Science.gov

Sample records for polycrystalline tungsten formed

  1. Polycrystalline silicon on tungsten substrates

    NASA Technical Reports Server (NTRS)

    Bevolo, A. J.; Schmidt, F. A.; Shanks, H. R.; Campisi, G. J.

    1979-01-01

    Thin films of electron-beam-vaporized silicon were deposited on fine-grained tungsten substrates under a pressure of about 1 x 10 to the -10th torr. Mass spectra from a quadrupole residual-gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. During separate silicon depositions, the atomically clean substrates were maintained at various temperatures between 400 and 780 C, and deposition rates were between 20 and 630 A min. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition, and annealing. Auger depth profiling, X-ray analysis, and SEM in the topographic and channeling modes were utilized to characterize the samples with respect to silicon-metal interface, interdiffusion, silicide formation, and grain size of silicon. The onset of silicide formation was found to occur at approximately 625 C. Above this temperature tungsten silicides were formed at a rate faster than the silicon deposition. Fine-grain silicon films were obtained at lower temperatures.

  2. Chemically assisted ion beam etching of polycrystalline and (100)tungsten

    NASA Technical Reports Server (NTRS)

    Garner, Charles

    1987-01-01

    A chemically assisted ion-beam etching technique is described which employs an ion beam from an electron-bombardment ion source and a directed flux of ClF3 neutrals. This technique enables the etching of tungsten foils and films in excess of 40 microns thick with good anisotropy and pattern definition over areas of 30 sq mm, and with a high degree of selectivity. (100) tungsten foils etched with this process exhibit preferred-orientation etching, while polycrystalline tungsten films exhibit high etch rates. This technique can be used to pattern the dispenser cathode surfaces serving as electron emitters in traveling-wave tubes to a controlled porosity.

  3. Controlled nanostructuration of polycrystalline tungsten thin films

    SciTech Connect

    Girault, B.; Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O.; Sauvage, T.

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  4. Heated die facilitates tungsten forming

    NASA Technical Reports Server (NTRS)

    Chattin, J. H.; Haystrick, J. E.; Laughlin, J. C.; Leidy, R. A.

    1966-01-01

    Tungsten forming in a press brake employs a bottom die assembly with a heating manifold between two water-cooled die sections. The manifold has hydrogen-oxygen burners spaced along its length for even heat during forming.

  5. Increase in the positronium emission yield from polycrystalline tungsten surfaces by sodium coating

    NASA Astrophysics Data System (ADS)

    Terabe, Hiroki; Iida, Shimpei; Yamashita, Takashi; Tachibana, Takayuki; Barbiellini, Bernardo; Wada, Ken; Mochizuki, Izumi; Yagishita, Akira; Hyodo, Toshio; Nagashima, Yasuyuki

    2015-11-01

    The study of positronium emission from metal surfaces bombarded by slow positrons provides information on the topmost layer of the metals such as electron and positron energy levels because positronium atoms are formed as the result of the interactions between the positrons and the electrons there. In the present work, time-of-flight spectra of ortho-positronium atoms emitted from polycrystalline tungsten surfaces with and without a sodium coating have been measured. The data shows a significant increase on coating in the yield of the 5 eV component due to positronium formed from thermalized positrons and conduction electrons. An attempt is made to explain the increase by an emission model based on the formation of positronium in a low electron density surface layer extended by the coating.

  6. Positron annihilation lifetime measurement and X-ray analysis on 120 MeV Au+7 irradiated polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Dube, Charu Lata; Kulriya, Pawan Kumar; Dutta, Dhanadeep; Pujari, Pradeep K.; Patil, Yashashri; Mehta, Mayur; Patel, Priyanka; Khirwadkar, Samir S.

    2015-12-01

    In order to simulate radiation damages in tungsten, potential plasma facing materials in future fusion reactors, surrogate approach of heavy ion irradiation on polycrystalline tungsten is employed. Tungsten specimen is irradiated with gold heavy ions of energy 120 MeV at different fluences. Positron annihilation lifetime measurements are carried out on pristine and ion beam irradiated tungsten specimens. The variation in positron annihilation lifetime in ion irradiated specimens confirms evolution of vacancy clusters under heavy ion irradiation. The pristine and irradiated tungsten specimens have also been characterized for their microstructural, structural, electrical, thermal, and mechanical properties. X-ray diffractograms of irradiated tungsten specimens show structural integrity of polycrystalline tungsten even after irradiation. Nevertheless, the increase in microstrain, electrical resistivity and microhardness on irradiation indicates creation of lattice damages inside polycrystalline tungsten specimen. On the other hand, the thermal diffusivity has not change much on heavy ion irradiation. The induction of damages in metallic tungsten is mainly attributed to high electronic energy loss, which is 40 keV/nm in present case as obtained from SRIM program. Although, concomitant effect of nuclear losses on damage creation cannot be ignored. It is believed that the energy received by the electronic system is being transferred to the atomic system by electron-phonon coupling. Eventually, elastic nuclear collisions and the transfer of energy from electronic to atomic system via inelastic collision is leading to significant defect generation in tungsten lattice.

  7. Failure of semiclassical models to describe resistivity of nanometric, polycrystalline tungsten films

    SciTech Connect

    Choi, Dooho; Liu, Xuan; Schelling, Patrick K.; Coffey, Kevin R.; Barmak, Katayun

    2014-03-14

    The impact of electron scattering at surfaces and grain boundaries in nanometric polycrystalline tungsten (W) films was studied. A series of polycrystalline W films ranging in thickness from 10 to 310 nm and lateral grain size from 74 to 133 nm were prepared on thermally oxidized Si. The Fuchs-Sondheimer surface-scattering model and Mayadas-Shatzkes grain-boundary scattering model were employed for quantitative analyses. Predictions from the theoretical models were found to deviate systematically from the experimental data. Possible reasons for the failure of the theoretical models to describe the experimental data are explored. Finally, a discussion of the crucial features lacking from existing models is presented, along with possible avenues for improving the models to result in better agreement with experimental data.

  8. Measurement of thermophysical property of plasma forming tungsten nanofiber layer

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Yagi, Takashi; Kobayashi, Kenichi; Tokitani, Masayuki; Ohno, Noriyasu

    2016-05-01

    Thermophysical property of a nanostructured tungsten layer formed on a tungsten film was investigated. A 1-µm-thick tungsten film deposited on a quartz glass substrate was irradiated with a high density helium plasma at the surface temperature of 1500 K. The plasma irradiation led to the formation of highly porous fiberform-nanostructured tungsten layer with a thickness of 3.5 µm. Impulse heating was applied at the interface of the film/substrate, and transient heat diffusion was observed using a pulsed light heating thermoreflectance apparatus. The thermoreflectance signals clearly differed between the nanostructure existing and mechanically removed regions; the difference can be attributed to thermal effusivity of the nanostructured tungsten layer. The estimated thermal conductivity of the nanostructured tungsten decreases to ∼2% of that of bulk when the density of the nanostructure is assumed to be ∼6% of the bulk value.

  9. The relationship between structural evolution and electrical percolation of the initial stages of tungsten chemical vapor deposition on polycrystalline TiN

    SciTech Connect

    Rozenblat, A.; Haimson, S.; Shacham-Diamand, Y.; Horvitz, D.

    2012-01-16

    This paper presents experimental results and a geometric model of the evolution of sheet resistance and surface morphology during the transition from nucleation to percolation of tungsten chemical vapor deposition over ultrathin polycrystalline titanium nitride (TiN). We observed two mechanisms of reduction in sheet resistance. At deposition temperatures higher than 310 deg. C, percolation effect is formed at {approx}35% of surface coverage, {theta}, and characterized with a sharp drop in resistance. At temperature below 310 deg. C, a reduction in resistance occurs in two steps. The first step occurs when {theta} = 35% and the second step at {theta} = 85%. We suggest a geometric model in which the electrical percolation pass is modulated by the thickness threshold of the islands at the instant of collision.

  10. Development of a steady state creep behavior model of polycrystalline tungsten for bimodal space reactor application

    SciTech Connect

    Purohit, A.; Hanan, N.A.; Bhattacharyya, S.K.; Gruber, E.E.

    1995-02-01

    The fuel element for one of the many reactor concepts being currently evaluated for bimodal applications in space consists of spherical fuel particles clad with tungsten or alloys of tungsten. The fuel itself consists of stabilized UO{sub 2}. One of the life limiting phenomena for the fuel element is failure of the cladding because of creep deformation. This report summarizes the information available in literature regarding the creep deformation of tungsten and its alloys and proposes a relation to be used for calculating the creep strains for elevated temperatures in the low stress region ({sigma} {le} 20 MPa). Also, results of the application of this creep relation to one of the reactor design concepts (NEBA-3) are discussed. Based on the traditional definition of creep deformation, the temperatures of 1500 K to 2900 K for tungsten and its alloys are considered to be in the {open_quotes}high{close_quotes} temperature range. In this temperature range, the rate controlling mechanisms for creep deformation are believed to be non-conservative motion of screw dislocations and short circuit diffusional paths. Extensive theoretical work on creep and in particular for creep of tungsten and its alloys have been reported in the literature. These theoretical efforts have produced complex mathematical models that require detailed materials properties. These relations, however, are not presently suitable for the creep analysis because of lack of consistent material properties required for their use. Variations in material chemistry and thermomechanical pre-treatment of tungsten have significant effects on creep and the mechanical properties. Analysis of the theoretical models and limited data indicates that the following empirical relation originally proposed by M. Jacox of INEL and the Air Force Phillips Laboratory, for calculating creep deformation of tungsten cladding, can be used for the downselection of preliminary bimodal reactor design concepts.

  11. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2001-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.

  12. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2004-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.

  13. Tungsten

    SciTech Connect

    1996-08-01

    The name tungsten, derived from the Swedish words {open_quotes}tung{close_quotes} and {open_quotes}sten{close_quotes}, meaning heavy stone, was first applied to a tungsten-containing mineral in 1755. The mineral, itself, was subsequently identified by C.W. Scheele in 1781, and named scheelite. Metallic tungsten was first isolated from the mineral wolframite in 1783, and given the German name {open_quotes}wolfram,{close_quotes} which remains an alternative name for the element. Ultimately, the English word, tungsten, became the official name, while W remains the element`s chemical symbol. This article discusses the geology, exploitation, applications, and market overview of tungsten.

  14. Alkali migration and desorption energies on polycrystalline tungsten at low coverages

    NASA Astrophysics Data System (ADS)

    Gładyszewski, Longin

    1990-05-01

    This work concerns research on fluctuations (noises) of the ion thermoemission currents of five alkali metals emitted from the tungsten surface. These noises are generated as a result of adsorbate density fluctuations. Adsorbate density fluctuations cause random changes of the work function, which influence the intensity of the emitted ion current. The methods used made it possible to determine the ion desorption energy and the surface diffusion energy for Li, Na, K, Rb and Cs.

  15. Helium irradiation effects on tritium retention and long-term tritium release properties in polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Nobuta, Y.; Hatano, Y.; Matsuyama, M.; Abe, S.; Yamauchi, Y.; Hino, T.

    2015-08-01

    DT+ ion irradiation with energy of 0.5 and 1.0 keV was performed on helium pre-irradiated tungsten and the amount of retained tritium and the long-term release of retained tritium in vacuum was investigated using an IP technique and BIXS. Tritium retention and long-term tritium release were significantly influenced by helium pre-irradiation. The amount of retained tritium increased until it reached 1 × 1017 He/cm2, and at 1 × 1018 He/cm2 it became smaller compared to 1 × 1017 He/cm2. The amount of retained tritium in tungsten without helium pre-irradiation largely decreased after several weeks preservation in vacuum, and the long-term release rate during vacuum preservation was retarded by helium pre-irradiation. The results indicate that the long-term tritium release and the helium irradiation effect on it should be taken into account for more precise estimation of tritium retention in the long-term use of tungsten in fusion devices.

  16. Deuterium trapping in tungsten

    NASA Astrophysics Data System (ADS)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  17. Temperature dependence of helium-implantation-induced lattice swelling in polycrystalline tungsten: X-ray micro-diffraction and Eigenstrain modelling

    DOE PAGESBeta

    de Broglie, I.; Beck, C. E.; Liu, W.; Hofmann, Felix

    2015-05-30

    Using synchrotron X-ray micro-diffraction and Eigenstrain analysis the distribution of lattice swelling near grain boundaries in helium-implanted polycrystalline tungsten is quantified. Samples heat-treated at up to 1473 K after implantation show less uniform lattice swelling that varies significantly from grain to grain compared to as-implanted samples. An increase in lattice swelling is found in the vicinity of some grain boundaries, even at depths beyond the implanted layer. As a result, these findings are discussed in terms of the evolution of helium-ion-implantation-induced defects.

  18. Ordered arrangement of irradiation-induced defects of polycrystalline tungsten irradiated with low-energy hydrogen ions

    NASA Astrophysics Data System (ADS)

    Ni, Weiyuan; Yang, Qi; Fan, Hongyu; Liu, Lu; Berthold, Tobias; Benstetter, Günther; Liu, Dongping

    2015-09-01

    Low-energy (20-520 eV) hydrogen ion irradiations were performed at W surface temperature of 373-1073 K and a fluence ranging from 5.0 × 1023 to 1.0 × 1025/m2. Conductive atomic force microscopy (CAFM) as a nondestructive analytical technique was successfully used to detect irradiation-induced defects in polycrystalline W. The size and density of these nanometer-sized defects were strongly dependent on the fluence of hydrogen ions. Both ion energy (E) and temperature (T) play a crucial role in determining the ordering of nanometer-sized defects. Ordered arrangements were formed at relatively high E and T. This can be attributed to the stress-driven ripple effect of defect growth at crystal grains, resulting in the movement of W lattice along one certain crystal planes.

  19. Deuterium and helium release and microstructure of tungsten deposition layers formed by RF plasma sputtering

    SciTech Connect

    Katayama, K.; Imaoka, K.; Tokitani, M.; Miyamoto, M.; Nishikawa, M.; Fukada, S.; Yoshida, N.

    2008-07-15

    It is important to evaluate tritium behavior in tungsten deposition layers considering a long-term plasma operation. In this study, tungsten deposition layers were formed by deuterium or helium RF plasma sputtering. The release behavior of deuterium or helium from the layers were observed by a thermal desorption method. When a tungsten deposition layer does not contain oxygen, the retained deuterium is mainly released as D{sub 2}. When oxygen exists in the layer, the majority of deuterium is released as water vapor. Tungsten deposition layers have an amorphous structure and consist offline grain with size of 2-3 nm. Numerous bubbles are observed in the layers. A formation of tungsten deposition layer in a fusion reactor may make tritium control more difficult. (authors)

  20. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts

    NASA Astrophysics Data System (ADS)

    Rizo, Hanika; Walker, Richard J.; Carlson, Richard W.; Horan, Mary F.; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G.

    2016-05-01

    How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth’s primary accretionary period have survived to the present.

  1. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts.

    PubMed

    Rizo, Hanika; Walker, Richard J; Carlson, Richard W; Horan, Mary F; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G

    2016-05-13

    How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth's primary accretionary period have survived to the present. PMID:27174983

  2. Effects of fibre-form nanostructures on particle emissions from a tungsten surface in plasmas

    NASA Astrophysics Data System (ADS)

    Takamura, S.; Miyamoto, T.; Ohno, N.

    2012-12-01

    The effects of fibre-form nanostructure of a tungsten surface on both electron emission and sputtering in helium/argon plasmas are represented. Generally, a nano-fibre forest, the so-called ‘fuzz’, made of tungsten with helium gas inside is found to have the tendency of suppressing the particle emission substantially. The electron emission comes from the impact of high-energy primary electrons. In addition, a deeply biased tungsten target, which inhibits the influx of even energetic primary electrons, seems to produce an electron emission, and it may be suppressed on the way to nanostructure formation on the surface of the W target. Such an emission process is discussed here. The sputtering yield of the He-damaged tungsten surface with the fibre-form nanostructure depends on the surface morphology while the sputtering itself changes the surface morphology, so that the time evolutions of sputtering yield from the W surface with an originally well-developed nanostructure are found to show a minimum in sputtering yield, which is about a half for the fresh nanostructured tungsten and roughly one-fifth of the yield for the original flat normal tungsten surface. The surface morphology at that time is, for the first time, made clear with field emission scanning electron microscopy observation. The physical mechanism for the appearance of such a minimum in sputtering yield is discussed.

  3. Microstructural Characterization of a Polycrystalline Nickel-Based Superalloy Processed via Tungsten-Intert-Gas-Shaped Metal Deposition

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Bache, Martin R.; Whittaker, Mark T.

    2010-12-01

    Recent trials have produced tungsten-inert-gas (TIG)-welded structures of a suitable scale to allow an evaluation of the technique as an economic and commercial process for the manufacture of complex aeroengine components. The employment of TIG welding is shown to have specific advantages over alternative techniques based on metal inert gas (MIG) systems. Investigations using the nickel-based superalloy 718 have shown that TIG induces a smaller weld pool with less compositional segregation. In addition, because the TIG process involves a pulsed power source, a faster cooling rate is achieved, although this rate, in turn, compromises the deposition rate. The microstructures produced by the two techniques differ significantly, with TIG showing an absence of the detrimental delta and Laves phases typically produced by extended periods at a high temperature using MIG. Instead, an anisotropic dendritic microstructure was evident with a preferred orientation relative to the axis of epitaxy. Niobium was segregated to the interdendritic regions. A fine-scale porosity was evident within the microstructure with a maximum diameter of approximately 5 μm. This porosity often was found in clusters and usually was associated with the interdendritic regions. Subsequent postdeposition heat treatment was shown to have no effect on preexisting porosity and to have a minimal effect on the microstructure.

  4. Polycrystalline GeSn thin films on Si formed by alloy evaporation

    NASA Astrophysics Data System (ADS)

    Kim, Munho; Fan, Wenjuan; Seo, Jung-Hun; Cho, Namki; Liu, Shih-Chia; Geng, Dalong; Liu, Yonghao; Gong, Shaoqin; Wang, Xudong; Zhou, Weidong; Ma, Zhenqiang

    2015-06-01

    Polycrystalline GeSn thin films on Si substrates with a Sn composition up to 4.5% have been fabricated and characterized. The crystalline structure, surface morphology, and infrared (IR) absorption coefficient of the annealed GeSn thin films were carefully investigated. It was found that the GeSn thin films with a Sn composition of 4.5% annealed at 450 °C possessed a desirable polycrystalline structure according to X-ray diffraction (XRD) analyses and Raman spectroscopy analyses. In addition, the absorption coefficient of the polycrystalline GeSn thin films in the IR region was significantly better than that of the single crystalline bulk Ge.

  5. Measurement of ion species produced due to bombardment of 450 eV N2+ ions with hydrocarbons-covered surface of tungsten: Formation of tungsten nitride

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Bhatt, P.; Kumar, A.; Singh, B. K.; Singh, B.; Prajapati, S.; Shanker, R.

    2016-08-01

    A laboratory experiment has been performed to study the ions that are produced due to collisions of 450 eV N2+ ions with a hydrocarbons-covered surface of polycrystalline tungsten at room temperature. Using a TOF mass spectrometry technique, the product ions formed in these collisions have been detected, identified and analyzed. Different ion-surface reaction processes, namely, neutralization, reflection, surface induced dissociation, surface induced chemical reactions and desorption are observed and discussed. Apart from the presence of desorbed aliphatic hydrocarbon and other ions, the mass spectra obtained from the considered collisions show the formation and sputtering of tungsten nitride (WN). A layer of WN on tungsten surface is known to decrease the sputtering of bulk tungsten in fusion devices more effectively than when the tungsten is bombarded with other seeding gases (He, Ar). It is further noted that there is a negligible diffusion of N in the bulk tungsten at room temperature.

  6. High hole mobility tin-doped polycrystalline germanium layers formed on insulating substrates by low-temperature solid-phase crystallization

    NASA Astrophysics Data System (ADS)

    Takeuchi, Wakana; Taoka, Noriyuki; Kurosawa, Masashi; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki

    2015-07-01

    We investigated the effects of incorporation of 0%-2% tin (Sn) into amorphous germanium (Ge) on its crystallization behavior and electrical properties. Incorporation of only 0.2% Sn caused the polycrystallization temperature of Ge to lower from 450 to 430 °C, while a polycrystalline Ge1-xSnx layer with high crystallinity compared to that of polycrystalline Ge was formed by incorporation of 2% Sn. A polycrystalline Ge1-xSnx layer with a low Sn content of 2% annealed at 450 °C exhibited a Hall hole mobility as high as 130 cm2/V s at room temperature even though it possessed a small grain size of 20-30 nm. The Hall hole mobility of a poly-Ge1-xSnx layer with an Sn content of 2% was four times higher than that of a polycrystalline Ge layer and comparable to that of single-crystalline silicon.

  7. Microcracking during stress-relief of polycrystalline ice formed at high pressure

    NASA Astrophysics Data System (ADS)

    Meglis, Irene L.; Gagnon, R. E.; Young, R. P.

    To study microcracking in a brittle material in response to stress-relief, samples of polycrystalline ice were frozen under hydrostatic pressures up to 19 MPa and subsequently decompressed. Eight cylindrical samples (approximately 56 mm in diameter and 120 mm long) were made by freezing a slurry of crushed ice and degassed water inside a clear Teflon jacket. Four additional tests were done by reloading samples which were previously unloaded, allowing them to re-equilibrate, and then unloading again. Tests were filmed through windows in the confining cell. Acoustic emissions were monitored in some samples. When the stress was released, intense cracking occurred for approximately 0.4 seconds and then tapered off. Thin sections showed that the stress-relief cracks were approximately equal to the facet size (<5 mm), were primarily along grain boundaries, and were distributed throughout the samples with no obvious preferred orientation. Within a few hours of unloading, grain boundaries became cloudy, possibly a result of air trapped at the grain surfaces. Preliminary results from further tests indicate that this air plays a significant role in crack nucleation.

  8. Small palladium islands embedded in palladium-tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Hu, Guangzhi; Nitze, Florian; Gracia-Espino, Eduardo; Ma, Jingyuan; Barzegar, Hamid Reza; Sharifi, Tiva; Jia, Xueen; Shchukarev, Andrey; Lu, Lu; Ma, Chuansheng; Yang, Guang; Wågberg, Thomas

    2014-10-01

    The sluggish kinetics of the oxygen reduction reaction at the cathode side of proton exchange membrane fuel cells is one major technical challenge for realizing sustainable solutions for the transportation sector. Finding efficient yet cheap electrocatalysts to speed up this reaction therefore motivates researchers all over the world. Here we demonstrate an efficient synthesis of palladium-tungsten bimetallic nanoparticles supported on ordered mesoporous carbon. Despite a very low percentage of noble metal (palladium:tungsten=1:8), the hybrid catalyst material exhibits a performance equal to commercial 60% platinum/Vulcan for the oxygen reduction process. The high catalytic efficiency is explained by the formation of small palladium islands embedded at the surface of the palladium-tungsten bimetallic nanoparticles, generating catalytic hotspots. The palladium islands are ~1 nm in diameter, and contain 10-20 palladium atoms that are segregated at the surface. Our results may provide insight into the formation, stabilization and performance of bimetallic nanoparticles for catalytic reactions.

  9. The Cathodoluminescence of Cleartran: a Novel Form of Polycrystalline Zinc Sulfide

    NASA Astrophysics Data System (ADS)

    Varni, Jamie G. G.

