain boundaries and dislocations. Cr-B pairs have well defined DLTS peaks. However, DLTS spectra of other defects are not well defined, giving broad peaks indicative of defects with a range of energy levels in the band gap. In some high-stress, low-efficiency cast poly-Si they detect SiC precipitates, but not in low-stress, high-efficiency samples. SPV measurements result in nonlinear SPV curves in some materials that are likely due to varying optical absorption coefficients due to locally varying stress in the material.

  5. MIS and SIS solar cells on polycrystalline silicon

    SciTech Connect

    Cheek, G.; Mertens, R.

    1980-02-01

    MIS and SIS structured solar cells are receiving much attention in the photovoltaic community. Seemingly, these cells could be a viable alternative to thermally diffused p-n junctions for use on thin-film polycrystalline silicon substrates. This review describes MIS/SIS structured solar cells and the possible advantages of these structures for use with thin-film polycrystalline silicon. The results of efficiency calculations are presented. Also addressed are lifetime stability and fabrication techniques amenable to large scale production. Finally, the relative advantages and disadvantages of these cells and the results obtained are presented.

  6. Polycrystalline silicon material availability and market pricing outlook study for 1980 to 88: January 1983 update

    NASA Technical Reports Server (NTRS)

    Costogue, E.; Pellin, R.

    1983-01-01

    Photovoltaic solar cell arrays which convert solar energy into electrical energy can become a cost effective, alternative energy source provided that an adequate supply of low priced materials and automated fabrication techniques are available. Presently, silicon is the most promising cell material for achieving the near term cost goals of the Photovoltaics Program. Electronic grade silicon is produced primarily for the semiconductor industry with the photovoltaic industry using, in most cases, the production rejects of slightly lower grade material. Therefore, the future availability of adequate supplies of low cost silicon is one of the major concerns of the Photovoltaic Program. The supply outlook for silicon with emphasis on pricing is updated and is based primarily on an industry survey conducted by a JPL consultant. This survey included interviews with polycrystalline silicon manufacturers, a large cross section of silicon users and silicon solar cell manufacturers.

  7. Laser-induced amorphization of silicon during pulsed-laser irradiation of TiN/Ti/polycrystalline silicon/SiO2/silicon

    NASA Astrophysics Data System (ADS)

    Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.

    2002-11-01

    In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.

  8. A new directional solidification technique for polycrystalline solar grade silicon

    NASA Astrophysics Data System (ADS)

    Saito, T.; Shimura, A.; Ichikawa, S.

    A new directional solidification (casting) technique using powder mold releasing agent is described for producing polycrystalline solar grade silicon. Crack-free and stress-free growth of silicon was attainable with fused quartz crucibles coated with nitride powder, such as silicon nitride Si3 N4, on the inner crucible walls. The degree of nitrogen contamination was negligible because of the low nitrogen solubility in solid silicon. Other impurities contents were less than the ppm level. The average grain diameter was close to 0.1 cm. Diffused junction solar cells (n+/p structure) were fabricated by using this boron doped 1 ohm-cm material. An AM1 conversion efficiency of 12.4% on the cells of 20 cm sq area was obtained. The minority carrier diffusion length of this material was estimated to be greater than 80 microns.

  9. Thin-film polycrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Funghnan, B. W.; Blanc, J.; Phillips, W.; Redfield, D.

    1980-08-01

    Thirty-four new solar cells were fabricated on Wacker Sislo substrates and the AM-1 parameters were measured. A detailed comparison was made between the measurement of minority carrier diffusion length by the OE method and the penetrating light laser scan grain boundary photoresponse linewidth method. The laser scan method has more experimental uncertainty and agrees within 10 to 50% with the QE method. It allows determination of L over a large area. Atomic hydrogen passivation studies continued on Wacker material by three techniques. A method of determining surface recombination velocity, s, from laser scan data was developed. No change in s in completed solar cells after H-plasma treatment was observed within experimental error. H-passivation of bare silicon cars as measured by the new laser scan photoconductivity technique showed very large effects.

  10. Dependence of resistivity on the doping level of polycrystalline silicon

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.

    1975-01-01

    The electrical resistivity of polycrystalline silicon films has been studied as a function of doping concentration and heat treatment. The films were grown by the chemical vapor decomposition of silane on oxidized silicon wafers. The resistivity of the as-deposited films was widely scattered but independent of dopant atom concentration at the lightly doped levels and was strong function of dopant level in the more heavily doped regions. Postdeposition heat treatments in an oxidizing atmosphere remove scatter in the data. The resultant resistivity for dopant levels less than 10 to the 16th atoms/per cu cm was approximately equal to that of intrinsic silicon. In the next 2 orders of magnitude increase in dopant level, the resistivity dropped 6 orders of magnitude. A model, based on high dopant atom segregation in the grain boundaries, is proposed to explain the results.

  11. Reactive sticking coefficients for silane and disilane on polycrystalline silicon

    SciTech Connect

    Buss, R.J.; Ho, P.; Breiland, W.G.; Coltrin, M.E.

    1988-04-15

    Reactive sticking coefficients (RSCs) were measured for silane and disilane on polycrystalline silicon for a wide range of temperature and flux (pressure) conditions. The data were obtained from deposition-rate measurements using molecular beam scattering and a very low-pressure cold-wall reactor. The RSCs have nonlinear Arrhenius temperature dependencies and decrease with increasing flux at low (710 /sup 0/C) temperatures. Several simple models are proposed to explain these observations. The results are compared with previous studies of the SiH/sub 4//Si(s) reaction and low-pressure chemical vapor deposition-rate measurements.

  12. Spherical silicon photonic microcavities: From amorphous to polycrystalline

    NASA Astrophysics Data System (ADS)

    Fenollosa, R.; Garín, M.; Meseguer, F.

    2016-06-01

    Shaping silicon as a spherical object is not an obvious task, especially when the object size is in the micrometer range. This has the important consequence of transforming bare silicon material in a microcavity, so it is able to confine light efficiently. Here, we have explored the inside volume of such microcavities, both in their amorphous and in their polycrystalline versions. The synthesis method, which is based on chemical vapor deposition, causes amorphous microspheres to have a high content of hydrogen that produces an onionlike distributed porous core when the microspheres are crystallized by a fast annealing regime. This substantially influences the resonant modes. However, a slow crystallization regime does not yield pores, and produces higher-quality-factor resonances that could be fitted to the Mie theory. This allows the establishment of a procedure for obtaining size calibration standards with relative errors of the order of 0.1%.

  13. Limiting mechanisms in large-grain polycrystalline silicon Spatial homogeneity

    NASA Technical Reports Server (NTRS)

    Culik, J.; Grimes, K.

    1984-01-01

    An experiment to investigate the spatial homogeneity of large-grain polycrystalline silicon shows a number of performance-loss mechanisms. Arrays of up to 400 small (about 0.2 sq cm in area) photodiodes were fabricated on a selection of 10 cm x 10 cm polycrystalline silicon wafers. Measurements of the illuminated current-voltage (J-V) characteristics were used to generate maps of Voc, Jsc, and FF as a function of position; and dark J-V and LBIC analysis were used to determine the cause of low performance in areas with significantly degraded J-V characteristics. In addition to the presence of inclusions, which act as resistive shunts, the performance of many of the cells is limited by quasineutral recombination current, which may vary by up to an order of magnitude across a wafer. The increase is the result of either electrically-active grain boundaries or numerous subgrain boundaries within the grain bulk. In other isolated instances, the open-circuit voltage is reduced by excess space-charge recombination current that is not correlated with either grain or subgrain boundary activity.

  14. Photoluminescence of silicon after deposition of polycrystalline diamond films

    SciTech Connect

    Aminev, D. F.; Bagaev, V. S.; Galkina, T. I.; Klokov, A. Yu. Krivobok, V. S.; Ralchenko, V. G.; Savel'ev, A. V.

    2009-09-15

    Low-temperature (5K) photoluminescence of silicon substrates in the range 0.8-1.2 eV is studied before and after deposition of polycrystalline diamond films. The diamond films were deposited in the microwave plasma onto high-purity dislocation-free silicon (with the resitivity {rho} {approx} 3 k{Omega} cm) subjected to mechanical polishing or more delicate chemical and mechanical polishing. The deposition temperature was 750-850 deg. C. In the photoluminescence spectra of the samples with the substrates polished chemically and mechanically, two lines, D{sub 1} and D{sub 2}, corresponding to the dislocation-related emission are recorded. Generation of dislocations in the substrates is caused by efficient adhesion of the diamond film and, as a result, by internal stresses that relax with the formation of dislocations. The experimental spectra are practically identical to the photoluminescence spectra observed in silicon ({rho} {approx} 100 {Omega} cm) with the density of dislocations {approx}10{sup 4} cm{sup -2}.

  15. Fabricating micro-instruments in surface-micromachined polycrystalline silicon

    SciTech Connect

    Comtois, J.H.; Michalicek, M.A.; Barron, C.C.

    1997-04-01

    Smaller, lighter instruments can be fabricated as Micro-Electro-Mechanical Systems (MEMS), having micron scale moving parts packaged together with associated control and measurement electronics. Batch fabrication of these devices will make economical applications such as condition-based machine maintenance and remote sensing. The choice of instrumentation is limited only by the designer`s imagination. This paper presents one genre of MEMS fabrication, surface-micromachined polycrystalline silicon (polysilicon). Two currently available but slightly different polysilicon processes are presented. One is the ARPA-sponsored ``Multi-User MEMS ProcesS`` (MUMPS), available commercially through MCNC; the other is the Sandia National Laboratories ``Sandia Ultra-planar Multilevel MEMS Technology`` (SUMMiT). Example components created in both processes will be presented, with an emphasis on actuators, actuator force testing instruments, and incorporating actuators into larger instruments.

  16. Predicting fracture in micron-scale polycrystalline silicon MEMS structures.

    SciTech Connect

    Hazra, Siddharth S.; de Boer, Maarten Pieter; Boyce, Brad Lee; Ohlhausen, James Anthony; Foulk, James W., III; Reedy, Earl David, Jr.

    2010-09-01

    Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile strength distribution to predict the strength of a complex MEMS structure. To address such issues, two recently developed high throughput MEMS tensile test techniques have been used to measure strength distribution tails. The measured tensile strength distributions enable the definition of a threshold strength as well as an inferred maximum flaw size. The nature of strength-controlling flaws has been identified and sources of the observed variation in strength investigated. A double edge-notched specimen geometry was also tested to study the effect of a severe, micron-scale stress concentration on the measured strength distribution. Strength-based, Weibull-based, and fracture mechanics-based failure analyses were performed and compared with the experimental results.

  17. Fabrication of translucent boron nitride dispersed polycrystalline silicon nitride ceramics

    NASA Astrophysics Data System (ADS)

    Joshi, B.; Fu, Z.; Niihara, K.; Lee, S. W.

    2011-03-01

    Optical transparency was achieved at infrared region and overall translucent silicon nitride was fabricated using hot press sintering (HPS). The increase in h-BN content decreased the optical transparency. Microstructral observations shows that the optical, mechanical and tribological properties of BN dispersed polycrystalline Si3N4 ceramics were affected by the density, α:β-phase ratio and content of h-BN in sintered ceramics. The hot pressed samples were prepared from the mixture of α-Si3N4, AlN, MgO and h-BN at 1850°C. The composite contained from 0.25 to 2 mass % BN powder with sintering aids (9% AlN + 3% MgO). Maximum transmittance of 57% was achieved for 0.25 mass % BN doped Si3N4 ceramics. Fracture toughness was increased and wear volume and friction coefficient were decreased with increase in BN content.

  18. Electrical measurements on ion-implanted LPCVD polycrystalline silicon films

    NASA Astrophysics Data System (ADS)

    Huang, Ruey-Shing; Cheng, Chin-Hsiung; Liu, J. C.; Lee, M. K.; Chen, C. T.

    1983-07-01

    The electrical conduction properties of ion implanted polycrystalline silicon films have been studied. The polysilicon films were deposited by pyrolysis of silane at 647°C in LPCVD system onto oxide-coated silicon wafers to a thickness of 0.6 μm. Dopants were itroducd by implanting with boron or phosphorus ions, accelerated to 145 keV; doses ranged from 1 × 10 12 cm -2 to 1 × 10 15 cm -2. Film resistivities spanning 8 orders of magnitude were obtained using this doping range. Current-voltage characteristics of polysilicon resistors were measured at temperatures ranging from 24 to 140°C. The associated barrier heights and activation energies were derived. The grain-boundary trapping states density was estimated to be 5 × 10 12 cm -2. We found that both dopant atom segregation and carrier trapping at the grain boundaries play important roles in polysilicon electrical conduction properties. However, within the dose range studies, the dopant atom segragation is most detrimental to the film conductivity for doses < 1 × 10 13 cm -2; as the dose is increased, carrier trapping effects become more pronounced for doses up to 5 × 10 14 cm -2. For doses ⩾ 5 × 10 14 cm -2, conduction due to carriers tunneling through the potential barriers at grain boundaries has to be considered.

  19. Properties of boron-doped thin films of polycrystalline silicon

    SciTech Connect

    Merabet, Souad

    2013-12-16

    The properties of polycrystalline-silicon films deposited by low pressure chemical vapor deposition and doped heavily in situ boron-doped with concentration level of around 2×10{sup 20}cm{sup −3} has been studied. Their properties are analyzed using electrical and structural characterization means by four points probe resistivity measurements and X-ray diffraction spectra. The thermal-oxidation process are performed on sub-micron layers of 200nm/c-Si and 200nm/SiO{sub 2} deposited at temperatures T{sub d} ranged between 520°C and 605°C and thermally-oxidized in dry oxygen ambient at 945°C. Compared to the as-grown resistivity with silicon wafers is known to be in the following sequence <ρ{sub 200nm/c−Si}> < <ρ{sub 200nm/SiO2}> and <ρ{sub 520}> < <ρ{sub 605}>. The measure X-ray spectra is shown, that the Bragg peaks are marked according to the crystal orientation in the film deposited on bare substrates (poly/c-Si), for the second series of films deposited on bare oxidized substrates (poly/SiO{sub 2}) are clearly different.

  20. Improvements in cast polycrystalline silicon PV manufacturing technology

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, John H.

    1997-02-01

    The objectives of this NREL sponsored Photovoltaic Manufacturing Technology (PVMaT) Program are to advance Solarex's cast polycrystalline silicon manufacturing technology, reduce module production cost in half, increase module performance and expand Solarex's commercial production capacity by a factor of three. To meet these objectives Solarex has: 1) Modified the casting process and stations and is now casting larger ingots in production; 2) Developed wire saw technology to cut wafers with less kerf loss and has transferred this technology to production; 3) Developed a laboratory process to increase cell efficiencies using back surface fields, mechanical texturing and gettering; 4) Modified the casting, wires saw and cell processes in order to fabricate larger (15.2 cm by 15.2 cm) wafers and cells; 5) Improved the automated assembly of modules, reducing labor requirements and increasing throughput; and 6) Developed a frameless module with a lower cost backsheet and a simple, low cost electrical termination system. Solarex is now in the process of developing the equipment necessary for automated handling of thin 15.2 cm by 15.2 cm wafers and cells. This paper will discuss the efforts during the first two and a half years of the program.

  1. Highly Doped Polycrystalline Silicon Microelectrodes Reduce Noise in Neuronal Recordings In Vivo

    PubMed Central

    Saha, Rajarshi; Jackson, Nathan; Patel, Chetan; Muthuswamy, Jit

    2013-01-01

    The aims of this study are to 1) experimentally validate for the first time the nonlinear current-potential characteristics of bulk doped polycrystalline silicon in the small amplitude voltage regimes (0–200 μV) and 2) test if noise amplitudes (0–15 μV) from single neuronal electrical recordings get selectively attenuated in doped polycrystalline silicon microelectrodes due to the above property. In highly doped polycrystalline silicon, bulk resistances of several hundred kilo-ohms were experimentally measured for voltages typical of noise amplitudes and 9–10 kΩ for voltages typical of neural signal amplitudes (>150–200 μV). Acute multiunit measurements and noise measurements were made in n = 6 and n = 8 anesthetized adult rats, respectively, using polycrystalline silicon and tungsten microelectrodes. There was no significant difference in the peak-to-peak amplitudes of action potentials recorded from either microelectrode (p > 0.10). However, noise power in the recordings from tungsten microelectrodes (26.36 ± 10.13 pW) was significantly higher (p < 0.001) than the corresponding value in polycrystalline silicon microelectrodes (7.49 ± 2.66 pW). We conclude that polycrystalline silicon microelectrodes result in selective attenuation of noise power in electrical recordings compared to tungsten microelectrodes. This reduction in noise compared to tungsten microelectrodes is likely due to the exponentially higher bulk resistances offered by highly doped bulk polycrystalline silicon in the range of voltages corresponding to noise in multiunit measurements. PMID:20667815

  2. The effect of heat treatment on the resistivity of polycrystalline silicon films

    NASA Technical Reports Server (NTRS)

    Fripp, A. L., Jr.

    1975-01-01

    The resistivity of doped polycrystalline silicon films has been studied as a function of post deposition heat treatments in an oxidizing atmosphere. It was found that a short oxidation cycle may produce a resistivity increase as large as three orders of magnitude in the polycrystalline films. The extent of change was dependent on the initial resistivity and the films' doping level and was independent of the total oxidation time.

  3. The effects of intragrain defects on the local photoresponse of polycrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Wilmsen, C. W.; Jones, K. A.

    1981-02-01

    Intragrain defects in Wacker cast and Monsanto zone-refined polycrystalline silicon materials were investigated using the electron-beam-induced current (EBIC) technique. The EBIC response maps were compared with etch pit, local diffusion length and local photoresponse measurements. It was determined that the Wacker polycrystalline silicon has a much lower density of defects than does the Monsanto polycrystalline silicon and that most of the defects in the Wacker material are not active recombination sites. A correlation was found between the recombination site density, as determined by EBIC, and the local diffusion length. It is shown that a large density of intragrain recombination sites greatly reduces the minority carrier diffusion length and thus can significantly reduce the photoresponse of solar cells.

  4. Refractive index and extinction coefficient of doped polycrystalline silicon films in infrared spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Zhang, Dacheng

    2016-03-01

    The refractive index and extinction coefficient in infrared spectrum of the polycrystalline silicon films with different doped dosages, base on the inverse calculation, are obtained by means of utilizing the measured reflectance and transmittance of a layer of material and multilayer films, and the equations derived from photonics and electromagnetic theory. The calculation results demonstrate that the refractive index of the doped polycrystalline silicon films decreases with the doped dosages increasing and the extinction coefficient increases with the doped dosages increasing for a given wavelength. This method used for determining the refractive index and extinction coefficient of the polycrystalline silicon films is effective and has the advantage of that the measured samples are fabricated simply.

  5. Boron- and phosphorus-doped polycrystalline silicon thin films prepared by silver-induced layer exchange

    SciTech Connect

    Antesberger, T.; Wassner, T. A.; Jaeger, C.; Algasinger, M.; Kashani, M.; Scholz, M.; Matich, S.; Stutzmann, M.

    2013-05-27

    Intentional boron and phosphorus doping of polycrystalline silicon thin films on glass prepared by the silver-induced layer exchange is presented. A silver/(titanium) oxide/amorphous silicon stack is annealed at temperatures below the eutectic temperature of the Ag/Si system, leading to a complete layer exchange and simultaneous crystallization of the amorphous silicon. Intentional doping of the amorphous silicon prior to the exchange process results in boron- or phosphorus-doped polycrystalline silicon. Hall effect measurements show carrier concentrations between 2 Multiplication-Sign 10{sup 17} cm{sup -3} and 3 Multiplication-Sign 10{sup 20} cm{sup -3} for phosphorus and 4 Multiplication-Sign 10{sup 18} cm{sup -3} to 3 Multiplication-Sign 10{sup 19} cm{sup -3} for boron-doped layers, with carrier mobilities up to 90 cm{sup 2}/V s.

  6. Process Research On Polycrystalline Silicon Material (PROPSM). [flat plate solar array project

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance-limiting mechanisms in large-grain (greater than 1 to 2 mm in diameter) polycrystalline silicon solar cells were investigated by fabricating a matrix of 4 sq cm solar cells of various thickness from 10 cm x 10 cm polycrystalline silicon wafers of several bulk resistivities. Analysis of the illuminated I-V characteristics of these cells suggests that bulk recombination is the dominant factor limiting the short-circuit current. The average open-circuit voltage of the polycrystalline solar cells is 30 to 70 mV lower than that of co-processed single-crystal cells; the fill-factor is comparable. Both open-circuit voltage and fill-factor of the polycrystalline cells have substantial scatter that is not related to either thickness or resistivity. This implies that these characteristics are sensitive to an additional mechanism that is probably spatial in nature. A damage-gettering heat-treatment improved the minority-carrier diffusion length in low lifetime polycrystalline silicon, however, extended high temperature heat-treatment degraded the lifetime.

  7. The properties of polycrystalline silicon solar cells with controlled titanium additions

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Hopkins, R. H.; Davis, J. R., Jr.

    1981-01-01

    By coupling the results of electrical measurements, such as spectral response, lighted and dark I-V determinations, and deep-level-transient spectroscopy with optical and laser scan photomicroscopy, the effects of grain boundaries and impurities on silicon solar cells were evaluated. Titanium, which produces two deep levels in silicon, degrades cell performance by reducing bulk lifetime and thus cell short-circuit current. Electrically active grain boundaries induce carrier recombination in the bulk and depletion regions of the solar cell. Experimental data imply a small but measurable segregation of titanium into some grain boundaries of the polycrystalline silicon containing high Ti concentration. However, for the titanium-contaminated polycrystalline material used in this study, solar cell performance is dominated by the electrically active titanium concentration in the grains. Microstructural impacts on the devices are of secondary importance

  8. Investigation of lifetime limiting microdefects in polycrystalline silicon for photovoltaic applications

    SciTech Connect

    Werner, M.; Weber, E.R.; McHugo, S.; Bailey, J.

    1994-12-31

    Electron Microscopy techniques were applied to the study of intragranular microdefects in as-grown and intentionally Fe contaminated polycrystalline silicon solar cell material. Electron-Energy-Loss Spectroscopy (EELS) imaging revealed bright contrasts in metal diffused samples and with smaller concentration in as-grown material, probably due to metal precipitates. High-resolution and analytical electron microscopy identified Cu- and Fe-silicide particles in the contaminated specimen. These results demonstrate that intragranular microdefects exist in polycrystalline Si which act as nucleation sites for metal contaminants and lend support to the model that metal-decorated microdefects are decisive lifetime killers in as-grown material.

  9. Polycrystalline Silicon Sheets for Solar Cells by the Improved Spinning Method

    NASA Technical Reports Server (NTRS)

    Maeda, Y.; Yokoyama, T.; Hide, I.

    1984-01-01

    Cost reduction of silicon materials in the photovoltaic program of materials was examined. The current process of producing silicon sheets is based entirely on the conventional Czochralski ingot growth and wafering used in the semiconductor industry. The current technology cannot meet the cost reduction demands for producing low cost silicon sheets. Alternative sheet production processes such as unconventional crystallization are needed. The production of polycrystalline silicon sheets by unconventional ingot technology is the casting technique. Though large grain sheets were obtained by this technique, silicon ribbon growth overcomes deficiencies of the casting process by obtaining the sheet directly from the melt. The need to solve difficulties of growth stability and impurity effects are examined. The direct formation process of polycrystalline silicon sheets with large grain size, smooth surface, and sharp edges from the melt with a high growth rate which will yield low cost silicon sheets for solar cells and the photovoltaic characteristics associated with this type of sheet to include an EBIC study of the grain boundaries are described.

  10. Development of transparent polycrystalline beta-silicon carbide

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam S.; Villalobos, Guillermo R.; Hunt, Michael P.; Sanghera, Jasbinder S.; Sadowski, Bryan M.; Aggarwal, Ishwar D.; Cinibulk, Michael; Carney, Carmen; Keller, Kristin

    2013-09-01

    Transparent beta-SiC is of great interest because its high strength, low coefficient of thermal expansion, very high thermal conductivity, and cubic crystal structure give it a very high thermal shock resistance. A transparent, polycrystalline beta-SiC window will find applications in armor, hypersonic missiles, and thermal control for thin disc lasers. SiC is currently available as either small transparent vapor grown disks or larger opaque shapes. Neither of which are useful in window applications. We are developing sintering technology to enable transparent SiC ceramics. This involves developing procedures to make high purity powders and studying their densification behavior. We have been successful in demonstrating transparency in thin sections using Field Assisted Sintering Technology (FAST). This paper will discuss the reaction mechanisms in the formation of beta-SiC powder and its sintering behavior in producing transparent ceramics.

