Science.gov

Sample records for polyethylene glycol-modified proteins

  1. Characterization of Polyethylene Glycol Modified Hemoglobins

    NASA Astrophysics Data System (ADS)

    Salazar, Gil; Barr, James; Morgan, Wayne; Ma, Li

    2011-03-01

    Polyethylene glycol modified hemoglobins (PEGHbs) was characterized by liquid chromatography and fluorescence methods. We prepared four samples of two different molecular weight PEG, 5KDa and 20KDa, modified bovine and human hemoglobin. We studied the oxygen affinities, stabilities, and peroxidase activities of PEGHbs. We have related oxygen affinities with different degrees of modifications. The data showed that the modification on the beta subunits was less stable than that of the alpha subunits on the human Hb based samples especially. We also compared peroxidase activities among different modified PEGHbs.

  2. Cell separation by immunoaffinity partitioning with polyethylene glycol-modified Protein A in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1988-01-01

    Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.

  3. Structure of poly(ethylene glycol)-modified horseradish peroxidase in organic solvents: infrared amide I spectral changes upon protein dehydration are largely caused by protein structural changes and not by water removal per se.

    PubMed Central

    Al-Azzam, Wasfi; Pastrana, Emil A; Ferrer, Yancy; Huang, Qing; Schweitzer-Stenner, Reinhard; Griebenow, Kai

    2002-01-01

    Fourier transform infrared (FTIR) spectroscopy has emerged as a powerful tool to guide the development of stable lyophilized protein formulations by providing information on the structure of proteins in amorphous solids. The underlying assumption is that IR spectral changes in the amide I and III region upon protein dehydration are caused by protein structural changes. However, it has been claimed that amide I IR spectral changes could be the result of water removal per se. Here, we investigated whether such claims hold true. The structure of horseradish peroxidase (HRP) and poly(ethylene glycol)-modified HRP (HRP-PEG) has been investigated under various conditions (in aqueous solution, the amorphous dehydrated state, and dissolved/suspended in toluene and benzene) by UV-visible (UV-Vis), FTIR, and resonance Raman spectroscopy. The resonance Raman and UV-Vis spectra of dehydrated HRP-PEG dissolved in neat toluene or benzene were very similar to that of HRP in aqueous buffer, and thus the heme environment (heme iron spin, coordination, and redox state) was essentially the same under both conditions. Therefore, the three-dimensional structure of HRP-PEG dissolved in benzene and toluene was similar to that in aqueous solution. The amide I IR spectra of HRP-PEG in aqueous buffer and of dehydrated HRP-PEG dissolved in neat benzene and toluene were also very similar, and the secondary structure compositions (percentages of alpha-helices and beta-sheets) were within the standard error the same. These results are irreconcilable with recent claims that water removal per se could cause substantial amide I IR spectral changes (M. van de Weert, P.I. Haris, W.E. Hennink, and D.J. Crommelin. 2001. Anal. Biochem. 297:160-169). On the contrary, amide I IR spectral changes upon protein dehydration are caused by perturbations in the secondary structure. PMID:12496131

  4. Antitumor drug effect of betulinic acid mediated by polyethylene glycol modified liposomes.

    PubMed

    Liu, Yanping; Gao, Dawei; Zhang, Xuwu; Liu, Zhiwei; Dai, Kun; Ji, Bingshuo; Wang, Qianqian; Luo, Liyao

    2016-07-01

    Betulinic acid (BA), as a natural pentacyclic lupine-type triterpene, principally derives from bark of white birch, due to its potent pharmacological properties and low side-effect, which has been demonstrated a prominent efficiency on cancer therapy. However, the poor solubility and low bioavailability limit its pharmaceutical effect. Herein, we reported the rapid efficient synthesis of the polyethylene glycol modified (PEGylated) BA liposomes using ethanol injection technique for the first time. In the study, hydrophobic BA was encapsulated in the lipid bilayer of liposomes, meanwhile hydrophilic PEG layer covered the surface of liposomes. The mean diameter of PEGylated BA liposomes was 142nm, which can effectively accumulate in the tumor tissues. In vitro drug release study showed that the PEGylated BA liposomes had a better sustained drug release effect than BA liposomes. The PEGylated BA liposomes also exhibited a better tumor inhibitory effect compared with those of free BA or BA liposomes in vitro and in vivo experiments. Therefore, the PEGylated BA liposomes could serve as a better alternative for the cancer therapy in future. PMID:27127036

  5. The physiological and histopathological response of dogs to exchange transfusion with polyethylene glycol-modified bovine hemoglobin (PEG-Hb).

    PubMed

    Shum, K L; León, A; Viau, A T; Pilon, D; Nucci, M; Shorr, R G

    1996-11-01

    The performance of polyethylene glycol-modified bovine hemoglobin (PEG-Hb) was evaluated in dogs following the replacement of 30% or 50% of their blood volume with PEG-Hb or lactated Ringer's solution (LRS). Dogs fully instrumented with catheters and blood pressure probes were transfused by simultaneous bleeding from the jugular vein and infusion of PEG-Hb or LRS via the cephalic vein. Animals were monitored for abnormal behavior and clinical signs for fourteen days. No mortalities, overt toxicity, changes in body weight, food consumption or ophthalmology, or discernable trends in hematology, blood chemistry coagulation, urinalysis or hemodynamic parameters that could be attributed to PEG-Hb were noted. Blood gas analyses were steady and within physiological ranges. Dose-related histopathological findings of vacuolated histiocytes in the femoral bone marrow, splenic parenchyma, the medulla of the mesenteric and mandibular lymph nodes, and vacuolated sinusoidal cells in the liver and the renal tubular epithelial cells were believed to be related to the phagocytosis and degradation of PEG-Hb by the reticulo-endothelial system. The maintenance of high oxygen levels in the circulation for the two-week treatment period, as well as the insignificant physiological and histopathological findings indicate that PEG-Hb could be a successful blood substitute. PMID:8922234

  6. An ultrahigh dielectric constant composite based on polyvinylidene fluoride and polyethylene glycol modified ferroferric oxide

    NASA Astrophysics Data System (ADS)

    Zhu, Jiujun; Li, Weiping; Huo, Xiaoyun; Li, Lili; Li, Ya; Luo, Laihui; Zhu, Yuejin

    2015-09-01

    To improve the compatibility between a filler and polymer matrix, a polyethylene glycol (PEG) surface modifier was used for modification in the polyvinylidene fluoride (PVDF) and ferroferric oxide (Fe3O4) composites. It is found that the PEG-modified Fe3O4 and PVDF composites have a much higher dielectric constant and better suppressed dielectric loss than the other similar percolative systems. The maximum of the dielectric constant can be up to 63 000 while the dielectric loss is controlled below 4.5. Finally, the microscopic reasons for this improvement are presented. It is helpful to understand the influence of surface modification agents on the interfaces between the filler and matrix.

  7. Polyethylene glycol modified magnetic carbon nanotubes as nanosorbents for the determination of methylprednisolone in rat plasma by high performance liquid chromatography.

    PubMed

    Yu, Panfeng; Ma, Hongwei; Shang, Yong; Wu, Ji; Shen, Shun

    2014-06-27

    In this paper, polyethylene glycol modified (PEGylated) magnetic carbon nanotubes were developed as solid-phase extraction nanosorbents for the determination of methylprednisolone in rat plasma. The procedure mainly involved two steps including preparation of PEGylated magnetic nanosorbents and bioanalysis. Monodisperse magnetites (Fe3O4) anchored onto multi-walled carbon nanotubes (MWCNTs) were synthesized by a facile solvothermal synthesis method. The obtained MWCNTs-Fe3O4 nanomaterials were further non-covalently functionalized by a surfactant phospholipids-polyethylene glycol (DSPE-PEG). Owing to dispersibility and high enrichment ability, water-soluble PEGylated MWCNTs-Fe3O4 nanomaterials can provide more efficient way for the extraction of methylprednisolone than only MWCNTs-Fe3O4 used. The methylprednisolone could be easily extracted via π-π stacking interactions with PEGylated MWCNTs-Fe3O4. The captured methylprednisolone/nanosorbents were isolated from the matrix by placing a magnet, and desorbed by the elution solvent composed of acetonitrile. Extraction conditions such as amount of nanosorbents added, adsorption time, desorption solvent, and desorption time were investigated and optimized. The method recoveries were obtained from 88.2% to 92.9%. Limits of quantification and limits of detection of 0.01 and 0.005μg/mL were acquired, respectively. The precision ranged from 4.2% to 7.8% for within-day measurement, and for between-day variation was in the range of 5.5-9.0%. Moreover, the analytical performance obtained by PEGylated magnetic MWCNTs was compared with that of magnetic MWCNTs. The results indicated that the approach based on PEGylated magnetic MWCNTs was useful for the analysis of methylprednisolone in the complex plasma. PMID:24837418

  8. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin.

    PubMed

    Huh, Kang Moo; Cho, Yong Woo; Chung, Hesson; Kwon, Ick Chan; Jeong, Seo Young; Ooya, Tooru; Lee, Won Kyu; Sasaki, Shintaro; Yui, Nobuhiko

    2004-02-20

    Supramolecular hydrogels have been prepared on the basis of polymer inclusion complex (PIC) formation between poly(ethylene glycol) (PEG)-modified chitosans and alpha-cyclodextrin (alpha-CD). A series of PEG-modified chitosans were synthesized by coupling reactions between chitosan and monocarboxylated PEG using water-soluble carbodiimide (EDC) as coupling agent. With simple mixing, the resultant supramolecular assembly of the polymers and alpha-CD molecules led to hydrogel formation in aqueous media. The supramolecular structure of the PIC hydrogels was confirmed by differential scanning calorimetry (DSC), X-ray diffraction, and (13)C cross-polarized/magic-angle spinning (CP/MAS) NMR characterization. The PEG side-chains on the chitosan backbones were found to form inclusion complexes (ICs) with alpha-CD molecules, resulting in the formation of channel-type crystalline micro-domains. The IC domains play an important role in holding together hydrated chitosan chains as physical junctions. The gelation property was affected by several factors including the PEG content in the polymers, the solution concentration, the mixing ratio of host and guest molecules, temperature, pH, etc. All the hydrogels in acidic conditions exhibited thermo-reversible gel-sol transitions under appropriate conditions of mixing ratio and PEG content in the mixing process. The transitions were induced by supramolecular association and dissociation. These supramolecular hydrogels were found to have phase-separated structures that consist of hydrophobic crystalline PIC domains, which were formed by the host-guest interaction between alpha-CD and PEG, and hydrated chitosan matrices below the pK(a).The formation of inclusion complexes between alpha-cyclodextrin and PEG-modified chitosan leads to the formation of hydrogels that can undergo thermo-reversible supramolecular dissociation. PMID:15468199

  9. Mixed polyethylene glycol-modified breviscapine-loaded solid lipid nanoparticles for improved brain bioavailability: preparation, characterization, and in vivo cerebral microdialysis evaluation in adult Sprague Dawley rats.

    PubMed

    Liu, Zhidong; Okeke, Chukwunweike Ikechukwu; Zhang, Li; Zhao, Hainan; Li, Jiawei; Aggrey, Mike Okweesi; Li, Nan; Guo, Xiujun; Pang, Xiaochen; Fan, Lili; Guo, Lili

    2014-04-01

    Breviscapine is used in the treatment of ischemic cerebrovascular diseases, but it has a low bioavailability in the brain due to its poor physicochemical properties and the activity of P-glycoprotein efflux pumps located at the blood-brain barrier. In the present study, breviscapine-loaded solid lipid nanoparticles (SLN) coated with polyethylene glycol (PEG) derivatives were formulated and evaluated for their ability to enhance brain bioavailability. The SLNs were either coated with polyethylene glycol (40) (PEG-40) stearate alone (Bre-GBSLN-PS) or a mixture of PEG-40 stearate and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000 (DSPE-PEG2000) (Bre-GBSLN-PS-DSPE) and were characterized both in vitro and in vivo. The mean particle size, polydispersity index, and entrapment efficiency for Bre-GBSLN-PS and Bre-GBSLN-PS-DSPE were 21.60 ± 0.10 and 22.60 ± 0.70 nm, 0.27 ± 0.01 and 0.26 ± 0.04, and 46.89 ± 0.73% and 47.62 ± 1.86%, respectively. The brain pharmacokinetic parameters revealed that the brain bioavailability of breviscapine from the Bre-GBSLN-PS and Bre-GBSLN-PS-DSPE was significantly enhanced (p < 0.01) with the area under concentration-time curve (AUC) of 1.59 ± 0.39 and 1.42 ± 0.58 μg h/mL of breviscapine, respectively, in comparison to 0.11 ± 0.02 μg h/mL from the commercial breviscapine injection. The ratios of the brain AUC for scutellarin in comparison with the plasma scutellarin AUC for commercial breviscapine injection, Bre-GBSLN-PS, and Bre-GBSLN-PS-DSPE were 0.66%, 2.82%, and 4.51%, respectively. These results showed that though both SLN formulations increased brain uptake of breviscapine, Bre-GBSLN-PS-DSPE which was coated with a binary combination of PEG-40 stearate and DSPE-PEG2000 had a better brain bioavailability than Bre-GBSLN-PS. Thus, the coating of SLNs with the appropriate PEG derivative combination could improve brain bioavailability of breviscapine and can be a promising tool for brain drug delivery. PMID:24482026

  10. Extrusion foaming of protein-based thermoplastic and polyethylene blends

    NASA Astrophysics Data System (ADS)

    Gavin, Chanelle; Lay, Mark C.; Verbeek, Casparus J. R.

    2016-03-01

    Currently the extrusion foamability of Novatein® Thermoplastic Protein (NTP) is being investigated at the University of Waikato in collaboration with the Biopolymer Network Ltd (NZ). NTP has been developed from bloodmeal (>86 wt% protein), a co-product of the meat industry, by adding denaturants and plasticisers (tri-ethylene glycol and water) allowing it to be extruded and injection moulded. NTP alone does not readily foam when sodium bicarbonate is used as a chemical blowing agent as its extensional viscosity is too high. The thermoplastic properties of NTP were modified by blending it with different weight fractions of linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH) compatibiliser. Extrusion foaming was conducted in two ways, firstly using the existing water content in the material as the blowing agent and secondly by adding sodium bicarbonate. When processed in a twin screw extruder (L/D 25 and 10 mm die) the material readily expanded due to the internal moisture content alone, with a conditioned expansion ratio of up to ± 0.13. Cell structure was non-uniform exhibiting a broad range cell sizes at various stages of formation with some coalescence. The cell size reduced through the addition of sodium bicarbonate, overall more cells were observed and the structure was more uniform, however ruptured cells were also visible on the extrudate skin. Increasing die temperature and introducing water cooling reduced cell size, but the increased die temperature resulted in surface degradation.

  11. Determination of six polyynes in Oplopanax horridus and Oplopanax elatus using polyethylene glycol modified reversed migration microemulsion electrokinetic chromatography.

    PubMed

    Yang, Zhong-mei; Zhao, Jing; Lao, Ka-meng; Chen, Xiao-jia; Leong, Fong; Wang, Chong-Zhi; Yuan, Chun-Su; Li, Shao-ping

    2014-10-01

    A PEG-modified reversed migration MEEKC method was developed for simultaneous determination of six polyynes, including oplopandiol, falcarindiol, oplopandiol acetate, (11S, 16S, 9Z)-9,17-octadecadiene-12,14-diyne-1,11,16-triol,1-acetate, oplopantriol B, and oplopantriol A, in Oplopanax horridus and Oplopanax elatus. The running buffer containing 0.8% v/v ethyl acetate, 3.8% w/v SDS, 6.6% v/v n-butanol in 20 mM phosphate buffer (pH 2.5), followed by mixing with propan-2-ol at 30% v/v and PEG-1000 at 15% w/v, was applied in the analysis. The proposed method was successfully applied to determine the six polyynes in five samples of Oplopanax horridus and one of O. elatus. The result showed that the types and amounts of polyynes present were obviously different when comparing the two herbs. Besides, the developed PEG-modified reversed MEEKC method might be suitable for the analysis of hydrophobic analytes in herbal medicines. PMID:25070635

  12. Ultrafast Solvation Dynamics of Subtilisin-Polyethylene Glycol Interaction for Protein Crystallization

    NASA Astrophysics Data System (ADS)

    Ding, Qing; Meng, Geng; Wang, Shu-Feng; Zheng, Xiao-Feng; Yang, Hong; Gong, Qi-Huang

    2011-06-01

    We study the ultrafast solvation dynamics of protein-precipitant complexes. Protein subtilisin carlsberg (SC) was mixed with several polyethylene glycol (PEG) precipitants for protein crystallization. Picosecond-resolved emission spectra from single intrinsic tryptophan residue (Trp-113) are recorded to construct solvation correlation functions. For precipitant concentrations with various crystallization effects, we observe drastically different solvation relaxation processes. These differences in solvation dynamics are correlated with the local protein structural integrity and water-network stability upon interaction with the precipitants. The solvation dynamics at the protein surface is proposed as a new perspective to study precipitant-protein interactions.

  13. Infrared investigation on the conformation of proteins deposited on polyethylene films

    NASA Astrophysics Data System (ADS)

    Sarver, Ronald W., Jr.; Krueger, William C.

    1994-01-01

    Aqueous protein solutions deposited and dried on thin polyethylene sheets were analyzed by Fourier transform infrared spectroscopy. This convenient technique provided reasonable determinations of secondary structure with 200 to 80 (mu) g of protein deposited. To determine secondary structure, principal component regression (PCR) was applied to the infrared spectra of 12 different proteins deposited as thin films. Regression with 5 principal components provided the fraction of helix and (beta) -sheet structure present in the hydrated proteins with standard deviations of 6.3% and 7.3%, respectively, compared to a reference data set of structures determined by x-ray crystallography. Prediction errors were similar to those obtained by other infrared methods. Analysis of various types of turn structure grouped together was unsuccessful.

  14. Modulation of Protein Adsorption and Cell Proliferation on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites.

    PubMed

    Upadhyay, Rahul; Naskar, Sharmistha; Bhaskar, Nitu; Bose, Suryasarathi; Basu, Bikramjit

    2016-05-18

    The uniform dispersion of nanoparticles in a polymer matrix, together with an enhancement of interfacial adhesion is indispensable toward achieving better mechanical properties in the nanocomposites. In the context to biomedical applications, the type and amount of nanoparticles can potentially influence the biocompatibility. To address these issues, we prepared high-density polyethylene (HDPE) based composites reinforced with graphene oxide (GO) by melt mixing followed by compression molding. In an attempt to tailor the dispersion and to improve the interfacial adhesion, we immobilized polyethylene (PE) onto GO sheets by nucleophilic addition-elimination reaction. A good combination of yield strength (ca. 20 MPa), elastic modulus (ca. 600 MPa), and an outstanding elongation at failure (ca. 70%) were recorded with 3 wt % polyethylene grafted graphene oxide (PE-g-GO) reinforced HDPE composites. Considering the relevance of protein adsorption as a biophysical precursor to cell adhesion, the protein adsorption isotherms of bovine serum albumin (BSA) were determined to realize three times higher equilibrium constant (Keq) for PE-g-GO-reinforced HDPE composites as compared to GO-reinforced composites. To assess the cytocompatibility, we grew osteoblast cell line (MC3T3) and human mesenchymal stem cells (hMSCs) on HDPE/GO and HDPE/PE-g-GO composites, in vitro. The statistically significant increase in metabolically active cell over different time periods in culture for up to 6 days in MC3T3 and 7 days for hMSCs was observed, irrespective of the substrate composition. Such observation indicated that HDPE with GO or PE-g-GO addition (up to 3 wt %) can be used as cell growth substrate. The extensive proliferation of cells with oriented growth pattern also supported the fact that tailored GO addition can support cellular functionality in vitro. Taken together, the experimental results suggest that the PE-g-GO in HDPE can effectively be utilized to enhance both mechanical and cytocompatibility properties and can further be explored for potential biomedical applications. PMID:27108739

  15. Mode of lysozyme protein adsorption at end-tethered polyethylene oxide brushes on gold surfaces determined by neutron reflectivity.

    PubMed

    Taylor, Warren; Ebbens, Stephen; Skoda, Maximillian W A; Webster, John R P; Jones, Richard A L

    2015-03-01

    The mode of lysozyme protein adsorption at end-tethered thiol-terminated polyethylene oxide brushes grafted upon gold was determined in situ by neutron reflectivity using the INTER instrument at target station 2, ISIS, RAL, UK. It was found that the most probable position of protein adsorption at these weakly protein resistive brushes was at the gold-brush interface in the so-called primary protein position. PMID:25743024

  16. Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures.

    PubMed

    Odahara, Takayuki; Odahara, Koji

    2016-04-01

    Mixtures of neutral salts and polyethylene glycol are used for various purposes in biological studies. Although the effects of each component of the mixtures are theoretically well investigated, comprehension of their integrated effects remains insufficient. In this work, their roles and effects as a precipitant were clarified by studying dependence of precipitation curves on salt concentration for integral membrane protein/detergent particles of different physicochemical properties. The dependence of precipitation curves was reasonably related to intermolecular interactions among relevant molecules such as protein, detergent and polyethylene glycol by considering their physicochemical properties. The obtained relationships are useful as basic information to learn the early stage of biological macromolecular associations. PMID:26705098

  17. Controlling microencapsulation and release of micronized proteins using poly(ethylene glycol) and electrospraying.

    PubMed

    Bock, Nathalie; Dargaville, Tim R; Woodruff, Maria A

    2014-07-01

    The fabrication of tailored microparticles for delivery of therapeutics is a challenge relying upon a complex interplay between processing parameters and materials properties. The emerging use of electrospraying allows better tailoring of particle morphologies and sizes than current techniques, critical to reproducible release profiles. While dry encapsulation of proteins is essential for the release of active therapeutics from microparticles, it is currently uncharacterized in electrospraying. To this end, poly(ethylene glycol) (PEG) was assessed as a micronizing and solubilizing agent for dry protein encapsulation and release from electrosprayed particles made from polycaprolactone (PCL). The physical effect of PEG in protein-loaded poly(lactic-co-glycolic acid) (PLGA) particles was also studied, for comparison. The addition of 5-15 wt% PEG 6 kDa or 35 kDa resulted in reduced PCL particle sizes and broadened distributions, which could be improved by tailoring the electrospraying processing parameters, namely by reducing polymer concentration and increasing flow rate. Upon micronization, protein particle size was reduced to the micrometer domain, resulting in homogenous encapsulation in electrosprayed PCL microparticles. Microparticle size distributions were shown to be the most determinant factor for protein release by diffusion and allowed specific control of release patterns. PMID:24657821

  18. Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release.

    PubMed

    Lee, Soah; Tong, Xinming; Yang, Fan

    2016-02-23

    Poly(ethylene glycol) (PEG) hydrogels are widely used to deliver therapeutic biomolecules, due to high hydrophilicity, tunable physicochemical properties, and anti-fouling properties. Although different hydrogel crosslinking mechanisms are known to result in distinct network structures, it is still unknown how these various mechanisms influence biomolecule release. Here we compared the effects of chain-growth and step-growth polymerization for hydrogel crosslinking on the efficiency of protein release and diffusivity. For chain-growth-polymerized PEG hydrogels, while decreasing PEG concentration increased both the protein release efficiency and diffusivity, it was unexpected to find out that increasing PEG molecular weight did not significantly change either parameter. In contrast, for step-growth-polymerized PEG hydrogels, both decreasing PEG concentration and increasing PEG molecular weight resulted in an increase in the protein release efficiency and diffusivity. For step-growth-polymerized hydrogels, the protein release efficiency and diffusivity were further decreased by increasing crosslink functionality (4-arm to 8-arm) of the chosen monomer. Altogether, our results demonstrate that the crosslinking mechanism has a differential effect on controlling protein release, and this study provides valuable information for the rational design of hydrogels for sophisticated drug delivery. PMID:26539660

  19. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake.

    PubMed

    Pelaz, Beatriz; del Pino, Pablo; Maffre, Pauline; Hartmann, Raimo; Gallego, Marta; Rivera-Fernández, Sara; de la Fuente, Jesus M; Nienhaus, G Ulrich; Parak, Wolfgang J

    2015-07-28

    Here we have investigated the effect of enshrouding polymer-coated nanoparticles (NPs) with polyethylene glycol (PEG) on the adsorption of proteins and uptake by cultured cells. PEG was covalently linked to the polymer surface to the maximal grafting density achievable under our experimental conditions. Changes in the effective hydrodynamic radius of the NPs upon adsorption of human serum albumin (HSA) and fibrinogen (FIB) were measured in situ using fluorescence correlation spectroscopy. For NPs without a PEG shell, a thickness increase of around 3 nm, corresponding to HSA monolayer adsorption, was measured at high HSA concentration. Only 50% of this value was found for NPs with PEGylated surfaces. While the size increase clearly reveals formation of a protein corona also for PEGylated NPs, fluorescence lifetime measurements and quenching experiments suggest that the adsorbed HSA molecules are buried within the PEG shell. For FIB adsorption onto PEGylated NPs, even less change in NP diameter was observed. In vitro uptake of the NPs by 3T3 fibroblasts was reduced to around 10% upon PEGylation with PEG chains of 10 kDa. Thus, even though the PEG coatings did not completely prevent protein adsorption, the PEGylated NPs still displayed a pronounced reduction of cellular uptake with respect to bare NPs, which is to be expected if the adsorbed proteins are not exposed on the NP surface. PMID:26079146

  20. High performance protein microarrays based on glycidyl methacrylate-modified polyethylene terephthalate plastic substrate.

    PubMed

    Liu, Yingshuai; Li, Chang Ming; Hu, Weihua; Lu, Zhisong

    2009-01-15

    There is a great challenge to immobilize high density of probe molecules for high performance protein microarrays, and this is achieved in this work by using polyethylene terephthalate (PET) plastic substrate onto which glycidyl methacrylate (GMA) photopolymer is grafted under mild conditions to introduce high density of epoxy groups for covalent immobilization of proteins. The poly(GMA)-grafted PET (PGMA-PET) surface was characterized with atomic force microscope (AFM) and attenuated total reflectance Fourier transform infra-red (ATR-FTIR) spectroscopy. For high density of protein immobilization and good quality of microspots, experiments were conducted to optimize the printing buffer, and an optimal buffer was found out to be PBS with 10% glycerol+0.003% triton X-100. According to the studies of loading capacity and immobilization kinetics, the optimal protein probe concentration and incubation time for the efficient immobilization are 200 microg mL(-1) and 8h, respectively. The performance of the PGMA-PET-based protein microarrays is evaluated with sandwich immunoassay using rat IgG and anti-rat IgG as model proteins, demonstrating a limit of detection (LOD) of 10 pg mL(-1) and a dynamic range of five orders of magnitude which are better than or very comparable with the reported or commercially available immunoassays, while providing a high-throughput approach. The work renders a simple and economic method to manufacture high performance protein microarrays and is expected to have great potentials in broad applications related to clinic diagnosis, drug discovery and proteomic research. PMID:19064107

  1. Characterizing the modification of surface proteins with poly(ethylene glycol) to interrupt platelet adhesion

    PubMed Central

    Xu, Haiyan; Kaar, Joel L.; Russell, Alan J.; Wagner, William R.

    2010-01-01

    Surface protein modification with poly(ethylene glycol) (PEG) can inhibit acute thrombosis on damaged vascular and biomaterial surfaces by blocking surface protein–platelet interactions. However, the feasibility of employing protein reactive PEGs to limit intravascular and biomaterial thrombosis in vivo is contingent upon rapid and extensive surface protein modification. To characterize the factors controlling this potential therapeutic approach, the model protein bovine serum albumin was adsorbed onto polyurethane surfaces and modified with PEG-carboxymethyl succinimidyl ester (PEG-NHS), PEG-isocyanate (PEG-ISO), or PEG-diisocyanate (PEG-DISO) in aqueous buffer at varying concentrations and contact times. It was found that up to 5 PEGs could be attached per albumin molecule within one min and that adsorbed albumin PEGylation approached maximal levels by 6 min. The lability of reactive PEGs in aqueous buffer reduced total protein modification by 50% when the PEG solution was incubated for 7 min prior to application. For fibrinogen PEGylation (performed in the solution phase), PEG-NHS was more reactive than PEG-ISO or PEG-DISO. The γ peptide of fibrinogen, which contains several key platelet-binding motifs, was highly modified. A marked reduction in platelet adhesion was observed on fibrinogen-adsorbed polyurethane treated with PEG-NHS or PEG-DISO. Relative differences in platelet adhesion on PEG-NHS and PEG-DISO modified surfaces could be attributed to differences in reactivity towards fibrinogen and the size of the polymer backbone. Taken together, these findings provide insight and guidance for applying protein reactive PEGs for the interruption of acute thrombotic deposition. PMID:16457880

  2. The Formation of Protein Concentration Gradients Mediated by Density Differences of Poly(ethylene glycol) Microspheres

    PubMed Central

    Roam, Jacob L.; Xu, Hao; Nguyen, Peter K.; Elbert, Donald L.

    2010-01-01

    A critical element in the formation of scaffolds for tissue engineering is the introduction of concentration gradients of bioactive molecules. We explored the use of poly(ethylene glycol) (PEG) microspheres fabricated via a thermally induced phase separation to facilitate the creation of gradients in scaffolds. PEG microspheres were produced with different densities (buoyancies) and centrifuged to develop microsphere gradients. We previously found that the time to gelation following phase separation controlled the size of microspheres in the de-swollen state, while crosslink density affected swelling following buffer exchange into PBS. The principle factors used here to control microsphere densities were the temperature at which the PEG solutions were reacted following phase separation in aqueous sodium sulfate solutions and the length of the incubation period above the ‘cloud point’. Using different temperatures and incubation times, microspheres were formed that self-assembled into gradients upon centrifugation. The gradients were produced with sharp interfaces or gradual transitions, with up to five tiers of different microsphere types. For proof-of-concept, concentration gradients of covalently immobilized proteins were also assembled. PEG microspheres containing heparin were also fabricated. PEG-heparin microspheres were incubated with fluorescently labeled protamine and used to form gradient scaffolds. The ability to form gradients in microspheres may prove to be useful to achieve better control over the kinetics of protein release from scaffolds or to generate gradients of immobilized growth factors. PMID:20719381

  3. Protein and cell patterning in closed polymer channels by photoimmobilizing proteins on photografted poly(ethylene glycol) diacrylate.

    PubMed

    Larsen, Esben Kjær Unmack; Mikkelsen, Morten Bo Lindholm; Larsen, Niels B

    2014-11-01

    Definable surface chemistry is essential for many applications of microfluidic polymer systems. However, small cross-section channels with a high surface to volume ratio enhance passive adsorption of molecules that depletes active molecules in solution and contaminates the channel surface. Here, we present a one-step photochemical process to coat the inner surfaces of closed microfluidic channels with a nanometer thick layer of poly(ethylene glycol) (PEG), well known to strongly reduce non-specific adsorption, using only commercially available reagents in an aqueous environment. The coating consists of PEG diacrylate (PEGDA) covalently grafted to polymer surfaces via UV light activation of the water soluble photoinitiator benzoyl benzylamine, a benzophenone derivative. The PEGDA coating was shown to efficiently limit the adsorption of antibodies and other proteins to <5% of the adsorbed amount on uncoated polymer surfaces. The coating could also efficiently suppress the adhesion of mammalian cells as demonstrated using the HT-29 cancer cell line. In a subsequent equivalent process step, protein in aqueous solution could be anchored onto the PEGDA coating in spatially defined patterns with a resolution of <15 μm using an inverted microscope as a projection lithography system. Surface patterns of the cell binding protein fibronectin were photochemically defined inside a closed microfluidic device that was initially homogeneously coated by PEGDA. The resulting fibronectin patterns were shown to greatly improve cell adhesion compared to unexposed areas. This method opens for easy surface modification of closed microfluidic systems through combining a low protein binding PEG-based coating with spatially defined protein patterns of interest. PMID:25587375

  4. Use of polyethylene glycol-modified uricase (PEG-uricase) to treat hyperuricemia in a patient with non-Hodgkin lymphoma.

    PubMed

    Chua, C C; Greenberg, M L; Viau, A T; Nucci, M; Brenckman, W D; Hershfield, M S

    1988-07-15

    Modification by covalent attachment of monomethoxypolyethylene glycol (PEG) can reduce the immunogenicity and prolong the circulating life of injected enzymes, making their use as therapeutic agents feasible. We report the first clinical use of PEG-modified Arthrobacter protoformiae uricase (PEG-uricase) to treat hyperuricemia in a patient with non-Hodgkin lymphoma and renal insufficiency who was allergic to allopurinol. Two intramuscular injections totaling 3 U/kg body weight during the first 30 hours of treatment lowered the plasma urate level from 910 to 190 mumol/L (15.3 to 3.2 mg/dL), after which a dose of 2 U/kg every 5 to 6 days maintained the plasma urate level at 540 mumol/L (9 mg/dL) or lower. After the injection of PEG-uricase, uricase activity appeared in plasma rapidly, peaking within 24 hours and persisting for approximately 5 days; an inverse relation between plasma uricase activity and plasma urate concentration was noted. The agent was nontoxic and well tolerated. No antibody to either PEG-uricase or unmodified uricase developed over a 3-week period, during which four doses of PEG-uricase were administered. Because of its long circulating life, PEG-uricase is probably a more effective hypouricemic agent than unmodified uricase, which has previously had limited use. As an adjunct to cytolytic therapy for hematologic malignancies when protection from hyperuricemia is needed rapidly, PEG-uricase deserves further study. PMID:3289428

  5. Blood protein repulsion after peptide entrapment in pendant polyethylene oxide layers.

    PubMed

    Auxier, Julie A; Dill, Justen K; Schilke, Karl F; McGuire, Joseph

    2014-01-01

    A number of sufficiently small peptides have been shown to integrate into polyethylene oxide (PEO) brush layers in accordance with their amphiphilicity and ordered structure. Those results have suggested that responsive drug delivery systems based on peptide-loaded PEO layers can be controlled by modulation of solution conditions and peptide amphiphilicity. However, the presence of entrapped peptide may compromise the protein repulsive character of the PEO layer, and in this way reduce the viability of a medical device coating based on such an approach. Nisin is a cationic, amphiphilic, and antimicrobial peptide that has been shown to integrate into PEO brush layers. In this work, the preferential location of fibrinogen at PEO-coated, nisin-loaded layers was investigated in nisin-fibrinogen sequential adsorption experiments using detection of fluorescein isothiocyanate labeled fibrinogen, detection of changes in zeta potential, and measurement of adsorption and elution kinetics by optical waveguide lightmode spectroscopy. Results from each technique indicate that the presence of entrapped nisin does not affect fibrinogen interaction with the PEO layer. In addition, entrapment of blood solutes within PEO layers contacted with 25% equine plasma in phosphate-buffered saline was reduced by the prior entrapment of nisin within the layer. PMID:24397274

  6. Interrelationship between partition behavior of organic compounds and proteins in aqueous dextran-polyethylene glycol and polyethylene glycol-sodium sulfate two-phase systems.

    PubMed

    Ferreira, Luisa A; da Silva, Nuno R; Wlodarczyk, Samarina R; Loureiro, Joana A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2016-04-22

    Partition behavior of adenosine and guanine mononucleotides was examined in aqueous dextran-polyethylene glycol (PEG) and PEG-sodium sulfate two-phase systems. The partition coefficients for each series of mononucleotides were analyzed as a functions of the number of phosphate groups and found to be dependent on the nature of nucleic base and on the type of ATPS utilized. It was concluded that an average contribution of a phosphate group into logarithm of partition coefficient of a mononucleotide cannot be used to estimate the difference between the electrostatic properties of the coexisting phases of ATPS. The data obtained in this study were considered together with those for other organic compounds and proteins reported previously, and the linear interrelationship between logarithms of partition coefficients in dextran-PEG, PEG-Na2SO4 and PEG-Na2SO4-0.215M NaCl (all in 0.01M Na- or K/Na-phosphate buffer, pH 7.4 or 6.8) was established. Similar relationship was found for the previously reported data for proteins in Dex-PEG, PEG-600-Na2SO4, and PEG-8000-Na2SO4 ATPS. It is suggested that the linear relationships of the kind established in ATPS may be observed for biological properties of compounds as well. PMID:27016118

  7. Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to.

    PubMed

    Emilsson, Gustav; Schoch, Rafael L; Feuz, Laurent; Höök, Fredrik; Lim, Roderick Y H; Dahlin, Andreas B

    2015-04-15

    We present a new grafting-to method for resistant "non-fouling" poly(ethylene glycol) brushes, which is based on grafting of polymers with reactive end groups in 0.9 M Na2SO4 at room temperature. The grafting process, the resulting brushes, and the resistance toward biomolecular adsorption are investigated by surface plasmon resonance, quartz crystal microbalance, and atomic force microscopy. We determine both grafting density and thickness independently and use narrow molecular weight distributions which result in well-defined brushes. High density (e.g., 0.4 coils per nm(2) for 10 kDa) and thick (40 nm for 20 kDa) brushes are readily achieved that suppress adsorption from complete serum (10× dilution, exposure for 50 min) by up to 99% on gold (down to 4 ng/cm(2) protein coverage). The brushes outperform oligo(ethylene glycol) monolayers prepared on the same surfaces and analyzed in the same manner. The brush heights are in agreement with calculations based on a simple model similar to the de Gennes "strongly stretched" brush, where the height is proportional to molecular weight. This result has so far generally been considered to be possible only for brushes prepared by grafting-from. Our results are consistent with the theory that the brushes act as kinetic barriers rather than efficient prevention of adsorption at equilibrium. We suggest that the free energy barrier for passing the brush depends on both monomer concentration and thickness. The extraordinary simplicity of the method and good inert properties of the brushes should make our results widely applicable in biointerface science. PMID:25812004

  8. Wear properties of polyethylene-metal and polyethylene-ceramic bearings for hip joint replacements: The effect of temperature and protein precipitation in hip simulator tests

    NASA Astrophysics Data System (ADS)

    Liao, Yen-Shuo

    Ultra-high-molecular weight polyethylene (PE) cups bearing against metal or ceramic balls are the most commonly used combinations of materials for human hip joint replacements. The wear properties of these materials are typically evaluated in the laboratory using hip joint wear simulators, while lubricated with bovine serum. A previous test evaluating the PE cups against cobalt-chrome (CoCr), zirconia (Zr) and alumina balls demonstrated the sensitivity of serum proteins to elevated temperature; especially for Zr/PE, which showed the highest protein precipitation and bulk lubricant temperature but the lowest cup wear. In the present investigation, a temperature control system was used on a hip simulator to systematically evaluate the relationship between temperature and denaturation of the serum proteins which, in turn, affects the friction and wear properties of the prosthetic materials being tested. In order to control protein precipitation, the interface was temperature reduced by circulating coolant at 4°C through the center of the CoCr or Zr balls during a wear test. With cooling, protein assay of the serum showed 66% and 50% reductions in protein precipitation with the CoCr and Zr balls, respectively. The wear rate of the PE cups against the CoCr balls decreased by an average of 44%, whereas two of the three PE cups running against Zr balls exhibited slight increases in their wear rates, and the third showed a two fold increase. Under scanning electron microscopy, there were marked differences in the worn surfaces of the cups for the various conditions, and differences in the morphology of the PE wear debris recovered from the serum. For example, granular particles predominated without cooling, whereas fibrous particles predominated with cooling. Since particles generated in vivo (i.e., retrieved from periprosthetic tissues) typically show approximately equal proportions of granules and fibrils, the use of an intermediate coolant temperature might provide wear in the simulator closer to that occurring with these materials in vivo. These results demonstrated the complex interaction of the variables affecting wear in the hip simulator system that should be taken into account, for example, in the development of international standard procedures.

  9. Polyvinylpyrrolidone-Poly(ethylene glycol) Modified Silver Nanorods Can Be a Safe, Noncarrier Adjuvant for HIV Vaccine.

    PubMed

    Liu, Ye; Balachandran, Yekkuni L; Li, Dan; Shao, Yiming; Jiang, Xingyu

    2016-03-22

    One of the biggest obstacles for the development of HIV vaccines is how to sufficiently trigger crucial anti-HIV immunities via a safe manner. We herein integrated surface modification-dependent immunostimulation against HIV vaccine and shape-dependent biosafety and designed a safe noncarrier adjuvant based on silver nanorods coated by both polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG). Such silver nanorods can significantly elevate crucial immunities of HIV vaccine and overcome the toxicity, which is a big problem for other existing adjuvants. This study thus provided a principle for designing a safe and high-efficacy material for an adjuvant and allow researchers to really have a safe and effective prophylaxis against HIV. We expect this material approach to be applicable to other types of vaccines, whether they are preventative or therapeutic. PMID:26844372

  10. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels

    PubMed Central

    Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

    2008-01-01

    Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with <≈100 nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

  11. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers

    NASA Astrophysics Data System (ADS)

    Schöttler, Susanne; Becker, Greta; Winzen, Svenja; Steinbach, Tobias; Mohr, Kristin; Landfester, Katharina; Mailänder, Volker; Wurm, Frederik R.

    2016-04-01

    The current gold standard to reduce non-specific cellular uptake of drug delivery vehicles is by covalent attachment of poly(ethylene glycol) (PEG). It is thought that PEG can reduce protein adsorption and thereby confer a stealth effect. Here, we show that polystyrene nanocarriers that have been modified with PEG or poly(ethyl ethylene phosphate) (PEEP) and exposed to plasma proteins exhibit a low cellular uptake, whereas those not exposed to plasma proteins show high non-specific uptake. Mass spectrometric analysis revealed that exposed nanocarriers formed a protein corona that contains an abundance of clusterin proteins (also known as apolipoprotein J). When the polymer-modified nanocarriers were incubated with clusterin, non-specific cellular uptake could be reduced. Our results show that in addition to reducing protein adsorption, PEG, and now PEEPs, can affect the composition of the protein corona that forms around nanocarriers, and the presence of distinct proteins is necessary to prevent non-specific cellular uptake.

  12. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers.

    PubMed

    Schöttler, Susanne; Becker, Greta; Winzen, Svenja; Steinbach, Tobias; Mohr, Kristin; Landfester, Katharina; Mailänder, Volker; Wurm, Frederik R

    2016-04-01

    The current gold standard to reduce non-specific cellular uptake of drug delivery vehicles is by covalent attachment of poly(ethylene glycol) (PEG). It is thought that PEG can reduce protein adsorption and thereby confer a stealth effect. Here, we show that polystyrene nanocarriers that have been modified with PEG or poly(ethyl ethylene phosphate) (PEEP) and exposed to plasma proteins exhibit a low cellular uptake, whereas those not exposed to plasma proteins show high non-specific uptake. Mass spectrometric analysis revealed that exposed nanocarriers formed a protein corona that contains an abundance of clusterin proteins (also known as apolipoprotein J). When the polymer-modified nanocarriers were incubated with clusterin, non-specific cellular uptake could be reduced. Our results show that in addition to reducing protein adsorption, PEG, and now PEEPs, can affect the composition of the protein corona that forms around nanocarriers, and the presence of distinct proteins is necessary to prevent non-specific cellular uptake. PMID:26878141

  13. Capture of Magnetic Nanoparticles in Simulated Blood Vessels: Effects of Proteins and Coating with Poly(ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Robertson, Jaimee; Brazel, Christopher

    2012-11-01

    Magnetic nanoparticles (MNPs) have applications in cancer treatment as they can be captured and localized to a diseased site by use of an external magnetic field. After localization, cancer treatments such as magnetically targeted chemotherapy and localized hyperthermia can be applied. Previously, our lab has shown that the percent capture of MNPs is significantly reduced when MNPs are dispersed in protein solutions compared to water or aqueous polymer solutions. The purpose of this study was to determine the effects of proteins on capture efficiency and to investigate the ability of poly(ethylene glycol), PEG, coatings to reduce aggregation of MNPs with proteins, allowing for a greater capture of MNPs in flow. Using Tygon® tubing to simulate blood vessels, a maghemite nanoparticle solution was pumped through a capture zone, where a magnetic field was applied. After passing through the capture zone, the fluid flowed to a spectrophotometer, which measured the absorbance of the solution. The introduction of proteins into the nanoparticle solution reduced the percent capture of MNPs. However, coating the MNPs with PEG aided in preventing aggregation and led to higher capture efficiencies in protein solutions. Additionally, the effects of capture length and protein exposure time were examined. It was found that a higher percent capture is attainable with a longer capture length. Furthermore, on a scale of hours, the percent capture is not affected by the protein exposure time. Funded by NSF REU Grant 1062611 and NIH NCI R21CA 141388.

  14. Capillary isoelectric focusing and fluorometric detection of proteins and microorganisms dynamically modified by poly(ethylene glycol) pyrenebutanoate.

    PubMed

    Horka, Marie; Ruzicka, Filip; Horký, Jaroslav; Holá, Veronika; Slais, Karel

    2006-12-15

    The nonionogenic pyrene-based tenside, poly(ethylene glycol) pyrenebutanoate, was prepared and applied in capillary isoelectric focusing with fluorometric detection. This dye was used here as a buffer additive in capillary isoelectric focusing for a dynamic modification of the sample of proteins and microorganisms. The values of the isoelectric points of the labeled bioanalytes were calculated with use of the fluorescent pI markers and were found comparable with pI of the native compounds. The mixed cultures of proteins and microorganisms, Escherichia coli CCM 3954, Staphylococcus epidermidis CCM 4418, Proteus vulgaris, Enterococcus faecalis CCM 4224, and Stenotrophomonas maltophilia, the strains of the yeast cells, Candida albicans CCM 8180, Candida krusei, Candida parapsilosis, Candida glabrata, Candida tropicalis, and Saccharomyces cerevisiae were reproducibly focused and separated by the suggested technique. Using UV excitation for the on-column fluorometric detection, the minimum detectable amount was down to 10 cells injected on the separation capillary. PMID:17165837

  15. Improving biocompatibility by controlling protein adsorption: Modification and design of biomaterials using poly(ethylene glycol) microgels and microspheres

    NASA Astrophysics Data System (ADS)

    Scott, Evan Alexander

    2009-12-01

    Guided by the clinical needs of patients and developments in biology and materials science, the primary focus of the biomaterials field remains at the solid/liquid interface between biomaterial surfaces and biological fluids. For blood-contacting devices, biological responses are initially elicited and directed by proteins that adsorb from this multicomponent solution to form thin films on their surfaces. The identity, conformation, and quantity of adsorbed proteins are related to the properties of a material's surface. For example, hydrophobic surfaces tend to be thrombotic via interactions between platelets and adsorbed fibrinogen, while surface-activation of specific enzymes initiates the coagulation cascade on hydrophilic surfaces. The objective of this thesis is to improve the design of biomaterials through the analysis and control of adsorbing protein layers. This goal is approached through three separate strategies. First, a proteomics-based methodology is presented for the assessment of protein conformation at the residue level after adsorption to biomaterial surfaces. A quantitative mass spectrometric technique is additionally suggested for the identification and quantification of proteins within adsorbed protein layers. Second, a method is described for the covalent attachment of poly(ethylene glycol) (PEG)-based hydrogel coatings onto biomaterials surfaces for the minimization of protein adsorption. The coatings are applied using partially crosslinked PEG solutions containing polymer and protein oligomers and microgels that can be designed to control cell adhesion. Finally, a modular strategy is proposed for the assembly of bioactive PEG-based hydrogel scaffolds. This was accomplished using novel PEG microspheres with diverse characteristics that individually contribute to the ability of the scaffold to direct cellular infiltration. The methodologies proposed by this thesis contribute to the recent shift in biomaterials and tissue engineering strategies towards directed cellular responses at the molecular level.

  16. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)-poly(lactide) hydrogels.

    PubMed

    Hiemstra, Christine; Zhong, Zhiyuan; Van Tomme, Sophie R; van Steenbergen, Mies J; Jacobs, John J L; Otter, Willem Den; Hennink, Wim E; Feijen, Jan

    2007-06-22

    Previous studies have shown that stereocomplexed hydrogels are rapidly formed in situ by mixing aqueous solutions of eight-arm poly(ethylene glycol)-poly(L-lactide) and poly(ethylene glycol)-poly(D-lactide) star block copolymers (denoted as PEG-(PLLA)(8) and PEG-(PDLA)(8), respectively). In this study, in vitro and in vivo protein release from stereocomplexed hydrogels was investigated. These hydrogels were fully degradable under physiological conditions. Proteins could be easily loaded into the stereocomplexed hydrogels by mixing protein containing aqueous solutions of PEG-(PLLA)(8) and PEG-(PDLA)(8) copolymers. The release of the relatively small protein lysozyme (d(h)=4.1 nm) followed first order kinetics and approximately 90% was released in 10 days. Bacteria lysis experiments showed that the released lysozyme had retained its activity. The relatively large protein IgG (d(h)=10.7 nm) could be released from stereocomplexed hydrogels with nearly zero order kinetics, wherein up to 50% was released in 16 days. The in vitro release of the therapeutic protein rhIL-2 from stereocomplexed hydrogels also showed nearly zero order kinetics, wherein up to 45% was released in 7 days. The therapeutic efficacy of stereocomplexed hydrogels loaded with 1x10(6) IU of rhIL-2 was studied using SL2-lymphoma bearing DBA/2 mice. The PEG-(PLLA)(8)/PEG-(PDLA)(8)/rhIL-2 mixture could be easily injected intratumorally. The released rhIL-2 was therapeutically effective as the tumor size was reduced and the cure rate was 30%, whereas no therapeutic effect was achieved when no rhIL-2 was given. However, the cure rate of rhIL-2 loaded stereocomplexed hydrogels was lower, though not statistically significant, compared to that of a single injection with 1x10(6) IU of free rhIL-2 at the start of the therapy (cure rate=70%). The therapeutic effect of rhIL-2 loaded stereocomplexed hydrogels was retarded for approximately 1-2 weeks compared to free rhIL-2, most likely due to a slow, constant release of rhIL-2 from the hydrogels. PMID:17475360

  17. Reactive coupling of poly(ethylene glycol) on electroactive polyaniline films for reduction in protein adsorption and platelet adhesion.

    PubMed

    Zhang, Fu; Kang, E T; Neoh, K G; Wang, Peng; Tan, K L

    2002-02-01

    Poly(ethylene glycol) (PEG)-coupled polyaniline (PANI) film surfaces were prepared by incorporating the chlorinie end-capped methoxy PEG (mPEGCl) of molecular weight of about 2000 onto the emeraldine (EM) base form of PANI via N-alkylation. The microstructure and composition of the mPEG-coupled PANI (mPEG-c-PANI) surfaces were characterized by atomic force microscopy, contact angle measurement and X-ray photoelectron spectroscopy. The concentration of surface-coupled mPEG increased with the increase in concentration of the mPEGCl solution. The mPEG-c-PANI film surfaces exhibited enhanced ability to repel protein adsorption, with only an moderate reduction in their electrical conductivity. The mPEG-c-PANI surface with a high concentration of coupled mPEG also exhibited good resistance towards platelet adhesion. PMID:11771698

  18. Effects of one-seed juniper and polyethylene glycol on intake, rumen fermentation, and plasma amino acids in sheep and goats fed supplemental protein and tannins.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the effect of polyethylene glycol (PEG) on juniper and total intake, rumen fermentation, and plasma amino acids (AA) of 12 does and 12 ewes fed sudangrass and basal diets containing 10% quebracho tannins with no protein supplement (Control; 5% CP) or high rumen degradable (RDP 15% CP) or u...

  19. Polyethylenimine modified poly(ethylene terephthalate) capillary channeled-polymer fibers for anion exchange chromatography of proteins.

    PubMed

    Jiang, Liuwei; Jin, Yi; Marcus, R Kenneth

    2015-09-01

    Native poly(ethylene terephthalate) (PET) capillary-channeled polymer (C-CP) fibers have been previously studied as stationary phases for reversed phase and affinity protein separations. In this study, surface modified PET C-CP fibers were evaluated for the anion exchange separation of proteins. The native PET C-CP fibers were aminated using polyethylenimine (PEI) followed by a 1,4-butanediol diglycidyl ether (BUDGE) cross-linking step. Subsequent PEI/BUDGE treatments can be employed to further develop the polyamine layer on the fiber surfaces. The PEI densities of the modified fibers were quantified through the ninhydrin reaction, yielding values of 0.43-0.89μmolg(-1). The surface modification impact on column permeability was found to be 0.66×10(-11) to 1.33×10(-11)m(2), depending on the modification time and conditions. The dynamic binding capacities of the modified fiber media were determined to be 1.99-8.54mgmL(-1) bed volume, at linear velocities of 88-438cmmin(-1) using bovine serum albumin as the model protein. It was found that increasing the mobile phase linear velocity (up to 438cmmin(-1)) had no effect on the separation quality for a synthetic protein mixture, reflecting the lack of van Deemter C-term effects for the C-CP fiber phase. The low-cost, easy modification method and the capability of fast protein separation illustrate great potential in the use of PEI/BUDGE-modified PET C-CP fibers for high-throughput protein separation and downstream processing. PMID:26253835

  20. Analysis of partitioning of organic compounds and proteins in aqueous polyethylene glycol-sodium sulfate aqueous two-phase systems in terms of solute-solvent interactions.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-10-01

    Partition behavior of nine small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.5M osmolyte (sorbitol, sucrose, trehalose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. It was found out that the partition coefficient of all compounds examined (including proteins) may be described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system differ from those in polyethylene glycol-dextran system. PMID:26342872

  1. Using poly(ethylene glycol) silane to prevent protein adsorption in microfabricated silicon channels

    NASA Astrophysics Data System (ADS)

    Bell, Darrel J.; Brody, James P.; Yager, Paul

    1998-03-01

    Microfluidic devices fabricated in silicon are quickly finding use in many areas of technology. Exploration of new applications of this technology has shown both advantages and disadvantages to extreme miniaturization of chemical assays. While accuracy, efficiency and smaller sample volumes are among the advantages, interactions between the walls of the micro-channels and the fluid or particles it contains are among the disadvantages. Our group is applying this technology to chemical and biological warfare (CBW) agent purification and detection. We present preliminary result towards achieving a long-term antifouling surface in our detection system. A microfluidic device was anisotropically etched in a (100) silicon wafer and attached to a Pyrex glass slip to create an enclosed channel. Poly(ethylene glycol) (PEG) silane was covalently bonded to the hydroxyls of an oxide layer on the silicon device and the Pyrex cover slip. Fluorescently labeled ovalbumin, a CBW simulant, was in contact with an unmodified and PEG-modified channel. The extent of adsorption was determined using fluorescence microscopy.

  2. Use of Cross-Linked Poly(ethylene glycol)-Based Hydrogels for Protein Crystallization

    PubMed Central

    2015-01-01

    Poly(ethylene glycol) (PEG) hydrogels are highly biocompatible materials extensively used for biomedical and pharmaceutical applications, controlled drug release, and tissue engineering. In this work, PEG cross-linked hydrogels, synthesized under various conditions, were used to grow lysozyme crystals by the counterdiffusion technique. Crystallization experiments were conducted using a three-layer arrangement. Results demonstrated that PEG fibers were incorporated within lysozyme crystals controlling the final crystal shape. PEG hydrogels also induced the nucleation of lysozyme crystals to a higher extent than agarose. PEG hydrogels can also be used at higher concentrations (20–50% w/w) as a separation chamber (plug) in counterdiffusion experiments. In this case, PEG hydrogels control the diffusion of the crystallization agent and therefore may be used to tailor the supersaturation to fine-tune crystal size. As an example, insulin crystals were grown in 10% (w/w) PEG hydrogel. The resulting crystals were of an approximate size of 500 μm. PMID:25383049

  3. Surface modification of ultrahigh molecular weight polyethylene by the poly(ethylene glycol)-grafted method and its effect on the adsorption of proteins and the adhesion of blood platelets.

    PubMed

    Xia, Bing; Xie, Meiju; Yang, Bangcheng

    2013-01-01

    With the help of a silane coupling agent, poly(ethylene glycol) (PEG), a well-biocompatable agent, was grafted onto the surface of ultrahigh molecular weight polyethylene (UHMWPE) by ultraviolet initiation. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis proved the success of PEG grafting. Water contact angle measurement showed that the modified UHMWPE was obviously improved in surface hydrophilicity and thermogravimetric analysis result showed that its thermostability did not decline even it was pretreated by strong acids. Then, the protein adsorption of the modified UHMWPE was investigated using three model proteins including bovine serum albumin, lysozyme, and fibrinogen. Rabbit blood was used to study the platelet adhesion on the surface of modified UHMWPE. The results indicated that the quantity of protein adsorption on the modified UHMWPE grafted PEG reduced apparently for all the model proteins while there was some specific differences or exceptions among them. It was ascribed to the changed surface chemical composition, surface hydrophilicity and surface topography after modification. The adhesive ability of blood platelets on the modified surface of UHMWPE decreased after PEG grafting. Owing to the improved resistance to fibrinogen adsorption and platelet adhesion, the surface modification might endow the UHWMPE surface better anticoagulation ability according to clotting mechanism. PMID:22807149

  4. Protein encapsulation into biodegradable microspheres by a novel S/O/W emulsion method using poly(ethylene glycol) as a protein micronization adjuvant.