    Cathodoluminescence studies were carried out between 10 and 300 K on Cleartran('TM), a form of chemical-vapor -deposited (cvd) ZnS subjected to high temperature and pressure post-deposition processing. The results of these studies were compared to and contrasted with the cathodoluminescence of cvd ZnS samples grown by Raytheon and CVD Inc., with high quality crystal platelets of ZnS, and with bulk-grown cubic phase single crystal ZnS grown by Eagle-Picher Co. X -ray diffraction and spark-source mass spectrometry revealed that Cleartran was composed of high purity ((LESSTHEQ)10('16) impurities/cm('3)) cubic phase crystals from 20 to 40 (mu)m in size. The low temperature near band-edge luminescence of Cleartran was sharper (3-6 meV full width at half maximum) and more detailed than any previous reports of cubic phase ZnS. The intensity of near band-edge luminescence was unusually strong, generally eclipsing the familiar Cu-blue and -green and self-activated low-temperature (SAL) peaks of undoped ZnS. Direct observation of the recombination of the n = 1 (GAMMA)(,6) - (GAMMA)(,8) free exciton led to an assignment of 35 meV for the free exciton binding energy. Exciton binding energies and ionization energies were also determined for seven unknown donors according to the theory of Sharma and Rodriguez Phys. Rev. 159, 649 (1967) . The measured energy shift of several donor bound-exciton lines between 10 and 300 K was shown to agree with the Dow-Redfield theory of temperature-dependent phonon -generated microfields, although the 300 K near band-edge luminescence is probably due to free exciton-electron interaction rather than bound-exciton recombination. By comparison with previous reports in the literature, the Cleartran samples were shown to contain a significant concentration of copper, aluminum, chlorine, manganese, and oxygen impurities; and, with a smaller degree of confidence, iodine impurity and zinc vacancies.

  10. Highly conductive and flexible nylon-6 nonwoven fiber mats formed using tungsten atomic layer deposition.

    PubMed

    Kalanyan, Berç; Oldham, Christopher J; Sweet, William J; Parsons, Gregory N

    2013-06-12

    Low-temperature vapor-phase tungsten atomic layer deposition (ALD) using WF6 and dilute silane (SiH4, 2% in Ar) can yield highly conductive coatings on nylon-6 microfiber mats, producing flexible and supple nonwovens with conductivity of ∼1000 S/cm. We find that an alumina nucleation layer, reactant exposure, and deposition temperature all influence the rate of W mass uptake on 3D fibers, and film growth rate is calibrated using high surface area anodic aluminum oxide. Transmission electron microscopy (TEM) reveals highly conformal tungsten coatings on nylon fibers with complex "winged" cross-section. Using reactant gas "hold" sequences during the ALD process, we conclude that reactant species can transport readily to reactive sites throughout the fiber mat, consistent with conformal uniform coverage observed by TEM. The conductivity of 1000 S/cm for the W-coated nylon is much larger than found in other conductive nonwovens. We also find that the nylon mats maintain 90% of their conductivity after being flexed around cylinders with radii as small as 0.3 cm. Metal ALD coatings on nonwovens make possible the solvent-free functionalization of textiles for electronic applications. PMID:23724894

  11. Determination of carbide-forming metals, chromium and barium, by graphite furnace atomic absorption spectrometry using a tungsten coil platform

    NASA Astrophysics Data System (ADS)

    Moreno Camero, Rosa; Alvarado, José

    2000-07-01

    The use of a tungsten coil as a platform has been evaluated for the determination of carbide-forming metals, Cr and Ba. The methodology developed has been used for Cr and Ba determinations in HPS CRM, Trace Metals in Drinking Water, and NIST SRM 1643b, Trace Elements in Water. Good agreement was found between the results obtained and the certified values for Cr in both reference materials and for Ba in the NIST SRM. Barium results were approximately 14% lower than the certified results for the HPS CRM. This inaccuracy was ascribed to the presence of considerable amounts of Ca in this particular material. Precision of the measurements, 3σ relative standard deviation as percentage, were 2.5 and 5.8 for Cr and Ba, respectively. Characteristic masses, in picograms, were 1.70 for Cr and 19.0 for Ba. These results compare favorably with the literature values for Cr but not for Ba.

  12. MOSFET nonvolatile memory with a high-density tungsten nanodot floating gate formed by self-assembled nanodot deposition

    NASA Astrophysics Data System (ADS)

    Pei, Y.; Yin, C.; Bea, J. C.; Kino, H.; Fukushima, T.; Tanaka, T.; Koyanagi, M.

    2009-04-01

    Metal-oxide-semiconductor field-effect transistor (MOSFET) nonvolatile memories with high-density tungsten nanodots (W-NDs) dispersed in silicon nitride as a floating gate were fabricated and characterized. The W-NDs with a high density of ~5 × 1012 cm-2 and small sizes of 2-3 nm were formed by self-assembled nanodot deposition (SAND). A large memory window of ~1.7 V was observed with bi-directional gate voltage sweeping between -10 and +10 V. Considering that there is no hysteresis memory window for the reference sample without W-NDs, this result indicates the charge trapping in W-NDs or related defects. Finally, the program/erase speed and retention characteristics were investigated and discussed in this paper.

  13. Mineral resource of the month: tungsten

    USGS Publications Warehouse

    Shedd, Kim B.

    2012-01-01

    The article offers information on tungsten. It says that tungsten is a metal found in chemical compounds such as in the scheelite and ore minerals wolframite. It states that tungsten has the highest melting point and it forms a compound as hard as diamond when combined with carbon. It states that tungsten can be used as a substitute for lead in fishing weights, ammunition, and hunting shot. Moreover, China started to export tungsten materials and products instead of tungsten raw materials.

  14. Thermal Shock and Ablation Behavior of Tungsten Nozzle Produced by Plasma Spray Forming and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xiong, X.; Zhao, Z. W.; Xie, L.; Min, X. B.; Yan, J. H.; Xia, G. M.; Zheng, F.

    2015-08-01

    Tungsten nozzle was produced by plasma spray forming (PSF, relative density of 86 ± 2%) followed by hot isostatic pressing (HIPing, 97 ± 2%) at 2000 °C and 180 MPa for 180 min. Scanning electron microscope, x-ray diffractometer, Archimedes method, Vickers hardness, and tensile tests have been employed to study microstructure, phase composition, density, micro-hardness, and mechanical properties of the parts. Resistance of thermal shock and ablation behavior of W nozzle were investigated by hot-firing test on solid rocket motor (SRM). Comparing with PSF nozzle, less damage was observed for HIPed sample after SRM test. Linear ablation rate of nozzle made by PSF was (0.120 ± 0.048) mm/s, while that after HIPing reduced to (0.0075 ± 0.0025) mm/s. Three types of ablation mechanisms including mechanical erosion, thermophysical erosion, and thermochemical ablation took place during hot-firing test. The order of degree of ablation was nozzle throat > convergence > dilation inside W nozzle.

  15. Paste development and co-sintering test of zirconium carbide and tungsten in freeze-form extrusion fabrication

    NASA Astrophysics Data System (ADS)

    Li, Ang

    Ultra-high temperature ceramics are being investigated for future use in aerospace applications due to their superior thermo-mechanical properties, as well as oxidation resistance, at temperatures above 2000°C. However, their brittle properties make them susceptible to thermal shock failure. Components fabricated as functionally graded materials (FGMs) can combine the superior properties of ceramics with the toughness of an underlying refractory metal by fabricating graded composites. This paper discusses the grading of two materials through the use of a Freeze-form Extrusion Fabrication (FEF) system to build FGMs parts consisting of zirconium carbide (ZrC) and tungsten (W). Aqueous-based colloidal suspensions of ZrC and W were developed and utilized in the FEF process to fabricate test bars graded from 100%ZrC to 50%W-50%ZrC (volume percent). Following FEF processing the test bars were co-sintered at 2300°C and characterized to determine their resulting density and micro-structure. Four-point bending tests were performed to assess the strength of test bars made using the FEF process, compared to test bars prepared using conventional powder processing and isostatic pressing techniques, for five distinct ZrC-W compositions. Scanning electron microscopy (SEM) was used to verify the inner structure of composite parts built using the FEF process.

  16. Polycrystalline photovoltaic cell

    SciTech Connect

    Jordan, J.F.; Lampkin, C.M.

    1983-10-25

    A photovoltaic cell is disclosed, having an electrically conductive substrate, which may be glass having a film of conductive tin oxide; a first layer containing a suitable semiconductor, which layer has a first component film with an amorphous structure and a second component film with a polycrystalline structure; a second layer forming a heterojunction with the first layer; and suitable electrodes where the heterojunction is formed from a solution containing copper, the amorphous film component is superposed above an electrically conductive substrate to resist permeation of the copper-containing material to shorting electrical contact with the substrate. The penetration resistant amorphous layer permits a variety of processes to be used in forming the heterojunction with even very thin layers (1-6 /SUB u/ thick) of underlying polycrystalline semiconductor materials. In some embodiments, the amorphous-like structure may be formed by the addition of aluminum or zirconium compounds to a solution of cadmium salts sprayed over a heated substrate.

  17. Effect of neon plasma pre-irradiation on surface morphology and deuterium retention of tungsten

    NASA Astrophysics Data System (ADS)

    Cheng, L.; De Temmerman, G.; Zeijlmans van Emmichoven, P. A.; Ji, G.; Zhou, H. B.; Wang, B.; Yuan, Y.; Zhang, Y.; Lu, G. H.

    2015-08-01

    Neon and deuterium plasma irradiation of polycrystalline tungsten targets have been performed at high fluxes of ∼1024 ions m-2 s-1 to study the interaction of neon with tungsten and the influence of neon on deuterium retention. Tungsten exposure to neon plasma leads to the formation of wavy nanostructures on the surface. Subsequent exposure to high-flux deuterium plasma leads to blister formation of micrometer size on top of the wavy structures. The total deuterium retention is decreased by neon pre-irradiation for all surface temperatures used in the present experiments. It is suggested that a barrier of trapped Ne is formed that interrupts the D transport and reduces D retention.

  18. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  19. Effects of tungsten on environmental systems.

    PubMed

    Strigul, Nikolay; Koutsospyros, Agamemnon; Arienti, Per; Christodoulatos, Christos; Dermatas, Dimitris; Braida, Washington

    2005-10-01

    Tungsten is a metal with many industrial and military applications, including manufacturing of commercial and military ammunition. Despite its widespread use, the potential environmental effects of tungsten are essentially unknown. This study addresses environmental effects of particulate and soluble forms of tungsten, and to a minor extent certain tungsten alloy components, present in some munitions formulations. Dissolution of tungsten powder significantly acidifies soils. Tungsten powder mixed with soils at rates higher than 1% on a mass basis, trigger changes in soil microbial communities resulting in the death of a substantial portion of the bacterial component and an increase of the fungal biomass. It also induces the death of red worms and plants. These effects appear to be related with the soil acidification occurring during tungsten dissolution. Dissolved tungsten species significantly decrease microbial yields by as much as 38% for a tungsten media concentration of 89 mg l(-1). Soluble tungsten concentrations as low as 10(-5) mg l(-1), cause a decrease in biomass production by 8% which is possibly related to production of stress proteins. Plants and worms take up tungsten ions from soil in significant amounts while an enrichment of tungsten in the plant rhizosphere is observed. These results provide an indication that tungsten compounds may be introduced into the food chain and suggest the possibility of development of phytoremediation-based technologies for the cleanup of tungsten contaminated sites. PMID:16168748

  20. Multiple Diamond Anvil (MDA) apparatus using nano-polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Irifune, T.; Kunimoto, T.; Tange, Y.; Shinmei, T.; Isobe, F.; Kurio, A.; Funakoshi, K.

    2011-12-01

    Thanks to the great efforts by Dave Mao, Bill Bassett, Taro Takahashi, and their colleagues at the University of Rochester through 1960s-70s, diamond anvil cell (DAC) became a major tool to investigate the deep Earth after its invention by scientists at NBS in 1958. DAC can now cover almost the entire pressure and temperature regimes of the Earth's interior, which seems to have solved the longstanding debate on the crystal structure of iron under the P-T conditions of the Earth's inner core. In contrast, various types of static large-volume presses (LVP) have been invented, where tungsten carbide has conventionally been used as anvils. Kawai-type multianvil apparatus (MA), which utilize 6 first-stage harden steel and 8 tungsten carbide anvils, is the most successful LVP, and has been used for accurate measurements of phase transitions, physical properties, element partitioning, etc. at high pressure and temperature. However, pressures using tungsten carbide as the second-stage anvils have been limited to about 30 GPa due to significant plastic deformation of the anvils. Efforts have been made to expand this pressure limit by replacing tungsten carbide anvils with harder sintered diamond (SD) anvils over the last two decades, but the pressures available in KMA with SD anvils have still been limited to below 100 GPa. We succeeded to produce nano-polycrystalline diamond (NPD or HIME-Diamond) in 2003, which is known to have ultrahigh hardness, very high toughness and elastic stiffness, high transmittance of light, relatively low thermal conductivity. These properties are feasible for its use as anvils, and some preliminary experiments of application of NPD anvils to laser heated DAC have successfully made in the last few years. We are now able to synthesize NPD rods with about 1cm in both diameter and length using a newly constructed 6000-ton KMA at Geodynamics Research Center, Ehime University, and have just started to apply this new polycrystalline diamond as anvils

  1. Tungsten carbide: Crystals by the ton

    NASA Astrophysics Data System (ADS)

    Smith, E. N.

    1988-06-01

    A comparison is made of the conventional process of making tungsten carbide by carburizing tungsten powder and the Macro Process wherein the tungsten carbide is formed directly from the ore concentrate by an exothermic reaction of ingredients causing a simultaneous reduction and carburization. Tons of tungsten monocarbide crystals are formed in a very rapid reaction. The process is unique in that it is self regulating and produces a tungsten carbide compound with the correct stoichiometry. The high purity with respect to oxygen and nitrogen is achieved because the reactions occur beneath the molten metal. The morphology and hardness of these crystals has been studied by various investigators and reported in the listed references.

  2. Electrical Behavior of SnO2 Polycrystalline Ceramic Pieces Formed by Slip Casting: Effect of Surrounding Atmosphere (Air and CO)

    NASA Astrophysics Data System (ADS)

    Aguilar-Paz, C. J.; Ochoa-Muñoz, Y.; Ponce, M. A.; Rodríguez-Páez, J. E.

    2016-01-01

    Pieces of porous polycrystalline SnO2 with and without cobalt have been formed by the slip-casting method, using ceramic powders synthesized by the controlled precipitation method. A suitable methodology was developed for forming and sintering the pieces to enable controlled modification of their microstructure, principally grain size, porosity, and type of intergranular contacts. Better control of the microstructure was obtained in the samples containing cobalt. In these, predominance of open necks and intergranular contacts was observed, which can represent Schottky barriers. Because of its good structural homogeneity, porosity, and small grain size (of the order of 1 μm), the sample with 2 mol.% Co sintered at 1250°C for 2 h was selected for electrical characterization by complex impedance spectroscopy, varying the operating temperature, concentration and nature of the surrounding gas (air or CO), and bias voltage. The resulting R p and C p curves were very sensitive to variation in these parameters, being most obvious for the C p curves, which showed a phenomenon of low-frequency dispersion when bias voltages other than zero were used, in the presence of O2, and at operating temperature of 280°C. The electrical behavior of the SnO2 with 2 mol.% Co sample sintered at 1250°C was consistent with the nature and microstructural characteristics of the active material and was justified based on the presence of shallow- and deep-type defects, and variations in barrier height and width, caused by adsorption of gas molecules.

  3. High strength and density tungsten-uranium alloys

    DOEpatents

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  4. High strength and density tungsten-uranium alloys

    SciTech Connect

    Sheinberg, H.

    1991-01-01

    Alloys of tungsten and uranium and a method for making the alloys. Amount of tungsten present in the alloys is from about 55 to 85. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  5. High strength and density tungsten-uranium alloys

    SciTech Connect

    Sheinberg, H.

    1993-11-16

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  6. High strength and density tungsten-uranium alloys

    SciTech Connect

    Sheinberg, H.

    1991-12-31

    Alloys of tungsten and uranium and a method for making the alloys. Amount of tungsten present in the alloys is from about 55 to 85. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  7. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, Andreas M.; Haggerty, John S.; Danforth, Stephen C.

    1983-01-01

    A process for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by imgingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step.

  8. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, A.M.; Haggerty, J.S.; Danforth, S.C.

    1983-04-05

    A process is described for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by impingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step. 10 figs.

  9. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  10. Gelcasting Polycrystalline Alumina

    SciTech Connect

    Janney, M.A.; Zuk, K.J.; Wei, G.C.

    2000-01-01

    OSRAM SYLVANIA INC. is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux TM line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency ({approximately}97% total transmittance in the visible), their refractoriness (inner wall temperature can reach l2OOC), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, up to 100 initial lumens per watt. (Compare incandescent lamps 10-20 lumens per watt, fluorescent lamps 25-90 lumens per watt.)

  11. Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO3-δ

    NASA Astrophysics Data System (ADS)

    Thiel, Philipp; Eilertsen, James; Populoh, Sascha; Saucke, Gesine; Döbeli, Max; Shkabko, Andrey; Sagarna, Leyre; Karvonen, Lassi; Weidenkaff, Anke

    2013-12-01

    Polycrystalline tungsten-substituted CaMn1-xWxO3-δ (0.00 ≤ x ≤ 0.05) powders were synthesized from a polymeric precursor, pressed and sintered to high density. The impact of tungsten substitution on the crystal structure, thermal stability, phase transition, electronic and thermal transport properties is assessed. Tungsten acts as an electron donator and strongly affects high-temperature oxygen stoichiometry. Oxygen vacancies form in the high figure-of-merit (ZT)-region starting from about T = 1000 K and dominate the carrier concentration and electronic transport far more than the tungsten substitution. The analysis of the transport properties yields that in the investigated regime the band filling is sufficiently high to overcome barriers of polaron transport. Therefore, the Cutler-Mott approach describes the electrical transport more accurately than the Mott approach for small polaron transport. The lattice thermal conductivity near room temperature is strongly suppressed with increasing tungsten concentration due to mass-difference impurity scattering. A ZT of 0.25 was found for x = 0.04 at 1225 K.

  12. Tungsten thermal neutron dosimeter

    NASA Technical Reports Server (NTRS)

    Ball, L. L.; Richardson, P. J.; Sheibley, D. W.

    1969-01-01

    Tungsten-185 activity, which is produced by neutron activation of tungsten-184, determines thermal neutron flux. Radiochemical separation methods and counting techniques for irradiated tungsten provide accurate determination of the radiation exposure.

  13. Fabrication Of Double Wall Tube By U-O Press Forming And Pulsed Gas Tungsten Arc-welding

    NASA Astrophysics Data System (ADS)

    Kasuga, Yukio; Kawamori, Shigehiro; Kuroda, Kiyoshi; Okai, Toshihiko

    2011-01-01

    Double walled tubes were trially fabricated by press-forming and arc-welding, as difficulty in fabrication was anticipated in the case of roll-forming. U-O press-formed double walled sheets are TIG arc- welded. For determination of welding conditions, overlapped flat sheets were employed and butt-welded including pulsed arc-welding. Pulse from 1 to 100Hz is effective to obtain penetrated weld bead. With this, the double walled tube could be arc-welded, which could not be achieved by conventional TIG arc-welding.

  14. Erosion of tungsten and its brazed joints with bronze irradiated by pulsed deuterium plasma flows

    NASA Astrophysics Data System (ADS)

    Yakushin, V.; Polsky, V.; Kalin, B.; Dzhumaev, P.; Polyansky, A.; Sevryukov, O.; Suchkov, A.; Fedotov, V.

    2013-11-01

    This work presents results on erosion of mono- and polycrystalline tungsten and its brazed joints with bronze substrates under irradiation by high-temperature pulsed (τp ˜ 20 μs) deuterium plasma flows, with a power density q = 19-66 GW/m2 and pulses numbering from 2 to 10, simulating the expected plasma disruptions and ELMs in fusion reactors. The surface erosion and heat resistance of tungsten and brazed joints were investigated by scanning electron microscopy, and erosion coefficients were determined by target mass loss. It is found that for both types of tungsten the surface starts to significantly crack even under relatively weak irradiation regimes (q = 19 GW/m2, N = 2), at which point surface melting is not observed. Local melting becomes visible with an increase of q up to 25 GW/m2. In addition, there is formation of blisters with a typical size of 1-2 μm on the surface of monocrystalline samples and craters up to 2 μm in diameter on polycrystalline samples. In addition, craters ˜10-30 μm in diameter are formed on defects similar to those observed under unipolar arcs. At that point, the erosion coefficients change to within ranges of 0.2-0.7 × 10-5 kg/J m2. It is found that at q = 50 GW/m2, the brazed joints of monocrystalline tungsten with bronze of Cu-0.6% Cr-0.08% Zr have the highest heat resistance.

  15. The determination of minority carrier lifetime in polycrystalline silicon by the photoconductivity decay method

    NASA Astrophysics Data System (ADS)

    Singh, S. N.; Kishore, R.; Arora, N. K.

    1985-04-01

    Experiments were carried out to investigate the possible sources of error in estimates of the time constant of apparent minority carrier lifetime (tau-asterisk) in polycrystalline silicon. Tau-asterisk was measured in both single-crystal and polycrystalline silicon rods as a function of: (1) the intensity of background illumination; and (2) the temperature of the specimens. The background illumination source for the experiments was a tungsten-halogen lamp which operated in the intensity range 0-85 mW per sq cm. The temperatures of the specimens under illumination were in the range 25-140 C. The experimental results were explained on the basis of a theoretical analysis. It is shown that the photoconductivity of the specimens was generally dependent on the minority carrier mobility lifetime, as long as potential barriers were present at the grain boundaries of the specimens. On the basis of the theoretical analysis, it is concluded that the absence of potential barriers at the grain boundaries in polycrystalline silicon is a major source of error in estimates of minority carrier mobility lifetime. The apparent minority carrier mobility decay curves are reproduced in graphic form.

  16. Electrochemical Reduction of Tungsten Compounds to Produce Tungsten Powder

    NASA Astrophysics Data System (ADS)

    Erdoğan, Metehan; Karakaya, Ishak

    2010-08-01

    The production of tungsten by direct current reduction has been investigated. Experimental studies involved the electrochemical reduction of the solid tungsten compounds tungsten trioxide (WO3) and calcium tungstate (CaWO4) in the form of an assembled cathode of porous pellets attached to a current collector. Molten calcium chloride and a molten solution of calcium chloride and sodium chloride at eutectic composition, 48 pct mol NaCl, were used as the electrolytes. Reduced samples were characterized by means of X-ray diffraction analyses and scanning electron microscopy. The results of X-ray analyses, supported with thermodynamic computations, showed that WO3 cannot be used without loss in processes that involve the use of CaCl2 at high temperatures because it reacts with CaCl2 by releasing volatile tungsten oxychloride. In the electrochemical reduction of CaWO4, X-ray diffraction results indicated the presence of tungsten with significant concentrations of calcium compounds. Metallic tungsten was obtained after treating the reduced samples with dilute hydrochloric acid solutions.

  17. Synthesis of Nano-Polycrystalline Synroc-B Powders as a High Level Radioactive Wastes Ceramic Forms by a Solution Combustion Synthesis.