  11. Defect engineering by ultrasound treatment in polycrystalline silicon

    SciTech Connect

    Ostapenko, S.; Jastrzebski, L.

    1995-08-01

    By applying ultrasound treatment (UST) to bulk and thin film polycrystalline Si (poly-Si) we have found a dramatic improvement of recombination and transport properties. The increasing of minority carrier lifetime by as much as one order of magnitude was found in short diffusion length regions, while exhibiting a strong dispersion for entire solar-grade poly-Si wafer. Relevant mechanisms are attributed to ultrasound processing on crystallographic defects, as well as UST stimulated dissociation of Fe-B pairs followed by Fe{sub i} gettering. A spectacular improvement of hydrogenation efficiency in poly-Si thin-films on glass substrate is demonstrated by resistivity study and confirmed using spatially resolved photoluminescence and nanoscale contact potential difference mapping. By applying UST to commercial solar cells we found the increasing of cell efficiency at low light excitation.

  12. Hot-Wire Chemical Vapor Deposition Of Polycrystalline Silicon : From Gas Molecule To Solar Cell

    NASA Astrophysics Data System (ADS)

    van Veenendaal, P. A. T. T.

    2002-10-01

    Although the effort to investigate the use of renewable energy sources, such as wind and solar energy, has increased, their contribution to the total energy consumption remains insignificant. The conversion of solar energy into electricity through solar cells is one of the most promising techniques, but the use of these cells is limited by the high cost of electricity. The major contributions to these costs are the material and manufacturing costs. Over the past decades, the development of silicon based thin film solar cells has received much attention, because the fabrication costs are low. A promising material for use in thin film solar cells is polycrystalline silicon (poly-Si:H). A relatively new technique to deposit poly-Si:H is Hot-Wire Chemical Vapor Deposition (Hot-Wire CVD), in which the reactant gases are catalytically decomposed at the surface of a hot filament, mainly tungsten and tantalum. The main advantages of Hot-Wire CVD over PE-CVD are absence of ion bombardment, high deposition rate, low equipment cost and high gas utilization. This thesis deals with the full spectrum of deposition, characterization and application of poly-Si:H thin films, i.e. from gas molecule to solar cell. Studies on the decomposition of silane on the filament showed that the process is catalytic of nature and that silane is decomposed into Si and 4H. The dominant gas phase reaction is the reaction of Si and H with silane, resulting in SiH3, Si2H6, Si3H6 and H2SiSiH2. The film growth precursors are Si, SiH3 and Si2H4. Also, XPS results on used tantalum and tungsten filaments are discussed. The position dependent measurements show larger silicon contents at the ends of the tungsten filament, as compared to the middle, due to a lower filament temperature. This effect is insignificant for a tantalum filament. Deposition time dependent measurements show an increase in silicon content of the tungsten filament with time, while the silicon content on the tantalum filament saturates

  13. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    DOEpatents

    Kaschmitter, James L.; Sigmon, Thomas W.

    1995-01-01

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  14. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, January 1, 1995--December 31, 1995

    SciTech Connect

    Wohlgemuth, J

    1996-06-01

    The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three.

  15. Formation of polycrystalline-silicon films with hemispherical grains for capacitor structures with increased capacitance

    SciTech Connect

    Novak, A. V.

    2014-12-15

    The effect of formation conditions on the morphology of silicon films with hemispherical grains (HSG-Si) obtained by the method of low-pressure chemical vapor deposition (LPCVD) is investigated by atomic-force microscopy. The formation conditions for HSG-Si films with a large surface area are found. The obtained HSG-Si films make it possible to fabricate capacitor structures, the electric capacitance of which is twice as large in comparison to that of capacitors with “smooth” electrodes from polycrystalline silicon.

  16. Nano silver-catalyzed chemical etching of polycrystalline silicon wafer for solar cell application

    NASA Astrophysics Data System (ADS)

    Chen, S. R.; Liang, Z. C.; Wang, D. L.

    2016-03-01

    Silver nanoparticles were deposited on the surface of polycrystalline silicon wafer via vacuum thermal evaporation and metal-catalyzed chemical etching (MCCE) was conducted in a HF-H2O2 etching system. Treatment of the etched silicon wafer with HF transformed the textured structure on the surface from nanorods into nanocones. An etching time of 30 s and treatment with HF resulted in nanocones with uniform size distribution and a reflectivity as low as 1.98% across a spectral range from 300 to 1000 nm.

  17. Polycrystalline silicon thin-film solar cell prepared by the solid phase crystallization (SPC) method

    SciTech Connect

    Baba, T.; Matsuyama, T.; Sawada, T.; Takahama, T.; Wakisaka, K.; Tsuda, S.; Nakano, S.

    1994-12-31

    A solid phase crystallization (SPC) method was applied to the fabrication of thin-film polycrystalline silicon (poly-Si) for solar cells for the first time. Among crystalline silicon solar cells crystallized at a low temperature of less than 600 C, the world`s highest conversion efficiency of 8.5% was achieved in a solar cell using thin-film poly-Si with only 10 {micro}m thickness prepared by the SPC method. This solar cell showed high photosensitivity in the long-wavelength region of more than 800 nm and also exhibited no light-induced degradation after light exposure.

  18. New biomaterial as a promising alternative to silicone breast implants.

    PubMed

    Teck Lim, Goy; Valente, Stephanie A; Hart-Spicer, Cherie R; Evancho-Chapman, Mary M; Puskas, Judit E; Horne, Walter I; Schmidt, Steven P

    2013-05-01

    One in eight American women develops breast cancer. Of the many patients requiring mastectomy yearly as a consequence, most elect some form of breast reconstruction. Since 2006, only silicone breast implants have been approved by the FDA for the public use. Unfortunately, over one-third of women with these implants experience complications as a result of tissue-material biocompatibility issues, which may include capsular contracture, calcification, hematoma, necrosis and implant rupture. Our group has been working on developing alternatives to silicone. Linear triblock poly(styrene-b-isobutylene-b-styrene) (SIBS) polymers are self-assembling nanostructured thermoplastic rubbers, already in clinical practice as drug eluting stent coatings. New generations with a branched (arborescent or dendritic) polyisobutylene core show promising potential as a biomaterial alternative to silicone rubber. The purpose of this pre-clinical research was to evaluate the material-tissue interactions of a new arborescent block copolymer (TPE1) in a rabbit implantation model compared to a linear SIBS (SIBSTAR 103T) and silicone rubber. This study is the first to compare the molecular weight and molecular weight distribution, tensile properties and histological evaluation of arborescent SIBS-type materials with silicone rubber before implantation and after explantation. PMID:23466517

  19. The determination of minority carrier lifetime in polycrystalline silicon by the photoconductivity decay method

    NASA Astrophysics Data System (ADS)

    Singh, S. N.; Kishore, R.; Arora, N. K.

    1985-04-01

    Experiments were carried out to investigate the possible sources of error in estimates of the time constant of apparent minority carrier lifetime (tau-asterisk) in polycrystalline silicon. Tau-asterisk was measured in both single-crystal and polycrystalline silicon rods as a function of: (1) the intensity of background illumination; and (2) the temperature of the specimens. The background illumination source for the experiments was a tungsten-halogen lamp which operated in the intensity range 0-85 mW per sq cm. The temperatures of the specimens under illumination were in the range 25-140 C. The experimental results were explained on the basis of a theoretical analysis. It is shown that the photoconductivity of the specimens was generally dependent on the minority carrier mobility lifetime, as long as potential barriers were present at the grain boundaries of the specimens. On the basis of the theoretical analysis, it is concluded that the absence of potential barriers at the grain boundaries in polycrystalline silicon is a major source of error in estimates of minority carrier mobility lifetime. The apparent minority carrier mobility decay curves are reproduced in graphic form.

  20. Chemical mechanical polishing of boron-doped polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Pirayesh, Hamidreza; Cadien, Kenneth

    2014-03-01

    Chemical mechanical polishing (CMP) is a technique which helps to print a smaller depth of focus and smoother surface in micro fabrication industry. In this project, boron doped polysilicon is used as a fill material for Through Silicon Vias (TSV) creating a 3D package. It is shown that the presence of boron as dopant suppresses the polysilicon polish rate. To increase the polish rate, understanding the mechanism of polish rate retardation is essential. We believe that the electrical effects play the major role in this phenomenon and by reducing this effect we are able to increase the polish rate.

  1. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Metaferia, Wondwosen; Sun, Yan-Ting; Pietralunga, Silvia M.; Zani, Maurizio; Tagliaferri, Alberto; Lourdudoss, Sebastian

    2014-07-01

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III-V semiconductor layers on low cost and flexible substrates for solar cell applications.

  2. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    SciTech Connect

    Metaferia, Wondwosen; Sun, Yan-Ting Lourdudoss, Sebastian; Pietralunga, Silvia M.; Zani, Maurizio; Tagliaferri, Alberto

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  3. Electrodeposition of polycrystalline and amorphous silicon for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Rauh, R. D.

    1980-07-01

    Plating experiments with SiHCl3 solutions in propylene carbonate with 0.1 M tetrabutylammonium tetrafluoroborate are described. Silicon was deposited on ITO glass (Nesatron) as well as Mo substrates at temperatures from 25-80 C. Both potentiostatic and galvanostatic conditions were used. The high resistance of the films limited the thickness which could be deposited by either method to less than 5 micrometers. Deposition beyond this limit resulted in a deterioration of the film quality. X-ray analysis of the films confirmed that they were amorphous. SEM analysis of the films revealed a very porous structure with nodules about 1 micrometer in diameter. Annealing the deposit at 400 C in an Ar:H2 atmosphere resulted in a slightly smoother surface but the nodules remained. The films deposited on ITO glass had a band gap of about 1.0 eV and an EO4 value of 1.5-2.0 eV. The Auger analysis of the films showed the presence of large amounts of oxygen in the samples that had been exposed to air.

  4. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates.

    PubMed

    Chen, Jianyi; Wen, Yugeng; Guo, Yunlong; Wu, Bin; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Wang, Dong; Yu, Gui; Liu, Yunqi

    2011-11-01

    We report the metal-catalyst-free synthesis of high-quality polycrystalline graphene on dielectric substrates [silicon dioxide (SiO(2)) or quartz] using an oxygen-aided chemical vapor deposition (CVD) process. The growth was carried out using a CVD system at atmospheric pressure. After high-temperature activation of the growth substrates in air, high-quality polycrystalline graphene is subsequently grown on SiO(2) by utilizing the oxygen-based nucleation sites. The growth mechanism is analogous to that of growth for single-walled carbon nanotubes. Graphene-modified SiO(2) substrates can be directly used in transparent conducting films and field-effect devices. The carrier mobilities are about 531 cm(2) V(-1) s(-1) in air and 472 cm(2) V(-1) s(-1) in N(2), which are close to that of metal-catalyzed polycrystalline graphene. The method avoids the need for either a metal catalyst or a complicated and skilled postgrowth transfer process and is compatible with current silicon processing techniques. PMID:21988639

  5. MIS and PN junction solar cells on thin-film polycrystalline silicon

    SciTech Connect

    Ariotedjo, A.; Emery, K.; Cheek, G.; Pierce, P.; Surek, T.

    1981-05-01

    The Photovoltaic Advanced Silicon (PVAS) Branch at the Solar Energy Research Institute (SERI) has initiated a comparative study to assess the potential of MIS-type solar cells for low-cost terrestrial photovoltaic systems in terms of performance, stability, and cost-effectiveness. Several types of MIS and SIS solar cells are included in the matrix study currently underway. This approach compares the results of MIS and p/n junction solar cells on essentially identical thin-film polycrystalline silicon materials. All cell measurements and characterizations are performed using uniform testing procedures developed in the Photovoltaic Measurements and Evaluation (PV M and E) Laboratory at SERI. Some preliminary data on the different cell structures on thin-film epitaxial silicon on metallurgical-grade substrates are presented here.

  6. CW Laser Annealing of Polycrystalline Silicon on SiO2 and Effects of Successive Furnace Annealing

    NASA Astrophysics Data System (ADS)

    Kugimiya, Koichi; Fuse, Genshu; Inoue, Kaoru

    1982-01-01

    CW Ar laser annealing was carried out to reduce the resistivity of polycrystalline silicon implanted with light doses of 1× 1012-5× 1014B+/cm2. Laser annealing, actually laser melting, and successive furnace annealing effectively reduced the resistivity to almost that of single crystal silicon. TEM, OM and stress observations revealed that the reduction was due primarily to the grain growth of polycrystalline silicon and secondarily to stress relief, from 9× 109 dyne/cm2 to 5× 109 dyne/cm2, caused by annealing. Grain growth of up to about 3× 100 μm and bamboo-joint-like growth were observed.

  7. Production of polycrystalline silicon from monosilane in the electron-beam plasma

    SciTech Connect

    Konstantinov, V. O.; Shchukin, V. G.; Sharafutdinov, R. G.; Karsten, V. M.; Gartvich, G. G.; Semenova, O. I.

    2010-12-15

    The results of experimental studies concerned with deposition of solar-grade silicon from monosilane in the electron-beam plasma are reported. With the laboratory equipment, the silicon deposition rate attains up to 40 g h{sup -1} at the expenditure of energy for the process 78 kW h kg{sup -1} and the efficiency of conversion of monosilane into silicon at about 50%. Analysis of the chemical composition of the resulting material shows that the material fits the requirements imposed on solar-grade silicon. The method suggested in the study holds promise in industrial-scale applications.

  8. Imaging of a Polycrystalline Silicon Solar Cell Using a Laser Terahertz Emission Microscope

    NASA Astrophysics Data System (ADS)

    Nakanishi, Hidetoshi; Fujiwara, Shogo; Takayama, Kazuhisa; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi

    2012-11-01

    We employed a laser terahertz (THz) emission microscope (LTEM) as a novel tool for evaluating solar cells. LTEM images are obtained by exciting a polycrystalline silicon solar cell with femtosecond laser illumination and visualizing the local distribution of the optical response. THz emission signals also provide various types of information, such as the screening effect of the built-in electrical field near pn junctions. These results indicate that this technique can be used to evaluate the local photoelectric conversion efficiency distribution and dynamic behavior of optically excited carriers in solar cells.

  9. Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode

    NASA Astrophysics Data System (ADS)

    Zhu, X. L.; Sun, J. X.; Peng, H. J.; Meng, Z. G.; Wong, M.; Kwok, H. S.

    2005-08-01

    Polycrystalline silicon (p-Si) is a good material for the construction of thin-film transistors (TFT). It is used for fabricating active-matrix organic light-emitting diode (AMOLED) displays. In this letter, we propose and demonstrate the application of boron-doped p-Si as a semi-transparent anode in making different color OLEDs. Without removing the ultrathin native oxide on the p-Si surface and employing p-doped hole transport layer to enhance holes injection, these OLEDs show comparable or even better performance to conventional OLEDs which use ITO as anodes. The present technique has the advantage of less masking steps in making AMOLED.

  10. Investigation of diffusion length distribution on polycrystalline silicon wafers via photoluminescence methods.

    PubMed

    Lou, Shishu; Zhu, Huishi; Hu, Shaoxu; Zhao, Chunhua; Han, Peide

    2015-01-01

    Characterization of the diffusion length of solar cells in space has been widely studied using various methods, but few studies have focused on a fast, simple way to obtain the quantified diffusion length distribution on a silicon wafer. In this work, we present two different facile methods of doing this by fitting photoluminescence images taken in two different wavelength ranges or from different sides. These methods, which are based on measuring the ratio of two photoluminescence images, yield absolute values of the diffusion length and are less sensitive to the inhomogeneity of the incident laser beam. A theoretical simulation and experimental demonstration of this method are presented. The diffusion length distributions on a polycrystalline silicon wafer obtained by the two methods show good agreement. PMID:26364565

  11. Investigation of diffusion length distribution on polycrystalline silicon wafers via photoluminescence methods

    PubMed Central

    Lou, Shishu; Zhu, Huishi; Hu, Shaoxu; Zhao, Chunhua; Han, Peide

    2015-01-01

    Characterization of the diffusion length of solar cells in space has been widely studied using various methods, but few studies have focused on a fast, simple way to obtain the quantified diffusion length distribution on a silicon wafer. In this work, we present two different facile methods of doing this by fitting photoluminescence images taken in two different wavelength ranges or from different sides. These methods, which are based on measuring the ratio of two photoluminescence images, yield absolute values of the diffusion length and are less sensitive to the inhomogeneity of the incident laser beam. A theoretical simulation and experimental demonstration of this method are presented. The diffusion length distributions on a polycrystalline silicon wafer obtained by the two methods show good agreement. PMID:26364565

  12. Field-induced transition in the conductivity mechanism of polycrystalline silicon films

    NASA Astrophysics Data System (ADS)

    Ada-Hanifi, M.; Sicart, J.; Dusseau, J. M.; Robert, J. L.

    1988-04-01

    Current-voltage characteristics of polycrystalline silicon films highly doped with phosphorus and boron were studied over a wide range of temperatures (40-300 K) and applied electric fields (up to 5 kV cm-1). After the usual ohmic regime, we observed a large increase in dc current versus applied voltage. Moreover, at higher electric fields, a new ohmic conduction regime appeared which has not yet been reported in polycrystalline silicon. Thermoemission-based models cannot fully interpret our results. We present a new interpretation of current-voltage characteristics based on a model previously used to interpret the electrical properties of these films at low electric fields. This model takes into account the existence of fluctuations both in intergranular potential and in the grain boundary barrier heights. They result from all of the macroscopic inhomogeneities due to the growth conditions of the material. The high electric field detraps carriers from grain boundaries and extracts the carriers located in the valleys of potential created by the fluctuations, thus inducing transition in conductivity.

  13. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual subcontract report, January 1--June 30, 1995

    SciTech Connect

    Wohlgemuth, J.

    1996-02-01

    The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. To achieve these objectives, Solarex is working in the following technical areas: casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling. Accomplishments reported include: Cast first successful larger ingot producing 73% larger volume of usable Si; Increased the size of the ingot even further and cast an ingot yielding nine 11.4 {times} 11.4 cm bricks, representing a 125% increase in usable Si from a single casting; Operated the wire-saw in a semi-operational mode, producing 459,000 wafers at 94.1% overall yield; Reduced the cost of wire-saw consumables, spare parts, and waste disposal; Developed a cost-effective back surface field process that increases cell efficiency by 5% and began production trials; Developed a plan for increasing the capacity in the module assembly area; Completed qualification testing of modules built using Spire`s automated tabbing and stringing machine; Selected, tested, and qualified a low-cost electrical termination system; Completed long-term UV testing of experimental back sheets; Qualified the structure and adhesive-tape system for mounting frameless modules; and ARRI completed a study of the fracture properties of cast polycrystalline Si wafers and provided the information necessary to calculate the maximum stresses allowable during wafer handling.

  14. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.

    PubMed

    Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas

    2012-01-01

    One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach. The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles. To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm(2), which can be increased up to 17-18 mA/cm(2) (~25% higher) after application of a simple diffuse back reflector made of a white paint. To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing

  15. Cast polycrystalline silicon photovoltaic cell and module manufacturing technology improvements. Annual subcontract report, 1 December 1993--30 November 1994

    SciTech Connect

    Wohlgemuth, J.

    1995-09-01

    This report describes work performed under a 3-y contract to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance, and expand Solarex`s commercial production capacities. Specific objectives are to reduce manufacturing cost for polycrstalline silicon PV modules to less than $1.20/W and to increase manufacturing capacity by a factor of 3. Solarex is working on casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling.

  16. The effect of grain boundaries on the resistivity of polycrystalline silicon. Ph.D. Thesis - Va. Univ.

    NASA Technical Reports Server (NTRS)

    Fripp, A. L., Jr.

    1974-01-01

    The electrical resistivity of polycrystalline silicon films was investigated. The films were grown by the chemical vapor decomposition of silane on oxidized silicon wafers. The resistivity was found to be independent of dopant atom concentration in the lightly doped regions but was a strong function of dopant levels in the more heavily doped regions. A model, based on high dopant atom segregation in the grain boundaries, is proposed to explain the results.

  17. Impurities analysis of polycrystalline silicon substrates: Neutronic Activation Analysis (NAA) and Secondary Ion Mass Spectrometry (SIMS)

    NASA Astrophysics Data System (ADS)

    Lounis, A.; Lenouar, K.; Gritly, Y.; Abbad, B.; Azzaz, M.; Taïbi, K.

    2010-01-01

    In this study we have determined the concentration of some impurities such as carbon, iron, copper, titanium, nickel of the flat product (polycrystalline silicon). These impurities generate a yield decrease in the photovoltaic components. The material (polycrystalline silicon) used in this work is manufactured by the Unit of Silicon Technology Development (UDTS Algiers, Algeria). The 80 kg ingot has been cutted into 16 briquettes in order to have plates (flat product) of 100 mm×100 mm dimensions. Each briquette is divided into three parts top (T), middle (M) and bottom (B). For this purpose, the following instrumental analysis techniques have been employed: neutronic analysis (neutronic activation analysis) and secondary ion mass spectrometry (SIMS). Masses of 80 mg are sampled and form of discs 18 mm in diameter, then exposed to a flux of neutron of 2.1012neutron cm-2 s-1 during 15 min. The energetic profile of incidental flux is constituted of fast neutrons (ΦR = 3.1012n.cm-2 s-1; E = 2 Mev), thermal neutrons (ΦTH = 1013n.cm-2 s-1; E = 0.025 ev) and epithermal neutrons (Φepi = 7.1011 n cm-2 s-1; E>4.9 ev), irradiation time 15 mn, after 20 mn of decrement, acquisitions of 300 s are carried out. The results are expressed by disintegration per second which does not exceed the 9000 Bq, 500 Bq and 2600 Bq, respectively for copper, titanium and nickel. It is observed that the impurities concentrations in the medium are higher. The impurities in the bottom of the ingots originate from the crucible. The impurities in the top originate from impurities dissolved in the liquid silicon, which have segregated to the top layer of the ingot and after solidification diffuse. Silicon corresponds to a mixture of three isotopes 28Si, 29Si and 30Si. These elements clearly appear on the mass spectrum (SIMS). The presence of iron and the one of nickel has been noticed.

  18. Vacuum deposited polycrystalline silicon films for solar cell applications. Quarterly report, September 15-December 31, 1979

    SciTech Connect

    Feldman, C.; Arrington, C. H.; Blum, N. A.; Satkiewicz, F. G.

    1980-03-01

    Polycrystalline silicon films 14-22 ..mu..m thick and with average grain diameters of 20-40 ..mu..m were deposited by vacuum deposition onto both ceramic and sapphire substrates which were previously coated with a thin (1-2 ..mu..m) TiB/sub 2/ conducting layer. The large grains are the result of an interaction in the initial growth stages between silicon and TiB/sub 2/. SIMS studies of B/Ti/Al/sub 2/O/sub 3/, B/Al/sub 2/O/sub 3/, and Ti/Al/sub 2/O/sub 3/, interactions are reported as part of a continuing investigation of TiB/sub 2/ formation and silicon interactions on the TiB/sub 2/ surface. The increase in grain size has led to an improvement in the open-circuit voltage V/sub oc/, but not to an increase in the short-circuit current J/sub sc/. Capacitance-voltage measurements give results characteristic of an abrupt junction and a build-in voltage V/sub D/ consistent with the measured doping levels. A simple method for measuring the minority carrier diffusion length in the base region L/sub n/ is described. The measurements indicate that there is little change in L/sub n/ between large (20-40 ..mu..m) and small (approx. 5 ..mu..m) grained samples.

  19. Vacuum deposited polycrystalline silicon films for solar cell applications. Quarterly report, 1 April-30 June 1980

    SciTech Connect

    Feldman, C.; Arrington, III, C. H.; Blum, N. A.; Satkiewicz, F. G.

    1980-08-01

    Polycrystalline p-type films were vacuum deposited onto TiB/sub 2/ coated alumina and sapphire substrates. Epitaxial layers were also formed on single crystal silicon substrates. Junctions in the layers were created by both gaseous diffusion in a tube furnace and by vacuum deposition. The TiB/sub 2/ vacuum deposited bottom electrodes have resistivities between 30 and 40 ..mu.. ..cap omega..-cm. All-vacuum-deposited solar cells were fabricated for the first time. Efficiencies approaching those in the diffused junction devices were achieved. The n-layers were deposited on the previously deposited p-layer/TiB/sub 2//ceramic sandwiches by vacuum deposition of silicon in a phosphine (PH/sub 3/) atmosphere. Photovoltaic data in diffused junction samples, including efficiency and spectral response measurements, indicate that crystallite size may no longer be the limiting factor in achieving high efficiency; rather, performance is now being limited by the presence of impurities in the vacuum deposition silicon base region.