    PubMed

    Morita, T; Sakamura, Y; Horikiri, Y; Suzuki, T; Yoshino, H

    2000-12-01

    A new method for preparing protein-loaded biodegradable microspheres by a process involving solid-in-oil-in-water (S/O/W) emulsion was established using poly(ethylene glycol) (PEG). In the first step, a protein solution was lyophilized with PEG, which resulted in the formation of spherical protein microparticles, less than 5 microm in diameter, dispersed in a continuous PEG phase. This process was well explained by the aqueous phase separation phenomenon induced by freezing-condensation. Since this lyophilizate could be directly dispersed in an organic phase containing biodegradable polymer by dissolving PEG with methylene chloride, a conventional in-water drying method could be adopted in the second step. Through this S/O/W emulsion process, horseradish peroxidase was effectively entrapped into monolithic-type microspheres of poly(DL-lactic-co-glycolic acid) (PLGA), without significant loss of activity. Bovine superoxide dismutase (bSOD), as another model protein, could be encapsulated into reservoir-type microspheres by the 'polymer-alloys method' using both poly(DL-lactic acid) (PLA) and PLGA. The initial release of bSOD from this reservoir-type microsphere was efficiently reduced. Further, the bSOD release kinetics could be suitably modified by adjusting the loading amounts of PEG or polymer composition. In this study, the multi-functional nature of PEG was successfully utilized in the preparation and designing of protein-loaded microspheres. PMID:11102683

  5. Coat Protein-Dependent Behavior of Poly(ethylene glycol) Tails in Iron Oxide Core Virus-like Nanoparticles.

    PubMed

    Malyutin, Andrey G; Cheng, Hu; Sanchez-Felix, Olivia R; Carlson, Kenneth; Stein, Barry D; Konarev, Petr V; Svergun, Dmitri I; Dragnea, Bogdan; Bronstein, Lyudmila M

    2015-06-10

    Here we explore the formation of virus-like nanoparticles (VNPs) utilizing 22-24 nm iron oxide nanoparticles (NPs) as cores and proteins derived from viral capsids of brome mosaic virus (BMV) or hepatitis B virus (HBV) as shells. To accomplish that, hydrophobic FeO/Fe3O4 NPs prepared by thermal decomposition of iron oleate were coated with poly(maleic acid-alt-octadecene) modified with poly(ethylene glycol) (PEG) tails of different lengths and grafting densities. MRI studies show high r2/r1 relaxivity ratios of these NPs that are practically independent of the polymer coating type. The versatility and flexibility of the viral capsid protein are on display as they readily form shells that exceed their native size. The location of the long PEG tails upon shell formation was investigated by electron microscopy and small-angle X-ray scattering. PEG tails were located differently in the BMV and HBV VNPs, with the BMV VNPs preferentially entrapping the tails in the interior and the HBV VNPs allowing the tails to extend through the capsid, which highlights the differences between intersubunit interactions in these two icosahedral viruses. The robustness of the assembly reaction and the protruding PEG tails, potentially useful in modulating the immune response, make the systems introduced here a promising platform for biomedical applications. PMID:25989427

  6. Inflammatory inert poly(ethylene glycol)--protein wound dressing improves healing responses in partial- and full-thickness wounds.

    PubMed

    Shingel, Kirill I; Di Stabile, Liliana; Marty, Jean-Paul; Faure, Marie-Pierre

    2006-12-01

    In this study, a novel soft hydrogel system based on the poly(ethylene glycol)-protein conjugates was evaluated as an occlusive wound dressing material. The hydrogel material, referred by the name of BioAquacare, contains up to 96% of the liquid and is formulated with phosphate-buffered saline and safe preservative to control bacterial load in the open wounds. Performance of the BioAquacare as a wound dressing material was assessed in partial- and full-thickness wounds in pigs. Wound analysis comprised macroscopic determination of the wound size, histological examination of the healing tissues and biochemical characterisation of wound exudates. The wounds treated with BioAquacare healed without any signs of inflammation, skin irritation, oedema or erythema. Cellular composition of the reepithelialised wounds was very similar to that of the normal skin, with a well-developed stratum corneum and epithelial layer. It was observed that BioAquacare plays the role of a liquid compartment, which provides pronounced hydration effect and helps maintain a natural moist environment of the healing tissues. BioAquacare showed relatively low protein-absorbing activity, absorbing predominantly low-molecular-weight molecules, including interleukin (IL)-1beta, IL-6, transforming growth factor-beta1 and products of haemoglobin degradation. It is concluded that application of the moist BioAquacare dressing promotes fast reepithelialisation by creating favourable environment for keratinocytes proliferation and it also reduces scarring. The results show that BioAquacare can be considered as a safe, biocompatible and inflammatory inert wound dressing material. PMID:17199768

  7. The influence of poly(ethylene glycol) on the micelle formation of alkyl maltosides used in membrane protein crystallization.

    PubMed

    Müh, Frank; DiFiore, Dörte; Zouni, Athina

    2015-05-01

    With the aim of better understanding the phase behavior of alkyl maltosides (n-alkyl-β-d-maltosides, CnG2) under the conditions of membrane protein crystallization, we studied the influence of poly(ethylene glycol) (PEG) 2000, a commonly used precipitating agent, on the critical micelle concentration (CMC) of the alkyl maltosides by systematic variation of the number n of carbon atoms in the alkyl chain (n = 10, 11, and 12) and the concentration of PEG2000 (χ) in a buffer suitable for the crystallization of cyanobacterial photosystem II. CMC measurements were based on established fluorescence techniques using pyrene and 8-anilinonaphthalene-1-sulfonate (ANS). We found an increase of the CMC with increasing PEG concentration according to ln(CMC/CMC0) = kPχ, where CMC0 is the CMC in the absence of PEG and kP is a constant that we termed the "polymer constant". In parallel, we measured the influence of PEG2000 on the surface tension of detergent-free buffer solutions. At PEG concentrations χ > 1% w/v, the surface pressure πs(χ) = γ(0) - γ(χ) was found to depend linearly on the PEG concentration according to πs(χ) = κχ + πs(0), where γ(0) is the surface tension in the absence of PEG. Based on a molecular thermodynamic modeling, CMC shifts and surface pressure due to PEG are related, and it is shown that kP = κc(n) + η, where c(n) is a detergent-specific constant depending inter alia on the alkyl chain length n and η is a correction for molarity. Thus, knowledge of the surface pressure in the absence of a detergent allows for the prediction of the CMC shift. The PEG effect on the CMC is discussed concerning its molecular origin and its implications for membrane protein solubilization and crystallization. PMID:25865704

  8. Data in support of intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures.

    PubMed

    Odahara, Takayuki; Odahara, Koji

    2016-06-01

    The data provide information in support of the research article, "Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures" [1]. The data regarding variation of absorption spectra is used as an indicator of the duration of Rp. viridis PRU and RC, Rb. sphaeroides RC and LH2, and Rb. capsulatus LH2 in the native state in the presence of NaCl/polyethylene glycol (PEG) mixture. The data about minimum concentrations of salt and PEG whose aqueous phases are mutually separated presents information on additional influence of Tris buffer and N-octyl-β-d-glucoside on the salt-PEG phase separation. PMID:27135050

  9. Data in support of intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures

    PubMed Central

    Odahara, Takayuki; Odahara, Koji

    2016-01-01

    The data provide information in support of the research article, “Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures” [1]. The data regarding variation of absorption spectra is used as an indicator of the duration of Rp. viridis PRU and RC, Rb. sphaeroides RC and LH2, and Rb. capsulatus LH2 in the native state in the presence of NaCl/polyethylene glycol (PEG) mixture. The data about minimum concentrations of salt and PEG whose aqueous phases are mutually separated presents information on additional influence of Tris buffer and N-octyl-β-d-glucoside on the salt–PEG phase separation. PMID:27135050

  10. Polyethylene Glycol Propionaldehydes

    NASA Technical Reports Server (NTRS)

    Harris, Joe M.; Sedaghat-Herati, Mohammad R.; Karr, Laurel J.

    1992-01-01

    New class of compounds derived from polyethylene glycol (PEG's) namely, PEG-propionaldehydes, offers two important advantages over other classes of PEG aldehyde derivatives: compounds exhibit selective chemical reactivity toward amino groups and are stable in aqueous environment. PEG's and derivatives used to couple variety of other molecules, such as, to tether protein molecules to surfaces. Biotechnical and biomedical applications include partitioning of two phases in aqueous media; immobilization of such proteins as enzymes, antibodies, and antigens; modification of drugs; and preparation of protein-rejecting surfaces. In addition, surfaces coated with PEG's and derivatives used to control wetting and electroosmosis. Another potential application, coupling to aminated surfaces.

  11. Structural features important for differences in protein partitioning in aqueous dextran-polyethylene glycol two-phase systems of different ionic compositions.

    PubMed

    Ferreira, Luisa; Fan, Xiao; Mikheeva, Larissa M; Madeira, Pedro P; Kurgan, Lukasz; Uversky, Vladimir N; Zaslavsky, Boris Y

    2014-03-01

    Partitioning of 15 proteins in dextran-70-polyethylene glycol (PEG)-8000 aqueous two-phase systems (ATPSs) in the presence of 0.01M sodium phosphate buffer, pH7.4 was studied. The effect of salt additives (NaCl, CsCl, Na2SO4, NaClO4 and NaSCN) at different concentrations on the protein partition behavior was examined. The salt effects on protein partitioning were analyzed by using the Collander solvent regression relationship between the protein partition coefficients in ATPSs with and without salt additives. The results obtained show that the presence and concentration of salt additives affect the protein partition behavior. Analysis of ATPSs in terms of the differences between the relative hydrophobicity and electrostatic properties of the phases does not explain the protein partition behavior. The differences between protein partitioning could not be explained by the protein size. The structural signatures for the proteins were constructed from partition coefficient values in four ATPSs with different salt additives, and the structural distances were calculated using cytochrome c as the reference structure. The structural distances for all the examined proteins (except lysozyme) were found to be interrelated. Analysis of about 50 different descriptors of the protein structures revealed that the partition behavior of proteins is determined by the peculiarities of their surfaces (e.g., the number of water-filled cavities and the averaged hydrophobicity of the surface residues) and by the intrinsic flexibility of the protein structure measured in terms of the B-factor (or temperature factor). PMID:24486798

  12. Clinical and hip simulator comparisons of ceramic-on-polyethylene and metal-on-polyethylene wear.

    PubMed

    Clarke, I C; Gustafson, A

    2000-10-01

    The benefit of reduced polyethylene wear with ceramic in hip replacements does not seem to have been universally appreciated. In this current study, wear predictions from laboratory and clinical studies were compared for ceramic-on-polyethylene and cobalt chrome-on-polyethylene combinations. Many laboratory studies included water-based lubrication and linear-tracking mechanisms. Now it is appreciated that these were inappropriate methods, because of a propensity for very low or virtually no polyethylene wear against ceramics in water. Thus, water-based studies predicting a 20- to 80-fold advantage for ceramic-on-polyethylene compared with metal-on-polyethylene clearly were in error. However, serum-based simulator studies with high protein-concentrations generally have shown greater wear with alumina-on-polyethylene than with metal-on-polyethylene. Controversy still remains over the use of such nonphysiologic protein levels. The simulator studies were just beginning to explore the role of serum protein concentrations and the influence on the various wear models. Polyethylene wear with zirconia systems was particularly affected by serum protein concentrations. In one simulator study, use of proteins in the physiologic range resulted in the alumina-on-polyethylene wear rate decreasing to approximately 50% of that of metal-on-polyethylene. In the literature, many hip design and polyethylene variations were reported which confounded the wear analysis. Overall, the clinical data supported the superior performance of ceramic-on-polyethylene systems by a factor of 1.5- to fourfold. However, the amount of supporting data was not large. This summary of laboratory and clinical data indicated that ceramic-on-polyethylene hip replacement systems offered on average a 50% wear reduction from metal-on-polyethylene systems. PMID:11039790

  13. Proteomic Analysis of Lettuce Seed Germination and Thermoinhibition by Sampling of Individual Seeds at Germination and Removal of Storage Proteins by Polyethylene Glycol Fractionation1

    PubMed Central

    Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P < 0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  14. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress.

    PubMed

    He, Yuchi; Wu, Jingjing; Lv, Bing; Li, Jia; Gao, Zhiping; Xu, Weifeng; Baluška, František; Shi, Weiming; Shaw, Pang Chui; Zhang, Jianhua

    2015-04-01

    Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein-protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress. PMID:25873671

  15. Anti-PEG IgM Is a Major Contributor to the Accelerated Blood Clearance of Polyethylene Glycol-Conjugated Protein.

    PubMed

    Mima, Yu; Hashimoto, Yosuke; Shimizu, Taro; Kiwada, Hiroshi; Ishida, Tatsuhiro

    2015-07-01

    Limited therapeutic efficacy of polyethylene glycol-conjugated (PEGylated) protein drugs has been recently reported in animals and human following repeat injections. Since there are reports that an accelerated blood clearance (ABC) phenomenon is caused by repeated injection of PEGylated liposome, there is an assumption that PEGylated proteins lose their long circulating property when they are injected repeatedly due to the induction of anti-PEG antibody. Although induction of anti-PEG antibody by PEGylated protein has been reported, there is little evidence of accelerated blood clearance of PEGylated protein upon repeated injection. Herein, we investigated the blood concentration of PEGylated ovalbumin (PEG-OVA), a model PEGylated protein, upon its repeated injection. A single intravenous administration of PEG-OVA elicited an anti-PEG IgM response but not anti-PEG IgG response, while the administration did not elicit antibody against OVA. At 24 h postinjection of test PEG-OVA, although control mice showed 41.6% dose of PEG-OVA in blood, the mice pretreated with PEG-OVA showed rapid clearance of test PEG-OVA from blood and undetectable level of PEG-OVA. Interestingly, the anti-PEG IgM induced by PEGylated liposome did not affect the blood concentration of subsequent dose of PEG-OVA. Our result suggests that anti-PEG IgM is a major contributor to the accelerated blood clearance of PEG-conjugated protein, but the presence of anti-PEG IgM in blood circulation does not necessarily affect circulating property of entire PEGylated materials. PMID:26070445

  16. Two Novel Class II Hydrophobins from Trichoderma spp. Stimulate Enzymatic Hydrolysis of Poly(Ethylene Terephthalate) when Expressed as Fusion Proteins

    PubMed Central

    Espino-Rammer, Liliana; Ribitsch, Doris; Przylucka, Agnieszka; Marold, Annemarie; Greimel, Katrin J.; Herrero Acero, Enrique; Guebitz, Georg M.; Kubicek, Christian P.

    2013-01-01

    Poly(ethylene terephthalate) (PET) can be functionalized and/or recycled via hydrolysis by microbial cutinases. The rate of hydrolysis is however low. Here, we tested whether hydrophobins (HFBs), small secreted fungal proteins containing eight positionally conserved cysteine residues, are able to enhance the rate of enzymatic hydrolysis of PET. Species of the fungal genus Trichoderma have the most proliferated arsenal of class II hydrophobin-encoding genes among fungi. To this end, we studied two novel class II HFBs (HFB4 and HFB7) of Trichoderma. HFB4 and HFB7, produced in Escherichia coli as fusions to the C terminus of glutathione S-transferase, exhibited subtle structural differences reflected in hydrophobicity plots that correlated with unequal hydrophobicity and hydrophily, respectively, of particular amino acid residues. Both proteins exhibited a dosage-dependent stimulation effect on PET hydrolysis by cutinase from Humicola insolens, with HFB4 displaying an adsorption isotherm-like behavior, whereas HFB7 was active only at very low concentrations and was inhibitory at higher concentrations. We conclude that class II HFBs can stimulate the activity of cutinases on PET, but individual HFBs can display different properties. The present findings suggest that hydrophobins can be used in the enzymatic hydrolysis of aromatic-aliphatic polyesters such as PET. PMID:23645195

  17. A comparison of gold nanoparticle surface co-functionalization approaches using Polyethylene Glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization.

    PubMed

    Harrison, Emma; Nicol, James R; Macias-Montero, Manuel; Burke, George A; Coulter, Jonathan A; Meenan, Brian J; Dixon, Dorian

    2016-05-01

    To create clinically useful gold nanoparticle (AuNP) based cancer therapeutics it is necessary to co-functionalize the AuNP surface with a range of moieties; e.g. Polyethylene Glycol (PEG), peptides and drugs. AuNPs can be functionalized by creating either a mixed monolayer by attaching all the moieties directly to the surface using thiol chemistry, or by binding groups to the surface by means of a bifunctional polyethylene glycol (PEG) linker. The linker methodology has the potential to enhance bioavailability and the amount of functional agent that can be attached. While there is a large body of published work using both surface arrangements independently, the impact of attachment methodology on stability, non-specific protein adsorption and cellular uptake is not well understood, with no published studies directly comparing the two most frequently employed approaches. This paper compares the two methodologies by synthesizing and characterizing PEG and Receptor Mediated Endocytosis (RME) peptide co-functionalized AuNPs prepared using both the mixed monolayer and linker approaches. Successful attachment of both PEG and RME peptide using the two methods was confirmed using Dynamic Light Scattering, Fourier Transform Infrared Spectroscopy and gel electrophoresis. It was observed that while the 'as synthesized' citrate capped AuNPs agglomerated under physiological salt conditions, all the mixed monolayer and PEG linker capped samples remained stable at 1M NaCl, and were stable in PBS over extended periods. While it was noted that both functionalization methods inhibited non-specific protein attachment, the mixed monolayer samples did show some changes in gel electrophoresis migration profile after incubation with fetal calf serum. PEG renders the AuNP stable in-vivo however, studies with MDA-MB-231 and MCF 10A cell lines indicated that functionalization with PEG, blocks cellular uptake. It was observed that co-functionalization with RME peptide using both the mixed monolayer and PEG linker methods greatly enhanced cellular internalization compared to PEG capped AuNPs. PMID:26952476

  18. Electrospun liquid silk from the gland of Bombyx mori silk/ Green Fluorescent Proteins (GFP)/ poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Putthanarat, Sirina; Jones, Sharon; Farmer, Barry

    2005-03-01

    We have previously demonstrated that Green Fluorescent Protein (GFP) molecules can be incorporated into silk films and maintain their nonlinear optical properties as well as resist to damage at fluence of 0.1-0.2 J/cm^2 [1]. In the present study we report the incorporation of GFP into electrsopun fibers of liquid silk from the gland of B. mori. PEO was added to the silk/GFP solution to improve the processability. The silk/GFP/PEO solutions were successfully elctrospun and the morphology of fibers was characterized using optical microscopy, and scanning electron microscopy. The resulting fibers exhibit fluorescent under the UV microscope in the reflection mode (epifluorescence) indicating incorporation of the GFP. The fiber diameters are less than 500 nm. Other characterization techniques are being applied. [1]. S. Putthanarat, et.al., ``Nonlinear Optical Transmission of Silk/Green Fluorescent Protein (GFP) Films,'' Polymer 2004;45:8451.

  19. A functionalized poly(ethylene glycol)-based bioassay surface chemistry that facilitates bio-immobilization and inhibits non-specific protein, bacterial, and mammalian cell adhesion

    PubMed Central

    Harbers, Gregory M.; Emoto, Kazunori; Greef, Charles; Metzger, Steven W.; Woodward, Heather N.; Mascali, James J.; Grainger, David W.; Lochhead, Michael J.

    2008-01-01

    This paper describes a new bioassay surface chemistry that effectively inhibits non-specific biomolecular and cell binding interactions, while providing a capacity for specific immobilization of desired biomolecules. Poly(ethylene glycol) (PEG) as the primary component in nonfouling film chemistry is well-established, but the multicomponent formulation described here is unique in that it (1) is applied in a single, reproducible, solution-based coating step; (2) can be applied to diverse substrate materials without the use of special primers; and (3) is readily functionalized to provide specific attachment chemistries. Surface analysis data are presented, detailing surface roughness, polymer film thickness, and film chemistry. Protein non-specific binding assays demonstrate significant inhibition of serum, fibrinogen, and lysozyme adsorption to coated glass, indium tin oxide, and tissue culture polystyrene dishes. Inhibition of S. aureus and K. pneumoniae microbial adhesion in a microfluidic flow cell, and inhibition of fibroblast cell adhesion from serum-based cell culture is shown. Effective functionalization of the coating is demonstrated by directing fibroblast adhesion to polymer surfaces activated with an RGD peptide. Batch-to-batch reproducibility data are included. The in situ cross-linked PEG-based coating chemistry is unique in its formulation, and its surface properties are attractive for a broad range of in vitro bioassay applications. PMID:18815622

  20. A chemiluminescence flow immunosensor based on a porous monolithic metacrylate and polyethylene composite disc modified with protein G.

    PubMed

    Jain, Seema Rani; Borowska, Ewa; Davidsson, Richard; Tudorache, Madalina; Pontn, Einar; Emnus, Jenny

    2004-03-15

    A generic, fast, sensitive and new type of flow immunosensor has been developed. The basis is a monolithic porous poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) polymer disc modified with protein G, placed in a fountain type flow cell compartment, in close proximity to a photomultiplier tube (PMT). Analyte and HRP labelled analyte derivative (tracer) compete for anti-analyte antibody binding sites. The mixture is then injected into the flow immunosensor system where the formed analyte- and tracer-antibody complexes are trapped by the monolithic protein G disc. The amount of bound tracer, inversely related to the concentration of analyte in the sample, is determined in a second step by injection of luminol, p-iodophenol and H2O2, generating enhanced chemiluminescence (CL) with horseradish peroxidase (HRP). A third and final step is need for regeneration of the protein G disc so that a new analysis cycle can take place. The performance of the disc immunosensor system was compared with a one step continuous flow injection immunoassay (FIIA) system, using the same reagents and a protein G column, in terms of assay sensitivity and influence of matrix effects from various water samples (millipore-, tap- and surface water). The detection limit for the analyte atrazine in PBS and surface water (SW) was 0.208 +/- 0.004 microg l(-1) (PBS) and 0.59 +/- 0.120 microg l(-1) (SW) for the FIIA and 0.033 +/- 0.003 microg l(-1) (PBS) and 0.038+/-0.003 microg l(-1) (SW) for the disc immunosensor. Statistical comparison of the two systems shows that the disc immunosensor results were significantly less influenced by the sample matrix, which is explained by the fact that the sample in the FIIA arrives simultaneously with the matrix to the detector, whereas these are separated in time in the disc immunosensor system. PMID:15128098

  1. Resistance to moist conditions of whey protein isolate and pea starch biodegradable films and low density polyethylene nondegradable films: a comparative study

    NASA Astrophysics Data System (ADS)

    Mehyar, G. F.; Bawab, A. Al

    2015-10-01

    Biodegradable packaging materials are degraded under the natural environmental conditions. Therefore using them could alleviate the problem of plastics accumulation in nature. For effective replacement of plastics, with biodegradable materials, biodegradable packages should keep their properties under the high relative humidity (RH) conditions. Therefore the objectives of the study were to develop biodegradable packaging material based on whey protein isolate (WPI) and pea starch (PS). To study their mechanical, oxygen barrier and solubility properties under different RHs compared with those of low density polyethylene (LDPE), the most used plastic in packaging. Films of WPI and PS were prepared separately and conditioned at different RH (30-90%) then their properties were studied. At low RHs (<50%), WPI films had 2-3 times lower elongation at break (E or stretchability) than PS and LDPE. Increasing RH to 90% significantly (P<0.01) increased the elongation of PS but not WPI and LDPE films. LDPE and WPI films kept significantly (P<0.01) higher tensile strength (TS) than PS films at high RH (90%). Oxygen permeability (OP) of all films was very low (<0.5 cm3 μm m-2 d-1 kPa-1) below 40% RH but increased for PS films and became significantly (P<0.01) different than that of LDPE and WPI at > 40% RH. Oxygen permeability of WPI and LDPE did not adversely affected by increasing RH to 65%. Furthermore, WPI and LDPE films had lower degree of hydration at 50% and 90% RH and total soluble matter than PS films. These results suggest that WPI could be successfully replacing LDPE in packaging of moist products.

  2. pH-dependent immobilization of proteins on surfaces functionalized by plasma-enhanced chemical vapor deposition of poly(acrylic acid)- and poly(ethylene oxide)-like films.

    PubMed

    Belegrinou, Serena; Mannelli, Ilaria; Lisboa, Patricia; Bretagnol, Frederic; Valsesia, Andrea; Ceccone, Giacomo; Colpo, Pascal; Rauscher, Hubert; Rossi, François

    2008-07-15

    The interaction of the proteins bovine serum albumin (BSA), lysozyme (Lys), lactoferrin (Lf), and fibronectin (Fn) with surfaces of protein-resistant poly(ethylene oxide) (PEO) and protein-adsorbing poly(acrylic acid) (PAA) fabricated by plasma-enhanced chemical vapor deposition has been studied with quartz crystal microbalance with dissipation monitoring (QCM-D). We focus on several parameters which are crucial for protein adsorption, i.e., the isoelectric point (pI) of the proteins, the pH of the solution, and the charge density of the sorbent surfaces, with the zeta-potential as a measure for the latter. The measurements reveal adsorption stages characterized by different segments in the plots of the dissipation vs frequency change. PEO remains protein-repellent for BSA, Lys, and Lf at pH 4-8.5, while weak adsorption of Fn was observed. On PAA, different stages of protein adsorption processes could be distinguished under most experimental conditions. BSA, Lys, Lf, and Fn generally exhibit a rapid initial adsorption phase on PAA, often followed by slower processes. The evaluation of the adsorption kinetics also reveals different adsorption stages, whereas the number of these stages does not always correspond to the structurally different phases as revealed by the D- f plots. The results presented here, together with information obtained in previous studies by other groups on the properties of these proteins and their interaction with surfaces, allow us to develop an adsorption scenario for each of these proteins, which takes into account electrostatic protein-surface and protein-protein interaction, but also the pH-dependent properties of the proteins, such as shape and exposure of specific domains. PMID:18549295

  3. Chemical characterization of polyethylene resins and polyethylene gas pipe

    SciTech Connect

    Raphaelian, L.A.; Ettinger, D.G.

    1985-01-01

    Three analytical techniques were used in this study to characterize chemically commercial polyethylene pipe samples: carbon-13 nuclear magnetic resonance (/sup 13/C NMR) for looking at branching in the polyethylene, gas chromatography/mass spectrometry (GC/MS) for characterizing some of the low molecular weight components of polyethylene gas pipe, and x-ray diffraction (XRD) for determining the degree of crystallite orientation and crystallite size of the polyethylene within the polyethylene pipe matrix. Results are discussed. 9 figs., 6 tabs.

  4. Method for casting polyethylene pipe

    NASA Technical Reports Server (NTRS)

    Elam, R. M., Jr.

    1973-01-01

    Short lengths of 7-cm ID polyethylene pipe are cast in a mold which has a core made of room-temperature-vulcanizable (RTV) silicone. Core expands during casting and shrinks on cooling to allow for contraction of the polyethylene.

  5. Method for shaping polyethylene tubing

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  6. Polyethylene (PE) pipe electrofusion

    SciTech Connect

    Demonchy, M.Y. ); Fallou, M.J. )

    1990-09-01

    Gaz de France has developed a standardized electrofusion process for high quality polyethylene (PE) pipe assemblies. Techniques include an automated bar code and a self-regulating fusion process. The author discusses the electrofusion technique and pipe plugging, underpressure tie-in and repair applications and the influence of external factors.

  7. Ethylene glycol modified 2-(2‧-aminophenyl)benzothiazoles at the amino site: the excited-state N-H proton transfer reactions in aqueous solution, micelles and potential application in live-cell imaging

    NASA Astrophysics Data System (ADS)

    Liu, Bo-Qing; Chen, Yi-Ting; Chen, Yu-Wei; Chung, Kun-You; Tsai, Yi-Hsuan; Li, Yi-Jhen; Chao, Chi-Min; Liu, Kuan-Miao; Tseng, Huan-Wei; Chou, Pi-Tai

    2016-03-01

    Triethylene glycol monomethyl ether and poly(ethylene glycol) monomethyl ether modified 2-(2‧-aminophenyl)benzothiazoles, namely ABT-P3EG, ABT-P7EG and ABT-P12EG varied by different chain length of poly(ethylene glycol) at the amino site, were synthesized to probe their photophysical and bio-imaging properties. In polar, aprotic solvents such as CH2Cl2 ultrafast excited-state intramolecular proton transfer (ESIPT) takes place, resulting in a large Stokes shifted tautomer emission in the green-yellow (550 nm) region. In neutral water, ABT-P12EG forms micelles with diameters of 15  ±  3 nm under a critical micelle concentration (CMC) of ~80 μM, in which the tautomer emission is greatly enhanced free from water perturbation. Cytotoxicity experiments showed that all ABT-PnEGs have negligible cytotoxicity against HeLa cells even at doses as high as 1 mM. Live-cell imaging experiments were also performed, the results indicate that all ABT-PnEGs are able to enter HeLa cells. While the two-photon excitation emission of ABT-P3EG in cells cytoplasm shows concentration independence and is dominated by the anion blue fluorescence, ABT-P7EG and ABT-P12EG exhibit prominent green tautomer emission at  >  CMC and in part penetrate to the nuclei, adding an additional advantage for the cell imaging.

  8. Methoxy-Poly(ethylene glycol) Modified Poly(L-lactide) Enhanced Cell Affinity of Human Bone Marrow Stromal Cells by the Upregulation of 1-Cadherin and Delta-2-catenin

    PubMed Central

    Mao, Xueli; Chen, Zetao; Ling, Junqi; Quan, Jingjing; Peng, Hui; Xiao, Yin

    2014-01-01

    Poly(l-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation. This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression. PMID:24834434

  9. Polyethylene glycol modification decreases the cardiac toxicity of carbonaceous dots in mouse and zebrafish models

    PubMed Central

    Chen, Jian-tao; Sun, Hua-qin; Wang, Wei-liang; Xu, Wen-ming; He, Qin; Shen, Shun; Qian, Jun; Gao, Hui-le

    2015-01-01

    Aim: Carbonaceous dots (CDs), which have been used for diagnosis, drug delivery and gene delivery, are accumulated in heart at high concentrations. To improve their biocompatibility, polyethylene glycol-modified CDs (PEG-CDs) were prepared. In this study we compared the cardiac toxicity of CDs and PEG-CDs in mouse and zebrafish models. Methods: Mice were intravenously treated with CDs (size: 4.9 nm, 5 mg·kg−1·d−1) or PEG-CDs (size: 8.3 nm, 5 mg·kg−1·d−1) for 21 d. Their blood biochemistry indices, ECG, and histological examination were examined for evaluation of cardiac toxicity. CDs or PEG-CDs was added in incubator of cmlc2 transgenic Zebrafish embryos at 6 hpf, and the shape and size of embryos' hearts were observed at 48 hpf using a fluorescent microscope. Furthermore, whole-mount in situ hybridization was used to examine the expression of early cardiac marker gene (clml2) at 48 hpf. Results: Administration of CDs or PEG-CDs in mice caused mild, but statistically insignificant reduction in serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels detected at 7 d, which were returned to the respective control levels at 21 d. Neither CDs nor PEG-CDs caused significant changes in the morphology of heart cells. Administration of CDs, but not PEG-CDs, in mice caused marked increase of heart rate. Both CDs and PEG-CDs did not affect other ECG parameters. In the zebrafish embryos, addition of CDs (20 μg/mL) caused heart development delay, whereas addition of CDs (80 μg/mL) led to heart malformation. In contrast, PEG-CDs caused considerably small changes in heart development, which was consistent with the results from the in situ hybridization experiments. Conclusion: CDs causes greater cardiac toxicity, especially regarding heart development. Polyethylene glycol modification can attenuate the cardiac toxicity of CDs. PMID:26456589

  10. ABA-triblock copolymers from biodegradable polyester A-blocks and hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins.

    PubMed

    Kissel, Thomas; Li, Youxin; Unger, Florian

    2002-01-17

    Hydrogels are very attractive delivery systems for hydrophilic macromolecules such as proteins and DNA because they provide a protective environment and allow control of diffusion by adjusting cross-link densities. Physically cross-linked hydrogels generated by rapid swelling upon exposure to an aqueous environment can be obtained from ABA triblock copolymers containing hydrophobic polyester A-blocks and hydrophilic polyether B-blocks. They provide an attractive alternative to chemically cross-linked systems since they allow incorporation of macromolecular drug substances under mild process conditions. Moreover, they show controlled degradation behavior and excellent biocompatibility. In this review the synthesis and characterization of ABA triblock copolymers from polyester hard segments and poly(ethylene oxide) [PEO] soft segments as well as their biological and degradation properties will be discussed. Their use as biodegradable drug delivery devices in the form of implants, micro- and nanospheres has attracted considerable interest especially for proteins and may provide an alternative to poly(lactide-co-glycolide). PMID:11755708

  11. Effects of adding protein, condensed tannins, and polyethylene glycol to diets of sheep and goats fed one-seed juniper and low quality roughage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biochemical mechanisms that limit voluntary intake of one-seed juniper by browsing ruminants are not well understood. Twelve Rambouillet ewes (78 ± 2.3 kg BW) and 12 Boer-Spanish does (54 ± 1.4 kg BW) were used in a split-plot sequence design to investigate the effects of adding protein, quebrac...

  12. Polarized XANES studies of oriented polyethylene and fluorinated polyethylenes

    NASA Astrophysics Data System (ADS)

    Ohta, Toshiaki; Seki, Kazuhiko; Yokoyama, Toshihiko; Morisada, Ikuo; Edamatsu, Kunishige

    1990-01-01

    Polarization dependent XANES spectra were obtained by use of synchrotron radiation for oriented polyethylene and fluorinated polyethylenes: (1) elongated polyethylene (PE) film, (2) elongated poly(vinylidene fluoride) (PVDF) film, (3) poly(tetrafluoroethylene) (PTFE) film, (4) oriented evaporated film of hexatriacontane. CH3(CH2)34CH3 as a model compound of PE, (5) oriented evaporated film of perfluoroeicosane, CF3(CF2)18CF3 as a model compound of PTFF. Pronounced polarization dependence was observed for each compound, which allows unambiguous assignments of the XANES spectrum. Fluorination effects on the XANES spectra was also discussed

  13. Preparation of hydroxylated polyethylene surfaces.

    PubMed

    Zand, A; Walter, N; Bahu, M; Ketterer, S; Sanders, M; Sikorski, Y; Cunningham, R; Beholz, L

    2008-01-01

    The surfaces of high-density or ultra-high-molecular-weight polyethylenes were hydroxylated using a two-step process. The wetting and wear properties of the untreated (virgin) and surface hydroxylated polyethylenes were compared. The introduction of hydroxyl groups provided an increase in surface hydrophilicity resulting in reduced wear. Hydrophilicity was analyzed by optical analysis of water contact angle. Wear was determined by weight loss under conditions of a reciprocating pin-on-plate apparatus with the panels immersed in water or calf serum. These results suggest that hydroxylation of polyethylene friction-bearing orthopedic surfaces may lead to a longer joint life. PMID:18318959

  14. 21 CFR 172.260 - Oxidized polyethylene.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polyethylene is the basic resin produced by the mild air oxidation of polyethylene. The polyethylene used in the oxidation process conforms to the density, maximum n-hexane extractable fraction, and maximum... chapter. The oxidized polyethylene has a minimum number average molecular weight of 1,200, as...

  15. 21 CFR 172.260 - Oxidized polyethylene.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polyethylene is the basic resin produced by the mild air oxidation of polyethylene. The polyethylene used in the oxidation process conforms to the density, maximum n-hexane extractable fraction, and maximum... chapter. The oxidized polyethylene has a minimum number average molecular weight of 1,200, as...

  16. Effects of Biomass in Polyethylene or Polylactic Acid Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that compounding Polyethylene (PE) or Polylactic acid (PLA) with a dairy-based bioplastic resulted in composites with good mechanical properties. In this study, mass ratios of a dairy-protein-based material (DBP) ranging from 0, 5, 10 and 20 wt% replaced equivalent masse...

  17. Degradable polyethylene: fantasy or reality.

    PubMed

    Roy, Prasun K; Hakkarainen, Minna; Varma, Indra K; Albertsson, Ann-Christine

    2011-05-15

    Plastic waste disposal is one of the serious environmental issues being tackled by our society today. Polyethylene, particularly in packaging films, has received criticism as it tends to accumulate over a period of time, leaving behind an undesirable visual footprint. Degradable polyethylene, which would enter the eco-cycle harmlessly through biodegradation would be a desirable solution to this problem. However, the "degradable polyethylene" which is presently being promoted as an environmentally friendly alternative to the nondegradable counterpart, does not seem to meet this criterion. This article reviews the state of the art on the aspect of degradability of polyethylene containing pro-oxidants, and more importantly the effect these polymers could have on the environment in the long run. On exposure to heat, light, and oxygen, these polymers disintegrate into small fragments, thereby reducing or increasing the visual presence. However, these fragments can remain in the environment for prolonged time periods. This article also outlines important questions, particularly in terms of time scale of complete degradation, environmental fate of the polymer residues, and possible accumulation of toxins, the answers to which need to be established prior to accepting these polymers as environmentally benign alternatives to their nondegradable equivalents. It appears from the existing literature that our search for biodegradable polyethylene has not yet been realized. PMID:21495645

  18. Profiles in garbage: Polyethylene terephthalate

    SciTech Connect

    Miller, C.

    1997-11-01

    Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks -- along with salad dressing, fruit juices, peanut butter, and other household and consumer products -- use PET bottles. PET also is used for film, sheeting for cups and food trays, oven-safe trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early 1970s. Because it is an ``engineered`` resin, PET is more expensive than commodity resins such as high-density polyethylene (HDPE) and, for the same reason, it is usually the highest valued plastic recyclable.

  19. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... resin produced by the mild air oxidation of polyethylene conforming to the density, maximum n-hexane... table in § 177.1520(c). Such oxidized polyethylene has a minimum number average molecular weight of...

  20. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... resin produced by the mild air oxidation of polyethylene conforming to the density, maximum n-hexane... table in § 177.1520(c). Such oxidized polyethylene has a minimum number average molecular weight of...

  1. Thiolated polyethylene oxide as a non-fouling element for nano-patterned bio-devices

    NASA Astrophysics Data System (ADS)

    Lisboa, Patrcia; Valsesia, Andrea; Colpo, Pascal; Gilliland, Douglas; Ceccone, Giacomo; Papadopoulou-Bouraoui, Andri; Rauscher, Hubert; Reniero, Fabiano; Guillou, Claude; Rossi, Franois

    2007-03-01

    This work describes the synthesis of a thiolated polyethylene oxide that self-assembles on gold to create a non-fouling surface. Thiolated polyethylene oxide was synthesised by reacting 16-mercaptohexadecanoic acid with polyethylene glycol mono methyl ether. The coverage of the thiolated polyethylene oxide on gold was studied by cyclic voltammetry, and the modified surfaces were characterised by X-ray photoelectron spectroscopy and ellipsometry. Protein resistance was assessed using quartz crystal microbalance. Results showed a non-fouling character produced by the thiolated polyethylene oxide. The synthesised product was used as the passivation layer on nano-patterned surfaces consisting of arrayed nano-spots, fabricated by plasma based colloidal lithography. The specific adsorption of anti-bovine serum albumin in the mercaptohexadecanoic acid spots was verified by atomic force microscopy.

  2. 21 CFR 573.780 - Polyethylene.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Polyethylene. 573.780 Section 573.780 Food and... Listing § 573.780 Polyethylene. (a) Identity. Polyethylene consists of basic polymers manufactured by the catalytic polymerization of ethylene. (b) Specifications. (1) For the purposes of this section,...

  3. 21 CFR 573.780 - Polyethylene.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Polyethylene. 573.780 Section 573.780 Food and... Listing § 573.780 Polyethylene. (a) Identity. Polyethylene consists of basic polymers manufactured by the catalytic polymerization of ethylene. (b) Specifications. (1) For the purposes of this section,...

  4. Modification of polyethylene, polyamide, polyethylen terephthalate films by ion implantation

    SciTech Connect

    Azarko, I.I.; Karpovich, I.A.; Kozlov, I.P.

    1995-12-01

    The polyethylene, polyamide and polyethylene-terephthalate films implanted with B{sup +} and N{sup +} ions have been studied. The existence of two competing processes taking place in the implanted polymers was suggested. The first one, the formation of two- or three-dimensional carbon structures and polyene bonds. The second is the oxidation of the radiation damaged polymer yielding the carbonyl groups. The first process predominate at implanted dose over 2 x 10{sup 16} cm{sup -2}. At lower doses the second process becomes important. The possibility of a magnetic ordering in the implanted polymer films was observed. On the base of implanted PE we have fabricated three-electrode electronic device that can function as electric key.

  5. Waste product profile: Polyethylene terephthalate

    SciTech Connect

    Miller, C.

    1996-02-01

    Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks are the primary product packaged in PET. Salad dressing, peanut butter, and other household and consumer products also use PET bottles. PET is also used for film, sheeting for cups and food trays, ovenable trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early `70s. Because it is an ``engineered`` resin, it is more expensive than commodity resins such as high-density polyethylene (HDPE). The primary market for recycled PET is the fiber industry, which uses PET for carpet fiber, sweaters and other clothing, and for other uses. Recycled PET can also be used for food and beverage containers. Export markets, particularly Asian countries, are becoming increasingly important.

  6. Single electron states in polyethylene

    SciTech Connect

    Wang, Y.; School of Physics and Complex Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4 ; MacKernan, D.; Cubero, D. E-mail: n.quirke@imperial.ac.uk; Coker, D. F.; Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 ; Quirke, N. E-mail: n.quirke@imperial.ac.uk

    2014-04-21

    We report computer simulations of an excess electron in various structural motifs of polyethylene at room temperature, including lamellar and interfacial regions between amorphous and lamellae, as well as nanometre-sized voids. Electronic properties such as density of states, mobility edges, and mobilities are computed on the different phases using a block Lanczos algorithm. Our results suggest that the electronic density of states for a heterogeneous material can be approximated by summing the single phase density of states weighted by their corresponding volume fractions. Additionally, a quantitative connection between the localized states of the excess electron and the local atomic structure is presented.

  7. Poly(ethylene oxide) functionalization

    SciTech Connect

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  8. Diffusion of limonene in polyethylene.

    PubMed

    Limm, W; Begley, T H; Lickly, T; Hentges, S G

    2006-07-01

    Diffusion coefficients of limonene in various linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) resins have been determined from sorption data using a thermogravimetric methodology. From these data, one can determine whether polymer synthesis parameters such as the choice of catalytic process or co-monomer result in substantial differences in how much food packaging additives might migrate to food. For example, LLDPE is currently manufactured using either one of two distinct catalytic processes: Ziegler-Natta (ZN) and metallocene, a single-site catalyst. ZN catalysis is a heterogeneous process that has dominated polyolefin synthesis over the last half-century. It involves a transition metal compound containing a metal-carbon bond that can handle repeated insertion of olefin units. In contrast, metallocene catalysis has fewer than 20 years of history, but has generated much interest due to its ability to produce highly stereospecific polymers at a very high yield. In addition to high stereospecificity, metallocene-catalysed polymers are significantly lower in polydispersity than traditional ZN counterparts. Absorption and desorption testing of heat-pressed films made from LLDPE and LDPE resins of varying processing parameters indicates that diffusion coefficients of limonene in these resins do not change substantially. PMID:16751151

  9. 21 CFR 172.260 - Oxidized polyethylene.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Oxidized polyethylene. 172.260 Section 172.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.260 Oxidized polyethylene....

  10. Chemical modification of lipase with polyethylene glycol

    SciTech Connect

    Baillargeon, M.W.; Sonnet, P.E.

    1986-05-01

    Proteins become soluble in selected organic solvents after covalent attachment of polyethylene glycol (PEG) to the free amino groups. A crude Candida rugosa lipase preparation was coupled with activated PEG to yield a PEG-lipase with both hydrolytic and synthetic activity in aqueous and organic media. The coupling step involved a modification of the procedure of Inada et al. To maintain lipase activity, mild reaction conditions were used: pH 7.5 or 8.0 buffer, 20 minutes reaction at room temperature. Up to 87% of the initial activity is retained in PEG-lipase. The PEG-lipase is soluble in aqueous solution, benzene and trichloroethane. The hydrolytic and synthetic activity of PEG-lipase in various organic solvents is compared to that of the native lipase; the PEG-lipase consistently shows higher specific activity, PEG-lipase also shows activity in iso-octane and cyclohexane, in which it is insoluble. The stability of PEG- and native lipase is solvent dependent.

  11. Electrofusion method joins polyethylene pipe and fittings

    SciTech Connect

    Not Available

    1984-12-01

    The electrofusion method of joining polyethylene pipe was developed in Germany for use in non-pressure applications. It is now being used by British Gas, Gaz de France and German gas companies and U.S. distributors for the installation of polyethylene gas distribution systems. Electrofusion is considered the solution to field problems currently encountered, such as consistent sidewall fusion, repair problems and excavation costs, especially in large diameter mains, and the different times and temperatures required for joining dissimilar polyethylene materials. The electrofusion process eliminates some of the problems of improper iron temperature, misaligned fittings, dissimilar pipe materials, fusion of large diameter pipe and stress crack failures of socket fittings.

  12. Crystallization studies of polyethylene -poly(ethylene glycol) graft copolymers

    NASA Astrophysics Data System (ADS)

    Mark, P. R.; Hovey, G. E.; Murthy, N. S.; Breitenkamp, K.; Kade, M.; Emerick, T.

    2006-03-01

    Structure and crystallization behavior of three copolymers obtained by grafting poly (ethylene glycol) (PEG) chains to polyethylene (PE) main chain was investigated by variable temperature x-ray diffraction and thermal analysis. The results show that PEG side chains and PE main chains crystallize into separate domains. This is especially true when grafted chains are long (50 and 100 repeat units), in which the PEG domains are same as in PEG homopolymer both in structure and in melting behavior. In the copolymer with shorter chains (25 repeat units), the PEG crystals are not distinct and melting is broad. The PEG domains can be dissolved in water or ethanol without altering the mechanical integrity of the film. PE crystallites in both samples are similar to that in PE homopolymer. For instance, the thermal expansion of the basal cell plane (a- and b-axes) of the PE domains agrees well with that of PE homopolymer over the entire temperature range from ambient to melt. However, the chain-axis dimension PE-lattice in the copolymer is shorter by ˜ 0.05 å and the basal dimensions are larger by ˜ 0.05 å. The changes in these dimensions due to the changes in the length of the grafted PEG chains were investigated.

  13. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene......

  14. Elongational rheology of polyethylene melts

    NASA Astrophysics Data System (ADS)

    Seyfzadeh, Bijan

    Elongational melt flow behavior is an important and fundamental concept underlying many industrial plastics operations which involve a rapid change of shape as for example fiber spinning and stretching, bottle blow molding, and film blowing and stretching. Under high process loads polymeric materials experience enormous stresses causing the molecular structure to gain considerable orientation. This event has significant effects on the melt flow behavior and can be measured in terms of elongational viscosity and changes in enthalpy and entropy. Different polymeric materials with unique molecular characteristics are expected to respond uniquely to the elongational deformation; hence, molecular parameters such as molecular weight and degree of branching were related to the measurable elongational flow variables. Elongational viscosities were measured for high and low density polyethylenes using an advanced capillary extrusion rheometer fitted with semi-hyperbolic dies. Said dies establish a purely elongational. flow field at constant elongational strain rate. The elongational viscosities were evaluated under influence of process strain rate, Hencky strain (natural logarithm of area reduction of the extrusion die), and temperature. Enthalpy and entropy changes associated with the orientation development of semi-hyperbolic processed melts were also determined. Results showed that elongational viscosities were primarily affected by differences in weight average molecular weight rather than degree of branching. This effect was process strain rate as well as temperature dependent. An investigation of melt relaxation and the associated first decay time constants revealed that with increasing strain rate the molecular field of the melt asymptotically gained orientation in approaching a limit. As a result of this behavior molecular uniqueness vanished at high process strain rates, yielding to orientation development and the associated restructuring of the melt's molecular morphology. Flow induced orientation was measured in form of enthalpy changes that were largest for the highest elongational strain rates and larger Hencky strain. The enthalpy changes were in magnitude one order lower than the polymer's heat of fusion. This explained why peak melt temperatures, evaluated by differential scanning calorimetry, remained unchanged in magnitude with a rise in process strain rate and Hencky strain.

  15. Polymeric compositions incorporating polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  16. Recent advances in polyethylene separator technology

    NASA Astrophysics Data System (ADS)

    Weighall, M. J.

    The well known technical and production benefits of polyethylene separator materials over other separator materials have prompted a dramatic increase in polyethylene separator usage in recent years. Separator trends in the United States from 1980 to 1996, and in Europe from 1987 to 1992, are shown. The manufacturing process for polyethylene separators is outlined, with particular emphasis on the latest advances in manufacturing technology. These improvements have resulted in a higher quality product, and also benefit the environment because of the sophisticated oil extraction and solvent recovery system. The product quality improvements resulting from the latest manufacturing technology include consistent conformance to dimensional specifications, low electrical resistance, close control of residual oil content, virtual elimination of pinholes, and good running properties on the battery manufacturers' plate enveloping machines. The material can also be manufactured with a very thin backweb to reduce electrical resistance still further.

  17. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  18. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  19. Relationship between arterial thrombosis and neutralization of a polyethylene ionomer

    SciTech Connect

    Goggins, J.A.; Hiltner, A.; Jones, P.K. ); Jones, R.D. )

    1993-05-01

    The influence of three levels of sodium neutralization of an ethylene/methacrylic acid copolymer on in vivo blood compatibility was studied in a canine arterial model. Effects due to sample fabrication methods were also monitored. Sodium content, sodium release, hydrogen dissociation, and localization of anionic groups were noted. Polymer surface energy, surface morphology, water uptake, and thermal properties were characterized. Material characterization and in vivo implantation disclose the following: (1) thermal pressing generated oxidation degradation products that decreased in vivo blood compatibility. Solution-cast samples adhered and activated fewer blood elements; (2) platelets and leukocytes were sensitive to differences in shear rate in the carotid and femoral arteries, with the femoral site tending toward higher shear, more platelet deposition and fewer leukocytes; (3) the surface properties of the polyethylene control, 0% Na, and 50% Na samples tended to be similar. These properties were different from the 100% Na sample; (4) these differences were manifested in vivo by platelet activation and thrombus development on the polyethylene, 0% Na, and 50% Na implants, while the 100% Na implant surfaces were predominantly covered by singly adherent, unactivated platelets; (5) it is proposed that the improvement in biocompatibility for the 100% Na ionomer is due to the cluster development in the neutralized methacrylic component and that either directly, or through appropriate protein adsorption and/or conformational adjustment to the cluster regions, platelets are not activated and do not initiate the coagulation mechanism.

  20. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  1. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  2. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  3. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  4. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  5. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SANITIZERS Certain Adjuvants and Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400) monolaurate containing not more than 0.1 percent by weight of ethylene and/or... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (400) monolaurate....

  6. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SANITIZERS Certain Adjuvants and Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400) monolaurate containing not more than 0.1 percent by weight of ethylene and/or... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (400) monolaurate....

  7. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SANITIZERS Certain Adjuvants and Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400) monolaurate containing not more than 0.1 percent by weight of ethylene and/or... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (400) monolaurate....

  8. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400) monolaurate containing not more than 0.1 percent by weight of ethylene and/or diethylene glycol may be used at a level... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (400) monolaurate....

  9. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene, oxidized. 177.1620 Section 177.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1620...

  10. STRESS CRACK TESTING OF POLYETHYLENE GEOMEMBRANES

    EPA Science Inventory

    The sensitivity of high density polyethylene (HDPE) geomembranes to stress cracking is evaluated under accelerated conditions at a constant stress. he test specimens are according to ASTM D-1822, and are of the dumbbell shape with a constant length in the central section. he acce...

  11. DNP with Trityl Radicals in Deuterated Polyethylene

    NASA Astrophysics Data System (ADS)

    Wang, Li; Meyer, W.; Berlin, A.; Herick, J.; Hess, C.; Reicherz, G.

    2016-02-01

    Chemically doping with trityl radicals was performed in fully deuterated polyethylene. The behavior of paramagnetic centers has been investigated by ESR X-band spectrometer. The highest deuteron polarization was 8% at 2.5 T and 1 K with a spin concentration of 3 × 1019 spins/g.

  12. 21 CFR 172.260 - Oxidized polyethylene.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oxidized polyethylene. 172.260 Section 172.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances...

  13. Reliability evaluation of gas piping grade polyethylene

    SciTech Connect

    Chudnovsky, A.; Baron, D.; Shulkin, Y.

    1995-11-01

    A new method for predicting the reliability of a structural component made of gas piping grade polyethylene is proposed. The method employs a knowledge of the distribution of the critical sizes of defects, together with a mathematical modeling of slow crack growth in polyethylene. The population of critical size defects is obtained from fractographic analyses of the material and fitted by the distribution of extremes. The model provides a relationship linking the duration of slow crack growth process (lifetime) and applied stress at constant temperature for a prescribed material dan specimen geometry. This relationship is validated by experimental observations for various polyethylenes. According to the model, for a particular material, specimen geometry, applied stress and temperature, the lifetime is a function of initial crack size only. The relationship between the random initial crack size and the lifetime, together with the probability density for the initial crack size, yields the probability density for lifetime. The latter allows the calculation of the reliability function for a structural component. The approach is illustrated using the model data for polyethylene tensile single-edge notched specimens, and a representative distribution of defects which caused failure of rectangular bars under tension.

  14. Herbicide dissipation from low density polyethylene mulch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field and laboratory studies were conducted to examine herbicide dissipation when applied to low density polyethylene (LDPE) mulch for dry scenarios vs. washing off with water. In field studies, halosulfuron, paraquat, carfentrazone, glyphosate, and flumioxazin were applied to black 1.25-mil LDPE at...

  15. Preservation of Mercury in Polyethylene Containers.

    ERIC Educational Resources Information Center

    Piccolino, Samuel Paul

    1983-01-01

    Reports results of experiments favoring use of 0.5 percent nitric acid with an oxidant (potassium dichromate or potassium permanganate) to preserve samples in polyethylene containers for mercury analysis. Includes procedures used and statistical data obtained from the experiments. (JN)

  16. POLYETHYLENE ENCAPSULATES FOR HAZARDOUS WASTE DRUMS

    EPA Science Inventory

    This capsule report summarizes studies of the use of polyethylene (P.E.) for encapsulating drums of hazardous wastes. Flat PE sheet is welded to roto moded PE containers which forms the encapsulates. Plastic pipe welding art was used, but the prototype welding apparatus required ...

  17. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene, chlorinated. 177.1610 Section 177.1610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  18. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene, chlorinated. 177.1610 Section 177.1610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1610...

  19. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene, chlorinated. 177.1610 Section 177.1610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  20. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene, chlorinated. 177.1610 Section 177.1610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  1. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene, fluorinated. 177.1615 Section 177.1615 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  2. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene, chlorinated. 177.1610 Section 177.1610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  3. 21 CFR 573.780 - Polyethylene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Polyethylene. 573.780 Section 573.780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  4. 21 CFR 573.780 - Polyethylene.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Polyethylene. 573.780 Section 573.780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  5. 21 CFR 573.780 - Polyethylene.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Polyethylene. 573.780 Section 573.780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  6. 21 CFR 172.260 - Oxidized polyethylene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oxidized polyethylene. 172.260 Section 172.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances...

  7. Protein

    MedlinePlus

    ... Alike Protein is built from building blocks called amino acids. Our bodies make amino acids in two different ways: Either from scratch, or by modifying others. A few amino acids (known as the essential amino acids) must come ...