    PubMed

    Han, Young-Min; Lee, Sang-Jin; Kim, Yeon-Ku; Jung, Choong-Hwan

    2016-02-01

    Synroc (Synthetic Rock) consists of four main titanate phases: peroveskite (CaTiO3), zirconolite (CaZrTi2O7), hollandite (BaAl2Ti6O16) and rutile (TiO2). Nano-polycrystalline synroc powders were made by a synthesis combustion process. The combustion process, an externally initiated reaction is self-sustained owing to the exothermic reaction. A significant volume of gas is evolved during the combustion reaction and leads to loosely agglomerated powders. This exothermic reaction provides necessary heat to further carry the reaction in forward direction to produce nanocrystalline powders as the final product. Glycine is used as a fuel, being oxidized by nitrate ions. It is inexpensive, has high energy efficiency, fast heating rates, short reaction times and high compositional homogeneity. In this study, combustion synthesis of nano-sized synroc-B powder is introduced. The fabrication of synroc-B powder result of observation XRD were prepared for polycrystalline (perovskite, zirconolite, hollandite, rutile) structures. The characterization of the synthesized powders is conducted by using XRD, SEM/EDS and TEM. PMID:27433644

  18. Software optimization for electrical conductivity imaging in polycrystalline diamond cutters

    SciTech Connect

    Bogdanov, G.; Ludwig, R.; Wiggins, J.; Bertagnolli, K.

    2014-02-18

    We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

  19. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  20. Diffusion in polycrystalline microstructures

    SciTech Connect

    Swiler, T.P.; Holm, E.A.

    1995-07-01

    Mass transport properties are important in polycrystalline materials used as protective films. Traditionally, such properties have been studied by examining model polycrystalline structures, such as a regular array of straight grain boundaries. However, these models do not account for a number of features of real grain ensembles, including the grain size distribution and the topological aspects of grain boundaries. In this study, a finite difference scheme is developed to study transient and steady-state mass transport through realistic two-dimensional polycrystalline microstructures. Effects of microstructural parameters such as average grain size and grain boundary topology are examined, as are effects due to limits of the model.

  1. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  2. Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO{sub 3−δ}

    SciTech Connect

    Thiel, Philipp; Eilertsen, James; Populoh, Sascha Saucke, Gesine; Shkabko, Andrey; Sagarna, Leyre; Karvonen, Lassi; Döbeli, Max; Weidenkaff, Anke

    2013-12-28

    Polycrystalline tungsten-substituted CaMn{sub 1−x}W{sub x}O{sub 3−δ} (0.00 ≤ x ≤ 0.05) powders were synthesized from a polymeric precursor, pressed and sintered to high density. The impact of tungsten substitution on the crystal structure, thermal stability, phase transition, electronic and thermal transport properties is assessed. Tungsten acts as an electron donator and strongly affects high-temperature oxygen stoichiometry. Oxygen vacancies form in the high figure-of-merit (ZT)-region starting from about T = 1000 K and dominate the carrier concentration and electronic transport far more than the tungsten substitution. The analysis of the transport properties yields that in the investigated regime the band filling is sufficiently high to overcome barriers of polaron transport. Therefore, the Cutler-Mott approach describes the electrical transport more accurately than the Mott approach for small polaron transport. The lattice thermal conductivity near room temperature is strongly suppressed with increasing tungsten concentration due to mass-difference impurity scattering. A ZT of 0.25 was found for x = 0.04 at 1225 K.

  3. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  4. Gelcasting polycrystalline alumina

    SciTech Connect

    Janney, M.A.

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  5. Improvement of polycrystalline silicon wafer solar cell efficiency by forming nanoscale pyramids on wafer surface using a self-mask etching technique

    PubMed Central

    Lin, Hsin-Han; Chen, Wen-Hwa; Hong, Franklin C.-N.

    2013-01-01

    The creation of nanostructures on polycrystalline silicon wafer surface to reduce the solar reflection can enhance the solar absorption and thus increase the solar-electricity conversion efficiency of solar cells. The self-masking reactive ion etching (RIE) was studied to directly fabricate nanostructures on silicon surface without using a masking process for antireflection purpose. Reactive gases comprising chlorine (Cl2), sulfur hexafluoride (SF6), and oxygen (O2) were activated by radio-frequency plasma in an RIE system at a typical pressure of 120–130 mTorr to fabricate the nanoscale pyramids. Poly-Si wafers were etched directly without masking for 6–10 min to create surface nanostructures by varying the compositions of SF6, Cl2, and O2 gas mixtures in the etching process. The wafers were then treated with acid (KOH:H2O = 1:1) for 1 min to remove the damage layer (100 nm) induced by dry etching. The damage layer significantly reduced the solar cell efficiencies by affecting the electrical properties of the surface layer. The light reflectivity from the surface after acid treatment could be significantly reduced to <10% for the wavelengths between 500 and 900 nm. The effects of RIE and surface treatment conditions on the surface nanostructures and the optical performance as well as the efficiencies of solar cells will be presented and discussed. The authors have successfully fabricated large-area (156 × 156 mm2) subwavelength antireflection structure on poly-Si substrates, which could improve the solar cell efficiency reproducibly up to 16.27%, higher than 15.56% using wet etching. PMID:23847751

  6. Strengthening mechanisms of tungsten powder reinforced uranium

    SciTech Connect

    Lewis, M.A.K.; Hill, M.A.; Rollett, A.D.; Dunn, P.S.; Mortensen, A.; Massachusetts Inst. of Tech., Cambridge, MA )

    1989-01-01

    Tungsten powder reinforced uranium exhibits a three-fold increase in yield strength due to precipitation hardening. The tungsten-rich interphase precipitates form at moving phase boundaries during slow cooling. Further increases in yield strength, attained with increasing tungsten content, are due to composite strengthening; this is verified by increasing elastic modulus with increasing tungsten content. Age hardening behavior is observed, with strengthening occurring at aging temperatures low in the alpha phase. Aging higher in alpha gives initial strengthening followed by rapid overaging. Beta phase aging results in a very soft structure with precipitates visible optically. Wrought material exhibits significant strain hardening as well as composite strengthening due to elongation of the tungsten particles. 7 refs., 15 figs., 4 tabs.

  7. Strengthening mechanisms of tungsten powder reinforced uranium

    SciTech Connect

    Krawizcki, M.A.

    1990-04-01

    Tungsten powder reinforced uranium composites exhibit a three-fold increase in yield strength due to precipitation hardening. The tungsten-rich interphase precipitates form at the moving beta to alpha phase boundary during slow cooling. Further increases in yield strength, attained with increasing tungsten content, are due to composite strengthening. The composite strengthening is verified by increasing elastic modulus with increasing tungsten content. Age hardening behavior is observed, with strengthening occurring at aging temperatures low, in the alpha phase. Temperatures higher in alpha give initial strengthening followed by rapid overaging. Beta phase aging temperatures result in a very soft structure with interphase precipitates observable optically. Wrought material exhibits significant strain hardening as well as composite strengthening due to elongation of the tungsten particles. 36 refs., 36 figs., 10 tabs.

  8. Highly Doped Polycrystalline Silicon Microelectrodes Reduce Noise in Neuronal Recordings In Vivo

    PubMed Central

    Saha, Rajarshi; Jackson, Nathan; Patel, Chetan; Muthuswamy, Jit

    2013-01-01

    The aims of this study are to 1) experimentally validate for the first time the nonlinear current-potential characteristics of bulk doped polycrystalline silicon in the small amplitude voltage regimes (0–200 μV) and 2) test if noise amplitudes (0–15 μV) from single neuronal electrical recordings get selectively attenuated in doped polycrystalline silicon microelectrodes due to the above property. In highly doped polycrystalline silicon, bulk resistances of several hundred kilo-ohms were experimentally measured for voltages typical of noise amplitudes and 9–10 kΩ for voltages typical of neural signal amplitudes (>150–200 μV). Acute multiunit measurements and noise measurements were made in n = 6 and n = 8 anesthetized adult rats, respectively, using polycrystalline silicon and tungsten microelectrodes. There was no significant difference in the peak-to-peak amplitudes of action potentials recorded from either microelectrode (p > 0.10). However, noise power in the recordings from tungsten microelectrodes (26.36 ± 10.13 pW) was significantly higher (p < 0.001) than the corresponding value in polycrystalline silicon microelectrodes (7.49 ± 2.66 pW). We conclude that polycrystalline silicon microelectrodes result in selective attenuation of noise power in electrical recordings compared to tungsten microelectrodes. This reduction in noise compared to tungsten microelectrodes is likely due to the exponentially higher bulk resistances offered by highly doped bulk polycrystalline silicon in the range of voltages corresponding to noise in multiunit measurements. PMID:20667815

  9. Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation

    PubMed Central

    Yang, Qi; You, Yu-Wei; Liu, Lu; Fan, Hongyu; Ni, Weiyuan; Liu, Dongping; Liu, C. S.; Benstetter, Günther; Wang, Younian

    2015-01-01

    We report the formation of wave-like structures and nanostructured fuzzes in the polycrystalline tungsten (W) irradiated with high-flux and low-energy helium (He) ions. From conductive atomic force microscope measurements, we have simultaneously obtained the surface topography and current emission images of the irradiated W materials. Our measurements show that He-enriched and nanostructured strips are formed in W crystal grains when they are exposed to low-energy and high-flux He ions at a temperature of 1400 K. The experimental measurements are confirmed by theoretical calculations, where He atoms in W crystal grains are found to cluster in a close-packed arrangement between {101} planes and form He-enriched strips. The formations of wave-like structures and nanostructured fuzzes on the W surface can be attributed to the surface sputtering and swelling of He-enriched strips, respectively. PMID:26077598

  10. Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Qi; You, Yu-Wei; Liu, Lu; Fan, Hongyu; Ni, Weiyuan; Liu, Dongping; Liu, C. S.; Benstetter, Günther; Wang, Younian

    2015-06-01

    We report the formation of wave-like structures and nanostructured fuzzes in the polycrystalline tungsten (W) irradiated with high-flux and low-energy helium (He) ions. From conductive atomic force microscope measurements, we have simultaneously obtained the surface topography and current emission images of the irradiated W materials. Our measurements show that He-enriched and nanostructured strips are formed in W crystal grains when they are exposed to low-energy and high-flux He ions at a temperature of 1400 K. The experimental measurements are confirmed by theoretical calculations, where He atoms in W crystal grains are found to cluster in a close-packed arrangement between {101} planes and form He-enriched strips. The formations of wave-like structures and nanostructured fuzzes on the W surface can be attributed to the surface sputtering and swelling of He-enriched strips, respectively.

  11. Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces

    NASA Astrophysics Data System (ADS)

    Kelly, Thomas G.; Ren, Hui; Chen, Jingguang G.

    2015-10-01

    Ethanol decomposition on tungsten monocarbide (WC) and Rh-modified WC was investigated using ultrahigh vacuum (UHV) surface science experiments and density functional theory (DFT) calculations. DFT calculations indicated that the binding energies of ethanol and its decomposition intermediates on WC(0001) were modified by Rh, with Rh/WC(0001) showing similar values to those on Rh(111). Through temperature-programmed desorption (TPD) experiments on polycrystalline WC and Rh-modified WC, it was shown that the selectivity for ethanol decomposition was different on these surfaces. On WC, the C-O bond of ethanol was preferentially broken to produce ethylene; on Rh-modified WC, the C-C bond was broken to produce carbon monoxide and methane. Furthermore, high-resolution electron energy loss spectroscopy (HREELS) was used to determine likely surface intermediates. On Rh-modified WC, ethanol first formed ethoxy through O-H scission, then reacted through an aldehyde intermediate to form the C1 products.

  12. Fabrication of tungsten wire needles

    SciTech Connect

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading.

  13. Properties of tungsten oxide thin films formed by ion-plasma and laser deposition methods for MOSiC-based hydrogen sensors

    SciTech Connect

    Fominski, V. Y.; Grigoriev, S. N.; Romanov, R. I.; Zuev, V. V.; Grigoriev, V. V.

    2012-03-15

    Thin-film structures based on gas-sensitive tungsten oxide and catalytic platinum are fabricated by room-temperature deposition on a silicon carbide wafer using pulsed laser and ion-plasma methods. Oxide layer annealing in air to 600 Degree-Sign C caused the formation of microstructured and nanostructured crystalline states depending on the deposition conditions. Structural differences affect the electrical parameters and the stability of characteristics. The maximum response to hydrogen is detected in the structure fabricated by depositing a low-energy laser-induced flow of tungsten atoms in oxygen. The voltage shift of the currentvoltage curves for 2% H{sub 2} in air at 350 Degree-Sign C was 4.6 V at a current of {approx}10 {mu}A. The grown structures' metastability caused a significant decrease in the shift after long-term cyclic testing. The most stable shifts of {approx}2 V at positive bias on the Pt contact were detected for oxide films deposited by ion-plasma sputtering.

  14. Polycrystalline thin film photovoltaics

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Ullal, H. S.; Mitchell, R. L.

    Significant progress has recently been made towards improving the efficiencies of polycrystalline thin-film solar cells and modules using CuInSe2 and CdTe. The history of using CuInSe2 and CdTe for solar cells is reviewed. Initial outdoor stability tests of modules are encouraging. Progress in semiconductor deposition techniques has also been substantial. Both CuInSe2 and CdTe are positioned for commercialization during the 1990s. The major participants in developing these materials are described. The US DOE/SERI (Solar Energy Research Institute) program recognizes the rapid progress and important potential of polycrystalline thin films to meet ambitious cost and performance goals. US DOE/SERI is in the process of funding an initiative in this area with the goal of ensuring US leadership in the development of these technologies. The polycrystalline thin-film module development initiative, the modeling and stability of the devices, and health and safety issues are discussed.

  15. Process for utilizing low-cost graphite substrates for polycrystalline solar cells

    NASA Technical Reports Server (NTRS)

    Chu, T. L. (Inventor)

    1978-01-01

    Low cost polycrystalline silicon solar cells supported on substrates were prepared by depositing successive layers of polycrystalline silicon containing appropriate dopants over supporting substrates of a member selected from the group consisting of metallurgical grade polycrystalline silicon, graphite and steel coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures thereof such that p-n junction devices were formed which effectively convert solar energy to electrical energy. To improve the conversion efficiency of the polycrystalline silicon solar cells, the crystallite size in the silicon was substantially increased by melting and solidifying a base layer of polycrystalline silicon before depositing the layers which form the p-n junction.

  16. Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma

    NASA Astrophysics Data System (ADS)

    Xu, H. Y.; De Temmerman, G.; Luo, G.-N.; Jia, Y. Z.; Yuan, Y.; Fu, B. Q.; Godfrey, A.; Liu, W.

    2015-08-01

    Surface topography of polycrystalline tungsten (W) have been examined after exposure to a low-energy (38 eV/D), high-flux (∼1.1-1.5 × 1024 m-2 s-1) deuterium plasma in the Pilot-PSI linear plasma device. The methods used were scanning electron microscopy (SEM), transmission electron microscopy (TEM), positron annihilation Doppler broadening (PADB) and grazing incident X-ray diffraction (GI-XRD). After exposure to high flux D plasma, blisters and nanostructures are formed on the W surface. Generation of defects was evidenced by PADB, while high stress and mixture of phases were detected in depth of 50 nm by GI-XRD. TEM observation revealed fluctuations and disordered microstructure on the outmost surface layer. Based on these results, surface reconstruction is considered as a possible mechanism for the formation of defects and nanostructures.

  17. Electrochromic behavior in CVD grown tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Gogova, D.; Iossifova, A.; Ivanova, T.; Dimitrova, Zl; Gesheva, K.

    1999-03-01

    Solid state electrochemical devices (ECDs) for smart windows, large area displays and automobile rearview mirrors are of considerable technological and commercial interest. In this paper, we studied the electrochromic properties of amorphous and polycrystalline CVD carbonyl tungsten oxide films and the possibility for sol-gel thin TiO 2 film to play the role of passive electrode in an electrochromic window with solid polymer electrolyte.

  18. Tungsten-induced carcinogenesis in human bronchial epithelial cells.

    PubMed

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong; Oksuz, Betul Akgol; Shen, Steven; Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta; Costa, Max

    2015-10-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. PMID:26164860

  19. Femtosecond laser-induced periodic surface structure formation on tungsten

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2008-09-15

    In this paper, we demonstrate the generation of periodic surface structures on a technologically important material, tungsten, at both 400 and 800 nm, despite that the table values of dielectric constants for tungsten at these two wavelengths suggest the absence of surface plasmons, a wave necessary for forming periodic structures on metals. Furthermore, we find that the structure periods formed on tungsten are significantly less than the laser wavelengths. We believe that the dielectric constants of tungsten change significantly due to intense laser pulse heating and surface structuring and roughening at nanometer scales, permitting surface plasmon excitation and periodic structure formation.

  20. [Study on the micro-infrared spectra and origin of polycrystalline diamonds from Mengyin kimberlite pipes].

    PubMed

    Yang, Zhi-Jun; Liang, Rong; Zeng, Xiang-Qing; Ge, Tie-Yan; Ai, Qun; Zheng, Yun-Long; Peng, Ming-Sheng

    2012-06-01

    The natural polycrystalline diamonds from the Mengyin kimberlite pipes can be classified as the euhedral faceted polycrystalline diamonds and anhedral rounded polycrystalline diamonds. The results of micro-FTIR spectra characterization of the polycrystalline diamonds show that the concentration of nitrogen is low, varying from 16.69 to 72.81 microgram per gram and is different among different diamond grains or position in polycrystalline diamonds. The euhedral faceted polycrystalline diamonds are Ia AB type and have higher concentration of A-center defects than B-center defects. Most of the anhedral rounded polycrystalline diamonds are Ia AB type and have higher content of B-center defects. A minority of the anhedral rounded polycrystalline diamonds have C-center, A-center and B-center defects simultaneously. The polycrystalline diamonds probably originated from the relatively deeper mantle and were not formed in diamond nucleation stage, but in the diamond growth period or some special conditions after the diamond grains were formed already. Furthermore, the euhedral faceted polycrystalline diamonds were formed slightly later and the anhedral rounded polycrystalline diamonds were formed obviously earlier than the diamond single crystals from the Mengyin kimberlite pipes. PMID:22870630

  1. Low flux and low energy helium ion implantation into tungsten using a dedicated plasma source

    NASA Astrophysics Data System (ADS)

    Pentecoste, Lucile; Thomann, Anne-Lise; Melhem, Amer; Caillard, Amael; Cuynet, Stéphane; Lecas, Thomas; Brault, Pascal; Desgardin, Pierre; Barthe, Marie-France

    2016-09-01

    The aim of this work is to investigate the first stages of defect formation in tungsten (W) due to the accumulation of helium (He) atoms inside the crystal lattice. To reach the required implantation conditions, i.e. low He ion fluxes (1011-1014 ions.cm2.s-1) and kinetic energies below the W atom displacement threshold (about 500 eV for He+), an ICP source has been designed and connected to a diffusion chamber. Implantation conditions have been characterized by means of complementary diagnostics modified for measurements in this very low density helium plasma. It was shown that lowest ion fluxes could only be reached for the discharge working in capacitive mode either in α or γ regime. Special attention was paid to control the energy gained by the ions by acceleration through the sheath at the direct current biased substrate. At very low helium pressure, in α regime, a broad ion energy distribution function was evidenced, whereas a peak centered on the potential difference between the plasma and the biased substrate was found at higher pressures in the γ mode. Polycrystalline tungsten samples were exposed to the helium plasma in both regimes of the discharge and characterized by positron annihilation spectroscopy in order to detect the formed vacancy defects. It was found that W vacancies are able to be formed just by helium accumulation and that the same final implanted state is reached, whatever the operating mode of the capacitive discharge.

  2. Processing of functionally graded tungsten carbide-cobalt-diamond composites

    NASA Astrophysics Data System (ADS)

    Jain, Mohit

    Polycrystalline diamond compacts (PDCs) are widely used as drill bit cutters in rock drilling and as tool bits in machining non-ferrous materials. A typical PDC comprises a thin layer of sintered polycrystalline diamond bonded to a tungsten carbide-cobalt substrate. A well recognized failure mechanism is delamination at the interface between diamond and cemented carbide. High stresses at the diamond/carbide interface, due to thermal expansion and modulus mismatch, are the primary cause of in-service failure under impact loading conditions. This work was undertaken to develop a tungsten carbide-cobalt-diamond composite, which has a continuously graded interface between the diamond and tungsten carbide. The process developed comprised the following steps: (i) generation of a pore size gradient by electrochemical etching of cobalt from the surface of a partially sintered tungsten carbide-cobalt preform; (ii) chemical vapor infiltration of the porous preform with carbon by catalytic decomposition of a methane/hydrogen mixture, resulting in a graded carbon concentration; and (iii) consolidation of the carbon infiltrated preforms at 8GPa/1500°C to complete densification and to transform the carbon into diamond. Thus, the final product consists of a functionally graded WC-Co-diamond composite, with controlled distribution of the constituent phases. Tungsten carbide-cobalt powders with mean tungsten carbide particle size of 0.8mum(micro-grain) and 100 nm(nano-grain) were used as starting materials. Processing conditions were adjusted to obtain an optimal distribution of carbon in porous preforms. After high pressure/high temperature consolidation, both micro- and nano-composites showed a diffused interface between inner and outer regions of the fully dense materials. A micro-composite showed columnar-like tungsten carbide grains and faceted diamond grains in the outer region of the sintered material. The grain size of the diamond in this region was ˜2mum, and the

  3. Polycrystalline thin-films

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Mitchell, R.

    1986-02-01

    This annual report summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Major subcontracted work in this area has concentrated on development of CuInSe2 and CdTe technologies. During FY 1985, major progress was achieved by subcontractors in: (1) developing a new, low-cost method of fabricating CuInSe2, and (2) improving the efficiency of CuInSe2 devices by about 10% (relative). The report also lists research planned to meet the Department of Energy's goals in these technologies.

  4. Tungsten filament fire

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.; Perkins, James

    2016-05-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent light bulb is being replaced by compact fluorescent and LED lamps.

  5. Deuterium retention and surface modifications of nanocrystalline tungsten films exposed to high-flux plasma

    NASA Astrophysics Data System (ADS)

    `t Hoen, M. H. J.; Dellasega, D.; Pezzoli, A.; Passoni, M.; Kleyn, A. W.; Zeijlmans van Emmichoven, P. A.

    2015-08-01

    Deuterium retention studies are presented for nanostructured tungsten films exposed to high-flux deuterium plasmas. Thin tungsten films of ∼1 μm thickness were deposited with pulsed laser deposition (PLD) on bulk tungsten. Surface modifications were studied with scanning electron microscopy and deuterium retention with thermal desorption spectroscopy. Three types of PLD films with different densities and crystallinity were studied after exposure to deuterium plasmas. The surface temperature ranged from about 460 K at the periphery to about 520 K in the centre of the targets. The films withstand the intense plasma exposure well and maintain their overall integrity. An increase of deuterium retention is observed with decreasing tungsten density and crystallite size. We found that the filling of these thin films with deuterium is significantly faster than for pre-damaged polycrystalline tungsten. We observed formation of micrometer-sized blisters as well as structures on the nanometer scale, both depending on the layer type.

  6. Relativistic four- and two-component calculations of parity violation effects in chiral tungsten molecules of the form NWXYZ (X, Y, Z = H, F, Cl, Br, or I).