  20. On properties of boundaries and electron conductivity in mesoscopic polycrystalline silicon films for memory devices

    SciTech Connect

    Berman, G.P.; Doolen, G.D.; Mainieri, R.; Rehacek, J.; Campbell, D.K.; Luchnikov, V.A.; Nagaev, K.E.

    1998-02-01

    The authors present the results of MD modeling on the structural properties of grain boundaries (GB) in thin polycrystalline films. The transition from crystalline boundaries with low mismatch angle to amorphous boundaries is investigated. It is shown that the structures of the GBs satisfy a thermodynamical criterion suggested in a cited reference. The potential energy of silicon atoms is closely related with a geometrical quantity -- tetragonality of their coordination with their nearest neighbors. A crossover of the length of localization is observed to analyze the crossover of the length of localization of the single electron states and properties of conductance of the thin polycrystalline film at low temperature. They use a two-dimensional Anderson localization model, with the random one site electron charging energy for a single grain (dot), random non-diagonal matrix elements, and random number of connections between the neighboring grains. The results on the crossover behavior of localization length of the single electron states and characteristic properties of conductance are presented in the region of parameters where the transition from an insulator to a conductor regimes takes place.

  1. Suppressing light reflection from polycrystalline silicon thin films through surface texturing and silver nanostructures

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Kadakia, Nirag; Spratt, William; Malladi, Girish; Bakhru, Hassarum

    2014-09-21

    This work demonstrates a novel method combining ion implantation and silver nanostructures for suppressing light reflection from polycrystalline silicon thin films. Samples were implanted with 20-keV hydrogen ions to a dose of 10¹⁷/cm², and some of them received an additional argon ion implant to a dose of 5×10¹⁵ /cm² at an energy between 30 and 300 keV. Compared to the case with a single H implant, the processing involved both H and Ar implants and post-implantation annealing has created a much higher degree of surface texturing, leading to a more dramatic reduction of light reflection from polycrystalline Si films over a broadband range between 300 and 1200 nm, e.g., optical reflection from the air/Si interface in the AM1.5 sunlight condition decreasing from ~30% with an untextured surface to below 5% for a highly textured surface after post-implantation annealing at 1000°C. Formation of Ag nanostructures on these ion beam processed surfaces further reduces light reflection, and surface texturing is expected to have the benefit of diminishing light absorption losses within large-size (>100 nm) Ag nanoparticles, yielding an increased light trapping efficiency within Si as opposed to the case with Ag nanostructures on a smooth surface. A discussion of the effects of surface textures and Ag nanoparticles on light trapping within Si thin films is also presented with the aid of computer simulations.

  2. Comparison of boron precipitation in p-type bulk nanostructured and polycrystalline silicon germanium alloy

    NASA Astrophysics Data System (ADS)

    Zamanipour, Zahra; Krasinski, Jerzy S.; Vashaee, Daryoosh

    2013-04-01

    Boron precipitation process and its effect on electronic properties of p-type bulk nanostructured silicon germanium (Si0.8Ge0.2) compared with large grain polycrystalline Si0.8Ge0.2 have been studied. The structures were synthesized and their thermoelectric properties were measured versus temperature during heating and cooling cycles. The experimental data showed stronger temperature variation of Seebeck coefficient, carrier concentration, and conductivity in the nanostructured Si0.8Ge0.2 compared with the polycrystalline form indicating stronger boron precipitation in this structure. The electrical properties of both samples were calculated using a multi-band semi-classical model. The theoretical calculations confirm that the increase of boron precipitation in the nanostructured Si0.8Ge0.2 is responsible for its higher thermal instability. Since the thermoelectric properties of the nanostructured sample degrade as a result of thermal cycling, the material is appropriate only for continuous operation at high temperature without cooling.

  3. Design and test of reliable high strength ingressive polycrystalline silicon microgripper arrays

    NASA Astrophysics Data System (ADS)

    Hazra, S. S.; Beuth, J. L.; Myers, G. A.; DelRio, F. W.; de Boer, M. P.

    2015-01-01

    We present the design and validation of a micromachined gripper array that enables reliable transmission of forces of at least 14 mN. The gripper is constructed with polycrystalline silicon (polysilicon), a brittle material, and is compatible with polysilicon surface micromachining. Two ingressive snap-and-lock array designs are presented. After developing design guidelines, it is shown that the first gripper array is functional. However, a risk remains that the gripper array rather than the tensile bar that it grips in its intended application fails. Therefore, an improved geometry is designed and it is shown that it is robust with respect to failure. Scanning confocal Raman imaging directly confirms that the local peak tensile stresses in the robust gripper array are approximately 50% of the lower bound material strength, and also resolves a 25% stress variation across the array.

  4. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    SciTech Connect

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  5. Modeling and simulation of temperature effect in polycrystalline silicon PV cells

    NASA Astrophysics Data System (ADS)

    Marcu, M.; Niculescu, T.; Slusariuc, R. I.; Popescu, F. G.

    2016-06-01

    Due to the human needs of energy, there is a need to apply new technologies in energy conversion to supply the demand of clean and cheap energy in the context of environmental issues. Renewable energy sources like solar energy has one of the highest potentials. In this paper, solar panel is the key part of a photovoltaic system which converts solar energy to electrical energy. The purpose of this paper is to give a MATLAB/ Simulink simulation for photovoltaic module based on the one-diode model of a photovoltaic cell made of polycrystalline silicon. This model reveals the effect of the ambient temperature and the heating of the panel due to the solar infrared radiation. Also the measurements on the solar cell exposed to solar radiation can confirm the simulation.

  6. Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yu-Sheng; Liu, Yan-Wei

    A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth =± 0.33V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO =+0.33V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.

  7. Graphitization of n-type polycrystalline silicon carbide for on-chip supercapacitor application

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Gutes, Albert; Laboriante, Ian; Carraro, Carlo; Maboudian, Roya

    2011-09-01

    Synthesis of silicon carbide-derived carbon films with excellent supercapacitor characteristics is demonstrated by a process that is fully compatible with standard microfabrication technology. NiTi alloy deposited on nitrogen-doped polycrystalline SiC films is shown to result in the growth of a rough, porous, high conductivity, nanocrystalline graphitic carbon film upon rapid thermal annealing to 1050 °C. Electrodes fabricated in this manner exhibit high charge/discharge rates with a time constant of about 0.062 s. Analysis shows that the incorporated nitrogen in the carbon electrode may induce pseudo-capacitance, and the electrodes exhibit the capacitance/area values comparable to those reported on carbon nanotube-based supercapacitors.

  8. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration.

    PubMed

    Park, Jun-Young; Moon, Dong-Il; Seol, Myeong-Lok; Jeon, Chang-Hoon; Jeon, Gwang-Jae; Han, Jin-Woo; Kim, Choong-Ki; Park, Sang-Jae; Lee, Hee Chul; Choi, Yang-Kyu

    2016-01-01

    The importance of poly-crystalline silicon (poly-Si) in semiconductor manufacturing is rapidly increasing due to its highly controllable conductivity and excellent, uniform deposition quality. With the continuing miniaturization of electronic components, low dimensional structures such as 1-dimensional nanowires (NWs) have attracted a great deal of attention. But such components have a much higher current density than 2- or 3-dimensional films, and high current can degrade device lifetime and lead to breakdown problems. Here, we report on the electrical and thermal characteristics of poly-Si NWs, which can also be used to control electrical and physical breakdown under high current density. This work reports a controllable catastrophic change of poly-Si NWs by thermally-assisted electromigration and underlying mechanisms. It also reports the direct and real time observation of these catastrophic changes of poly-Si nanowires for the first time, using scanning electron microscopy. PMID:26782708

  9. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration

    PubMed Central

    Park, Jun-Young; Moon, Dong-Il; Seol, Myeong-Lok; Jeon, Chang-Hoon; Jeon, Gwang-Jae; Han, Jin-Woo; Kim, Choong-Ki; Park, Sang-Jae; Lee, Hee Chul; Choi, Yang-Kyu

    2016-01-01

    The importance of poly-crystalline silicon (poly-Si) in semiconductor manufacturing is rapidly increasing due to its highly controllable conductivity and excellent, uniform deposition quality. With the continuing miniaturization of electronic components, low dimensional structures such as 1-dimensional nanowires (NWs) have attracted a great deal of attention. But such components have a much higher current density than 2- or 3- dimensional films, and high current can degrade device lifetime and lead to breakdown problems. Here, we report on the electrical and thermal characteristics of poly-Si NWs, which can also be used to control electrical and physical breakdown under high current density. This work reports a controllable catastrophic change of poly-Si NWs by thermally-assisted electromigration and underlying mechanisms. It also reports the direct and real time observation of these catastrophic changes of poly-Si nanowires for the first time, using scanning electron microscopy. PMID:26782708

  10. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration

    NASA Astrophysics Data System (ADS)

    Park, Jun-Young; Moon, Dong-Il; Seol, Myeong-Lok; Jeon, Chang-Hoon; Jeon, Gwang-Jae; Han, Jin-Woo; Kim, Choong-Ki; Park, Sang-Jae; Lee, Hee Chul; Choi, Yang-Kyu

    2016-01-01

    The importance of poly-crystalline silicon (poly-Si) in semiconductor manufacturing is rapidly increasing due to its highly controllable conductivity and excellent, uniform deposition quality. With the continuing miniaturization of electronic components, low dimensional structures such as 1-dimensional nanowires (NWs) have attracted a great deal of attention. But such components have a much higher current density than 2- or 3- dimensional films, and high current can degrade device lifetime and lead to breakdown problems. Here, we report on the electrical and thermal characteristics of poly-Si NWs, which can also be used to control electrical and physical breakdown under high current density. This work reports a controllable catastrophic change of poly-Si NWs by thermally-assisted electromigration and underlying mechanisms. It also reports the direct and real time observation of these catastrophic changes of poly-Si nanowires for the first time, using scanning electron microscopy.

  11. Improved Retention Characteristic in Polycrystalline Silicon-Oxide-Hafnium Oxide-Oxide-Silicon-Type Nonvolatile Memory with Robust Tunnel Oxynitride

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih Ren; Lai, Chiung Hui; Lin, Bo Chun; Zheng, Yuan Kai; Chung Lou, Jen; Lin, Gray

    2011-03-01

    In this paper, we present a simple novel process for forming a robust and reliable oxynitride dielectric with a high nitrogen content. It is highly suitable for n-channel metal-oxide-semiconductor field-effect transistor (nMOSFETs) and polycrystalline silicon-oxide-hafnium oxide-oxide-silicon (SOHOS)-type memory applications. The proposed approach is realized by using chemical oxide with ammonia (NH3) nitridation followed by reoxidation with oxygen (O2). The novel oxynitride process is not only compatible with the standard complementary metal-oxide-semiconductor (CMOS) process, but also can ensure the improvement of flash memory with low-cost manufacturing. The characteristics of nMOSFETs and SOHOS-type nonvolatile memories (NVMs) with a robust oxynitride as a gate oxide or tunnel oxide are studied to demonstrate their advantages such as the retardation of the stress-induced trap generation during constant-voltage stress (CVS), the program/erase behaviors, cycling endurance, and data retention. The results indicate that the proposed robust oxynitride is suitable for future nonvolatile flash memory technology application.

  12. Study of Nitrogen Effect on the Boron Diffusion during Heat Treatment in Polycrystalline Silicon/Nitrogen-Doped Silicon Thin Films

    NASA Astrophysics Data System (ADS)

    Saci, Lynda; Mahamdi, Ramdane; Mansour, Farida; Boucher, Jonathan; Collet, Maéva; Bedel Pereira, Eléna; Temple-Boyer, Pierre

    2011-05-01

    The present paper studies the boron (B) diffusion in nitrogen (N) doped amorphous silicon (a-Si) layer in original bi-layer B-doped polycrystalline silicon (poly-Si)/in-situ N-doped Si layers (NIDOS) thin films deposited by low pressure chemical vapor deposition (LPCVD) technique. The B diffusion in the NIDOS layer was investigated by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR) analysis. A new extended diffusion model is proposed to fit the SIMS profile of the bi-layer films. This model introduces new terms which take into account the effect of N concentration on the complex diffusion phenomena of B atoms in bi-layer films. SIMS results show that B diffusion does not exceed one third of NIDOS layer thickness after annealing. The reduction of the B diffusion in the NIDOS layer is due to the formation of complex B-N as shown by infrared absorption measurements. Electrical measurements using four-probe and Hall effect techniques show the good conductivity of the B-doped poly-Si layer after annealing treatment.

  13. Polycrystalline silicon thin-film transistors fabricated by Joule-heating-induced crystallization

    NASA Astrophysics Data System (ADS)

    Hong, Won-Eui; Ro, Jae-Sang

    2015-01-01

    Joule-heating-induced crystallization (JIC) of amorphous silicon (a-Si) films is carried out by applying an electric pulse to a conductive layer located beneath or above the films. Crystallization occurs across the whole substrate surface within few tens of microseconds. Arc instability, however, is observed during crystallization, and is attributed to dielectric breakdown in the conductor/insulator/transformed polycrystalline silicon (poly-Si) sandwich structures at high temperatures during electrical pulsing for crystallization. In this study, we devised a method for the crystallization of a-Si films while preventing arc generation; this method consisted of pre-patterning an a-Si active layer into islands and then depositing a gate oxide and gate electrode. Electric pulsing was then applied to the gate electrode formed using a Mo layer. The Mo layer was used as a Joule-heat source for the crystallization of pre-patterned active islands of a-Si films. JIC-processed poly-Si thin-film transistors (TFTs) were fabricated successfully, and the proposed method was found to be compatible with the standard processing of coplanar top-gate poly-Si TFTs.

  14. Fracture toughness of low-pressure chemical-vapor-deposited polycrystalline silicon carbide thin films

    NASA Astrophysics Data System (ADS)

    Hatty, V.; Kahn, H.; Trevino, J.; Zorman, C. A.; Mehregany, M.; Ballarini, R.; Heuer, A. H.

    2006-01-01

    The fracture toughness of thin-film polycrystalline silicon carbide (poly-SiC) deposited on silicon (Si) wafers via low-pressure chemical-vapor deposition (LPCVD) has been measured on a scale useful for micromachined devices; the results are compared to previous studies on poly-SiC thin films deposited by atmospheric pressure chemical-vapor deposition (APCVD) [Bellante et al., Appl. Phys. Lett. 86, 071920 (2005)]. Samples in this study included those with and without silicon dioxide (SiO2) sacrificial release layers. The LPCVD processing technique induces residual tensile stresses in the films. Doubly clamped microtensile specimens were fabricated using standard micromachining processes, and microindentation was used to initiate atomically sharp precracks. The residual stresses in the films create stress intensity factors K at the crack tips; upon release, the precracks whose K exceeded a critical value, KIC, propagated to failure. The fracture toughness KIC was the same for both types of devices, 2.9+/-0.2 MPa m1/2 for the SiC on Si samples and 3.0+/-0.2 MPa m1/2 for the SiC on SiO2/Si samples, and similar to that found for APCVD poly-SiC, 2.8<=KIC<=3.4 MPa m1/2 [Bellante et al., Appl. Phys. Lett. 86, 071920 (2005)], indicating that KIC is truly a structure-insensitive material property. The fracture toughness of poly-SiC compares favorably with that for polysilicon, 0.85+/-0.05 MPa m1/2 [Kahn et al., Science 298, 1215 (2002)].

  15. The effects of spatial location of defect states on the switching characteristics of amorphous and polycrystalline silicon thin film transistors: A numerical simulation using AMPS 2-D

    SciTech Connect

    Smith, J.; Fonash, S.; Kalkan, A.

    1994-06-01

    We demonstrate a two-dimensional device simulator for MOSFET structures that incorporates models for defect distributions and show predicted effects on device switching performance for various spatial distributions of defects in amorphous and polycrystalline silicon.

  16. The strength of polycrystalline silicon at the micro- and nano-scales with applications to MEMS

    NASA Astrophysics Data System (ADS)

    Chasiotis, Ioannis

    A new method for tensile testing of thin films by means of an improved apparatus has been developed to measure the elastic properties (Young's modulus, tensile strength) of surface micromachined polycrystalline silicon specimens. The newly designed tensile tester makes use of an Ultraviolet (UV) light curable adhesive to clamp micron-sized specimens. The properties determination utilizes surface topologies of deforming specimens, acquired with an Atomic Force Microscope (AFM), for determining strain fields by means of Digital Image Correlation (DIC). This full-field, direct and local measurements technique provides the capability of testing any type of thin film materials with nanometer resolution. A systematic study of small-scale size effects was thus performed by tensioning elliptically perforated specimens (minimum radius of curvature of 1 mum) so as to: (a) vary the stress concentration with constant radius of curvature, (b) increasing radius of curvature of micronotches relative to the grain size. The results demonstrate a strong influence of the size of the highly strained domain (decreasing notch radii) on the failure strength of MEMS scale specimens, while the effect of varying the stress concentration factor is rather insignificant. In addition, tests performed on unnotched tensile specimens of varying dimensions revealed a specimen size effect by which the values of strength scaled with the specimen length. The Young's modulus, however, is found to be rather insensitive to the specimen dimensions at the scale of microns. Contrary to the common belief that 49% HF wet release represents a safe post-process for manufacturing polycrystalline silicon, this study has clearly identified the release process as a key item in determining thin film failure properties. It is found that surface roughness as characterized by groove formation at the grain boundaries depends distinctly on the HF release time. In addition, while the actual failure mechanism in

  17. Leakage Current Suppression on Metal-Induced Laterally Crystallized Polycrystalline Silicon Thin-Film Transistors by Asymmetrically Deposited Nickel

    NASA Astrophysics Data System (ADS)

    Byun, Chang Woo; Son, Se Wan; Lee, Yong Woo; Hyo Park, Jae; Vakilipour Takaloo, Ashkan; Joo, Seung Ki

    2013-10-01

    The electrical performance of low-temperature polycrystalline silicon (LTPS) thin-film transistors (TFTs) fabricated by metal-induced lateral crystallization (MILC) is greatly affected by metal catalyst contaminations, such as Ni and Ni silicide trapped in the channel, since they concentrate in front of laterally grown crystallites. In the present work, the effect of the MILC/MILC boundary (MMB) on MILC polycrystalline silicon (poly-Si) TFTs is investigated by the comparison of MILC poly-Si TFTs with MMB at the center of the channel, and equivalent TFTs with MMB at a position ejected from the channel. The MMB location was controlled by the Ni catalyst position. Both a low off-state leakage current and a free from short channel effect (kink effect) were observed in high electric-field conditions. Furthermore, the field-effect mobility and drain current noise were drastically improved by ejecting the MILC boundary in the source direction.

  18. Polycrystalline Silicon Thin-film Solar cells with Plasmonic-enhanced Light-trapping

    PubMed Central

    Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas

    2012-01-01

    One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach. The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles. To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm2, which can be increased up to 17-18 mA/cm2 (~25% higher) after application of a simple diffuse back reflector made of a white paint. To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing

  19. High-Temperature Thermoelectric Properties of Polycrystalline Silicon Clathrate Ba8TM x Si46- x (TM = Ni, Pt)

    NASA Astrophysics Data System (ADS)

    Kikuchi, Daisuke; Fujimura, Koji; Tadokoro, Jun; Matsumoto, Miko; Yamazaki, Satoshi; Sasaki, Hirokazu; Eguchi, Tatsuhiko; Susai, Kyota

    2016-03-01

    The n-/ p-type stability of a silicon clathrate in which silicon was substituted with nickel or platinum was evaluated by density functional theory calculations. Then, Ba8Pt5Si41 and Ba8Pt1.5Ni3.5Si41 were synthesized, and their thermoelectric properties were investigated. The polycrystalline compounds, which have a type-I clathrate structure, were prepared through arc melting and spark-plasma-sintering. The crystal structures and elemental compositions of the synthesized samples were characterized via powder x-ray diffraction and electron microprobe analyses, respectively. The temperature dependence of both the electrical resistivity and the Seebeck coefficient was measured.

  20. A characterisation of electronic properties of alkaline texturized polycrystalline silicon solar cells using IBIC

    NASA Astrophysics Data System (ADS)

    Jakob, A. M.; Spemann, D.; Thies, R.; Barzola-Quiquia, J.; Vogt, J.; Butz, T.

    2011-10-01

    In this study, electronic properties of p-type alkaline texturized polycrystalline silicon solar cells were investigated using ion beam induced charge (IBIC) analysis. With this technique, quantitative information on electronic diffusion lengths and average electronic capture cross sections of lattice defects generated by high energy protons were obtained. Angular-resolved IBIC analysis was used to quantify the electronic diffusion lengths. For this purpose, the experimental data were fitted using a simulation based on the Ramo-Shockley-Gunn (RSG) theorem and the assumption of an abrupt pn-junction. In order to determine the average electronic capture cross section of proton-induced lattice defects, the loss of charge collection efficiency (CCE) was plotted vs. the accumulated ion fluence. As will be demonstrated, a simple model based on charge carrier diffusion and Shockley-Read-Hall (SRH) recombination is able to fit the CCE loss well. Furthermore, spatially and energetically highly resolved IBIC-maps of grain boundaries were recorded. A comparison with PIXE-maps shows that there is no correlation observable between CCE variations at grain boundaries and metallic impurities within the PIXE detection limits of a few ppm. On the contrary, there is an evident correlation to the morphology of the sample's surface as was observed by comparing IBIC-maps and SEM-micrographs. These local CCE fluctuations are dominated by the interplay of charge carrier diffusion processes and the sample surface morphology.

  1. Influence of Grain Size on the Thermoelectric Properties of Polycrystalline Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Suriano, F.; Ferri, M.; Moscatelli, F.; Mancarella, F.; Belsito, L.; Solmi, S.; Roncaglia, A.; Frabboni, S.; Gazzadi, G. C.; Narducci, D.

    2015-01-01

    The thermoelectric properties of doped polycrystalline silicon nanowires have been investigated using doping techniques that impact grain growth in different ways during the doping process. In particular, As- and P-doped nanowires were fabricated using a process flow which enables the manufacturing of surface micromachined nanowires contacted by Al/Si pads in a four-terminal configuration for thermal conductivity measurement. Also, dedicated structures for the measurement of the Seebeck coefficient and electrical resistivity were prepared. In this way, the thermoelectric figure of merit of the nanowires could be evaluated. The As-doped nanowires were heavily doped by thermal doping from spin-on-dopant sources, whereas predeposition from POCl3 was utilized for the P-doped nanowires. The thermal conductivity measured on the nanowires appeared to depend on the doping type. The P-doped nanowires showed, for comparable cross-sections, higher thermal conductivity values than As-doped nanowires, most probably because of their finer grain texture, resulting from the inhibition effect that such doping elements have on grain growth during high-temperature annealing.

  2. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    NASA Astrophysics Data System (ADS)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S.; Shanholtz, E. R.

    2016-07-01

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  3. Strength and inelastic deformation in shocked polycrystalline silicon carbide. Final progress report, July 1992--June 1995

    SciTech Connect

    Gupta, Y.M.

    1998-07-10

    The objective of this research project was to quantify the response of shocked ceramics, including strength in the shocked state, to understand the mechanisms governing inelastic deformation at high stresses and high strain- rates in these materials. In-situ, piezoresistance stress gauge measurements were obtained in dense, polycrystalline silicon carbide (SiC) samples subjected to plane wave loading. A significant effort was carried out to ensure a self-consistent analysis of the lateral piezoresistance gauge data. Analysis of the longitudinal data revealed an inelastic response that could be modeled using either a strain hardening, plasticity model or a pressure-dependent strength model with stress relaxation. Experimental measurements and analysis of the lateral gauge data in SiC, currently underway, are needed to develop a comprehensive understanding of shocked SiC. Preliminary experiments and numerical calculations were completed to undertake combined compression and shear wave measurements in the SiC. The use of lateral piezoresistance gauges, and compression-shear measurements provide independent corroborations of material strength in the shocked state. This determination is important for understanding the differences in the compressive and tensile response of shocked ceramics.

  4. Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films

    SciTech Connect

    Kumar, Avishek E-mail: dalapatig@imre.a-star.edu.sg; Law, Felix; Widenborg, Per I.; Dalapati, Goutam K. E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R.; Aberle, Armin G.

    2014-11-01

    n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30 μm in width, and with high Hall mobility of about 71.5 cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18 μm with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900 MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

  5. Fatigue failure in thin-film polycrystalline silicon is due to subcritical cracking within the oxide layer

    NASA Astrophysics Data System (ADS)

    Alsem, D. H.; Stach, E. A.; Muhlstein, C. L.; Ritchie, R. O.