  8. Polyethylene glycol as an alternative polymer solvent for nanoparticle preparation.

    PubMed

    Ali, Mohamed Ehab; Lamprecht, Alf

    2013-11-01

    Solvent toxicity is one of the major drawbacks in the preparation of polymeric nanoparticles today. Here, polyethylene glycols (PEGs) are proposed as non-toxic solvents for the preparation of polymeric nanoparticles. Based on a preparation process similar to the solvent displacement technique, several process parameters were examined for their effects on the properties of the prepared nanoparticles by this method to achieve the optimum preparation conditions. The investigated parameters included polymer type and concentration, volume and temperature of the dispersing phase, methods of dispersing the solvent phase into the non-solvent phase, duration and speed of stirring and washing by dialysis. Ammonio methacrylate copolymer (Eudragit RL), poly-lactide-co-glycolide (PLGA), and PEG-PLGA were found to be successful polymer candidates for the preparation of nanoparticles by this method. Nanoparticles with diameters ranging from 80 to 400 nm can be obtained. The encapsulation efficiencies of bovine serum albumin, and lysozyme as model proteins were ranging from 7.3±2.2% to 69.3±1.8% depending on the strength of polymer-protein interaction. Biological assays confirmed a full lysozyme activity after the preparation process. PEG proved to be a suitable non-toxic solvent for the preparation of polymeric protein-loaded nanoparticles, maintaining the integrity of protein. PMID:23958752

  9. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    NASA Astrophysics Data System (ADS)

    Apri, M.; Silmi, M.; Heryanto, T. E.; Moeis, M. R.

    2016-04-01

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  10. Assessment of polyethylene wear in total hip replacement.

    PubMed

    Devane, P A; Horne, J G

    1999-12-01

    The three-dimensional technique is a method for the measurement of polyethylene wear in patients with total hip joint replacement. Application of image processing technology allows automation of point selection from digital images of radiographs scanned into the computer. Validation of image processing modifications reveals a three-fold increase in accuracy and a 40-fold increase in reproducibility compared with manual input of points from a digitizer during bench testing. A review of three-dimensional technique application to clinical patients gives information on the factors that influence polyethylene wear. Increasing age, activity level, femoral head size, decreasing polyethylene thickness, and insertion of total hip prostheses without cement all increase polyethylene wear. Restoration of femoral offset during total hip replacement seems to decreases polyethylene wear. No apparent difference in polyethylene wear rate could be found between two groups of patients, one group had a stainless steel-polyethylene articulation and the other had a ceramic-polyethylene articulation. Measurement of the serial polyethylene wear of individual patients reveals a high rate of femoral head penetration during the first 2 years after total hip replacement using metal-backed acetabular components inserted without cement. Interpretation of this femoral head penetration as true polyethylene wear may be erroneous, however, because creep of the polyethylene and acetabular liner movement within its metal shell cannot be measured. PMID:10611861

  11. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography.

    PubMed

    Revzin, A; Russell, R J; Yadavalli, V K; Koh, W G; Deister, C; Hile, D D; Mellott, M B; Pishko, M V

    2001-09-01

    The fabrication of hydrogel microstructures based upon poly(ethylene glycol) diacrylates, dimethacrylates, and tetraacrylates patterned photolithographically on silicon or glass substrates is described. A silicon/silicon dioxide surface was treated with 3-(trichlorosilyl)propyl methacrylate to form a self-assembled monolayer (SAM) with pendant acrylate groups. The SAM presence on the surface was verified using ellipsometry and time-of-flight secondary ion mass spectrometry. A solution containing an acrylated or methacrylated poly(ethylene glycol) derivative and a photoinitiator (2,2-dimethoxy-2-phenylacetophenone) was spin-coated onto the treated substrate, exposed to 365 nm ultraviolet light through a photomask, and developed with either toluene, water, or supercritical CO2. As a result of this process, three-dimensional, cross-linked PEG hydrogel microstructures were immobilized on the surface. Diameters of cylindrical array members were varied from 600 to 7 micrometers by the use of different photomasks, while height varied from 3 to 12 micrometers, depending on the molecular weight of the PEG macromer. In the case of 7 micrometers diameter elements, as many as 400 elements were reproducibly generated in a 1 mm2 square pattern. The resultant hydrogel patterns were hydrated for as long as 3 weeks without delamination from the substrate. In addition, micropatterning of different molecular weights of PEG was demonstrated. Arrays of hydrogel disks containing an immobilized protein conjugated to a pH sensitive fluorophore were also prepared. The pH sensitivity of the gel-immobilized dye was similar to that in an aqueous buffer, and no leaching of the dye-labeled protein from the hydrogel microstructure was observed over a 1 week period. Changes in fluorescence were also observed for immobilized fluorophore labeled acetylcholine esterase upon the addition of acetyl acholine. PMID:12448421

  12. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography

    NASA Technical Reports Server (NTRS)

    Revzin, A.; Russell, R. J.; Yadavalli, V. K.; Koh, W. G.; Deister, C.; Hile, D. D.; Mellott, M. B.; Pishko, M. V.

    2001-01-01

    The fabrication of hydrogel microstructures based upon poly(ethylene glycol) diacrylates, dimethacrylates, and tetraacrylates patterned photolithographically on silicon or glass substrates is described. A silicon/silicon dioxide surface was treated with 3-(trichlorosilyl)propyl methacrylate to form a self-assembled monolayer (SAM) with pendant acrylate groups. The SAM presence on the surface was verified using ellipsometry and time-of-flight secondary ion mass spectrometry. A solution containing an acrylated or methacrylated poly(ethylene glycol) derivative and a photoinitiator (2,2-dimethoxy-2-phenylacetophenone) was spin-coated onto the treated substrate, exposed to 365 nm ultraviolet light through a photomask, and developed with either toluene, water, or supercritical CO2. As a result of this process, three-dimensional, cross-linked PEG hydrogel microstructures were immobilized on the surface. Diameters of cylindrical array members were varied from 600 to 7 micrometers by the use of different photomasks, while height varied from 3 to 12 micrometers, depending on the molecular weight of the PEG macromer. In the case of 7 micrometers diameter elements, as many as 400 elements were reproducibly generated in a 1 mm2 square pattern. The resultant hydrogel patterns were hydrated for as long as 3 weeks without delamination from the substrate. In addition, micropatterning of different molecular weights of PEG was demonstrated. Arrays of hydrogel disks containing an immobilized protein conjugated to a pH sensitive fluorophore were also prepared. The pH sensitivity of the gel-immobilized dye was similar to that in an aqueous buffer, and no leaching of the dye-labeled protein from the hydrogel microstructure was observed over a 1 week period. Changes in fluorescence were also observed for immobilized fluorophore labeled acetylcholine esterase upon the addition of acetyl acholine.

  13. Cyclic Behavior of High Density Polyethylene (HDPE)

    NASA Astrophysics Data System (ADS)

    Dusunceli, Necmi; Aydemir, Bulent; Terzi, Niyazi U.

    2010-06-01

    This article presents the mechanical behavior of high density polyethylene (HDPE). Samples were prepared by extracting extruded HDPE pipe. Cyclic and strain rate jump behavior of HDPE were studied under uniaxial tensile loading conditions. The strain jump tests indicated that mechanical behavior of HDPE has deformation memory. Further, it was found that increasing cycle number on cyclic loading test increased strain accumulation amount and HDPE exhibited ratcheting behavior at on loading-unloading-reloading at constant stress level.

  14. Speciation of antimony in polyethylene terephthalate bottles

    SciTech Connect

    Martin, R.R.; Ablett, J.; Shotyk, W.S.; Naftel, S.; Northrup, P.

    2009-12-18

    Antimony contamination has been reported in drinking water from polyethylene terephthalate (PET) bottles. Micro-X-ray fluorescence (XRF) analysis has been used to identify the distribution and chemical form of residual antimony used as a catalyst in the manufacture of PET bottles. The results are consistent with clusters of Sb(III) having dimensions of the order of tens of micrometers, clearly showing the ability of synchrotron radiation analyses to both map elemental distribution and determine oxidation state.

  15. Extensional Flow Induced Crystallization of Polyethylene

    NASA Astrophysics Data System (ADS)

    Nicholson, David; Locker, C. Rebecca; Tsou, Andy; Rutledge, Gregory

    2014-03-01

    The majority of manufactured polyethylene is used in films mostly through the blown film fabrication process where extensional flow induced crystallization is a critical component in affecting the development of crystalline morphology and amorphous topology. In order to optimize the blown film performance, it is critical to understand the mechanism of extensional flow induced crystallization of polyethylene. Model high density polyethylene with a Mn of 20,000 g/mol and a PDI (polydispersity) of 2 and lower were synthesized by organometallic catalysts. Extensional flow induced crystallization of these materials was measured using the SER (Sentmanat Extensional Rheometer) either at a given rate with varying temperatures or vice versa. A continuum model was applied to analyze the flow induced crystallization data. All samples after extensional flow were quenched in ice water and the resulting morphology was characterized using SAXS and WAXS. The extensional rate was found to be effective in modifying morphology whereas the temperature was not; neither temperature nor strain rate affected the final film crystallinity. With an increase in extensional rate, crystallites became thinner and narrower with potentially higher connectivity which could lead to higher toughness.

  16. Surface modification of polyethylene by functionalized plasma

    SciTech Connect

    Yuan, S.; Marchant, R.E.

    1993-12-31

    The surface of low density polyethylene(PE) has been modified by functionalized plasma-polymerized N-vinyl-2-pyrrolidone (PPNVP) and allyl alcohol(PPAA) thin films, PPNVP and PPAA(approx. 100 nm). The surface structure and functional groups of modified surfaces were characterized by water contact angle, ATR/FTIR and ESCA techniques. Plasma polymer modified PE surfaces exhibited significant water contact angle hysteresis and a much lower value of advancing water contact angle than that of unmodified polyethylene. Reduction of PPNVP and PPAA modified surfaces by sodium borohydride coverted into hydroxyl groups. The determined concentrations of hydroxyl groups on the reduced PPNVP and PPAA modified surfaces by ESCA after gas-phase derivatization with trifluoroacetic anhydride (TFAA) were about 25% and 30% of total oxygen content, respectively. Finally, the amine containing molecules such as amine-terminated polyethylene oxide (PEO) and 3-aminopropyltriethoxysilane (APTS) were coupled to the hydroxylated surfaces. These novel modified PE surfaces are suitable for immobilization of biomolecules.

  17. Polyethylene solidification of low-level wastes

    SciTech Connect

    Kalb, P.D.; Colombo, P.

    1985-02-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive waste in polyethylene. Waste streams selected for this study included those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Four types of commercially available low-density polyethylenes were employed which encompass a range of processing and property characteristics. Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste and polyethylene type. Property evaluation testing was performed on laboratory-scale specimens to assess the potential behavior of actual waste forms in a disposal environment. Waste form property tests included water immersion, deformation under compressive load, thermal cycling and radionuclide leaching. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash, and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported. 37 refs., 33 figs., 22 tabs.

  18. Rechargeable antimicrobial surface modification of polyethylene.

    PubMed

    Goddard, J M; Hotchkiss, J H

    2008-10-01

    Polyethylene films were surface modified, to incorporate amine and amide functionalities, and subsequently were evaluated for their ability to recharge the antimicrobial N-halamine structures after contact with sodium hypochlorite, a common food-approved sanitizer. Surfaces were tested for chlorine retention and release, as well as antimicrobial activity against microorganisms relevant to food quality and food safety, including Escherichia coli K-12, Pseudomonas fluorescens, Bacillus cereus, and Listeria monocytogenes. N-Halamine functionalized polyethylene exhibited chlorine rechargeability, maintaining 5 to 7 nmol/cm2 N-halamine structures for six successive charges. The N-halamine functionalized films achieved a 4-log reduction for all organisms tested and maintained a greater than 3-log reduction for four successive uses, suggesting that the modified polyethylene films are capable of providing rechargeable antimicrobial activity. The modified films exhibited antimicrobial activity in aqueous suspensions (P < 0.05) and reduced microbial growth in diluted broth (P < 0.05), suggesting the potential for biocidal action even in the presence of organic matter. Such a rechargeable antimicrobial surface could supplement existing cleaning and sanitation programs in food processing environments to reduce the adhesion, growth, and subsequent cross-contamination of food pathogens, as well as food spoilage organisms. PMID:18939750

  19. Method for determination of polyethylene glycol molecular weight.

    PubMed

    Pihlasalo, Sari; Hänninen, Pekka; Härmä, Harri

    2015-04-01

    A method utilizing competitive adsorption between polyethylene glycols (PEGs) and labeled protein to nanoparticles was developed for the determination of PEG molecular weight (MW) in a microtiter plate format. Two mix-and-measure systems, time-resolved luminescence resonance energy transfer (TR-LRET) with donor europium(III) polystyrene nanoparticles and acceptor-labeled protein and quenching with quencher gold nanoparticles and fluorescently labeled protein were compared for their performance. MW is estimated from the PEG MW dependent changes in the competitive adsorption properties, which are presented as the luminescence signal vs PEG mass concentration. The curves obtained with the TR-LRET system overlapped for PEGs larger than 400 g/mol providing no information on MW. Distinctly different curves were obtained with the quenching system enabling the assessment of PEG MW within a broad dynamic range. The data was processed with and without prior knowledge of the PEG concentration to measure PEGs over a MW range from 62 to 35,000 g/mol. The demonstration of the measurement independent of the PEG concentration suggests that the estimation of MW is possible with quenching nanoparticle system for neutrally charged and relatively hydrophilic polymeric molecules widening the applicability of the simple and cost-effective nanoparticle-based methods. PMID:25783500

  20. Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride.

    PubMed

    Quiroz-Castillo, J M; Rodrguez-Flix, D E; Grijalva-Monteverde, H; Del Castillo-Castro, T; Plascencia-Jatomea, M; Rodrguez-Flix, F; Herrera-Franco, P J

    2014-01-30

    Novel films of polyethylene and chitosan were obtained using extrusion. These polymers have interesting properties, and processing them with methods that are of high use in the industry, such as the extrusion method, can have a significant effect on the potential applications of these materials. The individual materials were thermally characterized; after this, extruded films of low density polyethylene and chitosan mixtures were prepared with the addition of polyethylene-graft-maleic anhydride as a compatibilizer for the blends, and glycerol, as a plasticizer for chitosan. The use of compatibilizer and plasticizer agents improved the processability and compatibility of the mixtures, as well as their mechanical properties, as revealed by mechanical property measurements and scanning electron microscopy. It was possible to prepare blends with a maximum chitosan content of 20 wt%. The material stiffness increased with the increase of chitosan in the sample. FTIR studies revealed the existence of an interaction between the compatibilizer and chitosan. PMID:24299879

  1. Fabrication and anti-fouling properties of photochemically and thermally immobilized poly(ethylene oxide) and low molecular weight poly(ethylene glycol) thin films.

    PubMed

    Wang, Hui; Ren, Jin; Hlaing, Aye; Yan, Mingdi

    2011-02-01

    Poly(ethylene oxide) (PEO) and low molecular weight poly(ethylene glycol) (PEG) were covalently immobilized on silicon wafers and gold films by way of the CH insertion reaction of perfluorophenyl azides (PFPAs) by either photolysis or thermolysis. The immobilization does not require chemical derivatization of PEO or PEG, and polymers of different molecular weights were successfully attached to the substrate to give uniform films. Microarrays were also generated by printing polymer solutions on PFPA-functionalized wafer or Au slides followed by light activation. For low molecular weight PEG, the immobilization was highly dependent on the quality of the film deposited on the substrate. While the spin-coated and printed PEG showed poor immobilization efficiency, thermal treatment of the PEG melt on PFPA-functionalized surfaces resulted in excellent film quality, giving, for example, a grafting density of 9.2×10(-4)Å(-2) and an average distance between grafted chains of 33Å for PEG 20,000. The anti-fouling property of the films was evaluated by fluorescence microscopy and surface plasmon resonance imaging (SPRi). Low protein adsorption was observed on thermally-immobilized PEG whereas the photoimmobilized PEG showed increased protein adsorption. In addition, protein arrays were created using polystyrene (PS) and PEG based on the differential protein adsorption of the two polymers. PMID:21044787

  2. The yield behavior of polyethylene tubes subjected to biaxial loadings

    NASA Technical Reports Server (NTRS)

    Semeliss, M.; Wong, R.; Tuttle, M.

    1990-01-01

    High-density polyethylene is subjected to biaxial states of stress to examine the yield behavior of the semicrystalline thermoplastic under constant octahedral shear-stress rates. Combinations of internal pressures and axial loads are applied to thin-walled tubes of polyethylene, and the strain response in the axial and hoop directions are measured. The polyethylene specimens are found to be anisotropic, and the experimental measurements are compared to yield criteria that are applicable to isotropic and anisotropic materials.

  3. Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene

    PubMed Central

    Kondyurin, Alexey V.; Naseri, Pourandokht; Tilley, Jennifer M. R.; Nosworthy, Neil J.; Bilek, Marcela M. M.; McKenzie, David R.

    2012-01-01

    The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers. PMID:24278665

  4. Why do polyethylene crystals have sectors?

    PubMed Central

    Dorset, D L; Hanlon, J; McConnell, C H; Fryer, J R; Lotz, B; Wittmann, J C; Beckmann, E; Zemlin, F

    1990-01-01

    High-resolution (3.7 A in optical diffraction) electron microscope images have been obtained from a series of n-paraffin monolamellar crystals with chain lengths from n-C36H74 to n-C82H166. The higher molecular weight specimens, which do not undergo chain folding, form sectorized crystals and the molecular packing is found to include alternate bands of untilted and tilted chains along <130>. Their widths are consistent with those of Bragg fringe widths in bright-field images obtained at lower magnification. The chain tilt axis is near d*110. Lower molecular weight paraffins form nonsectorized crystals where the chains are generally untilted with occasional small inclinations around nonspecific axes. Surface decoration of the longer alkanes with polyethylene crystallites, first of all, reveals three preferred polyethylene crystal rod orientations ([100] plus two perpendicular to [110]) instead of the two commonly found for the lower alkane. Control studies on solid-solution crystals reveal that the third [100] orientation is a result of slight surface roughness due to unequal chain lengths or surface protrusions of chains; the new decoration is also randomly distributed. For pure n-C60H122 lamellae, however, suggestions of regular bands containing rods along [100], due to surface discontinuities along <130>, can also be seen. In contrast with polyethylene, these data suggest that crystal sectorization may be a function of chain-stem packing alone and that chain folds may play merely a secondary role in the polymer--e.g., by directing the collapse of pyramidal crystals on a flat surface. Images PMID:11607068

  5. Why do polyethylene crystals have sectors?

    PubMed

    Dorset, D L; Hanlon, J; McConnell, C H; Fryer, J R; Lotz, B; Wittmann, J C; Beckmann, E; Zemlin, F

    1990-03-01

    High-resolution (3.7 A in optical diffraction) electron microscope images have been obtained from a series of n-paraffin monolamellar crystals with chain lengths from n-C36H74 to n-C82H166. The higher molecular weight specimens, which do not undergo chain folding, form sectorized crystals and the molecular packing is found to include alternate bands of untilted and tilted chains along <130>. Their widths are consistent with those of Bragg fringe widths in bright-field images obtained at lower magnification. The chain tilt axis is near d*110. Lower molecular weight paraffins form nonsectorized crystals where the chains are generally untilted with occasional small inclinations around nonspecific axes. Surface decoration of the longer alkanes with polyethylene crystallites, first of all, reveals three preferred polyethylene crystal rod orientations ([100] plus two perpendicular to [110]) instead of the two commonly found for the lower alkane. Control studies on solid-solution crystals reveal that the third [100] orientation is a result of slight surface roughness due to unequal chain lengths or surface protrusions of chains; the new decoration is also randomly distributed. For pure n-C60H122 lamellae, however, suggestions of regular bands containing rods along [100], due to surface discontinuities along <130>, can also be seen. In contrast with polyethylene, these data suggest that crystal sectorization may be a function of chain-stem packing alone and that chain folds may play merely a secondary role in the polymer--e.g., by directing the collapse of pyramidal crystals on a flat surface. PMID:11607068

  6. Patterned functional carbon fibers from polyethylene

    SciTech Connect

    Hunt, Marcus A; Saito, Tomonori; Brown, Rebecca H; Kumbhar, Amar S; Naskar, Amit K

    2012-01-01

    Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.

  7. Fracture Analysis of Medium Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Skozrit, Ivica; Tonković, Zdenko

    The paper deals with the application of the reference stress method (RSM) to estimate the J and C integrals of cracked thick-walled metal as well as medium density polyethylene (MDPE) pipes. Unlike the existing solutions, the newly developed analytical approximations of the plastic limit pressure and J-integral are applicable to a wide range of crack dimensions. Based on the experimental data from literature and analogy between plasticity and creep, the paper discusses a method used to develop the efficient computational strategy for modeling creep fracture mechanisms by slow crack growth in a MDPE pipes.

  8. Nonlinear viscoelastic characterization of thin polyethylene film

    NASA Technical Reports Server (NTRS)

    Wilbeck, J. S.

    1981-01-01

    In order to understand the state of stress and strain in a typical balloon fabricated from thin polyethylene film, experiment data in the literature reviewed. It was determined that the film behaves as a nonlinear viscoelasticity material and should be characterized accordingly. A simple uniaxial, nonlinear viscoelastic model was developed for predicting stress given a certain strain history. The simple model showed good qualitative agreement with results of constant rate, uniaxial accurately predicting stresses for cyclic strain histories typical of balloon flights. A program was outlined which will result in the development of a more complex nonlinear viscoelastic model.

  9. Polyethylene terephthalate thin films; a luminescence study

    NASA Astrophysics Data System (ADS)

    Carmona-Téllez, S.; Alarcón-Flores, G.; Meza-Rocha, A.; Zaleta-Alejandre, E.; Aguilar-Futis, M.; Murrieta S, H.; Falcony, C.

    2015-04-01

    Polyethylene Terephthalate (PET) films doped with Rare Earths (RE3+) have been deposited on glass by spray pyrolysis technique at 240 °C, using recycled PET and (RE3+) chlorides as precursors. Cerium, terbium, dysprosium and europium were used as dopants materials, these dopants normally produce luminescent emissions at 450, 545, 573 and 612 nm respectively; the doped films also have light emissions at blue, green, yellow and red respectively. All RE3+ characteristic emissions were observed at naked eyes. Every deposited films show a high transmission in the visible range (close 80% T), films surfaces are pretty soft and homogeneous. Films thickness is around 3 μm.

  10. Initial Stages of the Pyrolysis of Polyethylene.

    PubMed

    Popov, Konstantin V; Knyazev, Vadim D

    2015-12-10

    An experimental study of the kinetics of the initial stages of the pyrolysis of high-density polyethylene (PE) was performed. Quantitative yields of gas-phase products (C1-C8 alkanes and alkenes) and functional groups within the remaining polyethylene melt (methyl, vinyl, vinylene, vinylidene, and branching sites) were obtained as a function of time (0-20 min) at five temperatures in the 400-440 °C range. Gas chromatography and NMR ((1)H and (13)C) were used to detect the gas- and condensed-phase products, respectively. Modeling of polyethylene pyrolysis was performed, with the primary purpose of determining the rate constants of several critical reaction types important at the initial pyrolysis stages. Detailed chemical mechanisms were created (short and extended mechanisms) and used with both the steady-state approximation and numerical integration of the differential kinetic equations. Rate constants of critical elementary reactions (C-C backbone scission, two kinds of H-atom transfer, radical addition to the double bond, and beta-scission of tertiary alkyl radicals) were adjusted, resulting in an agreement between the model and the experiment. The values of adjusted rate constants are in general agreement with those of cognate reactions of small molecules in the gas phase, with the exception of the rate constants of the backbone C-C scission, which is found to be approximately 1-2 orders of magnitude lower. This observation provides tentative support to the hypothesis that congested PE melt molecular environment impedes the tumbling motions of separating fragments in C-C bond scission, thus resulting in less "loose" transition state and lower rate constant values. Sensitivity of the calculations to selected uncertainties in model properties was studied. Values and estimated uncertainties of four combinations of rate constants are reported as derived from the experimental results via modeling. The dependence of the diffusion-limited rate constant for radical recombination on the changing molecular mass of polyethylene was explicitly quantified and included in the extended kinetic mechanism, which appears critical for the agreement between modeling and experiment, particularly the agreement between the experimental and the calculated activation energies for product formation rates. Calculations were performed to estimate the contribution to the overall rate of radical recombination of the "reaction diffusion" phenomenon, where recombination is driven not by the actual motion of the recombining radical sites but rather by the migration of the radical site through PE melt due to rapid hydrogen transfer; this contribution was shown to be negligible for the conditions of the current work. PMID:26503638

  11. Biocompatible composites of ultrahigh molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Suan, T. Nguen; Ivanova, L. P.; Korchagin, M. A.; Chaikina, M. V.; Shilko, S. V.; Pleskachevskiy, Yu. M.

    2015-10-01

    Mechanical and tribotechnical characteristics of biocompatible, antifriction and extrudable composites based on ultrahigh molecular weight polyethylene (UHMWPE) as well as hybrid matrix "UHMWPE + PTFE" with biocompatible hydroxyapatite filler under the dry friction and boundary lubrication were investigated. A comparative analysis of effectiveness of adding the hydroxyapatite to improve the wear resistance of composites based on these two matrices was performed. It is shown that the wear intensity of nanocomposites based on the hybrid matrix is lower than that for the composites based on pure UHMWPE. Possibilities of using the composites of the polymer "UHMWPE-PTFE" mixture as a material for artificial joints implants are discussed.

  12. Degradation of Green Polyethylene by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Ribeiro, Karla Veloso Gonçalves; Mendes, Igor Rodrigues; Kasuya, Maria Catarina Megumi

    2015-01-01

    We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers. PMID:26076188

  13. Degradation of Green Polyethylene by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Ribeiro, Karla Veloso Gonçalves; Mendes, Igor Rodrigues; Kasuya, Maria Catarina Megumi

    2015-01-01

    We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers. PMID:26076188

  14. Thermoluminescence Measurements of Medical Grade Polyethylene

    NASA Astrophysics Data System (ADS)

    Lewis, Scott; Dunlap, Greg; Palmer, Jeane; Jahan, M. S.

    1999-11-01

    Ultra-high molecular weight polyethylene (UHMWPE) is a biomaterial used in hip and knee joint replacements. Because this material is implanted into the body the material must be sterilized to prevent infection after implantation. Gamma irradiation is the most common method of sterilization, but it has one drawback; it causes the formation of free radicals and subsequent oxidative degradation of PE. By using thermoluminescence (TL) technique, free radical quenching temperature can be determined. In this study, UHMWPE was X-irradiated ( ~1 MRad at 10 keV) at 32 ^oC and subsequently heated to 200 ^oC at 1 ^oC / sec. The resulting luminescence known as thermoluminescence (TL) was recorded using a commercial TL dosimeter. The TL output, known as a glow curve, consists of two glow peaks, the prominent one occurs at 70 ^oC and a second one at 120 ^oC. It is suggested that the peak at 70 ^oC results from the recombination of free radicals due to molecular motion in the amorphous region, and the 120 ^oC peak is due to the motion of crystalline medium of the polyethylene matrix. Thermal annealing of free radicals as detected by TL can be a useful technique for diagnostic test of stabilization of radiation-sterilized medical joint components. *Supported by NSF REU Program (grant number EEC9619821) at the University of Memphis.

  15. Nanostructurization and thermal properties of polyethylenes' welds.

    PubMed

    Galchun, Anatoliy; Korab, Nikolay; Kondratenko, Volodymyr; Demchenko, Valeriy; Shadrin, Andriy; Anistratenko, Vitaliy; Iurzhenko, Maksym

    2015-01-01

    As it is known, polyethylene (PE) is one of the common materials in the modern world, and PE products take the major share on industrial and trade markets. For example, various types of technical PE like PE-63, PE-80, and PE-100 have wide industrial applications, i.e., in construction, for pipeline systems etc. A rapid development of plastics industry outstrips detailed investigation of welding processes and welds' formation mechanism, so they remain unexplored. There is still no final answer to the question how weld's microstructure forms. Such conditions limit our way to the understanding of the problem and, respectively, prevent scientific approaches to the welding of more complicated (from chemical point of view) types of polymers than PE. Taking into account state-of-the-art, the article presents results of complex studies of PE weld, its structure, thermophysical and operational characteristics, analysis of these results, and basing on that some hypotheses of welded joint and weld structure formation. It is shown that welding of dissimilar types of polyethylene, like PE-80 and PE-100, leads to the formation of better-ordered crystallites, restructuring the crystalline phase, and amorphous areas with internal stresses in the welding zone. PMID:25897302

  16. Polyethylene nanofibres with very high thermal conductivities.

    PubMed

    Shen, Sheng; Henry, Asegun; Tong, Jonathan; Zheng, Ruiting; Chen, Gang

    2010-04-01

    Bulk polymers are generally regarded as thermal insulators, and typically have thermal conductivities on the order of 0.1 W m(-1) K(-1). However, recent work suggests that individual chains of polyethylene--the simplest and most widely used polymer--can have extremely high thermal conductivity. Practical applications of these polymers may also require that the individual chains form fibres or films. Here, we report the fabrication of high-quality ultra-drawn polyethylene nanofibres with diameters of 50-500 nm and lengths up to tens of millimetres. The thermal conductivity of the nanofibres was found to be as high as approximately 104 W m(-1) K(-1), which is larger than the conductivities of about half of the pure metals. The high thermal conductivity is attributed to the restructuring of the polymer chains by stretching, which improves the fibre quality toward an 'ideal' single crystalline fibre. Such thermally conductive polymers are potentially useful as heat spreaders and could supplement conventional metallic heat-transfer materials, which are used in applications such as solar hot-water collectors, heat exchangers and electronic packaging. PMID:20208547

  17. Nanostructurization and thermal properties of polyethylenes' welds

    NASA Astrophysics Data System (ADS)

    Galchun, Anatoliy; Korab, Nikolay; Kondratenko, Volodymyr; Demchenko, Valeriy; Shadrin, Andriy; Anistratenko, Vitaliy; Iurzhenko, Maksym

    2015-03-01

    As it is known, polyethylene (PE) is one of the common materials in the modern world, and PE products take the major share on industrial and trade markets. For example, various types of technical PE like PE-63, PE-80, and PE-100 have wide industrial applications, i.e., in construction, for pipeline systems etc. A rapid development of plastics industry outstrips detailed investigation of welding processes and welds' formation mechanism, so they remain unexplored. There is still no final answer to the question how weld's microstructure forms. Such conditions limit our way to the understanding of the problem and, respectively, prevent scientific approaches to the welding of more complicated (from chemical point of view) types of polymers than PE. Taking into account state-of-the-art, the article presents results of complex studies of PE weld, its structure, thermophysical and operational characteristics, analysis of these results, and basing on that some hypotheses of welded joint and weld structure formation. It is shown that welding of dissimilar types of polyethylene, like PE-80 and PE-100, leads to the formation of better-ordered crystallites, restructuring the crystalline phase, and amorphous areas with internal stresses in the welding zone.

  18. Recycling of irradiated high-density polyethylene

    NASA Astrophysics Data System (ADS)

    Navratil, J.; Manas, M.; Mizera, A.; Bednarik, M.; Stanek, M.; Danek, M.

    2015-01-01

    Radiation crosslinking of high-density polyethylene (HDPE) is a well-recognized modification of improving basic material characteristics. This research paper deals with the utilization of electron beam irradiated HDPE (HDPEx) after the end of its lifetime. Powder of recycled HDPEx (irradiation dose 165 kGy) was used as a filler into powder of virgin low-density polyethylene (LDPE) in concentrations ranging from 10% to 60%. The effect of the filler on processability and mechanical behavior of the resulting mixtures was investigated. The results indicate that the processability, as well as mechanical behavior, highly depends on the amount of the filler. Melt flow index dropped from 13.7 to 0.8 g/10 min comparing the lowest and the highest concentration; however, the higher shear rate the lower difference between each concentration. Toughness and hardness, on the other hand, grew with increasing addition of the recycled HDPEx. Elastic modulus increased from 254 to 450 MPa and material hardness increased from 53 to 59 ShD. These results indicate resolving the problem of further recycling of irradiated polymer materials while taking advantage of the improved mechanical properties.

  19. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. 870.3470 Section 870.3470 Food and Drugs... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. (a) Identification. An intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a...

  20. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. 870.3470 Section 870.3470 Food and Drugs... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. (a) Identification. An intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a...

  1. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. 870.3470 Section 870.3470 Food and Drugs... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. (a) Identification. An intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a...

  2. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. 870.3470 Section 870.3470 Food and Drugs... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. (a) Identification. An intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a...

  3. SECURING CONTAINERIZED HAZARDOUS WASTES WITH POLYETHYLENE RESIN AND FIBERGLASS ENCAPSULATES

    EPA Science Inventory

    This study investigates the fabrication and use of polyethylene resin and fiberglass to encapsulate and secure containerized hazardous wastes. Laboratory-scale encapsulates of composite structure were made from powdered, high-density polyethylene (HDPE) and epoxy-resin-wetted fib...

  4. Polyethylene Oxide (PEO) and Polyethylene Glycol (PEG) Polymer Sieving Matrix for RNA Capillary Electrophoresis

    PubMed Central

    Yamaguchi, Yoshinori; Li, Zhenqing; Zhu, Xifang; Liu, Chenchen; Zhang, Dawei; Dou, Xiaoming

    2015-01-01

    The selection of sieving polymer for RNA fragments separation by capillary electrophoresis is imperative. We investigated the separation of RNA fragments ranged from 100 to 10,000 nt in polyethylene glycol (PEG) and polyethylene oxide (PEO) solutions with different molecular weight and different concentration. We found that the separation performance of the small RNA fragments (<1000 nt) was improved with the increase of polymer concentration, whereas the separation performance for the large ones (>4000 nt) deteriorated in PEG/PEO solutions when the concentration was above 1.0%/0.6%, respectively. By double logarithmic plot of mobility and RNA fragment size, we revealed three migration regimes for RNA in PEG (300-500k) and PEO (4,000k). Moreover, we calculated the smallest resolvable nucleotide length (Nmin) from the resolution length analysis. PMID:25933347

  5. Vacuum Outgassing of High Density Polyethylene

    SciTech Connect

    Dinh, L N; Sze, J; Schildbach, M A; Chinn, S C; Maxwell, R S; Raboin, P; McLean II, W

    2008-08-11

    A combination of thermogravimetric analysis (TGA) and temperature programmed decomposition (TPD) was employed to identify the outgassing species, the total amount of outgassing, and the outgassing kinetics of high density polyethylene (HDPE) in a vacuum environment. The isoconversional kinetic analysis was then used to analyze the outgassing kinetics and to predict the long-term outgassing of HDPE in vacuum applications at ambient temperature. H{sub 2}O and C{sub n}H{sub x} with n as high as 9 and x centering around 2n are the major outgassing species from solid HDPE, but the quantities evolved can be significantly reduced by vacuum baking at 368 K for a few hours prior to device assembly.

  6. Thermoviscoelastic models for polyethylene thin films

    NASA Astrophysics Data System (ADS)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-02-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach is that the experimentally inaccessible out-of-plane material properties are determined by fitting the model predictions to the measured nonlinear behavior of the film. Creep tests, uniaxial tension tests, and biaxial bubble tests are used to determine the material parameters. The model has been validated experimentally, against data obtained from uniaxial tension tests and biaxial cylindrical tests at a wide range of temperatures and strain rates spanning two orders of magnitude.

  7. Investigation of Raman spectra of polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Zhu, Changjun; Tong, Na; Song, Lixin; Zhang, Guoqing

    2015-08-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1750 cm-1, while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1750 cm-1 and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated.

  8. Thermal analysis of polyethylene + X% carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lozovyi, Fedir; Ivanenko, Kateryna; Nedilko, Sergii; Revo, Sergiy; Hamamda, Smail

    2016-02-01

    The aim of this research is to study the influence of the multi-walled carbon nanotubes (MWCNTs) on the thermomechanical and structural properties of high-density polyethylene. Several, complementary experimental techniques were used, namely, dilatometry, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman spectroscopy, and infrared (IR) spectroscopy. Dilatometry data showed that nanocomposites exhibit anisotropic behavior, and intensity of the anisotropy depends on the MWCNT concentration. The shapes of the dilatometric curves of the nanocomposites under study differ significantly for the radial and longitudinal directions of the samples. DSC results show that MWCNTs weekly influence calorimetry data, while Raman spectra show that the I D/ I G ratio decreases when MWCNT concentration increases. The IR spectra demonstrate improvement of the crystallinity of the samples as the content in MWCNTs rises.

  9. Polyethylene oxide hydration in grafted layers

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  10. Crosslinked polyethylene foams, via EB radiation

    NASA Astrophysics Data System (ADS)

    Cardoso, E. C. L.; Lugão, A. B.; Andrade E. Silva, L. G.

    1998-06-01

    Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to theses foams, imparts opitmum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine: building and insulation: packaging: domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203° C as the right blowing agent decomposition temperature. At a 22.7 kGy/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time.

  11. Depolymerization of polyethylene terephthalate in supercritical methanol

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu; Koyamoto, Hiroshi; Kodama, Akio; Hirose, Tsutomu; Nagaoka, Shoji

    2002-11-01

    The degradation of polyethylene terephthalate (PET) in supercritical methanol was investigated with the aim of developing a process for chemical recycling of waste plastics. A batch reactor was used at temperatures of 573-623 K under an estimated pressure of 20 MPa for a reaction time of 2-120 min. PET was decomposed to its monomers, dimethyl terephthalate and ethylene glycol, by methanolysis in supercritical methanol. The reaction products were analysed using size-exclusion chromatography, gas chromatography-mass spectrometry, and reversed-phase liquid chromatography. The molecular weight distribution of the products was obtained as a function of reaction time. The yields of monomer components of the decomposition products including by-products were measured. Continuous kinetics analysis was performed on the experimental data.

  12. Thermal conductivity of electrospun polyethylene nanofibers.

    PubMed

    Ma, Jian; Zhang, Qian; Mayo, Anthony; Ni, Zhonghua; Yi, Hong; Chen, Yunfei; Mu, Richard; Bellan, Leon M; Li, Deyu

    2015-10-28

    We report on the structure-thermal transport property relation of individual polyethylene nanofibers fabricated by electrospinning with different deposition parameters. Measurement results show that the nanofiber thermal conductivity depends on the electric field used in the electrospinning process, with a general trend of higher thermal conductivity for fibers prepared with stronger electric field. Nanofibers produced at a 45 kV electrospinning voltage and a 150 mm needle-collector distance could have a thermal conductivity of up to 9.3 W m(-1) K(-1), over 20 times higher than the typical bulk value. Micro-Raman characterization suggests that the enhanced thermal conductivity is due to the highly oriented polymer chains and enhanced crystallinity in the electrospun nanofibers. PMID:26412240

  13. Thermal conductivity of electrospun polyethylene nanofibers

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Zhang, Qian; Mayo, Anthony; Ni, Zhonghua; Yi, Hong; Chen, Yunfei; Mu, Richard; Bellan, Leon M.; Li, Deyu

    2015-10-01

    We report on the structure-thermal transport property relation of individual polyethylene nanofibers fabricated by electrospinning with different deposition parameters. Measurement results show that the nanofiber thermal conductivity depends on the electric field used in the electrospinning process, with a general trend of higher thermal conductivity for fibers prepared with stronger electric field. Nanofibers produced at a 45 kV electrospinning voltage and a 150 mm needle-collector distance could have a thermal conductivity of up to 9.3 W m-1 K-1, over 20 times higher than the typical bulk value. Micro-Raman characterization suggests that the enhanced thermal conductivity is due to the highly oriented polymer chains and enhanced crystallinity in the electrospun nanofibers.

  14. Crystallization of polyethylenes at very high supercooling

    NASA Astrophysics Data System (ADS)

    Wagner, John Edward

    The crystallization behavior of a series of ethylene-octene copolymers synthesized using metallocene catalysts has been studied using the Ding-Spruiell method of rapid cooling. In conventional crystallization experiments it was found, as expected, that the spherulite growth rates varied with octene content and molecular weight. When studied at rapid cooling rates the polymers generate their own pseudo-isothermal crystallization temperatures, in agreement with Ding-Spruiell's studies on other systems, however, at the lowest temperatures of crystallization, the spherulite growth rates of all the copolymers studied merge. The WAXD results indicate at the faster crystallization rates that the size of the unit cell unit decreases with decreasing crystallization temperature. A resulting increase in the surface free energy plays a role in the behavior of the copolymers such that spherulitic growth rates of copolymers begin to surpass that of the linear polyethylene at very high supercooling. This is a change in the behavior of the copolymers that should be of considerable relevance to polymer processing conditions. Spinodal transformation could play of role in the leveling off of growth rates at high supercooling. The crystallization and morphology of four LLDPE samples produced using metallocene catalysts through the copolymerization of ethylene and octene has been studied. The second part of the study is primarily concerned with the growth kinetics obtained through experimentally determined growth rates at different crystallization temperatures of low and high molecular weight samples. Using experimentally determined equilibrium melting points secondary nucleation behavior is studied in detail. Three Regimes are seen for a molecular weight 101,000 with no branching and at 60,000 with branching at 4 octenes per 1000 carbons. Two Regimes have been obtained for a sample of similar molecular weight but with branching at 17 octenes per 1000 carbons. Lamellar thickness data in the rapid cooling region correlate well with previous studies of the equilibrium melting temperature of the linear polyethylene. Andrews plot data shows a three-stem nucleus in Regime III.

  15. Myocardial Matrix-Polyethylene Glycol Hybrid Hydrogels for Tissue Engineering

    PubMed Central

    Grover, Gregory N.; Rao, Nikhil

    2014-01-01

    Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of thirty minutes, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in four minutes upon irradiation allowing for 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications. PMID:24334615

  16. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering.

    PubMed

    Grover, Gregory N; Rao, Nikhil; Christman, Karen L

    2014-01-10

    Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of 30 min, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in 4 min upon irradiation, allowing 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates that PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications. PMID:24334615

  17. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  18. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  19. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  20. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  1. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  2. Cross-linked polystyrene sulfonic acid and polyethylene glycol as a low-fouling material.

    PubMed

    Alghunaim, Abdullah; Zhang Newby, Bi-Min

    2016-04-01

    A negatively charged hydrophilic low fouling film was prepared by thermally cross-linking a blend consisting of polystyrene sulfonic acid (PSS) and polyethylene glycol (PEG). The film was found to be stable by dip-washing. The fouling resistance of this material toward bacterial (Escherichia coli) and colloidal (polystyrene particles) attachment, non-specific protein (fibronectin) adsorption and cell (3T3 NIH) adhesion was evaluated and was compared with glass slides modified with polyethylene glycol (PEG) brushes, oxidized 3-mercaptopropyltrimethoxysilane (sulfonic acid, SA), and n-octadecyltrichlorosilane (OTS). The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and thermodynamic models based on surface energy were used to explain the interaction behaviors of E. coli/polystyrene particles-substrate and protein-substrate interactions, respectively. The cross-linked PSS-PEG film was found to be slightly better than SA and PEG toward resisting non-specific protein adsorption, and showed comparable low attachment results as those of PEG toward particle, bacterial and NIH-3T3 cells adhesion. The low-fouling performance of PSS-PEG, a cross-linked film by a simple thermal curing process, could allow this material to be used for applications in aqueous environments, where most low fouling hydrophilic polymers, such as PSS or PEG, could not be easily retained. PMID:26812639

  3. Redox-labelled poly(ethylene glycol) used as a diffusion probe in poly(ethylene glycol) melts

    SciTech Connect

    Haas, O.; Velasquez, C.; Porat, Z.

    1995-12-01

    Ferrocene labelled monomethyl poly(ethylene glycol) MPEG with molecular weights of 1900 and 750 was prepared and used as an electrochemical diffusion probe in poly(ethylene glycol) melts. Cyclic voltammetry and chronoamperometry were used in connection with microdisk electrodes to measure the diffusion coefficient of redox tagged molecules using melted poly(ethylene glycol) as a solvent. The molecular weight of the solvent polymer was 750, 2000 and 20000. Results from the temperature dependency of the diffusion process and of the viscosity and conductivity of the polymer electrolyte are presented and discussed.

  4. Creep behavior of 6 micrometer linear low density polyethylene film

    NASA Technical Reports Server (NTRS)

    Simpson, J. M.; Schur, W. W.

    1993-01-01

    Creep tests were performed to provide material characteristics for a 6.4-micron polyethylene film used to construct high altitude balloons. Results suggest simple power law relationships are adequate for stresses below about 4.83 MPa.

  5. DISSIPATION OF FIELD APPLIED HERBICIDES FROM LOW DENSITY POLYETHYLENE MULCH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies evaluated dissipation of herbicides from low density polyethylene mulch (LDPM). Herbicide dissipation was measured under dry conditions and following irrigation events. Halosulfuron, paraquat, carfentrazone, glyphosate, and oxyfluorfen were applied to black 1.5-mil LDPM at concentrat...

  6. The mechanical properties of density graded hemp/polyethylene composites

    NASA Astrophysics Data System (ADS)

    Dauvegis, Raphaël; Rodrigue, Denis

    2015-05-01

    In this work, the production and mechanical characterization of density graded biocomposites based on high density polyethylene and hemp fibres was performed. The effect of coupling agent addition (maleated polyethylene) and hemp content (0-30%) was studied to determine the effect of hemp distribution (graded content) inside the composite (uniform, linear, V and Λ). Tensile and flexural properties are reported to compare the structures, especially in terms of their stress-strain behaviors under tensile loading.

  7. Polyethylene/Boron Composites for Radiation Shielding Applications

    SciTech Connect

    Harrison, Courtney; Grulke, Eric; Burgett, Eric; Hertel, Nolan

    2008-01-21

    Multifunctional composites made with boron are absorbers of low energy nuetrons, and could be used for structural shielding materials. Polyethylene/boron carbide composites were fabricated using conventional polymer processing techniques, and were evaluated for mechanical and radiation shielding properties. Addition of neat boron carbide (powder and nanoparticles) to an injection molding grade HPDE showed superior mechanical properties compared to neat HDPE. Radiation shielding measurements of a 2 wt% boron carbide composite were improved over those of the neat polyethylene.

  8. Simple EOS for branched (low-density) polyethylene

    SciTech Connect

    Dowell, F.

    1982-10-01

    A simple equation of state (EOS) for branched (low-density) polyethylene was generated and added to the T-4 Sesame EOS Library as material number 7171. This EOS is intended to replace an earlier EOS (material number 7170) for this substance. This new EOS for polyethylene reproduces the experimental shock Hugoniot data for the initial state density rho/sub o/ = 0.916 g/cm/sup 3/ or Mg/m/sup 3/.

  9. Mobile NMR for Analysis of Polyethylene Pipes

    NASA Astrophysics Data System (ADS)

    Blümich, B.; Casanova, F.; Buda, A.; Kremer, K.; Wegener, T.

    2006-07-01

    NMR relaxometry is a suitable tool to determine the morphology of semi-crystalline polymers by its ability to discriminate between rigid, mostly crystalline and soft, usually amorphous material. The NMR-MOUSE® (nuclear magnetic resonance mobile universal surface explorer) was explored in this work to supply morphological data of poly(ethylene) pipes nondestructively. PE-100 pipes were investigated in the new state, after squeezing them flat, and after annealing well below the glass temperature. Furthermore, the change in morphology induced by a pressure load from the inside and a point load from the outside was investigated as a function of depth, and the morphology change across a welding line was imaged. A shear-band was detected by destructive high-field NMR imaging in an area of severe deformation of a pipe, where an anomalous depths profile was observed by the NMR-MOUSE. These results demonstrate that the NMR-MOUSE is a suitable tool for non-destructive state assessment of polymer pipes on the basis of laboratory reference data.

  10. Organocatalytic decomposition of polyethylene terephthalate using triazabicyclodecene

    NASA Astrophysics Data System (ADS)

    Lecuyer, Julien Matsumoto

    This study focuses on the organocatalytic decomposition of polyethylene terephthalate (PET) using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to form a diverse library of aromatic amides. The reaction scheme was specifically designed to use low reaction temperatures (>150°C) and avoid using solvents during the reaction to provide a more environmentally friendly process. Of all the amines tested, PET aminolysis with aliphatic and aromatic amines demonstrated the best performance with yields higher than 72%. PET aminolysis with click functionalized and non-symmetric reagents facilitated attack on certain sites on the basis of reactivity. Finally, the performance of the PET degradation reactions with secondary amine and tertiary amine functionalized reagents yielded mixed results due to complications with isolating the product from the crude solution. Four of the PET-based monomers were also selected as modifiers for epoxy hardening to demonstrate the ability to convert waste into monomers for high-value applications. The glass transition temperatures, obtained using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) of the epoxy composite samples treated with the PET-based monomers, were generally higher in comparison to the samples cured with the basic diamines due to the hydrogen bonding and added rigidity from the aromatic amide group. Developing these monomers provides a green and commercially viable alternative to eradicating a waste product that is becoming an environmental concern.

  11. Polyethylene degradation in a coal liquefaction environment

    SciTech Connect

    Rothenberger, K.S.; Cugini, A.V.; Thompson, R.L.

    1996-12-31

    The coprocessing of coal with waste materials such as plastic has shown promise as an economical means to recover the inherent value of the wastes while producing useful products. Polyethylene (PE) is one of the dominant plastic materials; recent statistics indicate that low- and high-density PE together make up about half of all municipal plastic waste. The degradation of PE in a pyrolysis environment has been well studied, and pyrolysis-based methods for the conversion of PE to fuels have been published. However, recent studies have shown that PE is among the most difficult plastics to convert in the traditional liquefaction environment, particularly in the presence of coal and/or donor solvents. The coal liquefaction environment is quite different than that encountered during thermal or catalytic pyrolysis. Understanding the degradation behavior of PE in the liquefaction environment is important to development of a successful scheme for coprocessing coal with plastics. In this paper, a novel analytical method has been developed to recover incompletely reacted PE from coprocessing product streams. Once separated from the coal-derived material, gel permeation chromatography, a conventional polymer characterization technique, was applied to the recovered material to ascertain the nature of the changes that occurred to the PE upon processing in a bench-scale continuous liquefaction unit. In a separate phase of the project, 1-L semi-batch reactions were performed to investigate the reactivity of PE and coal-PE mixtures as a function of temperature.

  12. Theory of the deformation of aligned polyethylene

    PubMed Central

    Hammad, A.; Swinburne, T. D.; Hasan, H.; Del Rosso, S.; Iannucci, L.; Sutton, A. P.

    2015-01-01

    Solitons are proposed as the agents of plastic and viscoelastic deformation in aligned polyethylene. Interactions between straight, parallel molecules are mapped rigorously onto the Frenkel–Kontorova model. It is shown that these molecular interactions distribute an applied load between molecules, with a characteristic transfer length equal to the soliton width. Load transfer leads to the introduction of tensile and compressive solitons at the chain ends to mark the onset of plasticity at a well-defined yield stress, which is much less than the theoretical pull-out stress. Interaction energies between solitons and an equation of motion for solitons are derived. The equation of motion is based on Langevin dynamics and the fluctuation–dissipation theorem and it leads to the rigorous definition of an effective mass for solitons. It forms the basis of a soliton dynamics in direct analogy to dislocation dynamics. Close parallels are drawn between solitons in aligned polymers and dislocations in crystals, including the configurational force on a soliton. The origins of the strain rate and temperature dependencies of the viscoelastic behaviour are discussed in terms of the formation energy of solitons. A failure mechanism is proposed involving soliton condensation under a tensile load. PMID:26339196

  13. Renewable polyethylene mimics derived from castor oil.

    PubMed

    Türünç, Oĝuz; Montero de Espinosa, Lucas; Meier, Michael A R

    2011-09-01

    An increasing number of reports on the syntheses of carbohydrate- and plant oil-based polymers has been published in ongoing efforts to produce plastic materials from renewable resources. Although many of these polymers are biodegradable and this is a desirable property for certain applications, in some cases non-degradable polymers are needed for long-term use purposes. Polyolefins are one of the most important classes of materials that have already taken their places in our daily life. On the other hand, their production relies on fossil resources. Therefore, within this contribution, we discuss synthetic routes toward a number of polyethylene mimics derived from fatty acids via thiol-ene and ADMET polymerization reactions in order to establish more sustainable routes toward this important class of polymers. Two different diene monomers were thus prepared from castor oil derived platform chemicals, their polymerization via the two mentioned routes was optimized and compared to each other, and their thermal properties were investigated. PMID:21710532

  14. Rotational molding of pultruded profiles reinforced polyethylene

    NASA Astrophysics Data System (ADS)

    Greco, Antonio; Maffezzoli, Alfonso; Romano, Giorgio

    2014-05-01

    The aim of this paper is the production of fiber reinforced LLDPE components by rotational molding. To this purpose, a process upgrade was developed, for the incorporation of pultruded tapes in the rotational molding cycle. Pultruded tapes, made of 50% by weight of glass fibers dispersed in a high density polyethylene(HDPE) matrix, were glued on the internal surface of a cubic mold, and rotational molding process was run using the same processing conditions used for conventional LLDPE processing. During processing, melting of LLDPE powders and of HDPE allowed to incorporate the tapes inside rotational molded LLDPE. The glass fiber reinforced prototypes were characterized in terms of mechanical properties. Plate bending tests were performed on the square faces extracted from the rotational molded product. The rotational molding products were also subjected to internal hydrostatic pressure tests up to 10 bar. In any case, no failure of the cubic samples was observed. In both cases, it was found that addition of a single pultruded strips, which corresponds to addition of about 0.6% by weight of glass fibers, involved an increase of the stiffness of the faces by about 25%.

  15. Polarimetric studies of polyethylene terephtalate flexible substrates

    NASA Astrophysics Data System (ADS)

    Stchakovsky, M.; Garcia-Caurel, E.; Warenghem, M.

    2008-12-01

    Polymer sheets are currently used worldwide in a wide range of applications. The manufacturing process of these sheets involves extruding machines that stretch the material in both lateral and longitudinal directions with respect to the machine direction, thus inducing birefringence. In most cases, the film obtained is optically biaxial. Polarimetric spectroscopy (Ellipsometry and Mueller Matrix) combined with conoscopic observation are the methods of choice to study these properties. In this work we report an analysis of commercially available polyethylene terephtalate (PET) films used as substrate for food packaging as well as for embedded electronic devices such as solar cells or flexible displays. Initial observation of these films through polarizing microscope in conoscopic mode reveals first the trace of optical axis plane with respect to the film surface and second, whether the optical axis is acute or not. This preliminary study allows optimal sample positioning for further polarimetric studies. The measurements and modelling are done in both reflection and transmission mode on several spectroscopic polarimetric setups from UV to NIR. The models give as a main result, the dielectric tensor of the film as well as its orientation with respect to the laboratory reference frame.

  16. Confinement-induced vitrification in polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Baltá Calleja, F. J.; di Marco, G.; Flores, A.; Pieruccini, M.

    2007-06-01

    Dynamic mechanical thermal analysis performed on cold-drawn polyethylene terephthalate (PET), cold crystallized (annealed) in the temperature interval 100-140°C , reveals the presence of marginally glassy domains above the annealing temperature Ta . This suggests that the thermodynamic force driving crystallization causes the structural arrest of some noncrystalline domains. The latter thus need a temperature higher than Ta to completely defreeze. Differential scanning calorimetry supports this point of view. Analogous investigations on unoriented PET, cold crystallized in the same conditions, do not show the same peculiarities; thus, chain orientation is relevant to vitrification. This phenomenology is first cast in the language of thermodynamics by introducing an excess chemical potential δμ describing the presence of structural constraints in the amorphous domains and the effect of chain orientation. For a first test of this picture, the orientation contribution to δμ is calculated by means of the Gaussian chain model (this implicitly assumes that δμ is related to the density fluctuations). The resulting expression is then used to discuss the structural differences between cold-drawn and unoriented PET samples reported in the literature.

  17. Launch Vehicle with Combustible Polyethylene Case Gasification Chamber Design Basis

    NASA Astrophysics Data System (ADS)

    Yemets, V.

    A single-stage launch vehicle equipped with a combustible tank shell of polyethylene and a moving propulsion plant is proposed. The propulsion plant is composed of a chamber for the gasification of the shell, a compressor of pyrolysed polyethylene and a magnetic powder obturator. It is shown that the “dental” structure of the gasification chamber is necessary to achieve the necessary contact area with the polyethylene shell. This conclusion is drawn from consideration of the thermo- physical properties of polyethylene, calculating quasisteady temperature field in the gasification chamber, estimating gasification rate of polyethylene, launch vehicle shortening rate and area of gasification. Experimental determination of the gasification rate is described. The gasification chamber specific mass as well as the propulsion plant weight-to-thrust ratio are estimated under some assumptions concerning the obturator and compressor. Combustible launch vehicles are compared with conventional launch vehicles taking into consideration their payload mass ratios. Combustible launchers are preferable as small launchers for micro and nano satellites. Reusable versions of such launchers seem suitable if polyethylene tank shells filled with metal or metal hydride fine dusts are used.