    PubMed

    Figgen, Detlev; Saue, Trond; Schwerdtfeger, Peter

    2010-06-21

    Parity violation (PV) effects to the electronic ground state structure for a series of chiral tungsten molecules of the type NWXYZ (X, Y, Z = H, F, Cl, Br, or I) are compared using four- (Dirac) and two- (X2C) component relativistic Hartree-Fock and density functional theories. The results show the computationally more affordable two-component X2C approach yields accurate results for all molecules investigated. The PV energy differences between the two enantiomers range from as little as 0.4 Hz for NWClBrI to 140 Hz for NWHClI using a generalized gradient approximation including exact exchange (B3LYP). The W-N stretching mode in these molecules lies in the experimentally favorable CO(2) laser frequency range, and we therefore investigated PV effects in vibrational transitions using a single normal mode analysis. Here the PV frequency shift between the two enantiomers ranges from 1.6 mHz for NWFBrI to 710 mHz for NWHClI. Thus these types of molecules could be useful for the future detection of PV effects in chiral molecules. PMID:20572708

  7. Polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Mitchell, R.; Ullal, H.

    1987-02-01

    This annual report for fiscal year 1986 summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Subcontracted work in this area has concentrated on the development of CuInSe2 and CdTe technologies. During FY 1986, major progress was achieved by subcontractors in (1) achieving 10.5% (SERI-verified) efficiency with CdTe, (2) improving the efficiency of selenized CuInSe2 solar cells to nearly 8%, and (3) developing a transparent contact to CdTe cells for potential use in the top cells of tandem structures.

  8. Temperature dependence of deuterium retention in tungsten deposits by deuterium ion irradiation

    NASA Astrophysics Data System (ADS)

    Katayama, K.; Uehara, K.; Date, H.; Fukada, S.; Watanabe, H.

    2015-08-01

    Tungsten (W) deposits were formed by hydrogen plasma sputtering and blisters were observed on the surface. The W deposits and W foils were exposed to deuterium ions with 2 keV-D2+ to doses of 1.0 × 1021 D2+/m2 at 294 and 773 K in addition to 573 K in the present authors' previous work. Hydrogen isotopes release behaviors from the W deposits and W foils were observed by the thermal desorption spectroscopy method. The amount of deuterium released from the W deposit was considerably larger than that from W foil. The obtained deuterium retention in D/m2 was in the range of deuterium retention in polycrystalline tungsten. Not only implanted deuterium but also hydrogen, which was incorporated during the sputtering-deposition process, were released from the W deposits. A hydrogen release peak at around 1100 K was observed for the W deposits. This is considered to be due to the rupture of the blisters.

  9. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Liu, Dongping; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Bi, Zhenhua; Benstetter, Günther; Li, Shouzhe

    2016-04-01

    A large-power inductively coupled plasma source was designed to perform the continuous helium ions (He+) irradiations of polycrystalline tungsten (W) under International Thermonuclear Experimental Reactor (ITER) relevant conditions. He+ irradiations were performed at He+ fluxes of 2.3 × 1021-1.6 × 1022/m2 s and He+ energies of 12-220 eV. Surface damages and microstructures of irradiated W were observed by scanning electron microscopy. This study showed the growth of nano-fuzzes with their lengths of 1.3-2.0 μm at He+ energies of >70 eV or He+ fluxes of >1.3 × 1022/m2 s. Nanometer-sized defects or columnar microstructures were formed in W surface layer due to low-energy He+ irradiations at an elevated temperature (>1300 K). The diffusion and coalescence of He atoms in W surface layers led to the growth and structures of nano-fuzzes. This study indicated that a reduction of He+ energy below 12-30 eV may greatly decrease the surface damage of tungsten diverter in the fusion reactor.

  10. Method of making tungsten powder compacts

    SciTech Connect

    Peralta, R.E.

    1991-06-25

    This patent describes a process for forming a compact. It comprises essentially of pure tungsten metal powder by the steps of contacting a tungsten metal powder with and aqueous acid mixture at a sufficient concentration and for a sufficient period of time of etch the surface of the powder, the acid comprises a mixture of hydrofluoric acid and hydrochloric acid, and isostaticly pressuring the powder at an ambient temperature at a pressure of from about 18,000 to about 20,000 psi. for a sufficient period of time to form a compact.

  11. Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia Sensing

    SciTech Connect

    Wang,G.; Ji, Y.; Huang, X.; Yang, X.; Gouma, P.; Dudley, M.

    2006-01-01

    We describe the fabrication and characterization of tungsten oxide nanofibers using the electrospinning technique and sol-gel chemistry. Tungsten isopropoxide sol-gel precursor was incorporated into poly(vinyl acetate)(PVAc)/DMF solutions and electrospun to form composite nanofibers. The as-spun composite nanofibers were subsequently calcinated to obtain pure tungsten oxide nanofibers with controllable diameters of around 100 nm. SEM and TEM were utilized to investigate the structure and morphology of tungsten oxide nanofibers before and after calcination. The relationship between solution concentration and ceramic nanofiber morphology has been studied. A synchrotron-based in situ XRD method was employed to study the dynamic structure evolution of the tungsten oxide nanofibers during the calcination process. It has been shown that the as-prepared tungsten oxide ceramic nanofibers have a quick response to ammonia with various concentrations, suggesting potential applications of the electrospun tungsten oxide nanofibers as a sensor material for gas detection.

  12. Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing

    SciTech Connect

    Wang,G.; Ji, Y.; Huang, X.; Yang, X.; Gouma, P.; Dudley, M.

    2006-01-01

    We describe the fabrication and characterization of tungsten oxide nanofibers using the electrospinning technique and sol-gel chemistry. Tungsten isopropoxide sol-gel precursor was incorporated into poly(vinyl acetate)(PVAc)/DMF solutions and electrospun to form composite nanofibers. The as-spun composite nanofibers were subsequently calcinated to obtain pure tungsten oxide nanofibers with controllable diameters of around 100 nm. SEM and TEM were utilized to investigate the structure and morphology of tungsten oxide nanofibers before and after calcination. The relationship between solution concentration and ceramic nanofiber morphology has been studied. A synchrotron-based in situ XRD method was employed to study the dynamic structure evolution of the tungsten oxide nanofibers during the calcination process. It has been shown that the as-prepared tungsten oxide ceramic nanofibers have a quick response to ammonia with various concentrations, suggesting potential applications of the electrospun tungsten oxide nanofibers as a sensor material for gas detection.

  13. KISMET tungsten dispersal experiment

    SciTech Connect

    Wohletz, K.; Kunkle, T.; Hawkins, W.

    1996-12-01

    Results of the KISMET tungsten dispersal experiment indicate a relatively small degree of wall-rock contamination caused by this underground explosive experiment. Designed as an add-on to the KISMET test, which was performed in the U-1a.02 drift of the LYNER facility at Nevada Test Site on 1 March 1995, this experiment involved recovery and analysis of wall-rock samples affected by the high- explosive test. The chemical, high-explosive blast drove tungsten powder, placed around the test package as a plutonium analog, into the surrounding wall- rock alluvium. Sample analyses by an analytical digital electron microscope (ADEM) show tungsten dispersed in the rock as tiny (<10 {mu}m) particles, agglomerates, and coatings on alluvial clasts. Tungsten concentrations, measured by energy dispersive spectral analysis on the ADEM, indicate penetration depths less than 0.1 m and maximum concentrations of 1.5 wt % in the alluvium.

  14. Polycrystalline Diamond Schottky Diodes and Their Applications.

    NASA Astrophysics Data System (ADS)

    Zhao, Ganming

    In this work, four-hot-filament CVD techniques for in situ boron doped diamond synthesis on silicon substrates were extensively studied. A novel tungsten filament shape and arrangement used to obtain large-area, uniform, boron doped polycrystalline diamond thin films. Both the experimental results and radiative heat transfer analysis showed that this technique improved the uniformity of the substrate temperature. XRD, Raman and SEM studies indicate that large area, uniform, high quality polycrystalline diamond films were obtained. Schottky diodes were fabricated by either sputter deposition of silver or thermal evaporation of aluminum or gold, on boron doped diamond thin films. High forward current density and a high forward-to-reverse current ratio were exhibited by silver on diamond Schottky diodes. Schottky barrier heights and the majority carrier concentrations of both aluminum and gold contacted diodes were determined from the C-V measurements. Furthermore, a novel theoretical C-V-f analysis of deep level boron doped diamond Schottky diodes was performed. The analytical results agree well with the experimental results. Compressive stress was found to have a large effect on the forward biased I-V characteristics of the diamond Schottky diodes, whereas the effect on the reverse biased characteristics was relatively small. The stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. This result shows that CVD diamond device has potential for mechanical transducer applications. The quantitative photoresponse characteristics of the diodes were studied in the spectral range of 300 -1050 nm. Semi-transparent gold contacts were used for better photoresponse. Quantum efficiency as high as 50% was obtained at 500 nm, when a reverse bias of over 1 volt was applied. The Schottky barrier heights between either gold or

  15. Process for recovering tungsten from organic solutions

    SciTech Connect

    Powers, J.A.; Patton, J.C.; Christini, J.N.

    1989-11-21

    This patent describes on improvement in a process wherein tungsten values are extracted from an aqueous alkali metal tungstate solution containing impurities by an organic solution containing an amine extractant wherein the organic solution consists essentially of from about 6% to about 10% by volume of the amine extractant, and the balance of the organic solution being an aromatic solvent consisting essentially of a mixture of alkyl benzenes wherein the alkyl benzenes have molecular weights of 120, 134, or 148, and the total number of carbon atoms in the alkyl chains attached to the benzene ring are either 3, 4, or 5, and thereafter the tungsten values are removed from the organic solution by contacting the organic solution with a stripping agent to form a tungsten containing strip solution. The improvement comprises carrying out the stripping step in an aqueous continuous mode, and having as the stripping agent, an aqueous solution formed from ammonium metatungstate. Wherein the aqueous solution has a tungsten concentration which allows the tungsten containing strip solution to have a specific gravity of no greater than about 1.5, and sufficient ammonia to maintain the pH of the stripping agent at from about 5 to about 8.

  16. Thermal Spray Coating of Tungsten for Tokamak Device

    NASA Astrophysics Data System (ADS)

    Jiang, Xianliang; F, Gitzhofer; M, I. Boulos

    2006-03-01

    Thermal spray, such as direct current (d.c.) plasma spray or radio frequency induced plasma spray, was used to deposit tungsten coatings on the copper electrodes of a tokamak device. The tungsten coating on the outer surface of one copper electrode was formed directly through d.c. plasma spraying of fine tungsten powder. The tungsten coating/lining on the inner surface of another copper electrode could be formed indirectly through induced plasma spraying of coarse tungsten powder. Scanning electron microscopy (SEM) was used to examine the cross section and the interface of the tungsten coating. Energy Dispersive Analysis of X-ray (EDAX) was used to analyze the metallic elements attached to a separated interface. The influence of the particle size of the tungsten powder on the density, cracking behavior and adhesion of the coating is discussed. It is found that the coarse tungsten powder with the particle size of 45 ~ 75 μm can be melted and the coating can be formed only by using induced plasma. The coating deposited from the coarse powder has much higher cohesive strength, adhesive strength and crack resistance than the coating made from the fine powder with a particle size of 5 μm.

  17. Tungsten and tungsten alloy powder metallurgy: Powder production and applications excluding lamps. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys, including applications of these materials. The hydrogen reduction of tungsten compounds together with alloying element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography. (Contains a minimum of 115 citations and includes a subject term index and title list.)

  18. Tungsten and tungsten alloy powder metallurgy: Powder production and applications excluding lamps. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1997-01-01

    The bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys, including applications of these materials. The hydrogen reduction of tungsten compounds together with alloying element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Tungsten and tungsten alloy powder metallurgy: Powder production and applications excluding lamps. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys, including applications of these materials. The hydrogen reduction of tungsten compounds together with alloying element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Tungsten and tungsten alloy powder metallurgy: Powder production and applications excluding lamps. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys, including applications of these materials. The hydrogen reduction of tungsten compounds together with alloying element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography. (Contains a minimum of 97 citations and includes a subject term index and title list.)

  1. Weldability of polycrystalline aluminides

    SciTech Connect

    Fasching, A.A.; Edwards, G.R.; David, S.A.

    1993-07-01

    Iron aluminide alloy FA-129 is susceptible to cold cracking during gas-tungsten arc (GTA) welding. Cracking occurs by brittle fracture in the fusion zone, which has been attributed to excessive grain growth during solidification, in concert with environmental embrittlement. Previous work has shown that iron aluminide can be susceptible to environmental embrittlement when tested in the presence of water vapor. The suggested mechanism is similar to that observed in aluminum alloys: the reaction of water molecules with freshly exposed aluminum atoms at the crack tip results in the formation of high activity atomic hydrogen, which diffuses into the metal and causes embrittlement. This phenomenon occurs only when the metal is stressed, and therefore, is a dynamic embrittlement phenomenon. The same effect was not seen in experiments conducted in the presence of hydrogen gas. To further investigate this embrittlement problem and its effect on welding, GTA welds were conducted in atmospheres of varying amounts of water vapor on base material of varying grain sizes. The varying base material grain sizes were chosen because fusion zone grain size depends, to an extent, on the grain size of the base material. For example, a fine-grained base material should produce a finer grained fusion zone that a coarse-grained base material would. The results of the investigation are presented within this paper.

  2. Effective structural properties in polycrystalline graphene

    NASA Astrophysics Data System (ADS)

    Hossain, Zubaer

    This talk will discuss effective structural properties in polycrystalline graphene under the presence of atomic scale heterogeneity. Polycrystallinity is ubiquitous in solids, but theories describing their effective behavior remain limited, particularly when heterogeneity is present in the form of nonuniform deformation or composition. Over the decades, exploration of the effective transport and strength properties of heterogeneous systems has been carried out mostly with random distribution of grains or regular periodic structures under various approximations, in translating the underlying physics into a single representative volume element. Although heterogeneity can play a critical role in modulating the basic behavior of low-dimensional materials, it is difficult to capture the local characteristics accurately by these approximations. Taking polycrystalline graphene as an example material, we study the effective structural properties (such as Young's Modulus, Poisson's ratio and Toughness) by using a combination of density functional theory and molecular dynamic simulations. We identify the key mechanisms that govern their effective behavior and exploit the understanding to engineer the behavior by doping with a carefully selected choice of chemical elements.

  3. Seed growth of tungsten diselenide nanotubes from tungsten oxides.

    PubMed

    Kim, Hyun; Yun, Seok Joon; Park, Jin Cheol; Park, Min Ho; Park, Ji-Hoon; Kim, Ki Kang; Lee, Young Hee

    2015-05-13

    We report growth of tungsten diselenide (WSe2) nanotubes by chemical vapor deposition with a two-zone furnace. WO3 nanowires were first grown by annealing tungsten thin films under argon ambient. WSe2 nanotubes were then grown at the tips of WO3 nanowires through selenization via two steps: (i) formation of tubular WSe2 structures on the outside of WO3 nanowires, resulting in core (WO3)-shell (WSe2) and (ii) growth of WSe2 nanotubes at the tips of WO3 nanowires. The observed seed growth is markedly different from existing substitutional growth of WSe2 nanotubes, where oxygen atoms are replaced by selenium atoms in WO3 nanowires to form WSe2 nanotubes. Another advantage of our growth is that WSe2 film was grown by simply supplying hydrogen gas, where the native oxides were reduced to thin film instead of forming oxide nanowires. Our findings will contribute to engineer other transition metal dichacogenide growth such as MoS2, WS2, and MoSe2. PMID:25581340

  4. Polyol mediated synthesis of tungsten trioxide and Ti doped tungsten trioxide

    SciTech Connect

    Porkodi, P.; Yegnaraman, V.; Jeyakumar, D. . E-mail: djkr@rediffmail.com

    2006-08-10

    Polyol mediated synthesis for the preparation of tungsten trioxide and titanium doped tungsten trioxide has been reported. The reaction was carried out using chlorides of tungsten and titanium in diethylene glycol medium and water as the reagent for hydrolysis at 190 deg. C. Formation of a blue coloured dimensionally stable suspension of the precursor materials was observed during the course of the reaction. The particle sizes of the precursor materials were observed to be around 100 nm. The precursor materials were annealed to give tungsten trioxide and titanium doped tungsten trioxide. The precursor materials were characterised using TGA/DTA, FT-IR, optical spectra, SEM, TEM and powder XRD methods. It was observed that the doping of titanium could be effected at least up to 10% of Ti in WO{sub 3}. The TGA/DTA studies indicated that WO{sub 3-x}.H{sub 2}O is the dominant material that formed during the polyol mediated synthesis. The XRD data of the annealed samples revealed that the crystalline phase could be manipulated by varying the extent of titanium doping in the tungsten trioxide matrix.

  5. Minerals yearbook, 1988. Tungsten

    SciTech Connect

    Smith, G.R.

    1988-01-01

    Only one U.S. tungsten mine was open during 1988 while prices for concentrates rose only modestly from the previous year. Consequently, the United States continued to be highly import-dependent for tungsten concentrate and intermediate materials. A significant portion of these materials came from China. The report discusses the following topics: Domestic data coverage; Legislation and government programs; Domestic production; Consumption and uses; Prices; Foreign trade; World capacity; World review--Australia, Austria, India, Republic of Korea, Mongolia, Rwanda, Spain; Technology.

  6. Diffusion of tungsten on stepped tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Choi, D. S.; Kim, S. K.; Gomer, R.

    1990-08-01

    Self-diffusion of thermally generated tungsten atoms near (123) and (257), on the zone (011)-(112) and on (023), on the zone (011)-(001) of a tungsten field emitter has been investigated by the field-emission fluctuation method, using a rectangular probe in order to investigate diffusion anisotropy. In agreement with earlier findings of Gong and Gomer [J. Chem. Phys. 88 (1988) 1359, 1370] diffusion of single W atoms along and across (011) terraces separated by (011) steps, i.e. step edges running along [111] is essentially isotropic with Ed = 16 kcal, D0 ≈ 10 -4 cm 2 s -1, while atoms can cross (001) oriented steps only with much activation energy: Ed ≈ 35 kcal, D0 = 10 -2 cm -2 s -1. Slow diffusion parallel to steps attributed previously by Gong Chem. Phys. 88 (1988) 1359, 1370] to kink motion was also seen along the zone (011)-(112) but seems more complicated than previously assumed, with several regimes, which may correspond to motions of different kink configurations. Distinct dips in the slow regime diffusion coefficients occurred at 910 K, somewhat higher than the previously seen onset of dips, 875 K, and may indicate roughening, as previously hypothesized. Slow diffusion perpendicular to steps was also seen in this zone and is not fully understood. It may arise from some step components always perpendicular to the short slit dimensions, or may correspond to more complicated surface configurations than the step and terrace pattern on an ideal emitter surface.

  7. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Doi, K.; Tawada, Y.; Lee, H. T.; Kato, S.; Tanaka, N.; Sasao, M.; Kisaki, M.; Nishiura, M.; Matsumoto, Y.; Kenmotsu, T.; Wada, M.; Ueda, Y.; Yamaoka, H.

    2016-02-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H+ beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions.

  8. In-situ spectroscopic studies of electrochromic tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Ozer, Nilgun; Demirbas, Muharrem; Ozyurt, Secuk

    2001-11-01

    Tungsten oxide thin films were prepared using an ethanolic solution of tungsten hexachloride (WCl6) by sol-gel spin coating. The films were spin coated on indium tin oxide (ITO) coated glass substrate at temperatures in the range of 100 to 450 degree(s)C. The films were characterized by x-ray diffractometry (XRD), scanning electron microscopy (SEM) UV- visible spectroscopy and cyclic voltammetry (CV). XRD showed that they had a polycrystalline WO3 structure for heat treatment temperatures at above 350 degree(s)C. The SEM examinations showed that the surface texture was very uniform and homogeneous. In situ electrochemical reduction of WO3/ITO (2M HCl) produced a blue color in less than a second. Coloration efficiency (CE) was found to be 21 cm2/mC. In situ spectroscopic investigations showed that these films could be used as a working electrode in electrochromic devices.

  9. Process for Polycrystalline film silicon growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2001-01-01

    A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.

  10. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  11. High purity tungsten targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    High purity tungsten, which is used for targets in X-ray tubes was considered for space processing. The demand for X-ray tubes was calculated using the growth rates for dental and medical X-ray machines. It is concluded that the cost benefits are uncertain.

  12. Tungsten diffusion in olivine

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Van Orman, J. A.

    2014-03-01

    Diffusion of tungsten has been characterized in synthetic forsterite and natural olivine (Fo90) under dry conditions. The source of diffusant was a mixture of magnesium tungstate and olivine powders. Experiments were prepared by sealing the source material and polished olivine under vacuum in silica glass ampoules with solid buffers to buffer at NNO or IW. Prepared capsules were annealed in 1 atm furnaces for times ranging from 45 min to several weeks, at temperatures from 1050 to 1450 °C. Tungsten distributions in the olivine were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for W diffusion in forsterite: D=1.0×10-8exp(-365±28 kJ mol/RT) m s Diffusivities for the synthetic forsterite and natural Fe-bearing olivine are similar, and tungsten diffusion in olivine shows little dependence on crystallographic orientation or oxygen fugacity. The slow diffusivities measured for W in olivine indicate that Hf-W ages in olivine-metal systems will close to diffusive exchange at higher temperatures than other chronometers commonly used in cosmochronology, and that tungsten isotopic signatures will be less likely to be reset by subsequent thermal events.

  13. Chemical downstream etching of tungsten

    SciTech Connect

    Blain, M.G.; Jarecki, R.L.; Simonson, R.J.

    1998-07-01

    The downstream etching of tungsten and tungsten oxide has been investigated. Etching of chemical vapor deposited tungsten and e-beam deposited tungsten oxide samples was performed using atomic fluorine generated by a microwave discharge of argon and NF{sub 3}. Etching was found to be highly activated with activation energies approximated to be 6.0{plus_minus}0.5thinspkcal/mol and 5.4{plus_minus}0.4thinspkcal/mol for W and WO{sub 3}, respectively. In the case of F etching of tungsten, the addition of undischarged nitric oxide (NO) directly into the reaction chamber results in the competing effects of catalytic etch rate enhancement and the formation of a nearly stoichiometric WO{sub 3} passivating tungsten oxide film, which ultimately stops the etching process. For F etching of tungsten oxide, the introduction of downstream NO reduces the etch rate. {copyright} {ital 1998 American Vacuum Society.}

  14. Joining of Tungsten Armor Using Functional Gradients

    SciTech Connect

    John Scott O'Dell

    2006-12-31

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  15. Abnormality in fracture strength of polycrystalline silicene

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Hong, Jiawang; Pidaparti, Ramana; Wang, Xianqiao

    2016-09-01

    Silicene, a silicon-based homologue of graphene, arouses great interest in nano-electronic devices due to its outstanding electronic properties. However, its promising electronic applications are greatly hindered by lack of understanding in the mechanical strength of silicene. Therefore, in order to design mechanically reliable devices with silicene, it is necessary to thoroughly explore the mechanical properties of silicene. Due to current fabrication methods, graphene is commonly produced in a polycrystalline form; the same may hold for silicene. Here we perform molecular dynamics simulations to investigate the mechanical properties of polycrystalline silicene. First, an annealing process is employed to construct a more realistic modeling structure of polycrystalline silicene. Results indicate that a more stable structure is formed due to the breaking and reformation of bonds between atoms on the grain boundaries. Moreover, as the grain size decreases, the efficiency of the annealing process, which is quantified by the energy change, increases. Subsequently, biaxial tensile tests are performed on the annealed samples in order to explore the relation between grain size and mechanical properties, namely in-plane stiffness, fracture strength and fracture strain etc. Results indicate that as the grain size decreases, the fracture strain increases while the fracture strength shows an inverse trend. The decreasing fracture strength may be partly attributed to the weakening effect from the increasing area density of defects which acts as the reservoir of stress-concentrated sites on the grain boundary. The observed crack localization and propagation and fracture strength are well-explained by a defect-pileup model.