    2005-01-01

    It has been established that microelectromechanical systems created from polycrystalline silicon thin films are subject to cyclic fatigue. Prior work by the authors has suggested that although bulk silicon is not susceptible to fatigue failure in ambient air, fatigue in micron-scale silicon is a result of a "reaction-layer" process, whereby high stresses induce a thickening of the post-release oxide at stress concentrations such as notches, which subsequently undergoing moisture-assisted cracking. However, there exists some controversy regarding the post-release oxide thickness of the samples used in the prior study. In this letter, we present data from devices from a more recent fabrication run that confirm our prior observations. Additionally, new data from tests in high vacuum show that these devices do not fatigue when oxidation and moisture are suppressed. Each of these observations lends credence to the "reaction-layer" mechanism.

  6. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs.

    PubMed

    Liang, Albert K; Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A; Lu, Jeng Ping

    2016-03-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)-a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance-information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm. PMID:26878107

  7. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A.; Lu, Jeng Ping

    2016-03-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)—a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance—information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm.

  8. Breakdown-induced thermochemical reactions in HfO2 high-κ/polycrystalline silicon gate stacks

    NASA Astrophysics Data System (ADS)

    Ranjan, R.; Pey, K. L.; Tung, C. H.; Tang, L. J.; Ang, D. S.; Groeseneken, G.; De Gendt, S.; Bera, L. K.

    2005-12-01

    The chemistry of dielectric-breakdown-induced microstructural changes in HfO2 high-κ/polycrystalline silicon gate nMOSFETs under constant voltage stress has been studied. Based on an electron energy loss spectrometry analysis, the hafnium and oxygen chemical bonding in the breakdown induced Hf-based compounds of a "ball-shaped" defect is found to be different compared to the stoichiometric HfO2 and SiO2. The formation of possibly HfSixOy and HfSix compounds in the "ball-shaped" defect is attributed to a thermochemical reaction triggered by the gate dielectric breakdown.

  9. Paradoxical Enhancement of the Power Factor of Polycrystalline Silicon as a Result of the Formation of Nanovoids

    NASA Astrophysics Data System (ADS)

    Lorenzi, B.; Narducci, D.; Tonini, R.; Frabboni, S.; Gazzadi, G. C.; Ottaviani, G.; Neophytou, N.; Zianni, X.

    2014-10-01

    Hole-containing silicon has been regarded as a viable candidate thermoelectric material because of its low thermal conductivity. However, because voids are efficient scattering centers not just for phonons but also for charge carriers, achievable power factors (PFs) are normally too low for its most common form, i.e. porous silicon, to be of practical interest. In this communication we report that high PFs can, indeed, be achieved with nanoporous structures obtained from highly doped silicon. High PFs, up to a huge 22 mW K-2 m-1 (more than six times higher than values for the bulk material), were observed for heavily boron-doped nanocrystalline silicon films in which nanovoids (NVs) were generated by He+ ion implantation. In contrast with single-crystalline silicon in which He+ implantation leads to large voids, in polycrystalline films implantation followed by annealing at 1000°C results in homogeneous distribution of NVs with final diameters of approximately 2 nm and densities of the order of 1019 cm-3 with average spacing of 10 nm. Study of its morphology revealed silicon nanograins 50 nm in diameter coated with 5-nm precipitates of SiB x . We recently reported that PFs up to 15 mW K-2 m-1 could be achieved for silicon-boron nanocomposites (without NVs) because of a simultaneous increase of electrical conductivity and Seebeck coefficient. In that case, the high Seebeck coefficient was achieved as a result of potential barriers on the grain boundaries, and high electrical conductivity was achieved as a result of extremely high levels of doping. The additional increase in the PF observed in the presence of NVs (which also include SiB x precipitates) might have several possible explanations; these are currently under investigation. Experimental results are reported which might clarify the reason for this paradoxical effect of NVs on silicon PF.

  10. Characterization of nanometer-thick polycrystalline silicon with phonon-boundary scattering enhanced thermoelectric properties and its application in infrared sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo

    2014-12-01

    Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK-1 which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 108 and 1.83 × 108 cm Hz1/2 W-1 for sensors of 52 nm thick poly-Si, and 5.75 × 107 and 3.95 × 107 cm Hz1/2 W-1 for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm

  11. Exploration of maximum count rate capabilities for large-area photon counting arrays based on polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua

    2016-03-01

    Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.

  12. Experimental study of three-dimensional fin-channel charge trapping flash memories with titanium nitride and polycrystalline silicon gates

    NASA Astrophysics Data System (ADS)

    Liu, Yongxun; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Mizubayashi, Wataru; Morita, Yukinori; Migita, Shinji; Ota, Hiroyuki; Masahara, Meishoku

    2014-01-01

    Three-dimensional (3D) fin-channel charge trapping (CT) flash memories with different gate materials of physical-vapor-deposited (PVD) titanium nitride (TiN) and n+-polycrystalline silicon (poly-Si) have successfully been fabricated by using (100)-oriented silicon-on-insulator (SOI) wafers and orientation-dependent wet etching. Electrical characteristics of the fabricated flash memories including statistical threshold voltage (Vt) variability, endurance, and data retention have been comparatively investigated. It was experimentally found that a larger memory window and a deeper erase are obtained in PVD-TiN-gated metal-oxide-nitride-oxide-silicon (MONOS)-type flash memories than in poly-Si-gated poly-Si-oxide-nitride-oxide-silicon (SONOS)-type memories. The larger memory window and deeper erase of MONOS-type flash memories are contributed by the higher work function of the PVD-TiN metal gate than of the n+-poly-Si gate, which is effective for suppressing electron back tunneling during erase operation. It was also found that the initial Vt roll-off due to the short-channel effect (SCE) is directly related to the memory window roll-off when the gate length (Lg) is scaled down to 46 nm or less.

  13. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films: Effects of environment and surface oxide thickness

    NASA Astrophysics Data System (ADS)

    Alsem, D. H.; Timmerman, R.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up to 1012cycles), there is still an on-going debate on the precise mechanisms involved. We show here that for devices fabricated in the multiuser microelectromechanical system process (MUMPs) foundry and Sandia Ultra-planar, Multi-level MEMS Technology (SUMMiT V™) process and tested under equi-tension/compression loading at ˜40kHz in different environments, stress-lifetime data exhibit similar trends in fatigue behavior in ambient room air, shorter lifetimes in higher relative humidity environments, and no fatigue failure at all in high vacuum. The transmission electron microscopy of the surface oxides in the test samples shows a four- to sixfold thickening of the surface oxide at stress concentrations after fatigue failure, but no thickening after overload fracture in air or after fatigue cycling in vacuo. We find that such oxide thickening and premature fatigue failure (in air) occur in devices with initial oxide thicknesses of ˜4nm (SUMMiT V™) as well as in devices with much thicker initial oxides ˜20nm (MUMPs). Such results are interpreted and explained by a reaction-layer fatigue mechanism. Specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure of the entire device. The entirety of the evidence presented here strongly indicates that the reaction-layer fatigue mechanism is the governing mechanism for fatigue failure in micron-scale polycrystalline silicon thin films.

  14. A method for polycrystalline silicon delineation applicable to a double-diffused MOS transistor

    NASA Technical Reports Server (NTRS)

    Halsor, J. L.; Lin, H. C.

    1974-01-01

    Method is simple and eliminates requirement for unreliable special etchants. Structure is graded in resistivity to prevent punch-through and has very narrow channel length to increase frequency response. Contacts are on top to permit planar integrated circuit structure. Polycrystalline shield will prevent creation of inversion layer in isolated region.

  15. Ultratough, Thermally Stable Polycrystalline Diamond/Silicon Carbide Nanocomposites for Drill Bits

    SciTech Connect

    2009-03-01

    This factsheet describes a research project whose goal is to develop and produce in quantity novel superhard and ultratough thermally stable polycrystalline (TSP) diamond/SiC nanocomposites reinforced with SiC/C nanofibers for drill-bit applications and multiple industrial functions.

  16. Vacuum deposited polycrystalline silicon films for solar cell applications. Second quarterly technical progress report. January 1-March 31, 1980

    SciTech Connect

    Feldman, C.; Arlington, III, C. H.; Blum, N. A.; Satkiewicz, F. G.

    1980-05-01

    A careful study of a specially formed thin silicon layer on TiB/sub 2/-coated sapphire reveals that the interaction layer of TiSi/sub 2/ is composed of larger grains. Processing steps were developed which lead closer to the goal of fabricating polycrystalline silicon photovoltaic devices completely by vacuum deposition. Both n-type and p-type silicon are now being deposited. New deposition masks were made for depositing the n-regions upon the p-layers. New electrode deposition masks were also made for a direct electroding process to replace the photolithographic process used previously. The TiB/sub 2/ bottom electrode fabrication has been achieved in a single vacuum chamber. Reaction constants and activation energy for TiB/sub 2/ layer formation were determined to be less than those reported by other authors for bulk material. Studies of crystallite growth and interfacial interactions have continued. Major sources of undesirable impurities have been identified and removed from the vacuum chambers. The changes made this quarter have not been incorporated into a completed photovoltaic device.

  17. Initial steps toward the realization of large area arrays of single photon counting pixels based on polycrystalline silicon TFTs

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping

    2014-03-01

    The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.

  18. Nanophotonic light trapping in polycrystalline silicon thin-film solar cells using periodically nanoimprint-structured glass substrates

    NASA Astrophysics Data System (ADS)

    Becker, Christiane; Xavier, Jolly; Preidel, Veit; Wyss, Philippe; Sontheimer, Tobias; Rech, Bernd; Probst, Jürgen; Hülsen, Christoph; Löchel, Bernd; Erko, Alexei; Burger, Sven; Schmidt, Frank; Back, Franziska; Rudigier-Voigt, Eveline

    2013-09-01

    A smart light trapping scheme is essential to tap the full potential of polycrystalline silicon (poly-Si) thin-film solar cells. Periodic nanophotonic structures are of particular interest as they allow to substantially surpass the Lambertian limit from ray optics in selected spectral ranges. We use nanoimprint-lithography for the periodic patterning of sol-gel coated glass substrates, ensuring a cost-effective, large-area production of thin-film solar cell devices. Periodic crystalline silicon nanoarchitectures are prepared on these textured substrates by high-rate silicon film evaporation, solid phase crystallization and chemical etching. Poly-Si microhole arrays in square lattice geometry with an effective thickness of about 2μm and with comparatively large pitch (2 μm) exhibit a large absorption enhancement (A900nm = 52%) compared to a planar film (A900nm ~ 7%). For the optimization of light trapping in the desired spectral region, the geometry of the nanophotonic structures with varying pitch from 600 nm to 800 nm is tailored and investigated for the cases of poly-Si nanopillar arrays of hexagonal lattice geometry, exhibiting an increase in absorption in comparison to planar film attributed to nanophotonic wave optic effects. These structures inspire the design of prospective applications such as highly-efficient nanostructured poly-Si thin-film solar cells and large-area photonic crystals.

  19. Rapid recovery of polycrystalline silicon from kerf loss slurry using double-layer organic solvent sedimentation method

    NASA Astrophysics Data System (ADS)

    Xing, Peng-fei; Guo, Jing; Zhuang, Yan-xin; Li, Feng; Tu, Gan-feng

    2013-10-01

    The rapid development of photovoltaic (PV) industries has led to a shortage of silicon feedstock. However, more than 40% silicon goes into slurry wastes due to the kerf loss in the wafer slicing process. To effectively recycle polycrystalline silicon from the kerf loss slurry, an innovative double-layer organic solvent sedimentation process was presented in the paper. The sedimentation velocities of Si and SiC particles in some organic solvents were investigated. Considering the polarity, viscosity, and density of solvents, the chloroepoxy propane and carbon tetrachloride were selected to separate Si and SiC particles. It is found that Si and SiC particles in the slurry waste can be successfully separated by the double-layer organic solvent sedimentation method, which can greatly reduce the sedimentation time and improve the purity of obtained Si-rich and SiC-rich powders. The obtained Si-rich powders consist of 95.04% Si, and the cast Si ingot has 99.06% Si.

  20. Deformation and fracture of single-crystal and sintered polycrystalline silicon carbide produced by cavitation

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Hattori, Shuji; Okada, Tsunenori; Buckley, Donald H.

    1987-01-01

    An investigation was conducted to examine the deformation and fracture behavior of single-crystal and sintered polycrystalline SiC surfaces exposed to cavitation. Cavitation erosion experiments were conducted in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (1 mm) to the surface of SiC. The horn frequency was 20 kHz, and the double amplitude of the vibrating disk was 50 microns. The results of the investigation indicate that the SiC (0001) surface could be deformed in a plastic manner during cavitation. Dislocation etch pits were formed when the surface was chemically etched. The number of defects, including dislocations in the SiC (0001) surface, increased with increasing exposure time to cavitation. The presence of intrinsic defects such as voids in the surficial layers of the sintered polycrystalline SiC determined the zones at which fractured grains and fracture pits (pores) were generated. Single-crystal SiC had superior erosion resistance to that of sintered polycrystalline SiC.

  1. Fatigue of polycrystalline silicon for MEMS applications: Crack growth and stability under resonant loading conditions

    SciTech Connect

    Muhlstein, C.L.; Howe, R.T.; Ritchie, R.O.

    2001-12-05

    Although bulk silicon is not known to exhibit susceptibility to cyclic fatigue, micron-scale structures made from silicon films are known to be vulnerable to degradation by fatigue in ambient air environments, a phenomenon that has been recently modeled in terms of a mechanism of sequential oxidation and stress-corrosion cracking of the native oxide layer.

  2. Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical applications

    SciTech Connect

    Muhlstein, C.L.; Stach, E.A.; Ritchie, R.O.

    2001-08-02

    Reported nearly a decade ago, cyclic fatigue failure in silicon thin films has remained a mystery. Silicon does not display the room temperature plasticity or extrinsic toughening mechanisms necessary to cause fatigue in either ductile (e.g., metals) or brittle (e.g., ceramics and ordered mintermetallic) materials.

  3. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual technical report, 1 January 1996--30 June 1996

    SciTech Connect

    Wohlgemuth, J

    1997-01-01

    Two specific objectives of Solarex`s program are to reduce the manufacturing cost for polycrystalline silicon photovoltaic modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. This report highlights accomplishments during the period of January 1 through June 30, 1996. Accomplishments include: began the conversion of production casting stations to increase ingot size; operated the wire saw in a production mode with higher yields and lower costs than achieved on the ID saws; developed and qualified a new wire guide coating material that doubles the wire guide lifetime and produces significantly less scatter in wafer thickness; completed a third pilot run of the cost-effective Al paste back-surface-field (BSF) process, verifying a 5% increase in cell efficiency and demonstrating the ability to process and handle the BSF paste cells; completed environmental qualification of modules using cells produced by an all-print metallization process; optimized the design of the 15.2-cm by 15.2-cm polycrystalline silicon solar cells; demonstrated the application of a high-efficiency process in making 15.2-cm by 15.2-cm solar cells; demonstrated that cell efficiency increases with decreasing wafer thickness for the Al paste BSF cells; qualified a vendor-supplied Tedlar/ethylene vinyl acetate (EVA) laminate to replace the combination of separate sheets of EVA and Tedlar backsheet; demonstrated the operation of a prototype unit to trim/lead attach/test modules; and demonstrated the operation of a wafer pull-down system for cassetting wet wafers.

  4. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    SciTech Connect

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  5. Improvement in pH sensitivity of low-temperature polycrystalline-silicon thin-film transistor sensors using H2 sintering.

    PubMed

    Yen, Li-Chen; Tang, Ming-Tsyr; Chang, Fang-Yu; Pan, Tung-Ming; Chao, Tien-Sheng; Lee, Chiang-Hsuan

    2014-01-01

    In this article, we report an improvement in the pH sensitivity of low-temperature polycrystalline-silicon (poly-Si) thin-film transistor (TFT) sensors using an H2 sintering process. The low-temperature polycrystalline-silicon (LTPS) TFT sensor with H2 sintering exhibited a high sensitivity than that without H2 sintering. This result may be due to the resulting increase in the number of Si-OH2(+) and Si-O(-) bonds due to the incorporation of H in the gate oxide to reduce the dangling silicon bonds and hence create the surface active sites and the resulting increase in the number of chemical reactions at these surface active sites. Moreover, the LTPS TFT sensor device not only offers low cost and a simple fabrication processes, but the technique also can be extended to integrate the sensor into other systems. PMID:24573308

  6. Improvement in pH Sensitivity of Low-Temperature Polycrystalline-Silicon Thin-Film Transistor Sensors Using H2 Sintering

    PubMed Central

    Yen, Li-Chen; Tang, Ming-Tsyr; Chang, Fang-Yu; Pan, Tung-Ming; Chao, Tien-Sheng; Lee, Chiang-Hsuan

    2014-01-01

    In this article, we report an improvement in the pH sensitivity of low-temperature polycrystalline-silicon (poly-Si) thin-film transistor (TFT) sensors using an H2 sintering process. The low-temperature polycrystalline-silicon (LTPS) TFT sensor with H2 sintering exhibited a high sensitivity than that without H2 sintering. This result may be due to the resulting increase in the number of Si–OH2+ and Si–O− bonds due to the incorporation of H in the gate oxide to reduce the dangling silicon bonds and hence create the surface active sites and the resulting increase in the number of chemical reactions at these surface active sites. Moreover, the LTPS TFT sensor device not only offers low cost and a simple fabrication processes, but the technique also can be extended to integrate the sensor into other systems. PMID:24573308

  7. Thin film polycrystalline silicon solar cells. Second technical progress report, July 16, 1980-October 15, 1980

    SciTech Connect

    1980-10-01

    The objectives of this contract are to fabricate large area thin film silicon solar cells with AM1 efficiency of 10% or greater with good reproducibility and good yield and to assess the feasibility of implementing this process for manufacturing solar cells at a cost of $300/kWe. Efforts have been directed to the purification of metallurgical silicon, the preparation and characterization of substrates and epitaxial silicon layers, and the fabrication and characterization of solar cells. The partial purification of metallurgical silicon by extraction with aqua regia has been further investigated in detail, and the resulting silicon was analyzed by the atomic absorption technique. The unidirectional solidification of aqua regia-extracted metallurgical silicon on graphite was used for the preparation of substrates, and the impurity distribution in the substrate was determined and compared with the impurity content in metallurgical silicon. The effects of heat treatment on the impurity distribution in the substrate and in the epitaxial layer have also been investigated. Large area (30 to 60 cm/sup 2/) solar cells have been prepared from aqua regia-extracted metallurgical silicon substrates by depositing a p-n junction structure using the thermal reduction of trichlorosilane containing appropriate dopants. The AM1 efficiencies are about 9% for cells of 30 to 35 cm/sup 2/ area. Larger area, 60 cm/sup 2/, thin film solar cells have been fabricated for the first time, and their AM1 efficiencies are slightly higher than 8%. The spectral response, minority carrier diffusion length, and I/sub sc/-V/sub oc/ relation in a number of solr cells have been measured.

  8. Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell

    SciTech Connect

    Nakanishi, Hidetoshi Ito, Akira; Takayama, Kazuhisa Kawayama, Iwao Murakami, Hironaru Tonouchi, Masayoshi

    2015-11-15

    A laser terahertz emission microscope (LTEM) can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL), photoluminescence (PL), and laser beam induced current (LBIC), as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.

  9. Thin film polycrystalline silicon solar cells: first technical progress report, April 15, 1980-July 15, 1980

    SciTech Connect

    1980-07-01

    The objectives of this contract are to fabricate large area thin film silicon solar cells with AM1 efficiency of 10% or greater with good reproducibility and good yield and to assess the feasibility of implementing this process for manufacturing solar cells at a cost of $300/kWe. Efforts during the past quarter have been directed to the purification of metallurgical silicon, the preparation of substrates, and the fabrication and characterization of solar cells. The partial purification of metallurgical silicon by extraction with aqua regia has been investigated in detail, and the resulting silicon was analyzed by the atomic absorption technique. The unidirectional solidification of aqua regia-extracted metallurgical silicon on graphite was used for the preparation of substrates, and the impurity distribution in the substrate was also determined. Large area (> 30 cm/sup 2/) solar cells have been prepared from aqua regia-extracted metallurgical silicon substrates by the thermal reduction of trichlorosilane containing appropriate dopants. Chemically deposited tin-dioxide films were used as antireflection coatings. Solar cells with AM1 efficiencies of about 8.5% have been obtained. Their spectral response, minority carrier diffusion length, and I/sub sc/-V/sub oc/ relation have been measured.

  10. Impurity segregation behavior in polycrystalline silicon ingot grown with variation of electron-beam power

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Kyu; Lee, Jin-Seok; Jang, Bo-Yun; Kim, Joon-Soo; Ahn, Young-Soo; Cho, Churl-Hee

    2014-08-01

    Electron beam melting (EBM) systems have been used to improve the purity of metallurgical grade silicon feedstock for photovoltaic application. Our advanced EBM system is able to effectively remove volatile impurities using a heat source with high energy from an electron gun and to continuously allow impurities to segregate at the top of an ingot solidified in a directional solidification (DS) zone in a vacuum chamber. Heat in the silicon melt should move toward the ingot bottom for the desired DS. However, heat flux though the ingot is changed as the ingot becomes longer due to low thermal conductivity of silicon. This causes a non-uniform microstructure of the ingot, finally leading to impurity segregation at its middle. In this research, EB power irradiated on the silicon melt was controlled during the ingot growth in order to suppress the change of heat flux. EB power was reduced from 12 to 6.6 kW during the growth period of 45 min with a drop rate of 0.125 kW/min. Also, the silicon ingot was grown under a constant EB power of 12 kW to estimate the effect of the drop rate of EB power. When the EB power was reduced, the grains with columnar shape were much larger at the middle of the ingot compared to the case of constant EB power. Also, the present research reports a possible reason for the improvement of ingot purity by considering heat flux behaviors.

  11. Polycrystalline silicon material availability and market pricing outlook for 1980 through 1988

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Ferber, R. R.

    1984-01-01

    The results of the second JPL update to an original report to assess the availability and prices of polycrystalline Si for solar cells in the 1983-88 interval are reported. It is noted that the demand for poly-Si for solar cells competes with the demand for the same material for semiconductors, although the solar cell industry can use material rejected from the semiconductor industry. A sufficient supply is projected for the 6 yr period, rising from 3224 metric tons to 10,220 metric tons in 1988, with prices dropping from the 1980 level of $140/kg to $25/kg. The price reduction and improved production are noted to be due in large part to DOE efforts at defining lower-cost production processes.

  12. Investigation of Melting and Solidification of Thin Polycrystalline Silicon Films via Mixed-Phase Solidification

    NASA Astrophysics Data System (ADS)

    Wang, Ying

    Melting and solidification constitute the fundamental pathways through which a thin-film material is processed in many beam-induced crystallization methods. In this thesis, we investigate and leverage a specific beam-induced, melt-mediated crystallization approach, referred to as Mixed-Phase Solidification (MPS), to examine and scrutinize how a polycrystalline Si film undergoes the process of melting and solidification. On the one hand, we develop a more general understanding as to how such transformations can transpire in polycrystalline films. On the other hand, by investigating how the microstructure evolution is affected by the thermodynamic properties of the system, we experimentally reveal, by examining the solidified microstructure, fundamental information about such properties (i.e., the anisotropy in interfacial free energy). Specifically, the thesis consists of two primary parts: (1) conducting a thorough and extensive investigation of the MPS process itself, which includes a detailed characterization and analysis of the microstructure evolution of the film as it undergoes MPS cycles, along with additional development and refinement of a previously proposed thermodynamic model to describe the MPS melting-and-solidification process; and (2) performing MPS-based experiments that were systematically designed to reveal more information on the anisotropic nature of Si-SiO2 interfacial energy (i.e., sigma Si-SiO2). MPS is a recently developed radiative-beam-based crystallization technique capable of generating Si films with a combination of several sought-after microstructural characteristics. It was conceived, developed, and characterized within our laser crystallization laboratory at Columbia University. A preliminary thermodynamic model was also previously proposed to describe the overall melting and solidification behavior of a polycrystalline Si film during an MPS cycle, wherein the grain-orientation-dependent solid-liquid interface velocity is identified

  13. Deposition and characterization of polycrystalline silicon films on glass for thin film solar cells

    SciTech Connect

    Bergmann, R.B.; Krinke, J.; Strunk, H.P.; Werner, J.H.

    1997-07-01

    The authors deposit phosphorus-doped, amorphous Si by low pressure chemical vapor deposition and subsequently crystallize the films by furnace annealing at a temperature of 600 C. Optical in-situ monitoring allows one to control the crystallization process. Phosphorus doping leads to faster crystallization and a grain size enhancement with a maximum grain size of 15 {micro}m. Using transmission electron microscopy they find a log-normal grain size distribution in their films. They demonstrate that this distribution not only arises from solid phase crystallization of amorphous Si but also from other crystallization processes based on random nucleation and growth. The log-normal grain size distribution seems to be a general feature of polycrystalline semiconductors.