  18. Effect of sodium chloride on solute-solvent interactions in aqueous polyethylene glycol-sodium sulfate two-phase systems.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-12-18

    Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215M NaCl and 0.5M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215M NaCl system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive. PMID:26615710

  19. Tribological characteristics of polyethylene glycol (PEG) as a lubricant for wear resistance of ultra-high-molecular-weight polyethylene (UHMWPE ) in artificial knee join.

    PubMed

    Kobayashi, Masanori; Koide, Takayuki; Hyon, Suong-Hyu

    2014-10-01

    For the longevity of total knee joint prostheses, we have developed an artificial lubricant using polyethylene glycol (PEG) for the prevention of wear of ultra-high-molecular-weight polyethylene (UHMWPE). In the present study, the lubricative function of this PEG lubricant was evaluated by a wear test using Co-Cr alloy and UHMWPE counter surface samples. As a result, human synovial fluid including the PEG lubricant showed good result regarding the wear volume and a worn surface of UHMWPE. Considering its lubrication mechanism, it is suspected that interaction between the PEG molecules and the proteins in synovial fluid was involved. Since PE molecules are also organic compounds having a hydroxyl group at one or both ends, the albumin and PEG molecule complex would have bound more strongly to the metal oxide surface and UHMWPE surfaces might enhance and stabilize the lubricating film between the contact surfaces under the boundary lubrication. This study suggests that PEG lubricant as an intra-articular viscous supplement has the potential to prevent wear of UHMWPE by mixing with synovial fluid and to contribute to the longevity of knee joint prostheses. PMID:25016174

  20. Surface modification of polyethersulfone membranes by blending triblock copolymers of methoxyl poly(ethylene glycol)-polyurethane-methoxyl poly(ethylene glycol).

    PubMed

    Huang, Jingyun; Xue, Jimin; Xiang, Kewei; Zhang, Xu; Cheng, Chong; Sun, Shudong; Zhao, Changsheng

    2011-11-01

    The surface of polyethersulfone (PES) membrane was modified by blending triblock copolymers of methoxyl poly(ethylene glycol)-polyurethane-methoxyl poly(ethylene glycol) (mPEG-PU-mPEG), which were synthesized through solution polymerization with mPEG Mns of 500 and 2000, respectively. The PES and PES/mPEG-PU-mPEG blended membranes were prepared through spin coating coupled with liquid-liquid phase separation. FTIR and (1)H NMR analysis confirmed that the triblock copolymers were successfully synthesized. The functional groups and morphologies of the membranes were studied by ATR-FTIR and SEM, respectively. It was found that the triblock copolymers were blended into PES membranes successfully, and the morphologies of the blended membranes were somewhat different from PES membrane. The water contact angles and platelet adhesion were decreased after blending mPEG-PU-mPEG into PES membranes. Meanwhile, the activated partial thromboplastin time (APTT) for the blended membranes increased. The anti-protein-fouling property and permeation property of the blended membranes improved obviously. SEM observation and 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay proved the surfaces of the blended membranes promoted human hepatocytes adhesion and proliferation better than PES membrane. PMID:21802912

  1. Engineering Poly(ethylene glycol) Materials to Promote Cardiogenesis

    NASA Astrophysics Data System (ADS)

    Smith, Amanda Walker

    Heart failure is one of the leading causes of death worldwide, and the current costs of treatment put a significant economic burden on our societies. After an infarction, fibrotic tissue begins to form as part of the heart failure cascade. Current options to slow this process include a wide range of pharmaceutical agents, and ultimately the patient may require a heart transplant. Innovative treatment approaches are needed to bring down costs and improve quality of life. The possibility of regenerating or replacing damaged tissue with healthy cardiomyocytes is generating considerable excitement, but there are still many obstacles to overcome. First, while cell injections into the myocardium have demonstrated slight improvements in cardiac function, the actual engraftment of transplanted cells is very low. It is anticipated that improving engraftment will boost outcomes. Second, cellular differentiation and reprogramming protocols have not yet produced cells that are identical to adult cardiomyocytes, and immunogenicity continues to be a problem despite the advent of autologously derived induced pluripotent stem cells. This dissertation will explore biomaterials approaches to addressing these two obstacles. Tissue engineering scaffolds may improve cell engraftment by providing bioactive factors, preventing cell anoikis, and reducing cell washout by blood flow. Poly(ethylene glycol) (PEG) is often used as a coating to reduce implant rejection because it is highly resistant to protein adsorption. Because fibrosis of a material in contact with the myocardium could cause arrhythmias, PEG materials are highly relevant for cardiac tissue engineering applications. In Chapter 2, we describe a novel method for crosslinking PEG microspheres around cells to form a scaffold for tissue engineering. We then demonstrate that HL-1 cardiomyocyte viability and phenotype are retained throughout the fabrication process and during the first 7 weeks of culture. In the third chapter of the dissertation, we demonstrate that the use of PEG cell culture substrates can improve efficiency of direct reprogramming from fibroblasts to cardiomyocytes for cell transplantation. Standard tissue culture plastic adsorbs proteins from the cell media, increasing experimental variability via non-specific signaling. Because of its protein resistant properties, PEG provides cells with highly specific signals. In addition to improving the efficiency, we found that presentation of RGD peptides stimulated proliferation during reprogramming. Combined, the improvements enabled us to approximately double the number of cardiomyocytes produced by the protocol. In Chapter 4, we explore the effects of 3D culture on the direct reprogramming protocol described in Chapter 3. We demonstrate that the variables involved in 3D culture, including scaffold material, diffusion, cellular remodeling, and scaffold topography, have significant effects on reprogramming efficiency. This chapter provides the groundwork for future studies developing 3D microenvironments for efficient and scalable reprogramming to cardiomyocytes.

  2. A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics

    PubMed Central

    Lee, Hwankyu; de Vries, Alex H.; Marrink, Siewert-Jan; Pastor, Richard W.

    2010-01-01

    A coarse-grained (CG) model for polyethylene oxide (PEO) and polyethylene glycol (PEG) developed within the framework of the MARTINI CG force field (FF) using the distributions of bonds, angles, and dihedrals from the CHARMM all-atom FF is presented. Densities of neat low molecular weight PEO agree with experiment, and the radius of gyration Rg = 19.1 ű0.7 for 76-mers of PEO (Mw ≈ 3400), in excellent agreement with neutron scattering results for an equal sized PEG. Simulations of 9, 18, 27, 36, 44, 67, 76, 90, 112, 135, and 158-mers of the CG PEO (442 < Mw < 6998) at low concentration in water show the experimentally observed transition from ideal chain to real chain behavior at 1600 < Mw < 2000, in excellent agreement with the dependence of experimentally observed hydrodynamic radii of PEG. Hydrodynamic radii of PEO calculated from diffusion coefficients of the higher Mw PEO also agree well with experiment. Rg calculated from both all-atom and CG simulations of PEO76 at 21 and 148 mg/cm3 are found to be nearly equal. This lack of concentration dependence implies that apparent Rg from scattering experiments at high concentration should not be taken to be the chain dimension. Simulations of PEO grafted to a nonadsorbing surface yield a mushroom to brush transition that is well described by the Alexander-de Gennes formalism. PMID:19754083

  3. Effect of amine functionalized polyethylene on clay-silver dispersion for polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Sánchez-Valdes, S.; Ibarra-A, M. C.; Ramírez-V, E.; Ramos-V, L. F.; Martinez-C, J. G.; Romero-G, J.; Ledezma-P, A. S.; Rodriguez-F, O. S.

    2014-08-01

    The compatibilization provided by maleic anhydride (MA) and 2-[2-(dimethylamino)-ethoxy] ethanol (DMAE) functionalized polyethylene for forming polyethylene-based nanocomposites was studied and compared. MA was grafted into PE by melt mixing to obtain PEgMA (compatibilizer 1), thereafter, PEgMA was reacted with DMAE and an antioxidant also by melt mixing to obtain PAgDMAE (compatibilizer 2). These compatibilizers were reacted using ultrasound with a solution of AgNO3 0.04 M and Ethylene glycol. Ammonium hydroxide was added in a ratio of 2:1 molar with respect to silver nitrate. These silver coated compatibilizers were mixed with PE and nano-clay (Cloisite I28E), thus forming the different hybrid PE-clay-silver nanocomposites. FTIR confirmed the formation of these two compatibilizers. All the compatibilized nanocomposites had better filler (clay and silver) dispersion and exfoliation compared to the uncompatibilized PE nanocomposites. X-ray diffraction, mechanical and antimicrobial properties attained showed that the PEgDMAE produced the better dispersed PE, clay and silver nanocomposites. The obtained nanocomposites showed outstanding antimicrobial properties against bacteria, Escherichia coli and fungus, Aspergillus niger. It is concluded that the PEgDMAE offers an outstanding capability for preparing nanocomposites with highly exfoliated and dispersed filler into the PE matrix.

  4. Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films.

    PubMed

    Sabetzadeh, Maryam; Bagheri, Rouhollah; Masoomi, Mahmood

    2015-03-30

    In this work, low-density polyethylene/linear low-density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) films are prepared with the aim of obtaining environmentally friendly materials containing high TPS content with required packaging properties. Blending of LDPE/LLDPE (70/30 wt/wt) with 5-20 wt% of TPS and 3 wt% of PE-grafted maleic anhydride (PE-g-MA) is performed in a twin-screw extruder, followed by the blowing process. Differential scanning calorimetric results indicate starch has more pronounced effect on crystallization of LLDPE than LDPE. Scanning electron micrograph shows a fairly good dispersion of TPS in PE matrices. Fourier transfer infrared spectra confirm compatibility between polymers using PE-g-MA as the compatibilizer. Storage modulus, loss modulus and complex viscosity increase with incorporation of starch. Tensile strength and elongation-at-break decrease from 18 to 10.5 MPa and 340 to 200%, respectively when TPS increases from 5 to 20%. However, the required mechanical properties for packaging applications are attained when 15 wt% starch is added, as specified in ASTM D4635. Finally 12% increase in water uptake is achieved with inclusion of 15 wt% starch. PMID:25563952

  5. Analysis of polyethylene wear in plain radiographs

    PubMed Central

    2009-01-01

    Background and purpose Two-dimensional computerized radiographic techniques are frequently used to measure in vivo polyethylene (PE) wear after total hip arthroplasty (THA), and several variables in the clinical set-up may influence the amount of wear that is measured. We compared the repeatability and concurrent validity of linear PE wear on plain radiographs using the same software but a different number of radiographs. Methods We used either 1, 2, or 6 anteroposterior (AP) hip radiographs of 11 patients from a clinical THA series with 12 years of follow-up, and measured the PE wear with the software PolyWare 3D Pro. Repeatability within and concurrent validity between the different numbers of radiograph strategies were assessed using limits of agreement (LOAs) and bias. Results Observed median wear (range) in mm was 3.4 (1.6–4.6), 2.3 (0.7–4.9), and 4.0 (2.6–6.2) for the 1-, 2-, and 6-radiograph strategies. For repeatability, no bias (p > 0.41) was observed. LOAs around the bias were ± 0.6, ± 0.4, and ± 1.2 mm for the 1-, 2-, and 6-radiograph strategies. For concurrent validity, a bias (± LOA) between all pairwise comparisons was observed (p < 0.02) with 0.8 mm (± 2.5) between the 1- and 2-radiograph strategies, 1.0 mm (± 2.2) between the 1- and 6-radiograph strategies, and 1.8 mm (± 1.2) between the 2- and 6-radiograph strategies. Interpretation The number of radiographs used for wear measurement with a shadow-casting analysis method on plain AP radiographs influences the amount of linear wear measured. Results of PE wear obtained with PolyWare in studies using a different number of radiographs are not comparable. PMID:19995318

  6. Wear of highly crosslinked polyethylene acetabular components

    PubMed Central

    Callary, Stuart A; Solomon, Lucian B; Holubowycz, Oksana T; Campbell, David G; Munn, Zachary; Howie, Donald W

    2015-01-01

    Background and purpose Wear rates of highly crosslinked polyethylene (XLPE) acetabular components have varied considerably between different published studies. This variation is in part due to the different techniques used to measure wear and to the errors inherent in measuring the relatively low amounts of wear in XLPE bearings. We undertook a scoping review of studies that have examined the in vivo wear of XLPE acetabular components using the most sensitive method available, radiostereometric analysis (RSA). Methods A systematic search of the PubMed, Scopus, and Cochrane databases was performed to identify published studies in which RSA was used to measure wear of XLPE components in primary total hip arthroplasty (THA). Results 18 publications examined 12 primary THA cohorts, comprising only 260 THAs at 2–10 years of follow-up. The mean or median proximal wear rate reported ranged from 0.00 to 0.06 mm/year. However, differences in the manner in which wear was determined made it difficult to compare some studies. Furthermore, differences in RSA methodology between studies, such as the use of supine or standing radiographs and the use of beaded or unbeaded reference segments, may limit future meta-analyses examining the effect of patient and implant variables on wear rates. Interpretation This scoping review confirmed the low wear rates of XLPE in THA, as measured by RSA. We make recommendations to enhance the standardization of reporting of RSA wear results, which will facilitate early identification of poorly performing implants and enable a better understanding of the effects of surgical and patient factors on wear. PMID:25301435

  7. The Use of an Enzyme-based Sensor Array to Fingerprint Proteomic Signatures of Sera from Different Mammalian Species.

    PubMed

    Tomita, Shunsuke; Yokoyama, Saki; Kurita, Ryoji; Niwa, Osamu; Yoshimoto, Keitaro

    2016-01-01

    A cross-reactive sensor array consisting of polyion complexes (PICs) between anionic enzymes and poly(ethylene glycol)-modified (PEGylated) polyamines has been used to identify the source of mammalian sera. Although the catalytic activity of enzymes was inhibited by PIC formation with PEGylated polyamines, the subsequent addition of sera caused enzyme releases from PICs through competitive interactions between PICs and serum proteins, generating unique response patterns of changes in the enzyme activity. Linear discriminant analysis of the obtained patterns enabled the discrimination of five sera from different mammalian sources. PMID:26860572

  8. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms

    PubMed Central

    Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H. P.

    2015-01-01

    Aim: The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Materials and Methods: Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. Results: All vehicles exhibited bactericidal activity at 100% concentration. Conclusion: Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only. PMID:25992336

  9. Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers.

    PubMed

    Thompson, Jay M; Hsieh, Ching-Hong; Luthy, Richard G

    2015-02-17

    Single-phase passive samplers are gaining acceptance as a method to measure hydrophobic organic contaminant (HOC) concentration in water. Although the relationship between the HOC concentration in water and passive sampler is linear at equilibrium, mass transfer models are needed for nonequilibrium conditions. We report measurements of organochlorine pesticide diffusion and partition coefficients with respect to polyethylene (PE), and present a Fickian approach to modeling HOC uptake by PE in aqueous systems. The model is an analytic solution to Fick's second law applied through an aqueous diffusive boundary layer and a polyethylene layer. Comparisons of the model with existing methods indicate agreement at appropriate boundary conditions. Laboratory release experiments on the organochlorine pesticides DDT, DDE, DDD, and chlordane in well-mixed slurries support the model's applicability to aqueous systems. In general, the advantage of the model is its application in the cases of well-agitated systems, low values of polyethylene-water partioning coefficients, thick polyethylene relative to the boundary layer thickness, and/or short exposure times. Another significant advantage is the ability to estimate, or at least bound, the needed exposure time to reach a desired CPE without empirical model inputs. A further finding of this work is that polyethylene diffusivity does not vary by transport direction through the sampler thickness. PMID:25607420

  10. Polyethylene oxidation in total hip arthroplasty: evolution and new advances.

    PubMed

    Gómez-Barrena, Enrique; Medel, Francisco; Puértolas, José Antonio

    2009-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) remains the gold standard acetabular bearing material for hip arthroplasty. Its successful performance has shown consistent results and survivorship in total hip replacement (THR) above 85% after 15 years, with different patients, surgeons, or designs. As THR results have been challenged by wear, oxidation, and liner fracture, relevant research on the material properties in the past decade has led to the development and clinical introduction of highly crosslinked polyethylenes (HXLPE). More stress on the bearing (more active, overweighted, younger patients), and more variability in the implantation technique in different small and large Hospitals may further compromise the clinical performance for many patients. The long-term in vivo performance of these materials remains to be proven. Clinical and retrieval studies after more than 5 years of in vivo use with HXLPE in THR are reviewed and consistently show a substantial decrease in wear rate. Moreover, a second generation of improved polyethylenes is backed by in vitro data and awaits more clinical experience to confirm the experimental improvements. Also, new antioxidant, free radical scavengers, candidates and the reinforcement of polyethylene through composites are currently under basic research.Oxidation of polyethylene is today significantly reduced by present formulations, and this forgiving, affordable, and wellknown material is still reliable to meet today's higher requirements in total hip replacement. PMID:20111694

  11. In vivo change of elastic property in polyethylene acetabular components.

    PubMed

    Kusaba, Atsushi; Kondo, Saiji; Mori, Yujiro; Kuroki, Yoshikatsu

    2008-01-01

    Polyethylene is an elastic material. It is known that oxidative degradation of polyethylene occurs after sterilization by means of gamma irradiation. However, there have been few detailed reports with regard to the effects of this degradation on the mechanical property, especially in total hip prostheses. The purpose of this study was to examine the change in mechanical property of irradiated and non-irradiated polyethylene cups after implantation. Fifty-six ultra-high molecular-weight polyethylene (UHMWPE) cups retrieved at revision surgery were evaluated. Thirty-two cups were sterilized by gamma irradiation in air and 24 by ethylene oxide gas (EtO). To evaluate the mechanical property of the cup and its regional distribution, Vickers hardness was measured at nine points at the cross-section of the cups. In the irradiated cups, the hardness increased in proportion to the time from sterilization. This phenomenon was not found in the cups sterilized by EtO. Less change of hardness was observed in the cups sterilized by EtO than in those sterilized by irradiation. The gamma-irradiation in air actually affected the elastic property of cup polyethylene in vivo, although any difference in the wear rate was not detected between two sterilization methods. In cases with accelerated wear of the acetabular cup, other factors affecting wear should also be considered. PMID:18292965

  12. Optimizing the surface density of polyethylene glycol chains by grafting from binary solvent mixtures

    NASA Astrophysics Data System (ADS)

    Arcot, Lokanathan; Ogaki, Ryosuke; Zhang, Shuai; Meyer, Rikke L.; Kingshott, Peter

    2015-06-01

    Polyethylene glycol (PEG) brushes are very effective at controlling non-specific deposition of biological material onto surfaces, which is of paramount importance to obtaining successful outcomes in biomaterials, tissue engineered scaffolds, biosensors, filtration membranes and drug delivery devices. We report on a simple 'grafting to' approach involving binary solvent mixtures that are chosen based on Hansen's solubility parameters to optimize the solubility of PEG thereby enabling control over the graft density. The PEG thiol-gold model system enabled a thorough characterization of PEG films formed, while studies on a PEG silane-silicon system examined the versatility to be applied to any substrate-head group system by choosing an appropriate solvent pair. The ability of PEG films to resist non-specific adsorption of proteins was quantitatively assessed by full serum exposure studies and the binary solvent strategy was found to produce PEG films with optimal graft density to efficiently resist protein adsorption.

  13. Initial Stages of Pyrolysis of Polyethylene

    NASA Astrophysics Data System (ADS)

    Popov, Konstantin V.

    Combustion and flammability of plastics are important topics of practical interest directly related to fire safety and recycling of polymeric materials; pyrolysis of the solid is the initial step of its combustion. One of the main ways to study such complicated processes is through detailed mechanistic modeling, in which the process is represented by a set of many elementary reactions. Mechanistic modeling of combustion of plastics is considerably hindered by the lack of necessary kinetic data. In virtually all existing models of polymer pyrolysis the majority of kinetic data used are derived from the corresponding gas phase values of smaller species. The use of gas phase rate constants is, generally, not justified without an experimental justification. In the first part of the work the influence of condensed phase on the rate of scission of a carbon-carbon bond (the reaction that initiates pyrolysis and combustion) in polyethylene (PE) was studied using the method of Reactive Molecular Dynamics (RMD). A method based on a two-step kinetic mechanism was developed to decouple the cage effect from the kinetics of the reaction under study. It was observed that under the conditions of condensed phase the rate constant of C-C bond scission in PE decreased by an order of magnitude compared to that obtained in vacuum. It was also shown that under the conditions of polymer melt the rate constant does not depend on the length of the polymer chain. In the second part of the work the kinetics of liquid phase and gas phase products of PE pyrolysis were studied experimentally using Gas Chromatography and Nuclear Magnetic Resonance. Based on the assumption of applicability of gas phase kinetic data for C-C scission reaction and beta-scission reaction under the conditions of polymer melt, rate constants of hydrogen transfer, radical addition to double bonds, and radical recombination were determined via kinetic modeling of the experimental results. The obtained values of the rate constants were found to be in reasonable agreement with the constants of similar reactions of smaller molecules in the gas phase.

  14. Photochemical modification of polyethylene terephthalate surface

    NASA Astrophysics Data System (ADS)

    Zhu, Zhengmao

    The prospect of obtaining desired surface-mediated characteristics while retaining bulk-mediated physical properties and avoiding potential environmental issues with wet chemical technology lends considerable appeal to photochemical approaches to surface modification. We undertook a combined experimental and computational approach to investigate the effect of deep UV irradiation on the polyethylene terephthalate (PET) surface. Its response to 172 nm UV from a xenon examiner lamp in the absence of oxygen was characterized with X-ray Photoelectron Spectroscopy (XPS), Time of Flight/Secondary Ion Mass Spectrometry (ToF/SIMS), transmission infrared spectroscopy (IR), and Atomic Force Microscopy (AFM). The surface chemistry details suggested that the primary photochemical reactions involved a Norrish type I based decarbonylation and a Norrish type II process yielding terminal carboxylic acid groups, consistent with the possible photochemistry from n-pi* type lowest singlet excited states of PET according to the computational modeling results. By directly populating n-pi* type excited states, 172 nm UV promoted effective surface photochemistry of PET with further helps from the high UV absorptivity and the high surface mobility of the molecules. Utilizing this active surface radical chemistry, a new grafting strategy was developed to impart desirable functional properties to the surface. A broad range of grafting chemicals can be employed in their vapor forms, demonstrated with an alkene or an alkane. Surface analysis with XPS, ToF/SIMS, AFM, and water contact angle measurements confirmed the effectiveness of the approach, supporting the notion of the surface radical initiated processes. A potentially useful anti-stain/soil coating was developed by grafting with a fluorocarbon species. Surface analysis suggested that the grafted fluorocarbon formed a nano-scale self-assembled monolayer. The coating had a similar water contact angle as that of a pure fluoropolymer but a better oil repellency due to the special molecular orientation in the graft layer. A potential antimicrobial application was demonstrated with amine chemicals. Structure characterization and computational modeling results suggested that the photochemistry of the UV active grafting chemicals also played an important role in the grafting process. A double bond structure in the amine species protected the amine functional groups and the resulting coating demonstrated antimicrobial activity against E. coli.

  15. Friction and wear of hydroxyapatite reinforced high density polyethylene against the stainless steel counterface.

    PubMed

    Wang, M; Chandrasekaran, M; Bonfield, W

    2002-06-01

    Hydroxyapatite (HA) reinforced high density polyethylene (HDPE) was invented as a biomaterial for skeletal applications. In this investigation, tribological properties (e.g. wear rate and coefficient of friction) of unfilled HDPE and HA/HDPE composites were evaluated against the duplex stainless steel in dry and lubricated conditions, with distilled water or aqueous solutions of proteins (egg albumen or glucose) being lubricants. Wear tests were conducted in a custom-built test rig for HDPE and HA/HDPE containing up to 40 vol % of HA. It was found that HA/HDPE composites had lower coefficients of friction than unfilled HDPE under certain conditions. HA/HDPE also exhibited less severe fatigue failure marks than HDPE. The degradation and fatigue failure of HDPE due to the presence of proteins were severe for low speed wear testing (100 rpm) as compared to high speed wear testing (200 rpm). This was due possibly to the high shear rate at the contact which could remove any degraded film instantaneously at high sliding speed, while with a low sliding speed the build-up of a degraded layer of protein could occur. The degraded protein layer would stay at the contact for a longer time and mechanical activation would induce adverse reactions, weakening the surface layer of HDPE. Both egg albumen and glucose were found to be corrosive to steel and adversely reactive for HDPE and HA/HDPE composites. The wear modes observed were similar to that of ultra-high molecular weight polyethylene. Specimens tested with egg albumen also displayed higher wear rates, which was again attributed to corrosion accelerated wear. PMID:15348592

  16. Space radiation transport properties of polyethylene-based composites.

    PubMed

    Kaul, R K; Barghouty, A F; Dahche, H M

    2004-11-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples. PMID:15644352

  17. Space radiation transport properties of polyethylene-based composites

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Barghouty, A. F.; Dahche, H. M.

    2004-01-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  18. Radiation Transport Properties of Polyethylene-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K.; Barghouty, A. F.; Dahche, H. M.

    2003-01-01

    Composite materials that can both serve as effective shielding materials against cosmic-ray and energetic solar particles in deep space as well as structural materials for habitat and spacecraft remain a critical and mission enabling piece in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density coupled with high hydrogen content. Polyethylene fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of Polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at NASA's Marshall Space Flight Center and tested against 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  19. Silicon nanowire and polyethylene superhydrophobic surfaces for discrete magnetic microfluidics

    NASA Astrophysics Data System (ADS)

    Egatz-Gómez, Ana; Schneider, John; Aella, P.; Yang, Dongqing; Domínguez-García, P.; Lindsay, Solitaire; Picraux, S. T.; Rubio, Miguel A.; Melle, Sonia; Marquez, Manuel; García, Antonio A.

    2007-10-01

    A microfluidic method to manipulate small drops of water is studied on two different superhydrophobic surfaces. Using this digital magnetofluidic method, water drops containing paramagnetic carbonyl-iron microparticles were displaced on silicon nanowire (Si NW) and low-density polyethylene (LDPE) superhydrophobic surfaces using magnetic fields. Horizontal, vertical, or upside-down drop movement is made possible by the action of capillary forces induced by paramagnetic particles aligning and following a magnetic field, indicating that three-dimensional digital microfluidics is possible. Also, both Si NW and LDPE superhydrophobic surfaces combine surface chemistry with nano and microscale surface roughness to make drop movement possible. Si NW superhydrophobic surfaces were prepared using vapor-liquid-solid growth systems followed by coating with a perfluorinated hydrocarbon. LDPE superhydrophobic surfaces were prepared by growing polyethylene crystals on a polyethylene substrate through careful rate control.

  20. A new 3-layer polyethylene coating for plant application

    SciTech Connect

    Kellner, J.D.; Doheny, A.J. Jr.; Patil, B.B.

    1997-09-01

    A new polyethylene-based coating has been developed for corrosion protection of buried pipelines. The coating is designed to be applied in most existing coating plants using a new spray-applied liquid epoxy primer and a multifunctional polyethylene laminate. The laminate is applied in the solid state to the preheated, epoxy-primed pipe and fused immediately by residual heat fin the pipe. The result is a monolithic coating with no mastic-like components. Details of the coating construction, application technique and results of extensive laboratory testing will be presented.

  1. Molecular order, miscibility, and rheology of molten polyethylenes

    NASA Astrophysics Data System (ADS)

    Hussein, Ibnelwaleed Ali

    New evidence of high-temperature transitions and molecular order in molten polyethylenes is presented, and its influence on the miscibility of polyethylenes is discussed. Thermal and rheological techniques were used to investigate commercial HDPE, LDPE and Ziegler-Natta and Metallocene LLDPEs. Adequate amounts of extra antioxidants were added to the polyethylenes during melt conditioning, following a separate investigation. Polystyrene was utilized to demonstrate the typical behavior of isotropic polymer melts. Temperature sweeps during torque measurements in a melt blender, and when using a rheometer and DSC, showed thermal transitions at about 208°C and 227°C. Torque in the blender over the temperature range 208°--227°C showed a flat profile or an increase in torque near 227°C, unique behavior associated with thermotropic liquid crystal polymers (LCP). Additional support for the liquid-state order that agree with theoretical predictions for a LCP is found. These include indications of an approach to a sign change in the first normal stress difference, N1( ġ ), at low values of the steady shear rate, ġ , and a kink in the non-Newtonian viscosity eta( ġ ). A rheological investigation found no evidence of the attainment of the isotropic state at high temperature and suggested the persistence of order above these transitions. However, highly branched metallocene LLDPE ( ˜ 40 CH3/1000 C) did not show transitions or any evidence of molecular order. It is suggested that polyethylenes possess different molecular conformation in the melt state ranging from the chain-folded HDPE to the amorphous highly-branched LLDPE. It is this molecular order and mismatch of the molecular conformations of different polyethylene structures that provide an explanation for the immiscibility of polyethylenes, as revealed by the dependence of their rheological properties on blend composition. The influence of molecular weight, comonomer type, and mixing temperature on the miscibility of LLDPE and LDPE is discussed. Partial miscibility is observed in blends mixed at a temperature below 208°C, whereas blends mixed above that temperature were almost immiscible. Increasing the branch length of the LLDPE from butene to octene increased miscibility slightly. Literature reporting polyethylene melt behavior is critically reviewed over the last four decades and found to contain many anomalies of molecular order and structural transformations. The scientific community and the polyethylene processing industry need to investigate the implications of these findings.

  2. High Thermal Conductivity Aligned Polyethylene-Graphene Nanocomposites

    NASA Astrophysics Data System (ADS)

    Garg, Jivtesh; Saeidijavash, Mortaza

    We investigate enhancement of thermal conductivity in polyethylene-graphene nanocomposites. The effect of alignment of both the polymer chains and the dispersed graphene flakes on thermal conductivity enhancement will be reported. In this work nanocomposites are prepared through microextrusion of polyethylene pellets and graphene nanopowder. Alignment is achieved through mechanical stretching of the nanocomposites. Thermal conductivity is measured using both Angstrom method and Laser flash. Variables involved in the study are the draw ratio and the weight percentage of graphene nanopowder. Results will shed light on the role of alignment of graphene flakes on enhancing thermal transport and provide new avenues to achieve ultra-high thermal conductivity in polymeric materials.

  3. Molecularly uniform poly(ethylene glycol) certified reference material

    NASA Astrophysics Data System (ADS)

    Takahashi, Kayori; Matsuyama, Shigetomo; Kinugasa, Shinichi; Ehara, Kensei; Sakurai, Hiromu; Horikawa, Yoshiteru; Kitazawa, Hideaki; Bounoshita, Masao

    2015-02-01

    A certified reference material (CRM) for poly(ethylene glycol) with no distribution in the degree of polymerization was developed. The degree of polymerization of the CRM was accurately determined to be 23. Supercritical fluid chromatography (SFC) was used to separate the molecularly uniform polymer from a standard commercial sample with wide polydispersity in its degree of polymerization. Through the use of a specific fractionation system coupled with SFC, we are able to obtain samples of poly(ethylene glycol) oligomer with exact degrees of polymerization, as required for a CRM produced by the National Metrology Institute of Japan.

  4. Irradiation of linear polyethylene - Partitioning between sol and gel.

    NASA Technical Reports Server (NTRS)

    Rijke, A. M.; Mandelkern, L.

    1971-01-01

    Investigation of the importance of chain-scission processes and of the applicability of the general theory of network formation to polyethylene with respect to critical conditions for gelation, using molecular weight fractions of linear polyethylene irradiated at 133 C. The partitioning between sol and gel was found to adhere to the theory just beyond the gel point. Deviations from theory occurred as the irradiation dosage was increased. It was concluded that main-chain scission at the temperatures concerned is not a significant process.

  5. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  6. 75 FR 16428 - Polyethylene Retail Carrier Bags from the Socialist Republic of Vietnam: Final Affirmative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... merchandise. See Polyethylene Retail Carrier Bags From Indonesia, Taiwan, and Vietnam; Determinations, 74 FR... Alignment of Final Countervailing Duty Determination with ] Final Antidumping Duty Determination, 74 FR... International Trade Administration Polyethylene Retail Carrier Bags from the Socialist Republic of...

  7. Short chain polyethylene glycols unusually assist thermal unfolding of human serum albumin.

    PubMed

    Samanta, Nirnay; Mahanta, Debasish Das; Hazra, Soumitra; Kumar, Gopinatha Suresh; Mitra, Rajib Kumar

    2014-09-01

    In the present study we have investigated the thermal stability of the globular transport protein human serum albumin (HSA), in the presence of two small chain polyethylene glycols (namely PEG 200 and PEG 400). Both near- and far-UV circular dichroism (CD) study reveal that addition of PEG moderately increases the α-helical content of the protein without abruptly changing its tertiary structure. The hydration structure at the protein surface experiences a notable change at 30% PEG (v/v) concentration as evidenced from compressibility and dynamic light scattering (DLS) measurements. Thermal denaturation of HSA in the presence of PEG has been studied by CD and fluorescence spectroscopy using the intrinsic fluorophore tryptophan and it has been found that addition of PEG makes the protein more prone towards unfolding, which is in contrary to what has been observed in case of larger molecular weight polymers. The energetics of the thermal unfolding process has been obtained using differential scanning calorimetry (DSC) measurements. Our study concludes that both the indirect excluded volume principle as well as interaction of the polymer at the protein surface is responsible for the observed change of the unfolding process. PMID:24911290

  8. Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethylene glycol.

    PubMed

    Kono, Hiroyuki

    2014-06-15

    Novel hydrogels were prepared from carboxymethyl cellulose (CMC) sodium salt by crosslinking with polyethylene glycol diglycidyl ether (PEGDE). The detailed structures of the hydrogels were determined via FTIR and solid-state NMR spectroscopic analyses. Increasing the feed ratio of PEGDE to CMC in the reaction mixture led to an increase in the crosslinking degree, which enhanced the physical strength of the hydrogels. The hydrogels exhibited enzyme degradability, and after 3 days of incubation with cellulase, 62-28 wt% of the CMC in the hydrogel was degraded under the conditions employed in this study. In addition, the hydrogels exhibited protein adsorption and release abilities, and the amounts of proteins adsorbed on the hydrogels and the release profile of the proteins depended on the protein sizes and crosslinking degree of the hydrogels. These unique properties might enable the use of CMC-based hydrogels as drug delivery system carriers for protein-based drugs if the biological safety of the hydrogel can be verified. PMID:24721054

  9. Proteomic Analysis of Lonicera japonica Thunb. Immature Flower Buds Using Combinatorial Peptide Ligand Libraries and Polyethylene Glycol Fractionation.

    PubMed

    Zhu, Wei; Xu, Xiaobao; Tian, Jingkui; Zhang, Lin; Komatsu, Setsuko

    2016-01-01

    Lonicera japonica Thunb. flower is a well-known medicinal plant that has been widely used for the treatment of human disease. To explore the molecular mechanisms underlying the biological activities of L. japonica immature flower buds, a gel-free/label-free proteomic technique was used in combination with combinatorial peptide ligand libraries (CPLL) and polyethylene glycol (PEG) fractionation for the enrichment of low-abundance proteins and removal of high-abundance proteins, respectively. A total of 177, 614, and 529 proteins were identified in crude protein extraction, CPLL fractions, and PEG fractions, respectively. Among the identified proteins, 283 and 239 proteins were specifically identified by the CPLL and PEG methods, respectively. In particular, proteins related to the oxidative pentose phosphate pathway, signaling, hormone metabolism, and transport were highly enriched by CPLL and PEG fractionation compared to crude protein extraction. A total of 28 secondary metabolism-related proteins and 25 metabolites were identified in L. japonica immature flower buds. To determine the specificity of the identified proteins and metabolites for L. japonica immature flower buds, Cerasus flower buds were used, which resulted in the abundance of hydroxymethylbutenyl 4-diphosphate synthase in L. japonica immature flower buds being 10-fold higher than that in Cerasus flower buds. These results suggest that proteins related to secondary metabolism might be responsible for the biological activities of L. japonica immature flower buds. PMID:26573373

  10. Polyethylene composites containing a phase change material having a C14 straight chain hydrocarbon

    DOEpatents

    Salyer, Ival O.

    1987-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyethylene matrix having a straight chain alkyl hydrocarbon incorporated therein, said polyethylene being crosslinked to such a degree that said polyethylene matrix is form stable and said polyethylene matrix is capable of absorbing at least 10% by weight of said straight chain alkyl hydrocarbon; the composite is useful in forming pellets or sheets having thermal energy storage characteristics.

  11. Hydrophilic polysulfone film prepared from polyethylene glycol monomethylether via coupling graft

    NASA Astrophysics Data System (ADS)

    Du, Ruikui; Gao, Baojiao; Li, Yanbin

    2013-06-01

    In the presence of acid-acceptor Na2CO3, the nucleophilic substitution between chloromethylated polysulfone (CMPSF) and polyethylene glycol monomethylether (PEGME) was conducted. Polyethylene glycol (PEG) was coupling-grafted onto the side chains of polysulfone (PSF) so that the graft copolymer PSF-g-PEG was prepared and the hydrophilic modification of polysulfone membrane material was realized. The chemical structure of PSF-g-PEG was characterized by FTIR and 1H NMR. The influence of the main factors on the coupling graft reaction was investigated. The water static contact angle of PSF-g-PEG membrane was determined and its property of resisting protein pollution was examined by using bovine serum albumin (BSA) as a model protein. The experimental results show that the coupling graft reaction between CMPSF and PEGME can proceed successfully, and the reaction of chloromethyl groups of CMPSF with the hydroxyl end groups of PEGME is a typical SN1 nucleophilic substitution reaction. The polarity of the solvents and the reaction temperature greatly influence the reaction. The suitable solvent is dimethyl acetamide with stronger polarity and 70 C is a suitable reaction temperature. After reaction of 36 h, the grafting degree of PEG can reach 48 g/100 g and the product yield is about 73.6%. The contact angle of PSF-g-PEG membrane declines rapidly with the increase of PEG grafting degree, displaying the obvious enhancement of the hydrophilicity. The adsorption capacity of BSA on PSF-g-PEG membrane decreases remarkably with the increase of PEG grafting degree, showing excellent antifouling ability of PSF-g-PEG membrane for proteins.

  12. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  13. 40 CFR 721.10518 - Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl ether- and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (generic). 721.10518 Section... Substances § 721.10518 Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (PMN P-11-48) is subject...

  14. 40 CFR 721.10546 - Pentenylated polyethylene glycol sulfate salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Pentenylated polyethylene glycol... New Uses for Specific Chemical Substances § 721.10546 Pentenylated polyethylene glycol sulfate salt... identified generically as pentenylated polyethylene glycol sulfate salt (PMN P-04-340) is subject...

  15. 40 CFR 721.10546 - Pentenylated polyethylene glycol sulfate salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Pentenylated polyethylene glycol... New Uses for Specific Chemical Substances § 721.10546 Pentenylated polyethylene glycol sulfate salt... identified generically as pentenylated polyethylene glycol sulfate salt (PMN P-04-340) is subject...

  16. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  17. 40 CFR 721.10518 - Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl ether- and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (generic). 721.10518 Section... Substances § 721.10518 Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (PMN P-11-48) is subject...

  18. 78 FR 50376 - Polyethylene Retail Carrier Bags From Thailand: Final Results of Antidumping Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... at Less Than Fair Value: Polyethylene Retail Carrier Bags From Thailand, 69 FR 34122- 34124 (June 18... Review, 72 FR 1982, 1983 (January 17, 2007), Polyethylene Retail Carrier Bags from Thailand: Final... Administrative Review, 72 FR 64580 (November 16, 2007), Polyethylene Retail Carrier Bags from Thailand:...

  19. 75 FR 38978 - Polyethylene Retail Carrier Bags From the People's Republic of China, Malaysia, and Thailand...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Polyethylene Retail Carrier Bags From China, Malaysia, and Thailand, 74 FR 31750 (July 2, 2009). \\1\\ On August...: Polyethylene Retail Carrier Bags From the People's Republic of China, 69 FR 48201 (August 9, 2004); Antidumping Duty Order: Polyethylene Retail Carrier Bags From Malaysia, 69 FR 48203 (August 9, 2004);...

  20. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (mean molecular weight 200-9... Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as a component of articles intended for use...

  1. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  2. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  3. Study On Temperature Distribution In T Fittings - Polyethylene Natural Gas Pipes Assemblies

    NASA Astrophysics Data System (ADS)

    Avrigean, Eugen

    2015-09-01

    The present paper intends to approach theoretically and experimentally an important topic concerning the operational safety of the polyethylene pipes used in natural gas distribution. We discuss the influence of temperature in the high density polyethylene elbows during welding to the polyethylene pipes.

  4. DUCTILE-TO-BRITTLE TRANSITION TIME IN POLYETHYLENE GEOMEMBRANE SHEET

    EPA Science Inventory

    The susceptibility of polyethylene (PE) geomembranes to stress cracking was evaluated in the laboratory using an accelerated notched constant load testing (NCLT) method. he test specimens were subjected to various stress levels which ranged from 25% to 70% of the yield stress at ...

  5. Long-term Radiographic Assessment of Cemented Polyethylene Acetabular Cups

    PubMed Central

    Isaac, Graham; Porter, Neil; Fisher, John; Older, John

    2008-01-01

    Invitro studies demonstrating excessive wear in polyethylene cups sterilized using gamma irradiation and stored in air led to the abandonment of this sterilization technique. We evaluated the clinical wear performance of a metal femoral component on a polyethylene cup in a hip prosthesis from a selected subset of implants in a group of patients followed for at least 20years and assessed the time dependency of variation in penetration rates. We measured penetration in 33 polyethylene cups in 25 patients who had a Charnley low-friction arthroplasty between 1982 and 1984. All patients had Charnley Ogee cups implanted for more than 20years and sterilized using the gamma irradiation in air technique. If degradation occurred over time invivo, it was not reflected by an increased penetration rate with increasing time invivo; even after 20years of implantation, the degree of wear remained low. This suggests gamma irradiation affects wear on ultra-high-molecular-weight polyethylene by reducing wear secondary to the crosslinking, by increasing wear as shown through invitro studies of heavily oxidized samples, or by oxidation resulting from prolonged shelf life. The effect of progressive oxidation invivo does not appear to affect wear invivo. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196419

  6. Adsorption of Polyethylene from Solution onto Starch Film Surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since starch adsorbs onto polyethylene (PE) surfaces from cooled solutions of jet cooked starch, this study was carried out to determine whether adsorption of PE onto hydrophilic starch film surfaces would also take place if starch films were placed in hot solutions of PE in organic solvents, and th...

  7. Use of cotton gin trash and compatibilizers in polyethylene composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ginning of cotton produces 15-42% of foreign materials, called “cotton gin trash”, including cotton burr, stems, leaf fragment, and dirt. In this work we examined the mechanical properties of composites of low density polyethylene (LDPE) and cotton burr. The burr was ground into powder, and se...

  8. Polyethylene/clay nanocomposites prepared by polymerization compounding method.

    PubMed

    Gaboune, Asmaa; Ray, Suprakas Sinha; Ait-Kadi, Abdellatif; Riedl, Bernard; Bousmina, Mosto

    2006-02-01

    A new technique for the preparation of high density polyethylene/clay nanocomposite, "polymerization compounding," is reported. This technique was based on the chemical anchoring of a Ziegler-Natta catalyst on organically modified clay surface containing an ammonium cation bearing primary hydroxyl groups. The polymerization of ethylene was initiated after adequate activation and the growing polyethylene chains are directly adsorbed on to the clay surface through the hydroxyl-functionalized surfactant. Finally, the nanocomposite was prepared by diluting polyethylene adsorbed clay in the high density polyethylene (HDPE) matrix using a batch mixer at 180 degrees C. The as-synthesized nanocomposite was typically characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) that revealed the formation of intercalated nanocomposite. Tensile property measurements exhibit substantial increase in stiffness (approximately 50%) and strength (approximately 20%) of nanocomposite as compared to that of neat HDPE. Dynamic mechanical analysis under molten state revealed 25% increase in storage modulus when compared to that of neat HDPE. PMID:16573056

  9. Dissociation of a polyethylene liner from an acetabular cup.

    PubMed

    Cameron, H U

    1993-10-01

    A polyethylene linear dissociated from a metal acetabular shell that could not be removed at the time of hip revision because the hexagonal hole in its screw head had become rounded off. A high-speed metal cutting burr was used to remove the screw and allow cup revision. PMID:8265224

  10. Herbicide dissipation from low density polyethylene mulch utilizing analytical techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Georgia, most of the low density polyethylene mulch (LDPM) is laid for spring vegetable production followed by a second crop in the autumn, with a potential third crop the following spring. Between these vegetable plantings, farmers often use contact and residual herbicides to control weeds that ...

  11. APPLICATION OF HYDROPHILIC STARCH-BASED COATINGS TO POLYETHYLENE SURFACES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coatings were applied to polyethylene film surfaces by spraying formulations prepared from a jet cooked dispersion of waxy cornstarch, a water-based epoxy resin, a wax emulsion, and a surfactant. Although the starch component separated rapidly from the coating when the film was placed in water at r...

  12. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (400) monolaurate. 178.3760 Section 178.3760 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants...

  13. Simple EOS for linear (high-density) polyethylene (Marlex)

    SciTech Connect

    Dowell, F

    1982-11-01

    A simple equation of state (EOS) for linear (high-density) polyethylene (Marlex) was generated and added to the T-4 Sesame EOS Library as material number 7180. This new EOS for Marlex reproduces the experimental shock Hugoniot data for the initial state density rho/sub 0/ = 0.954 g/cm/sup 3/ or Mg/m/sup 3/.

  14. 21 CFR 177.1630 - Polyethylene phthalate polymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene phthalate polymers. 177.1630 Section 177.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  15. 21 CFR 177.1630 - Polyethylene phthalate polymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene phthalate polymers. 177.1630 Section 177.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces §...

  16. 21 CFR 177.1630 - Polyethylene phthalate polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene phthalate polymers. 177.1630 Section 177.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  17. 21 CFR 177.1630 - Polyethylene phthalate polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene phthalate polymers. 177.1630 Section 177.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  18. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene resins, carboxyl modified. 177.1600 Section 177.1600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and...

  19. SECURING CONTAINERIZED HAZARDOUS WASTES WITH WELDED POLYETHYLENE ENCAPSULATES

    EPA Science Inventory

    Full-scale encapsulation of 208-liter (55-gal) drums was studied as a means for managing corroding containers of hazardous wastes in the field and rendering them suitable for transport and safe deposit within a final disposal site such as a landfill. Polyethylene (PE) receivers w...

  20. Attachment of human primary osteoblast cells to modified polyethylene surfaces.

    PubMed

    Poulsson, Alexandra H C; Mitchell, Stephen A; Davidson, Marcus R; Johnstone, Alan J; Emmison, Neil; Bradley, Robert H

    2009-04-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) has a long history of use in medical devices, primarily for articulating surfaces due to its inherent low surface energy which limits tissue integration. To widen the applications of UHMWPE, the surface energy can be increased. The increase in surface energy would improve the adsorption of proteins and attachment of cells to allow tissue integration, thereby allowing UHMWPE to potentially be used for a wider range of implants. The attachment and function of human primary osteoblast-like (HOB) cells to surfaces of UHMWPE with various levels of incorporated surface oxygen have been investigated. The surface modification of the UHMWPE was produced by exposure to a UV/ozone treatment. The resulting surface chemistry was studied using X-ray photoelectron spectroscopy (XPS), and the topography and surface structure were probed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), which showed an increase in surface oxygen from 11 to 26 atom % with no significant change to the surface topography. The absolute root mean square roughness of both untreated and UV/ozone-treated surfaces was within 350-450 nm, and the water contact angles decreased with increasing oxygen incorporation, i.e., showing an increase in surface hydrophilicity. Cell attachment and functionality were assessed over a 21 day period for each cell-surface combination studied; these were performed using SEM and the alamarBlue assay to study cell attachment and proliferation and energy-dispersive X-ray (EDX) analysis to confirm extracellular mineral deposits, and total protein assay to examine the intra- and extracellular protein expressed by the cells. HOB cells cultured for 21 days on the modified UHMWPE surfaces with 19 and 26 atom % oxygen incorporated showed significantly higher cell densities compared to cells cultured on tissue culture polystyrene (TCPS) from day 3 onward. This indicated that the cells attached and proliferated more readily on the UV/ozone-treated UHMWPE surfaces than on untreated UHMWPE and TCPS surfaces. Contact guidance of the cells was observed on the UHMWPE surfaces by both SEM and AFM. Scanning electron micrographs showed that the cells were confluent on the modified UHMWPE surfaces by day 10, which led to visible layering of the cells by day 21, an indicator of nodule formation. In vitro mineralization of the extracellular matrix expressed by the HOB cells on the modified UHMWPE surfaces was confirmed by SEM and EDX analysis; spherulite structures were observed near cell protrusions by day 21. EDX analysis confirmed the spherulites to contain calcium and phosphorus, the major constituents in calcium phosphate apatite, the mineral phase of bone. Overall cell attachment, functionality, and mineralization were found to be enhanced on the UV/ozone-modified UHMWPE surfaces, demonstrating the importance of optimizing the surface chemistry for primary HOB cells. PMID:19275183

  1. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients

    PubMed Central

    Boles, Erin E.; Gaines, Cameryn L.

    2015-01-01

    OBJECTIVES: The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. METHODS: A retrospective, observational, institutional review board–approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. RESULTS: Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p < 0.01). CONCLUSIONS: Theses results suggest that PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects. PMID:26170773

  2. Polyethylene glycol-coupled IGF1 delays motor function defects in a mouse model of spinal muscular atrophy with respiratory distress type 1.

    PubMed

    Krieger, Frank; Elflein, Nicole; Saenger, Stefanie; Wirthgen, Elisa; Rak, Kristen; Frantz, Stefan; Hoeflich, Andreas; Toyka, Klaus V; Metzger, Friedrich; Jablonka, Sibylle

    2014-05-01

    Spinal muscular atrophy with respiratory distress type 1 is a neuromuscular disorder characterized by progressive weakness and atrophy of the diaphragm and skeletal muscles, leading to death in childhood. No effective treatment is available. The neuromuscular degeneration (Nmd(2J)) mouse shares a crucial mutation in the immunoglobulin mu-binding protein 2 gene (Ighmbp2) with spinal muscular atrophy with respiratory distress type 1 patients and also displays some basic features of the human disease. This model serves as a promising tool in understanding the complex mechanisms of the disease and in exploring novel treatment modalities such as insulin-like growth factor 1 (IGF1) which supports myogenic and neurogenic survival and stimulates differentiation during development. Here we investigated the treatment effects with polyethylene glycol-coupled IGF1 and its mechanisms of action in neurons and muscles. Polyethylene glycol-coupled IGF1 was applied subcutaneously every second day from post-natal Day 14 to post-natal Day 42 and the outcome was assessed by morphology, electromyography, and molecular studies. We found reduced IGF1 serum levels in Nmd(2J) mice 2 weeks after birth, which was normalized by polyethylene glycol-coupled IGF1 treatment. Nmd(2J) mice showed marked neurogenic muscle fibre atrophy in the gastrocnemius muscle and polyethylene glycol-coupled IGF1 treatment resulted in muscle fibre hypertrophy and slowed fibre degeneration along with significantly higher numbers of functionally active axonal sprouts. In the diaphragm with predominant myogenic changes a profound protection from muscle fibre degeneration was observed under treatment. No effects of polyethylene glycol-coupled IGF1 were monitored at the level of motor neuron survival. The beneficial effects of polyethylene glycol-coupled IGF1 corresponded to a marked activation of the IGF1 receptor, resulting in enhanced phosphorylation of Akt (protein kinase B) and the ribosomal protein S6 kinase in striated muscles and spinal cord from Nmd(2J) mice. Based on these findings, polyethylene glycol-coupled IGF1 may hold promise as a candidate for future treatment trials in human patients with spinal muscular atrophy with respiratory distress type 1. PMID:24681663

  3. Heteromerous interactions among glycolytic enzymes and of glycolytic enzymes with F-actin: effects of poly(ethylene glycol).

    PubMed

    Walsh, J L; Knull, H R

    1988-01-01

    Interactions of glucose-6-phosphate isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9), aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate lyase, EC 4.1.2.13), glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12), triose-phosphate isomerase (D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1), phosphoglycerate mutase (D-phosphoglycerate 2,3-phosphomutase, EC 5.4.2.1), phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.3), enolase (2-phospho-D-glycerate hydro-lyase, EC 4.2.1.11), pyruvate kinase (ATP:Pyruvate O2-phosphotransferase, EC 2.7.1.40) and lactate dehydrogenase [S)-lactate:NAD+ oxidoreductase, EC 1.1.1.27) with F-actin, among the glycolytic enzymes listed above, and with phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) were studied in the presence of poly(ethylene glycol). Both purified rabbit muscle enzymes and rabbit muscle myogen, a high-speed supernatant fraction containing the glycolytic enzymes, were used to study enzyme-F-actin interactions. Following ultracentrifugation, F-actin and poly(ethylene glycol) tended to increase and KCl to decrease the pelleting of enzymes. In general, the greater part of the pelleting occurred in the presence of both F-actin and poly(ethylene glycol) and the absence of KCl. Enzymes that pelleted more in myogen preparations than as individual purified enzymes in the presence of poly(ethylene glycol) and the absence of F-actin were tested for specific enzyme-enzyme associations, several of which were observed. Such interactions support the view that the internal cell structure is composed of proteins that interact with one another to form the microtrabecular lattice. PMID:3334856

  4. Solvent effect in the polyethylene recovery from multilayer postconsumer aseptic packaging.

    PubMed

    Cervantes-Reyes, Alejandro; Núñez-Pineda, Alejandra; Barrera-Díaz, Carlos; Varela-Guerrero, Víctor; Martínez-Barrera, Gonzalo; Cuevas-Yañez, Erick

    2015-04-01

    Polyethylene films were separated and recovered from polyethylene-aluminum composites derived from recycling multilayer postconsumer aseptic packaging. A brief study about the separation process by dissolving PE-aluminum (PE-Al) composites into a series of organic solvents with a combination of time and temperature is presented. Through this procedure, 56% polyethylene is recovered from this kind of composites in optimized conditions. DSC and TGA studies were performed to determine the thermal stability of recovered polyethylene films and to establish a comparison with a PE reference commercial product, demonstrating that recovered polyethylene films kept their thermal properties. PMID:25681948

  5. Effect of an additive on the radiation resistance of polyethylene and ethylene-propylene copolymer

    SciTech Connect

    Fujimura, T.; Arakawa, K.; Hayakawa, N.; Kuriyama, I.

    1982-07-01

    In low-density polyethylene containing the additive propylfluorancene, radiation energy received by polyethylene is transferred to propylfluorancene, and the production of radicals at 77 K in polyethylene is suppressed. Propylfluorancene also increases the rate of the decay of radicals of polyethylene at room temperature. The depression of radical production and acceleration of radical decay at room temperature results in the depression of gas production and crosslinks at room temperature in low-density polyethylene containing propylfluorancene. Similar results were obtained in ethylene-propylene copolymer containing the same additive.

  6. Infrared, Raman and INS studies of poly-ethylene oxide oligomers

    NASA Astrophysics Data System (ADS)

    Migliardo, F.; Magazù, S.; Caccamo, M. T.

    2013-09-01

    In the present paper the experimental findings obtained by different spectroscopic techniques on water mixtures of a protein model system, i.e. PolyEthylene Oxide (PEO), are reported. By increasing the polymerization degree m, the D-LAM spectral contribution shows a behavior of the centre frequency and of linewidth which tends to reach a constant value. Also the intramolecular OH stretching contribution, by increasing m, shows a shift which tends to flatten for polymers with molecular weight higher than Mw = 600. These results can be connected with the oligomer-polymer transition, at m = 13. When in aqueous solutions the D-LAM frequency increases towards the value corresponding to that of the crystal phase; similarly one observes also a sharpening of the D-LAM spectral contribution. These evidences suggest the presence of a more ordered conformation of PEO in water in respect to the melt phase.