  16. Combined single-crystalline and polycrystalline CVD diamond substrates for diamond electronics

    SciTech Connect

    Vikharev, A. L. Gorbachev, A. M.; Dukhnovsky, M. P.; Muchnikov, A. B.; Ratnikova, A. K.; Fedorov, Yu. Yu.

    2012-02-15

    The fabrication of diamond substrates in which single-crystalline and polycrystalline CVD diamond form a single wafer, and the epitaxial growth of diamond films on such combined substrates containing polycrystalline and (100) single-crystalline CVD diamond regions are studied.

  17. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    SciTech Connect

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Kenmotsu, Takahiro; Furuya, Kenji; Motohashi, Kenji

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  18. Presence of tungsten-containing fibers in tungsten refining and manufacturing processes.

    PubMed

    McKernan, John L; Toraason, Mark A; Fernback, Joseph E; Petersen, Martin R

    2009-04-01

    In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 microm, diameter >0.01 microm and aspect ratios > or =3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length approximately 3 microm and diameter approximately 0.3 microm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter < or = 10 microm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting 'B' rules (length > 5 microm, diameter < 3 microm and aspect ratio > or = 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm(-3), with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The

  19. Blister formation and deuterium retention on tungsten exposed to low energy and high flux deuterium plasma

    NASA Astrophysics Data System (ADS)

    Tokunaga, K.; Baldwin, M. J.; Doerner, R. P.; Noda, N.; Kubota, Y.; Yoshida, N.; Sogabe, T.; Kato, T.; Schedler, B.

    2005-03-01

    Deuterium ion irradiation on tungsten has been carried out with incident energies of 100 eV and flux of 1 × 10 22 D + m -2 s -1 at a temperature in range between 333 K and 1130 K up to a dose of 1 × 10 26 D + m -2. Three kinds of tungsten used are pure tungsten made by powder metallurgy tungsten (PM-W), vacuum plasma spray tungsten (VPS-W) and single crystal tungsten (SC-W). Surface morphology before and after the irradiation is observed with an SEM. In addition, retention property of deuterium after the irradiation is also examined with a TDS. Behavior of blister formation depends on the kind of the samples and the irradiation temperatures. TDS measurement also shows that deuterium is not retained in sample, which the blisters are not formed. The behavior of the blister formation and deuterium retention is influenced by the manufacturing process and the sample history of tungsten.

  20. Surface Coating of Tungsten Carbide by Electric Exploding of Contact

    SciTech Connect

    Grigoryev, Evgeny G.

    2011-01-17

    Electric exploding of a tungsten carbide--cobalt material near-by high-speed steel surface forms on it a hardening coating. The essential structure properties of the formed coatings are determined by parameters of contact exploding electrode at the pulse current amplitude from above 106 A/cm2 and duration less than 10-4 s. The metallographic investigations of coating structures were done by microscope 'Neophot-24'. They have shown that the contact electric exploding caused the transfer of tungsten carbide and cobalt on the surface of high-speed steel. The breakdown of tungsten carbide--cobalt material took place during electrical exploding. The hardening layers of tungsten carbide and pure nanocrystalline tungsten have been formed upon the surface of high-speed steel as a result of electric exploding. Crystalline grains of tungsten have an almost spherical form and their characteristic size less than 400 nanometers. Micro hardness of the coating layers and high-speed steel structures was measured.

  1. Tungsten oxide nanowire synthesis from amorphous-like tungsten films.

    PubMed

    Seelaboyina, Raghunandan

    2016-03-18

    A synthesis technique which can lead to direct integration of tungsten oxide nanowires onto silicon chips is essential for preparing various devices. The conversion of amorphous tungsten films deposited on silicon chips by pulsed layer deposition to nanowires by annealing is an apt method in that direction. This perspective discusses the ingenious features of the technique reported by Dellasega et al on the various aspects of tungsten oxide nanowire synthesis. PMID:26871521

  2. Tungsten oxide nanowire synthesis from amorphous-like tungsten films

    NASA Astrophysics Data System (ADS)

    Seelaboyina, Raghunandan

    2016-03-01

    A synthesis technique which can lead to direct integration of tungsten oxide nanowires onto silicon chips is essential for preparing various devices. The conversion of amorphous tungsten films deposited on silicon chips by pulsed layer deposition to nanowires by annealing is an apt method in that direction. This perspective discusses the ingenious features of the technique reported by Dellasega et al on the various aspects of tungsten oxide nanowire synthesis.

  3. Electrospark doping of steel with tungsten

    NASA Astrophysics Data System (ADS)

    Denisova, Yulia; Shugurov, Vladimir; Petrikova, Elizaveta; Seksenalina, Malika; Ivanova, Olga; Ikonnikova, Irina; Kunitsyna, Tatyana; Vlasov, Victor; Klopotov, Anatoliy; Ivanov, Yuriy

    2016-01-01

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.

  4. Monolayer Tungsten Disulfide Laser

    NASA Astrophysics Data System (ADS)

    Ye, Yu; Wong, Zi Jing; Lu, Xiufang; Ni, Xingjie; Zhu, Hanyu; Chen, Xianhui; Wang, Yuan; Zhang, Xiang

    Two-dimensional van der Waals materials have opened a new paradigm for fundamental physics exploration and device applications because of their emerging physical properties. Unlike gapless graphene, monolayer transition-metal dichalcogenides are two-dimensional semiconductors that undergo an indirect-to-direct band gap transition, creating new optical functionalities for next-generation ultra-compact photonics and optoelectronics. Here, we report the realization of a two-dimensional excitonic laser by embedding monolayer tungsten disulfide in a microdisk resonator.

  5. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    NASA Astrophysics Data System (ADS)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  6. Casting copper to tungsten for high power arc lamp cathodes

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1973-01-01

    A method for making 400-kW arc lamp cathodes is described. The cathodes are made by casting a 1.75-in. diameter copper body onto a thoriated tungsten insert. The addition of 0.5-percent nickel to the copper prevents voids from forming at the copper-tungsten interface. Cathodes made by this process have withstood more than 110 hours of operation in a 400-kW arc lamp.

  7. Tungsten Ditelluride: a layered semimetal.

    PubMed

    Lee, Chia-Hui; Silva, Eduardo Cruz; Calderin, Lazaro; Nguyen, Minh An T; Hollander, Matthew J; Bersch, Brian; Mallouk, Thomas E; Robinson, Joshua A

    2015-01-01

    Tungsten ditelluride (WTe2) is a transition metal dichalcogenide (TMD) with physical and electronic properties that make it attractive for a variety of electronic applications. Although WTe2 has been studied for decades, its structure and electronic properties have only recently been correctly described. We experimentally and theoretically investigate the structure, dynamics and electronic properties of WTe2, and verify that WTe2 has its minimum energy configuration in a distorted 1T structure (Td structure), which results in metallic-like transport. Our findings unambiguously confirm the metallic nature of WTe2, introduce new information about the Raman modes of Td-WTe2, and demonstrate that Td-WTe2 is readily oxidized via environmental exposure. Finally, these findings confirm that, in its thermodynamically favored Td form, the utilization of WTe2 in electronic device architectures such as field effect transistors may need to be reevaluated. PMID:26066766

  8. Tungsten Ditelluride: a layered semimetal

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Hui; Silva, Eduardo Cruz; Calderin, Lazaro; Nguyen, Minh An T.; Hollander, Matthew J.; Bersch, Brian; Mallouk, Thomas E.; Robinson, Joshua A.

    2015-06-01

    Tungsten ditelluride (WTe2) is a transition metal dichalcogenide (TMD) with physical and electronic properties that make it attractive for a variety of electronic applications. Although WTe2 has been studied for decades, its structure and electronic properties have only recently been correctly described. We experimentally and theoretically investigate the structure, dynamics and electronic properties of WTe2, and verify that WTe2 has its minimum energy configuration in a distorted 1T structure (Td structure), which results in metallic-like transport. Our findings unambiguously confirm the metallic nature of WTe2, introduce new information about the Raman modes of Td-WTe2, and demonstrate that Td-WTe2 is readily oxidized via environmental exposure. Finally, these findings confirm that, in its thermodynamically favored Td form, the utilization of WTe2 in electronic device architectures such as field effect transistors may need to be reevaluated.

  9. Power spectra and autocorrelation functions for surface diffusion of lithium on tungsten

    NASA Astrophysics Data System (ADS)

    Gładyszewski, L.

    1989-04-01

    The surface ionization of lithium on polycrystalline tungsten and ionic thermal desorption are studied by a method based on the Li + ion current noise arising from the fluctuation of the work function as a result of random fluctuations of the Li adsorbate density. The activation energy for surface diffusion and energy of desorption for Li atoms have been determined by measuring the time correlation function of the local ion thermoemission current fluctuations.

  10. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  11. Interaction of metal layers with polycrystalline Si

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Olowolafe, J. O.; Lau, S. S.; Nicolet, M.-A.; Mayer, J. W.; Shima, R.

    1976-01-01

    Solid-phase reactions of metal films deposited on 0.5-micron-thick polycrystalline layers of Si grown by chemical vapor deposition at 640 C were investigated by MeV He-4 backscattering spectrometry, glancing angle X-ray diffraction, and SEM observations. For the metals Al, Ag, and Au, which form simple eutectics, heat treatment at temperatures below the eutectic results in erosion of the poly-Si layer and growth of Si crystallites in the metal film. Crystallite formation is observed at temperatures exceeding 550 C for Ag, at those exceeding 400 C for Al, and at those exceeding 200 C for Au films. For Pd, Ni, and Cr, heat treatment results in silicide formation. The same initial silicides (Pd2Si, Ni2Si, and CrSi2), are formed at similar temperatures on single-crystal substrates.

  12. Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer

    SciTech Connect

    Chu, Yueh-Chieh; Jiang, Gerald; Tu, Chia-Hao; Chang Chi; Liu, Chuan-pu; Ting, Jyh-Ming; Lee, Hsin-Li; Tzeng, Yonhua; Auciello, Orlando

    2012-06-15

    We report on effects of a tungsten layer deposited on silicon surface on the effectiveness for diamond nanoparticles to be seeded for the deposition of ultrananocrystalline diamond (UNCD). Rough tungsten surface and electrostatic forces between nanodiamond seeds and the tungsten surface layer help to improve the adhesion of nanodiamond seeds on the tungsten surface. The seeding density on tungsten coated silicon thus increases. Tungsten carbide is formed by reactions of the tungsten layer with carbon containing plasma species. It provides favorable (001) crystal planes for the nucleation of (111) crystal planes by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) in argon diluted methane plasma and further improves the density of diamond seeds/nuclei. UNCD films grown at different gas pressures on tungsten coated silicon which is pre-seeded by nanodiamond along with heteroepitaxially nucleated diamond nuclei were characterized by Raman scattering, field emission-scanning electron microscopy, and high resolution-transmission electron microscopy.

  13. Structure of selective low pressure chemically vapor-deposited films of tungsten

    SciTech Connect

    Green, M.L.; Levy, R.A.

    1985-05-01

    Tungsten films have been selectively deposited (i.e., deposited on Si and TaSi2 to the exclusion of SiO2) by LPCVD via the reduction of WF6 by either Si or H2. Films formed by H2 reduction can be unlimite in thickness; however, those formed by Si reduction are self-limited in thickness to about 150A. The effects of deposition parameters such as temperature and WF6 and H2 flow rates on the properties of the W films have been investigated. To prevent excessive erosion of Si in window areas, the volumetric flow ratio of H2 to WF6 must be larger than the critical value of about three. Typical films are polycrystalline with an average grain size of 2000A and exhibit a tensile film stres of about 7 X 10Z dyn/cmS. W film resistivity is found to be about 13 -cm for a 1000A film, resulting in sheet resistance of 1.3 . The W films exhibit good contact resistance to N and P Si, and are also found to be excellent diffusion barriers between Al and Si at annealing temperatures up to 450C.

  14. Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces

    DOE PAGESBeta

    Kelly, Thomas G.; Ren, Hui; Chen, Jingguang G.

    2015-03-27

    Ethanol decomposition on tungsten monocarbide (WC) and Rh-modified WC was investigated using ultrahigh vacuum (UHV) surface science experiments and density functional theory (DFT) calculations. DFT calculations indicated that the binding energies of ethanol and its decomposition intermediates on WC(0001) were modified by Rh, with Rh/WC(0001) showing similar values to those on Rh(111). Through temperature-programmed desorption (TPD) experiments on polycrystalline WC and Rh-modified WC, it was shown that the selectivity for ethanol decomposition was different on these surfaces. On WC, the C-O bond of ethanol was preferentially broken to produce ethylene; on Rh-modified WC, the C-C bond was broken to producemore » carbon monoxide and methane. In addition, high-resolution electron energy loss spectroscopy (HREELS) was used to determine likely surface intermediates. On Rh-modified WC, ethanol first formed ethoxy through O-H scission, then reacted through an aldehyde intermediate to form the C1 products.« less

  15. Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces

    SciTech Connect

    Kelly, Thomas G.; Ren, Hui; Chen, Jingguang G.

    2015-03-27

    Ethanol decomposition on tungsten monocarbide (WC) and Rh-modified WC was investigated using ultrahigh vacuum (UHV) surface science experiments and density functional theory (DFT) calculations. DFT calculations indicated that the binding energies of ethanol and its decomposition intermediates on WC(0001) were modified by Rh, with Rh/WC(0001) showing similar values to those on Rh(111). Through temperature-programmed desorption (TPD) experiments on polycrystalline WC and Rh-modified WC, it was shown that the selectivity for ethanol decomposition was different on these surfaces. On WC, the C-O bond of ethanol was preferentially broken to produce ethylene; on Rh-modified WC, the C-C bond was broken to produce carbon monoxide and methane. In addition, high-resolution electron energy loss spectroscopy (HREELS) was used to determine likely surface intermediates. On Rh-modified WC, ethanol first formed ethoxy through O-H scission, then reacted through an aldehyde intermediate to form the C1 products.

  16. Polycrystalline thin film materials and devices

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. . Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  17. Plastic flow of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Langer, James

    Leo Kadanoff had a long interest in fluid flows, especially fingering instabilities. This interest was one example of his insatiable curiosity about simple, fundamentally important, and often multidisciplinary phenomena. Here is an example of another class of such phenomena that I had hoped to show him this year. The experts in polycrystalline solid mechanics have insisted for decades that their central problem - dislocation-mediated strain hardening - is intrinsically unsolvable. I think they're wrong. My colleagues and I have made progress recently in theories of both amorphous and polycrystalline plasticity by introducing an effective disorder temperature as a dynamical variable in our equations of motion. In this way, we have been able to describe how the densities of flow defects or dislocations evolve in response to external forcing, and thus to develop theories that promise to become as predictive, and full of surprises, as the laws of fluid flow. For Kadanoff session.

  18. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  19. Interaction of tungsten with tungsten carbide in a copper melt

    NASA Astrophysics Data System (ADS)

    Bodrova, L. E.; Goida, E. Yu.; Pastukhov, E. A.; Marshuk, L. A.; Popova, E. A.

    2013-07-01

    The chemical interaction between tungsten and tungsten carbide in a copper melt with the formation of W2C at 1300°C is studied. It is shown that the mechanical activation of a composition consisting of copper melt + W and WC powders by low-temperature vibrations initiates not only the chemical interaction of its solid components but also their refinement.

  20. Some observations on uranium carbide alloy/tungsten compatibility.

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1972-01-01

    Results of chemical compatibility tests between both pure tungsten and thoriated tungsten run at 1800 C for up to 3300 hours with uranium carbide alloys. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, depending upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. Neither the presence of a thermal gradient nor the presence of thoria in the tungsten clad affect the reactions observed.

  1. Laser-induced amorphization of silicon during pulsed-laser irradiation of TiN/Ti/polycrystalline silicon/SiO2/silicon

    NASA Astrophysics Data System (ADS)

    Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.

    2002-11-01

    In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.

  2. Preparation of tungsten oxide

    SciTech Connect

    Bulian, Christopher J.; Dye, Robert C.; Son, Steven F.; Jorgensen, Betty S.; Perry, W. Lee

    2009-09-22

    Tungsten trioxide hydrate (WO.sub.3.H.sub.2O) was prepared from a precursor solution of ammonium paratungstate in concentrated aqueous hydrochloric acid. The precursor solution was rapidly added to water, resulting in the crash precipitation of a yellow white powder identified as WO.sub.3.H.sub.2O nanosized platelets by x-ray diffraction and scanning electron microscopy. Annealing of the powder at 200.degree. C. provided cubic phase WO.sub.3 nanopowder, and at 400.degree. C. provided WO.sub.3 nanopowder as a mixture of monoclinic and orthorhombic phases.

  3. Porous tungsten oxide nanoflakes for highly alcohol sensitive performance

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Liu, P.; Liang, Y.; Li, H. B.; Yang, G. W.

    2012-10-01

    Porous tungsten oxide (WO3) nanoflakes have been synthesized by a simple and green approach in an ambient environment. As a precursor solution a polycrystalline hydrated tungstite (H2WO4.H2O) nanoparticles colloid was first prepared by pulsed-laser ablation of a tungsten target in water. The H2WO4.H2O nanoflakes were produced by 72 h aging treatment at room temperature. Finally, porous WO3 nanoflakes were synthesized by annealing at 800 °C for 4 h. Considering the large surface-to-volume ratio of porous nanoflakes, a porous WO3 nanoflake gas sensor was fabricated, which exhibits an excellent sensor response performance to alcohol concentrations in the range of 20 to 600 ppm under low working temperature. This high response was attributed to the highly crystalline and porous flake-like morphology, which leads to effective adsorption and desorption, and provides more active sites for the gas molecules' reaction. These findings showed that the porous tungsten oxide nanoflake has great potential in gas-sensing performance.

  4. Role of surface-reaction layer in HBr/fluorocarbon-based plasma with nitrogen addition formed by high-aspect-ratio etching of polycrystalline silicon and SiO2 stacks

    NASA Astrophysics Data System (ADS)

    Iwase, Taku; Matsui, Miyako; Yokogawa, Kenetsu; Arase, Takao; Mori, Masahito

    2016-06-01

    The etching of polycrystalline silicon (poly-Si)/SiO2 stacks by using VHF plasma was studied for three-dimensional NAND fabrication. One critical goal is achieving both a vertical profile and high throughput for multiple-stack etching. While the conventional process consists of multiple steps for each stacked layer, in this study, HBr/fluorocarbon-based gas chemistry was investigated to achieve a single-step etching process to reduce process time. By analyzing the dependence on wafer temperature, we improved both the etching profile and rate at a low temperature. The etching mechanism is examined considering the composition of the surface reaction layer. X-ray photoelectron spectroscopy (XPS) analysis revealed that the adsorption of N–H and Br was enhanced at a low temperature, resulting in a reduced carbon-based-polymer thickness and enhanced Si etching. Finally, a vertical profile was obtained as a result of the formation of a thin and reactive surface-reaction layer at a low wafer temperature.

  5. Tungsten and tungsten-alloy powder metallurgy: Powder production and applications-excluding lamps. November 1971-July 1989 (Citations from the US Patent data base). Report for November 1971-July 1989

    SciTech Connect

    Not Available

    1989-10-01

    This bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys including various applications of these materials. The hydrogen reduction of tungsten compounds together with alloying-element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of various cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography. (Contains 60 citations fully indexed and including a title list.)

  6. Polycrystalline Thin Film Device Degradation Studies

    SciTech Connect

    Albin, D. S.; McMahon, T. J.; Pankow, J. W.; Noufi, R.; Demtsu, S. H.; Davies, A.

    2005-11-01

    Oxygen during vapor CdCl2 (VCC) treatments significantly reduced resistive shunts observed in CdS/CdTe polycrystalline devices using thinner CdS layers during 100 deg C, open-circuit, 1-sun accelerated stress testing. Cu oxidation resulting from the reduction of various trace oxides present in as-grown and VCC treated films is the proposed mechanism by which Cu diffusion, and subsequent shunts are controlled. Graphite paste layers between metallization and CdTe behave like diffusion barriers and similarly benefit device stability. Ni-based contacts form a protective Ni2Te3 intermetallic layer that reduces metal diffusion but degrades performance through increased series resistance.

  7. Weldability of polycrystalline aluminides. Final report

    SciTech Connect

    Fasching, A.A.; Burt, R.P.; Edwards, G.R.; David, S.A.

    1996-07-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen cracking. Magnetic arc oscillation and weld pool inoculation were implemented to refine the fusion zone microstructure in iron aluminide alloy FA-129 weldments. Magnetic arc oscillation effectively refined the fusion zone microstructure, and slow strain rate tensile tests showed fine-grained microstructures to be less susceptible to hydrogen cracking. However, magnetic arc oscillation was found to be suitable only for well-controlled fabrication environments. Weld pool inoculation offers a potentially more robust refinement method. Titanium inoculation was also shown to effectively refined the fusion zone microstructure, but weldment properties were not improved using this refinement method. The effect of titanium on the size, shape and distribution of the second phase particles in the fusion zone appears to be the cause of the observed decrease in weldment properties.

  8. A study of scandia and rhenium doped tungsten matrix dispenser cathode

    NASA Astrophysics Data System (ADS)

    Wang, Jinshu; Li, Lili; Liu, Wei; Wang, Yanchun; Zhao, Lei; Zhou, Meiling

    2007-10-01

    Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The experimental results show that scandia was distributed evenly on the surface of tungsten particles. The addition of scandia and rhenium could decrease the particle size of doped tungsten, for example, the tungsten powders doped with Sc 2O 3 and Re had the average size of about 50 nm in diameter. By using this kind of powder, scandia and rhenium doped tungsten matrix with the sub-micrometer sized tungsten grains was obtained. This kind of matrix exhibited good anti-bombardment insensitivity at high temperature. The emission property result showed that high space charge limited current densities of more than 60 A/cm 2 at 900 °C could be obtained for this cathode. A Ba-Sc-O multilayer about 100 nm in thickness formed at the surface of cathode after activation led to the high emission property.

  9. Losses in polycrystalline silicon waveguides

    NASA Astrophysics Data System (ADS)

    Foresi, J. S.; Black, M. R.; Agarwal, A. M.; Kimerling, L. C.

    1996-04-01

    The losses of polycrystalline silicon (polySi) waveguides clad by SiO2 are measured by the cutback technique. We report losses of 34 dB/cm at a wavelength of 1.55 μm in waveguides fabricated from chemical mechanical polished polySi deposited at 625 °C. These losses are two orders of magnitude lower than reported absorption measurements for polySi. Waveguides fabricated from unpolished polySi deposited at 625 °C exhibit losses of 77 dB/cm. We find good agreement between calculated and measured losses due to surface scattering.

  10. Phosphorus diffusion in polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Losee, D. L.; Lavine, J. P.; Trabka, E. A.; Lee, S.-T.; Jarman, C. M.

    1984-02-01

    The diffusion of phosphorus in crystallized amorphous Si layers was studied with secondary-ion mass spectroscopy. A two-dimensional diffusion model is used to find effective grain (Dg) and grain-boundary (Dgb) diffusion coefficients. This simplified model leads to Dgb ≤ 10Dg, which is significantly lower than what has been deduced from conventional, larger grained polysilicon. Our result is consistent with specific-gravity measurements, which found a significantly lower ``mass defect'' for layers deposited amorphous and subsequently crystallized as compared to initially polycrystalline layers.

  11. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  12. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  13. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOEpatents

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  14. RECOVERY OF URANIUM FROM TUNGSTEN

    DOEpatents

    Newnam, K.