  14. In-situ light-scattering measurements during the CVD of polycrystalline silicon carbide

    SciTech Connect

    Sheldon, B.W. |; Reichle, P.A.; Besmann, T.M.

    1992-12-31

    Light-scattering was used to monitor the chemical vapor deposition of silicon carbide from methyltrichlorosilane. Nucleation and growth of SiC caused changes in surface topography that altered the angular scattering spectrum generated by a He-Ne laser. These scattering spectra were analyzed to obtain information about the occurring nucleation and growth processes.

  15. Rapid thermal chemical vapor deposition of in situ boron-doped polycrystalline silicon-germanium films on silicon dioxide for complimentary-metal-oxide-semiconductor applications

    NASA Astrophysics Data System (ADS)

    Li, V. Z.-Q.; Mirabedini, M. R.; Kuehn, R. T.; Wortman, J. J.; Öztürk, M. C.; Batchelor, D.; Christensen, K.; Maher, D. M.

    1997-12-01

    In situ boron-doped polycrystalline Si1-xGex (x>0.4) films have been formed on the thermally grown oxides in a rapid thermal chemical vapor deposition processor using SiH4-GeH4-B2H6-H2 gas system. Our results showed that in situ boron-doped Si1-xGex films can be directly deposited on the oxide surface, in contrast to the rapid thermal deposition of undoped silicon-germanium (Si1-xGex) films on oxides which is a partially selective process and requires a thin silicon film pre-deposition to form a continuous film. For the in situ boron-doped Si1-xGex films, we observed that with the increase of the germane percentage in the gas source, the Ge content and the deposition rate of the film are increased, while its resistivity is decreased down to 0.66 mΩ cm for a Ge content of 73%. Capacitance-voltage characteristics of p-type metal-oxide-semiconductor capacitors with p+-Si1-xGex gates showed negligible polydepletion effect for a 75 Å gate oxide, indicating that a high doping level of boron at the poly-Si1-xGex/oxide interface was achieved.

  16. Experimental study and two-dimensional modeling of avalanche breakdown voltage in polycrystalline silicon p-n junctions

    NASA Astrophysics Data System (ADS)

    Amrani, Mohammed; Benamara, Zineb; Chellali, Mohammed; Tizi, Schahrazade; Mohammed-Brahim, Tayeb

    2007-05-01

    A two-dimensional (2D) model of the avalanche breakdown mechanism is examined to achieve a lateral polycrystalline silicon (polysilicon) p+-n diode with high forward current and high breakdown voltage (BV). Samples with different film thicknesses (tf) were deposited by low-pressure chemical vapor deposition process. The p+ zone and n zone are doped by ionic implantation with boron and phosphorus, respectively. The measured current-voltage (I-V) characteristics show that BV varies between 6.4, 7.5, and 8.25V when tf varies between 250, 350, and 450nm, respectively. These data also show that when tf decreases, the forward current is high, the leakage current becomes higher under reverse bias, and BV decreases. We reveal that the breakdown phenomenon of our samples is dominated by the impact ionization effect. A 2D simulation of avalanche breakdown voltage versus the critical parameters of polysilicon diodes is implemented. The algorithm is based on the solution of Poisson's equation and calculating the ionization integral along various electric field lines computed from the potential distribution. By taking into account the localization of trap states in the grain boundaries, the effects on the breakdown voltage of the doping concentration ND, the intergranular trap state density NT, the grain sizes Lg, the disposition of the grain boundaries, and the film thickness tf are investigated. The simulation results show that the impact ionization mechanism is more accelerated in polysilicon than in single-crystalline silicon, and the BV(Lg), BV(ND), BV(NT), and BV(tf) curves are characterized by a succession of descending stair shapes due to the trapping of free carries by trap states contained in grain boundaries that are parallel to the metallurgic junction. By comparing simulation results with experimental data, we select the electron-hole ionization coefficients characterizing our samples: αn∞=1.0×106cm-1, Encrit=5.87×106Vcm-1, αp∞=1.582×106cm-1, and EPcrit=2

  17. Three-dimensional study of a polycrystalline silicon solar cell: the influence of the applied magnetic field on the electrical parameters

    NASA Astrophysics Data System (ADS)

    Dieng, A.; Zerbo, I.; Wade, M.; Maiga, A. S.; Sissoko, G.

    2011-09-01

    In this paper, we present a theoretical 3D study of a polycrystalline silicon solar cell in frequency modulation under polychromatic illumination and applied magnetic field. The influence of the applied magnetic field on the diode current density, Jd, and both electric power-photovoltage and photocurrent-photovoltage characteristics are discussed. The Nyquist diagram permitted us to determine the electrical parameters such as the series resistance Rs and parallel equivalent resistance Rp of a polycrystalline silicon solar cell. The Bode diagram is then used to calculate the cut-off frequency, capacitance C and inductance L. It has been shown that, under a magnetic field, the solar cell behavior is like that of a low-pass filter.

  18. Investigation of Melting and Solidification of Thin Polycrystalline Silicon Films via Mixed-Phase Solidification

    NASA Astrophysics Data System (ADS)

    Wang, Ying

    Melting and solidification constitute the fundamental pathways through which a thin-film material is processed in many beam-induced crystallization methods. In this thesis, we investigate and leverage a specific beam-induced, melt-mediated crystallization approach, referred to as Mixed-Phase Solidification (MPS), to examine and scrutinize how a polycrystalline Si film undergoes the process of melting and solidification. On the one hand, we develop a more general understanding as to how such transformations can transpire in polycrystalline films. On the other hand, by investigating how the microstructure evolution is affected by the thermodynamic properties of the system, we experimentally reveal, by examining the solidified microstructure, fundamental information about such properties (i.e., the anisotropy in interfacial free energy). Specifically, the thesis consists of two primary parts: (1) conducting a thorough and extensive investigation of the MPS process itself, which includes a detailed characterization and analysis of the microstructure evolution of the film as it undergoes MPS cycles, along with additional development and refinement of a previously proposed thermodynamic model to describe the MPS melting-and-solidification process; and (2) performing MPS-based experiments that were systematically designed to reveal more information on the anisotropic nature of Si-SiO2 interfacial energy (i.e., sigma Si-SiO2). MPS is a recently developed radiative-beam-based crystallization technique capable of generating Si films with a combination of several sought-after microstructural characteristics. It was conceived, developed, and characterized within our laser crystallization laboratory at Columbia University. A preliminary thermodynamic model was also previously proposed to describe the overall melting and solidification behavior of a polycrystalline Si film during an MPS cycle, wherein the grain-orientation-dependent solid-liquid interface velocity is identified

  19. 3D determination of the minority carrier lifetime and the p-n junction recombination velocity of a polycrystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Sam, R.; Zouma, B.; Zougmoré, F.; Koalaga, Z.; Zoungrana, M.; Zerbo, I.

    2012-02-01

    This work presents a theoretical and experimental transient tri-dimensional study conducted for the determination of the bulk component of the minority carrier lifetime and the p-n junction recombination velocity of a bifacial polycrystalline silicon solar cell. The theoretical analysis is based on the columnar model of the grains in the polycrystalline silicon solar cell. The boundaries conditions are defined in order to use Green's function to solve the three-dimensional diffusion equation. This leads to a new expression of the transient photovoltage. The value of the constraint coefficients at interfaces of the grain are computed while those of the effective minority carrier lifetime τeff is extracted from the experimental curve of transient voltage. The bulk lifetime and the p-n junction recombination velocity are deduced and have been compared to those obtained from transient state by one-dimensional modelling of carrier's diffusion. This comparative study permitted us to show grain effects on the lifetime and consequently the inadequacy of one-dimensional modelling of carrier's diffusion in the polycrystalline silicon solar cells.

  20. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual subcontract report, 8 December 1993--30 June 1994

    SciTech Connect

    Wohlgemuth, J.

    1995-03-01

    This report describes work done under a 3-year program to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance, and expand Solarex`s commercial production capacities. The accomplishments described in this report are as follows: (1) the authors designed modifications to casting stations, ceramic molds, and sizing saws to allow for casting and sizing of larger ingots; (2) they demonstrated the casting of ingots with 17% larger volume; (3) the selected and purchased a new wire saw from HCT Shaping Systems; (4) they demonstrated wafering of eight bricks (2,400 wafers or {approximately}4.4 kilowatts at the cell level) in a 6.5-h run; (5) they demonstrated 14% average cell efficiency in the laboratory using an aluminum paste back surface field; (6) the Automation and Robotics Research Institute (ARRI) completed a modeling study of the Solarex module assembly process; (7) they identified and qualified three new lower-cost back sheet materials through accelerated environmental tests; and (8) they designed and built a test structure for mounting frameless modules, and selected two adhesives and began testing their ability to hold modules to the structure.

  1. Low Temperature Deposition of PECVD Polycrystalline Silicon Thin Films using SiF4 / SiH4 mixture

    NASA Astrophysics Data System (ADS)

    Syed, Moniruzzaman; Inokuma, Takao; Kurata, Yoshihiro; Hasegawa, Seiichi

    2016-03-01

    Polycrystalline silicon films with a strong (110) texture were prepared at 400°C by a plasma-enhanced chemical vapor deposition using different SiF4 flow rates ([SiF4] = 0-0.5 sccm) under a fixed SiH4 flow rate ([SiH4] = 1 or 0.15 sccm). The effects of the addition of SiF4 to SiH4 on the structural properties of the films were studied by Raman scattering, X-ray diffraction (XRD), Atomic force microscopy and stress measurements. For [SiH4] = 1 sccm, the crystallinity and the (110) XRD grain size monotonically increased with increasing [SiF4] and their respective maxima reach 90% and 900 Å. However, for [SiH4] = 0.15 sccm, both the crystallinity and the grain size decreased with [SiF4]. Mechanisms causing the change in crystallinity are discussed, and it was suggested that an improvement in the crystallinity, due to the addition of SiF4, is likely to be caused by the effect of a change in the surface morphology of the substrates along with the effect of in situ chemical cleaning.

  2. Analysis of P-Doped Polycrystalline Silicon Missing of W-Polycide Gate for 2X nm NAND Flash

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Yang, Wen-Chung; Yin, Te-Yuan; Chien, Hung-Ju; Ying, Tzung-Hua

    2013-03-01

    We studied the control-gate (CG-Poly) missing behavior after post in-situ steam generation (ISSG) re-oxidation for W-polycide gate of 2X nm NAND Flash and attempted to determine the possible mechanism. On the other hand, various effective countermeasures were also been proposed. We found that Si atoms diffuse upward on WSi2.3 films, driven out of the underlying doped polycrystalline silicon film during steam radical oxidation process based on energy dispersive X-ray (EDX) analysis. A 2.5 nm remaining of SiN at least on sidewall before oxidation results in CG-Poly missing free and WSix deformation improvement simultaneously. A selective oxidation such as water vapor generator (WVG) and rapid thermal oxidation (RTO) can achieve the same efficient performance. Additionally, less intrinsic tensile stress of WSix film employment also shows immunity against CG-Poly missing. Satisfactory sidewall barrier utilization for ISSG oxidation, diverse thermal oxidation selection, and even by WSix film property modifying might avoid poly-Si missing occurrence and reduce the WSix film deformation extent for the narrower dimension of 2X nm and beyond.

  3. Interfacial Layer Control by Dry Cleaning Technology for Polycrystalline and Single Crystalline Silicon Growth.

    PubMed

    Im, Dong-Hyun; Kong-Soo Lee; Kang, Yoongoo; Jeong, Myoungho; Park, Kwang Wuk; Lee, Soon-Gun; Ma, Jin-Won; Kim, Youngseok; Kim, Bonghyun; Im, Ki-Vin; Lim, Hanjin; Lee, Jeong Yong

    2016-05-01

    Native oxide removal prior to poly-Si contact and epitaxial growth of Si is the most critical technology to ensure process and device performances of poly-Si plugs and selective epitaxial growth (SEG) layers for DRAM, flash memory, and logic device. Recently, dry cleaning process for interfacial oxide removal has attracted a world-wide attention due to its superior passivation properties to conventional wet cleaning processes. In this study, we investigated the surface states of Si substrate during and after dry cleaning process, and the role of atomic elements including fluorine and hydrogen on the properties of subsequent deposited silicon layer using SIMS, XPS, and TEM analysis. The controlling of residual fluorine on the Si surface after dry cleaning is a key factor for clean interface. The mechanism of native oxide re-growth caused by residual fluorine after dry cleaning is proposed based on analytical results. PMID:27483844

  4. Tribological behavior of micron-scale polycrystalline silicon structural films in ambient air

    NASA Astrophysics Data System (ADS)

    Alsem, D. H.; van der Hulst, R.; Stach, E. A.; Dugger, M. T.; De Hosson, J. Th. M.; Ritchie, R. O.

    2009-02-01

    As tribological properties are critical factors in the reliability of microelectromechanical systems, it is important to understand the physical processes and parameters governing wear and friction in silicon structural films. Dynamic friction, wear volumes and wear morphology have been studied for polysilicon devices from the Sandia SUMMiT VTM process actuated in ambient air at μN loads. A total of seven devices were tested. Roughly half of the devices showed a peak in the friction coefficient at three times the initial value with failure after 105 cycles. The other half of the devices behaved similarly initially; however, following the friction coefficient peak they displayed a lower steady-state friction regime with no failure for millions of cycles. Additionally, the nanoscale wear coefficient and roughness increased in the first ~105 cycles and then slowly decayed over several million cycles. Transmission electron microscopy studies revealed amorphous oxygen-rich debris. These measurements show that after a short adhesive wear regime, abrasive wear is the governing mechanism with failures attributed to differences in the local nanoscale surface morphology. Changing the relative humidity, sliding speed and load was found to influence the friction coefficient, but re-oxidation of worn polysilicon surfaces was only found to have an effect after periods of inactivity.

  5. Nanoscale Silicon as Anode for Li-ion Batteries: The Fundamentals, Promise, and Challenges

    SciTech Connect

    Gu, Meng; He, Yang; Zheng, Jianming; Wang, Chong M.

    2015-09-24

    Silicon (Si), associated with its natural abundance, low discharge voltage vs. Li/Li+, and extremely high theoretical discharge capacity (~ 4200 mAh g-1,), has been extensively explored as anode for lithium ion battery. One of the key challenges for using Si as anode is the large volume change upon lithiation and delithiation, which causes a fast capacity fading. Over the last few years, dramatic progress has been made for addressing this issue. In this paper, we summarize the progress towards tailoring of Si as anode for lithium ion battery. The paper is organized such that it covers the fundamentals, the promise offered based on nanoscale designing, and the remaining challenges that need to be attacked to allow using of Si based materials as anode for battery.

  6. Metal-induced unilaterally crystallized polycrystalline silicon thin-film transistor technology and application to flat-panel displays

    NASA Astrophysics Data System (ADS)

    Meng, Zhiguo

    High quality flat-panel displays (FPD) typically use active-matrix (AM) addressing, with the optical state of each pixel controlled by one or more active devices such as amorphous silicon (a-Si) thin film transistors (TFT). The successful examples are portable computer and liquid-crystal television (LC-TV). A high level of system on panel (SoP) electronic integration is required for versatile and compact systems. Meanwhile, many self-emitting display technologies are developing fast, active matrix for self-emitting display is typically current driven. The a-Si TFTs suffer from limited current driving capability, polycrystalline silicon (poly-Si) device technology is required. A new technology employing metal-induced unilaterally crystallization (MIUC) is presently reported. The device characteristics are obviously better than those in rapid-thermal annealed (RTA) and solid-phase crystallization (SPC) TFTs and the fabrication equipment is much cheaper than excimer laser crystallization (ELC) technology. The field effect mobility (muFE) of p- and n-channel MIUC TFTs is about 100cm2/Vs. Ion/I off is more than seven orders. Gate-induced leakage current in LT-MIUC poly-Si TFTs has been reduced by crystallization before heavy junction implantation to improve material quality and incorporating a gate-modulated lightly-doped drain (gamo-LDD) structure to reduce the electric field near the drain/channel junction region. At the same time, recrystallized (RC) MIUC TFT was researched with device characteristics improved. The 6.6cm 120 x 160 active matrix for OLED display is fabricated using LT-MIUC TFT technology on glass substrate. This display has the advantages of self-emitting, large intrinsic view angle and very fast response. At the same time, 6.6cm 120X160 AM-reflective twist nematic (RTN) display is fabricated using RC-MIUC TFT technology. This display is capable of producing 16 grade levels, 10:1 contrast and video image. The SOP display for AM-OLED were designed

  7. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors

    PubMed Central

    El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A.; Lu, Jeng-Ping

    2009-01-01

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and∕or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of ∼10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill

  8. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors

    SciTech Connect

    El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao Qihua; Li Yixin; Street, Robert A.; Lu Jengping

    2009-07-15

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of {approx}10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical

  9. A New Approach of Polycrystalline Silicon Film on Plastic Substrate Prepared by Ion Beam Deposition Followed by Excimer Laser Crystallization at Room Temperature

    NASA Astrophysics Data System (ADS)

    Kwon, Jang Yeon; Lim, Hyuck; Park, Kyung Bae; Jung, Ji Sim; Kim, Do Young; Cho, Hans S.; Kim, Seok Pil; Park, Young Soo; Kim, Jong Man; Noguchi, Takashi

    2006-05-01

    In this work, we propose a new polycrystalline silicon (poly-Si) film of large grain for thin film transistor on flexible substrate. Thin films of amorphous silicon were deposited on plastic substrate by using ion beam deposition (IBD) and crystallized by excimer laser annealing. The entire process was carried out at room temperature. Si film formed by IBD has much lower impurity such as Ar, O, and H than that deposited by conventional sputtering method. This high purity of Si film makes large grain size (0.5 μm) and shows high endurance of excimer laser energy both on quartz and plastic substrate for flexible active matrix organic light emitting diode (AMOLED).

  10. Promises, Promises.

    PubMed

    McLean, Haydn

    2016-03-01

    Presenting a pledge to another establishes expectation in the recipient for the commitment to be fulfilled, particularly when a promise is devoid of coercion. Defaulting on a commitment may damage relationships between people and may predispose the disenchanted recipient to distrust those who proffer succeeding commitments. God's advocates who have been disappointed by God's evident under-delivery may experience a crisis of faith, exemplified in attachment distress, when disappointment intimates God has over-promised his providence, which questions the nature and, ultimately, the relevance of God. PMID:26956758

  11. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor.

    PubMed

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-01-01

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at -0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm(2)/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature. PMID:27098115

  12. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-04-01

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at ‑0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm2/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature.

  13. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor

    PubMed Central

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-01-01

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at −0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm2/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature. PMID:27098115

  14. Electrical Characteristics of Low-Temperature Polycrystalline Silicon Complementary Metal-Oxide-Semiconductor Thin-Film Transistors with Six-Step Photomask Structure

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Jin; Park, Jae-Hoon; Oh, Kum-Mi; Lee, Seok-Woo; Lee, Kyung-Eon; Shin, Woo-Sup; Jun, Myung-chul; Yang, Yong-Suk; Hwang, Yong-Kee

    2011-06-01

    We propose two types of six-step photomask, complementary metal-oxide-semiconductor (CMOS), thin-film transistor (TFT) PCT device structures in order to simplify their fabrication process compared with that of conventional, low-temperature, polycrystalline silicon (LTPS) CMOS TFT devices. The initial charge transfer characteristics of both types of six-step PCT are equivalent to those of the conventional nine-step PCT. Both types of six-step PCT are comparable to the conventional nine-step mask lightly doped drain (LDD) device in terms of the dc device lifetime of over 10 years at Vds=5 V for line inversion driving, which is the normally recognized duration time for semiconducting devices.

  15. The electrical conduction properties of poly-crystalline indium-zinc-oxide film

    SciTech Connect

    Tomai, S.; Terai, K.; Junke, T.; Tsuruma, Y.; Ebata, K.; Yano, K.; Uraoka, Y.

    2014-02-28

    We have developed a high-mobility and high-uniform oxide semiconductor using poly-crystalline semiconductor material composed of indium and zinc (p-IZO). A typical conduction mechanism of p-IZO film was demonstrated by the grain boundary scattering model as in polycrystalline silicon. The grain boundary potential of the 2-h-annealed IZO film was calculated to be 100 meV, which was comparable to that of the polycrystalline silicon. However, the p-IZO thin film transistor (TFT) measurement shows rather uniform characteristics. It denotes that the mobility deterioration around the grain boundaries is lower than the case for low-temperature polycrystalline silicon. This assertion was made based on the difference of the mobility between the polycrystalline and amorphous IZO film being much smaller than is the case for silicon transistors. Therefore, we conclude that the p-IZO is a promising material for a TFT channel, which realizes high drift mobility and uniformity simultaneously.

  16. Near single-crystalline, high-carrier-mobility silicon thin film on a polycrystalline/amorphous substrate

    DOEpatents

    Findikoglu, Alp T.; Jia, Quanxi; Arendt, Paul N.; Matias, Vladimir; Choi, Woong

    2009-10-27

    A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material; is provided, together with a semiconductor article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material, and, a top-layer of semiconductor material upon the buffer material layer.

  17. Fundamental studies of grain boundary passivation in polycrystalline silicon with application to improved photovoltaic devices. A final research report covering work completed from February-December 1979

    SciTech Connect

    Seager, C.H.; Ginley, D.S.

    1980-02-01

    Several aspects of the electrical properties of silicon grain boundaries have been studied. The temperature dependence of the zero-bias conductance and capacitance of single boundaries has been measured and shown to be in good agreement with a simple double depletion layer/thermal emission (DDL/TE) model developed to predict the transport properties of such structures. In addition, it has been shown that deconvolution of the I-V properties of some boundaries via a deconvolution scheme suggested by Pike and Seager yields effective one-electron densities of trapping states which are in good agreement with estimates obtained by low temperature electron emission measurements. Experiments have also been performed which indicate that diffusion of atomic hydrogen into silicon grain boundaries greatly reduces this density of trapping states. In properly prepared, large grained polycrystalline samples all measurable traces of grain boundary potential barriers can be removed to substantial penetration depths after several hours exposure to a hydrogen plasma at elevated temperatures. Initial experiments on prototype polysilicon solar cells have shown that this passivation process can improve AM1 efficiencies. In order to more fully understand and develop this process for improving practical multigrained cells, several device research efforts with other DOE/SERI funded contractors have been initiated.

  18. Deposition, fabrication and analysis of polycrystalline silicon MIS solar cells. Final Report, January 1-December 31, 1979

    SciTech Connect

    Anderson, W.A.

    1980-03-01

    Discussion of MIS cell fabrication techniques, protovoltaic response data, I-V-T analysis to reveal conduction mechanisms, a detailed computer model, optimum MIS solar cell design, surface state effects, Auger studies, reliability studies and e-beam deposition of thin silicon films are included. The most important features of the work during 1979 include the one pump-down fabrication process, establishing a consistent fabrication sequence, achieving 13% efficiency of 2 cm/sup 2/ area, an evaluation of conduction mechanisms, establishing a detailed computer model and setting up an improved e-beam system to deposit thin silicon films. Details are reported. (WHK)

  19. Carrier mobility measurement across a single grain boundary in polycrystalline silicon using an organic gate thin-film transistor

    SciTech Connect

    Hashimoto, Masaki; Kanomata, Kensaku; Momiyama, Katsuaki; Kubota, Shigeru; Hirose, Fumihiko

    2012-01-09

    In this study, we developed a measurement method for field-effect-carrier mobility across a single grain boundary in polycrystalline Si (poly Si) used for solar cell production by using an organic gate field-effect transistor (FET). To prevent precipitation and the diffusion of impurities affecting the electronic characteristics of the grain boundary, all the processing temperatures during FET fabrication were held below 150 deg. C. From the grain boundary, the field-effect mobility was measured at around 21.4 cm{sup 2}/Vs at 297 K, and the temperature dependence of the field-effect mobility suggested the presence of a potential barrier of 0.22 eV at the boundary. The technique presented here is applicable for the monitoring of carrier conduction characteristics at the grain boundary in poly Si used for the production of solar cells.

  20. Photovoltaic mechanisms in polycrystalline thin film silicon solar cells. Final report, 30 June 1979-29 June 1980

    SciTech Connect

    Sopori, B.L.

    1980-11-01

    The objectives of this program were: (1) to develop appropriate measurement techniques to facilitate a quantitative study of the electrical activity of structural defects and at a grain boundary (G.B.) in terms of generation-recombination, barrier height, and G.B. conductivity; (2) to characterize G.B.s in terms of physical properties such as angle of misfit and local stress, and to correlate them with the electrical activity; (3) to determine the influence of solar cell processing on the electrical behavior of structural defects and G.B.s; and (4) to evaluate polycrystalline solar cell performance based on the above study, and to compare it with the experimentally measured performance. Progress is reported in detail. (WHK)

  1. Thin film polycrystalline silicon solar cells. Quarterly technical progress report No. 3, 1 April 1980-30 June 1980

    SciTech Connect

    Sarma, K. R.; Rice, M. J.; Legge, R.; Ellis, R. J.