  7. Synergistic effect of polyethylene glycol with arginine on the prevention of heat-induced aggregation of lysozyme

    NASA Astrophysics Data System (ADS)

    Tomita, S.; Hamada, H.; Nagasaki, Y.; Shiraki, K.

    2008-03-01

    . Arginine (Arg) is a commonly used additive to prevent protein aggregation and inactivation in denaturing solutions. This paper presents new findings on the synergistic effect on the prevention of heat-induced aggregation of lysozyme using Arg in combination with polyethylene glycol (PEG). The synergistic enhancement was observed in the presence of Arg with amphiphilic polymers, such as PEG6000, PEG20000, and poly(vinyl pyrrolidone), while it was not observed with hydrophilic polymers, such as PEG200, Poly(acrylic acid), poly(vinyl alcohol), dextran, and Ficoll 70.

  8. Study of the Auger line shape of polyethylene and diamond

    NASA Technical Reports Server (NTRS)

    Dayan, M.; Pepper, S. V.

    1984-01-01

    The KVV Auger electron line shapes of carbon in polyethylene and diamond have been studied. The spectra were obtained in derivative form by electron beam excitation. They were treated by background subtraction, integration and deconvolution to produce the intrinsic Auger line shape. Electron energy loss spectra provided the response function in the deconvolution procedure. The line shape from polyethylene is compared with spectra from linear alkanes and with a previous spectrum of Kelber et al. Both spectra are compared with the self-convolution of their full valence band densities of states and of their p-projected densities. The experimental spectra could not be understood in terms of existing theories. This is so even when correlation effects are qualitatively taken into account account to the theories of Cini and Sawatzky and Lenselink.

  9. Hyperthermal atomic oxygen reactions with kapton and polyethylene. [in LEO

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Koontz, S. L.; Gregory, J. C.; Edgell, M. J.

    1990-01-01

    Gas phase reaction products produced by the interaction of high kinetic energy (1-3 eV) 3p ground state atomic oxygen (AO) with polyethylene and kapton were found to be H2, H2O, CO, and CO2 with NO being a possible secondary product from kapton. Hydrogen abstraction at high AO kinetic energy is postulated to be the key reaction controlling the erosion rate of kapton and polyethylene. An Arrhenius-like expression having an activation barrier of 0.4 eV can be fit to the data, which suggests that the rate limiting step in the AO/kapton reaction mechanism can be overcome by translational energy.

  10. Strength of polyethylene, polypropylene and polystyrene behind a shock front

    SciTech Connect

    Tyler, C. E.; Bourne, N. K.; Millett, J. C. F.

    2007-12-12

    There is a recent interest in the response of thermoplastics to shock. Previous work on three simple hydrocarbons has indicated that the shear strength increases with the complexity of the side group. Strength values have been calculated using lateral stress measurements with manganin gauges that have been recalibrated for use in the low stress regime. The present work aims to investigate the effect of the configuration of the thermoplastic's chain when side groups are added. Results show that whilst polyethylene has the lowest shear strength, polypropylene and polystyrene have similar values. In all cases the strength of polymer increases with time after the shock has past. As the applied stress increases, polystrene and polypropylene strengthen to a higher degree when compared with polyethylene. Explanations are offered in terms of microstructure and tacticity of the chain.

  11. Polyethylene encapsulation full-scale technology demonstration. Final report

    SciTech Connect

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental & Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control.

  12. MOBILE TIBIAL POLYETHYLENE BEARING IN TOTAL KNEE ARTHROPLASTY

    PubMed Central

    de Araújo Barros Cobra, Hugo Alexandre; da Palma, Idemar Monteiro

    2015-01-01

    Debris of polyethylene tibial bearings have been recognized as a major cause for the onset of the cascade of biological events leading to osteolysis and loosening of prosthetic components after total knee arthroplasty. Since then, research has been focused on alternative bearing surfaces in order to minimize the amount and rate of polyethylene wear off and, in doing so, increasing the survivorship rate for knee arthroplasties. One such option is to have a mobile tibial bearing allowing more conformity and rotational self-alignment of the components, improving kinetics and kinematics of the prosthesis. The authors present a resumed but throughout and comprehensive review of the rationale, biomechanics fundamentals, indications, pitfalls, outcomes and complications for the use of mobile tibial bearings in total knee replacement. PMID:27077055

  13. An improved synthesis of a fluorophosphonate-polyethylene glycol-biotin probe and its use against competitive substrates.

    PubMed

    Xu, Hao; Sabit, Hairat; Amidon, Gordon L; Showalter, H D Hollis

    2013-01-01

    The fluorophosphonate (FP) moiety attached to a biotin tag is a prototype chemical probe used to quantitatively analyze and enrich active serine hydrolases in complex proteomes in an approach called activity-based protein profiling (ABPP). In this study we have designed a novel synthetic route to a known FP probe linked by polyethylene glycol to a biotin tag (FP-PEG-biotin). Our route markedly increases the efficiency of the probe synthesis and overcomes several problems of a prior synthesis. As a proof of principle, FP-PEG-biotin was evaluated against isolated protein mixtures and different rat-tissue homogenates, showing its ability to specifically target serine hydrolases. We also assessed the ability of FP-PEG-biotin to compete with substrates that have high enzyme turnover rates. The reduced protein-band intensities resulting in these competition studies demonstrate a new application of FP-based probes seldom explored before. PMID:23400700

  14. An improved synthesis of a fluorophosphonate–polyethylene glycol–biotin probe and its use against competitive substrates

    PubMed Central

    Amidon, Gordon L

    2013-01-01

    Summary The fluorophosphonate (FP) moiety attached to a biotin tag is a prototype chemical probe used to quantitatively analyze and enrich active serine hydrolases in complex proteomes in an approach called activity-based protein profiling (ABPP). In this study we have designed a novel synthetic route to a known FP probe linked by polyethylene glycol to a biotin tag (FP–PEG–biotin). Our route markedly increases the efficiency of the probe synthesis and overcomes several problems of a prior synthesis. As a proof of principle, FP–PEG–biotin was evaluated against isolated protein mixtures and different rat-tissue homogenates, showing its ability to specifically target serine hydrolases. We also assessed the ability of FP–PEG–biotin to compete with substrates that have high enzyme turnover rates. The reduced protein-band intensities resulting in these competition studies demonstrate a new application of FP-based probes seldom explored before. PMID:23400700

  15. Tensile properties of sand-reinforced low density polyethylene

    SciTech Connect

    Kandeil, A.Y.; Zahran, R.R.

    1995-10-01

    Sand-reinforced low density polyethylene samples were prepared using injection molding. The effect of some processing and structural parameters on the tensile properties of the prepared samples was investigated. The processing parameters were the melt and the die temperatures. The investigated structural parameters were sand content and sand particle size. The studied tensile properties were modulus of elasticity, tensile strength, ductility and toughness. The obtained results are thoroughly analyzed and interpreted as structure-property relationships.

  16. The Structural Dilemma of Bulk Polyethylene: An Intermediary Structure

    PubMed Central

    Laridjani, Morteza; Leboucher, Pierre

    2009-01-01

    Background The Fourier space (reciprocal space) image of bulk polyethylene consists of lines superimposed on the coherent diffuse background. The mixed character of the image indicates the complex nature of these compounds. The inability in detecting full images of reciprocal space of polymeric substances without Compton radiation and the other undesirable diffuse scatterings has misled the structural analysis (structural characterisation) of these materials. Principal Findings We propose the use of anomalous diffractometry where, it is possible to obtain a real image of reciprocal space without Compton radiation and other undesirable scatterings. By using classical diffractometry techniques this procedure is not possible. This methodology permitted us to obtain the “Direct Delta function”, in the case of polycrystalline substances that was not previously detected. A new procedure was proposed to interpret the image of reciprocal space of bulk polyethylene. The results show the predominance of the geometry of local order determination compared to the crystal unit cell. The analysis of x-ray diffraction images illustrates that the elementary structural unit is a tetrahedron. This structural unit illustrates the atoms in the network scatter in a coherent diffuse manner. Moreover, the interference function derived from the coherent diffuse scattering dampens out quickly and the degree of randomness is superior to a liquid state. The radial distribution function derived from this interference function shows bond shortening in the tetrahedron configuration. It is this particular effect, which stabilises polyethylene. Conclusion Here we show by anomalous diffractometry that the traditional concept of the two-phase or the crystal-defect model is an oversimplification of the complex reality. The exploitation of anomalous diffractometry has illustrated that polyethylene has an intermediate ordered structure. PMID:19597553

  17. Do Polyethylene Plastic Covers Affect Smoke Emissions from Debris Piles?

    NASA Astrophysics Data System (ADS)

    Weise, D. R.; Jung, H.; Cocker, D.; Hosseini, E.; Li, Q.; Shrivastava, M.; McCorison, M.

    2010-12-01

    Shrubs and small diameter trees exist in the understories of many western forests. They are important from an ecological perspective; however, this vegetation also presents a potential hazard as “ladder fuels” or as a heat source to damage the overstory during prescribed burns. Cutting and piling of this material to burn under safe conditions is a common silvicultural practice. To improve ignition success of the piled debris, polyethylene plastic is often used to cover a portion of the pile. While burning of piled forest debris is an acceptable practice in southern California from an air quality perspective, inclusion of plastic in the piles changes these debris piles to rubbish piles which should not be burned. With support from the four National Forests in southern California, we conducted a laboratory experiment to determine if the presence of polyethylene plastic in a pile of burning wood changed the smoke emissions. Debris piles in southern California include wood and foliage from common forest trees such as sugar and ponderosa pines, white fir, incense cedar, and California black oak and shrubs such as ceanothus and manzanita in addition to forest floor material and dirt. Manzanita wood was used to represent the debris pile in order to control the effects of fuel bed composition. The mass of polyethylene plastic incorporated into the pile was 0, 0.25 and 2.5% of the wood mass—a range representative of field conditions. Measured emissions included NOx, CO, CO2, SO2, polycyclic and light hydrocarbons, carbonyls, particulate matter (5 to 560 nm), elemental and organic carbon. The presence of polyethylene did not alter the emissions composition from this experiment.

  18. Wear of a sequentially annealed polyethylene acetabular liner

    PubMed Central

    Gascoyne, Trevor C; Petrak, Martin J; Turgeon, Thomas R; Bohm, Eric R

    2014-01-01

    Background and purpose We previously reported on a randomized controlled trial (RCT) that examined the effect of adding tobramycin to bone cement after femoral stem migration. The present study examined femoral head penetration into both conventional and highly crosslinked polyethylene acetabular liners in the same group of RCT patients, with a minimum of 5 years of postoperative follow-up. Patients and methods Linear penetration of the femoral head into an X3 (Stryker) crosslinked polyethylene (XLPE) liner was measured in 18 patients (19 hips) using radiostereometric analysis (RSA). Femoral head penetration was also measured in 6 patients (6 hips) with a conventional polyethylene liner (CPE), which served as a control group. Results The median proximal femoral head penetration in the XLPE group after 5.5 years was 0.025 mm with a steady-state penetration rate of 0.001 mm/year between year 1 and year 5. The CPE liner showed a median proximal head penetration of 0.274 mm after 7.2 years, at a rate of 0.037 mm/year. Interpretation The Trident X3 sequentially annealed XLPE liner shows excellent in vivo wear resistance compared to non-crosslinked CPE liners at medium-term implantation. The rate of linear head penetration in the XLPE liners after > 5 years of follow-up was 0.001 mm/year, which is in close agreement with the results of previous studies. PMID:25140986

  19. Testing and evaluation of polyethylene and sulfur cement waste forms

    SciTech Connect

    Franz, E.M.; Kalb, P.D.; Colombo, P.

    1985-01-01

    This paper discusses the results of recent studies related to the use of polyethylene and modified sulfur cement as new binder materials for the improved solidification of low-level wastes. Waste streams selected for this study include those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those that remain problematic for solidification using contemporary agents (ion-exchange resins). Maximum waste loadings were determined for each waste type. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported for polyethylene. For sulfur cement the recommended waste loadings of 40 wt % sodium sulfate and boric acid salts and 43 wt % incinerator ash are reported. However, incorporation of ion-exchange resin waste in modified sulfur cement is not recommended due to poor waste form performance. The work presented in this paper will, in part, present data that can be used to assess the acceptability of polyethylene and modified sulfur cement waste forms to meet the requirements of 10 CFR 61. 8 refs., 10 figs., 6 tabs.

  20. Impact resistance and fractography in ultra high molecular weight polyethylenes.

    PubMed

    Puértolas, J A; Pascual, F J; Martínez-Morlanes, M J

    2014-02-01

    Highly crosslinked ultra high molecular weight polyethylenes (UHMWPE) stabilized by a remelting process or by the addition of an antioxidant are highly wear resistant and chemically stable. However, these polyethylenes currently used in total joint replacements suffer a loss of mechanical properties, especially in terms of fracture toughness. In this study we analyze the impact behavior of different polyethylenes using an instrumented double notch Izod test. The materials studied are three resins: GUR1050, GUR1020 with 0.1wt% of vitamin E, and MG003 with 0.1wt% of vitamin E. These resins were gamma irradiated at 90kGy, and pre and post-irradiation remelting processes were applied to GUR1050 for two different time periods. Microstructural data were determined by means of differential scanning calorimetry and transmission electron microscopy. Fractography carried out on the impact fracture surfaces and images obtained by scanning electron microscopy after etching indicated the existence of a fringe structure formed by consecutive ductile-brittle and brittle-ductile transitions, which is related to the appearance of discontinuities in the load-deflection curves. A correlation has been made of the macroscopic impact strength results and the molecular chain and microstructural characteristics of these aforementioned materials, with a view to designing future resins with improved impact resistance. The use of UHMWPE resins with low molecular weight or the application of a remelting treatment could contribute to obtain a better impact strength behavior. PMID:24275347

  1. Polyethylene macroencapsulation - mixed waste focus area. OST reference No. 30

    SciTech Connect

    1998-02-01

    The lead waste inventory throughout the US Department of Energy (DOE) complex has been estimated between 17 million and 24 million kilograms. Decontamination of at least a portion of the lead is viable but at a substantial cost. Because of various problems with decontamination and its limited applicability and the lack of a treatment and disposal method, the current practice is indefinite storage, which is costly and often unacceptable to regulators. Macroencapsulation is an approved immobilization technology used to treat radioactively contaminated lead solids and mixed waste debris. (Mixed waste is waste materials containing both radioactive and hazardous components). DOE has funded development of a polyethylene extrusion macroencapsulation process at Brookhaven National Laboratory (BNL) that produces a durable, leach-resistant waste form. This innovative macroencapsulation technology uses commercially available single-crew extruders to melt, convey, and extrude molten polyethylene into a waste container in which mixed waste lead and debris are suspended or supported. After cooling to room temperature, the polyethylene forms a low-permeability barrier between the waste and the leaching media.

  2. Water absorption in polyethylene under external electric fields

    NASA Astrophysics Data System (ADS)

    Johansson, E.; Bolton, K.; Ahlström, P.

    2007-07-01

    Monte Carlo simulations of the solubility and structure of water in polyethylene in thermodynamic equilibrium with liquid water were performed in external fields ranging from 2×105to4×109V/m. For a given equilibrium temperature and pressure, the water solubility decreases at higher fields. This occurs since it is energetically favorable for water molecules to be in the pure water phase than in the polyethylene matrix at high field strengths, and results in an increased density in the water phase. However, fields relevant to high voltage conduction (in the absence of defects that can lead to large local field strengths) do not change the solubility. In addition, at large fields the number of water clusters decreases for all cluster sizes. The rate of decrease is highest for large clusters, and a larger fraction of water molecules exist as monomers in the polyethylene matrix at high fields. Large fields also cause alignment of the water molecules, which leads to more clusters with linear topologies and hence an increase in the cluster radius of gyration.

  3. Porous polyethylene implants in facial reconstruction: Outcome and complications.

    PubMed

    Ridwan-Pramana, Angela; Wolff, Jan; Raziei, Ashkan; Ashton-James, Claire E; Forouzanfar, Tymour

    2015-10-01

    The aim of the present study was to assess the indications, results and complications of patients treated with porous polyethylene (Medpor(®)) implants in the Department of Oral and Maxillofacial Surgery of VU Medical Centre, Amsterdam over 17 years. A total of 69 high-density porous polyethylene implants (Medpor(®) Biomaterial; Porex Surgical, Newman, GA) were used in forty patients (22 males, 18 females). All patients were analysed for gender, age, diagnosis, indications for surgery, follow-up period and postoperative complications. A mean age of 34.1 years was observed. The main reason for implant surgery was post-traumatic functional impairment (27.5%). Most implants were placed at the mandibular angel and the orbital floor. Unsatisfactory appearance scored the highest in postoperative complications (10.1%) followed by infection rate (7.2%). Comparing the number of implants placed over the years and the incidence of complications, makes the overall complications rate of porous polyethylene very low. A consensus about antibiotic prophylaxis is needed. The objective measurements in patient satisfaction and proper implant design would be of great use. PMID:26276064

  4. Wear Analysis in THA Utilizing Oxidized Zirconium and Crosslinked Polyethylene

    PubMed Central

    Garvin, Kevin L.; Mangla, Jimmi; Murdoch, Nathan; Martell, John M.

    2008-01-01

    Oxidized zirconium, a material with a ceramic surface on a metal substrate, and highly cross-linked polyethylene are two materials developed to reduce wear. We measured in vivo femoral head penetration in patients with these advanced bearings. We hypothesized the linear wear rates would be lower than those published for cobalt-chrome and standard polyethylene. We retrospectively reviewed a select series of 56 THAs in a relatively young, active patient population utilizing oxidized zirconium femoral heads and highly cross-linked polyethylene acetabular liners. Femoral head penetration was determined using the Martell computerized edge-detection method. All patients were available for 2-year clinical and radiographic followup. True linear wear was 4 μm/year (95% confidence intervals, ± 59 μm/year). The early wear rates in this cohort of relatively young, active patients were low and we believe justify the continued study of these alternative bearing surfaces. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18946711

  5. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid (H3BO3), mixed esters with... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1729...

  6. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid (H3BO3), mixed esters with... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1729...

  7. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid (H3BO3), mixed esters with... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1729...

  8. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid (H3BO3), mixed esters with... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1729...

  9. Polyethylene glycol rinse solution: An effective way to prevent ischemia-reperfusion injury

    PubMed Central

    Zaouali, Mohamed Amine; Bejaoui, Mohamed; Calvo, Maria; Folch-Puy, Emma; Pantazi, Eirini; Pasut, Gianfranco; Rimola, Antoni; Ben Abdennebi, Hassen; Adam, René; Roselló-Catafau, Joan

    2014-01-01

    AIM: To test whether a new rinse solution containing polyethylene glycol 35 (PEG-35) could prevent ischemia-reperfusion injury (IRI) in liver grafts. METHODS: Sprague-Dawley rat livers were stored in University of Wisconsin preservation solution and then washed with different rinse solutions (Ringer’s lactate solution and a new rinse solution enriched with PEG-35 at either 1 or 5 g/L) before ex vivo perfusion with Krebs-Heinseleit buffer solution. We assessed the following: liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity), liver function (bile output and vascular resistance), oxidative stress (malondialdehyde), nitric oxide, liver autophagy (Beclin-1 and LCB3) and cytoskeleton integrity (filament and globular actin fraction); as well as levels of metalloproteinases (MMP2 and MMP9), adenosine monophosphate-activated protein kinase (AMPK), heat shock protein 70 (HSP70) and heme oxygenase 1 (HO-1). RESULTS: When we used the PEG-35 rinse solution, reduced hepatic injury and improved liver function were noted after reperfusion. The PEG-35 rinse solution prevented oxidative stress, mitochondrial damage, and liver autophagy. Further, it increased the expression of cytoprotective heat shock proteins such as HO-1 and HSP70, activated AMPK, and contributed to the restoration of cytoskeleton integrity after IRI. CONCLUSION: Using the rinse solution containing PEG-35 was effective for decreasing liver graft vulnerability to IRI. PMID:25473175

  10. Dense Poly(ethylene glycol) Brushes Reduce Adsorption and Stabilize the Unfolded Conformation of Fibronectin.

    PubMed

    Faulón Marruecos, David; Kastantin, Mark; Schwartz, Daniel K; Kaar, Joel L

    2016-03-14

    Polymer brushes, in which polymers are end-tethered densely to a grafting surface, are commonly proposed for use as stealth coatings for various biomaterials. However, although their use has received considerable attention, a mechanistic understanding of the impact of brush properties on protein adsorption and unfolding remains elusive. We investigated the effect of the grafting density of poly(ethylene glycol) (PEG) brushes on the interactions of the brush with fibronectin (FN) using high-throughput single-molecule tracking methods, which directly measure protein adsorption and unfolding within the brush. We observed that, as grafting density increased, the rate of FN adsorption decreased; however, surface-adsorbed FN unfolded more readily, and unfolded molecules were retained on the surface for longer residence times relative to those of folded molecules. These results, which are critical for the rational design of PEG brushes, suggest that there is a critical balance between protein adsorption and conformation that underlies the utility of such brushes in physiological environments. PMID:26866385

  11. Biocompatibility of polyethylene terephthalate (Trevira hochfest) augmentation device in repair of the anterior cruciate ligament.

    PubMed

    Seitz, H; Marlovits, S; Schwendenwein, I; Müller, E; Vécsei, V

    1998-01-01

    The biocompatibility of a 3 mm band made of polyethylene terephthalate (Trevira hochfest) has been tested in an experimental study within right knee joints of 60 sheep. After transsecting the anterior cruciate ligament (ACL), two randomized groups were formed. In group I, the ACL was repaired according to the Marshall technique whilst in group II an additional 3 mm polyethylene terephthalate (PET) augmentation band was implanted using the through-the-condyle (TTC) procedure. To assess the biocompatibility of the augmentation device the knee joints of both groups were punctured and the synovial fluids were analyzed before, as well as 2, 6, 16, 26, and 52 weeks after the operation. In addition, the histologic appearance of excised suprapatellar pouches and ipsilateral inguinal and popliteal lymphatic noduli were examined. Comparing both groups no significant differences were found neither before nor after the augmented and non-augmented ACL repair. No pathological increase in the total protein concentration occurred after operation and no significant differences versus the preoperative analysis were found. No synovitis signalling a decrease in the glucose concentration was observed. The cytological examination revealed no increase of the leukocyte cell count results. Within the synovial specimen neither free nor phagocytosed PET wearparticles could be detected. In groups I and II the histological appearance of excised popliteal and inguinal lymphatic noduli showed a normal result. In 25% of the PET augmented ACL repairs, a slight concentration of PET wearparticles and solitary, multinuclear giant foreign body cells could be seen in the histological preparations of suprapatellar pouches. PMID:9678867

  12. Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.)

    PubMed Central

    Horst, Walter Johannes

    2013-01-01

    Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure. PMID:24123251

  13. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  14. Manufacturing, structure and properties of recycled polyethylene terephthalate /liquid crystal polymer/montmorillonite clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Japins, Guntis; Berzina, Rita; Zicans, Janis; Merijs Meri, Remo; Ivanova, Tatjana; Kalkis, Valdis; Reinholds, Ingars

    2013-12-01

    Polyethylene terephthalate (PET)/liquid crystal polymer (LCP)/monthmorillonite clay (MMT) compositions were obtained by melt mixing. Their mechanical, structural, rheological and thermal properties were investigated.

  15. Growth of ZnO nanowires on nonwoven polyethylene fibers

    NASA Astrophysics Data System (ADS)

    Baruah, Sunandan; Thanachayanont, Chanchana; Dutta, Joydeep

    2008-04-01

    We report the growth of ZnO nanowires on nonwoven polyethylene fibers using a simple hydrothermal method at a temperature below the boiling point of water. The ZnO nanowires were grown from seed ZnO nanoparticles affixed onto the fibers. The seed ZnO nanoparticles, with diameters of about 6-7 nm, were synthesized in isopropanol by reducing zinc acetate hydrate with sodium hydroxide. The growth process was carried out in a sealed chemical bath containing an equimolar solution of zinc nitrate hexahydrate and hexamethylene tetramine at a temperature of 95 °C over a period of up to 20 h. The thickness and length of the nanowires can be controlled by using different concentrations of the starting reactants and growth durations. A 0.5 mM chemical bath yielded nanowires with an average diameter of around 50 nm, while a 25 mM bath resulted in wires with a thickness of up to about 1 μm. The length of the wires depends both on the concentration of the precursor solution as well as the growth duration, and in 20 h, nanowires as long as 10 μm can be grown. The nonwoven mesh of polyethylene fibers covered with ZnO nanowires can be used for novel applications such as water treatment by degrading pollutants by photocatalysis. Photocatalysis tests carried out on standard test contaminants revealed that the polyethylene fibers with ZnO nanowires grown on them could accelerate the photocatalytic degradation process by a factor of 3.

  16. Atomic structure of solid and liquid polyethylene oxide

    SciTech Connect

    Johnson, J.A.; Saboungi, M.; Price, D.L.; Ansell, S.; Russell, T.P.; Halley, J.W.; Nielsen, B.

    1998-10-01

    The structure of polyethylene oxide (PEO) was investigated by neutron scattering in both semicrystalline and liquid states. Deuterated samples were studied in addition to the protonated ones in order to avoid the large incoherent scattering of hydrogen and identify features in the pair correlation functions attributable to C{endash}H pairs. Analysis of the deuterated sample gave additional information on the C{endash}O and C{endash}C pairs. The results are compared with molecular-dynamics simulations of liquid PEO. {copyright} {ital 1998 American Institute of Physics.}

  17. Lithium ion transport in a model of amorphous polyethylene oxide.

    SciTech Connect

    Boinske, P. T.; Curtiss, L.; Halley, J. W.; Lin, B.; Sutjianto, A.; Chemical Engineering; Univ. of Minnesota

    1996-01-01

    We have made a molecular dynamics study of transport of a single lithium ion in a previously reported model of amorphous polyethylene oxide. New ab initio calculations of the interaction of the lithium ion with 1,2-dimethoxyethane and with dimethyl ether are reported which are used to determine force fields for the simulation. We report preliminary calculations of solvation energies and hopping barriers and a calculation of the ionic conductivity which is independent of any assumptions about the mechanism of ion transport. We also report some details of a study of transport of the trapped lithium ion on intermediate time and length scales.

  18. Investigation of the fire endurance of borated polyethylene shielding material

    SciTech Connect

    Foote, K.L.

    1988-06-17

    We conducted nine experiments to investigate the fire endurance of a borated polyethylene shielding material to be used in the Engineering Demonstration System. Several chemistry tests were also done. The shielding material was found to melt at 93.5/degree/C, decompose at 230/degree/C, and ignite at 350/degree/C. Five fire tests were done in a realistic configuration and four tests in a pessimistic configuration. The material easily passed all nine tests. In each case, the shielding material never reached ignition temperature and was found acceptable in this proposed application. 7 refs., 10 figs., 3 tabs.

  19. Investigation of crosslinking behaviour of silane grafted polyethylene through rheology

    NASA Astrophysics Data System (ADS)

    Obr, Ales; Zatloukal, Martin

    2013-04-01

    In this work the crosslinking behaviour of two silane-grafted polyethylenes was investigated with respect to time and temperature by using dynamic rheological measurements. It has been found that inhomogeneous character of the crosslinking reaction takes place in both tested samples. By utilization of G'-G" crossover method, it has been found that the sample with initially distinct crosslinking state and short critical crosslinking reaction time has high tendency to create small gels during production of hot water pipes. It has also been revealed that the temperature dependence of the critical time, at which the crosslinking speed is the highest, shows an Arrhenius-type behaviour.

  20. Pyrolysis Pathways of Sulfonated Polyethylene, an Alternative Carbon Fiber Precursor

    SciTech Connect

    Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A; Beste, Ariana; Naskar, Amit K

    2013-01-01

    Sulfonated polyethylene is an emerging precursor for the production of carbon fibers. Pyrolysis of sulfonated polyethylene was characterized by thermogravimetric analysis (TGA). n-heptane-4-sulfonic acid (H4S) was selected as a model compound for the study of sulfonated polyethylene. Density functional theory and conventional transition state theory were used to determine the rate constants of pyrolysis for H4S from 300-1000 K. Multiple reaction channels from two different mechanisms were explored: 1) internal five-centered elimination (Ei 5) and 2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain TGA plots that compared favorably to experiment. We observed that at tem- peratures < 550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial OH radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440-460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene ( 31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOSO2 became competitive to H abstraction by HOSO2, making OH the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures > 600 K. Low-scale carbonization utilizes temperatures < 620 K; thus, internal elimination will not be competitive. Ei5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids. Nonlinear Arrhenius plots were found for all bimolecular reactions. The most significant nonlinear behavior was observed for reactions where the barrier was small. For reactions with low activation barriers, nonlinearity was traced to conflicting trends between the exponential temperature dependence of the energetic term and the temperature dependence of the vibrational partition function of the transitional modes.

  1. Deuterated polyethylene coatings for ultra-cold neutron applications

    SciTech Connect

    Brenner, Th.; Geltenbort, P.; Fierlinger, P.; Gutsmiedl, E.; Hollering, A.; Petzoldt, G.; Ruhstorfer, D.; Stuiber, St.; Taubenheim, B.; Windmayer, D.; Lauer, T.; Schroffenegger, J.; Zechlau, T.; Seemann, K. M.; Soltwedel, O.

    2015-09-21

    We report on the fabrication and use of deuterated polyethylene as a coating material for ultra-cold neutron (UCN) storage and transport. The Fermi potential has been determined to be 214 neV, and the wall loss coefficient η is 1.3 × 10{sup 4} per wall collision. The coating technique allows for a wide range of applications in this field of physics. In particular, flexible and quasi-massless UCN guides with slit-less shutters and seamless UCN storage volumes become possible. These properties enable the use in next-generation measurements of the electric dipole moment of the neutron.

  2. THz-Spectroscopy on High Density Polyethylene with Different Crystallinity

    NASA Astrophysics Data System (ADS)

    Sommer, Stefan; Raidt, Thomas; Fischer, Bernd M.; Katzenberg, Frank; Tiller, Jörg C.; Koch, Martin

    2016-02-01

    The different crystallinity states of high density polyethylene (PE-HD) are investigated using THz time-domain spectroscopy by exploiting the complex permittivity at a frequency range from 0.5 up to 3.5 THz. We found that samples with different crystallinity can be distinguished by comparing the material specific refractive index ( n) or rather the linked complex part of the permittivity (∈ ' '). Correlating the calorimetrically determined degrees of crystallinity with the absolute values of the refractive index and the specific absorption peak at 2.18 THz, respectively, suggests in both cases a linear correlation.

  3. Theoretical study on mechanical properties of polyethylene-SWCNT complexes

    NASA Astrophysics Data System (ADS)

    Petrushenko, Igor K.

    2016-01-01

    This paper studies the mechanical properties of polyethylene (PE)-Single-walled carbon nanotube (SWCNT) complexes by using density functional theory (DFT). At the PBE/SVP level, the Youngs modulus of the complexes is obtained as a function of PE content. It is established that, with increasing number of PE chains attached to the SWCNTs, the Youngs modulus monotonically decreases. The density of states (DOS) results show that no orbital hybridization exists between the PE chains and nanotubes. The results of this work are of importance for the design of composite materials employing SWCNTs.

  4. Catalytic degradation of high density polyethylene using zeolites.

    PubMed

    Zaggout, F R; al Mughari, A R; Garforth, A

    2001-01-01

    Plastic wastes, which cause a serious environmental problem in urban areas, can serve as sources of energy. Catalytic treatment of High Density Polyethylene (HDPE) has shown that the degradation of HDPE resulted in the production of a stream of gaseous hydrocarbons varied in the range C1-C8. The degradation was carried out using diluted forms of zeolites ZSM-5, USY and Mordenite (MORD) using a fluidized bed reactor (FBR). Effect of coke formation on the activity of the catalysts was screened by thermogravimetric (TGA). ZSM-5 showed a significant resistance to deactivation because of the nature of its small pore size compared with USY and MORD. PMID:11382018

  5. Allergic reaction to polyethylene glycol in a painter.

    PubMed

    Antolin-Amerigo, D; Sánchez-González, M J; Barbarroja-Escudero, J; Rodríguez-Rodríguez, M; Álvarez-Perea, A; Alvarez-Mon, M

    2015-08-01

    We report a case of a male painter who visited our outpatient clinic after developing a distinct skin reaction 15 min after the ingestion of a laxative solution containing polyethylene glycol (PEG) prior to colonoscopy. He described suffering from the same skin reaction when he was previously exposed to paints that contained PEG-4000. An exposure challenge test with pure PEG-4000, simulating his workplace conditions, elicited a generalized urticarial reaction. Allergy to PEG should be considered in painters who develop urticarial or other systemic symptoms after handling PEG-containing products. PMID:26048329

  6. Preparation and characterization of a microencapsulated polyethylene glycol cross-linked polyhemoglobin.

    PubMed

    Knirsch, Marcos C; Dell'Anno, Filippo; Chicoma, Dennis; Stephano, Marco Antonio; Bou-Chacra, Nádia A; Palombo, Domenico; Converti, Attilio; Polakiewicz, Bronislaw

    2015-11-01

    Many complications are associated to the therapeutic use of blood, among which are not only transfusion adverse events but also other issues such as lack of donors and high costs for collecting, testing, preserving, and distributing blood packages. Therefore, a clinically viable "blood substitute" is considered the holy grail of traumatology and may greatly benefit medicine. One of the most successful approaches to date is conjugating hemoglobin with polyethylene glycol (PEG). This conjugation aims mainly at overcoming free cell hemoglobin toxicity, which makes its use as oxygen carrier in pure form unfeasible. To improve PEG-hemoglobin conjugates feasibility, we propose applying dual functional PEG cross-linking hemoglobin molecules encapsulated by a protein carrier. The new oxygen carrier showed mean values of the hydrodynamic diameter, dispersity, and zeta potential of 1370 nm, 0.029 and -36 mV, respectively, evidencing the successful synthesis of PEG bis(N-succinimidyl succinate) and polyhemoglobin as well as the structuring of protein carrier. PMID:26314399

  7. Interfacial behaviour of 'new' poly(ethylene oxide)-containing copolymers.

    PubMed

    Malmsten, M; Muller, D

    1999-01-01

    Block copolymers containing poly(ethylene oxide) (PEO) have a wide applicability within biomedical applications, not the least due to anti-fouling properties of surface coatings based on these copolymers. We have investigated a number of these, and results for PEO/poly(butylene oxide) (PEO/PBO), PEO/poly(lactide) (PEO/PL), and PEO/poly(ethylene imine) (PEO/PEI) copolymers, as well as for PEO-esterified fatty acids, are presented and discussed. For the former class of polymers, the effects of molecular architecture on the adsorption properties are addressed, and experimental results obtained with ellipsometry and small-angle neutron scattering are presented. For the PEO/PL block copolymers, the effects of the PEO and PL lengths for the polymer adsorption are addressed, as are the effects of degradation of the PL moiety on both adsorption and protein rejection. For the PEO-esterified fatty acids, the effects of PEO chain length and interfacial density on the protein rejection capacity of such coatings are discussed. PMID:10591133

  8. Association of polyethylene friction and thermal unfolding of interfacial albumin molecules

    NASA Astrophysics Data System (ADS)

    Fang, Hsu-Wei; Shih, Meng-Lin; Zhao, Jian-Hua; Huang, Huei-Ting; Lin, Hsin-Yi; Liu, Hsuan-Liang; Chang, Chih-Hung; Yang, Charng-Bin; Liu, Hwa-Chang

    2007-06-01

    Under the articulation of artificial joints, ultra-high molecular weight polyethylene (UHMWPE) acts as a bearing surface under the lubrication of synovial fluid containing various proteins. Albumin is the most abundant composition and acts as the interfacial molecule in the boundary lubrication regime. The dissipated energy including thermal energy from the tribological process may lead to the conformational change of albumin molecules. In this study, a series of experiments were designed and carried out to investigate the association of thermal unfolding albumin and the frictional characteristics of highly-crosslinked UHMWPE (x-UHMWPE). An accelerated oxidation experiment was used to prepare x-UHMWPE with an oxidized surface. Analysis of the albumin protein by circular dichroism (CD) spectroscopy was performed to detect the conformational changes during a thermal process. In addition, a molecular simulation was performed to understand the structural change of albumin at various temperatures and the exposed hydrophobic contact areas. Linear reciprocating frictional tests were carried out to obtain the start-up friction coefficients. The results indicate that a decrease of α-helix content and an unfolding of the secondary structure of albumin were observed with increasing temperatures which may come from the frictional heat of joint articulation process. The conformational change of albumin differentiates the frictional characteristics for x-UHMWPE with different oxidation levels. A model, describing that the properties of the lubricating molecules and articulating surfaces may affect the adsorption of the boundary lubrication thin film which is critical to the tribological behavior, is proposed.

  9. Drying and Storage Effects on Poly(ethylene glycol) Hydrogel Mechanical Properties and Bioactivity

    PubMed Central

    Luong, P.T.; Browning, M.B.; Bixler, R.S.; Cosgriff-Hernandez, E.

    2014-01-01

    Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications due to the ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions and hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying) and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage. PMID:24123725

  10. An Improved Cryosection Method for Polyethylene Glycol Hydrogels Used in Tissue Engineering

    PubMed Central

    Ruan, Jia-Ling; Tulloch, Nathaniel L.; Muskheli, Veronica; Genova, E. Erin; Mariner, Peter D.; Anseth, Kristi S.

    2013-01-01

    The high water content of hydrogels allows these materials to closely mimic the native biological extracellular conditions, but it also makes difficult the histological preparation of hydrogel-based bioengineered tissue. Paraffin-embedding techniques require dehydration of hydrogels, resulting in substantial collapse and deformation, whereas cryosectioning is hampered by the formation of ice crystals within the hydrogel material. Here, we sought to develop a method to obtain good-quality cryosections for the microscopic evaluation of hydrogel-based tissue-engineered constructs, using polyethylene glycol (PEG) as a test hydrogel. Conventional sucrose solutions, which dehydrate cells while leaving extracellular water in place, produce a hydrogel block that is brittle and difficult to section. We therefore replaced sucrose with multiple protein-based and nonprotein-based solutions as cryoprotectants. Our analysis demonstrated that overnight incubation in bovine serum albumin (BSA), fetal bovine serum (FBS), polyvinyl alcohol (PVA), optimum cutting temperature (OCT®) compound, and Fisher HistoPrep frozen tissue-embedding media work well to improve the cryosectioning of hydrogels. The protein-based solutions give background staining with routine hematoxylin and eosin, but the use of nonprotein-based solutions PVA and OCT reduces this background by 50%. These methods preserve the tissue architecture and cellular details with both in vitro PEG constructs and in constructs that have been implanted in vivo. This simple hydrogel cryosectioning technique improves the methodology for creation of good-quality histological sections from hydrogels in multiple applications. PMID:23448137

  11. Effects of polyethylene glycol on DNA adsorption and hybridization on gold nanoparticles and graphene oxide.

    PubMed

    Zhang, Xu; Huang, Po-Jung Jimmy; Servos, Mark R; Liu, Juewen

    2012-10-01

    Understanding the interface between DNA and nanomaterials is crucial for rational design and optimization of biosensors and drug delivery systems. For detection and delivery into cells, where high concentrations of cellular proteins are present, another layer of complexity is added. In this context, we employ polyethylene glycol (PEG) as a model polymer to mimic the excluded volume effect of cellular proteins and to test its effects on DNA adsorption and hybridization on gold nanoparticles (AuNPs) and graphene oxide (GO), both of which show great promise for designing intracellular biosensors and drug delivery systems. We show that PEG 20000 (e.g., 4%) accelerates DNA hybridization to DNA-functionalized AuNPs by 50-100%, but this enhanced hybridization kinetics has not been observed with free DNA. Therefore, this rate enhancement is attributed to the surface blocking effect by PEG instead of the macromolecular crowding effect. On the other hand, DNA adsorption on citrate-capped AuNP surfaces is impeded even in the presence of a trace level (i.e., parts per billion) of PEG, confirming PEG competes with DNA for surface binding sites. Additional insights have been obtained by studying the adsorption of a thiolated DNA and a peptide nucleic acid. In these cases, the steric effects of PEG to impede adsorption are observed. Similar observations have also been made with GO. Therefore, PEG may be used as an effective blocking agent for both hydrophilic AuNP and for GO that also contains hydrophobic domains. PMID:22989102

  12. Single-Monomer Formulation of Polymerized Polyethylene Glycol Diacrylate as a Nonadsorptive Material for Microfluidics

    PubMed Central

    Rogers, Chad I.; Pagaduan, Jayson V.; Nordin, Gregory P.; Woolley, Adam T.

    2011-01-01

    Nonspecific adsorption in microfluidic systems can deplete target molecules in solution and prevent analytes, especially those at low concentrations, from reaching the detector. Polydimethylsiloxane (PDMS) is a widely used material for microfluidics, but is prone to nonspecific adsorption, necessitating complex chemical modification processes to address this issue. An alternative material to PDMS that does not require subsequent chemical modification is presented here. Poly(ethylene glycol) diacrylate (PEGDA) mixed with photoinitiator forms on exposure to UV radiation a polymer with inherent resistance to nonspecific adsorption. Optimization of the polymerized PEGDA (poly-PEGDA) formula imbues this material with some of the same properties, including optical clarity, water stability, and low background fluorescence, that make PDMS so popular. Poly-PEGDA demonstrates less nonspecific adsorption than PDMS over a range of concentrations of flowing fluorescently tagged bovine serum albumin solutions, and poly-PEGDA has greater resistance to permeation by small hydrophobic molecules than PDMS. Poly-PEGDA also exhibits long-term (hour scale) resistance to nonspecific adsorption compared to PDMS when exposed to a low (1 µg/mL) concentration of a model adsorptive protein. Electrophoretic separations of amino acids and proteins resulted in symmetrical peaks and theoretical plate counts as high as 4 × 105/m. Poly-PEGDA, which displays resistance to nonspecific adsorption, could have broad use in small volume analysis and biomedical research. PMID:21728310

  13. Micropatterning of Poly(Ethylene Glycol) Diacrylate Hydrogels with Biomolecules to Regulate and Guide Endothelial Morphogenesis

    PubMed Central

    Moon, James J.; Hahn, Mariah S.; Kim, Iris; Nsiah, Barbara A.

    2009-01-01

    Angiogenesis, which is morphogenesis undertaken by endothelial cells (ECs) during new blood vessel formation, has been traditionally studied on natural extracellular matrix proteins. In this work, we aimed to regulate and guide angiogenesis on synthetic, bioactive poly(ethylene glycol)-diacrylate (PEGDA) hydrogels. PEGDA hydrogel is intrinsically cell nonadhesive and highly resistant to protein adsorption, allowing a high degree of control over presentation of ligands for cell adhesion and signaling. Since these materials are photopolymerizable, a variety of photolithographic technologies may be applied to spatially control presentation of bioactive ligands. To manipulate EC adhesion, migration, and tubulogenesis, the surface of PEGDA hydrogels was micropatterned with a cell adhesive ligand, Arg-Gly-Asp-Ser (RGDS), in desired concentrations and geometries. ECs cultured on these RGDS patterns reorganized their cell bodies into cord-like structures on 50-μm-wide stripes, but not on wider stripes, suggesting that EC morphogenesis can be regulated by geometrical cues. The cords formed by ECs were reminiscent of capillaries with cells participating in the self-assembly and reorganization into multicellular structures. Further, endothelial cord formation was stimulated on intermediate concentration of RGDS at 20 μg/cm2, whereas it was inhibited at higher concentrations. This work has shown that angiogenic responses can be tightly regulated and guided by micropatterning of bioactive ligands and also demonstrated great potentials of micropatterned PEGDA hydrogels for various applications in tissue engineering, where vascularization prior to implantation is critical. PMID:18803481

  14. Polyethylene encapsulation of single shell tank low-level wastes

    SciTech Connect

    Kalb, P.D.; Fuhrmann, M.; Colombo, P.

    1993-04-01

    Polyethylene encapsulation is being explored for potential use in treating nitrate salts and sludges at US Department of Energy (US DOE) underground storage tank facilities. Some of these wastes contain high concentrations of fission products and are expected to maintain equilibrium temperatures of 50--70{degrees}C for many years. The potential effects of elevated temperature and high radiation conditions on key waste form properties (e.g., mechanical integrity, leachability) are examined. After 6 months of thermal conditioning, waste form tests specimens show no degradation in mechanical integrity. Leaching at elevated temperature resulted in a small increase in leach rate (a factor of less than two), while diffusion remained the dominant mechanism of release. Full-scale polyethylene waste forms containing 50--70 wt % nitrate salt can be expected to leach a total of 5--17% of the original contaminant source term after 300 years of leaching under worst-case conditions (fully saturated at 70{degrees}C).

  15. Polyethylene encapsulation of single shell tank low-level wastes

    SciTech Connect

    Kalb, P.D.; Fuhrmann, M.; Colombo, P.

    1993-01-01

    Polyethylene encapsulation is being explored for potential use in treating nitrate salts and sludges at US Department of Energy (US DOE) underground storage tank facilities. Some of these wastes contain high concentrations of fission products and are expected to maintain equilibrium temperatures of 50--70[degrees]C for many years. The potential effects of elevated temperature and high radiation conditions on key waste form properties (e.g., mechanical integrity, leachability) are examined. After 6 months of thermal conditioning, waste form tests specimens show no degradation in mechanical integrity. Leaching at elevated temperature resulted in a small increase in leach rate (a factor of less than two), while diffusion remained the dominant mechanism of release. Full-scale polyethylene waste forms containing 50--70 wt % nitrate salt can be expected to leach a total of 5--17% of the original contaminant source term after 300 years of leaching under worst-case conditions (fully saturated at 70[degrees]C).

  16. Probing polyethylene crystallization via simultaneous Raman scattering, rheology and microscopy

    NASA Astrophysics Data System (ADS)

    Migler, Kalman; Kotula, Anthony; Hight Walker, Angela

    The structure and rheology of polyolefins during crystallization is of critical importance to the polymer processing industry. Here we present simultaneous Raman scattering, rheological and optical microscopy measurements of crystallizing high density polyethylenes during quiescent and slow flow conditions. Raman scattering measurements during quiescent crystallization allow us to quantify three different mass fractions of chain conformers: an amorphous fraction, an orthorhombic crystalline fraction, and a fraction of chains that contain many consecutive trans bonds but are not part of the orthorhombic crystal. These non-crystalline consecutive trans (NCCT) conformers are generated as a precursor to crystallinity. Slow steady shear rates (1 s 1) applied during isothermal crystallization experiments dramatically increase the crystallization rate as well as the amount of NCCT conformers produced. Optical measurements of sheared samples during crystallization reveal the formation of fiber structures that compositionally contain more NCCT conformers than the surrounding melt. The increase in the complex shear modulus commonly measured for crystallizing polyethylenes correlates with the growth of chain conformers and the appearance of spherulites within the melt.

  17. Medium density polyethylene composites with functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pulikkathara, Merlyn X.; Kuznetsov, Oleksandr V.; Peralta, Ivana R. G.; Wei, Xin; Khabashesku, Valery N.

    2009-05-01

    A strong interface between the single-walled carbon nanotubes (SWNTs) and polymer matrix is necessary to achieve enhanced mechanical properties of composites. In this work a series of sidewall-functionalized SWNTs have been investigated in order to evaluate the effect of functionalization on SWNT aspect ratio and composite interfacial chemistry and their role on mechanical properties of a medium density polyethylene (MDPE) matrix. Fluorinated nanotubes (F-SWNTs) were used as precursors for subsequent sidewall functionalization with long chain alkyl groups to produce an F-SWNT- C11H23 derivative. The latter was refluorinated to yield a new perfluorinated derivative, F-SWNT- C11FxHy. The functionalized SWNTs as well as the pristine SWNTs were integrated into an MDPE matrix at a 1 wt% loading. The nanotubes and composite materials were characterized with FTIR, Raman spectroscopy, NMR, XPS, AFM, SEM, TGA, DSC and tensile tests. When incorporated into polyethylene, the new perfluorinated derivative, F-SWNT- C11FxHy, yielded the highest tensile strength value among all nanotube/MDPE composite samples, showing a 52% enhancement in comparison with the neat MDPE. The 1 wt% SWNT/MDPE composite contained nanotubes with a larger aspect ratio but, due to a lack of interfacial chemistry, it resulted in less improvement in mechanical properties compared to the composites made with the fluorinated SWNT derivatives.

  18. Reduced Water Density in a Poly(ethylene oxide) Brush

    SciTech Connect

    Lee, Hoyoung; Kim, Dae Hwan; Park, Hae-Woong; Mahynski, Nathan A.; Kim, Kyungil; Meron, Mati; Lin, Binhua; Won, You-Yeon

    2012-09-05

    A model poly(ethylene oxide) (PEO) brush system, prepared by spreading a poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) amphiphilic diblock copolymer onto an air-water interface, was investigated under various grafting density conditions by using the X-ray reflectivity (XR) technique. The overall electron density profiles of the PEO-PnBA monolayer in the direction normal to the air-water interface were determined from the XR data. From this analysis, it was found that inside of the PEO brush, the water density is significantly lower than that of bulk water, in particular, in the region close to the PnBA-water interface. Separate XR measurements with a PnBA homopolymer monolayer confirm that the reduced water density within the PEO-PnBA monolayer is not due to unfavorable contacts between the PnBA surface and water. The above result, therefore, lends support to the notion that PEO chains provide a hydrophobic environment for the surrounding water molecules when they exist as polymer brush chains.

  19. Optimal grade transitions in a gas phase polyethylene reactor

    SciTech Connect

    McAuley, K.B.; MacGregor, J.F. . Dept. of Chemical Engineering)

    1992-10-01

    This paper reports that using gas-phase technology many grades of polyethylene can be produced in a single reactor. For a series of three polyethylene products, model-based dynamic optimization is used to determine optimal grade changeover policies. Optimal manipulated variable profiles are determined for hydrogen and butene feed rates, reactor temperature setpoint, gas bleed flow, catalyst feed rate, and bed level setpoint. It is shown that large transitions in melt index are hampered by slow hydrogen dynamics, and that the time required for such a transition can be reduced by manipulating the temperature setpoint and the bleed stream flow. Reduction of the bed level and catalyst feed rates during changeovers can significantly reduce the quantity of off-specification polymer produced. it is demonstrated that melt index and density are not sufficient to characterize the properties of polymer produced during grade transitions, and that the shape of the cumulative copolymer composition distribution is very sensitive to the grade changeover policy used.

  20. On the Structure of Holographic Polymer-dispersed Polyethylene Glycol

    SciTech Connect

    Birnkrant,M.; McWilliams, H.; Li, C.; Natarajan, L.; Tondiglia, V.; Sutherland, R.; Lloyd, P.; Bunning, T.

    2006-01-01

    Holographic polymerization (H-P) has been used to fabricate polymer-dispersed liquid crystals and pattern inert nanoparticles. In this article, one-dimensional grating structures of Norland resin and polyethylene glycol (PEG) were achieved using the H-P technique. Both reflection and transmission grating structures were fabricated. The optical properties of the reflection grating structures (also known as Bragg reflectors, BRs) are thermosensitive, which is attributed to the formation and crystallization of PEG crystals. The thermal switching temperature of the BR can be tuned by using different molecular weight PEG samples. The hierarchical structure and morphology of the BR were studied using synchrotron X-ray, polarized light microscopy and transmission electron microscopy. PEG crystals were found to be confined in {approx}60 nm thick layers in the BR. Upon crystallization, the PEG lamellae were parallel to the BR surfaces and PEG chains were parallel to the BR normal, resembling the confined crystallization behavior of polyethylene oxide (PEO) in PEO-block-polystyrene (PEO-b-PS) block copolymers. This observation suggests that the tethering effect in the block copolymer systems does not play a major role in PEG chain orientation in the confined nanoenvironment.

  1. Analyzing and improving viscoelastic properties of high density polyethylene

    NASA Astrophysics Data System (ADS)

    Ahmed, Reaj Uddin

    2011-12-01

    High Density Polyethylene (HDPE) is closely packed, less branched polyethylene having higher mechanical properties, chemical resistance, and heat resistance than Low Density Polyentylene (LDPE). Better properties and cost effectiveness make it an important raw material over LDPE in packaging industries. Stacked containers made of HDPE experience static loading and deformation strain during their storage period in a warehouse. As HDPE is a viscoelastic material, dimensional stability of stacked HDPE containers depends on time dependent properties such as creep and stress relaxation. Now, light weighting is a driving force in packaging industries, which results in lower production costs but performance of the product becomes a challenge. Proper understanding of the viscoelastic properties of HDPE, with relevant FE simulation can facilitate improved designs. This research involves understanding and improving viscoelastic properties, creep behavior, and stress relaxation of HDPE. Different approaches were carried out to meet the objectives. Organic filler CaCO3 was added to HDPE at increasing weight fractions and corresponding property changes were investigated. Annealing heat treatments were also carried out for potential property improvements. The effect of ageing was also investigated on both annealed and non annealed HDPE. The related performance of different water bottles against squeeze pressure was also characterized. Both approaches, incorporation of CaCO3 and annealing, showed improvements in the properties of HDPE over neat HDPE. This research aids finding the optimum solution for improving viscoelastic properties, stress relaxation, and creep behavior of HDPE in manufacturing.

  2. Effect of thermal modification on rheological properties of polyethylene blends

    SciTech Connect

    Siriprumpoonthum, Monchai; Nobukawa, Shogo; Yamaguchi, Masayuki; Satoh, Yasuo; Sasaki, Hiroko

    2014-03-15

    We examined the effects of thermal modification under flow field on the rheological properties of linear low-density polyethylene (LLDPE) with high molecular weight, low-density polyethylene (LDPE), and their blends, without thermal stabilizer. Although structural changes during processing are not detected by size extrusion chromatography or nuclear magnetic resonance spectroscopy, linear viscoelastic properties changed greatly, especially for the LLDPE. A cross-linking reaction took place, leading to, presumably, star-shaped long-chain branches. Consequently, the modified LLDPE, having high zero-shear viscosity, became a thermorheologically complex melt. Moreover, it should be noted that the drawdown force, defined as the uniaxial elongational force at a constant draw ratio, was significantly enhanced for the blends. Enhancement of elongational viscosity was also detected. The drawdown force and elongational viscosity are marked for the thermally modified blend as compared with those for the blend of thermally modified pure components. Intermolecular cross-linking reactions between LDPE and LLDPE, yielding polymers with more than two branch points per chain, result in marked strain-hardening in the elongational viscosity behavior even at small strain. The recovery curve of the oscillatory modulus after the shear modification is further evidence of a branched structure.

  3. Enhancement of the predicted drug hepatotoxicity in gel entrapped hepatocytes within polysulfone-g-poly (ethylene glycol) modified hollow fiber

    SciTech Connect

    Shen Chong; Zhang Guoliang; Meng Qin

    2010-12-01

    Collagen gel-based 3D cultures of hepatocytes have been proposed for evaluation of drug hepatotoxicity because of their more reliability than traditional monolayer culture. The collagen gel entrapment of hepatocytes in hollow fibers has been proven to well reflect the drug hepatotoxicity in vivo but was limited by adsorption of hydrophobic drugs onto hollow fibers. This study aimed to investigate the impact of hollow fibers on hepatocyte performance and drug hepatotoxicity. Polysulfone-g-poly (ethylene glycol) (PSf-g-PEG) hollow fiber was fabricated and applied for the first time to suppress the drug adsorption. Then, the impact of hollow fibers was evaluated by detecting the hepatotoxicity of eight selected drugs to gel entrapped hepatocytes within PSf and PSf-g-PEG hollow fibers, or without hollow fibers. The hepatocytes in PSf-g-PEG hollow fiber showed the highest sensitivity to drug hepatotoxicity, while those in PSf hollow fiber and cylindrical gel without hollow fiber underestimated the hepatotoxicity due to either drug adsorption or low hepatic functions. Therefore, the 3D culture of gel entrapped hepatocytes within PSf-g-PEG hollow fiber would be a promising tool for investigation of drug hepatotoxicity in vitro.