    1959-02-01

    A method is presented for the rccovery of uranium which has adhered to tungsten parts in electromagnetic isotope separation apparatus. Such a tungsten article is dissolved electrolytically in 20% NaOH by using the tungsten article as the anode. The resulting solution, containing soluble sodium lungstate and an insoluble slime, is then filtered. The slime residue is ignited successively with sodium nitrate and sodium pyrosulfate and leashed, and the resulting filtrates are combined with the original filtrate. Uranium is then recovered from the combined flltrates by diuranate precipitation.

  15. Casting larger polycrystalline silicon ingots

    SciTech Connect

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  16. Tungsten Toxicity in Plants

    PubMed Central

    Adamakis, Ioannis-Dimosthenis S.; Panteris, Emmanuel; Eleftheriou, Eleftherios P.

    2012-01-01

    Tungsten (W) is a rare heavy metal, widely used in a range of industrial, military and household applications due to its unique physical properties. These activities inevitably have accounted for local W accumulation at high concentrations, raising concerns about its effects for living organisms. In plants, W has primarily been used as an inhibitor of the molybdoenzymes, since it antagonizes molybdenum (Mo) for the Mo-cofactor (MoCo) of these enzymes. However, recent advances indicate that, beyond Mo-enzyme inhibition, W has toxic attributes similar with those of other heavy metals. These include hindering of seedling growth, reduction of root and shoot biomass, ultrastructural malformations of cell components, aberration of cell cycle, disruption of the cytoskeleton and deregulation of gene expression related with programmed cell death (PCD). In this article, the recent available information on W toxicity in plants and plant cells is reviewed, and the knowledge gaps and the most pertinent research directions are outlined. PMID:27137642

  17. Hydrogen permeation through disordered nanostructured tungsten films

    NASA Astrophysics Data System (ADS)

    Nemanič, V.; Zajec, B.; Dellasega, D.; Passoni, M.

    2012-10-01

    We report results on long-term hydrogen outgassing and permeation studies of structurally highly disordered tungsten films, deposited on 40 mm diameter highly permeable Eurofer substrates, using the Pulsed Laser Deposition technique. Hydrogen interaction with tungsten is becoming a highly relevant topic since tungsten was recognized as the most promising candidate for the first wall of future fusion reactors. Prediction of hydrogen isotopes migration and their abundance after plasma exposure is uncertain due to a great role played by structural disorder that is formed on the W surface. Vacancy sites are theoretically predicted to trap multiple H atoms exothermically, but their density and their potential influence on permeability has not been experimentally investigated yet. In our work, permeability of W films having different thicknesses (1 and 10 μm) was initially extremely low, and was gradually increasing over a several-day campaign. The final values at 400 °C, lying between P = 1.46 × 10-15 mol H2/(m s Pa0.5) and P = 4.8 × 10-15 mol H2/(m s Pa0.5), were substantially lower than those known for well ordered films. Surprisingly, the 10 μm thick W film initially contained a very high amount of hydrogen, ˜0.1 H/W, which was gradually releasing during the twenty-day campaign.

  18. Drill with polycrystalline diamond drill blanks for soft, medium-hard and hard formations

    SciTech Connect

    Williamson, K.E.

    1984-02-07

    A drill bit is disclosed for drilling boreholes in earth formations. The bit's cutting face is provided with cutter preforms composed of polycrystalline diamonds on a tungsten carbide substrate mounted in sets from the center of the bit's face to its periphery. The first set consists of one cutter preform at approximately the center of the cutting face. Each succeeding set has at least two preforms, all of which in a set are disposed at an equal radius from the bit's axis of rotation and are displaced from adjacent preforms in the same set by equal arcs around the axis, the cutting path of a set overlapping with that of the next set. The next to last set of preforms is mounted from a surface coinciding with a truncated cone having a relative angle to the bit's axis of rotation of about 33/sup 0/; the outermost preform set is disposed in or above the junk slots, with each preform mounted extending 90/sup 0/ relative to the axis of rotation and having its cutting portion extending above raised portions from the cutting face whereby they cut a circumference slightly larger than that of the bit's body. Four to six jets for drilling mud have outlets from the drilling face, each jet including a relatively narrow neck and flared mouth. Junk slots are defined by the raised portions, a first group of such portions in one embodiment being stepped inwardly to form off-sets adjacent the conical surface of the bit's face. A second group of portions in such embodiment which alternate with the first extend somewhat less outwardly than the bit's overall diameter and each has a length less than one-half of the length of those of the first group. The bit's overall diameter is approximately twice its length along the first group of raised portions.

  19. Presence of Tungsten-Containing Fibers in Tungsten Refining and Manufacturing Processes

    PubMed Central

    Mckernan, John L.; Toraason, Mark A.; Fernback, Joseph E.; Petersen, Martin R.

    2009-01-01

    In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 μm, diameter >0.01 μm and aspect ratios ≥3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length ≈3 μm and diameter ≈0.3 μm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter ≤ 10 μm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting ‘B’ rules (length > 5 μm, diameter < 3 μm and aspect ratio ≥ 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm−3, with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in

  20. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  1. Why Tungsten Instead of Wolfram?

    NASA Astrophysics Data System (ADS)

    Jensen, William B.

    2008-04-01

    In response to a reader query, the column traces the reason that American and British chemical literature use the name tungsten for element 74, while northern European literature uses the name wolfram.

  2. Development of rapidly quenched brazing foils to join tungsten alloys with ferritic steel

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Fedotov, V. T.; Sevrjukov, O. N.; Moeslang, A.; Rohde, M.

    2004-08-01

    Results on rapidly solidified filler metals for tungsten brazing are presented. A rapidly quenched foil-type filler metal based on Ni bal-15Cr-4Mo-4Fe-(0.5-1.0)V-7.5Si-1.5B was developed to braze tungsten to ferritic/martensitic Crl3Mo2NbVB steel (FS) for helium gas cooled divertors and plasma facing components. Polycrystalline W-2CeO 2 and monocrystalline pure tungsten were brazed to the steel under vacuum at 1150 °C, using a 0.5 mm thick foil spacer made of a 50Fe-50Ni alloy. As a result of thermocycling tests (100 cycles between 700 °C/20 min and air-water cooling/3-5 min) on brazed joints, tungsten powder metallurgically processed W-2CeO 2 failed due to residual stresses, whereas the brazed joint with zone-melted monocrystalline tungsten withstood the thermocycling tests.

  3. Saturation magnetization of polycrystalline iron

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.; Hegland, D. E.

    1972-01-01

    The magnetic moment per gram, sigma (H sub I, T), where H sub I is the internal field and T is the temperature, was measured for a polycrystalline iron sphere with the vibrating-sample magnetometer. The instrument was calibrated by using a method utilizing the high permeability of an iron sphere. The spontaneous moment, sigma(0, T),was obtained from plots of sigma(H sub I, T) as a function of H sub I for temperatures from 4.2 K to room temperature. The value of the spontaneous moment, sigma(0, T), at 298.9 K was 217.5 + or -0.4 emu/g. The extrapolated moment, sigma(0, 0),at absolute zero from a plot of sigma(0, T) as a function of T to 3/2 power was 221.7 + or - 0.4 emu/g.

  4. Morphology of polycrystalline cassiterite films

    NASA Astrophysics Data System (ADS)

    Tomaev, V. V.; Glazov, A. I.

    2014-09-01

    Polycrystalline cassiterite films have been grown by the hydropyrolytic method from a 10(H2O) + 5(SnCl2 · 2H2O) solution (in weight fractions) on corundum substrates. The crystallization regularities are considered and a comparative analysis of the properties of natural and artificial cassiterite crystals is performed. The surface morphology is investigated and the size of crystalline grains is determined by scanning electron microscopy. X-ray microprobe analysis showed that all films contain tin and oxygen atoms in a ratio corresponding (within the experimental error) to the chemical formula of tin dioxide. It is established that the surface morphology of cassiterite films is characterized by both single crystallites and aggregates of two or more crystals typical of twins. It is suggest that doping can efficiently be used to control the concentration of twins and the stability of their formation.

  5. Polycrystalline Silicon: a Biocompatibility Assay

    SciTech Connect

    Pecheva, E.; Fingarova, D.; Pramatarova, L.; Hikov, T.; Laquerriere, P.; Bouthors, Sylvie; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-21

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  6. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Stein, David

    . In this mechanism, the colloid reacts with the chemistry of the slurry to produce active sites. These active sites become inactive by removing tungsten from the film. The process repeats when then inactive sites are reconverted to active sites. It is shown that the empirical form of the heuristic mechanism fits all of the data obtained. The mechanism also agrees with the limiting cases that were investigated.

  7. VAPORIZATION OF TUNGSTEN-METAL IN STEAM AT HIGH TEMPERATURES.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  8. Polarographic determination of tungsten in rocks

    USGS Publications Warehouse

    Reichen, L.E.

    1954-01-01

    This work was undertaken to develop a simpler and faster method than the classical gravimetric procedure for the determination of tungsten in rocks and ores. A new polarographic wave of tungsten is obtained in a supporting electrolyte of dilute hydrochloric acid containing tartrate ion. This permits the determination of tungsten both rapidly and accurately. No precipitation of the tungsten is necessary, and only the iron need be separated from the tungsten. The accuracy is within the limits of a polarographic procedure; comparison of polarographic and gravimetric results is given. The method reduces appreciably the amount of time ordinarily consumed in determination of tungsten.

  9. Tungsten in iron meteorites

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.

    1978-01-01

    Tungsten concentrations have been determined by instrumental neutron activation in 104 iron meteorites, and range from 0.07 to 5 microg/g. In individual groups, concentrations vary by factors of between 1.5 and 8, but there are negative W-Ni correlations in 8 groups: IAB, IC, IIAB, IID, IIE, IIIAB, IIICD, and IIIF. The lowest W concentrations are found in groups IAB and IIICD, which also have the smallest slopes on a W-Ni plot. Eighteen anomalous irons have W concentrations between 5 microg/g (Butler) and 0.11 microg/g (Rafrueti). The distribution of W in irons shows similarities to that of other refractory sideophilic elements (except Mo), but is closest to the distribution of Ru and Pt. Assuming that chemical trends in group IIIAB were produced by fractional crystallization, a value of 1.6 can be deduced for the distribution coefficient of W between solid and liquid metal, as compared with 0.89 for Mo. Experimental evidence in support of these values is tenuous.

  10. Tungsten diffusion in silicon

    SciTech Connect

    De Luca, A.; Texier, M.; Burle, N.; Oison, V.; Pichaud, B.; Portavoce, A.; Grosjean, C.

    2014-01-07

    Two doses (10{sup 13} and 10{sup 15} cm{sup −2}) of tungsten (W) atoms were implanted in different Si(001) wafers in order to study W diffusion in Si. The samples were annealed or oxidized at temperatures between 776 and 960 °C. The diffusion profiles were measured by secondary ion mass spectrometry, and defect formation was studied by transmission electron microscopy and atom probe tomography. W is shown to reduce Si recrystallization after implantation and to exhibit, in the temperature range investigated, a solubility limit close to 0.15%–0.2%, which is higher than the solubility limit of usual metallic impurities in Si. W diffusion exhibits unusual linear diffusion profiles with a maximum concentration always located at the Si surface, slower kinetics than other metals in Si, and promotes vacancy accumulation close to the Si surface, with the formation of hollow cavities in the case of the higher W dose. In addition, Si self-interstitial injection during oxidation is shown to promote W-Si clustering. Taking into account these observations, a diffusion model based on the simultaneous diffusion of interstitial W atoms and W-Si atomic pairs is proposed since usual models used to model diffusion of metallic impurities and dopants in Si cannot reproduce experimental observations.

  11. Tungsten wire and tubing joined by nickel brazing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  12. Nucleation and growth of polycrystalline SiC

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Schimmel, S.; Jokubavicius, V.; Linnarsson, M. K.; Ou, H.; Syväjärvi, M.; Wellmann, P.

    2014-03-01

    The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and 15R polytypes. It is found that pyrolytic graphite results in enhanced texturing of the nucleating gas species. Reducing the pressure leads to growth of the crystallites until a closed polycrystalline SiC layer containing voids with a rough surface is developed. Bulk growth was conducted at 35 mbar Ar pressure at 2250°C in diffusion limited mass transport regime generating a convex shaped growth form of the solid-gas interface leading to lateral expansion of virtually [001] oriented crystallites. Growth at 2350°C led to the stabilization of 6H polytypic grains. The micropipe density in the bulk strongly depends on the substrate used.

  13. Accelerated Molecular Dynamics studies of He Bubble Growth in Tungsten

    NASA Astrophysics Data System (ADS)

    Uberuaga, Blas; Sandoval, Luis; Perez, Danny; Voter, Arthur

    2015-11-01

    Understanding how materials respond to extreme environments is critical for predicting and improving performance. In materials such as tungsten exposed to plasmas for nuclear fusion applications, novel nanoscale fuzzes, comprised of tendrils of tungsten, form as a consequence of the implantation of He into the near surface. However, the detailed mechanisms that link He bubble formation to the ultimate development of fuzz are unclear. Molecular dynamics simulations provide insight into the He implantation process, but are necessarily performed at implantation rates that are orders of magnitudes faster than experiment. Here, using accelerated molecular dynamics methods, we examine the role of He implantation rates on the physical evolution of He bubbles in tungsten. We find that, as the He rate is reduced, new types of events involving the response of the tungsten matrix to the pressure in the bubble become competitive and change the overall evolution of the bubble as well as the subsequent morphology of the tungsten surface. We have also examined how bubble growth differs at various microstructural features. These results highlight the importance of performing simulations at experimentally relevant conditions in order to correctly capture the contributions of the various significant kinetic processes and predict the overall response of the material.

  14. Material Mixing of Tungsten with Carbon and Helium

    SciTech Connect

    Ueda, Y.; Lee, H. T.

    2010-05-20

    In ITER, graphite and tungsten are used for divertor materials and are mixed through erosion, transport, and redeposition. Helium, a fusion reactant, is an intrinsic element in fusion plasmas that impinges on the metallic wall materials to form He bubbles. W-C mixed layers and He bubble layers greatly affect tritium retention. In this paper, impacts of W-C material mixing on erosion and hydrogen isotope retention are reviewed. Then, recent results on carbon deposition on tungsten in TEXTOR tokamak and helium effects on blistering and retention are discussed.

  15. Migration of rhenium and osmium interstitials in tungsten

    NASA Astrophysics Data System (ADS)

    Suzudo, Tomoaki; Yamaguchi, Masatake; Hasegawa, Akira

    2015-12-01

    Tungsten is expected to be a promising plasma-facing material for future fusion devices, but radiation-induced precipitation (RIP), which leads the material to hardening, is a concern at their practical use. One of the keys to accurate prediction of the emergence of RIP is migration of solute atoms, rhenium and osmium, that are produced by nuclear transmutation through irradiation. We conduct a series of numerical simulations using an atomic kinetic Monte Carlo method and investigate the migration of these solute atoms in the form of tungsten-rhenium and tungsten-osmium mixed dumbbells, considered to be the most efficient "carriers" of the solute atoms. We find that the low rotation energy barrier of these mixed dumbbells leading to three-dimensional migration greatly influences their diffusivities. The result also suggests that, although these dumbbells have three-dimensional motion, one cannot simply reduce their migration behavior to that of vacancy-like spherical objects.

  16. Some observations on uranium carbide alloy/tungsten compatibility

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1972-01-01

    Chemical compatibility between both pure and thoriated tungsten and uranium carbide alloys was studied at 1800 C for up to 3300 hours. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, dependent upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. The presence of a thermal gradient had no effect on the reactions observed nor did the presence of thoria in the tungsten clad.

  17. Fabrication techniques developed for small- diameter, thin-wall tungsten and tungsten alloy tubing

    NASA Technical Reports Server (NTRS)

    Brillhart, D. C.; Burt, W. R.; Karasek, F. J.; Mayfield, R. M.

    1968-01-01

    Report describes methods for the fabrication of tungsten and tungsten alloys into small-diameter, thin-wall tubing of nuclear quality. The tungsten, or tungsten alloy tube blanks are produced by double extrusion. Plug-drawing has emerged as an excellent secondary fabrication technique for the reduction of the overall tube dimensions.

  18. Composite polycrystalline semiconductor neutron detectors

    NASA Astrophysics Data System (ADS)

    Schieber, M.; Zuck, A.; Marom, G.; Khakhan, O.; Roth, M.; Alfassi, Z. B.

    2007-08-01

    Composite polycrystalline semiconductor detectors bound with different binders, both inorganic molten glasses, such as B 2O 3, PbO/B 2O 3, Bi 2O 3/PbO, and organic polymeric binders, such as isotactic polypropylene (iPP), polystyrene or nylon-6, and coated with different metal electrodes were tested at room temperature for α-particles and very weak thermal neutron sources. The detector materials tested were natural occurring hexagonal BN and cubic LiF, where both are not containing enriched isotopes of 10B or 6Li. The radiation sources were 5.5 MeV α's from 241Am, 5.3 MeV from 210Po and also 4.8 MeV from 226Ra. Some of these detectors were also tested with thermal neutrons from very weak 227Ac 9Be, 241Am- 10Be sources and also from a weak 238Pu+ 9Be and somewhat stronger 252Cf sources. The neutrons were thermalized with paraffin. Despite very low signal to noise ratio of only ˜2, the neutrons could be counted by subtracting the noise from the signal.

  19. Growth stress in tungsten carbide-diamond-like carbon coatings

    SciTech Connect

    Pujada, B. R.; Tichelaar, F. D.; Arnoldbik, W. M.; Sloof, W. G.; Janssen, G. C. A. M.

    2009-02-01

    Growth stress in tungsten carbide-diamond-like carbon coatings, sputter deposited in a reactive argon/acetylene plasma, has been studied as a function of the acetylene partial pressure. Stress and microstructure have been investigated by wafer curvature and transmission electron microscopy (TEM) whereas composition and energy distribution functions of positive ions were obtained by electron probe microanalyzer, elastic recoil detection analysis, and mass-energy analyzer (MEA). It has been observed that the compressive stress decreases with increasing acetylene partial pressure, showing an abrupt change from -5.0 to -1.6 GPa at an acetylene partial pressure of 0.012 Pa. TEM micrographs show that by increasing the acetylene partial pressure in the plasma from 0 to 0.012 Pa, the microstructure of the coating changes from polycrystalline to amorphous. MEA results show that the most probable energy of positive ions bombarding the substrate during deposition in pure argon and argon/acetylene atmosphere is the same. Based on the results, it is concluded that the huge variation in the compressive stress at low acetylene partial pressures is due to a change in the microstructure of the coating from polycrystalline to amorphous and not to the energy of positive ions bombarding the film.

  20. Tungsten contamination in ion implantation

    NASA Astrophysics Data System (ADS)

    Polignano, M. L.; Barbarossa, F.; Galbiati, A.; Magni, D.; Mica, I.

    2016-06-01

    In this paper the tungsten contamination in ion implantation processes is studied by DLTS analysis both in typical operating conditions and after contamination of the implanter by implantation of wafers with an exposed tungsten layer. Of course the contaminant concentration is orders of magnitude higher after contamination of the implanter, but in addition our data show that different mechanisms are active in a not contaminated and in a contaminated implanter. A moderate tungsten contamination is observed also in a not contaminated implanter, however in that case contamination is completely not energetic and can be effectively screened by a very thin oxide. On the contrary, the contamination due to an implantation in a previously contaminated implanter is reduced but not suppressed even by a relatively thick screen oxide. The comparison with SRIM calculations confirms that the observed deep penetration of the contaminant cannot be explained by a plain sputtering mechanism.

  1. Two component tungsten powder injection molding - An effective mass production process

    NASA Astrophysics Data System (ADS)

    Antusch, Steffen; Commin, Lorelei; Mueller, Marcus; Piotter, Volker; Weingaertner, Tobias

    2014-04-01

    Tungsten and tungsten-alloys are presently considered to be the most promising materials for plasma facing components for future fusion power plants. The Karlsruhe Institute of Technology (KIT) divertor design concept for the future DEMO power plant is based on modular He-cooled finger units and the development of suitable mass production methods for such parts was needed. A time and cost effective near-net-shape forming process with the advantage of shape complexity, material utilization and high final density is Powder Injection Molding (PIM). This process allows also the joining of two different materials e.g. tungsten with a doped tungsten alloy, without brazing. The complete technological process of 2-Component powder injection molding for tungsten materials and its application on producing real DEMO divertor parts, characterization results of the finished parts e.g. microstructure, hardness, density and joining zone quality are discussed in this contribution.

  2. Solution-processed polycrystalline silicon on paper

    SciTech Connect

    Trifunovic, M.; Ishihara, R.; Shimoda, T.

    2015-04-20

    Printing electronics has led to application areas which were formerly impossible with conventional electronic processes. Solutions are used as inks on top of large areas at room temperatures, allowing the production of fully flexible circuitry. Commonly, research in these inks have focused on organic and metal-oxide ink materials due to their printability, while these materials lack in the electronic performance when compared to silicon electronics. Silicon electronics, on the other hand, has only recently found their way in solution processes. Printing of cyclopentasilane as the silicon ink has been conducted and devices with far superior electric performance have been made when compared to other ink materials. A thermal annealing step of this material, however, was necessary, which prevented its usage on inexpensive substrates with a limited thermal budget. In this work, we introduce a method that allows polycrystalline silicon (poly-Si) production directly from the same liquid silicon ink using excimer laser irradiation. In this way, poly-Si could be formed directly on top of paper even with a single laser pulse. Using this method, poly-Si transistors were created at a maximum temperature of only 150 °C. This method allows silicon device formation on inexpensive, temperature sensitive substrates such as polyethylene terephthalate, polyethylene naphthalate or paper, which leads to applications that require low-cost but high-speed electronics.

  3. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  4. Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    NASA Astrophysics Data System (ADS)

    Ingham, B.; Hendy, S. C.; Chong, S. V.; Tallon, J. L.

    2005-08-01

    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus formingtungsten bronzes.” Similar effects are observed upon removing oxygen from WO3 . We present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behavior of the bronzes are relatively consistent. NaWO3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. A study of fractional doping in the NaxWO3 system (0⩽x⩽1) showed a linear variation in cell parameter and a systematic shift in the Fermi level into the conduction band. In the oxygen-deficient WO3-x system the Fermi level undergoes a sudden jump into the conduction band at around x=0.2 . Lastly, three compounds of a layered WO4•α,ω -diaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO3 compound that relate well to experimental UV-visible spectroscopy results.

  5. Processing and properties of extruded tungsten-hafnium and tungsten-steel composites

    SciTech Connect

    Ohriner, E.K.; Sikka, V.K.; Kapoor, D.

    1995-02-01

    The purpose of this study was to evaluate the processing behavior and properties of tungsten-hafnium (W-Hf) and W-steel composites produced by hot extrusion of canned powders. The W-Hf composite was consolidated by extrusion of blended powders with preheat temperatures over the temperature range of 1100 to 1400{degrees}C. All extrusions produced fully dense material which exhibits elongation of the tungsten phase within the hafnium matrix. The flow stress, as characterized by the extrusion constant, decreases with increasing temperature up to 1300{degrees}C and increases substantially at 1400{degrees}C as significant quantities of intermetallic phase are formed during preheating. The room-temperature (RT) hardness and compressive yield stress increase modestly with increased extrusion ratio and are not affected by extrusion temperature in the range 1100 to 1300{degrees}C. The microstructures are essentially fully recrystallized at the 1300{degrees}C preheat temperature and partially recrystallized at lower temperatures. Additionally, a mixture of tungsten and steel powder was consolidated to full density by hot extrusion at a 1000{degrees}C preheat temperature and a reduction ratio of 4.2. Increased reduction of the W-steel composite results in increased RT hardness.