    1980-06-01

    During this third quarter of the program, the high pressure plasma (hpp) deposition process has been thoroughly evaluated using SiHCl/sub 3/ and SiCl/sub 4/ silicon source gases, by the gas chromatographic analysis of the effluent gases from the reactor. Both the deposition efficiency and reactor throughput rate were found to be consistently higher for hpp mode of operation compared to conventional CVD mode. The figure of merit for various chlorosilanes as a silicon source gas for hpp deposition is discussed. A new continuous silicon film deposition scheme is developed, and system design is initiated. This new system employs gas interlocks and eliminates the need for gas curtains which have been found to be problematic. Solar cells (2 cm x 2 cm area) with AM1 efficiencies of up to 12% were fabricated on RTR grain enhanced hpp deposited films. The parameters of a 12% cell under simulated AM1 illumination were: V/sub OC/ = 0.582 volts, J/sub SC/ = 28.3 mA/cm/sup 2/ and F.F. = 73.0%.

  2. Chemical speciation at buried interfaces in high-temperature processed polycrystalline silicon thin-film solar cells on ZnO:Al

    NASA Astrophysics Data System (ADS)

    Becker, Christiane; Pagels, Marcel; Zachäus, Carolin; Pollakowski, Beatrix; Beckhoff, Burkhard; Kanngießer, Birgit; Rech, Bernd

    2013-01-01

    The combination of polycrystalline silicon (poly-Si) thin films with aluminum doped zinc oxide layers (ZnO:Al) as transparent conductive oxide enables the design of appealing optoelectronic devices at low costs, namely in the field of photovoltaics. The fabrication of both thin-film materials requires high-temperature treatments, which are highly desired for obtaining a high electrical material quality. Annealing procedures are typically applied during crystallization and defect-healing processes for silicon and can boost the carrier mobility and conductivity of ZnO:Al layers. In a combined poly-Si/ZnO:Al layer system, an in-depth knowledge of the interaction of both layers and the control of interface reactions upon thermal treatments is crucial. Therefore, we analyze the influence of rapid thermal treatments up to 1050 °C on solid phase crystallized poly-Si thin-film solar cells on ZnO:Al-coated glass, focusing on chemical interface reactions and modifications of the poly-Si absorber material quality. The presence of a ZnO:Al layer in the solar cell stack was found to limit the poly-Si solar cell performance with open circuit voltages only below 390 mV (compared to 435 mV without ZnO film), even if a silicon nitride (SiN) diffusion barrier was included. A considerable amount of diffused zinc inside the silicon was observed. By grazing-incidence X-ray fluorescence spectrometry, a depth-resolving analysis of the elemental composition close to the poly-Si/(SiN)/ZnO:Al interface was carried out. Temperatures above 1000 °C were found to promote the formation of new chemical compounds within about 10 nm of interface, such as zinc silicates (Zn2SiO4) and aluminium oxide (AlxOy). These results give valuable insights about the temperature-limitations of Si/ZnO thin-film solar cell fabrication and the formation of high-mobility ZnO-layers by thermal anneal.

  3. High-performance flexible thin-film transistors fabricated using print-transferrable polycrystalline silicon membranes on a plastic substrate

    NASA Astrophysics Data System (ADS)

    Qin, Guoxuan; Yuan, Hao-Chih; Yang, Hongjun; Zhou, Weidong; Ma, Zhenqiang

    2011-02-01

    Inexpensive polycrystalline Si (poly-Si) with large grain size is highly desirable for flexible electronics applications. However, it is very challenging to directly deposit high-quality poly-Si on plastic substrates due to processing constrictions, such as temperature tolerance and residual stress. In this paper, we present our study on poly-Si membranes that are stress free and most importantly, are transferrable to any substrate including a low-temperature polyethylene terephthalate (PET) substrate. We formed poly-Si-on-insulator by first depositing small-grain size poly-Si on an oxidized Si wafer. We then performed high-temperature annealing for recrystallization to obtain larger grain size. After selective doping on the poly-Si-on-insulator, buried oxide was etched away. By properly patterning the poly-Si layer, residual stress in the released poly-Si membranes was completely relaxed. The flat membrane topology allows the membranes to be print transferred to any substrates. High-performance TFTs were demonstrated on the transferred poly-Si membranes on a PET substrate.

  4. Process for utilizing low-cost graphite substrates for polycrystalline solar cells

    NASA Technical Reports Server (NTRS)

    Chu, T. L. (Inventor)

    1978-01-01

    Low cost polycrystalline silicon solar cells supported on substrates were prepared by depositing successive layers of polycrystalline silicon containing appropriate dopants over supporting substrates of a member selected from the group consisting of metallurgical grade polycrystalline silicon, graphite and steel coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures thereof such that p-n junction devices were formed which effectively convert solar energy to electrical energy. To improve the conversion efficiency of the polycrystalline silicon solar cells, the crystallite size in the silicon was substantially increased by melting and solidifying a base layer of polycrystalline silicon before depositing the layers which form the p-n junction.

  5. Improvement of polycrystalline silicon wafer solar cell efficiency by forming nanoscale pyramids on wafer surface using a self-mask etching technique

    PubMed Central

    Lin, Hsin-Han; Chen, Wen-Hwa; Hong, Franklin C.-N.

    2013-01-01

    The creation of nanostructures on polycrystalline silicon wafer surface to reduce the solar reflection can enhance the solar absorption and thus increase the solar-electricity conversion efficiency of solar cells. The self-masking reactive ion etching (RIE) was studied to directly fabricate nanostructures on silicon surface without using a masking process for antireflection purpose. Reactive gases comprising chlorine (Cl2), sulfur hexafluoride (SF6), and oxygen (O2) were activated by radio-frequency plasma in an RIE system at a typical pressure of 120–130 mTorr to fabricate the nanoscale pyramids. Poly-Si wafers were etched directly without masking for 6–10 min to create surface nanostructures by varying the compositions of SF6, Cl2, and O2 gas mixtures in the etching process. The wafers were then treated with acid (KOH:H2O = 1:1) for 1 min to remove the damage layer (100 nm) induced by dry etching. The damage layer significantly reduced the solar cell efficiencies by affecting the electrical properties of the surface layer. The light reflectivity from the surface after acid treatment could be significantly reduced to <10% for the wavelengths between 500 and 900 nm. The effects of RIE and surface treatment conditions on the surface nanostructures and the optical performance as well as the efficiencies of solar cells will be presented and discussed. The authors have successfully fabricated large-area (156 × 156 mm2) subwavelength antireflection structure on poly-Si substrates, which could improve the solar cell efficiency reproducibly up to 16.27%, higher than 15.56% using wet etching. PMID:23847751

  6. Polycrystalline silicon thin-film transistor with nickel-titanium oxide by sol-gel spin-coating and nitrogen implantation

    NASA Astrophysics Data System (ADS)

    Wu, Shih-Chieh; Hou, Tuo-Hung; Chuang, Shiow-Huey; Chou, Hsin-Chih; Chao, Tien-Sheng; Lei, Tan-Fu

    2012-12-01

    This study demonstrates polycrystalline silicon thin-film transistors (poly-Si TFTs) integrated with a high-κ nickel-titanium oxide (NiTiO3) gate dielectric using sol-gel spin-coating and nitrogen channel implantation. This novel fabrication method of the high-κ NiTiO3 gate dielectric offers thin equivalent-oxide thickness and high gate capacitance density, favorable for increasing the current driving capability. Introducing nitrogen ions into the poly-Si using implantation effectively passivates the trap states not only in the poly-Si channel but also at the gate dielectric/poly-Si interface. The poly-Si NiTiO3 TFTs with nitrogen implantation exhibit significantly improved electrical characteristics, including lower threshold voltage, a steeper subthreshold swing, higher field-effect mobility, a larger on/off current ratio, and less threshold-voltage roll-off. Furthermore, the nitrogen implantation improves the reliability of poly-Si NiTiO3 TFTs against hot-carrier stress and positive bias temperature instability.

  7. Abnormal Threshold Voltage Shifts in P-Channel Low-Temperature Polycrystalline Silicon Thin Film Transistors Under Negative Bias Temperature Stress.

    PubMed

    Kim, Sang Sub; Choi, Pyung Ho; Baek, Do Hyun; Lee, Jae Hyeong; Choi, Byoung Deog

    2015-10-01

    In this research, we have investigated the instability of P-channel low-temperature polycrystalline silicon (poly-Si) thin-film transistors (LTPS TFTs) with double-layer SiO2/SiNx dielectrics. A negative gate bias temperature instability (NBTI) stress was applied and a turn-around behavior phenomenon was observed in the Threshold Voltage Shift (Vth). A positive threshold voltage shift occurs in the first stage, resulting from the negative charge trapping at the SiNx/SiO2 dielectric interface being dominant over the positive charge trapping at dielectric/Poly-Si interface. Following a stress time of 7000 s, the Vth switches to the negative voltage direction, which is "turn-around" behavior. In the second stage, the Vth moves from -1.63 V to -2 V, overwhelming the NBTI effect that results in the trapping of positive charges at the dielectric/Poly-Si interface states and generating grain-boundary trap states and oxide traps. PMID:26726370

  8. High-speed and high-efficiency Si optical modulator with MOS junction, using solid-phase crystallization of polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Fujikata, Junichi; Takahashi, Masashi; Takahashi, Shigeki; Horikawa, Tsuyoshi; Nakamura, Takahiro

    2016-04-01

    We developed a high-speed and high-efficiency MOS-capacitor-type Si optical modulator (Si-MOD) by applying a low optical loss and a low resistivity of a polycrystalline silicon (poly-Si) gate with large grains. To achieve a low resistivity of a poly-Si film, a P-doped poly-Si film based on Si2H6 solid-phase crystallization (SPC) was developed, which showed a comparable resistivity to that of P-doped single-crystal Si. In addition, high-temperature annealing (HTA) after SPC was effective for realizing low optical loss. We designed the optimum Si-MOD structure and demonstrated a very high modulation efficiency of 0.3 V cm, which is very efficient among the Si-MODs developed thus far. High-speed (15 Gbps) operation was achieved with a small footprint of the 200-µm-long phase shifter and a low drive voltage of 1.5 Vpp at a low optical insertion loss of -2.2 dB and 1.55 µm wavelength.

  9. An effective approach for restraining electrochemical corrosion of polycrystalline silicon caused by an HF-based solution and its application for mass production of MEMS devices

    NASA Astrophysics Data System (ADS)

    Liu, Yunfei; Xie, Jing; Zhao, Hui; Luo, Wei; Yang, Jinling; An, Ji; Yang, Fuhua

    2012-03-01

    This paper presents a novel method to effectively protect the structural material polycrystalline silicon (polysilicon) from electrochemical corrosion, which often occurs when the MEMS device is released in HF-based solutions, especially when the device contains a noble metal. This corrosion seriously degrades the electrical and mechanical performance as well as the reliability of MEMS devices. In this method, a photoresist (PR) is employed to cover the noble metal, which is electrically coupled with the underlying polysilicon layer. This PR cover can effectually prevent an HF-based solution from diffusing through and arriving at the surface of the noble metal, thus cutting off the electrical current of the electrochemical corrosion reaction. The polysilicon is well protected for longer than 80 min in 49% concentrated HF solutions by a 3 µm-thick AZ 6130 PR film. This fabrication process is simple, reliable and suitable for mass production of high-end micromechanical disk resonators. Benefiting from the technology breakthrough mentioned above, a novel low-cost microfabrication method for disk resonators with high performance has been developed, and the VHF polysilicon disk resonators with resonance frequencies around 282 MHz and Q values larger than 2000 at atmosphere have been produced at wafer level.

  10. Reliability in Short-Channel p-Type Polycrystalline Silicon Thin-Film Transistor under High Gate and Drain Bias Stress

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Hwan; Kim, Sun-Jae; Mo, Yeon-Gon; Kim, Hye-Dong; Han, Min-Koo

    2010-03-01

    We have investigated the electrical characteristics of short-channel p-type excimer laser annealed (ELA) polycrystalline silicon (poly-Si) thin-film transistors (TFTs) under high gate and drain bias stress. We found that the threshold voltage of short-channel TFTs was significantly shifted in the negative direction owing to high gate and drain bias stress (ΔVTH = -2.08 V), whereas that of long-channel TFTs was rarely shifted in the negative direction (ΔVTH = -0.10 V). This negative shift of threshold voltage in the short-channel TFT may be attributed to interface state generation near the source junction and deep trap state creation near the drain junction between the poly-Si film and the gate insulator layer. It was also found that the gate-to-drain capacitance (CGD) characteristic of the stressed TFT severely stretched for the gate voltage below the flat band voltage VFB. The effects of high gate and drain bias stress are related to hot-hole-induced donor like interface state generation. The transfer characteristics of the forward and reverse modes after the high gate and drain bias stress also indicate that the interface state generation at the gate insulator/channel interface occurred near the source junction region.

  11. Reliability in Short-Channel p-Type Polycrystalline Silicon Thin-Film Transistor under High Gate and Drain Bias Stress

    NASA Astrophysics Data System (ADS)

    Sung-Hwan Choi,; Sun-Jae Kim,; Yeon-Gon Mo,; Hye-Dong Kim,; Min-Koo Han,

    2010-03-01

    We have investigated the electrical characteristics of short-channel p-type excimer laser annealed (ELA) polycrystalline silicon (poly-Si) thin-film transistors (TFTs) under high gate and drain bias stress. We found that the threshold voltage of short-channel TFTs was significantly shifted in the negative direction owing to high gate and drain bias stress (Δ VTH = -2.08 V), whereas that of long-channel TFTs was rarely shifted in the negative direction (Δ VTH = -0.10 V). This negative shift of threshold voltage in the short-channel TFT may be attributed to interface state generation near the source junction and deep trap state creation near the drain junction between the poly-Si film and the gate insulator layer. It was also found that the gate-to-drain capacitance (CGD) characteristic of the stressed TFT severely stretched for the gate voltage below the flat band voltage VFB. The effects of high gate and drain bias stress are related to hot-hole-induced donor like interface state generation. The transfer characteristics of the forward and reverse modes after the high gate and drain bias stress also indicate that the interface state generation at the gate insulator/channel interface occurred near the source junction region.

  12. High quality SiO2/Si interfaces of poly-crystalline silicon thin film transistors by annealing in wet atmosphere

    NASA Astrophysics Data System (ADS)

    Sano, Naoki; Sekiya, Mitsunobu; Hara, Masaki; Kohno, Atsushi; Sameshima, Toshiyuki

    1995-05-01

    A new post-metallization annealing technique was developed to improve the quality of metal-oxide-semiconductor (MOS) devices using SiO2 films formed by a parallel-plate remote plasma chemical vapor deposition as gate insulators. The quality of the interface between SiO2 and crystalline Si was investigated by capacitance-voltage (C-V) measurements. An H2O vapor annealing at 270 C for 30 min efficiently decreased the interface trap density to 2.0 x 10(exp 10) cm(exp -2) eV(exp -1), and the effective oxide charge density from 1 x 10(exp 12) to 5 x 10(exp 9) cm(exp -2). This annealing process was also applied to the fabrication of Al-gate polycrystalline silicon thin film transistors (poly-Si TFT's) at 270 C. In p-channel poly-Si TFT's, the carrier mobility increased from 60-400 cm(exp 2) V(exp -1) s(exp - 1) and the threshold voltage decreased from - 5.5 to - 1.7 V.

  13. Stress-Induced Off-Current under On- and Off-State Stress Voltages in Low-Temperature n-Channel Polycrystalline Silicon Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Seishiro Hirata,; Toshifumi Satoh,; Hiroyuki Tango,

    2010-03-01

    The changes in off-current under on- and off-state stress voltages in n-channel polycrystalline silicon (poly-Si) thin-film transistors (TFTs) are investigated through measurements and simulations. It is found that the off-current increases markedly in the shallow-negative-gate-voltage region and decreases in the deep-gate-voltage region after applying both on- and off-state stresses, resulting in a weaker dependence on negative gate voltage. It can be supposed from the simulations and experiments that the donor-type trap states (positive charges) with a hump-type state profile, located at 0.1-0.2 eV below the midgap, and tail states are generated near the drain junction after applying both stresses. The amount of donor-type states increases in phonon-assisted tunneling with the Pool-Frenkel effect (PAT) and Schockley-Read-Hall generation (SRH) owing to the increase in the deep-trap-state density, and decreases in band-to-band tunneling (BBT) owing to the decrease in electric field, giving rise to a predominant PAT+SRH current in off-current in a wide-negative-gate-voltage region.

  14. Exploratory development of thin-film polycrystalline silicon photovoltaic devices. Report No. 3. Electron beam ribbon-to-ribbon (EB RTR) recrystallization of microcrystalline silicon ribbons

    SciTech Connect

    Gurtler, R.W.

    1981-09-01

    The electron beam has been applied as the energy source for ribbon-to-ribbon (RTR) recrystallization of thin-film silicon with very small (approx. 1 ..mu..m) grains into sheets with very large grains (> 1 cm). The system described uses two e-guns, one for producing a thin molten region across the microcrystalline ribbon (except for the edges), the other for establishing desirable thermal profiles in the cool-down (and heat-up) regions. In this way, no furnace, heat shield, or cooling structures are present, in contrast to all the other ribbon growing techniques. This simple arrangement is gained at the (reasonable) expense of having to work in a vacuum. A CCTV camera observes the temperature distribution and melt shape during growth; its output is coupled to a real-time image analyzer system and a computer. When there is a need to alter the temperature or melt shape in a region, the deflection/modulation circuitry is appropriately instructed, and (closing the loop) the change is made. The vacuum chamber with cassette feed for ribbons, electron guns, and camera, was completed and placed in operation. The overall system was run with a fined temperature profile for small RTR samples; resulting thin-film silicon ribbon quality was comparable to that obtained with laser beam RTR. The entire electronic system was not finished, however, so potential utility of the system for improving silicon ribbon quality and economics could not be ascertained.

  15. Effect of Heat Treatment in Air on Thermoelectric Properties of Polycrystalline Type-I Silicon-Based Clathrate: Ba8Al15Si31

    NASA Astrophysics Data System (ADS)

    Anno, Hiroaki; Shirataki, Ritsuko

    2015-06-01

    The effect of heat treatment in air on the thermoelectric properties was investigated for polycrystalline Ba8Al15Si31, where the Al content is almost at the maximum in the Ba8Al x Si46- x system, to evaluate the thermal stability in air at high temperatures, which is indispensable for practical use in thermoelectric applications. Samples were prepared by combining arc melting and spark plasma sintering techniques. Heat treatments were performed in air at 873 K for 10 days and 20 days. The Seebeck coefficient, electrical conductivity, and thermal conductivity were measured before and after the heat treatments. The microstructure and chemical composition were also analyzed before and after the heat treatments, using scanning electron microscopy with energy-dispersive x-ray spectroscopy. Although an oxidation layer was formed on the surface by the heat treatment in air, the chemical composition of the interior of Ba8Al15Si31 was found to be stable in air at 873 K for 10 days and 20 days. The Seebeck coefficient, the electrical conductivity, and the thermal conductivity were found to be almost unchanged after the heat treatment, indicating that Ba8Al15Si31 clathrate is promising as a thermoelectric material with high thermal stability for use in air at 873 K.

  16. Nanoscale deformation and fracture mechanics of polycrystalline silicon and diamond-like carbon for MEMS by the AFM/DIC method

    NASA Astrophysics Data System (ADS)

    Cho, Sung Woo

    A method for nanoscale experimental mechanics was developed to address problems in deformation and fracture of micron-scale components in Microelectromechanical Systems (MEMS). Specifically, the effective and local, elastic and fracture behavior of polycrystalline silicon (polysilicon) and tetrahedral amorphous diamond-like carbon (ta-C) were studied using freestanding thin films subject to uniaxial tension. In this method, direct measurements of local deformations were derived from Atomic Force Microscopy (AFM) images in specimen areas varying between 1x2 mum2 and 15x15 mum2 using Digital Image Correlation (DIC) to extract displacements and strains with spatial resolution of 1-2 nm. The effective elastic modulus and Poisson's ratio of polysilicon and ta-C from the Sandia National Laboratories (SUMMiT) were 155 +/- 6 GPa and 0.22 +/- 0.02, and 759 +/- 22 GPa and 0.17 +/- 0.03, respectively. Similarly, the elastic modulus and Poisson's ratio of polysilicon fabricated at MCNC via the Multi-User MEMS Processes (MUMPs) with <110> texture were 164 +/- 7 GPa and 0.22 +/- 0.02, respectively. A second problem studied using the AFM/DIC method was the fracture of polysilicon in the presence of atomically sharp cracks. The effective (macroscopic) Mode-I critical stress intensity factor for polysilicon from different MUMPs runs was 1.00 +/- 0.1 MPa√m, where 0.1 MPa√m was the standard deviation, attributed to local cleavage anisotropy and grain boundary toughening. The variation in the effective critical stress intensity factor and the subcritical crack growth of polysilicon that was spatially recorded and quantified for the first time were the result of the spatial variation of the 4 local stress intensity factor at the crack tip that controlled crack initiation and thus, the overall fracture process. The AFM/DIC method was also applied to determine the minimum size of a polysilicon domain whose effective mechanical behavior could be described by the isotropic elastic

  17. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  18. Abnormality in fracture strength of polycrystalline silicene

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Hong, Jiawang; Pidaparti, Ramana; Wang, Xianqiao

    2016-09-01

    Silicene, a silicon-based homologue of graphene, arouses great interest in nano-electronic devices due to its outstanding electronic properties. However, its promising electronic applications are greatly hindered by lack of understanding in the mechanical strength of silicene. Therefore, in order to design mechanically reliable devices with silicene, it is necessary to thoroughly explore the mechanical properties of silicene. Due to current fabrication methods, graphene is commonly produced in a polycrystalline form; the same may hold for silicene. Here we perform molecular dynamics simulations to investigate the mechanical properties of polycrystalline silicene. First, an annealing process is employed to construct a more realistic modeling structure of polycrystalline silicene. Results indicate that a more stable structure is formed due to the breaking and reformation of bonds between atoms on the grain boundaries. Moreover, as the grain size decreases, the efficiency of the annealing process, which is quantified by the energy change, increases. Subsequently, biaxial tensile tests are performed on the annealed samples in order to explore the relation between grain size and mechanical properties, namely in-plane stiffness, fracture strength and fracture strain etc. Results indicate that as the grain size decreases, the fracture strain increases while the fracture strength shows an inverse trend. The decreasing fracture strength may be partly attributed to the weakening effect from the increasing area density of defects which acts as the reservoir of stress-concentrated sites on the grain boundary. The observed crack localization and propagation and fracture strength are well-explained by a defect-pileup model.

  19. Upgrading Metallurgical-Grade Silicon

    NASA Technical Reports Server (NTRS)

    Woerner, L. M.; Moore, E. B.

    1985-01-01

    Closed-loop process produces semiconductor-grade silicon. Metallurgical-grade silicon converted to ultrapure silicon by reacting with hydrogen and silicon tetrahalide to form trihalosilane, purifying this intermediate and again decomposing to high purity silicon in third stage. Heterogeneously and homogeneously nucleated polycrystalline silicon used in semiconductor device applications and in silicon photovoltaic solar cell fabrication.

  20. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  1. Top-Coating Silicon Onto Ceramic

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Nelson, L. D.; Zook, J. D.

    1985-01-01

    Polycrystalline silicon for solar cells produced at low cost. Molten silicon poured from quartz trough onto moving carbon-coated ceramic substrate. Doctor blade spreads liquid silicon evenly over substrate. Molten material solidifies to form sheet of polycrystalline silicon having photovoltaic conversion efficiency greater than 10 percent. Method produces 100-um-thick silicon coatings at speed 0.15 centimeter per second.

  2. Plastic flow of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Langer, James

    Leo Kadanoff had a long interest in fluid flows, especially fingering instabilities. This interest was one example of his insatiable curiosity about simple, fundamentally important, and often multidisciplinary phenomena. Here is an example of another class of such phenomena that I had hoped to show him this year. The experts in polycrystalline solid mechanics have insisted for decades that their central problem - dislocation-mediated strain hardening - is intrinsically unsolvable. I think they're wrong. My colleagues and I have made progress recently in theories of both amorphous and polycrystalline plasticity by introducing an effective disorder temperature as a dynamical variable in our equations of motion. In this way, we have been able to describe how the densities of flow defects or dislocations evolve in response to external forcing, and thus to develop theories that promise to become as predictive, and full of surprises, as the laws of fluid flow. For Kadanoff session.