  4. A biofriendly silica gel for in situ protein entrapment: biopolymer-assisted formation and its kinetic mechanism.

    PubMed

    Wang, Guan-Hai; Zhang, Li-Ming

    2009-03-01

    In an attempt to develop a biofriendly sol-gel route for the rapid formation of biofunctional silica gels, a biopolymer with good biocompatibility was used to assist the gelation of glycol-modified tetraethoxysilane (GMT) in aqueous system without the addition of any organic solvents. It was found that the biopolymer used could act as an effective accelerator for the sol-gel transition of GMT and an increase of its amount could shorten greatly the gelation time. For such a gelation reaction, its apparent activation energy was determined to be 64.9 kJ/mol according to the Arrhenius equation. In particular, the kinetic mechanism for the formation of the silica gel was investigated by using dynamic theological data and a scaling fractal model. It was revealed that the biopolymer used could change the sol-gel transition mechanism from reaction-limited kinetics to diffusion-limited kinetics. Circular dichroism analyses confirmed the suitability of using the resultant silica gel for the in situ protein encapsulation. PMID:19708206

  5. 78 FR 48147 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary... film, sheet and strip (PET film) from India for the period of review (POR) January 1, 2011, through... polyethylene terephthalate film, sheet and strip, whether extruded or coextruded. Excluded are metallized...

  6. 78 FR 42105 - Polyethylene Terephthalate Film, Sheet, and Strip From India and Taiwan; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Polyethylene Terephthalate Film, Sheet, and Strip From India and Taiwan; Notice of Commission... countervailing duty order on polyethylene terephthalate film, sheet, and strip (``PET'' film) from India and...

  7. 75 FR 10758 - Polyethylene Terephthalate Film, Sheet and Strip from India: Initiation of Antidumping Duty and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... Order: Polyethylene Terephthalate Film, Sheet and Strip (PET Film) from India, 67 FR 44179 (July 1, 2002... India, 67 FR 44175 (July 1, 2002) (Antidumping Duty Order). The notice announcing the countervailing... International Trade Administration Polyethylene Terephthalate Film, Sheet and Strip from India: Initiation...

  8. 76 FR 75870 - Polyethylene Terephthalate Film, Sheet, and Strip From Korea: Notice of Rescission of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ..., 76 FR 45227 (July 28, 2011) (Initiation Notice). \\2\\ See Polyethylene Terephthalate Film, Sheet, and Strip from Korea: Final Results of Antidumping Duty Administrative Review and Revocation in Part, 76 FR... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From Korea: Notice...

  9. 78 FR 2365 - Polyethylene Terephthalate Film, Sheet and Strip From India: Partial Rescission of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ..., 77 FR 52688 (August 30, 2012). \\6\\ See Polyethylene Terephthalate (PET) Film, Sheet, and Strip from... Administrative Review, 77 FR 39216, 39217 (July 2, 2012). \\2\\ Petitioners are DuPont Teijin Films, Mitsubishi... International Trade Administration Polyethylene Terephthalate Film, Sheet and Strip From India:...

  10. Complete genome sequence of Bacillus sp. YP1, a polyethylene-degrading bacterium from waxworm's gut.

    PubMed

    Yang, Yu; Chen, Jianwei; Wu, Wei-Min; Zhao, Jiao; Yang, Jun

    2015-04-20

    Bacillus sp. strain YP1, isolated from the gut of waxworm (the larvae of Plodia interpunctella) which ate polyethylene (PE) plastic, is capable of degrading PE and utilizing PE as sole carbon source. Here we report the complete genome sequence of strain YP1, which is relevant to polyethylene depolymerization and biodegradation. PMID:25795022

  11. Properties of high density polyethylene – Paulownia wood flour composites via injection molding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...

  12. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  13. 75 FR 34699 - Polyethylene Retail Carrier Bags from Thailand: Rescission of Antidumping Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ..., 74 FR 48224 (September 22, 2009). On April 19, 2010, the petitioners withdrew their request for an... International Trade Administration Polyethylene Retail Carrier Bags from Thailand: Rescission of Antidumping... order on polyethylene retail carrier bags from Thailand. The period of review is August 1, 2008,...

  14. 76 FR 26241 - Polyethylene Retail Carrier Bags From Thailand: Extension of Time Limit for Preliminary Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ..., 75 FR 60076 (September 29, 2010). The preliminary results of this administrative review are currently... International Trade Administration Polyethylene Retail Carrier Bags From Thailand: Extension of Time Limit for... polyethylene retail carrier bags from Thailand for the period August 1, 2009, through July 31, 2010....

  15. 75 FR 36359 - Polyethylene Retail Carrier Bags From Thailand: Extension of Time Limit for Preliminary Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... Thailand. See Antidumping Duty Order: Polyethylene Retail Carrier Bags From Thailand, 69 FR 48204 (August 9... of Sales at Less Than Fair Value: Polyethylene Retail Carrier Bags From Thailand, 69 FR 34122, 34123... Administrative Reviews and Request for Revocation in Part, 74 FR 48224, 48226 (September 22, 2009).\\1\\ The...

  16. 76 FR 30102 - Polyethylene Retail Carrier Bags From Thailand: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ...: Polyethylene Retail Carrier Bags From Thailand, 69 FR 34122, 34123 (June 18, 2004). \\2\\ See Notice of... the Antidumping Duty Order on Polyethylene Retail Carrier Bags From Thailand, 75 FR 48940 (August 12... From Thailand, 69 FR 48204 (August 9, 2004). On September 29, 2010, we published a notice of...

  17. 75 FR 25207 - Polyethylene Retail Carrier Bags From Malaysia: Extension of Time Limit for Preliminary Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... Administrative Reviews and Request for Revocation in Part, 74 FR 48224 (September 22, 2009). As explained in the... International Trade Administration A-557-813 Polyethylene Retail Carrier Bags From Malaysia: Extension of Time... administrative review of the antidumping duty order on polyethylene retail carrier bags from Malaysia for...

  18. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene...

  19. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene...

  20. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene...

  1. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9... molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as a... conditions: (a) The additive is an addition polymer of ethylene oxide and water with a mean molecular...

  2. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  3. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  4. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  5. Mechanical and thermal properties of high density polyethylene – dried distillers grains with solubles composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried Distillers Grain with Solubles (DDGS) is evaluated as a bio-based fiber reinforcement. Injection molded composites of high density polyethylene (HDPE), 25% by weight of DDGS, and either 5% of 0% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding and injection mo...

  6. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  7. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  8. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  9. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  10. Nd:Yag laser irradiation of single lap joints made by polyethylene and polyethylene doped by carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Visco, A. M.; Brancato, V.; Cutroneo, M.; Torrisi, L.

    2014-04-01

    Thermoplastic polyethylene can be welded by the transmission laser welding technique (TTLW) that exhibits some process related benefits with respect other conventional joining methods. This justifies its large use in wide fields, from the automotive to medical or domestic appliances. In this research, we studied single lap joints made by polyethylene pure and filled with carbon nanomaterials (0.2% in weight) to make the polymer laser absorbent. The joints were irradiated by a Nd:YAG laser operating at 1064 nm (first harmonic) with an intensity of 107 W/cm2 and 1 ÷ 30Hz, a maximum pulse energy of 300mJ and a laser spot of ≈ 1 cm2 (no focusing lens were employed). The joints were characterized by morphological analysis, mechanical shear tests and calorimetric analysis. The results suggested that the laser exposition time must be opportunely balanced in order to avoid a poor adhesion between the polymer sheets and to realized efficient joints. In particular the mechanical test showed that the laser exposition time of 40 seconds is the best conditions to obtain the highest shear strength of the joints of 140 N. After too prolonged laser exposure times, degrading phenomena starts.

  11. Effective Blending of Ultrahigh Molecular Weight Polyethylene with High-Density Polyethylene via Solid-State Shear Pulverization (SSSP)

    NASA Astrophysics Data System (ADS)

    Diop, Mirian; Torkelson, John

    2014-03-01

    Compared with conventional polyolefins, ultrahigh molecular weight polyethylene (UHMWPE) possesses outstanding mechanical properties, including impact strength and crack resistance, that make it it highly desirable for applications ranging from body armor to implants. Unfortunately, UHMWPE has an ultrahigh melt viscosity that renders common melt processes ineffective for making products from UHMWPE. Attempts to overcome this problem by blending UHMWPE with polyethylene (PE) by conventional melt mixing have been unsuccessful because of the enormous viscosity mismatch between blend components and have led to large suspensions of UHMWPE particles within a PE matrix. Here, we show the utility of solid-state shear pulverization (SSSP) in achieving effectively and intimately mixed UHMWPE/PE blends. For blends with up to 50 wt% UHMWPE we observe only slight increases in viscosity (η) at high shear rates but major increases in η with increasing UHMWPE content at low shear rates. Using extensional rheology, we confirm the strain hardening behavior of SSSP blends. Additionally, shear rheology and differential scanning calorimetry data indicate that the degree of mixing between UHMWPE and HDPE domains can be increased dramatically with subsequent passes of SSSP and single screw extrusion. Finally, blends prepared via SSSP show dramatic increases in impact strength; e.g., for a 30/70 wt% UHMWPE/HDPE blend, impact strength increases by about 300 % (relative to the parent neat HDPE).

  12. Effect of nanoclay on the properties of low density polyethylene/linear low density polyethylene/thermoplastic starch blend films.

    PubMed

    Sabetzadeh, Maryam; Bagheri, Rouhollah; Masoomi, Mahmood

    2016-05-01

    The aim of this work is to study effect of nanoclay (Cloisite(®)15A) on morphology and properties of low-density polyethylene/linear low-density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) blend films. LDPE/LLDPE blend (70/30wt/wt) containing 15wt.% TPS in the presence of PE-grafted maleic anhydride (PE-g-MA, 3wt.%) with 1, 3 and 5phr of nanoclay are compounded in a twin-screw extruder and then film blown using a blowing machine. Nanocomposites with intercalated structures are obtained, based on the X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. However, some exfoliated single platelets in the samples are also observable. Scanning electron microscopic (SEM) images confirm the ability of both exfoliated nanoclay and PE-g-MA to reduce the size of TPS domains and deform their particles within the PE matrices. As the nanoclay content increases from 1 to 5phr, the tensile strength, tear resistance and impact strength of the films increase, whereas a slight decrease in the elongation at break is observed. The film samples with 5phr nanoclay possess the required packaging properties, as specified by ASTM D4635. These films provide desired optical transparency and surface roughness which are more attractive for packaging applications. PMID:26876998

  13. Environmental evaluation of polyethylene oxide when used as a flocculant for clay wastes

    SciTech Connect

    Zatko, J.R.

    1980-01-01

    A method of flocculation dewatering of phosphatic clay wastes using polyethylene oxide as the flocculant is reported. Research was conducted to determine whether ethylene oxide gas was present in the air in the vicinity of disposed waste materials which had been flocculated with polyethylene oxide. Samples of clay waste materials containing polyethylene oxide were prepared in stoppered glass bottles in simulated disposal environments. Gaseous samples, removed over a 75-day period using an airtight syringe, were injected into a gas chromatograph that was capable of separating ethylene oxide from air. The presence of ethylene oxide gas was not detected in any sample. To determine possible degradation products of polyethylene oxide, the properties and reactions of ethylene oxide and its polymers were reviewed. Based upon the literature survey and experimental study, it was concluded that adverse environmental effects were not likely to result from the use of polyethylene oxide for flocculating phosphatic clay waste products.

  14. Thermo-Gelation of Surface-Modified Polyethylene Microgels from Fragmentation and Immiscible Blends

    NASA Astrophysics Data System (ADS)

    Ling, Gerald H.; Shaw, Montgomery T.

    2008-07-01

    Polyethylene microgels were created by swollen-state grinding and ultrasonic fragmentation of bulk crosslinked polyethylene (XLPE) suspended in squalane, and by the extraction of crosslinked-polyethylene micro-domains from an immiscible blend of polyethylene (PE) and polystyrene (PS). Crosslinking of the polyethylene micro-domains in the blend was achieved by exposure to an electron beam. Suspensions of both microgels in squalane exhibit thermal gelation upon cooling where both G' and G″ increase by up to five-orders in magnitude when probed using small-angle oscillatory shear. We propose that this phenomenon is attributed to weak short-range interactions among the particles whereby surface terminal chains on the microgels can co-crystallize forming inter-particle bonds. However, these interactions are mild enough that the systems may be reverted to its original state by applying higher shear stresses at elevated temperatures.

  15. The effect of entrapped bone particles on the surface morphology and wear of polyethylene.

    PubMed

    Mimnaugh, Kimberly D; Yao, Jian Q; Laurent, Michel P; Crowninshield, Roy; Mason, James J; Blanchard, Cheryl

    2009-02-01

    Clinically retrieved highly cross-linked ultrahigh molecular weight polyethylene (HXPE) acetabular liners have demonstrated scratching, whereas conventional ultrahigh-molecular-weight polyethylene (UHMWPE) implants show a smoother surface early after implantation. In the present study, the potential of bone particles and soft tissues, rather than cement, to scratch the articular surface of HXPE and UHMWPE (gamma radiated) acetabular components was evaluated; multiple bone particles located at the articular surface for 3600 simulated walking cycles replicated the scratches observed on retrieved implants. By remelting, these scratches were confirmed to be due to plastic deformation of the polyethylene, not wear. Furthermore, it was shown using wear testing that these scratches did not affect the subsequent wear rate of HXPE or conventional UHMWPE. Wear rates of scratched conventional and cross-linked polyethylene were not significantly different from unscratched conventional and cross-linked polyethylene, respectively. PMID:18524532

  16. Effect of chain architecture on the compression behavior of nanoscale polyethylene particles

    PubMed Central

    2013-01-01

    Polymeric particles with controlled internal molecular architectures play an important role as constituents in many composite materials for a number of emerging applications. In this study, classical molecular dynamics techniques are employed to predict the effect of chain architecture on the compression behavior of nanoscale polyethylene particles subjected to simulated flat-punch testing. Cross-linked, branched, and linear polyethylene chain architectures are each studied in the simulations. Results indicate that chain architecture has a significant influence on the mechanical properties of polyethylene nanoparticles, with the network configuration exhibiting higher compressive strengths than the branched and linear architectures. These findings are verified with simulations of bulk polyethylene. The compressive stress versus strain profiles of particles show four distinct regimes, differing with that of experimental micron-sized particles. The results of this study indicate that the mechanical response of polyethylene nanoparticles can be custom-tailored for specific applications by changing the molecular architecture. PMID:23855722

  17. Evaluation of Recycling Technology of Insulation of Cross-linked Polyethylene Insulated Cable using Supercritical Alcohol

    NASA Astrophysics Data System (ADS)

    Goto, Toshiharu; Ashihara, Shingo; Yamazaki, Takanori; Watanabe, Kiyoshi

    The material recycling of the insulation of cross-linked polyethylene cable was studied. We successfully obtained thermoplastic recycled polyethylene from silane cross-linked polyethylene by using chemical reaction in supercritical alcohol. Here, the continuous process for the recycling of silane cross-linked PE using supercritical alcohol was constructed. The mechanical and electrical properties of recycled polyethylene satisfied the requirement of the cable insulation. These results indicate that the cable to cable and wire to wire recycling of silane cross-linked polyethylene will possibly be accomplished by supercritical technology using extruder. Moreover the environmental effect of this technology was evaluated by the amount of the carbon dioxide generated from the continuous process. These results indicate that recycling method using supercritical alcohol was useful for the reduction of the environmental pollution.

  18. Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency

    PubMed Central

    Shao, Ruixin; Xin, Longfei; Mao, Jun; Li, Leilei; Kang, Guozhang; Yang, Qinghua

    2015-01-01

    After maize seedlings grown in full-strength Hoagland solution for 20 days were exposed to 20% polyethylene glycol (PEG)-stimulated water deficiency for two days, plant height, shoot fresh and dry weights, and pigment contents significantly decreased, whereas malondialdehyde (MDA) content greatly increased. Using transmission electron microscopy, we observed that chloroplasts of mesophyll cells in PEG-treated maize seedlings were swollen, with a disintegrating envelope and disrupted grana thylakoid lamellae. Using two-dimensional gel electrophoresis (2-DE) method, we were able to identify 22 protein spots with significantly altered abundance in the leaves of treated seedlings in response to water deficiency, 16 of which were successfully identified. These protein species were functionally classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, and unknown categories. The change in the abundance of the identified protein species may be closely related to the phenotypic and physiological changes due to PEG-stimulated water deficiency. Most of the identified protein species were putatively located in chloroplasts, indicating that chloroplasts may be prone to damage by PEG stimulated-water deficiency in maize seedlings. Our results help clarify the molecular mechanisms of the responses of higher plants to severe water deficiency. PMID:26370980

  19. Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency.

    PubMed

    Shao, Ruixin; Xin, Longfei; Mao, Jun; Li, Leilei; Kang, Guozhang; Yang, Qinghua

    2015-01-01

    After maize seedlings grown in full-strength Hoagland solution for 20 days were exposed to 20% polyethylene glycol (PEG)-stimulated water deficiency for two days, plant height, shoot fresh and dry weights, and pigment contents significantly decreased, whereas malondialdehyde (MDA) content greatly increased. Using transmission electron microscopy, we observed that chloroplasts of mesophyll cells in PEG-treated maize seedlings were swollen, with a disintegrating envelope and disrupted grana thylakoid lamellae. Using two-dimensional gel electrophoresis (2-DE) method, we were able to identify 22 protein spots with significantly altered abundance in the leaves of treated seedlings in response to water deficiency, 16 of which were successfully identified. These protein species were functionally classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, and unknown categories. The change in the abundance of the identified protein species may be closely related to the phenotypic and physiological changes due to PEG-stimulated water deficiency. Most of the identified protein species were putatively located in chloroplasts, indicating that chloroplasts may be prone to damage by PEG stimulated-water deficiency in maize seedlings. Our results help clarify the molecular mechanisms of the responses of higher plants to severe water deficiency. PMID:26370980

  20. Insulin Particle Formation in Supersaturated Aqueous Solutions of Poly(Ethylene Glycol)

    PubMed Central

    Bromberg, Lev; Rashba-Step, Julia; Scott, Terrence

    2005-01-01

    Protein microspheres are of particular utility in the field of drug delivery. A novel, completely aqueous, process of microsphere fabrication has been devised based on controlled phase separation of protein from water-soluble polymers such as polyethylene glycols. The fabrication process results in the formation of spherical microparticles with narrow particle size distributions. Cooling of preheated human insulin-poly(ethylene glycol)-water solutions results in the facile formation of insulin particles. To map out the supersaturation conditions conducive to particle nucleation and growth, we determined the temperature- and concentration-dependent boundaries of an equilibrium liquid-solid phase separation. The kinetics of formation of microspheres were followed by dynamic and continuous-angle static light scattering techniques. The presence of PEG at a pH that was close to the protein's isoelectric point resulted in rapid nucleation and growth. The time elapsed from the moment of creation of a supersaturated solution and the detection of a solid phase in the system (the induction period, tind) ranged from tens to several hundreds of seconds. The dependence of tind on supersaturation could be described within the framework of classical nucleation theory, with the time needed for the formation of a critical nucleus (size <10 nm) being much longer than the time of the onset of particle growth. The growth was limited by cluster diffusion kinetics. The interfacial energies of the insulin particles were determined to be 3.2–3.4 and 2.2 mJ/m2 at equilibrium temperatures of 25 and 37°C, respectively. The insulin particles formed as a result of the process were monodisperse and uniformly spherical, in clear distinction to previously reported processes of microcrystalline insulin particle formation. PMID:16254391

  1. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava.

    PubMed

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-01-01

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment. PMID:26927071

  2. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava

    PubMed Central

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-01-01

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment. PMID:26927071

  3. Migration studies of 3-chloro-1,2-propanediol (3-MCPD) in polyethylene extrusion-coated paperboard food packaging.

    PubMed

    Pace, Gregory V; Hartman, Thomas G

    2010-06-01

    The manufacturing process of paperboard food packaging can produce small quantities of 3-chloro-1,2-propanediol (3-MCPD or 3-monochloropropane-1,2-diol) when wet-strength resins containing epichlorohydrin are used. 3-MCPD is from the same family as 1,3-dichloro-2-propanol (1,3-DCP), which is known to cause cancer in animals. 3-MCPD has been found in acid hydrolyzed vegetable protein, Asian sauces and paperboard for food contact. In this investigation, we conducted extraction studies to measure 3-MCPD migration into food simulant solvents from the food contact side of polyethylene extrusion-coated paperboard beverage cartons and aqueous extractions of cut pieces from the entire paperboard. We demonstrate that 3-MCPD confirmed present at concentrations up to 9.9 mg kg(-1) within the paperboard matrix does not migrate through the polyethylene-coated food contact surface. The aqueous extraction of the entire paperboard and food contact side extractions with aqueous/acidic food simulants were performed using US Food and Drug Administration (FDA) and European Commission (EU) migration testing protocols. We also show that no significant amount of 3-MCPD migrates through the unskived edges on the inside seam of the paperboard structure. The methodology for the aqueous and migration cell extractions using GC-MS analyses was validated with a limit of quantification (LOQ) of 0.009 mg kg(-1) and a limit of detection (LOD) of 0.005 mg kg(-1). PMID:20486004

  4. Elaboration et caracterisation de nanocomposites polyethylene/montmorillonite

    NASA Astrophysics Data System (ADS)

    Stoeffler, Karen

    This research project consists in preparing polyethylene/montmorillonite nanocomposites for film packaging applications. Montmorillonite is a natural clay with an exceptional aspect ratio. In recent years, its incorporation in polymer matrices has attracted great interest. The pioneer work from Toyota on polyamide-6/montmorillonite composites has shown that it was possible to disperse the clay at a nanometric scale. Such a structure, so-called exfoliated, leads to a significant increase in mechanical, barrier and fire retardant properties, even at low volumetric fractions of clay. This allows a valorization of the polymeric material at moderate cost. Due to its high polarity, montmorilloite exfoliation in polymeric matrices is problematic. In the particular case of polyolefin matrices, the platelets dispersion remains limited: most frequently, the composites obtained exhibit conventional structures (microcomposites) or intercalated structures. To solve this problem, two techniques are commonly employed: the surface treatment of the clay, which allows the expansion of the interfoliar gallery while increasing the affinity between the clay and the polymer, and the use of a polar compatibilizing agent (grafted polyolefin). The first part of this thesis deals with the preparation and the characterization of highly thermally stable organophilic montmorillonites. Commercial organophilic montmorillonites are treated with quaternary ammonium intercalating agents. However, those intercalating agents present a poor thermal stability and are susceptible to decompose upon processing, thus affecting the clay dispersion and the final properties of the nanocomposites. In this work, it was proposed to modify the clay with alkyl pyridinium, alkyl imidazolium and alkyl phosphonium intercalating agents, which are more stable than ammonium based cations. Organophilic montmorillonites with enhanced thermal stabilites compared to commercial organoclays (+20°C to +70°C) were prepared. The effect of the chemical structure of the intercalating agent on the capacity of the organoclay to be dispersed in polyethylene matrices was analyzed. In addition, the influence of the dispersion on the thermal stability of the nanocomposites prepared is discussed. In a second part, the effect of the compatibilizing agent characteristics on the quality of the clay dispersion in polyethylene/montmorillonite nanocomposites was analyzed. The mechanical properties and the oxygen permeability of the nanocomposites were evaluated and related to the level of clay delamination and to the strength of the polymer/clay interface, which was evaluated through surface tension measurements.

  5. 75 FR 75454 - Polyethylene Retail Carrier Bags From Thailand: Extension of Time Limit for the Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... polyethylene retail carrier bags from Thailand. See Polyethylene Retail Carrier Bags From Thailand: Preliminary Results of Antidumping Duty Administrative Review, 75 FR 53953 (September 2, 2010). The administrative... International Trade Administration Polyethylene Retail Carrier Bags From Thailand: Extension of Time Limit...

  6. Crowning Proteins: Modulating the Protein Surface Properties using Crown Ethers**

    PubMed Central

    Lee, Cheng-Chung; Maestre-Reyna, Manuel; Hsu, Kai-Cheng; Wang, Hao-Ching; Liu, Chia-I; Jeng, Wen-Yih; Lin, Li-Ling; Wood, Richard; Chou, Chia-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J

    2014-01-01

    Crown ethers are small, cyclic polyethers that have found wide-spread use in phase-transfer catalysis and, to a certain degree, in protein chemistry. Crown ethers readily bind metallic and organic cations, including positively charged amino acid side chains. We elucidated the crystal structures of several protein-crown ether co-crystals grown in the presence of 18-crown-6. We then employed biophysical methods and molecular dynamics simulations to compare these complexes with the corresponding apoproteins and with similar complexes with ring-shaped low-molecular-weight polyethylene glycols. Our studies show that crown ethers can modify protein surface behavior dramatically by stabilizing either intra- or intermolecular interactions. Consequently, we propose that crown ethers can be used to modulate a wide variety of protein surface behaviors, such as oligomerization, domain–domain interactions, stabilization in organic solvents, and crystallization. PMID:25287606

  7. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels

    PubMed Central

    Smith, Amanda W.; Hoyne, Jake D.; Nguyen, Peter K.; McCreedy, Dylan A.; Aly, Haytham; Efimov, Igor R.; Rentschler, Stacey; Elbert, Donald L.

    2013-01-01

    Direct reprogramming strategies enable rapid conversion of somatic cells to cardiomyocytes or cardiomyocyte-like cells without going through the pluripotent state. A recently described protocol couples Yamanaka factor induction with pluripotency inhibition followed by BMP4 treatment to achieve rapid reprogramming of mouse fibroblasts to beating cardiomyocyte-like cells. The original study was performed using Matrigel-coated tissue culture polystyrene (TCPS), a stiff material that also non-specifically adsorbs serum proteins. Protein adsorption-resistant poly(ethylene glycol) (PEG) materials can be covalently modified to present precise concentrations of adhesion proteins or peptides without the unintended effects of non-specifically adsorbed proteins. Here, we describe an improved protocol that incorporates custom-engineered materials. We first reproduced the Efe et al. protocol on Matrigel-coated TCPS (the original material), reprogramming adult mouse tail tip mouse fibroblasts (TTF) and mouse embryonic fibroblasts (MEF) to cardiomyocyte-like cells that demonstrated striated sarcomeric ?-actinin staining, spontaneous calcium transients, and visible beating. We then designed poly(ethylene glycol) culture substrates to promote MEF adhesion via laminin and RGD-binding integrins. PEG hydrogels improved proliferation and reprogramming efficiency (evidenced by beating patch number and area, gene expression, and flow cytometry), yielding almost twice the number of sarcomeric ?-actinin positive cardiomyocyte-like cells as the originally described substrate. These results illustrate that cellular reprogramming may be enhanced using custom-engineered materials. PMID:23773820

  8. Electrospun Polyaniline/Polyethylene Oxide Nanofiber Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    Pinto, N. J.; Johnson, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A.

    2003-01-01

    We report on the observation of field effect transistor (FET) behavior in electrospun camphorsulfonic acid doped polyaniline(PANi)/polyethylene oxide(PE0) nanofibers. Saturation channel currents are observed at surprisingly low source/drain voltages. The hole mobility in the depletion regime is 1.4 x 10(exp -4) sq cm/V s while the 1-D charge density (at zero gate bias) is calculated to be approximately 1 hole per 50 two-ring repeat units of polyaniline, consistent with the rather high channel conductivity (approx. 10(exp -3) S/cm). Reducing or eliminating the PEO content in the fiber is expected to enhance device parameters. Electrospinning is thus proposed as a simple method of fabricating 1-D polymer FET's.

  9. Scoping study. High density polyethylene (HDPE) in salstone service

    SciTech Connect

    Phifer, Mark A.

    2005-02-18

    An evaluation of the use of high density polyethylene (HDPE) geomembranes in Saltstone service has been conducted due to the potential benefits that could be derived from such usage. HDPE is one of the simplest hydrocarbon polymers and one of the most common polymers utilized in the production of geomembranes, which means that its costs are relatively low. Additionally, HDPE geomembranes have an extremely low permeability and an extremely low water vapor diffusional flux, which means that it is a good barrier to contaminant transport. The primary consideration in association with HDPE geomembranes in Saltstone service is the potential impact of Saltstone on the degradation of the HDPE geomembranes. Therefore, the evaluation documented herein has primarily focused upon the potential HDPE degradation in Saltstone service.

  10. Gels and foams from ultrahigh molecular weight polyethylene

    SciTech Connect

    Hair, L.M.; Letts, S.A.; Tillotson, T.

    1988-07-01

    Ultrahigh molecular weight polyethylene (UHMW PE) foams with densities from 0.04 to 0.2 g/cm{sup 3} have routinely been made in our laboratory. First, an entangled solution of UHMW PE is made. Then, the solution is geled by cooling to crystallize the PE. The gel is later dried to a foam by critical point drying. Viscometry and cloud point measurements were used to determine the gelatin point and the critical gelatin concentrations. Polarized light microscopy and differential scanning calorimetry were used to investigate the effects of cooling rate on the gel, while the effects of cooling rate on the foam were investigated via x-ray diffraction and scanning electron microscopy. We found that rapid cooling of 5 wt % UHMW PE/tetralin solutions to {minus}10{degree}c yielded small, uniform structure at the expense of crystallinity and strength; cooling over three days yielded spherulitic structure with strength. 5 refs., 3 figs.

  11. The characterisation of two different degradable polyethylene (PE) sacks

    SciTech Connect

    Davis, G. . E-mail: gudavis@cytanet.com.cy

    2006-12-15

    The compostability of two different polyethylene (PE) products on the UK market under open-windrow composting conditions is explored within this paper. Chemical analysis of the PE bags has established their constituents in order to examine how the PE bags have an increased degradability depending on additives. Weight loss of the two different PE products within open-windrow composting conditions was recorded in order to establish the percentage weight loss as an indication of the degradability of the two products and their relative suitability for open-windrow composting. Scanning electron microscopy (SEM) of the PE products over the composting duration established the degradation processes for the PE products within the compost. These analyses concluded that one of the PE product mixes was more degradable than the other. However, neither product completed degraded within the timeframe of 12-14 weeks generally accepted for open-windrow composting in the UK.

  12. A Molecular Mechanism of viscoelasticity in aligned polyethylene

    NASA Astrophysics Data System (ADS)

    Hammad, A.; Hasan, H.; Swinburne, T. D.; Khawaja, M.; Del-Rosso, S.; Iannucci, L.; Sutton, A. P.

    2015-03-01

    The key observed property of aligned polyethylene is its viscoelastic behaviour, which is traditionally fitted with Maxwell models. Although these empirical models are successful at reproducing the mechanical response of the material, they fail to capture the underlying molecular mechanisms that lead to the observed viscoelastic behaviour. We explain the observed viscoelastic behaviour in terms of the formation, interaction and movement of solitons, and relate these molecular mechanisms to the semi-crystalline microstructure of the material. Using Molecular Dynamics we demonstrate the following results: (a) The formation of solitons from interfaces between crystalline and amorphous regions (b) The transfer of tensile load between molecular chains (c) the pile-up of solitons in a molecular chain that allows the concentration of stress at particular points (d) The disassociation of solitons into π-twistons at 300K. European Science Research Council (EPSRC).

  13. Precision Polyolefin Structure: Modeling Polyethylene Containing Methyl and Ethyl Branches

    NASA Astrophysics Data System (ADS)

    Rojas, Giovanni; Wagener, Kenneth B.

    Sequenced copolymers of ethylene and diverse species have been created using acyclic diene metathesis (ADMET) polymerization, a step growth, condensation- type polymerization driven to high conversion by the removal of ethylene. ADMET permits control over branch content and branch length, which can be predetermined during the monomer synthesis, allowing sequence control in the resultant unsaturated polymer. Monomers are symmetrical α,ωdienes with a pendant functionality. Diverse functional groups are compatible with ADMET polymerization when Schrock’s or first-generation Grubb’s catalysts are used. Saturation with hydrogen after ADMET polymerization affords a polyethylene (PE) backbone bearing specific functionalities in precise places. Varying both the pendant functional group and the spacing between functionalities alters the physical and chemical properties of the polymer. Incorporation of alkyl chains into the PE backbone via ADMET leads to the study of perfect structures modeling the copolymerization of ethylene with α-olefins such as 1-propene, 1-butene, 1-hexene, and 1-octene.

  14. Textural changes in metallurgical coke prepared with polyethylene

    NASA Astrophysics Data System (ADS)

    Gornostayev, Stanislav S.; Heino, Jyrki J.; Kokkonen, Tommi M. T.; Makkonen, Hannu T.; Huttunen, Satu M. M.; Fabritius, Timo M. J.

    2014-10-01

    The effect of high-density polyethylene (HDPE) on the textural features of experimental coke was investigated using polarized-light optical microscopy and wavelet-based image analysis. Metallurgical coke samples were prepared in a laboratory-scale furnace with 2.5%, 5.0%, 7.5%, 10.0%, and 12.5% HDPE by mass, and one sample was prepared by 100% coal. The amounts and distribution of textures (isotropic, mosaic and banded) and pores were obtained. The calculations reveal that the addition of HDPE results in a decrease of mosaic texture and an increase of isotropic texture. Ethylene formed from the decomposition of HDPE is considered as a probable reason for the texture modifications. The approach used in this study can be applied to indirect evaluation for the reactivity and strength of coke.

  15. Electron beam induced modification of poly(ethylene terephthalate) films

    NASA Astrophysics Data System (ADS)

    Vasiljeva, I. V.; Mjakin, S. V.; Makarov, A. V.; Krasovsky, A. N.; Varlamov, A. V.

    2006-10-01

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy).

  16. The effect of polyethylene glycol on shellac stability

    NASA Astrophysics Data System (ADS)

    Khairuddin; Pramono, Edi; Budi Utomo, Suryadi; Wulandari, Viki; A'an Zahrotul, W.; Clegg, Francis

    2016-02-01

    The effect of polyethylene glycol (PEG) having amolecular weight of 1000 and 2000 on shellac stability has been investigated in this research. The shellac was shellac wax free, and the solvent was ethanol 96%. Shellac films were prepared by solventevaporationmethod. The stability of shellac was investigated using insoluble solid test, Fourier Transform Infra Red (FTIR), Thermogravimetry Analyzer (TGA), and Water Vapour Transmission Rate (WVTR). The results showed that stability of shellac decreased after heating at 125oC for 10,30,90,and 180 minutes, and storing for 1 month at 27 oC and 85 relative humidity (RH). PEG improved the stability, and the most stable effect was achieved through PEG1000.

  17. Hydrophobic composition based on mixed-molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Gorlenko, Nikolay; Debelova, Natalya; Sarkisov, Yuriy; Volokitin, Gennadiy; Zavyalova, Elena; Lapova, Tatyana

    2016-01-01

    The paper presents investigations of compositions based on low and high molecular weight polyethylene so as to synthesize a hydrophobic composition for moisture protection of timber. X-ray phase analysis and measurements of the tear-off force of hydrophobic coating needed to apply to the timber surface and the limiting wetting angle are carried out to detect the hydrophobic, adhesive, electrophysical, and physicochemical properties of compositions. Kinetic dependencies are given for moisture absorption of timber specimens. It is shown that the preliminary formation of the texture by the surface patterning or its treatment with low-temperature plasma with the following protective coating results in the improvement of hydrophobic properties of the suggested compositions. These compositions can be used in the capacity of water repellents to protect building materials from moisture including restoration works.

  18. Polyethylene glycol diffusion in ex vivo skin tissue

    NASA Astrophysics Data System (ADS)

    Genin, V. D.; Tuchina, D. K.; Bashkatov, A. N.; Genina, E. A.; Tuchin, V. V.

    2015-11-01

    Optical clearing of the rat skin under the action of polyethylene glycol (PEG) with molecular weight 300 and 400 Dalton was studied ex vivo. The collimated transmittance was measured at the wavelength range 500-900 nm. It was found that collimated transmittance of skin samples increased, whereas weight, thickness and area of the samples decreased during PEG penetration in skin tissue. A mechanism of the optical clearing under the action of PEG is discussed. Taking into account the kinetics of volume and thickness of the skin samples, diffusion coefficient of PEGs in skin tissue has been estimated as (1.83±2.22)×10-6 cm2/s and (1.70±1.47)×10-6 cm2/s for PEG-300 and PEG-400, respectively. The presented results can be useful for enhancement of many methods of laser therapy and optical diagnostics of skin diseases and localization of subcutaneous neoplasms.

  19. High-strength welds in metallocene Polypropylene/Polyethylene laminates

    PubMed

    Chaffin; Knutsen; Brant; Bates

    2000-06-23

    Spectacular advances in organometallic chemistry over the past two decades have resulted in single-site catalysts that are revolutionizing production of polyethylene (PE) and isotactic polypropylene (iPP). This report describes an unanticipated benefit of metallocene-catalyzed semicrystalline polyolefins, namely welded joint strengths in PE/iPP laminates that can exceed the cohesive strength of the constituents. We propose that interfacial polymer entanglements, established in the molten state and subsequently anchored in chain-folded lamellae upon crystallization, are responsible for this intrinsic property. The poor adhesion exhibited by traditional Ziegler-Natta-catalyzed polyolefins is shown to derive from the accumulation of amorphous polymer, a by-product of the polymerization reactions, at the interface. These results should facilitate fabrication and improve the properties of composites based on materials that dominate the plastics industry. PMID:10864863

  20. Simulation of polyethylene glycol and calcium-mediated membrane fusion

    SciTech Connect

    Pannuzzo, Martina; De Jong, Djurre H.; Marrink, Siewert J.; Raudino, Antonio

    2014-03-28

    We report on the mechanism of membrane fusion mediated by polyethylene glycol (PEG) and Ca{sup 2+} by means of a coarse-grained molecular dynamics simulation approach. Our data provide a detailed view on the role of cations and polymer in modulating the interaction between negatively charged apposed membranes. The PEG chains cause a reduction of the inter-lamellar distance and cause an increase in concentration of divalent cations. When thermally driven fluctuations bring the membranes at close contact, a switch from cis to trans Ca{sup 2+}-lipid complexes stabilizes a focal contact acting as a nucleation site for further expansion of the adhesion region. Flipping of lipid tails induces subsequent stalk formation. Together, our results provide a molecular explanation for the synergistic effect of Ca{sup 2+} and PEG on membrane fusion.

  1. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    PubMed

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  2. Rapid morphological fusion of severed myelinated axons by polyethylene glycol.

    PubMed Central

    Krause, T L; Bittner, G D

    1990-01-01

    We are able to morphologically fuse the severed halves of an invertebrate-myelinated axon by application of polyethylene glycol (PEG) to closely apposed cut ends. Morphological fusion of the medial giant axon (MGA) of the earthworm Lumbricus terrestris is defined as axoplasmic and axolemmal continuity in serial longitudinal sections of MGAs taken through the fusion site as viewed with light or electron microscopes. Morphological continuity is also shown by the transfer of Lucifer yellow dye between apposed MGA segments fused with PEG, but not between apposed MGA segments in normal or hypotonic saline without PEG application. PEG-induced MGA fusion rates can be as high as 80-100% with an appropriate choice of PEG concentration and molecular mass, tight apposition and careful alignment of the cut ends, and treatment with hypotonic salines containing reduced calcium and increased magnesium. A variant of this technique might produce rapid repair of severed mammalian-myelinated axons. Images PMID:2304913

  3. [Analysis of formaldehyde, acetaldehyde and oligomers in recycled polyethylene terephthalate].

    PubMed

    Ohkado, Yuka; Kawamura, Yoko; Mutsuga, Motoh; Tamura, Hiro-omi; Tanamoto, Kenichi

    2005-10-01

    Formaldehyde (FA), acetaldehyde (AA) and oligomers in recycled polyethylene terephthalate (PET) were analyzed by HPLC. All of the physically recycled PET contained detectable levels of FA, AA and oligomers, and the levels were almost the same as in used bottles. Most superclean-like and chemically recycled PET contained lower levels than new pellets. These compounds showed no decrease upon physical recycling, but showed a marked decrease upon superclean-like recycling. In PET sheets made using physically recycled PET, FA was decreased, though AA was increased by the sheeting process as same as new one. FA, AA and oligomers originated from PET resin and their levels in recycled products were almost equivalent to those in new products. It was concluded that there is no particular safety concern about their presence in recycled PET. PMID:16305177

  4. [Analysis of residual volatiles in recycled polyethylene terephthalate].

    PubMed

    Ohkado, Yuka; Kawamura, Yoko; Mutsuga, Motoh; Tamura, Hiro-omi; Tanamoto, Kenichi

    2005-02-01

    The residual volatiles in recycled polyethylene terephthalate (PET) were analyzed using headspace/GC/MS. Recycled PET samples were made from PET bottles used for beverages, alcohol and soy sauce, and they were recycled in physical recycling plants, chemical recycling plants and superclean-like recycling trials. The physically recycled PET flakes contained small amounts of volatiles such as ethanol, limonene, 2-methyl-1,3-dioxolane, acetone, octanal and nonanal. Most of them originated from foods packed in bottles, and only 2-methyl-1,3-dioxolane was derived from polymer impurities. In contrast, the superclean-like or chemically recycled PET contained no detectable volatiles, like new PET pellets. The PET sheets shaped from physically recycled PET had no detectable volatiles. Not only the chemically and superclean-like recycled PET, but also the physically recycled PET contained no hazardous volatiles. It was concluded that there is no safety concern about volatiles in recycled PET, for the present use. PMID:15881250

  5. Gel permeation chromatography (GPC) of repeatedly extruded polyethylene terephthalate (PET).

    PubMed

    Milana, M R; Denaro, M; Arrivabene, L; Maggio, A; Gramiccioni, L

    1998-04-01

    The paper deals with gel permeation chromatography (GPC) monitoring of the behaviour of PET (polyethylene terephthalate) after repeated extrusions. Virgin PET was submitted to three successive extrusion/drying cycles and then the samples were swelled with hexafluoroisopropanol and treated with chloroform. GPC analysis was carried out at room temperature on a B.C.S. Serial LC 2000 GPC system equipped with a series of four GPC columns with UV detection at 254 nm and chloroform as eluent. GPC results showed that after each extrusion step the molecular weight distribution of the PET was different and Mw, Mn and Mz decreased. These findings suggest that during each extrusion degradation occurs and that repeated extrusions, as in the case of the recycling PET, may cause an alteration of the molecular weight distribution of the original PET. PMID:9666895

  6. In vitro antibacterial activity of concentrated polyethylene glycol 400 solutions.

    PubMed Central

    Chirife, J; Herszage, L; Joseph, A; Bozzini, J P; Leardini, N; Kohn, E S

    1983-01-01

    It was found that concentrated polyethylene glycol 400 (PEG 400) solutions have significant antibacterial activity against various pathogenic bacteria, including Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. This effect might be attributed to two effects: lowering of water activity and, superimposed on this, the specific action of PEG-400 molecules on bacterial cells. Phase-contrast microscopic observations of cells placed in contact with PEG 400 revealed clumping and morphological changes of bacterial cells. The larger changes in appearance were evidenced by the species which were more rapidly killed by PEG 400. The results obtained suggested that concentrated PEG 400 solutions may have a potential value in medicine as a topical antibacterial agent. The feasibility of this application is the subject of present investigation. Images PMID:6638996

  7. Irradiation of linear polyethylene - Partitioning between sol and gel.

    NASA Technical Reports Server (NTRS)

    Rijke, A. M.; Mandelkern, L.

    1971-01-01

    Molecular weight fractions of linear polyethylene were irradiated at 133 C, in the completely molten and highly crystalline states, for the purpose of assessing the importance of chain-scission processes and establishing the critical conditions for gelation. The partitioning between sol and gel in either state was found to adhere to the theory for the intermolecular cross-linking of monodisperse species for dosages just beyond the gel point. Deviations from theory occurred as the dosage was increased further. It was concluded that main-chain scission, at these temperatures, is not a significant process. High molecular weight samples in the completely molten state obeyed the Flory-Stockmayer condition for critical gelation.

  8. Use of fillers to enable the microwave processing of polyethylene.

    PubMed

    Harper, John; Price, Duncan; Zhang, Jie

    2007-01-01

    Microwave heating has a number of advantages over conventional heating due to the ability to heat specimens directly through specific interaction of electromagnetic radiation with the material. Thus it is possible to consider highly localised, rapid melting of thermoplastics using microwave radiation as a means of forming and welding. However, most polymers exhibit very low dielectric losses in the GHz region, which means that it is difficult to heat them efficiently by this means. We have therefore studied the use of fillers such as talc, zinc oxide and carbon black as a way of increasing the susceptibility of common polymers to microwave processing. Carbon black was found to be the most effective susceptor for high density polyethylene and its efficiency was directly proportional to its surface area and loading. PMID:17847676

  9. Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets

    NASA Astrophysics Data System (ADS)

    de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco

    1996-06-01

    The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.

  10. Antibacterial Performance of Alginic Acid Coating on Polyethylene Film

    PubMed Central

    Karbassi, Elika; Asadinezhad, Ahmad; Lehocký, Marian; Humpolíček, Petr; Vesel, Alenka; Novák, Igor; Sáha, Petr

    2014-01-01

    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance. PMID:25196604

  11. Anaphylactic Shock Caused by Ingestion of Polyethylene Glycol

    PubMed Central

    Lee, Sun Hee; Lee, Joung Il; Joo, Kwang Ro; Shin, Hyun Phil; Baek, Il Hyun; Jeon, Jung Won; Lim, Jun Uk; Lee, Jung Lok; Lee, Hyae Min; Cho, Young-Hak

    2015-01-01

    Colonoscopy is the current standard method for evaluation of the colon. The diagnostic accuracy and therapeutic safety of colonoscopy depend on the quality of colonic cleansing and preparation. Generally, all these preparations have been demonstrated to be safe for use in healthy individuals without significant comorbid conditions. Based on safety and efficacy concerns, polyethylene glycol (PEG) is most commonly utilized as a bowel preparation solution for colonoscopy. Adverse events in patients receiving PEG are mostly clinically non-significant. However, fatal adverse events rarely have been shown to occur in the few individuals who experience vomiting or aspiration. Anaphylactic shock associated with ingestion of PEG electrolyte solution is an extremely rare fatal complication, and reported mainly in Western countries. Here, we report the first case of anaphylactic shock following the ingestion of PEG solution in Korea. PMID:25691849

  12. Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor

    NASA Astrophysics Data System (ADS)

    Pinto, N. J.; Johnson, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A.

    2003-11-01

    We report on the observation of field-effect transistor (FET) behavior in electrospun camphorsulfonic-acid-doped polyaniline/polyethylene oxide (PEO) nanofibers. Saturation channel currents are observed at surprisingly low source-drain voltages. The hole mobility in the depletion regime is 1.4×10-4 cm2/V s, while the one-dimensional (1-D) charge density (at zero gate bias) is calculated to be approximately 1 hole per 50 two-ring repeat units of polyaniline, consistent with the rather high channel conductivity (˜10-3 S/cm). Reducing or eliminating the PEO content in the fiber is expected to enhance device parameters. Electrospinning is thus proposed as a simple method of fabricating one-dimensional polymer FETs.

  13. Hybrid estimation technique for predicting butene concentration in polyethylene reactor

    NASA Astrophysics Data System (ADS)

    Mohd Ali, Jarinah; Hussain, M. A.

    2016-03-01

    A component of artificial intelligence (AI), which is fuzzy logic, is combined with the so-called conventional sliding mode observer (SMO) to establish a hybrid type estimator to predict the butene concentration in the polyethylene production reactor. Butene or co-monomer concentration is another significant parameter in the polymerization process since it will affect the molecular weight distribution of the polymer produced. The hybrid estimator offers straightforward formulation of SMO and its combination with the fuzzy logic rules. The error resulted from the SMO estimation will be manipulated using the fuzzy rules to enhance the performance, thus improved on the convergence rate. This hybrid estimation is able to estimate the butene concentration satisfactorily despite the present of noise in the process.

  14. The structure and tensile properties of crystalline polymers: Linear polyethylene

    SciTech Connect

    Mandelkern, L.

    1995-12-01

    Force-elongation curves and the key tensile parameters of a series of molecular weight fractions of linear polyethylene as well as those having most probable molecular weight distributions were investigated. Emphasis was given to the role of the key structural variables that define the crystalline state. These quantities were varied over very wide ranges by control of molecular weight and crystallization conditions. Specific matters to be discussed are the dependence of the character of the nominal stress-strain curves on molecular weight, crystallinity level and supermolecular structure; the factors involved in the transition from a brittle to a ductile type deformation; the nature of the yield stress; strain-hardening; and ultimate properties.

  15. Laser-generated plasma by carbon nanoparticles embedded into polyethylene

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Ceccio, G.; Cutroneo, M.

    2016-05-01

    Carbon nanoparticles have been embedded into polyethylene at different concentrations by using chemical-physical processes. The synthesized material was characterized in terms of physical modifications concerning the mechanical, compositional and optical properties. Obtained flat targets have been irradiated by Nd:YAG laser at intensities of the order of 1010 W/cm2 in order to generate non-equilibrium plasma in vacuum. The laser-matter interaction produces charge separation effects with consequent acceleration of protons and carbon ions. Plasma was characterized using time-of-flight measurements of the accelerated ions. Applications of the produced targets in order to generate carbon ion beams from laser-generated plasma are presented and discussed.

  16. Crystallization of Unbranched Polyethylene Confined within Block Copolymer Mesophases

    NASA Astrophysics Data System (ADS)

    Register, Richard

    2010-03-01

    Confinement of polymer crystallites between or within block copolymer microdomains provides an exceptional opportunity for their manipulation and study. Much work over the past three decades has employed hydrogenated low-vinyl polybutadiene (hPBd) as the crystallizable block, whose limited crystal thickness and moderate crystallinity limit the extent of confinement which the microdomains can impose on the crystals. This talk will report the morphology and orientation of the crystals which form within the microdomain structures of diblock copolymers of linear polyethylene and glassy poly(vinylcyclohexane), LPE/PVCH, across the spherical, cylindrical, and lamellar morphologies. Synthesized by ring-opening methathesis polymerization followed by catalytic hydrogenation, LPE is entirely unbranched, and thus capable of producing thick crystals and achieving a high degree of crystallinity. Compared with short-branched polyethylene (such as hPBd), confinement of LPE within spheres, within cylinders, or between PVCH cylinders directly limits the crystal thickness and thereby the crystal melting point. Conversely, crystals formed within LPE lamellae are stacked orthogonally to the LPE/PVCH microdomain layering, so there is no direct limitation imposed on crystal thickness by confinement. As with LPE homopolymer, LPE crystals within lamellae thicken when annealed below the melting point, ultimately forming crystals whose thickness is significantly larger than their lateral extent, set by the bounding PVCH layers. The ribbon-like crystals which form within LPE cylinders or lamellae have a strong orientational coupling to the microdomains; prealignment of the cylindrical or lamellar mesophase by extensional flow yields macroscopic specimens with pronounced b-axial and a-axial orientations, respectively, after subsequent quiescent crystallization, complementing the usual c-axial texture produced by fiber spinning.

  17. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation

    PubMed Central

    Bejaoui, Mohamed; Pantazi, Eirini; Folch-Puy, Emma; Panisello, Arnau; Calvo, María; Pasut, Gianfranco; Rimola, Antoni; Navasa, Miquel; Adam, René; Roselló-Catafau, Joan

    2015-01-01

    Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4°C) and after reperfusion (2 h, 37°C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI. PMID:26543868

  18. Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity

    PubMed Central

    2015-01-01

    A synthetic mimic of mussel adhesive protein, dopamine-modified four-armed poly(ethylene glycol) (PEG-D4), was combined with a synthetic nanosilicate, Laponite (Na0.7+(Mg5.5Li0.3Si8)O20(OH)4)0.7–), to form an injectable naoncomposite tissue adhesive hydrogel. Incorporation of up to 2 wt % Laponite significantly reduced the cure time while enhancing the bulk mechanical and adhesive properties of the adhesive due to strong interfacial binding between dopamine and Laponite. The addition of Laponite did not alter the degradation rate and cytocompatibility of PEG-D4 adhesive. On the basis of subcutaneous implantation in rat, PEG-D4 nanocomposite hydrogels elicited minimal inflammatory response and exhibited an enhanced level of cellular infiltration as compared to Laponite-free samples. The addition of Laponite is potentially a simple and effective method for promoting bioactivity in a bioinert, synthetic PEG-based adhesive while simultaneously enhancing its mechanical and adhesive properties. PMID:25222290

  19. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    SciTech Connect

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K.

    2012-03-15

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  20. Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes.

    PubMed

    Rao, Li; Zhou, Haihan; Li, Tao; Li, Chengyan; Duan, Yanwen Y

    2012-07-01

    The instability of the interface between chronically implanted neuroprosthetic devices and neural tissue is a major obstacle to the long-term use of such devices in clinical practice. In this study, we investigate the feasibility of polyethylene glycol (PEG)-containing polyurethane (PU) hydrogel as coatings for polydimethylsiloxane (PDMS)-based neural electrodes in order to achieve a stable neural interface. The influence of PU hydrogel coatings on electrode electrochemical behaviour was investigated. Importantly, the biocompatibility of PU hydrogel coatings was evaluated in vitro and in vivo. Changes in the electrochemical impedance of microelectrodes with PU coatings were negligible. The amount of protein adsorption on the PDMS substrate was reduced by 93% after coating. Rat pheochromocytoma (PC12) cells exhibited more and longer neurites on PU films than on PDMS substrates. Furthermore, PDMS implants with (n=10) and without (n=8) PU coatings were implanted into the cortex of rats and the tissue response to the implants was evaluated 6 weeks post-implantation. GFAP staining for astrocytes and NeuN staining for neurons revealed that PU coatings attenuated glial scarring and reduced the neuronal cell loss around the implants. All of these findings suggest that PU hydrogel coating is feasible and favourable for neural electrode applications. PMID:22406507

  1. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles

    PubMed Central

    Rider, Mark A.; Hurwitz, Stephanie N.; Meckes, David G.

    2016-01-01

    Initially thought to be a means for cells to eliminate waste, secreted extracellular vesicles, known as exosomes, are now understood to mediate numerous healthy and pathological processes. Though abundant in biological fluids, purifying exosomes has been challenging because their biophysical properties overlap with other secreted cell products. Easy-to-use commercial kits for harvesting exosomes are now widely used, but the relative low-purity and high-cost of the preparations restricts their utility. Here we describe a method for purifying exosomes and other extracellular vesicles by adapting methods for isolating viruses using polyethylene glycol. This technique, called ExtraPEG, enriches exosomes from large volumes of media rapidly and inexpensively using low-speed centrifugation, followed by a single small-volume ultracentrifugation purification step. Total protein and RNA harvested from vesicles is sufficient in quantity and quality for proteomics and sequencing analyses, demonstrating the utility of this method for biomarker discovery and diagnostics. Additionally, confocal microscopy studies suggest that the biological activity of vesicles is not impaired. The ExtraPEG method can be easily adapted to enrich for different vesicle populations, or as an efficient precursor to subsequent purification techniques, providing a means to harvest exosomes from many different biological fluids and for a wide variety of purposes. PMID:27068479

  2. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement.

    PubMed

    Wang, Weiping; Huang, Xin; Yin, Haiyan; Fan, Wenling; Zhang, Tao; Li, Lei; Mao, Chun

    2015-12-01

    In this study, polyethylene glycol acrylate (PEGA) was introduced onto the surface of polysulphone (PSF) membrane to prepare PSF-PEGA membranes through low-temperature plasma technology for haemocompatibility improvement of artificial lungs. The effects of plasma power, PEGA solution concentration and dipcoating temperature on surface modification were systematically investigated. Results of Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and PEGA grafting degree confirmed that PEGA was successfully grafted onto the PSF membranes. Contact angle values showed that the hydrophilicity of the PSF-PEGA membrane surface increased by 21.5%. The results of the protein adsorption, platelet adhesion and coagulation tests further showed the excellent haemocompatibility of the modified membrane. Gas exchange tests also revealed that at a porcine blood flow rate of 5 l min(-1), O2 and CO2 exchange rates through the PSF-PEGA membrane were 198.6 and 170.9 ml min(-1), respectively; approximately this is the gas exchange capacity of commercial respiratory assistance devices. PMID:26658212

  3. Prevention of peritendinous adhesions with electrospun polyethylene glycol/polycaprolactone nanofibrous membranes.

    PubMed

    Chen, Chih-Hao; Chen, Shih-Hsien; Shalumon, K T; Chen, Jyh-Ping

    2015-09-01

    Postoperative adhesion formation is the major complication that could occur after acute tendon surgery. The application of an anti-adhesive membrane at the post-surgical site is deemed as a potential way to solve this problem by preventing adhesive fibrotic tissue development. In this study, we fabricated electrospun composite poly(ethylene glycol) (PEG)/poly(caprolactone) (PCL) nanofibrous membrane (NFM) to prevent peritendinous adhesions, which could act as a barrier between the tendon and surrounding tissues, without interrupting mass transfer and normal tendon gliding. PCL/PEG NFMs of 0% PEG (PCL), 25% PEG (25PECL), 50% PEG (50PECL) and 75% PEG (75PECL) were prepared and characterized for physico-chemical properties. The PCL NFM shows the lowest protein permeability while 25PECL NFM exhibited the largest fiber diameter, smallest pore size and the largest ultimate stress and strain. The 75PECL NFM had the lowest water contact angle and the highest Young's modulus. In vitro cell adhesion and migration experiments with fibroblasts indicate that all NFMs could prevent cell penetration, with 75PECL NFM having the least cell attachment. In vivo application of 75PECL NFM on the repaired site of rabbit flexor tendon rupture model demonstrated improved efficacy compared with the PCL NFM and a commercial anti-adhesion barrier (Seprafilm™), from gross observation, histological analysis and functional assays. We concluded that 75PECL NFM could function as an effective anti-adhesion membrane after tendon surgery in a clinical setting. PMID:26115533

  4. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry.