  6. Characteristics of strength and plasticity of tungsten and tungsten-base alloys I. Mechanical properties

    SciTech Connect

    Bukhanovskii, V.V.; Golovin, S.A.; Kharchenko, V.K.; Kravchenko, V.S.; Nikol'skii, V.N.; Ol'shanskii, A.B.

    1986-01-01

    The authors establish the temperature relationship of the strength and plastic properties of tungsten and tungsten-base alloys taking into consideration the statistical parameters of the spread caused by structural and technical factors and a quantitative determination of the influence in tension of dispersion hardening of tungsten with refractory particles of hafnium and yttrium oxides. The observed dip in plasticity in the dispersion-hardened tungsten alloys does not contradict the mechanism of high temperature embrittlement of commercially pure tungsten.

  7. Method of synthesizing tungsten nanoparticles

    DOEpatents

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  8. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    SciTech Connect

    Yan, Yanfa Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R.; Li, Chen; Poplawsky, Jonathan; Wang, Zhiwei; Moseley, John; Guthrey, Harvey; Moutinho, Helio; Al-Jassim, Mowafak M.; Pennycook, Stephen J.

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  9. 'Age-hardened alloy' based on bulk polycrystalline oxide ceramic

    NASA Astrophysics Data System (ADS)

    Gurnani, Luv; Singh, Mahesh Kumar; Bhargava, Parag; Mukhopadhyay, Amartya

    2015-05-01

    We report here for the first time the development of 'age-hardened/toughened' ceramic alloy based on MgO in the bulk polycrystalline form. This route allows for the facile development of a 'near-ideal' microstructure characterized by the presence of nanosized and uniformly dispersed second-phase particles (MgFe2O4) within the matrix grains, as well as along the matrix grain boundaries, in a controlled manner. Furthermore, the intragranular second-phase particles are rendered coherent with the matrix (MgO). Development of such microstructural features for two-phase bulk polycrystalline ceramics is extremely challenging following the powder metallurgical route usually adopted for the development of bulk ceramic nanocomposites. Furthermore, unlike for the case of ceramic nanocomposites, the route adopted here does not necessitate the usage of nano-powder, pressure/electric field-assisted sintering techniques and inert/reducing atmosphere. The as-developed bulk polycrystalline MgO-MgFe2O4 alloys possess considerably improved hardness (by ~52%) and indentation toughness (by ~35%), as compared to phase pure MgO.

  10. Hydrogen migration in polycrystalline silicon

    SciTech Connect

    Nickel, N.H.; Jackson, W.B.; Walker, J.

    1996-03-01

    Hydrogen migration in solid-state crystallized and low-pressure chemical-vapor-deposited (LPCVD) polycrystalline silicon (poly-Si) was investigated by deuterium diffusion experiments. The concentration profiles of deuterium, introduced into the poly-Si samples either from a remote D plasma or from a deuterated amorphous-silicon layer, were measured as a function of time and temperature. At high deuterium concentrations the diffusion was dispersive depending on exposure time. The dispersion is consistent with multiple trapping within a distribution of hopping barriers. The data can be explained by a two-level model used to explain diffusion in hydrogenated amorphous silicon. The energy difference between the transport level and the deuterium chemical potential was found to be about 1.2{endash}1.3 eV. The shallow levels for hydrogen trapping are about 0.5 eV below the transport level, while the deep levels are about 1.5{endash}1.7 eV below. The hydrogen chemical potential {mu}{sub H} decreases as the temperature increases. At lower concentrations, {mu}{sub H} was found to depend markedly on the method used to prepare the poly-Si, a result due in part to the dependence of crystallite size on the deposition process. Clear evidence for deuterium deep traps was found only in the solid-state crystallized material. The LPCVD-grown poly-Si, with columnar grains extending through the film thickness, displayed little evidence of deep trapping, and exhibited enhanced D diffusion. Many concentration profiles in the columnar LPCVD material indicated complex diffusion behavior, perhaps reflecting spatial variations of trap densities, complex formation, and/or multiple transport paths. Many aspects of the diffusion in poly-Si are consistent with diffusion data obtained in amorphous silicon. {copyright} {ital 1996 The American Physical Society.}

  11. Photoelectrochemical and physical properties of tungsten trioxide films obtained by aerosol pyrolysis

    SciTech Connect

    Sadale, S.B.; Chaqour, S.M.; Gorochov, O.; Neumann-Spallart, M.

    2008-06-03

    Aerosol pyrolysis (AP) was used for preparing semiconducting films of tungsten trioxide using peroxotungstic acid as a precursor. The films were characterized by SEM, XRD, and by their photoelectrochemical response. Porous, polycrystalline (monoclinic) films of thickness up to 3 {mu}m were prepared. An incident photon to current efficiency (IPCE) of 0.55 at 365 nm was obtained for films of 1 {mu}m thickness on conducting F:SnO{sub 2}/glass substrates under depletion conditions, in junctions with aqueous electrolytes. The spectral (photocurrent) response extended into the visible region (up to 470 nm) which is of importance for solar applications like photocatalysis.

  12. Interactions of mobile helium clusters with surfaces and grain boundaries of plasma-exposed tungsten

    SciTech Connect

    Hu, Lin; Maroudas, Dimitrios; Hammond, Karl D.; Wirth, Brian D.

    2014-05-07

    We report results of atomistic computations for the interactions of small mobile helium clusters (He{sub n}) with free surfaces and grain boundaries (GBs) in tungsten toward development of continuum drift-diffusion-reaction models for the dynamics of mobile helium clusters in plasma-exposed tungsten. Molecular-statics (MS) simulations based on reliable many-body interatomic potentials are carried out for He{sub n} (1 ≤ n ≤ 7) clusters near sinks to obtain the potential energy profiles of the He{sub n} clusters as a function of the clusters' center-of-mass distance from a sink. Sinks investigated include surfaces, GBs, and regions in the vicinity of junctions where GBs intersect free surfaces. Elastic interaction potentials based on elastic inclusion theory provide an excellent description of the MS results for the cluster-sink interactions. The key parameter in the elastic models is the sink segregation strength, which is found to increase with increasing cluster size. Such cluster-sink interactions are responsible for the migration of small helium clusters by drift and for helium segregation on surfaces and grain boundaries in tungsten. Such helium segregation on sinks is observed in large-scale molecular-dynamics simulations of helium aggregation in model polycrystalline tungsten at 933 K upon helium implantation.

  13. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  14. Mineral of the month: tungsten

    USGS Publications Warehouse

    Shedd, Kim B.

    2006-01-01

    Tungsten has the highest melting point of all metals, one of the highest densities and, when combined with carbon, is almost as hard as diamond. These and other properties make it useful in a wide variety of important commercial, industrial and military applications.

  15. Scintillating fiber ribbon --- tungsten calorimeter

    SciTech Connect

    Bross, A.; Crisler, M.; Kross, B.; Wrbanek, J.

    1989-07-14

    We describe an ultra-high density scintillating fiber and tungsten calorimeter used as an active beam-dump for electrons. Data showing the calorimeter response to electrons with momenta between 50 and 350 GeV/c are presented. 9 figs.

  16. Defect behavior of polycrystalline solar cell silicon

    SciTech Connect

    Schroder, D.K.; Park, S.H.; Hwang, I.G.; Mohr, J.B.; Hanly, M.P.

    1993-05-01

    The major objective of this study, conducted from October 1988 to September 1991, was to gain an understanding of the behavior of impurities in polycrystalline silicon and the influence of these impurities on solar cell efficiency. The authors studied edge-defined film-fed growth (EFG) and cast poly-Si materials and solar cells. With EFG Si they concentrated on chromium-doped materials and cells to determine the role of Cr on solar cell performance. Cast poly-Si samples were not deliberately contaminated. Samples were characterized by cell efficiency, current-voltage, deep-level transient spectroscopy (DLTS), surface photovoltage (SPV), open-circuit voltage decay, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy measurements. They find that Cr forms Cr-B pairs with boron at room temperature and these pairs dissociate into Cr{sub i}{sup +} and B{sup {minus}} during anneals at 210{degrees}C for 10 min. Following the anneal, Cr-B pairs reform at room temperature with a time constant of 230 h. Chromium forms CrSi{sub 2} precipitates in heavily contaminated regions and they find evidence of CrSi{sub 2} gettering, but a lack of chromium segregation or precipitation to grain boundaries and dislocations. Cr-B pairs have well defined DLTS peaks. However, DLTS spectra of other defects are not well defined, giving broad peaks indicative of defects with a range of energy levels in the band gap. In some high-stress, low-efficiency cast poly-Si they detect SiC precipitates, but not in low-stress, high-efficiency samples. SPV measurements result in nonlinear SPV curves in some materials that are likely due to varying optical absorption coefficients due to locally varying stress in the material.

  17. Process development for cladding APT tungsten targets

    SciTech Connect

    Horner, M H; Barber, R; Dalder, E

    2000-11-27

    This report describes development of processes for cladding APT Target tungsten components with a thin layer (0.127-mm) of Alloy 718, Alloy 600 or 316L stainless steel alloy. The application requires that the cladding be thermally bonded to the tungsten in order to transfer heat generated in the tungsten volume to a surrounding coolant. High temperature diffusion bonding using the hot isostatic processing (HIP) technique was selected as the method for creating a metallurgical bond between pure tungsten tubes and rods and the cladding materials. Bonding studies using a uniaxially loaded vacuum hot press were conducted in preliminary experiments to determine acceptable time-temperature conditions for diffusion bonding. The results were successfully applied in cladding tungsten rods and tubes with these alloys. Temperatures 800-810 C were suitable for cladding tungsten with Alloy 600 and 316L stainless steel alloy, whereas tungsten was clad with Alloy 718 at 1020 C.

  18. A Facile Method for the Synthesis of Binary Tungsten Iodides.

    PubMed

    Ströbele, Markus; Castro, Cristina; Fink, Reinhold F; Meyer, H-Jürgen

    2016-04-01

    The preparation of tungsten iodides in large quantities is a challenge because these compounds are not accessible using an easy synthesis method. A new, remarkably efficient route is based on a halide exchange reaction between WCl6 and SiI4 . The reaction proceeds at moderate temperatures in a closed glass vessel. The new compounds W3 I12 (W3 I8 ⋅2 I2 ) and W3 I9 (W3 I8 ⋅1/2  I2 ) containing the novel [W3 I8 ] cluster are formed at 120 and 150 °C, and remain stable in air. W3 I12 is an excellent starting material for the synthesis of other metal-rich tungsten iodides. At increasing temperature these trinuclear clusters undergo self-reduction until an octahedral tungsten cluster is formed in W6 I12 . The synthesis, structure, and an analysis of the bonding of compounds containing this new trinuclear tungsten cluster are presented. PMID:26947934

  19. High heat flux properties of pure tungsten and plasma sprayed tungsten coatings

    NASA Astrophysics Data System (ADS)

    Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Yang, L.; Xu, Z.

    2004-08-01

    High heat flux properties of pure tungsten and plasma sprayed tungsten coatings on carbon substrates have been studied by annealing and cyclic heat loading. The recrystallization temperature and an activation energy QR=126 kJ/mol for grain growth of tungsten coating by vacuum plasma spray (VPS) were estimated, and the microstructural changes of multi-layer tungsten and rhenium interface pre-deposited by physical vapor deposition (PVD) with anneal temperature were investigated. Cyclic load tests indicated that pure tungsten and VPS-tungsten coating could withstand 1000 cycles at 33-35 MW/m 2 heat flux and 3 s pulse duration, and inert gas plasma spray (IPS)-tungsten coating showed local cracks by 300 cycles but did not induce failure by further cycles. However, the failure of pure tungsten and VPS-tungsten coating by fatigue cracking was observed under higher heat load (55-60 MW/m 2) for 420 and 230 cycles, respectively.

  20. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  1. Presence of airborne fibers in tungsten refining and manufacturing processes: preliminary characterization.

    PubMed

    McKernan, John L; Toraason, Mark A; Fernback, Joseph E

    2008-07-01

    In tungsten refining and manufacturing processes, a series of tungsten oxides (WO(X)) are typically formed as intermediates in the production of tungsten powder. Studies in the Swedish tungsten refining and manufacturing industry have shown that intermediate tungsten refining processes can create WO(X) fibers. The purpose of the present study was to identify and provide a preliminary characterization of airborne tungsten-containing fiber dimensions, elemental composition, and concentrations in the U.S. tungsten refining and manufacturing industry. To provide the preliminary characterization, 10 static air samples were collected during the course of normal employee work activities and analyzed using standard fiber sampling and counting methods. Results from transmission electron microscopy analyses conducted indicate that airborne fibers with length > 0.5 microm, diameter > 0.01 microm, and aspect ratio > or = 3:1, with a geometric mean (GM) length of approximately 2.0 microm and GM diameter of approximately 0.25 microm, were present on 9 of the 10 air samples collected. Energy dispersive X-ray spectrometry results indicate that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Results from an air sample collected at the carburization process indicated the presence of fibers composed primarily of tungsten with oxygen and carbon, and traces of other elements. Based on National Institute for Occupational Safety and Health standard fiber counting rules, airborne fiber concentrations ranged from below the limit of detection to 0.14 f/cm(3). The calcining process was associated with the highest airborne fiber concentrations. More than 99% (574/578) of the airborne fibers identified had an aerodynamic diameter

  2. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  3. Diffusion of tungsten clusters on tungsten (110) surface

    SciTech Connect

    Chen, Dong; Hu, Wangyu; Yang, Jianyu; Deng, Huiqiu; Sun, Lixian; Gao, Fei

    2009-04-01

    Using molecular dynamics simulation and modified analytic embedded-atom method, we have investigated the self-diffusion of clusters on a tungsten (110) surface. As compared to the linear-chain configuration, the close-packed islands for tungsten clusters containing more than nine adatoms have been predicted to be more stable with the relatively lower binding energies. The migration energies show an interesting and oscillating behavior with increasing cluster size. The tetramer, hexamer and octamer have obviously higher migration energies than the others. The different atomic configurations and diffusion mechanisms have been determined during the diffusion processes. It is clear that the dimer-shearing mechanism occurs inside the hexamer, while it occurs at the periphery of heptamer. The successive hopping mechanism of individual atom is of critical importance in the migration of the clusters containing five or fewer adatoms. In addition, the diffusion of a cluster with nine adatoms is achieved through the changes of the cluster shape.

  4. Tungsten oxide nanowires grown on amorphous-like tungsten films.

    PubMed

    Dellasega, D; Pietralunga, S M; Pezzoli, A; Russo, V; Nasi, L; Conti, C; Vahid, M J; Tagliaferri, A; Passoni, M

    2015-09-11

    Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500-710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W18O49-Magneli phase to monoclinic WO3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 μm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures. PMID:26292084

  5. Remobilization in the cratonic lithosphere recorded in polycrystalline diamond

    PubMed

    Jacob; Viljoen; Grassineau; Jagoutz

    2000-08-18

    Polycrystalline diamonds (framesites) from the Venetia kimberlite in South Africa contain silicate minerals whose isotopic and trace element characteristics document remobilization of older carbon and silicate components to form the framesites shortly before kimberlite eruption. Chemical variations within the garnets correlate with carbon isotopes in the diamonds, indicating contemporaneous formation. Trace element, radiogenic, and stable isotope variations can be explained by the interaction of eclogites with a carbonatitic melt, derived by remobilization of material that had been stored for a considerable time in the lithosphere. These results indicate more recent formation of diamonds from older materials within the cratonic lithosphere. PMID:10947983

  6. Process Research of Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1984-01-01

    A passivation process (hydrogenation) that will improve the power generation of solar cells fabricated from presently produced, large grain, cast polycrystalline silicon (Semix), a potentially low cost material are developed. The first objective is to verify the operation of a DC plasma hydrogenation system and to investigate the effect of hydrogen on the electrical performance of a variety of polycrystalline silicon solar cells. The second objective is to parameterize and optimize a hydrogenation process for cast polycrystalline silicon, and will include a process sensitivity analysis. The sample preparation for the first phase is outlined. The hydrogenation system is described, and some early results that were obtained using the hydrogenation system without a plasma are summarized. Light beam induced current (LBIC) measurements of minicell samples, and their correlation to dark current voltage characteristics, are discussed.

  7. Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II

    NASA Astrophysics Data System (ADS)

    Nishijima, Dai; Ye, M. Y.; Ohno, N.; Takamura, S.

    2004-08-01

    A systematic study on the formation mechanism of micron-sized He bubbles and holes in powder metallurgy tungsten due to helium ion irradiation with an ion energy below 30 eV and a particle flux above 10 22 m -2 s -1 has been performed in the linear divertor plasma simulator NAGDIS-II. Holes are formed with incident helium ion energy above 5 eV, which could be related to the surface barrier potential energy for He penetrating into tungsten. Tungsten surface temperature strongly influences the number and size of hole. Above 1600 K, bubbles and/or holes with several hundreds nano-meter diameter appear on the tungsten surface. Single crystal tungsten, which has much fewer intrinsic defects than powder metallurgy tungsten, was also irradiated by He plasmas. There is no qualitative difference in the hole formation between the two grades of tungsten. Bubble and hole formation mechanisms are discussed based on the experimental results.

  8. A New Polycrystalline Co-Ni Superalloy

    NASA Astrophysics Data System (ADS)

    Knop, M.; Mulvey, P.; Ismail, F.; Radecka, A.; Rahman, K. M.; Lindley, T. C.; Shollock, B. A.; Hardy, M. C.; Moody, M. P.; Martin, T. L.; Bagot, P. A. J.; Dye, D.

    2014-12-01

    In 2006, a new-ordered L12 phase, Co3(Al,W), was discovered that can form coherently in a face-centered cubic (fcc) A1 Co matrix. Since then, a community has developed that is attempting to take these alloys forward into practical applications in gas turbines. A new candidate polycrystalline Co-Ni γ/ γ' superalloy, V208C, is presented that has the nominal composition 36Co-35Ni-15Cr-10Al-3W-1Ta (at.%). The alloy was produced by conventional powder metallurgy superalloy methods. After forging, a γ' fraction of ~56% and a secondary γ' size of 88 nm were obtained, with a grain size of 2.5 μm. The solvus temperature was 1000°C. The density was found to be 8.52 g cm-3, which is similar to existing Ni alloys with this level of γ'. The alloy showed the flow stress anomaly and a yield strength of 920 MPa at room temperature and 820 MPa at 800°C, similar to that of Mar-M247. These values are significantly higher than those found for either conventional solution and carbide-strengthened Co alloys or the γ/ γ' Co superalloys presented in the literature thus far. The oxidation resistance, with a mass gain of 0.08 mg cm-2 in 100 h at 800°C, is also comparable with that of existing high-temperature Ni superalloys. These results suggest that Co-based and Co-Ni superalloys may hold some promise for the future in gas turbine applications.

  9. Orientation imaging microscopy of polycrystalline sodium chloride

    SciTech Connect

    Staiger, M.P.; Kolbeinsson, I.; Newman, J.; Woodfield, T.; Sato, T.

    2010-04-15

    A novel preparation technique is described that makes possible grain size analysis of polycrystalline NaCl using orientation imaging microscopy via electron backscatter diffraction (EBSD). The preparation methodology is specifically developed to overcome difficulties in preparing microporous NaCl for microscopy. The grain size and crystallographic texture of polycrystalline NaCl samples, prepared via solution pressure and sintered in the range of 650-780 deg. C, were able to be measured successfully with EBSD. The limitations of the preparation technique for EBSD analysis of NaCl are also discussed.

  10. Dopant diffusion in tungsten silicide

    SciTech Connect

    Pan, P.; Hsieh, N.; Geipel, H.J. Jr.; Slusser, G.J.

    1982-04-01

    The dopant (B, P, and As) redistribution in a silicide on polycrystalline silicon structure after annealing at 800 and 1000 /sup 0/C was studied. The distribution of boron was found to be quite different from these of phosphorus and arsenic. At 1000 /sup 0/C, the distribution coefficient for boron at the WSi/sub 2//polycrystalline silicon interface was found to be 2.7. The solubilities of phosphorus and arsenic in WSi/sub 2/ at 1000 /sup 0/C were estimated to be 6 x 10/sup 19/ and 1.6 x 10/sup 19/ atoms/cm/sup 3/, respectively. At 800 /sup 0/C, the diffusion coefficient for the dopants was found to be equal to, or greater than 3.3 x 10/sup -12/ cm/sup 2//s, which is at least three orders of magnitude larger than in silicon.

  11. Plasma Influence on Tungsten Powder

    NASA Astrophysics Data System (ADS)

    Zakharov, A.; Begrambekova, S.; Grunin, A.

    Modifications of tungsten powder comprised of micro particles with dimensions: 1 ± 0.2 μm and 5 ± 1.5 μm ("small" and «large" particles) under the influence of heating, electric field and hydrogen- and argon ion irradiation are investigated in this work. The processes in irradiated powder are described and discussed. Among them there are powder outgassing, particle emission from the powder surface in the electric field, pasting of small particles all over the large ones, integration of the adhered small particles and formation of the uniform layer around the groups of large particles, cone growth on uniform layers, formation of volumetric chains of sticking together tungsten particles and their transformations. Driving forces and processes providing different types of powder modifications and the role of each of them in the specific phenomena are discussed.

  12. The effect of phosphorus on the formation of tungsten dioxide: A novel morphology

    SciTech Connect

    Hegedus, E.; Neugebauer, J.

    1999-02-19

    The industrial production of tungsten is based on the hydrogen reduction of tungsten oxides, ammonium paratungstate (APT) or ammonium tungsten oxide bronze (ATOB). Hydrogen reduction is applied when high purity tungsten is required and when the addition of other elements or compounds (dopants) is desired for modification of the properties of the metal powder. The first stage of the reduction is finished when WO{sub 2} is formed and it seems that the efficient incorporation of the additives starts mainly at this reduction step. The study reported here was undertaken to investigate the effect of phosphorus dope on the morphology of the intermediate tungsten dioxide and analyze its influence on the grain size of the final tungsten metal powder. The authors observed star shaped morphology of WO{sub 2}, a structure which has not been describe in the literature. Contrary to the well-known cauliflower shaped tungsten dioxide, these starlets are not pseudomorphic to the initial ATOB particles; they grow separately and have a great influence on the grain size of the final metal powder.

  13. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.

  14. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquefying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper. 6 figs.

  15. Tungsten-doped thin film materials

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  16. Ferromagnetism in exfoliated tungsten disulfide nanosheets

    PubMed Central

    2013-01-01

    Two-dimensional-layered transition metal dichalcogenides nanosheets have attracted tremendous attention for their promising applications in spintronics because the atomic-thick nanosheets can not only enhance the intrinsic properties of their bulk counterparts, but also give birth to new promising properties. In this paper, ultrathin tungsten disulfide (WS2) nanosheets were gotten by liquid exfoliation route from its bulk form using dimethylformamide (DMF). Compared to the antiferromagnetism bulk WS2, ultrathin WS2 nanosheets show intrinsic room-temperature ferromagnetism (FM) with the maximized saturation magnetization of 0.004 emu/g at 10 K, where the appearance of FM in the nanosheets is partly due to the presence of zigzag edges in the magnetic ground state at the grain boundaries. PMID:24134699

  17. Tungsten and tungsten-alloy powder metallurgy. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-10-01

    The bibliography contains citations concerning the processing and fabrication of tungsten, tungsten alloys, and tungsten composites. Compacting, pressing, sintering, extruding, and rolling are among the methods described. Infiltration of porous tungsten shapes is included, as well as mechanical properties, thermal properties, and microstructure of end products. Applications include rocket nozzles, nuclear reactor materials, and porous ionizers. (Contains a minimum of 116 citations and includes a subject term index and title list.)