  3. Silicon film solar cell process

    NASA Technical Reports Server (NTRS)

    Hall, R. B.; Mcneely, J. B.; Barnett, A. M.

    1984-01-01

    The most promising way to reduce the cost of silicon in solar cells while still maintaining performance is to utilize thin films (10 to 20 microns thick) of crystalline silicon. The method of solution growth is being employed to grow thin polycrystalline films of silicon on dissimilar substrates. The initial results indicate that, using tin as the solvent, this growth process only requires operating temperatures in the range of 800 C to 1000 C. Growth rates in the range of 0.4 to 2.0 microns per minute and grain sizes in the range of 20 to 100 microns were achieved on both quartz and coated steel substrates. Typically, an aspect ratio of two to three between the width and the Si grain thickness is seen. Uniform coverage of Si growth on quartz over a 2.5 x 2.5 cm area was observed.

  4. First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Song, Xiaohui; Wang, Yongyong; Wang, Jinfeng

    2015-08-01

    Among the various atomic structures of Co doped in the Si lattice, the substitutional Co is the most stable structure and can cause an impurity band in the band gap of crystalline Si. The impurity band is partially filled by electrons and isolated from the valence band (VB) and conduction band (CB), which fulfills the conditions of an intermediate-band (IB) photovoltaic material. The dielectric constant indicates that the substitutional Co-doped Si material can cause sub-band-gap light absorption. These properties will make the Co-hyperdoped Si a promising IB material in photovoltaic fields.

  5. Silicon and phosphorus dual doped graphene as the promising metal-free catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Lu, Zhansheng; Li, Shuo; Yang, Zongxian; Wu, Ruqian

    The pathways of oxygen reduction reaction (ORR) on the metal-free silicon and phosphorus dual doped graphene (Si-P-G) catalyst are systematically investigated based on the dispersion-corrected density functional theory (DFT-D) method. It is found that the Si-P-G can be stable at high temperature from the first-principles molecular dynamics simulation and the local region of dopants displays an important role in the adsorption and reduction of oxygen. Both of the four-electron O2 direct dissociation and the two-electron OOH dissociation pathways are probable for ORR on the Si-P-G, while the latter pathway is mainly followed by the pathway of the OH hydrogenation into H2O. For the OOH dissociation pathway, the hydrogenation of O2 to OOH is the rate-limiting step with a rather small barrier energy of 0.66 eV. The current results indicate that the Si-P-G is a novel metal-free catalyst for ORR, and which is comparable to that of the Pt catalyst. Work was supported by the National Science Foundation Center for Chemical Innovation on Chemistry at the Space-Time Limit (CaSTL) under Grant No. CHE-1414466, and the National Natural Science Foundation of China (Grant Nos. 51401078, and 11474086).

  6. Optical Sensing Circuit Using Low-Temperature Polycrystalline Silicon p-Type Thin-Film Transistors and p-Intrinsic-Metal Diode for Active Matrix Displays with Optical Input Functions

    NASA Astrophysics Data System (ADS)

    Lim, Han-Sin; Kwon, Oh-Kyong

    2009-03-01

    An optical sensing circuit composed of low-temperature polycrystalline silicon (LTPS) p-type thin-film transistors (TFTs) and a p-intrinsic-metal (p-i-m) diode is proposed for image scanning and touch sensing functions. Because it is a very difficult challenge to integrate both display pixels and optical sensing circuits into the restricted pixel area, the number of additional devices and control signal lines must be minimized. Therefore, two p-type TFTs, one p-i-m diode, one capacitor, and one signal line are added to display pixel for the proposed optical sensing circuit. Active matrix liquid crystal display (AMLCD) and active matrix organic light-emitting diode (AMOLED) pixels with the proposed optical sensing circuit have image scanning and touch sensing functions, respectively. Through the measurement of the proposed circuit under the condition of incident light varying from 0 to 10,000 lx, we verified that the dynamic and output ranges of the proposed circuit are 30 dB and 1.5 V, respectively.

  7. Role of surface-reaction layer in HBr/fluorocarbon-based plasma with nitrogen addition formed by high-aspect-ratio etching of polycrystalline silicon and SiO2 stacks

    NASA Astrophysics Data System (ADS)

    Iwase, Taku; Matsui, Miyako; Yokogawa, Kenetsu; Arase, Takao; Mori, Masahito

    2016-06-01

    The etching of polycrystalline silicon (poly-Si)/SiO2 stacks by using VHF plasma was studied for three-dimensional NAND fabrication. One critical goal is achieving both a vertical profile and high throughput for multiple-stack etching. While the conventional process consists of multiple steps for each stacked layer, in this study, HBr/fluorocarbon-based gas chemistry was investigated to achieve a single-step etching process to reduce process time. By analyzing the dependence on wafer temperature, we improved both the etching profile and rate at a low temperature. The etching mechanism is examined considering the composition of the surface reaction layer. X-ray photoelectron spectroscopy (XPS) analysis revealed that the adsorption of N–H and Br was enhanced at a low temperature, resulting in a reduced carbon-based-polymer thickness and enhanced Si etching. Finally, a vertical profile was obtained as a result of the formation of a thin and reactive surface-reaction layer at a low wafer temperature.

  8. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  9. Status of polycrystalline solar cell technologies

    NASA Astrophysics Data System (ADS)

    Kapur, Vijay K.; Basol, Bulent M.

    Thin-film cadmium telluride (CdTe) and thin-film copper indium diselenide (CIS) solar cells are discussed. The issues these technologies face before commercialization are addressed. High-efficiency (15-18 percent) polycrystalline silicon modules could dominate the market in the near future, and impressive results for thin-film CdTe and CIS solar cells and their outdoor stability can attract increased interest in these solar cells, which will accelerate their development.

  10. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    NASA Astrophysics Data System (ADS)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  11. Diffusion in polycrystalline microstructures

    SciTech Connect

    Swiler, T.P.; Holm, E.A.

    1995-07-01

    Mass transport properties are important in polycrystalline materials used as protective films. Traditionally, such properties have been studied by examining model polycrystalline structures, such as a regular array of straight grain boundaries. However, these models do not account for a number of features of real grain ensembles, including the grain size distribution and the topological aspects of grain boundaries. In this study, a finite difference scheme is developed to study transient and steady-state mass transport through realistic two-dimensional polycrystalline microstructures. Effects of microstructural parameters such as average grain size and grain boundary topology are examined, as are effects due to limits of the model.

  12. Silicon materials outlook study for 1980-1985 calendar years

    NASA Technical Reports Server (NTRS)

    Costogue, E.; Ferber, R.; Hasbach, W.; Pellin, R.; Yaws, C.

    1979-01-01

    The polycrystalline silicon industry was studied in relation to future market needs. Analysis of the data obtained indicates that there is a high probability of polycrystalline silicon shortage by the end of 1982 and a strong seller's market after 1981 which will foster price competition for available silicon.

  13. Thin film polycrystalline silicon solar cells

    SciTech Connect

    Ghosh, A. K.; Feng, T.; Eustace, D. J.; Maruska, H. P.

    1980-01-01

    During the present quarter efficiency of heterostructure solar cells has been increased from 13 to 13.7% for single crystal and from 10.3 to 11.2% for polysilicon. For polysilicon the improvements can be attributed to reductions in grid-area coverage and in reflection losses and for single crystal to a combination of reduction in grid-area coverage and increase in fill factor. The heterostructure cells in both cases were IT0/n-Si solar cells. Degradation in Sn0/sub 2//n-Si solar cells can be greatly reduced to negligible proportions by proper encapsulation. The cells used in stability tests have an average initial efficiency of 11% which reduces to a value of about 10.5% after 6 months of exposure to sunlight and ambient conditions. This small degradation occurs within the first month, and the efficiency remains constant subsequently. The reduction in efficiency is due to a decrease in the open-circuit voltage only, while the short-circuit current and fill factor remain constant. The effects of grain-size on the Hall measurements in polysilicon have been analyzed and interpreted, with some modifications, using a model proposed by Bube. This modified model predicts that the measured effective Hall voltage is composed of components originating from the bulk and space-charge region. For materials with large grains, the carrier concentration is independent of the inter-grain boundary barrier, whereas the mobility is dependent on it. However, for small rains, both the carrier density and mobility depend on the barrier. These predictions are consistant with experimental results of mm-size Wacker polysilicon and ..mu..m-size NTD polysilicon.

  14. Thermal conductivity measurements of Summit polycrystalline silicon.

    SciTech Connect

    Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

    2006-11-01

    A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

  15. Point defects in silicon carbide as a promising basis for spectroscopy of single defects with controllable quantum states at room temperature

    NASA Astrophysics Data System (ADS)

    Soltamov, V. A.; Tolmachev, D. O.; Il'in, I. V.; Astakhov, G. V.; Dyakonov, V. V.; Soltamova, A. A.; Baranov, P. G.

    2015-05-01

    The spin and optical properties of silicon vacancy defects in silicon carbide of the hexagonal 6 H polytype have been investigated using photoluminescence, electron paramagnetic resonance, and X-band optically detected magnetic resonance. It has been shown that different configurations of these defects can be used to create an optical alignment of their spin sublevels as in the case of low temperatures and at temperatures close to room temperature ( T = 293 K). The main specific feature of silicon vacancy centers in silicon carbide is that the zero-magnetic-field-splitting parameter of some centers remains constant with variations in the temperature, which indicates prospects for the use of these centers for quantum magnetometry. It has also been shown that a number of centers, on the contrary, are characterized by a strong dependence of the zero-magnetic-field-splitting parameter on the temperature, which indicates prospects for the use of these centers as temperature sensors.

  16. Polycrystalline photovoltaic cell

    SciTech Connect

    Jordan, J.F.; Lampkin, C.M.

    1983-10-25

    A photovoltaic cell is disclosed, having an electrically conductive substrate, which may be glass having a film of conductive tin oxide; a first layer containing a suitable semiconductor, which layer has a first component film with an amorphous structure and a second component film with a polycrystalline structure; a second layer forming a heterojunction with the first layer; and suitable electrodes where the heterojunction is formed from a solution containing copper, the amorphous film component is superposed above an electrically conductive substrate to resist permeation of the copper-containing material to shorting electrical contact with the substrate. The penetration resistant amorphous layer permits a variety of processes to be used in forming the heterojunction with even very thin layers (1-6 /SUB u/ thick) of underlying polycrystalline semiconductor materials. In some embodiments, the amorphous-like structure may be formed by the addition of aluminum or zirconium compounds to a solution of cadmium salts sprayed over a heated substrate.

  17. Polycrystalline thin film photovoltaics

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Ullal, H. S.; Mitchell, R. L.

    Significant progress has recently been made towards improving the efficiencies of polycrystalline thin-film solar cells and modules using CuInSe2 and CdTe. The history of using CuInSe2 and CdTe for solar cells is reviewed. Initial outdoor stability tests of modules are encouraging. Progress in semiconductor deposition techniques has also been substantial. Both CuInSe2 and CdTe are positioned for commercialization during the 1990s. The major participants in developing these materials are described. The US DOE/SERI (Solar Energy Research Institute) program recognizes the rapid progress and important potential of polycrystalline thin films to meet ambitious cost and performance goals. US DOE/SERI is in the process of funding an initiative in this area with the goal of ensuring US leadership in the development of these technologies. The polycrystalline thin-film module development initiative, the modeling and stability of the devices, and health and safety issues are discussed.

  18. Patterned polycrystalline diamond microtip vacuum diode arrays

    SciTech Connect

    Kang, W.P.; Davidson, J.L.; Kinser, D.L.

    1995-12-31

    Electron field emission from an array of patterned pyramids of polycrystalline diamond for vacuum diode applications has been investigated. High current emission from the patterned diamond microtip arrays are obtained at low electric fields. A current density from the diamond microtips of 14mA/cm{sup 2} was observed for a field of <10 V/{mu}m. Field emission for these diamond microtips exhibits significant enhancement both in total emission current and stability compared to pure silicon emitters. Moreover, field emission from patterned polycrystalline diamond pyramidal tip arrays is unique in that the applied field is found to be lower (2-3 order of magnitude lower) compared to that required for emission from Si, Ge, GaAs, and metal surfaces. The fabrication process utilizing silicon shaping and micromachining techniques for the fabrication of diamond diaphragms with diamond microtip arrays for vacuum microelectronic applications has been developed. The processing techniques are compatible with IC fabrication technology. The effect of temperature annealing on the current emission characteristics were also investigated.

  19. Keeping Promises

    NASA Technical Reports Server (NTRS)

    Howell, Gregory A.

    2005-01-01

    Commitments are between people, not schedules. Project management as practiced today creates a "commitment-free zone," because it assumes that people will commit to centrally managed schedules without providing a mechanism to ensure their work can be done. So they give it their best, but something always seems to come up ..."I tried, but you know how it is." This form of project management does not provide a mechanism to ensure that what should be done, can in fact be done at the required moment. Too often, promises reliable promise. made in coordination meetings are conditional and unreliable. It has been my experience that at times trust can be low and hard to build in this environment. The absence of reliable promises explains why on well-run projects, people are often only completing 30-50 percent of the deliverables they d promised for the week. We all know what a promise is; we have plenty of experience making them and receiving them from others. So what s the problem? The sad fact is that the project environment-like many other work environments- is often so filled with systemic dishonesty, that we don t expect promises that are reliable. Project managers excel when they manage their projects as networks of commitments and help their people learn to elicit and make reliable promises.

  20. Polycrystalline thin-films

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Mitchell, R.

    1986-02-01

    This annual report summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Major subcontracted work in this area has concentrated on development of CuInSe2 and CdTe technologies. During FY 1985, major progress was achieved by subcontractors in: (1) developing a new, low-cost method of fabricating CuInSe2, and (2) improving the efficiency of CuInSe2 devices by about 10% (relative). The report also lists research planned to meet the Department of Energy's goals in these technologies.

  1. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, Andreas M.; Haggerty, John S.; Danforth, Stephen C.

    1983-01-01

    A process for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by imgingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step.

  2. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, A.M.; Haggerty, J.S.; Danforth, S.C.

    1983-04-05

    A process is described for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by impingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step. 10 figs.

  3. Phosphorus and boron diffusion paths in polycrystalline silicon gate of a trench-type three-dimensional metal-oxide-semiconductor field effect transistor investigated by atom probe tomography

    SciTech Connect

    Han, Bin Takamizawa, Hisashi Shimizu, Yasuo; Inoue, Koji; Nagai, Yasuyoshi; Yano, Fumiko; Kunimune, Yorinobu; Inoue, Masao; Nishida, Akio

    2015-07-13

    The dopant (P and B) diffusion path in n- and p-types polycrystalline-Si gates of trench-type three-dimensional (3D) metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated using atom probe tomography, based on the annealing time dependence of the dopant distribution at 900 °C. Remarkable differences were observed between P and B diffusion behavior. In the initial stage of diffusion, P atoms diffuse into deeper regions from the implanted region along grain boundaries in the n-type polycrystalline-Si gate. With longer annealing times, segregation of P on the grain boundaries was observed; however, few P atoms were observed within the large grains or on the gate/gate oxide interface distant from grain boundaries. These results indicate that P atoms diffuse along grain boundaries much faster than through the bulk or along the gate/gate oxide interface. On the other hand, in the p-type polycrystalline-Si gate, segregation of B was observed only at the initial stage of diffusion. After further annealing, the B atoms became uniformly distributed, and no clear segregation of B was observed. Therefore, B atoms diffuse not only along the grain boundary but also through the bulk. Furthermore, B atoms diffused deeper than P atoms along the grain boundaries under the same annealing conditions. This information on the diffusion behavior of P and B is essential for optimizing annealing conditions in order to control the P and B distributions in the polycrystalline-Si gates of trench-type 3D MOSFETs.

  4. Metal induced crystallization of amorphous silicon for photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Van Gestel, D.; Gordon, I.; Poortmans, J.

    A silicon thin-film technology could lead to less expensive modules by the use of less silicon material and by the implementation of monolithic module processes. A technology based on polycrystalline-silicon thin-films with a grain size between 1 μm and 1 mm (pc-Si), seems particularly promising since it combines the low-cost potential of a thin-film technology with the high efficiency potential of crystalline silicon. One of the possible approaches to fabricate pc-Si absorber layers is metal induced crystallization (MIC). For solar cell applications mainly aluminium is investigated as metal because 1) it forms a eutectic system with silicon instead of a silicide-metal system like e.g. Ni 2) only shallow level defects are formed in the forbidden bandgap of silicon and 3) a layer exchange process can be obtained in combination with a-Si. Aluminum induced crystallization (AIC) of a-Si on non-silicon substrates can results in grains with a preferential (100) orientation and a maximum grain sizes above 50 micrometer. These layers can act as seed layers for further epitaxial growth. Based on this two-step approach (AIC + epitaxial growth) we made solar cells with an energy conversion efficiency of 8%. Based on TEM, EBIC, SEM, defect etch and EBSD measurements we showed that the efficiency is nowadays mainly limited by the presence of electrical intragrain defects.

  5. Gelcasting Polycrystalline Alumina

    SciTech Connect

    Janney, M.A.; Zuk, K.J.; Wei, G.C.

    2000-01-01

    OSRAM SYLVANIA INC. is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux TM line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency ({approximately}97% total transmittance in the visible), their refractoriness (inner wall temperature can reach l2OOC), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, up to 100 initial lumens per watt. (Compare incandescent lamps 10-20 lumens per watt, fluorescent lamps 25-90 lumens per watt.)

  6. Polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Mitchell, R.; Ullal, H.

    1987-02-01

    This annual report for fiscal year 1986 summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Subcontracted work in this area has concentrated on the development of CuInSe2 and CdTe technologies. During FY 1986, major progress was achieved by subcontractors in (1) achieving 10.5% (SERI-verified) efficiency with CdTe, (2) improving the efficiency of selenized CuInSe2 solar cells to nearly 8%, and (3) developing a transparent contact to CdTe cells for potential use in the top cells of tandem structures.

  7. National solar technology roadmap: Film-silicon PV

    SciTech Connect

    Keyes, Brian

    2007-06-01

    Silicon photovoltaic (PV) technologies are addressed in two different technology roadmaps: Film-Silicon PV and Wafer-Silicon PV. This Film-Silicon PV roadmap applies to all silicon-film technologies that rely on a supporting substrate such as glass, polymer, aluminum, stainless steel, or metallurgical-grade silicon. Such devices typically use amorphous, nanocrystalline, fine-grained polycrystalline, or epitaxial silicon layers that are 1–20 μm thick.

  8. Silicon-on ceramic process. Silicon sheet growth and device developmentt for the Large-Area Silicon Sheet Task of the Low-Cost Solar Array Project. Quarterly report No. 13, October 1-December 31, 1979

    SciTech Connect

    Chapman, P W; Zook, J D; Grung, B L; McHenry, K; Schuldt, S B

    1980-02-15

    Research on the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon is reported. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 11 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A variety of ceramic materials have been dip coated with silicon. The investigation has shown that mullite substrates containing an excess of SiO/sub 2/ best match the thermal expansion coefficient of silicon and hence produce the best SOC layers. With such substrates, smooth and uniform silicon layers 25 cm/sup 2/ in area have been achieved with single-crystal grains as large as 4 mm in width and several cm in length. Crystal length is limited by the length of the substrate. The thickness of the coating and the size of the crystalline grains are controlled by the temperature of the melt and the rate at which the substrate is withdrawn from the melt. The solar-cell potential of this SOC sheet silicon is promising. To date, solar cells with areas from 1 to 10 cm/sup 2/ have been fabricated from material with an as-grown surface. Conversion efficiencies of about 10 percent with antireflection (AR) coating have been achieved. Such cells typically have open-circuit voltage and short-circuit current densities of 0.55V and 23 mA/cm/sup 2/, respectively.

  9. Computational characterizations on the grain-size-dependent properties of polycrystalline nanomaterials

    NASA Astrophysics Data System (ADS)

    Hyun, Sangil; Park, Youngho; Kim, Hyo-tae

    2015-12-01

    The microstructures of real nanomaterials can be quite complex with variety of grain sizes aligned in different crystal orientations and structural defects possibly created in a fabrication process. Material properties of these polycrystalline materials are generally known strongly dependent on the nanoscale morphology. First principle calculations based on the density functional theory need to be employed in these atomic characterizations; however, it may not be suitable for the polycrystalline nanomaterials for which large number of atoms is required in the simulation model. Instead, a mesoscale computer simulation scheme is employed to investigate these morphology-dependent mechanical properties of polycrystalline materials. We demonstrated the Voronoi construction of various polycrystalline atomic models such as two-dimensional graphene and three-dimensional silicon carbide. General behavior of the mechanical characteristics of the bulk nanostructured silicon carbide (SiC) was addressed, particularly the contribution of grain sizes. From this study, the optimal grain size was determined near 10 nm under tensile and compressive deformations.

  10. Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.

    1981-01-01

    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.

  11. Low temperature production of large-grain polycrystalline semiconductors

    DOEpatents

    Naseem, Hameed A.; Albarghouti, Marwan

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  12. Silicon-rich SiO{sub 2}/SiO{sub 2} multilayers: A promising material for the third generation of solar cell

    SciTech Connect

    Gourbilleau, F.; Ternon, C.; Dufour, C.

    2009-07-01

    Si-rich-SiO{sub 2}(SRSO)/SiO{sub 2} multilayers (MLs) have been grown by reactive magnetron sputtering. The presence of silicon nanoclusters (Si-ncls) within the SRSO sublayer and annealing temperature influence optical absorption as well as photoluminescence. The optimized annealing temperature has been found to be 1100 deg. C, which allows the recovery of defects and thus enhances photoluminescence. Four MLs with Si-ncl size ranging from 1.5 to 8 nm have been annealed using the optimized conditions and then studied by transmission measurements. Optical absorption has been modeled so that a size effect in the linear absorption coefficient alpha (in cm{sup -1}) has been evidenced and correlated with TEM observations. It is demonstrated that amorphous Si-ncl absorption is fourfold higher than that of crystalline Si-ncls.

  13. Nucleation and growth studies of polycrystalline covalent materials

    NASA Astrophysics Data System (ADS)

    Yun, Jungheum

    The chemical vapor deposition of different covalent polycrystalline materials---including diamond, silicon carbide, and carbon nitride---in stagnation flow reactors was rigorously simulated to determine the nucleation and growth mechanisms of these materials. Kinetic models were used to predict the rates of gas-phase and surface chemistry, the temperature and velocity profiles, potential gaseous film growth precursors, the time evolution of nucleation and intermediate layer formation, and the morphological evolution of continuous polycrystalline films. Numerical studies were also carried out to determine the dependence of the kinetics of nucleation and subsequent polycrystalline film growth on operating conditions. The calculated results for carbon nitride deposition indicate that the experimentally measured bond types in the carbon nitride films must result from chemical bond rearrangement occurring on the deposition surface or in the bulk phase once gaseous film growth precursors, including C, CH2 , CH3, C2H2, N, NH, NH2, HCN, and H2CN, are adsorbed. Of these precursors, C and CH 3 dominate the carbon contribution to carbon nitride film growth, and atomic nitrogen is the principal nitrogen bearing species. When the evolution rates of a silicon carbide intermediate layer and diamond clusters are calculated by accounting for gas-phase and surface reactions, surface and bulk diffusion, the mechanism for intermediate layer formation, and heterogeneous diamond nucleation kinetics, it is predicted that higher adsorption energies, in the range of 3.7 to 4.5 eV, lead to larger surface adatom densities, lower saturated nucleation densities, and larger silicon carbide intermediate layer thicknesses. The intermediate layer thickness becomes saturated while the growing diamond nuclei still cover a very small fraction of the silicon carbide. Reports of heteroepitaxial diamond nucleation without silicon carbide intermediate layer formation may be readily explained by a

  14. Continuous method of producing silicon carbide fibers

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Nguyen, Kimmai Thi (Inventor); Rabe, James Alan (Inventor)

    1999-01-01

    This invention pertains to a method for production of polycrystalline ceramic fibers from silicon oxycarbide (SiCO) ceramic fibers wherein the method comprises heating an amorphous ceramic fiber containing silicon and carbon in an inert environment comprising a boron oxide and carbon monoxide at a temperature sufficient to convert the amorphous ceramic fiber to a polycrystalline ceramic fiber. By having carbon monoxide present during the heating of the ceramic fiber, it is possible to achieve higher production rates on a continuous process.

  15. Gelcasting polycrystalline alumina

    SciTech Connect

    Janney, M.A.

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  16. Process for forming retrograde profiles in silicon

    DOEpatents

    Weiner, Kurt H.; Sigmon, Thomas W.

    1996-01-01

    A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  17. Process for forming retrograde profiles in silicon

    DOEpatents

    Weiner, K.H.; Sigmon, T.W.