    PubMed

    Barker, Karolyn; Rastogi, Shiva K; Dominguez, Jose; Cantu, Travis; Brittain, William; Irvin, Jennifer; Betancourt, Tania

    2016-01-01

    Significant research has focused on investigating the potential of hydrogels in various applications and, in particular, in medicine. Specifically, hydrogels that are biodegradable lend promise to many therapeutic and biosensing applications. Endonucleases are critical for mechanisms of DNA repair. However, they are also known to be overexpressed in cancer and to be present in wounds with bacterial contamination. In this work, we set out to demonstrate the preparation of DNA-enabled hydrogels that could be degraded by nucleases. Specifically, hydrogels were prepared through the reaction of dibenzocyclooctyne-functionalized multi-arm poly(ethylene glycol) with azide-functionalized single-stranded DNA in aqueous solutions via copper-free click chemistry. Through the use of this method, biodegradable hydrogels were formed at room temperature in buffered saline solutions that mimic physiological conditions, avoiding possible harmful effects associated with other polymerization techniques that can be detrimental to cells or other bioactive molecules. The degradation of these DNA-cross-linked hydrogels upon exposure to the model endonucleases Benzonase(®) and DNase I was studied. In addition, the ability of the hydrogels to act as depots for encapsulation and nuclease-controlled release of a model protein was demonstrated. This model has the potential to be tailored and expanded upon for use in a variety of applications where mild hydrogel preparation techniques and controlled material degradation are necessary including in drug delivery and wound healing systems. PMID:26541212

  5. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation.

    PubMed

    Bejaoui, Mohamed; Pantazi, Eirini; Folch-Puy, Emma; Panisello, Arnau; Calvo, Mara; Pasut, Gianfranco; Rimola, Antoni; Navasa, Miquel; Adam, Ren; Rosell-Catafau, Joan

    2015-01-01

    Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4C) and after reperfusion (2 h, 37C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI. PMID:26543868

  6. Degradation of polyethylene by Trichoderma harzianum--SEM, FTIR, and NMR analyses.

    PubMed

    Sowmya, H V; Ramalingappa; Krishnappa, M; Thippeswamy, B

    2014-10-01

    Trichoderma harzianum was isolated from local dumpsites of Shivamogga District for use in the biodegradation of polyethylene. Soil sample of that dumpsite was used for isolation of T. harzianum. Degradation was carried out using autoclaved, UV-treated, and surface-sterilized polyethylene. Degradation was monitored by observing weight loss and changes in physical structure by scanning electron microscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. T. harzianum was able to degrade treated polyethylene (40%) more efficiently than autoclaved (23%) and surface-sterilized polyethylene (13%). Enzymes responsible for polyethylene degradation were screened from T. harzianum and were identified as laccase and manganese peroxidase. These enzymes were produced in large amount, and their activity was calculated using spectrophotometric method and crude extraction of enzymes was carried out. Molecular weight of laccase was determined as 88 kDa and that of manganese peroxidase was 55 kDa. The capacity of crude enzymes to degrade polyethylene was also determined. By observing these results, we can conclude that this organism may act as solution for the problem caused by polyethylene in nature. PMID:25052326

  7. Preparation of polyethylene sacks for collection of precipitation samples for chemical analysis

    USGS Publications Warehouse

    Schroder, L.J.; Bricker, A.W.

    1985-01-01

    Polyethylene sacks are used to collect precipitation samples. Washing polyethylene with acetone, hexane, methanol, or nitric acid can change the adsorptive characteristics of the polyethylene. In this study, simulated precipitation at pH 4.5 was in contact with the polyethylene sacks for 21 days; subsamples were removed for chemical analysis at 7, 14, and 21 days after intitial contact. Sacks washed with acetone adsorbed iron and lithium; sacks washed with hexane adsorbed barium, iron , and lithium; sacks washed with methanol adsorbed calcium and iron; and sacks washed with 0.30 N nitric acid adsorbed iron. Leaching the plastic sacks with 0.15 N nitric acid did not result in 100-percent recovery of any of the adsorbed metals. Washing polyethylene sacks with dilute nitric acid caused the pH of the simulated precipitation to be decreased by 0.2 pH unit after 1 week of contact with the polyethylene. The specific conductance increased by 10 microsiemens per centimeter. Contamination of precipitation samples by lead was determined to be about 0.1 microgram per liter from contact with precleaned polyethylene sacks. No measurable contamination of precipitation samples by zinc occurred. (USGS)

  8. Influence of Pelvic Tilt on Polyethylene Wear after Total Hip Arthroplasty

    PubMed Central

    Tezuka, Taro; Inaba, Yutaka; Kobayashi, Naomi; Ike, Hiroyuki; Kubota, So; Kawamura, Masaki; Saito, Tomoyuki

    2015-01-01

    We aimed to evaluate the effects of pelvic tilt on polyethylene wear after total hip arthroplasty (THA). A total of 105 joints treated with primary THA were included; conventional polyethylene (CPE) liners were used in 43 hips and highly cross-linked polyethylene (HXLPE) liners were used in the remaining 62 hips. The pelvis was tilted 6° posteriorly in the standing position as compared to the supine position, which resulted in significant increases of 1.7° and 2.8° in cup inclination in the CPE and HXLPE groups, respectively. Moreover, the change in pelvic tilt resulted in significant increases of 3.6° and 4.9° in cup anteversion in the CPE and HXLPE groups, respectively. For the CPE group, multiple regression analysis showed a significant association between the angle of pelvic tilt (PTA) and cup inclination and the polyethylene wear ratio. The adjusted R2 of the regression model was larger for measures obtained in the standing position as compared to the supine position. For the HXLPE group, there was no significant relationship between radiographic parameters and polyethylene wear. Close observation of polyethylene wear is recommended for patients with severe posterior pelvic tilt who have undergone THA with conventional polyethylene. PMID:26258136

  9. Effect of ultraviolet radiation in the photo-oxidation of High Density Polyethylene and Biodegradable Polyethylene films

    NASA Astrophysics Data System (ADS)

    Martínez-Romo, A.; González Mota, R.; Bernal, J. J. Soto; Frausto Reyes, C.; Rosales Candelas, I.

    2015-01-01

    One of the most widely used plastics in the world is the High density polyethylene (HDPE), it is a stable material due to its carbon-carbon bonds, causing their slow degradation; which is why we are looking for alternative ways to accelerate the degradation process of this polymer. An alternative is the addition of oxidized groups in its molecular structure, which results in the development of polymers susceptible to biodegradation (PE-BIO). In this paper, HDPE and PE-BIO films were exposed to UV-B radiation (320-280 nm) at different exposure times, 0-60 days. The effects of UV radiation in samples of HDPE and PE-BIO were characterized using infrared spectroscopy with attenuated total reflectance (ATR). The results show that the exposed materials undergo changes in their molecular structure, due to the infrared bands formed which corresponds to the photo-oxidation of HDPE and PE films when submitted to UV-B radiation.

  10. Electrochemical measurements of diffusion coefficients of redox-labeled poly(ethylene glycol) dissolved in poly(ethylene glycol) melts

    SciTech Connect

    Haas, O.; Velazquez, C.S.; Porat, Z.; Murray, R.W.

    1995-10-12

    Ferrocene labeled monomethoxy-poly(ethylene glycol)s (MPEG) with molecular weights of 1900 and 750 were used as redox probe solutes in poly(ethylene glycol) melt solvents of molecular weight 750, 2000, and 20000. Cyclic voltammetry and chronoamperometry at microdisk electrodes were employed to measure the diffusion coefficients of the redox probes, which were independent of the probe concentration and varied between 10{sup -7} and 10{sup -10} cm{sup 2}/s. Diffusional activation barrier results also suggest that the ferrocene label does not significantly influence the diffusivity of the probe molecule in the host solvent. Activation barrier, viscosity, and ionic conductivity results show that the LiClO{sub 4} electrolyte does not influence the diffusion barrier or viscosity as long as the ether O/Li{sup +} ratio is >=250 (ca. 0.1 M) which is still a sufficient electrolyte concentration to allow quantitative electrochemical diffusion measurements. 21 refs., 7 figs., 2 tabs.

  11. Graphite/Ultra-High Modulus Polyethylene Hybrid Fiber Composites with Epoxy and Polyethylene Matrices for Cosmic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One of the most significant technical challenges in long-duration space missions is that of protecting the crew from harmful radiation. Protection against such radiation on a manned Mars mission will be of vital importance both during transit and while on the surface of the planet. The development of multifunctional materials that serve as integral structural members of the space vehicle and provide the necessary radiation shielding for the crew would be both mission enabling and cost effective. Additionally, combining shielding and structure could reduce total vehicle mass. Hybrid laminated composite materials having both ultramodulus polyethylene (PE) and graphite fibers in epoxy and PE matrices could meet such mission requirements. PE fibers have excellent physical properties, including the highest specific strength of any known fiber. Moreover, the high hydrogen (H) content of polyethylene makes the material an excellent shielding material for cosmic radiation. When such materials are incorporated into an epoxy or PE matrix a very effective shielding material is expected. Boron (B) may be added to the matrix resin or used as a coating to further increase the shielding effectiveness due to B s ability to slow thermal neutrons. These materials may also serve as micrometeorites shields due to PE s high impact energy absorption properties. It should be noted that such materials can be fabricated by existing equipment and methods. It is the objective of this work therefore to: (a) perform preliminary analysis of the radiation transport within these materials; (b) fabricate panels for mechanical property testing before and after radiation exposure. Preliminary determination on the effectiveness of the combinations of material components on both shielding and structural efficiency will be made.

  12. Hot embossed polyethylene through-hole chips for bead-based microfluidic devices

    PubMed Central

    Chou, Jie; Du, Nan; Ou, Tina; Floriano, Pierre N.; Christodoulides, Nicolaos; McDevitt, John T.

    2013-01-01

    Over the past decade, there has been a growth of interest in the translation of microfluidic systems into real-world clinical practice, especially for use in point-of-care or near patient settings. While initial fabrication advances in microfluidics involved mainly the etching of silicon and glass, the economics of scaling of these materials is not amendable for point-of-care usage where single-test applications forces cost considerations to be kept low and throughput high. As such, a materials base more consistent with point-of-care needs is required. In this manuscript, the fabrication of a hot embossed, through-hole low-density polyethylene ensembles derived from an anisotropically etched silicon wafer is discussed. This semi-opaque polymer that can be easily sterilized and recycled provides low background noise for fluorescence measurements and yields more affordable cost than other thermoplastics commonly used for microfluidic applications such as cyclic olefin copolymer (COC). To fabrication through-hole microchips from this alternative material for microfluidics, a fabrication technique that uses a high-temperature, high-pressure resistant mold is described. This aluminum-based epoxy mold, serving as the positive master mold for embossing, is casted over etched arrays of pyramidal pits in a silicon wafer. Methods of surface treatment of the wafer prior to casting and PDMS casting of the epoxy are discussed to preserve the silicon wafer for future use. Changes in the thickness of polyethylene are observed for varying embossing temperatures. The methodology described herein can quickly fabricate 20 disposable, single use chips in less than 30 minutes with the ability to scale up 4x by using multiple molds simultaneously. When coupled as a platform supporting porous bead sensors, as in the recently developed Programmable Bio-Nano-Chip, this bead chip system can achieve limits of detection, for the cardiac biomarker C-reactive protein, of 0.3 ng/mL, thereby demonstrating the approach is compatible with high performance, real-world clinical measurements in the context of point-of-care testing. PMID:23183187

  13. Hot embossed polyethylene through-hole chips for bead-based microfluidic devices.

    PubMed

    Chou, Jie; Du, Nan; Ou, Tina; Floriano, Pierre N; Christodoulides, Nicolaos; McDevitt, John T

    2013-04-15

    Over the past decade, there has been a growth of interest in the translation of microfluidic systems into real-world clinical practice, especially for use in point-of-care or near patient settings. While initial fabrication advances in microfluidics involved mainly the etching of silicon and glass, the economics of scaling of these materials is not amendable for point-of-care usage where single-test applications force cost considerations to be kept low and throughput high. As such, materials base more consistent with point-of-care needs is required. In this manuscript, the fabrication of a hot embossed, through-hole low-density polyethylene ensembles derived from an anisotropically etched silicon wafer is discussed. This semi-opaque polymer that can be easily sterilized and recycled provides low background noise for fluorescence measurements and yields more affordable cost than other thermoplastics commonly used for microfluidic applications such as cyclic olefin copolymer (COC). To fabrication through-hole microchips from this alternative material for microfluidics, a fabrication technique that uses a high-temperature, high-pressure resistant mold is described. This aluminum-based epoxy mold, serving as the positive master mold for embossing, is casted over etched arrays of pyramidal pits in a silicon wafer. Methods of surface treatment of the wafer prior to casting and PDMS casting of the epoxy are discussed to preserve the silicon wafer for future use. Changes in the thickness of polyethylene are observed for varying embossing temperatures. The methodology described herein can quickly fabricate 20 disposable, single use chips in less than 30 min with the ability to scale up 4 times by using multiple molds simultaneously. When coupled as a platform supporting porous bead sensors, as in the recently developed Programmable Bio-Nano-Chip, this bead chip system can achieve limits of detection, for the cardiac biomarker C-reactive protein, of 0.3 ng/mL, thereby demonstrating that the approach is compatible with high performance, real-world clinical measurements in the context of point-of-care testing. PMID:23183187

  14. Optimization of Protein Extraction for Lichen Thalli

    PubMed Central

    Kondratiuk, Anna S.; Savchuk, Oleksiy M.

    2015-01-01

    Lichen-forming fungal proteins have been seldom searched due to many difficulties in their extraction. Phenols, quinones, proteases, and other components released during cell disruption have been known to be the greatest challenges related to protein extraction from lichens. To overcome these problems and maintain good electrophoretic resolution and high protein concentration, an extraction buffer containing polyvinylpolypyrrolidone, ascorbic acid, Triton X-100, polyethylene glycol, proteinase, and oxidase inhibitors in sodium phosphate buffer was developed. This extraction buffer showed high efficiency for all lichen species tested in the study. PMID:26190923

  15. Solution and film properties of sodium caseinate/glycerol and sodium caseinate/polyethylene glycol edible coating systems.

    PubMed

    Siew, D C; Heilmann, C; Easteal, A J; Cooney, R P

    1999-08-01

    The aim of this study is to determine the effects of plasticizer hydrogen bonding capability and chain length on the molecular structure of sodium caseinate (NaCAS), in NaCAS/glycerol and NaCAS/polyethylene glycol 400 (PEG) systems. Both solution and film phases were investigated. Glycerol and PEG reduced the viscosity of aqueous NaCAS, with the latter having a greater effect. This was explained in terms of protein/plasticizer aggregate size and changes to the conformation of the caseinate chain. In the film phase, glycerol caused more pronounced changes to the film tensile strength compared with PEG. However, the effect of glycerol on film water vapor permeability was smaller. These observations are attributed to the differences in plasticizer size and hydrogen bonding strength that controls the protein-plasticizer and protein-protein interactions in the films. Glass transition calculations from the tensile strength data indicate that the distribution of bonding interactions is more homogeneous in NaCAS/PEG films than in NaCAS/glycerol films. PMID:10552668

  16. Effect of Short Chain Poly(ethylene glycol)s on the Hydration Structure and Dynamics around Human Serum Albumin.

    PubMed

    Samanta, Nirnay; Luong, Trung Quan; Das Mahanta, Debasish; Mitra, Rajib Kumar; Havenith, Martina

    2016-01-26

    We report the changes in the hydration dynamics around a globular protein, human serum albumin (HSA), in the presence of two short chain crowding agents, namely poly(ethylene glycol)s (PEG 200 and 400). The change in the network water structure is investigated using FTIR spectroscopy in the far-infrared (FIR) frequency range. Site specific changes are obtained by time-resolved fluorescence spectroscopic technique using the intrinsic fluorophore tryptophan (Trp214) of HSA. The collective hydration dynamics of HSA in the presence of PEG molecules are obtained using terahertz (THz) time domain spectroscopy (TTDS) and high intensity p-Ge THz measurements. Our study affirms a considerable perturbation of HSA hydration beyond a critical concentration of PEG. PMID:26720549

  17. Modeling and simulation of Li-ion conduction in poly(ethylene oxide)

    SciTech Connect

    Gitelman, L.; Israeli, M.; Averbuch, A. Nathan, M.; Schuss, Z.; Golodnitsky, D.

    2007-12-10

    Polyethylene oxide (PEO) containing a lithium salt (e.g., LiI) serves as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter of their performance. We model and simulate Li{sup +} ion conduction in a single PEO molecule. Our simplified stochastic model of ionic motion is based on an analogy between protein channels of biological membranes that conduct Na{sup +}, K{sup +}, and other ions, and the PEO helical chain that conducts Li{sup +} ions. In contrast with protein channels and salt solutions, the PEO is both the channel and the solvent for the lithium salt (e.g., LiI). The mobile ions are treated as charged spherical Brownian particles. We simulate Smoluchowski dynamics in channels with a radius of ca. 0.1 nm and study the effect of stretching and temperature on ion conductivity. We assume that each helix (molecule) forms a random angle with the axis between these electrodes and the polymeric film is composed of many uniformly distributed oriented boxes that include molecules with the same direction. We further assume that mechanical stretching aligns the molecular structures in each box along the axis of stretching (intra-box alignment). Our model thus predicts the PEO conductivity as a function of the stretching, the salt concentration and the temperature. The computed enhancement of the ionic conductivity in the stretch direction is in good agreement with experimental results. The simulation results are also in qualitative agreement with recent theoretical and experimental results.

  18. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?

    PubMed Central

    van Wijck, Kim; Bessems, Babs AFM; van Eijk, Hans MH; Buurman, Wim A; Dejong, Cornelis HC; Lenaerts, Kaatje

    2012-01-01

    Background Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Methods Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Results Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Conclusion Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man by providing a clear overview of both tests and demonstrates equivalent performance in the current setting. PMID:22888267

  19. [Covalent stretokinase-polyethylene glycol conjugates with increased stability and decreased side effects].

    PubMed

    Aĭsina, R B; Mukhametova, L I; Tiupa, D V; Gershkovich, K B; Gulin, D A; Varfolomeev, S D

    2014-01-01

    By variation of incubation time of streptokinase (SK) with activated polyethylene glycol (M 2 and 5 kDa, PEG2 and PEG5) it was obtained covalent SK-PEG2 and SK-PEG5 conjugates with different modification degrees of amino groups of protein and their properties were studied in vitro as compared with free SK. It was shown, that maximal stable and retaining 80% fibrinolytic activity SK-PEG2 and SK-PEG5 conjugates are formed when the modification degrees of amino groups of protein are 54 and 52%, respectively. At interaction of the given conjugates with equimolar plasminogen concentration it were formed the plasmin (Pm)·SK-PEG2 and Pm·SK-PEG5 activator complexes, the maximal amidase activity of which is equal to activity of unmodified Pm·SK complex. It was found, that the catalytic efficiency of plasminogen activation (kPg/KPg) by Pm·SK-PEG2 complex is some higher (2.84 min(-1) μM(-1)) and by Pm·SK-PEG5 complex is lower (1.17 min(-1) μM(-1)), than that by unmodified Pm·SK complex (2.1 min(-1) μM(-1)). Investigation of lysis kinetics of human plasma clots and depletion of plasminogen and fibrinogen in plasma under the action of free SK and SK-PEG2 and SK-PEG5 conjugates showed, that the latter's have high thrombolytic activity (89 and 72%, respectively) and cause 3.5-4 fold lower side effects, than free SK. Obtained by us SK-PEG2 and SK-PEG5 conjugates with increased stability and decreased side effects may be used in the therapy of thrombotic disorders. PMID:25895351

  20. Optimization of preparative conditions for poly-DL-lactide- polyethylene glycol microspheres with entrapped Vibrio cholera antigens.

    PubMed

    Deng, X M; Li, X H; Yuan, M L; Xiong, C D; Huang, Z T; Jia, W X; Zhang, Y H

    1999-03-29

    Poly-dl-lactide-polyethylene glycol (PELA) with different contents of polyethylene glycol(PEG) were synthesized and the PEG content was estimated according to the integral height of hydrogen shown in 1H-NMR. PELA microspheres containing V. cholera antigen, outer membrane protein (OMP) were prepared by a water-in-oil-in-water (W/O/W) based on solvent evaporation procedure. Antigen microspheres with smooth surface, suitable size for oral administration (0.5-5 microm), high loading efficiency (about 60%) and low level of residual solvent (lower than 20ppm) were obtained. Microspheres prepared from PELA with PEG content of about 10% achieved the highest loading efficiency among PELA copolymers and poly-dl-lactide (PLA) homopolymer, which suggested that microspheres size, morphology and the precipitation rate of polymer showed considerable relations with OMP loading efficiency. The regulation of the solvent components of the oil phase contributes to a stable emulsion W/O, and it is concluded that the stable emulsion W/O plays a significant role in improving the protein loading efficiency of obtained microspheres. The addition of stabilizer, such as gelatin and polyvinyl alcohol, into the internal water phase before emulsification produced no significant difference in OMP entrapment and microspheres size. A higher OMP loading efficiency was achieved by adding NaCl or adjusting the pH at the iso-electric point of OMP in the external water phase. It was indicated in vitro that PELA microspheres with smaller size showed larger extent of initial release and higher release rate, whereas microspheres with the diameter of 2.17 microm showed no apparent burst effect. PMID:10053185

  1. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels

    PubMed Central

    Saik, Jennifer E.; Gould, Daniel J.; Watkins, Emily M.; Dickinson, Mary E.; West, Jennifer L.

    2011-01-01

    The field of tissue engineering is severely limited by a lack of microvascularization in tissue engineered constructs. Biomimetic poly(ethylene glycol) hydrogels containing covalently immobilized platelet-derived growth factor BB (PDGF-BB) were developed to promote angiogenesis. Poly(ethylene glycol) hydrogels resist protein absorption and subsequent non-specific cell adhesion, thus providing a “blank slate”, which can be modified through the incorporation of cell adhesive ligands and growth factors. PDGF-BB is a key angiogenic protein able to support neovessel stabilization by inducing functional anastomoses and recruiting pericytes. Due to the widespread effects of PDGF in the body and a half-life of only 30 min in circulating blood, immobilization of PDGF-BB may be necessary. In this work bioactive, covalently immobilized PDGF-BB was shown to induce tubulogenesis on two-dimensional modified surfaces, migration in three-dimensional (3D) degradable hydrogels and angiogenesis in a mouse cornea micro-pocket angiogenesis assay. Covalently immobilized PDGF-BB was also used in combination with covalently immobilized fibroblast growth factor-2, which led to significantly increased endothelial cell migration in 3D degradable hydrogels compared with the presentation of each factor alone. When a co-culture of endothelial cells and mouse pericyte precursor 10T1/2 cells was seeded onto modified surfaces tubule formation was independent of surface modifications with covalently immobilized growth factors. Furthermore, the combination of soluble PDGF-BB and immobilized PDGF-BB induced a more robust vascular response compared with soluble PDGF-BB alone when implanted into an in vivo mouse cornea micropocket angiogenesis assay. Based on these results, we believe bioactive hydrogels can be tailored to improve the formation of functional microvasculature for tissue engineering. PMID:20801242

  2. The lexicon of polyethylene wear in artificial joints.

    PubMed

    McKellop, Harry A

    2007-12-01

    The analysis of wear on polyethylene components that have been retrieved after use in patients has provided invaluable understanding of how wear occurs in vivo, and how it may be minimized through improved materials and implant design. The great number of such studies that have been published over the past three decades has lead to an extensive vocabulary to describe the tribology of prosthetic joints. However, these also have led to some confusion, due to the occasional misuse of terms from classical tribology, along with the use of multiple terms to describe the same wear phenomenon, and vice versa. The author has proposed that our understanding of wear in artificial joints may be enhanced by recognizing that there are four general subject areas: Modes, Mechanisms, Damage and Debris. Wear Mode 1 occurs when the two bearing surfaces are articulating against each other in the manner intended by the implant designer. Mode 2 occurs when a bearing surface articulates against a non-bearing surface. Mode 3 occurs when third-body abrasive particles have become entrapped between the two bearing surfaces, and Mode 4 occurs when two non-bearing surfaces are wearing against each other. The least wear occurs in Mode 1, whereas severe wear typically occurs in Modes 2, 3 and 4. The classical wear mechanisms that apply to prosthetic joints include adhesion, abrasion and fatigue. These can occur in varying amounts in either of the four wear modes. As used in the literature for the past three decades, wear "damage" can best be defined as the change surface texture or morphology that is caused by the action of the wear mechanisms. Although a wide variety of terms have been used, an overview of the literature indicates that about eight terms have been sufficient to describe the types of damage that occur on retrieved polyethylene components, i.e., burnishing, abrasion, scratches, plastic deformation, cracks, pits, delamination, and embedded third bodies. The author suggests that, as far as possible, investigators endeavor to limit their descriptions of surface damage to these terms and, importantly, to clearly and consistently distinguish the classical wear mechanisms from the types of damage produced by those mechanisms. Wear debris refers to the billions of particles, some measuring in nanometers, that are generated by the wear mechanisms, and that initiate biological reactions, such as osteolysis, that may lead to the failure of the implant. As the methods for recovering wear debris from joint fluids and tissues are improved, investigators are using a growing number of terms to describe them. As with the types of damage, it will be important in the coming years to maximize clarity and minimize redundancy of the vocabulary in this important area of research. PMID:17706766

  3. Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins.

    PubMed

    Ribitsch, Doris; Herrero Acero, Enrique; Przylucka, Agnieszka; Zitzenbacher, Sabine; Marold, Annemarie; Gamerith, Caroline; Tscheließnig, Rupert; Jungbauer, Alois; Rennhofer, Harald; Lichtenegger, Helga; Amenitsch, Heinz; Bonazza, Klaus; Kubicek, Christian P; Druzhinina, Irina S; Guebitz, Georg M

    2015-06-01

    Cutinases have shown potential for hydrolysis of the recalcitrant synthetic polymer polyethylene terephthalate (PET). We have shown previously that the rate of this hydrolysis can be enhanced by the addition of hydrophobins, small fungal proteins that can alter the physicochemical properties of surfaces. Here we have investigated whether the PET-hydrolyzing activity of a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) would be further enhanced by fusion to one of three Trichoderma hydrophobins, i.e., the class II hydrophobins HFB4 and HFB7 and the pseudo-class I hydrophobin HFB9b. The fusion enzymes exhibited decreased kcat values on soluble substrates (p-nitrophenyl acetate and p-nitrophenyl butyrate) and strongly decreased the hydrophilicity of glass but caused only small changes in the hydrophobicity of PET. When the enzyme was fused to HFB4 or HFB7, the hydrolysis of PET was enhanced >16-fold over the level with the free enzyme, while a mixture of the enzyme and the hydrophobins led only to a 4-fold increase at most. Fusion with the non-class II hydrophobin HFB9b did not increase the rate of hydrolysis over that of the enzyme-hydrophobin mixture, but HFB9b performed best when PET was preincubated with the hydrophobins before enzyme treatment. The pattern of hydrolysis by the fusion enzymes differed from that of Thc_Cut1 as the concentration of the product mono(2-hydroxyethyl) terephthalate relative to that of the main product, terephthalic acid, increased. Small-angle X-ray scattering (SAXS) analysis revealed an increased scattering contrast of the fusion proteins over that of the free proteins, suggesting a change in conformation or enhanced protein aggregation. Our data show that the level of hydrolysis of PET by cutinase can be significantly increased by fusion to hydrophobins. The data further suggest that this likely involves binding of the hydrophobins to the cutinase and changes in the conformation of its active center. PMID:25795674

  4. Enhanced Cutinase-Catalyzed Hydrolysis of Polyethylene Terephthalate by Covalent Fusion to Hydrophobins

    PubMed Central

    Ribitsch, Doris; Herrero Acero, Enrique; Przylucka, Agnieszka; Zitzenbacher, Sabine; Marold, Annemarie; Gamerith, Caroline; Tscheließnig, Rupert; Jungbauer, Alois; Rennhofer, Harald; Lichtenegger, Helga; Amenitsch, Heinz; Bonazza, Klaus; Kubicek, Christian P.; Guebitz, Georg M.

    2015-01-01

    Cutinases have shown potential for hydrolysis of the recalcitrant synthetic polymer polyethylene terephthalate (PET). We have shown previously that the rate of this hydrolysis can be enhanced by the addition of hydrophobins, small fungal proteins that can alter the physicochemical properties of surfaces. Here we have investigated whether the PET-hydrolyzing activity of a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) would be further enhanced by fusion to one of three Trichoderma hydrophobins, i.e., the class II hydrophobins HFB4 and HFB7 and the pseudo-class I hydrophobin HFB9b. The fusion enzymes exhibited decreased kcat values on soluble substrates (p-nitrophenyl acetate and p-nitrophenyl butyrate) and strongly decreased the hydrophilicity of glass but caused only small changes in the hydrophobicity of PET. When the enzyme was fused to HFB4 or HFB7, the hydrolysis of PET was enhanced >16-fold over the level with the free enzyme, while a mixture of the enzyme and the hydrophobins led only to a 4-fold increase at most. Fusion with the non-class II hydrophobin HFB9b did not increase the rate of hydrolysis over that of the enzyme-hydrophobin mixture, but HFB9b performed best when PET was preincubated with the hydrophobins before enzyme treatment. The pattern of hydrolysis by the fusion enzymes differed from that of Thc_Cut1 as the concentration of the product mono(2-hydroxyethyl) terephthalate relative to that of the main product, terephthalic acid, increased. Small-angle X-ray scattering (SAXS) analysis revealed an increased scattering contrast of the fusion proteins over that of the free proteins, suggesting a change in conformation or enhanced protein aggregation. Our data show that the level of hydrolysis of PET by cutinase can be significantly increased by fusion to hydrophobins. The data further suggest that this likely involves binding of the hydrophobins to the cutinase and changes in the conformation of its active center. PMID:25795674

  5. Use of prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent

    NASA Astrophysics Data System (ADS)

    Priyada, P.; Sarkar, P. K.

    2015-06-01

    The possibility of using measured prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent is explored theoretically. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of a high density polyethylene cylinder to emit prompt gammas from interaction of neutrons with the nuclei of hydrogen and carbon present in polyethylene. The neutron energy dependent responses of hydrogen and carbon nuclei are combined appropriately to match the energy dependent neutron fluence to ambient dose equivalent conversion coefficients. The proposed method is tested initially with simulated spectra and then validated using experimental measurements with an Am-Be neutron source. Experimental measurements and theoretical simulations have established the feasibility of estimating neutron ambient dose equivalent using measured neutron induced prompt gammas emitted from polyethylene with an overestimation of neutron dose at very low energies.

  6. 76 FR 39855 - Polyethylene Terephthalate Film, Sheet and Strip From India: Rescission, in Part, of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Duty Order, Finding, or Suspended Investigation; Opportunity to Request an Administrative Review, 75 FR... Countervailing Duty Administrative Reviews and Deferral of Initiation of Administrative Review, 75 FR 53274... International Trade Administration Polyethylene Terephthalate Film, Sheet and Strip From India: Rescission,...

  7. 76 FR 39855 - Polyethylene Terephthalate Film, Sheet and Strip From India: Rescission, in Part, of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Order, Finding, or Suspended Investigation; Opportunity to Request an Administrative Review, 75 FR 38074... Countervailing Duty Administrative Reviews and Deferral of Initiation of Administrative Review, 75 FR 53274... International Trade Administration Polyethylene Terephthalate Film, Sheet and Strip From India: Rescission,...

  8. Kinetics and microscopic processes of long term fracture in polyethylene piping materials

    NASA Astrophysics Data System (ADS)

    Brown, N.; Lu, X.

    1992-07-01

    The report contains 9 completed works as follows: The Dependence of Slow Crack Growth in a Polyethylene Copolymer on Testing Temperature and Morphology; A Test of Slow Crack Growth Failure of PE Under Constant Load; Effect of Annealing on Slow Crack Growth in an Ethylene-Hexene Copolymer; The Fundamental Material Parameters that Govern Slow Crack Growth in Linear Polyethylene; Slow Crack Growth in Blends of HDPE and UHMWPE; The Mechanism of Fatigue Failure in a Polyethylene Copolymer; PENT Quality Control Test for PE Gas Pipes and Resins; International Round Robin Study of a Fatigue Test Approach to the Ranking of Polyethylene Pipe Material; and Proposed ASTM Specification for ASTM F17.40 Test Methods Committee.

  9. Ultrasonic Array Approach for the Evaluation of Electrofusion Joints of Polyethylene Gas Piping

    NASA Astrophysics Data System (ADS)

    Shin, H. J.; Jang, Y. H.; Kwan, J. R.; Lee, H. D.

    2003-03-01

    Polyethylene is a widely used material for piping. Especially the demand of polyethylene piping for gas distribution is being increased. Thousands of kilometers of polyethylene piping have joints, and the joint is the weak point that should be inspected before the pipe begins service. In this study, an ultrasonic array technique is applied for the nondestructive testing of electrofusion joints in polyethylene pipe. An ultrasonic real time imaging system and array transducers are developed for the experiments. In the process of image construction, transmission and dynamic receive focusing are used. Heating wires are individually identified in ultrasonic real time images, which means that the ultrasonic array technology provides enough resolution to tell wire signals from flaw signals. Imperfect fusion joints and soil inclusion are clearly indicated in the images. Even locations of wires are appeared as is. The ultrasonic imaging technique is a very promising method for the nondestructive testing of EF joining of PE pipe.

  10. Limitations of Reverse Polyethylene Samplers (RePES) for Evaluating Toxicity of Field Contaminated Sediments

    EPA Science Inventory

    Passive samplers are used to measure dissolved nonionic organic contaminants (NOCs) in environmental media. More recently, reverse polyethylene samplers (RePES) have been used with spiked sediments to recreate interstitial water exposure concentrations and observed toxicity. In...

  11. Development of Infrared Welder for Sealing of Polyethylene TRU-Waste Containers

    SciTech Connect

    Milling, R.B.

    1999-06-08

    Engineers at the Savannah River Technology Center have successfully performed infrared welding of High Density Polyethylene test specimens to prove the feasibility of using the infrared welding process in the HANDSS-55-TRU-Waste Repackaging Module.

  12. Polyethylene/Potassium Titanate Separators For Ni/H2 Cells

    NASA Technical Reports Server (NTRS)

    Scott, William E.

    1995-01-01

    Experimental separators fabricated on paper-making machine. Two-layer, paperlike composite of polyethylene fibers and potassium titanate pigment shows promise for replacing asbestos as separator material in nickel/hydrogen electrochemical cells.

  13. Hemoglobin precipitation by polyethylene glycols leads to underestimation of membrane pore sizes.

    PubMed

    Quijano, Jairo C; Lemeshko, Victor V

    2008-12-01

    The size of pores formed in the plasma membrane by various substances is frequently determined using polyethylene glycols as osmotic protectants. In this work, we have found that the size of pores formed by saponin in the red blood cell membrane determined by hemolysis versus molecular weight of polyethylene glycol was different to that estimated by light dispersion of cell suspensions. After complete swelling of cells induced by saponin in semiisotonic salt media containing 150 mOsm PEG-4000 or PEG-3000, a significant increase in the light absorbance at 640 nm was developed resulting from the formation of hemoglobin precipitates. Easily sedimenting aggregates were also formed when the supernatant of lysed cells was added to the equiosmotic solutions of polyethylene glycols with molecular weight higher than 1000. We suggest that the real size of large pores could be underestimated due to the phenomenon of hemoglobin precipitation by polyethylene glycols. PMID:18692020

  14. Effectiveness of Vitamin-E-Doped Polyethylene in Joint Replacement: A Literature Review

    PubMed Central

    Gigante, Antonio; Bottegoni, Carlo; Ragone, Vincenza; Banci, Lorenzo

    2015-01-01

    Since polyethylene is one of the most frequently used biomaterials, such as in bearing components in joint arthroplasty, strong efforts have been made to improve the design and material properties over the last decades. Antioxidants, such as vitamin-E, seem to be a promising alternative to further increase durability and reduce polyethylene wear and degradation in the long-term. Nevertheless, even if several promising in vitro results are available, there is yet no clinical evidence that vitamin-E polyethylenes show these advantages in vivo. The aim of this paper was to provide a comprehensive overview on the current knowledge regarding the biological and mechanical proprieties of this biomaterial, underlying the in vitro and in vivo evidence for effectiveness of vitamin-E-doped polyethylene in joint arthroplasty. PMID:26371052

  15. Effectiveness of Vitamin-E-Doped Polyethylene in Joint Replacement: A Literature Review.

    PubMed

    Gigante, Antonio; Bottegoni, Carlo; Ragone, Vincenza; Banci, Lorenzo

    2015-01-01

    Since polyethylene is one of the most frequently used biomaterials, such as in bearing components in joint arthroplasty, strong efforts have been made to improve the design and material properties over the last decades. Antioxidants, such as vitamin-E, seem to be a promising alternative to further increase durability and reduce polyethylene wear and degradation in the long-term. Nevertheless, even if several promising in vitro results are available, there is yet no clinical evidence that vitamin-E polyethylenes show these advantages in vivo. The aim of this paper was to provide a comprehensive overview on the current knowledge regarding the biological and mechanical proprieties of this biomaterial, underlying the in vitro and in vivo evidence for effectiveness of vitamin-E-doped polyethylene in joint arthroplasty. PMID:26371052

  16. A study of the permeability of polyethylene pipe by organic compounds

    SciTech Connect

    Schneider, J.F.; Harty, L.

    1987-12-01

    A study was made of the permeability of polyethylene pipe by organic solvents and compounds. Samples of pipe from medium- to high-density polyethylene were exposed for 24 hours to organic solvents and compounds in solution. Permeability was determined by extracting the exposed samples with dichloromethane and analyzing the extracts by gas chromatography. The results indicate that permeability is reproducibly measurable by this method. 2 figs., 2 tabs.

  17. Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites.

    PubMed

    Liao, Quanwen; Liu, Zhichun; Liu, Wei; Deng, Chengcheng; Yang, Nuo

    2015-01-01

    The ultra-low thermal conductivity of bulk polymers may be enhanced by combining them with high thermal conductivity materials such as carbon nanotubes. Different from random doping, we find that the aligned carbon nanotube-polyethylene composites has a high thermal conductivity by non-equilibrium molecular dynamics simulations. The analyses indicate that the aligned composite not only take advantage of the high thermal conduction of carbon nanotubes, but enhance thermal conduction of polyethylene chains. PMID:26552843

  18. Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Liao, Quanwen; Liu, Zhichun; Liu, Wei; Deng, Chengcheng; Yang, Nuo

    2015-11-01

    The ultra-low thermal conductivity of bulk polymers may be enhanced by combining them with high thermal conductivity materials such as carbon nanotubes. Different from random doping, we find that the aligned carbon nanotube-polyethylene composites has a high thermal conductivity by non-equilibrium molecular dynamics simulations. The analyses indicate that the aligned composite not only take advantage of the high thermal conduction of carbon nanotubes, but enhance thermal conduction of polyethylene chains.

  19. Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites

    PubMed Central

    Liao, Quanwen; Liu, Zhichun; Liu, Wei; Deng, Chengcheng; Yang, Nuo

    2015-01-01

    The ultra-low thermal conductivity of bulk polymers may be enhanced by combining them with high thermal conductivity materials such as carbon nanotubes. Different from random doping, we find that the aligned carbon nanotube-polyethylene composites has a high thermal conductivity by non-equilibrium molecular dynamics simulations. The analyses indicate that the aligned composite not only take advantage of the high thermal conduction of carbon nanotubes, but enhance thermal conduction of polyethylene chains. PMID:26552843

  20. Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements.

    PubMed

    McKellop, H; Shen, F W; Lu, B; Campbell, P; Salovey, R

    1999-03-01

    Osteolysis induced by ultra high molecular weight polyethylene wear debris is one of the primary factors limiting the lifespan of total hip replacements. Crosslinking polyethylene is known to improve its wear resistance in certain industrial applications, and crosslinked polyethylene acetabular cups have shown improved wear resistance in two clinical studies. In the present study, crosslinked polyethylene cups were produced by two methods. Chemically crosslinked cups were produced by mixing a peroxide with ultra high molecular weight polyethylene powder and then molding the cups directly to shape. Radiation-crosslinked cups were produced by exposing conventional extruded ultra high molecular weight polyethylene bar stock to gamma radiation at various doses from 3.3 to 100 Mrad (1 Mrad = 10 kGy), remelting the bars to extinguish residual free radicals (i.e., to minimize long-term oxidation), and then machining the cups by conventional techniques. In hip-joint simulator tests lasting as long as 5 million cycles, both types of cross-linked cups exhibited dramatically improved resistance to wear. Artificial aging of the cups by heating for 30 days in air at 80 degrees C induced oxidation of the chemically crosslinked cups. However, a chemically crosslinked cup that was aged 2.7 years at room temperature had very little oxidation. Thus, whether substantial oxidation of chemically crosslinked polyethylene would occur at body temperature remains unclear. The radiation-crosslinked remelted cups exhibited excellent resistance to oxidation. Because crosslinking can reduce the ultimate tensile strength, fatigue strength, and elongation to failure of ultra high molecular weight polyethylene, the optimal crosslinking dose provides a balance between these physical properties and the wear resistance of the implant and might substantially reduce the incidence of wear-induced osteolysis with total hip replacements. PMID:10221831

  1. Synergism in polyethylene oxide dewatering of phosphatic clay waste

    SciTech Connect

    Smelley, A.G.; Scheiner, B.J.

    1980-01-01

    As part of research conducted in its mission to effect pollution abatement, the Bureau of Mines, US Department of the Interior, is developing a dewatering technique that allows for disposal of phosphatic clay wastes, for reuse of water now lost with clays, and for reclamation of mined land. The technique utilizes a high-molecular-weight nonionic polyethylene oxide polymer (PEO) that has the ability to flocculate and dewater phosphatic clay wastes. A synergistic flocculation study was made to determine whether a portion of PEO could be replaced by other reagents. Several groups of reagents were tested: (1) those that increased the zeta potential of the phosphatic clay wastes; (2) those capable of hydrogen bonding; and (3) those which flocculated the phosphatic clay waste. Reduction in PEO consumption occurred only with addition of those reagents able to flocculate the slime. The use of natural guar gums resulted in a lower PEO requirement and also yielded a dewatered product of higher solids content, 43 to 45%, versus 33 to 35% obtained with PEO alone.

  2. A New Polyethylene Scattering Law Determined Using Inelastic Neutron Scattering

    SciTech Connect

    Lavelle, Christopher M; Liu, C; Stone, Matthew B

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S (Q, E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for T =300 K, and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 300 K which are used to improve the scattering law for HDPE. We describe the experimental methods, review some of the past HDPE scattering laws, and compare computations using these models to the measured S (Q, E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the 1 phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work.

  3. Nondestructive inspection of heat fusion joints in polyethylene piping

    SciTech Connect

    Austin, R.K.

    1997-12-01

    Polyethylene (PE) piping has found wide use in chemical processing, water transportation, and gas distribution applications because it is lightweight, corrosion resistant, and easy to join in the field. Common joining methods include electrofusion and butt fusion. The mechanical integrity of joints is highly dependent upon the installation parameters; including cleanliness of the pipe face, pipe end alignment, pressure applied during fusion, and temperature of the ends during fusion. Typical installation defects can include foreign debris in the weld, e.g. grass, grease, dirt; weak welds; and debonds. Many times, visual inspection of the weld will not detect these defects, and the cost of repairing a joint after it is placed in service is exorbitant. This has generated interest in developing a nondestructive evaluation (NDE) method that can detect defects during installation. This paper reviews several NDE methods that have been applied to inspection of PE butt welds. Specially designed NDE equipment is also discussed. This overview paper addresses NDE techniques for inspection of butt welds in PE piping during installation. Several NDE approaches are evaluated for applicability to this inspection. Factors evaluated include time duration of test and ability to detect various defects.

  4. Yield Stress Enhancement in Glassy-Polyethylene Block Copolymers

    NASA Astrophysics Data System (ADS)

    Mulhearn, William; Register, Richard

    Polyethylene (PE) has the highest annual production volume of all synthetic polymers worldwide, and is valuable across many applications due to its low cost, toughness, processability, and chemical resistance. However, PE is not well suited to certain applications due to its modest yield stress and Young's modulus (approximately 30 MPa and 1 GPa, respectively for linear, high-density PE). Irreversible deformation of PE results from dislocation of crystal stems and eventual crystal fragmentation under applied stress. The liquid-like amorphous fraction provides no useful mechanical support to the crystal fold surface in a PE homopolymer, so the only method to enhance the force required for crystal slip, and hence the yield stress, is crystal thickening via thermal treatment. An alternative route towards modifying the mechanical properties of PE involves copolymerization of a minority high-glass transition temperature block into a majority-PE block copolymer. In this work, we investigate a system of glassy/linear-PE block copolymers prepared via ring-opening metathesis polymerization of cyclopentene and substituted norbornene monomers followed by hydrogenation. We demonstrate that a large change in mechanical properties can be achieved with the addition of a short glassy block (e.g. a doubling of the yield stress and Young's modulus versus PE homopolymer with the addition of 25 percent glassy block). Furthermore, owing to the low interaction energy between PE and the substituted polynorbornene blocks employed, these high-yield PE block copolymers can exhibit single-phase melts for ease of processability.

  5. Intramolecular Hydrogen Bonds in Low-Molecular-Weight Polyethylene Glycol.

    PubMed

    Kozlowska, Mariana; Goclon, Jakub; Rodziewicz, Pawel

    2016-04-18

    We used static DFT calculations to analyze, in detail, the intramolecular hydrogen bonds formed in low-molecular-weight polyethylene glycol (PEG) with two to five repeat subunits. Both red-shifted O-H⋅⋅⋅O and blue-shifting C-H⋅⋅⋅O hydrogen bonds, which control the structural flexibility of PEG, were detected. To estimate the strength of these hydrogen bonds, the quantum theory of atoms in molecules was used. Car-Parrinello molecular dynamics simulations were used to mimic the structural rearrangements and hydrogen-bond breaking/formation in the PEG molecule at 300 K. The time evolution of the H⋅⋅⋅O bond length and valence angles of the formed hydrogen bonds were fully analyzed. The characteristic hydrogen-bonding patterns of low-molecular-weight PEG were described with an estimation of their lifetime. The theoretical results obtained, in particular the presence of weak C-H⋅⋅⋅O hydrogen bonds, could serve as an explanation of the PEG structural stability in the experimental investigation. PMID:26864943

  6. Polyethylene laser welding based on optical absorption variations

    NASA Astrophysics Data System (ADS)

    Galtieri, G.; Visco, A.; Nocita, D.; Torrisi, L.; Ceccio, G.; Scolaro, C.

    2016-04-01

    Polymeric materials, both pure and containing nanostructures, can be prepared as thin sheets in order to produce joints with an interface between an optically transparent sheet and an optically absorbent substrate to be welded by infrared pulsed laser irradiation. The Laser Transmission Welding (LTW) technique has been successfully applied in order to join two or more thermoplastic polymeric sheets that must have a similar chemical composition. In this research work, polymeric joints of Ultra High Molecular Weight Polyethylene sheets were realized, characterized and welded. Some polymer sheets were doped, at different concentrations, with carbon nano-particles absorbent the laser radiation. A pulsed laser operating in the wavelength region 532 nm with intensity of the order of 109 Watt/cm2 was employed to be transmitted by the transparent polymer and to be absorbed by the carbon enriched surface. At the interface of the two polymers the released energy induces melting, that is assisted by pressure, producing a fast and resistant welding zone. Mechanical and optical characterizations and surface analyses are presented and discussed.

  7. Deuterated Polyethylene Target Production for Inverse Kinematic Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Shadrick, S. C.; Kozub, R. L.; Walter, D.; Febbraro, M.; Pain, S. D.

    2015-10-01

    Inverse kinematic transfer reactions play an important role in the study of nuclear structure far from stability, where the radioactive heavy reactant cannot be used as a target. These reactions can give insights into the production of proton-rich species in nova explosions (rp process) and of heavier, neutron-rich isotopes produced in the r-process, where such unstable isotopes could form and quickly react with neutrons to make even heavier species. In general, deuteron stripping reactions [(d,p), (d,n)] serve to provide the single particle structure needed to understand these nucleosynthesis processes. Such experiments require a target containing deuterium, such as a pure gas jet or a solid compound. In preparation for upcoming experiments using the GODDESS array, deuterated polyethylene films, (C2D4)n, of thicknesses ranging from .04 - 5 mg/cm2 were created. The method used, while similar to previous approaches, involved a number of extra procedures to make the technique more reliable; these procedures will be presented. This research is supported by the Office of Nuclear Physics in the U.S. Department of Energy.

  8. Delamination toughness of ultra high molecular weight polyethylene (UHMWPE) composites

    NASA Astrophysics Data System (ADS)

    Porras, A.; Tellez, J.; Casas-Rodriguez, J. P.

    2012-08-01

    Ultra high molecular weight polyethylene (UHMWPE) fibre reinforced composites are an important group of material for armours solutions, where their unique combination of properties could be utilized. A commonly observed failure mode in this kind of unidirectional laminated composites under impact ballistic is delamination between the composite layers. In the present study, an investigation on the delamination toughness behaviour exhibited by UHMWPE composites laminated was made. The interlaminar Mode II critical strain energy release rates of (UHMWPE) fibre reinforced composites were characterized using the End Notch Flexural (ENF) test. Critical strain energy release rate was obtained from the load - deflection test data using the beam theory expression. It was found that the energy release rate of the composite exhibited a very low value of around 60J/m2 using a moulding pressure of approximately 1200 psi. In order to analyse the delamination resistance of composite, the effects of changing the manufacture process variables and the use of a thermoplastic adhesive film in the composites were investigated. The composite laminates were produced by hot compressing moulding using a film-stacking procedure. It was found that the damage resistance of the UHMWPE composite was influenced by the manufacture method, which affects the Mode II interlaminar fracture toughness and the ballistic response of composites.

  9. Engineering poly(ethylene glycol) particles for improved biodistribution.

    PubMed

    Cui, Jiwei; De Rose, Robert; Alt, Karen; Alcantara, Sheilajen; Paterson, Brett M; Liang, Kang; Hu, Ming; Richardson, Joseph J; Yan, Yan; Jeffery, Charmaine M; Price, Roger I; Peter, Karlheinz; Hagemeyer, Christoph E; Donnelly, Paul S; Kent, Stephen J; Caruso, Frank

    2015-02-24

    We report the engineering of poly(ethylene glycol) (PEG) hydrogel particles using a mesoporous silica (MS) templating method via tuning the PEG molecular weight, particle size, and the presence or absence of the template and investigate the cell association and biodistribution of these particles. An ex vivo assay based on human whole blood that is more sensitive and relevant than traditional cell-line based assays for predicting in vivo circulation behavior is introduced. The association of MS@PEG particles (template present) with granulocytes and monocytes is higher compared with PEG particles (template absent). Increasing the PEG molecular weight (from 10 to 40 kDa) or decreasing the PEG particle size (from 1400 to 150 nm) reduces phagocytic blood cell association of the PEG particles. Mice biodistribution studies show that the PEG particles exhibit extended circulation times (>12 h) compared with the MS@PEG particles and that the retention of smaller PEG particles (150 nm) in blood, when compared with larger PEG particles (>400 nm), is increased at least 4-fold at 12 h after injection. Our findings highlight the influence of unique aspects of polymer hydrogel particles on biological interactions. The reported PEG hydrogel particles represent a new class of polymer carriers with potential biomedical applications. PMID:25712853

  10. Surface treated polyethylene fibres as reinforcement for acrylic resins.

    PubMed

    Andreopoulos, A G; Papaspyrides, C D; Tsilibounidis, S

    1991-01-01

    The use of poly(methyl methacrylate) as a bone and dental cement material over several decades has provided us with experience related to processing and performance. A recognized disadvantage of such cements is their mechanical behaviour, expressed by low crack propagation resistance, impact strength, fatigue resistance and reduced fracture toughness. Many attempts have been made to resolve these problems either by modifying the poly(methyl methacrylate) chemical structure via copolymerization or incorporating reinforcing additives. The latter is of great importance, because it can lead to the preparation of composite materials with considerably improved performance. Besides reinforcement, the incorporation of additives, such as fibres, results in better processing characteristics, e.g. lowers polymerization exotherm. In this work, poly(methyl methacrylate) reinforced with Tekmilon ultra high modulus polyethylene fibres was studied, focussing on the interfacial bonding between matrix and reinforcement. Some finishing agents were used to treat the fibres and their efficiency was mainly evaluated through the effect on the mechanical properties of the composite material prepared. PMID:2009351

  11. Polymeric cracking of waste polyethylene terephthalate to chemicals and energy.

    PubMed

    Brems, Anke; Baeyens, Jan; Vandecasteele, Carlo; Dewil, Raf

    2011-07-01

    Polyethylene terephthalate (PET) is a widely used thermoplastic. PET residues represent on average 7.6 wt% of the different polymer wastes in Europe. Pyrolysis of these wastes is attracting increasing interest, and PET is a potential candidate for this thermal process. The paper measures and discusses the kinetics of the pyrolysis reaction in terms of the reaction rate constants as determined by dynamic thermogravimetric analysis, with special emphasis on the required heating rate to obtain relevant results. The product yields and compositions are also determined. Gaseous products represent 16-18 wt%. The amounts of condensables and carbonaceous residue are a function of the operating mode, with slow pyrolysis producing up to 24 wt% of carbonaceous residue. Major condensable components are benzoic acid, monovinyl terephthalate, divinyl terephthalate, vinyl benzoate, and benzene. The present paper complements previous literature findings by (1) the study of the influence of the heating rate on the reaction kinetics in dynamic pyrolysis tests, (2) the isothermal investigation in a fluidized bed reactor to pyrolyze PET, and (3) the assessment of upgrading and recovery of the products. The paper concludes with a proposed reactor recommendation for PET pyrolysis, in either the bubbling or circulating fluidized bed operating mode. PMID:21850826

  12. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  13. Molecular dynamics simulation of poly(ethylene terephthalate) oligomers.