  18. High temperature heterogeneous reaction kinetics and mechanisms of tungsten oxidation

    NASA Astrophysics Data System (ADS)

    Sabourin, Justin L.

    Tungsten, which is a material used in many high temperature applications, is limited by its susceptibility to oxidation at elevated temperatures. Although tungsten has the highest melting temperature of any metal, at much lower temperatures volatile oxides are formed during oxidation with oxygen containing species. This differs from many heterogeneous oxidation reactions involving metals since most reactions form very stable oxides that have higher melting or boiling points than the pure metal (e.g., aluminum, iron). Understanding heterogeneous oxidation and vaporization processes may allow for the expansion and improvement of high temperature tungsten applications. In order to increase understanding of the oxidation processes of tungsten, there is a need to develop reaction mechanisms and kinetics for oxidation processes involving oxidizers and environmental conditions of interest. Tungsten oxidation was thoroughly studied in the past, and today there is a good phenomenological understanding of these processes. However, as the design of large scale systems increasingly relies on computer modeling there becomes a need for improved descriptions of chemical reactions. With the increase in computing power over the last several decades, and the development of quantum chemistry and physics theories, heterogeneous systems can be modeled in detail at the molecular level. Thermochemical parameters that may not be measured experimentally may now be determined theoretically, a tool that was previously unavailable to scientists and engineers. Additionally, chemical kinetic modeling software is now available for both homogeneous and heterogeneous reactions. This study takes advantage of these new theoretical tools, as well as a thermogravimetric (TG) flow reactor developed as part of this study to learn about mechanisms and kinetics of tungsten oxidation. Oxidizers of interest are oxygen (O2), carbon dioxide (CO 2), water (H2O), and other oxidizers present in combustion and

  19. Process Research On Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J. H.; Culik, J. S.

    1982-01-01

    The mechanisms limiting performance in polycrystalline silicon was determined. The initial set of experiments in this task entails the fabrication of cells of various thicknesses for four different bulk resistivities between 0.1 and 10 omega-cm. The results for the first two lots are presented.

  20. Tungsten coating for improved wear resistance and reliability of microelectromechanical devices

    DOEpatents

    Fleming, James G.; Mani, Seethambal S.; Sniegowski, Jeffry J.; Blewer, Robert S.

    2001-01-01

    A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 .degree. C. in the presence of gaseous nitrogen trifluoride (NF.sub.3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF.sub.6) at an elevated temperature, preferably about 450.degree. C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact. The present invention can be applied to many different types of MEM devices including microrelays, micromirrors and microengines. Additionally, the tungsten wear-resistant coating of the present invention can be used to enhance the hardness, wear resistance, electrical conductivity, optical reflectivity and chemical inertness of one or more semiconductor surfaces within a MEM device.

  1. Tin-tungsten mineralizing processes in tungsten vein deposits: Panasqueira, Portugal

    NASA Astrophysics Data System (ADS)

    Lecumberri-Sanchez, P.; Pinto, F.; Vieira, R.; Wälle, M.; Heinrich, C. A.

    2015-12-01

    Tungsten has a high heat resistance, density and hardness, which makes it widely applied in industry (e.g. steel, tungsten carbides). Tungsten deposits are typically magmatic-hydrothermal systems. Despite the economic significance of tungsten, there are no modern quantitative analytical studies of the fluids responsible for the formation of its highest-grade deposit type (tungsten vein deposits). Panasqueira (Portugal) is a tungsten vein deposit, one of the leading tungsten producers in Europe and one of the best geologically characterized tungsten vein deposits. In this study, compositions of the mineralizing fluids at Panasqueira have been determined through combination of detailed petrography, microthermometric measurements and LA-ICPMS analyses, and geochemical modeling has been used to determine the processes that lead to tungsten mineralization. We characterized the fluids related to the various mineralizing stages in the system: the oxide stage (tin and tungsten mineralization), the sulfide stage (chalcopyrite and sphalerite mineralization) and the carbonate stage. Thus, our results provide information on the properties of fluids related with specific paragenetic stages. Furthermore we used those fluid compositions in combination with host rock mineralogy and chemistry to evaluate which are the controlling factors in the mineralizing process. This study provides the first quantitative analytical data on fluid composition for tungsten vein deposits and evaluates the controlling mineralization processes helping to determine the mechanisms of formation of the Panasqueira tin-tungsten deposit and providing additional geochemical constraints on the local distribution of mineralization.

  2. Corrosion of tungsten microelectrodes used in neural recording applications.

    PubMed

    Patrick, Erin; Orazem, Mark E; Sanchez, Justin C; Nishida, Toshikazu

    2011-06-15

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the bench-top electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300-700 μm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H₂O₂ is accelerated to 10,000-20,000 μm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O₂ and H₂O₂). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 μm/yr. The reduced in vivo corrosion rate as compared to the bench-top rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. PMID:21470563

  3. Corrosion of Tungsten Microelectrodes used in Neural Recording Applications

    PubMed Central

    Patrick, Erin; Orazem, Mark E.; Sanchez, Justin C.; Nishida, Toshikazu

    2011-01-01

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the benchtop electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300–700 µm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H2O2 is accelerated to 10,000–20,000 µm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O2 and H2O2). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 µm/yr. The reduced in vivo corrosion rate as compared to the benchtop rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. PMID:21470563

  4. Stochastic multiscale modeling of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Wen, Bin

    Mechanical properties of engineering materials are sensitive to the underlying random microstructure. Quantification of mechanical property variability induced by microstructure variation is essential for the prediction of extreme properties and microstructure-sensitive design of materials. Recent advances in high throughput characterization of polycrystalline microstructures have resulted in huge data sets of microstructural descriptors and image snapshots. To utilize these large scale experimental data for computing the resulting variability of macroscopic properties, appropriate mathematical representation of microstructures is needed. By exploring the space containing all admissible microstructures that are statistically similar to the available data, one can estimate the distribution/envelope of possible properties by employing efficient stochastic simulation methodologies along with robust physics-based deterministic simulators. The focus of this thesis is on the construction of low-dimensional representations of random microstructures and the development of efficient physics-based simulators for polycrystalline materials. By adopting appropriate stochastic methods, such as Monte Carlo and Adaptive Sparse Grid Collocation methods, the variability of microstructure-sensitive properties of polycrystalline materials is investigated. The primary outcomes of this thesis include: (1) Development of data-driven reduced-order representations of microstructure variations to construct the admissible space of random polycrystalline microstructures. (2) Development of accurate and efficient physics-based simulators for the estimation of material properties based on mesoscale microstructures. (3) Investigating property variability of polycrystalline materials using efficient stochastic simulation methods in combination with the above two developments. The uncertainty quantification framework developed in this work integrates information science and materials science, and

  5. Polycrystalline nanowires of gadolinium-doped ceria via random alignment mediated by supercritical carbon dioxide

    PubMed Central

    Kim, Sang Woo; Ahn, Jae-Pyoung

    2013-01-01

    This study proposes a seed/template-free method that affords high-purity semiconducting nanowires from nanoclusters, which act as basic building blocks for nanomaterials, under supercritical CO2 fluid. Polycrystalline nanowires of Gd-doped ceria (Gd-CeO2) were formed by CO2-mediated non-oriented attachment of the nanoclusters resulting from the dissociation of single-crystalline aggregates. The unique formation mechanism underlying this morphological transition may be exploited for the facile growth of high-purity polycrystalline nanowires. PMID:23572061

  6. Tungsten Stable Isotope Compositions of Ferromanganese Crusts

    NASA Astrophysics Data System (ADS)

    Abraham, K.; Barling, J.; Hein, J. R.; Schauble, E. A.; Halliday, A. N.

    2014-12-01

    We report the first accurate and precise data for mass-dependent fractionation of tungsten (W) stable isotopes, using a double spike technique and MC-ICPMS. Results are expressed relative to the NIST 3136 W isotope standard as per mil deviations in 186W/184W (δ186W). Although heavy element mass-dependent fractionations are expected to be small, Tl and U both display significant low temperature isotopic fractionations. Theoretical calculations indicate that W nuclear volume isotopic effects should be smaller than mass-dependent fractionations at low temperatures. Hydrogenetic ferromanganese (Fe-Mn) crusts precipitate directly from seawater and have been used as paleoceanographic recorders of temporal changes in seawater chemistry. Crusts are strongly enriched in W and other metals, and are a promising medium for exploring W isotopic variability. Tungsten has a relatively long residence time in seawater of ~61,000 years, mainly as the tungstate ion (WO42-). Water depth profiles show conservative behaviour. During adsorption on Fe-Mn crusts, W species form inner-sphere complexes in the hexavalent (W6+) state. The major host phase is thought to be Mn oxides and the lighter W isotope is expected to be absorbed preferentially. Surface scrapings of 13 globally distributed hydrogenetic Fe-Mn crusts display δ186W from -0.08 to -0.22‰ (±0.03‰, 2sd). A trend toward lighter W isotope composition exists with increasing water depth (~1500 to ~5200m) and W concentration. One hydrothermal Mn-oxide sample is anomalously light and Mn nodules are both heavy and light relative to Fe-Mn crusts. Tungsten speciation depends on concentration, pH, and time in solution and is not well understood because of the extremely slow kinetics of the reactions. In addition, speciation of aqueous and/or adsorbed species might be sensitive to pressure, showing similar thermodynamic stability but different effective volumes. Thus, W stable isotopes might be used as a water-depth barometer in

  7. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  8. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  9. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  10. Atomistic simulations of tungsten surface evolution under low-energy neon implantation

    NASA Astrophysics Data System (ADS)

    Backman, Marie; Hammond, Karl D.; Sefta, Faiza; Wirth, Brian D.

    2016-04-01

    Tungsten is a candidate material for the divertor of fusion reactors, where it will be subject to a high flux of particles coming from the fusion plasma as well as a significant heat load. Under helium plasma exposure in fusion-reactor-like conditions, a nanostructured morphology is known to form on the tungsten surface in certain temperature and incident energy ranges, although the formation mechanism is not fully established. A recent experimental study (Yajima et al 2013 Plasma Sci. Technol. 15 282-6) using neon or argon exposure did not produce similar nanostructure. This article presents molecular dynamics simulations of neon implantation in tungsten aimed at investigating the surface evolution and elucidating the role of noble gas mass in fuzz formation. In contrast to helium, neon impacts can sputter both tungsten and previously implanted neon atoms. The shorter range of neon ions, along with sputtering, limit the formation of large bubbles and likely prevents nanostructure formation.

  11. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOEpatents

    Benson, D.A.; Bickes, R.W. Jr.; Blewer, R.S.

    1990-12-11

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose. 2 figs.

  12. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOEpatents

    Benson, David A.; Bickes, Jr., Robert W.; Blewer, Robert S.

    1990-01-01

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose.

  13. A molecular dynamics study on bubble growth in tungsten under helium irradiation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ryo; Hattori, Tatsunori; Tamura, Tomoyuki; Ogata, Shuji

    2015-08-01

    Molecular dynamics simulation has been performed to investigate the effects of irradiated helium atoms in tungsten on the bubble nucleation and the dislocation loop formation. Simulation results clearly show that helium atoms in tungsten tend to migrate as isolated interstitials at high temperatures and to be absorbed to existing tungsten-vacancies or defects such as bubbles or dislocations. Tungsten self-interstitial atoms pushed out from the helium bubble tend to stay in the vicinity of the bubble and, then form a dislocation loop when the number of the atoms exceed the threshold. Since the bubbles and dislocation loops cause further nucleation of bubbles, there appears a helium bubble array along < 1 1 1 > direction. The bubble growth rate within this self induced bubble growth mechanism will be much faster than that of existing growth model. The growth model needs to be reformulated by taking the self-induced effects into account.

  14. Study on the oxidation and reduction of tungsten surface for sub-50 nm patterning process

    SciTech Connect

    Kim, Jong Kyu; Nam, Seok Woo; Cho, Sung Il; Jhon, Myung S.; Min, Kyung Suk; Kim, Chan Kyu; Jung, Ho Bum; Yeom, Geun Young

    2012-11-15

    The oxidation characteristics of tungsten line pattern during the carbon-based mask-layer removal process using oxygen plasmas have been investigated for sub-50 nm patterning processes, in addition to the reduction characteristics of the WO{sub x} layer formed on the tungsten line surface using hydrogen plasmas. The surface oxidation of tungsten lines during the mask layer removal process could be minimized by using low-temperature (300 K) plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WO{sub x} on the tungsten line could be decreased to 25% compared to results from high-temperature processing. The WO{sub x} layer could also be completely removed at a low temperature of 300 K using a hydrogen plasma by supplying bias power to the tungsten substrate to provide a activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40-nm-CD device processing, the complete removal of WO{sub x} formed on the sidewall of tungsten line could be observed.

  15. Novel properties of Tungsten ditelluride

    NASA Astrophysics Data System (ADS)

    Liu, Huimei; National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Cent Collaboration

    Tungsten ditelluride has attracted intense research interest due to the recent discovery of its large unsaturated magnetoresistance up to 60 Tesla. By using density functional theory calculations, we qualitatively reproduced the observed spin texture. Since the spin texture would forbid back scatterings that are directly involved in the resistivity, we suggest that the SOC and the related spin and orbital angular momentum textures may play an important role in the anomalously large magnetoresistance of WTe2. Motivated by the presence of a small, sensitive Fermi surface of 5d electronic orbitals, we also boost the electronic properties by applying a high pressure, and introduce superconductivity successfully.

  16. Tungsten carbides as potential alternative direct methanol fuel cell anode electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zellner, Michael

    The reduction of precious metal loading and the improvement of sluggish kinetics at the anode electrocatalyst are two primary concerns for economical development of direct methanol fuel cells (DMFC). The purpose of this research is to examine the feasibility of using tungsten carbides as alternative fuel cell anode electrocatalysts. The anodic chemistry of the direct methanol fuel cell requires the oxidation of methanol and the decomposition of water to produce protons, electrons, and gas-phase CO2. Currently, the most effective anode electrocatalyst for DMFC is the Pt/Ru bimetallic catalyst, which efficiently oxidizes methanol, as well as decomposes water for the oxidation and removal of adsorbed CO species. Although the Pt/Ru bimetallic system exhibits desirable electrochemical activities, both Pt and Ru are expensive due to limited supplies. In addition, strong chemisorption of CO on Pt and Ru makes the electrocatalyst susceptible to CO poisoning, blocking the active sites for methanol oxidation. This work began by examining the reactions of methanol, water, and CO on carbide-modified tungsten (C/W) single crystal surfaces, with and without submonolayer coverages of Pt. These fundamental surface science results demonstrated the potential for tungsten carbides to be used as anode catalysts in DMFC, exhibiting decomposition of both methanol and water along with significantly lowered CO desorption temperatures. Additionally, submonolayer Pt-modification of the C/W surfaces resulted in a synergistic effect, eliminating the undesired reaction pathway on the C/W surface that produced gas-phase CH4. To bridge the materials gap between model single crystal surfaces and the more realistic thin film electrocatalysts, polycrystalline tungsten carbide thin films were created via physical vapor deposition (PVD) and carburization of polycrystalline tungsten foil. Fundamental surface science techniques were applied to the PVD films to examine the reaction pathways of DMFC

  17. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    SciTech Connect

    Schuster, B.E.; Roszell, L.E.; Murr, L.E.; Ramirez, D.A.; Demaree, J.D.; Klotz, B.R.; Rosencrance, A.B.; Dennis, W.E.; Bao, W.; Perkins, E.J.; Dillman, J.F.; Bannon, D.I.

    2012-11-15

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  18. The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology

    DOE PAGESBeta

    Garrison, Lauren M.; Kulcinski, Gerald L.

    2015-07-17

    Erosion is a concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018–0.020 μm and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010–0.020 μm for PCW and 0.003–0.005 μm for SCW samples. Samples were irradiated with 30 keV He+ at 1173 K to fluences between 3 × 1021 and 6 × 1022 He/m2. The morphologies that developed after low-fluence bombardment weremore » different for each type of sample—MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on post-irradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO.« less

  19. The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology

    SciTech Connect

    Garrison, Lauren M.; Kulcinski, Gerald L.

    2015-07-17

    Erosion is a concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018–0.020 μm and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010–0.020 μm for PCW and 0.003–0.005 μm for SCW samples. Samples were irradiated with 30 keV He+ at 1173 K to fluences between 3 × 1021 and 6 × 1022 He/m2. The morphologies that developed after low-fluence bombardment were different for each type of sample—MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on post-irradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO.

  20. Copper coverage effect on tungsten crystallites texture development in W/Cu nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Girault, B.; Eyidi, D.; Chauveau, T.; Babonneau, D.; Renault, P.-O.; Le Bourhis, E.; Goudeau, P.

    2011-01-01

    Morphological and crystallographic structures of multilayered W/Cu nanocomposite thin films elaborated by physical vapor deposition were studied by varying copper and tungsten thicknesses. Sample examinations were performed by x-ray diffraction (XRD), grazing incidence small-angle x-ray scattering and transmission electron microscopy (TEM). Samples were found to be composed of copper nanoparticles, homogeneously dispersed in planes parallel to the film-substrate interface and periodically separated by tungsten layers along the growth direction. Our observations revealed an original texture development of the tungsten matrix from a mixture of unexpected α-W⟨111⟩ and α-W⟨110⟩ components to unique α-W⟨110⟩ component as the copper coverage passes a thickness threshold of 0.6 nm. Local TEM texture stereology investigations revealed simultaneous columnar growth of both preferential orientations posterior to polycrystalline development while XRD reveals strong compressive residual stresses in both texture components. Physical origins of the preferential crystallographic orientation evolution are discussed. Copper mono layers adsorption on W surfaces promotes surface energy anisotropy and diminution which is effective over the threshold. Below, the presence of a W(Cu) solid solution which does not affect substantially the texture is revealed by the stress-free lattice parameter value extracted from XRD.

  1. Origins of Folding Instabilities on Polycrystalline Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Beckmann, N.; Romero, P. A.; Linsler, D.; Dienwiebel, M.; Stolz, U.; Moseler, M.; Gumbsch, P.

    2014-12-01

    Wear and removal of material from polycrystalline metal surfaces is inherently connected to plastic flow. Here, plowing-induced unconstrained surface plastic flow on a nanocrystalline copper surface has been studied by massive molecular dynamics simulations and atomic force microscopy scratch experiments. In agreement with experimental findings, bulges in front of a model asperity develop into vortexlike fold patterns that mark the disruption of laminar flow. We identify dislocation-mediated plastic flow in grains with suitably oriented slip systems as the basic mechanism of bulging and fold formation. The observed folding can be fundamentally explained by the inhomogeneity of plasticity on polycrystalline surfaces which favors bulge formation on grains with suitably oriented slip system. This process is clearly distinct from Kelvin-Helmholtz instabilities in fluids, which have been previously suggested to resemble the formed surface fold patterns. The generated prow grows into a rough chip with stratified lamellae that are identified as the precursors of wear debris. Our findings demonstrate the importance of surface texture and grain structure engineering to achieve ultralow wear in metals.

  2. Mirrorlike pulsed laser deposited tungsten thin film

    SciTech Connect

    Mostako, A. T. T.; Khare, Alika; Rao, C. V. S.

    2011-01-15

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10{sup -5} Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness {approx}782 nm.

  3. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm. PMID:21280810

  4. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1982-01-01

    The investigation of the performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was continued by fabricating a set of minicell wafers on a selection of 10 cm x 10 cm wafers. A minicell wafer consists of an array of small (approximately 0.2 sq cm in area) photodiodes which are isolated from one another by a mesa structure. The junction capacitance of each minicell was used to obtain the dopant concentration, and therefore the resistivity, as a function of position across each wafer. The results indicate that there is no significant variation in resistivity with position for any of the polycrystalline wafers, whether Semix or Wacker. However, the resistivity of Semix brick 71-01E did decrease slightly from bottom to top.

  5. Polycrystalline thin films FY 1992 project report

    SciTech Connect

    Zweibel, K.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  6. Equilibrium shapes of polycrystalline silicon nanodots

    SciTech Connect

    Korzec, M. D. Wagner, B.; Roczen, M.; Schade, M.; Rech, B.

    2014-02-21

    This study is concerned with the topography of nanostructures consisting of arrays of polycrystalline nanodots. Guided by transmission electron microscopy (TEM) measurements of crystalline Si (c-Si) nanodots that evolved from a “dewetting” process of an amorphous Si (a-Si) layer from a SiO{sub 2} coated substrate, we investigate appropriate formulations for the surface energy density and transitions of energy density states at grain boundaries. We introduce a new numerical minimization formulation that allows to account for adhesion energy from an underlying substrate. We demonstrate our approach first for the free standing case, where the solutions can be compared to well-known Wulff constructions, before we treat the general case for interfacial energy settings that support “partial wetting” and grain boundaries for the polycrystalline case. We then use our method to predict the morphologies of silicon nanodots.

  7. Hydrogen migration in phosphorous doped polycrystalline silicon

    SciTech Connect

    Nickel, N.H.; Kaiser, I.

    1998-12-31

    Hydrogen diffusion in phosphorous doped polycrystalline silicon was investigated by deuterium diffusion experiments. The presence of phosphorous enhances hydrogen diffusion. For high hydrogen concentrations the activation energy of the effective diffusion-coefficient amounts to 0.25--0.35 eV. At low hydrogen concentrations diffusion is governed by deep traps that are present in an appreciable concentration of 6 {times} 10{sup 18}--10{sup 19} cm{sup {minus}3}. The hydrogen chemical-potential, {mu}{sub H}, decreases with increasing temperature at a rate of {approx}0.002 eV/K. The data are discussed in terms of a two-level model used to describe hydrogen diffusion in amorphous and undoped polycrystalline silicon.

  8. Polycrystalline thin films FY 1992 project report

    SciTech Connect

    Zweibel, K.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  9. Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides

    SciTech Connect

    Wang, Shanmin; Yu, Xiaohui; Lin, Zhijun; Zhang, Ruifeng; He, Duanwei; Qin, Jiaqian; Zhu, Jinlong; Han, Jiantao; Wang, Lin; Mao, Ho-kwang; Zhang, Jianzhong; Zhao, Yusheng

    2012-12-13

    Among transition metal nitrides, tungsten nitrides possess unique and/or superior chemical, mechanical, and thermal properties. Preparation of these nitrides, however, is challenging because the incorporation of nitrogen into tungsten lattice is thermodynamically unfavorable at atmospheric pressure. To date, most materials in the W-N system are in the form of thin films produced by nonequilibrium processes and are often poorly crystallized, which severely limits their use in diverse technological applications. Here we report synthesis of tungsten nitrides through new approaches involving solid-state ion exchange and nitrogen degassing under pressure. We unveil a number of novel nitrides including hexagonal and rhombohedral W{sub 2}N{sub 3}. The final products are phase-pure and well-crystallized in bulk forms. For hexagonal W{sub 2}N{sub 3}, hexagonal WN, and cubic W3N4, they exhibit elastic properties rivaling or even exceeding cubic-BN. All four nitrides are prepared at a moderate pressure of 5 GPa, the lowest among high-pressure synthesis of transition metal nitrides, making it practically feasible for massive and industrial-scale production.

  10. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.