    1996-10-15

    A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  18. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  19. Development of Novel Polycrystalline Ceramic Scintillators

    SciTech Connect

    Wisniewska, Monika; Boatner, Lynn A; Neal, John S; Jellison Jr, Gerald Earle; Ramey, Joanne Oxendine; North, Andrea L; Wisniewski, Monica; Payzant, E Andrew; Howe, Jane Y; Lempicki, Aleksander; Brecher, Charlie; Glodo, J.

    2008-01-01

    For several decades most of the efforts to develop new scintillator materials have concentrated on high-light-yield inorganic single-crystals while polycrystalline ceramic scintillators, since their inception in the early 1980 s, have received relatively little attention. Nevertheless, transparent ceramics offer a promising approach to the fabrication of relatively inexpensive scintillators via a simple mechanical compaction and annealing process that eliminates single-crystal growth. Until recently, commonly accepted concepts restricted the polycrystalline ceramic approach to materials exhibiting a cubic crystal structure. Here, we report our results on the development of two novel ceramic scintillators based on the non-cubic crystalline materials: Lu SiO:Ce (LSO:Ce) and LaBr:Ce. While no evidence for texturing has been found in their ceramic microstructures, our LSO:Ce ceramics exhibit a surprisingly high level of transparency/ translucency and very good scintillation characteristics. The LSO:Ce ceramic scintillation reaches a light yield level of about 86% of that of a good LSO:Ce single crystal, and its decay time is even faster than in single crystals. Research on LaBr:Ce shows that translucent ceramics of the high-light-yield rare-earth halides can also be synthesized. Our LaBr:Ce ceramics have light yields above 42 000 photons/MeV (i.e., 70%of the single-crystal light yield).

  20. Smart integration of silicon nanowire arrays in all-silicon thermoelectric micro-nanogenerators

    NASA Astrophysics Data System (ADS)

    Fonseca, Luis; Santos, Jose-Domingo; Roncaglia, Alberto; Narducci, Dario; Calaza, Carlos; Salleras, Marc; Donmez, Inci; Tarancon, Albert; Morata, Alex; Gadea, Gerard; Belsito, Luca; Zulian, Laura

    2016-08-01

    Micro and nanotechnologies are called to play a key role in the fabrication of small and low cost sensors with excellent performance enabling new continuous monitoring scenarios and distributed intelligence paradigms (Internet of Things, Trillion Sensors). Harvesting devices providing energy autonomy to those large numbers of microsensors will be essential. In those scenarios where waste heat sources are present, thermoelectricity will be the obvious choice. However, miniaturization of state of the art thermoelectric modules is not easy with the current technologies used for their fabrication. Micro and nanotechnologies offer an interesting alternative considering that silicon in nanowire form is a material with a promising thermoelectric figure of merit. This paper presents two approaches for the integration of large numbers of silicon nanowires in a cost-effective and practical way using only micromachining and thin-film processes compatible with silicon technologies. Both approaches lead to automated physical and electrical integration of medium-high density stacked arrays of crystalline or polycrystalline silicon nanowires with arbitrary length (tens to hundreds microns) and diameters below 100 nm.

  1. Polycrystalline thin-film solar cells and modules

    SciTech Connect

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  2. Polycrystalline thin-film solar cells and modules

    SciTech Connect

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  3. Selective and low temperature synthesis of polycrystalline diamond

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Roppel, T.; Ellis, C.; Baugh, W.; Jaworske, D. A.

    1991-01-01

    Polycrystalline diamond thin films have been deposited on single-crystal silicon substrates at low temperatures (not above 600 C) using a mixture of hydrogen and methane gases by high-pressure microwave plasma-assisted chemical vapor deposition. Low-temperature deposition has been achieved by cooling the substrate holder with nitrogen gas. For deposition at reduced substrate temperature, it has been found that nucleation of diamond will not occur unless the methane/hydrogen ratio is increased significantly from its value at higher substrate temperature. Selective deposition of polycrystalline diamond thin films has been achieved at 600 C. Decrease in the diamond particle size and growth rate and an increase in surface smoothness have been observed with decreasing substrate temperature during the growth of thin films. As-deposited films are identified by Raman spectroscopy, and the morphology is analyzed by scanning electron microscopy.

  4. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    SciTech Connect

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; Bowring, Andrea R.; Unger, Eva L.; Nguyen, William H.; Burschka, Julian; Pellet, Norman; Lee, Jungwoo Z.; Grätzel, Michael; Noufi, Rommel; Buonassisi, Tonio; Salleo, Alberto; McGehee, Michael D.

    2014-12-23

    A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. Furthermore, this work paves the way for integrating perovskites into a low-cost and high-efficiency (>25%) tandem cell.

  5. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    DOE PAGESBeta

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; Bowring, Andrea R.; Unger, Eva L.; Nguyen, William H.; Burschka, Julian; Pellet, Norman; Lee, Jungwoo Z.; Grätzel, Michael; et al

    2014-12-23

    A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. Furthermore, this work paves the way for integrating perovskites into a low-costmore » and high-efficiency (>25%) tandem cell.« less

  6. Polycrystalline Diamond Schottky Diodes and Their Applications.

    NASA Astrophysics Data System (ADS)

    Zhao, Ganming

    In this work, four-hot-filament CVD techniques for in situ boron doped diamond synthesis on silicon substrates were extensively studied. A novel tungsten filament shape and arrangement used to obtain large-area, uniform, boron doped polycrystalline diamond thin films. Both the experimental results and radiative heat transfer analysis showed that this technique improved the uniformity of the substrate temperature. XRD, Raman and SEM studies indicate that large area, uniform, high quality polycrystalline diamond films were obtained. Schottky diodes were fabricated by either sputter deposition of silver or thermal evaporation of aluminum or gold, on boron doped diamond thin films. High forward current density and a high forward-to-reverse current ratio were exhibited by silver on diamond Schottky diodes. Schottky barrier heights and the majority carrier concentrations of both aluminum and gold contacted diodes were determined from the C-V measurements. Furthermore, a novel theoretical C-V-f analysis of deep level boron doped diamond Schottky diodes was performed. The analytical results agree well with the experimental results. Compressive stress was found to have a large effect on the forward biased I-V characteristics of the diamond Schottky diodes, whereas the effect on the reverse biased characteristics was relatively small. The stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. This result shows that CVD diamond device has potential for mechanical transducer applications. The quantitative photoresponse characteristics of the diodes were studied in the spectral range of 300 -1050 nm. Semi-transparent gold contacts were used for better photoresponse. Quantum efficiency as high as 50% was obtained at 500 nm, when a reverse bias of over 1 volt was applied. The Schottky barrier heights between either gold or

  7. Research on polycrystalline thin-film materials, cells, and modules

    SciTech Connect

    Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

    1990-11-01

    The US Department of Energy (DOE) supports research activities in polycrystalline thin films through the Polycrystalline Thin-Film Program at the Solar Energy Research Institute (SERI). This program includes research and development (R D) in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective of this program is to support R D of photovoltaic cells and modules that meet the DOE long-term goals of high efficiency (15%--20%), low cost ($50/m{sup 2}), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules. These have become the leading thin-film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe{sub 2} and CdTe modules. This paper focuses on the recent progress and future directions of the Polycrystalline Thin-Film Program and the status of the subcontracted research on these promising photovoltaic materials. 26 refs., 12 figs, 1 tab.

  8. Research on polycrystalline thin-film materials, cells, and modules

    NASA Astrophysics Data System (ADS)

    Mitchell, R. L.; Zweibel, K.; Ullal, H. S.

    1990-11-01

    DOE supports research activities in polycrystalline thin films through the Polycrystalline Thin Film Program. This program includes includes R and D in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective is to support R and D of photovoltaic cells and modules that meet the DOE long term goals of high efficiency (15 to 20 percent), low cost ($50/sq cm), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin film CuInSe2 and CdTe solar cells and modules. These have become the leading thin film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe(sub 2) and CdTe modules. The recent progress and future directions are studied of the Polycrystalline Thin Film Program and the status of the subcontracted research on these promising photovoltaic materials.

  9. Silicon on ceramic process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.

    1977-01-01

    The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.

  10. High temperature adsorption of nitrogen on a polycrystalline nickel surface

    NASA Astrophysics Data System (ADS)

    Boughaba, S.; Auvert, G.

    1994-01-01

    Nickel tetracarbonyl [Ni(CO)4] molecules were used as a probe to investigate the coverage of a heated polycrystalline nickel surface with nitrogen adspecies. For this purpose, the deposition kinetics of nickel (Ni) microstructures from the thermal decomposition of nickel tetracarbonyl was investigated as a function of the partial pressure of nitrogen (N2), used as buffer gas. The laser-induced chemical vapor deposition technique was used to produce polycrystalline nickel lines in an atmosphere of pure Ni(CO)4 or a [Ni(CO)4+N2] mixture. The deposition process was performed on polysilicon/silicon dioxide/<100> monosilicon substrates. As a heat source, a cw argon-ion laser was used. The laser-induced surface temperature was varied in the range 500-850 °C. For Ni(CO)4 partial pressures typically below 0.3 mbar, the nickel deposition rate was found to decrease as the N2 partial pressure increases. For higher Ni(CO)4 partial pressures, the deposition rate was found to be independent of the N2 partial pressure. On the basis of these results, the high temperature adsorption of nitrogen on a polycrystalline nickel surface was investigated. A model which accounts for the dependence of the nickel deposition rate and surface coverage with nitrogen adspecies on the N2 partial pressure was elaborated.

  11. Polycrystalline thin-film technology: Recent progress in photovoltaics

    SciTech Connect

    Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

    1991-12-01

    Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe{sub 2}), cadmium telluride (CdTe), and thin-film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin-film CuInSe{sub 2}, has made some rapid advances in terms of high efficiency and long-term reliability. For CuInSe{sub 2} power modules, a world record has been reported on a 0.4-m{sup 2} module with an aperture-area efficiency of 10.4% and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe{sub 2} modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 cm{sup 2}. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10%; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

  12. Polycrystalline thin-film technology: Recent progress in photovoltaics

    NASA Astrophysics Data System (ADS)

    Mitchell, R. L.; Zweibel, K.; Ullal, H. S.

    1991-12-01

    Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe2), cadmium telluride (CdTe), and thin film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin film CuInSe2, has made some rapid advances in terms of high efficiency and long term reliability. For CuInSe2 power modules, a world record has been reported on a 0.4 sq m module with an aperture-area efficiency of 10.4 pct. and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe2 modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 sq cm. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10 pct.; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

  13. Transmutation doping of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  14. Special Issue: The Silicon Age

    NASA Astrophysics Data System (ADS)

    Kittler, Martin; Yang, Deren

    2006-03-01

    The present issue of physica status solidi (a) contains a collection of articles about different aspects of current silicon research and applications, ranging from basic investigations of mono- and polycrystalline silicon materials and nanostructures to technologies for device fabrication in silicon photovoltaics, micro- and optoelectronics. Guest Editors are Martin Kittler and Deren Yang, the organizers of a recent Sino-German symposium held in Cottbus, Germany, 19-24 September 2005.The cover picture shows four examples of The Silicon Age: the structure of a thin film solar cell on low-cost SSP (silicon sheet from powder) substrate (upper left image) [1], a high-resolution transmission electron microscopy image and diffraction pattern of a single-crystalline Si nanowire (upper right) [2], a carrier lifetime map from an n-type multicrystalline silicon wafer after gettering by a grain boundary (lower left) [3], and a scanning acoustic microscopy image of a bonded 150 mm diameter wafer pair (upper right) [4].

  15. Progress and issues in polycrystalline thin-film PV technologies

    SciTech Connect

    Zweibel, K.; Ullal, H.S.; Roedern, B. von

    1996-05-01

    Substantial progress has occurred in polycrystalline thin-film photovoltaic technologies in the past 18 months. However, the transition to first-time manufacturing is still under way, and technical problems continue. This paper focuses on the promise and the problems of the copper indium diselenide and cadmium telluride technologies, with an emphasis on continued R&D needs for the near-term transition to manufacturing and for next-generation improvements. In addition, it highlights the joint R&D efforts being performed in the U.S. Department of Energy/National Renewable Energy Laboratory Thin-Film Photovoltaic Partnership Program.

  16. Polycrystalline diamond based detector for Z-pinch plasma diagnosis

    SciTech Connect

    Liu Linyue; Zhao Jizhen; Chen Liang; Ouyang Xiaoping; Wang Lan

    2010-08-15

    A detector setup based on polycrystalline chemical-vapor-deposition diamond film is developed with great characteristics: low dark current (lower than 60 pA within 3 V/{mu}m), fast pulsed response time (rise time: 2-3 ns), flat spectral response (3-5 keV), easy acquisition, low cost, and relative large sensitive area. The characterizing data on Qiangguang-I accelerator show that this detector can satisfy the practical requirements in Z-pinch plasma diagnosis very well, which offers a promising prototype for the x-ray detection in Z-pinch diagnosis.

  17. Screen-Cage Ion Plating Of Silver On Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.

    1995-01-01

    Screen-cage ion plating (SCIP) cost-effective technique offering high throwing power for deposition of adherent metal films on ceramic substrates. Applies silver films to complexly shaped substrates of polycrystalline alumina. Silver adheres tenaciously and reduces friction. SCIP holds promise for applying lubricating soft metallic films to high-temperature ceramic components of advanced combustion engines. Other potential uses include coating substrates with metal for protection against corrosion, depositing electrical conductors on dielectric substrates, making optically reflective or electrically or thermally conductive surface layers, and applying decorative metal coats to ceramic trophies or sculptures.

  18. Transformational silicon electronics.

    PubMed

    Rojas, Jhonathan Prieto; Torres Sevilla, Galo Andres; Ghoneim, Mohamed Tarek; Inayat, Salman Bin; Ahmed, Sally M; Hussain, Aftab Mustansir; Hussain, Muhammad Mustafa

    2014-02-25

    In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry's most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. PMID:24476361

  19. Silicon research and technology

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.

    1982-01-01

    The development of solar cells suitable for space applications are discussed, along with the advantages and disadvantages of silicon and gallium arsenide solar cells. The goal of a silicon solar cell with 18% efficiency has not been reached and does not appear promising in the near future.

  20. Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Maciolek, R. B.; Zook, J. D.; Harrison, W. B.; Scott, M. W.; Hendrickson, G.; Wolner, H. A.; Nelson, L. D.; Schuller, T. L.; Peterson, A. A.

    1976-01-01

    The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry.

  1. Saturation magnetization of polycrystalline iron

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.; Hegland, D. E.

    1972-01-01

    The magnetic moment per gram, sigma (H sub I, T), where H sub I is the internal field and T is the temperature, was measured for a polycrystalline iron sphere with the vibrating-sample magnetometer. The instrument was calibrated by using a method utilizing the high permeability of an iron sphere. The spontaneous moment, sigma(0, T),was obtained from plots of sigma(H sub I, T) as a function of H sub I for temperatures from 4.2 K to room temperature. The value of the spontaneous moment, sigma(0, T), at 298.9 K was 217.5 + or -0.4 emu/g. The extrapolated moment, sigma(0, 0),at absolute zero from a plot of sigma(0, T) as a function of T to 3/2 power was 221.7 + or - 0.4 emu/g.

  2. Morphology of polycrystalline cassiterite films

    NASA Astrophysics Data System (ADS)

    Tomaev, V. V.; Glazov, A. I.

    2014-09-01

    Polycrystalline cassiterite films have been grown by the hydropyrolytic method from a 10(H2O) + 5(SnCl2 · 2H2O) solution (in weight fractions) on corundum substrates. The crystallization regularities are considered and a comparative analysis of the properties of natural and artificial cassiterite crystals is performed. The surface morphology is investigated and the size of crystalline grains is determined by scanning electron microscopy. X-ray microprobe analysis showed that all films contain tin and oxygen atoms in a ratio corresponding (within the experimental error) to the chemical formula of tin dioxide. It is established that the surface morphology of cassiterite films is characterized by both single crystallites and aggregates of two or more crystals typical of twins. It is suggest that doping can efficiently be used to control the concentration of twins and the stability of their formation.

  3. Single molecule source reagents for chemical vapor deposition of b-silicon carbide. Final report, 1 June 1991-30 November 1992

    SciTech Connect

    Brown, D.W.

    1992-12-10

    Phase I conclusively showed the feasibility of rational design of single molecule-source reagents that could lead to improvements in the chemical vapor deposition of stoichiometric Beta silicon carbide. Four single molecule sources were synthesized, their decomposition pathways studied, and their utility in Beta-silicon carbide CVD investigated. Dramatic differences in the CVD process resulted from small changes in the reagent structure. A strained cyclic molecule, 1,3-disilacyclobutane, allowed growth of a Beta-silicon carbide film at a temperature >300 deg C lower than was possible with a similar straight chain reagent. Furthermore, the highest quality film was grown from the analogous chlorinated cyclic source reagent: 1,1,3,3 tetrachloro-1,3-disilacyclobutane. We propose that decomposition of the cyclic precursors directly produces intermediates that can lead to deposition of stoichiometric silicon carbide. The Phase I results clearly showed that Beta-silicon carbide CVD can be improved by molecular engineering of the source reagents. Cyclic precursors are promising for both the deposition of single crystal films at high temperature and for polycrystalline and single crystal films at low temperature. In Phase II we will optimize the precursor for low temperature deposition and the integration of silicon and silicon carbide HBT device structures.

  4. Conductive polycrystalline diamond probes for local anodic oxidation lithography

    NASA Astrophysics Data System (ADS)

    Ulrich, A. J.; Radadia, A. D.

    2015-11-01

    This is the first report characterizing local anodic oxidation (LAO) lithography performed using conductive monolithic polycrystalline diamond (MD) and conductive polycrystalline diamond-coated (DC) tips and comparing it to the diamond-like carbon-coated and metal-coated silicon tips. The range and the rate of increase in the lithographic linewidth and height with tip bias (dw/dV and dh/dV) differed based on the tip material. The DC tips resulted in wider and taller lines and a higher dw/dV and dh/dV compared to metal-coated tips with a similar force constant (k Avg). The metal-coated and the DC tips with comparable k Avg showed comparable threshold voltages, whereas the MD tips with similar k Avg showed a higher threshold voltage. The MD tips exhibited less than half the height and nearly half the dw/dV and dh/dV obtained with the metal-coated tips with similar k Avg, thus also resulting in a smaller width at -10 V. The linewidths were found to be proportional to the inverse of the log of write speed (v) for all the tips; however, the proportionality constant varied with tip material; the DC tips had larger values, and the MD and the metal-coated tips had comparable values. When varying the speed, the height was found to be a sigmoidal function of width, with the MD probes achieving lower height compared to the metal-coated and the DC tips with comparable k Avg. This study expands the application of monolithic conductive polycrystalline diamond (PCD) probes with outstanding wear resistance to fine LAO lithography.

  5. Conductive polycrystalline diamond probes for local anodic oxidation lithography.

    PubMed

    Ulrich, A J; Radadia, A D

    2015-11-20

    This is the first report characterizing local anodic oxidation (LAO) lithography performed using conductive monolithic polycrystalline diamond (MD) and conductive polycrystalline diamond-coated (DC) tips and comparing it to the diamond-like carbon-coated and metal-coated silicon tips. The range and the rate of increase in the lithographic linewidth and height with tip bias (dw/dV and dh/dV) differed based on the tip material. The DC tips resulted in wider and taller lines and a higher dw/dV and dh/dV compared to metal-coated tips with a similar force constant (k(Avg)). The metal-coated and the DC tips with comparable k(Avg) showed comparable threshold voltages, whereas the MD tips with similar k(Avg) showed a higher threshold voltage. The MD tips exhibited less than half the height and nearly half the dw/dV and dh/dV obtained with the metal-coated tips with similar k Avg, thus also resulting in a smaller width at -10 V. The linewidths were found to be proportional to the inverse of the log of write speed(v) for all the tips; however, the proportionality constant varied with tip material; the DC tips had larger values, and the MD and the metal-coated tips had comparable values. When varying the speed, the height was found to be a sigmoidal function of width, with the MD probes achieving lower height compared to the metal-coated and the DC tips with comparable k(Avg). This study expands the application of monolithic conductive polycrystalline diamond (PCD) probes with outstanding wear resistance to fine LAO lithography. PMID:26501841

  6. Theoretical study of the photovoltaic properties of polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Joshi, D. P.; Srivastava, R. S.

    1986-04-01

    By considering the variation of grain-boundary space-charge potential barrier height with grain size and doping level, the dependence of polysilicon solar cell parameters on the grain size (d) and substrate resistivity have been theoretically investigated. A new relation is presented for the effective diffusion length of minority carriers in polysilicon which predicts that the effective diffusion length is approximately proportional to d exp r, where r varies from 0 to 1. Computations show that as base resistivity decreases, the effect of the grain-boundary recombination process increases, and consequently the polysilicon cell parameters do not vary with resistivity in the same manner as has been observed for a single-crystal cell. The proposed theory also predicts the dominance of shunting effects of grain boundary at small grain sizes or low base resistivities. The available experimental data are found to be in good agreement with the predictions of the theory.

  7. Time-resolved photoluminescence of polycrystalline CdTe grown by close-spaced sublimation

    SciTech Connect

    Keyes, B.; Dhere, R.; Ramanathan, K. )

    1994-06-30

    Polycrystalline CdTe has shown great promise as a low-cost material for thin-film, terrestrial photovoltaic applications, with efficiencies approaching 16% achieved with close-spaced sublimation (CSS)-grown CdTe. Due to the inherent complexities of polycrystalline material, much of the progress in this area has occurred through a slow trial-and-error process. This report uses time-resolved photoluminescence (TRPL) to characterize the CdTe material quality as a function of one basic growth parameter---substrate temperature. This characterization is done for two different glass substrate materials, soda-lime silicate and borosilicate.

  8. Ceramic for Silicon-Shaping Dies

    NASA Technical Reports Server (NTRS)

    Sekercioglu, I.; Wills, R. R.

    1982-01-01

    Silicon beryllium oxynitride (SiBON) is a promising candidate material for manufacture of shaping dies used in fabricating ribbons or sheets of silicon. It is extremely stable, resists thermal shock, and has excellent resistance to molten silicon. SiBON is a solid solution of beryllium silicate in beta-silicon nitride.

  9. Electron microscopy of gallium nitride growth on polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Webster, R. F.; Cherns, D.; Kuball, M.; Jiang, Q.; Allsopp, D.

    2015-11-01

    Transmission and scanning electron microscopy were used to examine the growth of gallium nitride (GaN) on polycrystalline diamond substrates grown by metalorganic vapour phase epitaxy with a low-temperature aluminium nitride (AlN) nucleation layer. Growth on unmasked substrates was in the (0001) orientation with threading dislocation densities ≈7 × 109 cm-2. An epitaxial layer overgrowth technique was used to reduce the dislocation densities further, by depositing silicon nitride stripes on the surface and etching the unmasked regions down to the diamond substrate. A re-growth was then performed on the exposed side walls of the original GaN growth, reducing the threading dislocation density in the overgrown regions by two orders of magnitude. The resulting microstructures and the mechanisms of dislocation reduction are discussed.

  10. A New Polycrystalline Co-Ni Superalloy

    NASA Astrophysics Data System (ADS)

    Knop, M.; Mulvey, P.; Ismail, F.; Radecka, A.; Rahman, K. M.; Lindley, T. C.; Shollock, B. A.; Hardy, M. C.; Moody, M. P.; Martin, T. L.; Bagot, P. A. J.; Dye, D.

    2014-12-01

    In 2006, a new-ordered L12 phase, Co3(Al,W), was discovered that can form coherently in a face-centered cubic (fcc) A1 Co matrix. Since then, a community has developed that is attempting to take these alloys forward into practical applications in gas turbines. A new candidate polycrystalline Co-Ni γ/ γ' superalloy, V208C, is presented that has the nominal composition 36Co-35Ni-15Cr-10Al-3W-1Ta (at.%). The alloy was produced by conventional powder metallurgy superalloy methods. After forging, a γ' fraction of ~56% and a secondary γ' size of 88 nm were obtained, with a grain size of 2.5 μm. The solvus temperature was 1000°C. The density was found to be 8.52 g cm-3, which is similar to existing Ni alloys with this level of γ'. The alloy showed the flow stress anomaly and a yield strength of 920 MPa at room temperature and 820 MPa at 800°C, similar to that of Mar-M247. These values are significantly higher than those found for either conventional solution and carbide-strengthened Co alloys or the γ/ γ' Co superalloys presented in the literature thus far. The oxidation resistance, with a mass gain of 0.08 mg cm-2 in 100 h at 800°C, is also comparable with that of existing high-temperature Ni superalloys. These results suggest that Co-based and Co-Ni superalloys may hold some promise for the future in gas turbine applications.