    PubMed

    Wang, Qifei; Keffer, David J; Petrovan, Simioan; Thomas, J Brock

    2010-01-21

    Molecular dynamics simulations of poly(ethylene terephthalate) (PET) oligomers are performed in the isobaric-isothermal (NpT) ensemble at a state point typical of a finishing reactor. The oligomer size ranges from 1 to 10 repeat units. We report thermodynamic properties (density, potential energy, enthalpy, heat capacity, isothermal compressibility, and thermal expansivity), transport properties (self-diffusivity, zero-shear-rate viscosity, thermal conductivity), and structural properties (pair correlation functions, hydrogen bonding network, chain radius of gyration, chain end-to-end distance) as a function of oligomer size. We compare the results with existing molecular-level theories and experimental data. Scaling exponents as a function of degree of polymerization are extracted. The distribution of the end-to-end distance is bimodal for the dimer and gradually shifts to a single peak as the degree of polymerization increases. The scaling exponents for the average chain radius of gyration and end-to-end distance are 0.594 and 0.571, respectively. The values of the heat capacity, isothermal compressibility, and thermal expansivity agree well with the available experimental data, which are of much longer PET chains. The scaling exponents for the self-diffusivity and zero-shear-rate viscosity are, respectively, -2.01 and 0.96, with the latter one being close to the theoretical prediction 1.0 for short-chain polymers. PMID:20017524

  14. Ultra High Molecular Weight Polyethylene: Mechanics, Morphology, and Clinical Behavior

    PubMed Central

    Sobieraj, MC; Rimnac, CM

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is a semicrystalline polymer that has been used for over four decades as a bearing surface in total joint replacements. The mechanical properties and wear properties of UHMWPE are of interest with respect to the in vivo performance of UHMWPE joint replacement components. The mechanical properties of the polymer are dependent on both its crystalline and amorphous phases. Altering either phase (i.e., changing overall crystallinity, crystalline morphology, or crosslinking the amorphous phase) can affect the mechanical behavior of the material. There is also evidence that the morphology of UHMWPE, and, hence, its mechanical properties evolve with loading. UHMWPE has also been shown to be susceptible to oxidative degradation following gamma radiation sterilization with subsequent loss of mechanical properties. Contemporary UHMWPE sterilization methods have been developed to reduce or eliminate oxidative degradation. Also, crosslinking of UHMWPE has been pursued to improve the wear resistance of UHMWPE joint components. The 1st generation of highly crosslinked UHMWPEs have resulted in clinically reduced wear; however, the mechanical properties of these materials, such as ductility and fracture toughness, are reduced when compared to the virgin material. Therefore, a 2nd generation of highly crosslinked UHMWPEs are being introduced to preserve the wear resistance of the 1st generation while also seeking to provide oxidative stability and improved mechanical properties. PMID:19627849

  15. Incipient and Progressive Damage in Polyethylene Under Extreme Tensile Conditions

    SciTech Connect

    Furmanski, Jevan; Brown, Eric; Trujillo, Carl P.; Martinez, Daniel Tito; Gray, George T. III

    2012-06-07

    The Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) test was developed at LANL by Gray and coworkers to probe the tensile response of materials at large strains (>1) and high strain-rates (>1000/s) by firing projectiles through a conical die at 300-700 m/s. This technique has recently been applied to various polymers, such as the fluoropolymers PTFE (Teflon) and the chemically similar PCTFE, which respectively exhibited catastrophic fragmentation and distributed dynamic necking. This work details investigations of the Dyn-Ten-Ext response of high density polyethylene, both to failure and sub-critical conditions. At large extrusion ratios ({approx}7.4) and high velocities, such as those previously employed, HDPE catastrophically fragmented in a craze-like manner in the extruded jet. At more modest extrusion ratios and high velocities the specimen extruded a stable jet that ruptured cleanly, and at lower velocities was recovered intact after sustaining substantial internal damage. Thermomechanical finite element simulations showed that the damage corresponded to a locus of shear stress in the presence of hydrostatic tension. X-ray computed tomography corroborated the prediction of a shear damage mechanism by finding the region of partially damaged material to consist of macroscopic shear-mode cracks nearly aligned with the extrusion axis, originating from the location of damage inception.

  16. Polyethylene encapsulation of mixed wastes: Scale-up feasibility

    SciTech Connect

    Kalb, P.D.; Heiser, J.H.; Colombo, P.

    1991-12-31

    A polyethylene process for the improved encapsulation of radioactive, hazardous, and mixed wastes have been developed at Brookhaven National Laboratory (BNL). Improvements in waste loading and waste form performance have been demonstrated through bench-scale development and testing. Maximum waste loadings of up to 70 dry wt % mixed waste nitrate salt were achieved, compared with 13--20 dry wt % using conventional cement processes. Stability under anticipated storage and disposal conditions and compliance with applicable hazardous waste regulations were demonstrated through a series of lab-scale waste form performance tests. Full-scale demonstration of this process using actual or surrogate waste is currently planned. A scale-up feasibility test was successfully conducted, demonstrating the ability to process nitrate salts at production rates (up to 450 kg/hr) and the close agreement between bench- and full-scale process parameters. Cored samples from the resulting pilot-scale (114 liter) waste form were used to verify homogeneity and to provide additional specimens for confirmatory performance testing.

  17. Polyethylene encapsulation of mixed wastes: Scale-up feasibility

    SciTech Connect

    Kalb, P.D.; Heiser, J.H.; Colombo, P.

    1991-01-01

    A polyethylene process for the improved encapsulation of radioactive, hazardous, and mixed wastes have been developed at Brookhaven National Laboratory (BNL). Improvements in waste loading and waste form performance have been demonstrated through bench-scale development and testing. Maximum waste loadings of up to 70 dry wt % mixed waste nitrate salt were achieved, compared with 13--20 dry wt % using conventional cement processes. Stability under anticipated storage and disposal conditions and compliance with applicable hazardous waste regulations were demonstrated through a series of lab-scale waste form performance tests. Full-scale demonstration of this process using actual or surrogate waste is currently planned. A scale-up feasibility test was successfully conducted, demonstrating the ability to process nitrate salts at production rates (up to 450 kg/hr) and the close agreement between bench- and full-scale process parameters. Cored samples from the resulting pilot-scale (114 liter) waste form were used to verify homogeneity and to provide additional specimens for confirmatory performance testing.

  18. An Investigation of Surface Velocimetry of Shocked Polyethylene Using Hetv

    NASA Astrophysics Data System (ADS)

    Routley, N. R.; Price, E.; Keightley, P. T.; Millett, J. C. F.; Bourne, N. K.; Brown, E. N.; Gray, G. T.

    2007-12-01

    The velocity history of a shocked free surface has traditionally been measured using established techniques such as VISAR or Fabry-Perot. In recent years a third type of velocimetry has been developed by LLNL which uses Heterodyne techniques, Photon Doppler Velocimetry (PDV). This technique generates a Doppler beat frequency between light incident on the surface and light internally reflected within the system. Unlike the other two techniques PDV does not use an interferometer, instead it relies upon having the ability to directly record the high beat frequency. The setting up and fielding of PDV is therefore much simpler. A low power (Class 1 laser) system using this principal, locally known as Heterodyne Velocimetry (HetV) has been developed and assembled. A series of experiments has been carried out to investigate the Hugoniot of polyethylene using HetV and embedded stress gauges. The results obtained with HetV have been directly compared with the embedded gauge data from the same experiment.

  19. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use

    PubMed Central

    Shin, Chan Young; Kim, Kyu-Bong

    2015-01-01

    Polyethylene glycols (PEGs) are products of condensed ethylene oxide and water that can have various derivatives and functions. Since many PEG types are hydrophilic, they are favorably used as penetration enhancers, especially in topical dermatological preparations. PEGs, together with their typically nonionic derivatives, are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. The compounds studied in this review include PEG/PPG-17/6 copolymer, PEG-20 glyceryl triisostearate, PEG-40 hydrogenated castor oil, and PEG-60 hydrogenated castor oil. Overall, much of the data available in this review are on PEGylated oils (PEG-40 and PEG-60 hydrogenated castor oils), which were recommended as safe for use in cosmetics up to 100% concentration. Currently, PEG-20 glyceryl triisostearate and PEGylated oils are considered safe for cosmetic use according to the results of relevant studies. Additionally, PEG/PPG-17/6 copolymer should be further studied to ensure its safety as a cosmetic ingredient. PMID:26191379

  20. Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas C.; Robbins, Mark O.

    Determining the tensile yield mechanisms of oriented polymer fibers remains a challenging problem in polymer mechanics. By maximizing the alignment and crystallinity of polyethylene (PE) fibers, tensile strengths σ ~ 6 - 7 GPa have been achieved. While impressive, first-principal calculations predict carbon backbone bonds would allow strengths four times higher (σ ~ 20 GPa) before breaking. The reduction in strength is caused by crystal defects like chain ends, which allow fibers to yield by chain slip in addition to bond breaking. We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic PE crystals with finite chains spanning 102 -104 carbons in length. The yield stress σy saturates for long chains at ~ 6 . 3 GPa, agreeing well with experiments. Chains do not break but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model, parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ = 25 . 24 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing such 1D dislocations is an efficient method for predicting fiber strength. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  1. Microfluidic Valves Made From Polymerized Polyethylene Glycol Diacrylate

    PubMed Central

    Rogers, Chad I.; Oxborrow, Joseph B.; Anderson, Ryan R.; Tsai, Long-Fang; Nordin, Gregory P.; Woolley, Adam T.

    2013-01-01

    Pneumatically actuated, non-elastomeric membrane valves fabricated from polymerized polyethylene glycol diacrylate (poly-PEGDA) have been characterized for temporal response, valve closure, and long-term durability. A ~100 ms valve opening time and a ~20 ms closure time offer valve operation as fast as 8 Hz with potential for further improvement. Comparison of circular and rectangular valve geometries indicates that the surface area for membrane interaction in the valve region is important for valve performance. After initial fabrication, the fluid pressure required to open a closed circular valve is ~50 kPa higher than the control pressure holding the valve closed. However, after ~1000 actuations to reconfigure polymer chains and increase elasticity in the membrane, the fluid pressure required to open a valve becomes the same as the control pressure holding the valve closed. After these initial conditioning actuations, poly-PEGDA valves show considerable robustness with no change in effective operation after 115,000 actuations. Such valves constructed from non-adsorptive poly-PEGDA could also find use as pumps, for application in small volume assays interfaced with biosensors or impedance detection, for example. PMID:24357897

  2. Unraveling the luminescence signatures of chemical defects in polyethylene

    NASA Astrophysics Data System (ADS)

    Chen, Lihua; Tran, Huan Doan; Wang, Chenchen; Ramprasad, Rampi

    2015-09-01

    Chemical defects in polyethylene (PE) can deleteriously downgrade its electrical properties and performance. Although these defects usually leave spectroscopic signatures in terms of characteristic luminescence peaks, it is nontrivial to make unambiguous assignments of the peaks to specific defect types. In this work, we go beyond traditional density functional theory calculations to determine intra-defect state transition and charge recombination process derived emission and absorption energies in PE. By calculating the total energy differences of the neutral defect at excited and ground states, the emission energies from intra-defect state transition are obtained, reasonably explaining the photoluminescence peaks in PE. In order to study the luminescence emitted in charge recombination processes, we characterize PE defect levels in terms of thermodynamic and optical charge transition levels that involve total energy calculations of neutral and charged defects. Calculations are performed at several levels of theory including those involving (semi)local and hybrid electron exchange-correlation functionals, and many-body perturbation theory. With these critical elements, the emission energies are computed and further used to clarify and confirm the origins of the observed electroluminescence and thermoluminescence peaks.

  3. Stability of β-carotene in polyethylene oxide electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Peinado, I.; Mason, M.; Romano, A.; Biasioli, F.; Scampicchio, M.

    2016-05-01

    β-carotene (βc) was successfully incorporated into electrospun nanofibers of poly-(ethylene oxide) (PEO) with the aim of prolonging its shelf life and thermal stability. The physical and thermal properties of the βc-PEO-nanofibers were determined by scanning electron microscopy (SEM), color analysis, and differential scanning calorimetry (DSC). The nanofibers of PEO and βc-PEO exhibited average fiber diameters of 320 ± 46 and 230 ± 21 nm, with colorimetric coordinates L* = 95.7 ± 2.4 and 89.4 ± 4.6 and b* = -0.5 ± 0.1 and 6.2 ± 3.0 respectively. Thermogravimetric analysis coupled with Proton Transfer-Mass Spectroscopy (TGA/PTR-ms) demonstrated that coated βc inside PEO nanofibers increased thermal stability when compared to standard βc in powder form. In addition, β-carotene in the membranes showed higher stability during storage when compared with β-carotene in solution with a decrease in concentration of 57 ± 4% and 70 ± 2% respectively, thus should extend the shelf life of this compound. Also, TGA coupled with PTR-MS resulted in a promising technique to online-monitoring thermal degradation.

  4. Sorption of pharmaceuticals and personal care products to polyethylene debris.

    PubMed

    Wu, Chenxi; Zhang, Kai; Huang, Xiaolong; Liu, Jiantong

    2016-05-01

    Presence of plastic debris in marine and freshwater ecosystems is increasingly reported. Previous research suggested plastic debris had a strong affiliation for many pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and heavy metals. In this study, the sorption behavior of pharmaceuticals and personal care products (PPCPs), including carbamazepine (CBZ), 4-methylbenzylidene camphor (4MBC), triclosan (TCS), and 17α-ethinyl estradiol (EE2), to polyethylene (PE) debris (250 to 280 μm) was investigated. The estimated linear sorption coefficients (K d) are 191.4, 311.5, 5140, and 53,225 L/kg for CBZ, EE2, TCS, and 4MBC, and are related to their hydrophobicities. Increase of salinity from 0.05 to 3.5 % did not affect the sorption of 4MBC, CBZ, and EE2 but enhanced the sorption of TCS, likely due to the salting-out effect. Increase of dissolved organic matter (DOM) content using Aldrich humic acid (HA) as a proxy reduced the sorption of 4MBC, EE2, and TCS, all of which show a relatively strong affiliation to HA. Results from this work suggest that microplastics may play an important role in the fate and transport of PPCPs, especially for those hydrophobic ones. PMID:26810664

  5. An antioxidant bioinspired phenolic polymer for efficient stabilization of polyethylene.

    PubMed

    Ambrogi, Veronica; Panzella, Lucia; Persico, Paola; Cerruti, Pierfrancesco; Lonz, Carlo A; Carfagna, Cosimo; Verotta, Luisella; Caneva, Enrico; Napolitano, Alessandra; d'Ischia, Marco

    2014-01-13

    The synthesis, structural characterization and properties of a new bioinspired phenolic polymer (polyCAME) produced by oxidative polymerization of caffeic acid methyl ester (CAME) with horseradish peroxidase (HRP)-H2O2 is reported as a new sustainable stabilizer toward polyethylene (PE) thermal and photo-oxidative degradation. PolyCAME exhibits high stability toward decarboxylation and oxidative degradation during the thermal processes associated with PE film preparation. Characterization of PE films by thermal methods, photo-oxidative treatments combined with chemiluminescence, and FTIR spectroscopy and mechanical tests indicate a significant effect of polyCAME on PE durability. Data from antioxidant capacity tests suggest that the protective effects of polyCAME are due to the potent scavenging activity on aggressive OH radicals, the efficient H-atom donor properties inducing free radical quenching, and the ferric ion reducing ability. PolyCAME is thus proposed as a novel easily accessible, eco-friendly, and biocompatible biomaterial for a sustainable approach to the stabilization of PE films in packaging and other applications. PMID:24313867

  6. Evaluation of hybrid rubber-polyethylene industrial battery separators

    NASA Astrophysics Data System (ADS)

    Wimberly, Rick; Miller, Jamie; Brilmyer, George

    Antimonial lead alloys continue to play a key role in the overall success of the lead-acid battery in deep cycle applications. In markets such as motive power and golf car, these alloys have long been known to assist the performance of the positive plate by promoting a healthy, grid-active material interface. Antimony, on the other hand, is a well-established poison to the negative plate and ultimately leads to gassing, water-loss and cell failure. Reports in the literature indicate that specific battery separator materials may be used to delay the onset of gassing by suppressing the effects of antimony. Literature findings also suggest that the suppression effect may be due to a combination of the chemical make-up of the separator and its physical attributes. It is the intention of this paper to introduce a novel method for evaluating battery separator materials in terms of their ability to suppress the deleterious effects of antimony. Results presented here indicate that the chemical composition of the separator is a controlling factor in suppressing the influence of antimony in the lead-acid battery. Initial information on the characteristics of a new hybrid rubber-polyethylene battery separator is also presented.

  7. Mechanisms of lithium transport in amorphous polyethylene oxide.

    PubMed

    Duan, Yuhua; Halley, J W; Curtiss, Larry; Redfern, Paul

    2005-02-01

    We report calculations using a previously reported model of lithium perchlorate in polyethylene oxide in order to understand the mechanism of lithium transport in these systems. Using an algorithm suggested by Voter, we find results for the diffusion rate which are quite close to experimental values. By analysis of the individual events in which large lithium motions occur during short times, we find that no single type of rearrangement of the lithium environment characterizes these events. We estimate the free energies of the lithium ion as a function of position during these events by calculation of potentials of mean force and thus derive an approximate map of the free energy as a function of lithium position during these events. The results are consistent with a Marcus-like picture in which the system slowly climbs a free energy barrier dominated by rearrangement of the polymer around the lithium ions, after which the lithium moves very quickly to a new position. Reducing the torsion forces in the model causes the diffusion rates to increase. PMID:15740341

  8. Unraveling the luminescence signatures of chemical defects in polyethylene.

    PubMed

    Chen, Lihua; Tran, Huan Doan; Wang, Chenchen; Ramprasad, Rampi

    2015-09-28

    Chemical defects in polyethylene (PE) can deleteriously downgrade its electrical properties and performance. Although these defects usually leave spectroscopic signatures in terms of characteristic luminescence peaks, it is nontrivial to make unambiguous assignments of the peaks to specific defect types. In this work, we go beyond traditional density functional theory calculations to determine intra-defect state transition and charge recombination process derived emission and absorption energies in PE. By calculating the total energy differences of the neutral defect at excited and ground states, the emission energies from intra-defect state transition are obtained, reasonably explaining the photoluminescence peaks in PE. In order to study the luminescence emitted in charge recombination processes, we characterize PE defect levels in terms of thermodynamic and optical charge transition levels that involve total energy calculations of neutral and charged defects. Calculations are performed at several levels of theory including those involving (semi)local and hybrid electron exchange-correlation functionals, and many-body perturbation theory. With these critical elements, the emission energies are computed and further used to clarify and confirm the origins of the observed electroluminescence and thermoluminescence peaks. PMID:26429041

  9. Mesophases in polyethylene, polypropylene, and poly(1-butene)

    SciTech Connect

    Androsch, Rene J; Di Lorenzo, Maria; Schick, Christoph; Wunderlich, Bernhard {nmn}

    2010-01-01

    This paper contains new views about the amorphous and partially ordered phases of the three polymers listed in the title. The discussion is based on information on structure, thermodynamic stability, and large-amplitude molecular motion. Polyethylene is the basic backbone of all alkene polymers, and the other two are the first members of the vinyl polymers which have stereospecifically placed alkyl side chains. Their multiphase structures consist of metastable crystals, mesophases, and surrounding rigid and mobile amorphous fractions. All these phases have sizes ranging from micrometer dimensions down to nanometers. Besides the phase structures, information about the molecular coupling between the phases must be considered. Depending on temperature, the polymer phases can vary from solid (rigid) to liquid (mobile). New knowledge is also gained by cross-comparison of the title polymers. The experimental information was gained from (a) various forms of slow, fast, and temperature-modulated thermal analysis to identify equilibrium and non-equilibrium states, (b) measurement of structure and morphology at various length scales, and (c) tracing of the large-amplitude molecular motion, the kinetics of order/disorder changes, and the liquid/solid transitions (glass transitions). It is shown that much more needs to be known about the various phases and their coupling to characterize a given polymer and to fine-tune its properties for a given application.

  10. Synthesis and properties of oligodeoxyribonucleotide-polyethylene glycol conjugates.

    PubMed Central

    Jäschke, A; Fürste, J P; Nordhoff, E; Hillenkamp, F; Cech, D; Erdmann, V A

    1994-01-01

    Pools of oligonucleotide conjugates consisting of 10-400 different molecular species were synthesized. The conjugates contained a varying number of ethylene glycol units attached to 3'-terminal, 5'-terminal and internal positions of the oligonucleotides. Conjugate synthesis was performed by phosphoramidite solid phase chemistry using suitably protected polyethylene glycol phosphoramidites and PEG-derivatized solid supports containing polydisperse PEGs of various molecular weight ranges. The pools were analyzed and fractionated by chromatographic and electrophoretic techniques, and the composition of isolated conjugates was revealed by matrix-assisted laser desorption/ionization mass spectrometry. The number and attachment sites of coupled ethylene glycol units greatly influence the hydrophobicity of the conjugates, as well as their electrophoretic mobilities. Conjugation had little effect on the hybridization behavior of oligonucleotide conjugates with unmodified complementary oligonucleotide strands. Melting temperatures were between 67 and 73 degrees C, depending on the size and number of coupled PEG chains, compared to 68 degrees C for the unmodified duplex. Conjugates with PEG coupled to both 3'- and 5'-terminal positions showed a more than 10-fold increase in exonuclease stability. PMID:7984434

  11. Dynamic nuclear polarization of high- and low-crystallinity polyethylenes

    NASA Astrophysics Data System (ADS)

    Kumada, Takayuki; Yohei, Noda; Hashimoto, Takeji; Koizumi, Satoshi

    2009-07-01

    We carried out a dynamic nuclear polarization (DNP) study of high- and low-crystallinity polyethylene films defined as HPE and LPE, respectively, which were doped with TEMPO (2,2,6,6-tetra-methyl-piperidine-1-oxyl) by the same amount (1×1019 spins/cm3). The proton polarization of 32±3% was obtained for LPE and 23±4% for HPE at 3.35 T and 1.4 K. With increase in the concentration of TEMPO, the electron spin resonance (ESR) linewidth of TEMPO in HPE increased more steeply than that in LPE, indicating that TEMPO did not incorporated into the crystalline part, and was localized only at the amorphous part, hence the local concentration of TEMPO in the amorphous regions of HPE varied more steeply than that of LPE with the net amount of TEMPO fed into the film. We suggest that the smaller nuclear polarization for HPE is related to the localization of TEMPO in the smaller amorphous regions.

  12. Coarse-grained models for aqueous polyethylene glycol solutions.

    PubMed

    Choi, Eunsong; Mondal, Jagannath; Yethiraj, Arun

    2014-01-01

    A new coarse-grained force field is developed for polyethylene glycol (PEG) in water. The force field is based on the MARTINI model but with the big multipole water (BMW) model for the solvent. The polymer force field is reparameterized using the MARTINI protocol. The new force field removes the ring-like conformations seen in simulations of short chains with the MARTINI force field; these conformations are not observed in atomistic simulations. We also investigate the effect of using parameters for the end-group that are different from those for the repeat units, with the MARTINI and BMW/MARTINI models. We find that the new BMW/MARTINI force field removes the ring-like conformations seen in the MARTINI models and has more accurate predictions for the density of neat PEG. However, solvent-separated-pairs between chain ends and slow dynamics of the PEG reflect its own artifacts. We also carry out fine-grained simulations of PEG with bundled water clusters and show that the water bundling can lead to ring-like conformations of the polymer molecules. The simulations emphasize the pitfalls of coarse-graining several molecules into one site and suggest that polymer-solvent systems might be a stringent test for coarse-grained force fields. PMID:24350686

  13. Optical clearing of skin tissue ex vivo with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Tuchina, D. K.; Genin, V. D.; Bashkatov, A. N.; Genina, E. A.; Tuchin, V. V.

    2016-01-01

    Alterations of the optical and structural (weight, thickness, and square) parameters of skin caused by polyethylene glycol (PEG) with molecular weights of 300 and 400 Da were studied experimentally. The objects of the study were ex vivo skin samples of albino laboratory rats. Collimated transmittance of the skin was measured in the wavelength range 500-900 nm. As a result of exposure to the agents, an increase in the collimated transmittance and a decrease in weight, thickness, and square of skin samples were observed. Analysis of the kinetics of parameters alterations allowed us to measure the diffusion coefficient of the agents in the skin as (1.83 ± 2.22) × 10-6 and (1.70 ± 1.47) × 10-6 cm2/s for PEG-300 and PEG-400, respectively, and the rate of alterations of the structural parameters. The results obtained in this study can be used for the improvement of existing and development of new methods of noninvasive diagnostics and therapy of subcutaneous diseases.

  14. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate.

    PubMed

    Guzik, Maciej W; Kenny, Shane T; Duane, Gearoid F; Casey, Eoin; Woods, Trevor; Babu, Ramesh P; Nikodinovic-Runic, Jasmina; Murray, Michael; O'Connor, Kevin E

    2014-05-01

    A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer. PMID:24413975

  15. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use.

    PubMed

    Jang, Hyun-Jun; Shin, Chan Young; Kim, Kyu-Bong

    2015-06-01

    Polyethylene glycols (PEGs) are products of condensed ethylene oxide and water that can have various derivatives and functions. Since many PEG types are hydrophilic, they are favorably used as penetration enhancers, especially in topical dermatological preparations. PEGs, together with their typically nonionic derivatives, are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. The compounds studied in this review include PEG/PPG-17/6 copolymer, PEG-20 glyceryl triisostearate, PEG-40 hydrogenated castor oil, and PEG-60 hydrogenated castor oil. Overall, much of the data available in this review are on PEGylated oils (PEG-40 and PEG-60 hydrogenated castor oils), which were recommended as safe for use in cosmetics up to 100% concentration. Currently, PEG-20 glyceryl triisostearate and PEGylated oils are considered safe for cosmetic use according to the results of relevant studies. Additionally, PEG/PPG-17/6 copolymer should be further studied to ensure its safety as a cosmetic ingredient. PMID:26191379

  16. Experimental characterization of triboelectric charging of polyethylene powders

    NASA Astrophysics Data System (ADS)

    Jantač, Simon; Konopka, Ladislav; Kosek, Juraj

    2015-10-01

    Triboelectric charging causes serious problems in the industrial processing of powders. We focus on the charging of polyethylene (PE) powder particles, whose agglomeration can cause serious economic problems in PE production in fluidized-bed reactors. The ‘cascade method’ apparatus, i.e., a slide followed by the Faraday's pail, was utilized to observe the particle-wall charging of PE particles in friction contact with various materials (glass, aluminium, PE) and allowed us to characterize the charging dynamics. Our results indicate that the evolution of the charge on the particles follows a saturation curve, where the saturated state is represented by maximum (outcome) charge. Such a trend can be conveniently fitted by a function representing the first-order dynamics. We determine the dependency of charging dynamics on various factors, e.g., the humidity, the slide surface roughness and the slide material. Our measurements imply that air humidity influences the charging process substantially more than the choice of the slide material. Moreover, we observe significant charging even in the case of the same materials being in contact. The work contributes to a better understanding of tribocharging and the estimation of charging-related parameters provides the input for the modelling of this complex process.

  17. New polyethylenes in total hip replacement: a prospective, comparative clinical study of two types of liner.

    PubMed

    García-Rey, E; García-Cimbrelo, E; Cruz-Pardos, A; Ortega-Chamarro, J

    2008-02-01

    Ultra-high-molecular-weight polyethylene sterilised in the absence of air and highly cross-linked polyethylene have been used to avoid osteolysis and loosening in total hip replacement. Our prospective randomised study has assessed the results using two different polyethylenes associated with the same prosthetic design. We assessed 45 Allofit acetabular components with a Sulene-polyethylene liner of conventional polyethylene gamma sterilised with nitrogen and 45 Allofit acetabular components with a Durasul-polyethylene liner sterilised in ethylene oxide, both matched with an Alloclassic stem with a 28 mm modular femoral head. The prostheses were implanted between May 1999 and December 2001. The mean follow-up was for 66.3 months (60 to 92). The linear penetration of the femoral head was estimated at 6 weeks, at 6 and 12 months and annually thereafter from standardised digitised radiographs using image-analysis software. There was no loosening of any prosthetic component. There were no radiolucent lines or osteolysis. The mean rate of penetration calculated from regression analysis during the first five years was 38 microm/year (SD 2) for the Sulene group and 6 microm/year (SD 1) for the Durasul group (p = 0.00002). The rate of penetration of the Durasul group was 15.7% of that of the Sulene group. PMID:18256079

  18. Immobilization of Proteins on a Glass Surface at High Density

    SciTech Connect

    Thomas, Marlon; Vullev, Valentine I.; Wan Jiandi

    2009-07-06

    We describe a rational molecular-level design of biocompatible surface coatings and immobilization of biological species onto them to produce biofunctional interfaces. Our method adapted a strategy for coating glass and other silica-type substrates with bioinert layers of polyethylene glycol (PEG). The introduction of {alpha}, {omega}-bifunctional polymers into the coatings allowed for covalent attachment of proteins to the PEGylated surfaces. Spectroscopic studies indicate that the surface-bound proteins had their biological activity preserved.

  19. Common Crowding Agents Have Only a Small Effect on Protein-Protein Interactions

    PubMed Central

    Phillip, Yael; Sherman, Eilon; Haran, Gilad; Schreiber, Gideon

    2009-01-01

    Abstract Studies of protein-protein interactions, carried out in polymer solutions, are designed to mimic the crowded environment inside living cells. It was shown that crowding enhances oligomerization and polymerization of macromolecules. Conversely, we have shown that crowding has only a small effect on the rate of association of protein complexes. Here, we investigated the equilibrium effects of crowding on protein heterodimerization of TEM1-β-lactamase with β-lactamase inhibitor protein (BLIP) and barnase with barstar. We also contrasted these with the effect of crowding on the weak binding pair CyPet-YPet. We measured the association and dissociation rates as well as the affinities and thermodynamic parameters of these interactions in polyethylene glycol and dextran solutions. For TEM1-BLIP and for barnase-barstar, only a minor reduction in association rate constants compared to that expected based on solution viscosity was found. Dissociation rate constants showed similar levels of reduction. Overall, this resulted in a binding affinity that is quite similar to that in aqueous solutions. On the other hand, for the CyPet-YPet pair, aggregation, and not enhanced dimerization, was detected in polyethylene glycol solutions. The results suggest that typical crowding agents have only a small effect on specific protein-protein dimerization reactions. Although crowding in the cell results from proteins and other macromolecules, one may still speculate that binding in vivo is not very different from that measured in dilute solutions. PMID:19651046

  20. A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol) polycaprolactone poly(ethylene glycol) block copolymers

    NASA Astrophysics Data System (ADS)

    Gong, Chang Yang; Qian, Zhi Yong; Liu, Cai Bing; Juan Huang, Mei; Gu, Ying Chun; Wen, Yan Jun; Kan, Bing; Wang, Ke; Dai, Mei; Li, Xing Yi; Gou, Ma Ling; Tu, Ming Jing; Wei, Yu Quan

    2007-06-01

    A series of low molecular weight poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) biodegradable block copolymers were successfully synthesized using isophorone diisocyanate (IPDI) as the coupling agent, and were characterized using 1H NMR and Fourier transform infrared spectroscopy. The aqueous solutions of the PEG-PCL-PEG copolymers displayed a special thermosensitive gel-sol transition when the concentration was above the corresponding critical gel concentration. Gel-sol phase diagrams were recorded using the test-tube-inversion method; they depended on the hydrophilic/hydrophobic balance in the macromolecular structure, as well as some other factors, including the heating history, volume, and the ageing time of the copolymer aqueous solutions and dissolution temperature of the copolymers. As a result, the gel-sol transition temperature range could be altered, which might be very useful for application in injectable drug delivery systems. This work was financially supported by the Chinese Key Basic Research Program (2004CB518800 and 2004CB518807), and the Sichuan Key Project of Science and Technology (06(05SG022-021-02)).

  1. Separation of polyethylene glycols and amino-terminated polyethylene glycols by high-performance liquid chromatography under near critical conditions.

    PubMed

    Wei, Y-Z; Zhuo, R-X; Jiang, X-L

    2016-05-20

    The separation and characterization of polyethylene glycols (PEGs) and amino-substituted derivatives on common silica-based reversed-phase packing columns using isocratic elution is described. This separation is achieved by liquid chromatography under the near critical conditions (LCCC), based on the number of amino functional end groups without obvious effect of molar mass for PEGs. The mobile phase is acetonitrile in water with an optimal ammonium acetate buffer. The separation mechanism of PEG and amino-substituted PEG under the near LCCC on silica-based packing columns is confirmed to be ion-exchange interaction. Under the LCCC of PEG backbone, with fine tune of buffer concentration, the retention factor ratios for benzylamine and phenol in buffered mobile phases, α(benzylamine/phenol)-values, were used to assess the ion-exchange capacity on silica-based reversed-phase packing columns. To the best of our knowledge, this is the first report on separation of amino-functional PEGs independent of the molar mass by isocratic elution using common C18 or phenyl reversed-phase packing columns. PMID:27102303

  2. Ultrafiltration of pegylated proteins

    NASA Astrophysics Data System (ADS)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine groups in the PEGylated proteins. Ultrafiltration experiments were performed using PEGylated alpha-lactalbumin, ovalbumin, and bovine serum albumin. In contrast to the size exclusion chromatography data, the sieving coefficient of the PEGylated proteins depended upon both the number and size of the attached PEG chains due to the elongation or deformation of the PEG associated with the filtrate flux. Sieving coefficients at low filtrate flux were in good agreement with predictions of available hydrodynamic models, with significant elongation occurring when the Deborah number for the PEG chain exceeded 0.001. The effects of electrostatic interactions on the ultrafiltration of PEGylated proteins were examined using electrically-charged membranes generated by covalent attachment of sulphonic acid groups to the base cellulosic membrane. Transmission of PEGylated proteins through charged membranes was dramatically reduced at low ionic strength due to strong electrostatic interactions, despite the presence of the neutral PEG. The experimental results were in good agreement with model calculations developed for the partitioning of charged spheres into charged cylindrical pores. The experimental and theoretical results provide the first quantitative analysis of the effects of PEGylation on transport through semipermeable ultrafiltration membranes. The results from small-scale ultrafiltration experiments were used to develop a two-stage diafiltration process to purify PEGylated alpha-lactalbumin. The first-stage used a neutral membrane to remove the unreacted protein by exploiting differences in size. The second stage used a negatively-charged membrane to remove hydrolyzed PEG, with the PEGylated product retained by strong electrostatic interactions. This process provided a purification factor greater than 1000 with respect to the unreacted protein and greater than 20-fold with respect to the PEG with an overall yield of PEGylated alpha-lactalbumin of 78%. These results provide the first demonstration of the potential of using ultrafiltration for the purification of protein-polymer conjugates.

  3. Anisotropic Poly(Ethylene Glycol)/Polycaprolactone Hydrogel–Fiber Composites for Heart Valve Tissue Engineering

    PubMed Central

    Tseng, Hubert; Puperi, Daniel S.; Kim, Eric J.; Ayoub, Salma; Shah, Jay V.; Cuchiara, Maude L.; West, Jennifer L.

    2014-01-01

    The recapitulation of the material properties and structure of the native aortic valve leaflet, specifically its anisotropy and laminate structure, is a major design goal for scaffolds for heart valve tissue engineering. Poly(ethylene glycol) (PEG) hydrogels are attractive scaffolds for this purpose as they are biocompatible, can be modified for their mechanical and biofunctional properties, and can be laminated. This study investigated augmenting PEG hydrogels with polycaprolactone (PCL) as an analog to the fibrosa to improve strength and introduce anisotropic mechanical behavior. However, due to its hydrophobicity, PCL must be modified prior to embedding within PEG hydrogels. In this study, PCL was electrospun (ePCL) and modified in three different ways, by protein adsorption (pPCL), alkali digestion (hPCL), and acrylation (aPCL). Modified PCL of all types maintained the anisotropic elastic moduli and yield strain of unmodified anisotropic ePCL. Composites of PEG and PCL (PPCs) maintained anisotropic elastic moduli, but aPCL and pPCL had isotropic yield strains. Overall, PPCs of all modifications had elastic moduli of 3.79±0.90 MPa and 0.46±0.21 MPa in the parallel and perpendicular directions, respectively. Valvular interstitial cells seeded atop anisotropic aPCL displayed an actin distribution aligned in the direction of the underlying fibers. The resulting scaffold combines the biocompatibility and tunable fabrication of PEG with the strength and anisotropy of ePCL to form a foundation for future engineered valve scaffolds. PMID:24712446

  4. Biodegradable pH-Sensitive Poly(ethylene glycol) Nanocarriers for Allergen Encapsulation and Controlled Release.

    PubMed

    Pohlit, Hannah; Bellinghausen, Iris; Schömer, Martina; Heydenreich, Bärbel; Saloga, Joachim; Frey, Holger

    2015-10-12

    In the last decades, the number of allergic patients has increased dramatically. Allergen-specific immunotherapy (SIT) is the only available cause-oriented therapy so far. SIT reduces the allergic symptoms, but also exhibits some disadvantages; that is, it is a long-lasting procedure and severe side effects like anaphylactic shock can occur. In this work, we introduce a method to encapsulate allergens into nanoparticles to avoid severe side effects during SIT. Degradable nanocarriers combine the advantage of providing a physical barrier between the encapsulated cargo and the biological environment as well as responding to certain local stimuli (like pH) to release their cargo. This work introduces a facile strategy for the synthesis of acid-labile poly(ethylene glycol) (PEG)-macromonomers that degrade at pH 5 (physiological pH inside the endolysosome) and can be used for nanocarrier synthesis. The difunctional, water-soluble PEG dimethacrylate (PEG-acetal-DMA) macromonomers with cleavable acetal units were analyzed with 1H NMR, SEC, and MALDI-ToF-MS. Both the allergen and the macromonomers were entrapped inside liposomes as templates, which were produced by dual centrifugation (DAC). Radical polymerization of the methacrylate units inside the liposomes generated allergen-loaded PEG nanocarriers. In vitro studies demonstrated that dendritic cells (DCs) internalize the protein-loaded, nontoxic PEG-nanocarriers. Furthermore, we demonstrate by cellular antigen stimulation tests that the nanocarriers effectively shield the allergen cargo from detection by immunoglobulins on the surface of basophilic leucocytes. Uptake of nanocarriers into DCs does not lead to cell maturation; however, the internalized allergen was capable to induce T cell immune responses. PMID:26324124

  5. Polyethylene recycling: Waste policy scenario analysis for the EU-27.

    PubMed

    Andreoni, Valeria; Saveyn, Hans G M; Eder, Peter

    2015-08-01

    This paper quantifies the main impacts that the adoption of the best recycling practices together with a reduction in the consumption of single-use plastic bags and the adoption of a kerbside collection system could have on the 27 Member States of the EU. The main consequences in terms of employment, waste management costs, emissions and energy use have been quantified for two scenarios of polyethylene (PE) waste production and recycling. That is to say, a "business as usual scenario", where the 2012 performances of PE waste production and recycling are extrapolated to 2020, is compared to a "best practice scenario", where the best available recycling practices are modelled together with the possible adoption of the amended Packaging and Packaging Waste Directive related to the consumption of single-use plastic bags and the implementation of a kerbside collection system. The main results show that socio-economic and environmental benefits can be generated across the EU by the implementation of the best practice scenario. In particular, estimations show a possible reduction of 4.4 million tonnes of non-recycled PE waste, together with a reduction of around €90 million in waste management costs in 2020 for the best practice scenario versus the business as usual scenario. An additional 35,622 jobs are also expected to be created. In environmental terms, the quantity of CO2 equivalent emissions could be reduced by around 1.46 million tonnes and the net energy requirements are expected to increase by 16.5 million GJ as a consequence of the reduction in the energy produced from waste. The main analysis provided in this paper, together with the data and the model presented, can be useful to identify the possible costs and benefits that the implementation of PE waste policies and Directives could generate for the EU. PMID:25976302

  6. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  7. Permeation Resistance of Chlorinated Polyethylene Against Hydrazine Fuels

    NASA Technical Reports Server (NTRS)

    Waller, J. M.; Williams, J. H.

    1999-01-01

    The permeation resistance of chlorinated polyethylene (CPE) used in chemical protective clothing against the aerospace fuels hydrazine, monomethylhydrazine (MMH), and uns-dimethylhydrazine (UDMH) was determined by measuring breakthrough times and time-averaged vapor transmission rates using an ASTM F 739 permeation cell. Two exposure scenarios were simulated: a 2 hour (h) fuel vapor exposure, and a liquid fuel "splash" followed by a 2 h vapor exposure. To simulate internal suit pressure during operation, a positive differential pressure of 0.3 in. water (75 Pa) on the collection side of the permeation apparatus was used. Breakthrough was observed after exposure to liquid MMH, and to vapor and liquid UDMH. No breakthrough was observed after exposure to vapor and liquid hydrazine, or vapor MMH. A model was then used to calculate propellant concentrations inside a totally encapsulating chemical protective suit based on the ASTM permeation data obtained in the present study. Concentrations were calculated under conditions of fixed vapor transmission rate, variable breathing air flow rate, and variable splash exposure area. Calculations showed that the maximum allowable permeation rates of hydrazine fuels through CPE were of the order of 0.05 to 0.08 ng sq cm/min for encapsulating suits with low breathing air flow rates (of the order of 5 scfm or 140 L/min). Above these permeation rates, the 10 parts per billion (ppb) threshold limit value time - weighted average could be exceeded for chemical protective suits having a CPE torso. To evaluate suit performance at ppb level concentrations, use of a sensitive analytical method such as cation exchange high performance liquid chromatography with amperometric detection was found to be essential.

  8. Various-sourced pectin and polyethylene oxide electrospun fibers.

    PubMed

    Rockwell, Pamela L; Kiechel, Marjorie A; Atchison, Jennifer S; Toth, Laura J; Schauer, Caroline L

    2014-07-17

    Pectin, a naturally occurring and biorenewable polysaccharide, is derived from plant cell wall tissue and used in applications ranging from food processing to biomedical engineering. Due to extraction methods and source variation, there is currently no consensus in literature as to the exact structure of pectin. Here, we have studied key material properties of electrospun pectin blends with polyethylene oxide (PEO) (1:1, v/v) in order to demonstrate the fabrication of a fibrous and less toxic material system, as well as to understand the effects of source variability on the resulting fibrous mats. The bulk pectin degree of esterification (DE) estimated using FTIR (bulk apple pomace (AP)=28%, bulk citrus peel (CP)=86% and bulk sugar beet pulp (SBP)=91%) was shown to inversely correlate with electrospun fiber crystallinity determined using XRD (PEO-AP=37%, PEO-CP=28% and PEO-SBP=23%). This in turn affected the trend observed for the mean fiber diameter (n=50) (PEO-AP=124 ± 26 nm, PEO-CP=493 ± 254 nm and PEO-SBP=581 ± 178 nm) and elastic tensile moduli (1.6 ± 0.2 MPa, 4.37 ± 0.64 MPa and 2.49 ± 1.46 MPa, respectively) of the fibrous mats. Electrospun fibers containing bulk AP had the lowest DE, highest crystallinity, smallest mean fiber diameter, and lowest tensile modulus compared to either the bulk CP or bulk SBP. Bound water in PEO-CP fiber and bulk pectin impurities in PEO-SPB were observed to influence fiber branching and mean diameter distributions, which in turn influenced the fiber tensile properties. These results indicate that pectin, when blended with PEO in water, produces submicron fibrous mats with pectin influencing the blend fiber properties. Moreover, the source of pectin is an important variable in creating electrospun blend fibrous mats with desired material properties. PMID:24702925

  9. Stabilization of DNA Structures with Poly(ethylene sodium phosphate).

    PubMed

    Moriyama, Rui; Iwasaki, Yasuhiko; Miyoshi, Daisuke

    2015-09-10

    The structure and stability of biomolecules under molecular crowding conditions are of interest because such information clarifies how biomolecules behave under cell-mimicking conditions. The anionic surfaces of chromatin, which is composed of DNA strands and histone complexes, are concentrated in cell nuclei and thus generate a polyanionic crowding environment. In this study, we designed and synthesized an anionic polymer, poly(ethylene sodium phosphate) (PEP·Na), which has a nucleic acid phosphate backbone and created a cell nucleus-like environment. The effects of molecular crowding with PEP·Na on the thermodynamics of DNA duplexes, triplexes, and G-quadruplexes were systematically studied. Thermodynamic analysis demonstrated that PEP·Na significantly stabilized the DNA structures; e.g., a free energy change at 25 °C for duplex formation decreased from -6.6 to -12.8 kcal/mol with 20 wt % PEP·Na. Thermodynamic parameters further indicated that the factors for the stabilization of the DNA structures were dependent on sodium ion concentration. At lower polymer concentrations, the stabilization was attributed to a shielding of the electrostatic repulsion between DNA strands by the sodium ions of PEP·Na. In contrast, at higher polymer concentrations, the DNA structures were entropically stabilized by volume exclusion, which could be enhanced by electrostatic repulsion between phosphate groups in DNA strands and in PEP·Na. Additionally, increasing PEP·Na concentration resulted in increasing enthalpy of the DNA duplex but decreasing enthalpy of DNA G-quadruplex, indicating that the polymers also promoted dehydration of the DNA strands. Thus, polyanionic crowding affects the thermodynamics of DNA structures via the sodium ions, volume exclusion, and hydration. The stabilization of DNA by the cell nucleus-like polyanionic crowding provides new information regarding DNA structures and allows for modeling reactions in cell nuclei. PMID:26173001

  10. A coarse-grained model for polyethylene glycol polymer

    NASA Astrophysics Data System (ADS)

    Wang, Qifei; Keffer, David J.; Nicholson, Donald M.

    2011-12-01

    A coarse-grained (CG) model of polyethylene glycol (PEG) was developed and implemented in CG molecular dynamics (MD) simulations of PEG chains with degree of polymerization (DP) 20 and 40. In the model, two repeat units of PEG are grouped as one CG bead. Atomistic MD simulation of PEG chains with DP = 20 was first conducted to obtain the bonded structural probability distribution functions (PDFs) and nonbonded pair correlation function (PCF) of the CG beads. The bonded CG potentials are obtained by simple inversion of the corresponding PDFs. The CG nonbonded potential is parameterized to the PCF using both an inversion procedure based on the Ornstein-Zernike equation with the Percus-Yevick approximation (OZPY-1) and a combination of OZPY-1 with the iterative Boltzmann inversion (IBI) method (OZPY-1+IBI). As a simple one step method, the OZPY-1 method possesses an advantage in computational efficiency. Using the potential from OZPY-1 as an initial guess, the IBI method shows fast convergence. The coarse-grained molecular dynamics (CGMD) simulations of PEG chains with DP = 20 using potentials from both methods satisfactorily reproduce the structural properties from atomistic MD simulation of the same systems. The OZPY-1+IBI method yields better agreement than the OZPY-1 method alone. The new CG model and CG potentials from OZPY-1+IBI method was further tested through CGMD simulation of PEG with DP = 40 system. No significant changes are observed in the comparison of PCFs from CGMD simulations of PEG with DP = 20 and 40 systems indicating that the potential is independent of chain length.

  11. Photodegradation and photostabilization of weathered wood flour filled polyethylene composites

    NASA Astrophysics Data System (ADS)

    Stark, Nicole M.

    2003-06-01

    Wood plastic composites (WPCs) have gained popularity as building materials because of their usefulness in replacing solid wood in a variety of applications. These composites are promoted as being low-maintenance, high-durability products. However, it has been shown that WPCs exposed to weathering may experience a color change and/or loss in mechanical properties. An important requirement for building materials used in outdoor applications is the retention of their aesthetic qualities and mechanical properties during service life. Therefore, it is critical to understand the photodegradation mechanisms of WPCs exposed to UV radiation and to develop approaches to stabilize these composites against ultraviolet light. In this dissertation, the surface chemistries of weathered composites (both unstabilized and stabilized) as well as the effect of weathering on the color fade and the retention of mechanical properties were characterized. Since different methods of manufacturing WPCs lead to different surface characteristics, which can influence weathering, the effect of manufacturing method on the photodegradation of WPCs was investigated first. Wood flour (WF) filled high-density polyethylene (HDPE) composite samples were either injection molded, extruded, or extruded and then planed. Fourier transform infrared (FTIR) spectroscopy was used to monitor the surface chemistry of the manufactured composites. The spectra showed that the surface of planed samples had more wood component than extruded and injection molded samples, respectively. After weathering, the samples were analyzed for color fade, and loss of flexural properties. The final lightness of the composites was not dependent upon the manufacturing method. However the mechanical property loss was dependent upon manufacturing method. The samples with more wood component at the surface (planed samples) experienced a larger percent of total loss in flexural properties after weathering due to a greater effect of moisture on the samples. The change in surface chemistry of HDPE and WF/HDPE composites after weathering was studied using spectroscopic techniques. (Abstract shortened by UMI.)

  12. Structure and antibacterial properties of polyethylene/organo-vermiculite composites

    NASA Astrophysics Data System (ADS)

    Hundáková, Marianna; Tokarský, Jonáš; Valášková, Marta; Slobodian, Petr; Pazdziora, Erich; Kimmer, Dušan

    2015-10-01

    Vermiculite (VER) was modified by cation exchange with hexadecyltrimethylammonium (HDTMA+) bromide in three concentrations and used as organo-VER clay mineral nanofillers (denoted as HDTMA+1-VER, HDTMA+2-VER, and HDTMA+3-VER) in polyethylene (PE). PE/organo-VER composites were prepared via a melt compounding technique and pressed into thin plates. The organo-VER nanofillers and composite plates were characterized by X-ray diffraction analysis which in combination with molecular modeling confirmed the intercalation of HDTMA+ molecules. It was found that alkyl tails of HDTMA+ molecules create a non-polar, water-free area which may help the PE chains to enter the VER interlayer space. The nanocomposite structure was confirmed for PE/HDTMA+3-VER. PE/organo-VER composites were also studied by scanning electron microscopy and light microscopy and by creep testing. Antibacterial activity of powder organo-VER nanofillers was tested on Gram-positive (G+) (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative (G-) (Escherichia coli) bacterial strains. The most sensitive G+ bacteria responded by stopping their bacterial growth after 24 h with a minimum inhibitory concentration (MIC) 0.014% (w/v) at all samples. Growth of G- bacteria was inhibited after 24 h with higher MIC value 0.041-10% (w/v) in relation to the content of HDTMA+ in samples. The surfaces of PE/organo-VER composites are very active against G+ bacterial strain E. faecalis. The number of bacterial colonies forming units (cfu) on surfaces of samples was reduced by approximately several orders. The number of bacterial colonies after 48 h was 0 cfu on the surface of PE/HDTMA+3-VER nanocomposite.

  13. Robust identification of polyethylene terephthalate (PET) plastics through Bayesian decision.

    PubMed

    Zulkifley, Mohd Asyraf; Mustafa, Mohd Marzuki; Hussain, Aini; Mustapha, Aouache; Ramli, Suzaimah

    2014-01-01

    Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed. PMID:25485630

  14. Solar Disinfection of Viruses in Polyethylene Terephthalate Bottles.

    PubMed

    Carratalà, Anna; Dionisio Calado, Alex; Mattle, Michael J; Meierhofer, Regula; Luzi, Samuel; Kohn, Tamar

    2015-01-01

    Solar disinfection (SODIS) of drinking water in polyethylene terephthalate (PET) bottles is a simple, efficient point-of-use technique for the inactivation of many bacterial pathogens. In contrast, the efficiency of SODIS against viruses is not well known. In this work, we studied the inactivation of bacteriophages (MS2 and ϕX174) and human viruses (echovirus 11 and adenovirus type 2) by SODIS. We conducted experiments in PET bottles exposed to (simulated) sunlight at different temperatures (15, 22, 26, and 40°C) and in water sources of diverse compositions and origins (India and Switzerland). Good inactivation of MS2 (>6-log inactivation after exposure to a total fluence of 1.34 kJ/cm(2)) was achieved in Swiss tap water at 22°C, while less-efficient inactivation was observed in Indian waters and for echovirus (1.5-log inactivation at the same fluence). The DNA viruses studied, ϕX174 and adenovirus, were resistant to SODIS, and the inactivation observed was equivalent to that occurring in the dark. High temperatures enhanced MS2 inactivation substantially; at 40°C, 3-log inactivation was achieved in Swiss tap water after exposure to a fluence of only 0.18 kJ/cm(2). Overall, our findings demonstrate that SODIS may reduce the load of single-stranded RNA (ssRNA) viruses, such as echoviruses, particularly at high temperatures and in photoreactive matrices. In contrast, complementary measures may be needed to ensure efficient inactivation during SODIS of DNA viruses resistant to oxidation. PMID:26497451

  15. A course-grained model for polyethylene glycol polymer

    SciTech Connect

    Nicholson, Don M; Wang, Qifei; Keffer, David J

    2011-01-01

    A coarse-grained (CG) model of polyethylene glycol (PEG) was developed and implemented in CG molecular dynamics (MD) simulations of PEG chains with degree of polymerization (DP) 20 and 40. In the model, two repeat units of PEG are grouped as one CG bead. Atomistic MD simulation of PEG chains with DP = 20 was first conducted to obtain the bonded structural probability distribution functions (PDFs) and nonbonded pair correlation function (PCF) of the CG beads. The bonded CG potentials are obtained by simple inversion of the corresponding PDFs. The CG nonbonded potential is parameterized to the PCF using both an inversion procedure based on the Ornstein-Zernike equation with the Percus-Yevick approximation (OZPY{sup -1}) and a combination of OZPY{sup -1} with the iterative Boltzmann inversion (IBI) method (OZPY{sup -1}+IBI). As a simple one step method, the OZPY{sup -1} method possesses an advantage in computational efficiency. Using the potential from OZPY{sup -1} as an initial guess, the IBI method shows fast convergence. The coarse-grained molecular dynamics (CGMD) simulations of PEG chains with DP = 20 using potentials from both methods satisfactorily reproduce the structural properties from atomistic MD simulation of the same systems. The OZPY{sup -1}+IBI method yields better agreement than the OZPY{sup -1} method alone. The new CG model and CG potentials from OZPY{sup -1}+IBI method was further tested through CGMD simulation of PEG with DP = 40 system. No significant changes are observed in the comparison of PCFs from CGMD simulations of PEG with DP = 20 and 40 systems indicating that the potential is independent of chain length.

  16. SANS study of highly resilient poly(ethylene glycol) hydrogels.

    PubMed

    Saffer, Erika M; Lackey, Melissa A; Griffin, David M; Kishore, Suhasini; Tew, Gregory N; Bhatia, Surita R

    2014-03-28

    Polymer networks are critically important for numerous applications including soft biomaterials, adhesives, coatings, elastomers, and gel-based materials for energy storage. One long-standing challenge these materials present lies in understanding the role of network defects, such as dangling ends and loops, developed during cross-linking. These defects can negatively impact the physical, mechanical, and transport properties of the gel. Here we report chemically cross-linked poly(ethylene glycol) (PEG) gels formed through a unique cross-linking scheme designed to minimize defects in the network. The highly resilient mechanical properties of these systems (discussed in a previous publication) [J. Cui, M. A. Lackey, A. E. Madkour, E. M. Saffer, D. M. Griffin, S. R. Bhatia, A. J. Crosby and G. N. Tew, Biomacromolecules, 2012, 13, 584-588], suggests that this cross-linking technique yields more homogeneous network structures. Four series of gels were formed based on chains of 35,000 g mol(-1), (35k), 12,000 g mol(-1) (12k) g mol(-1), 8000 g mol(-1) (8k) and 4000 g mol(-1) (4k) PEG. Gels were synthesized at five initial polymer concentrations ranging from 0.077 g mL(-1) to 0.50 g mL(-1). Small-angle neutron scattering (SANS) was utilized to investigate the network structures of gels in both D2O and d-DMF. SANS results show the resulting network structure is dependent on PEG length, transitioning from a more homogeneous network structure at high molecular weight PEG to a two phase structure at the lowest molecular weight PEG. Further investigation of the transport properties inherent to these systems, such as diffusion, will aid to further confirm the network structures. PMID:24652367

  17. SANS Study of Highly Resilient Poly(ethylene glycol) Hydrogels

    PubMed Central

    Saffer, Erika M.; Lackey, Melissa A.; Griffin, David M.; Kishore, Suhasini; Tew, Gregory N.; Bhatia, Surita R.

    2014-01-01

    Polymer networks are critically important for numerous applications including soft biomaterials, adhesives, coatings, elastomers, and gel-based materials for energy storage. One long-standing challenge these materials present lies in understanding the role of network defects, such as dangling ends and loops, developed during cross-linking. These defects can negatively impact the physical, mechanical, and transport properties of the gel. Here we report chemically cross-linked poly(ethylene glycol) (PEG) gels formed through a unique cross-linking scheme designed to minimize defects in the network. The highly resilient mechanical properties of these systems (discussed in a previous publication1), suggests that this cross-linking technique yields more homogeneous network structures. Four series of gels were formed based on chains of 35,000 g/mol, (35K), 12,000 g/mol (12K) g/mol, 8,000 g/mol (8K) and 4,000 g/mol (4K) PEG. Gels were synthesized at five initial polymer concentrations ranging from 0.077 g/mL to 0.50 g/mL. Small-angle neutron scattering (SANS) was utilized to investigate the network structures of gels in both D2O and d-DMF. SANS results show the resulting network structure is dependent on PEG length, transitioning from a more homogeneous network structure at high molecular weight PEG to a two phase structure at the lowest molecular weight PEG. Further investigation of the transport properties inherent to these systems, such as diffusion, will aid to further confirm the network structures. PMID:24652367

  18. Robust Identification of Polyethylene Terephthalate (PET) Plastics through Bayesian Decision

    PubMed Central

    Zulkifley, Mohd Asyraf; Mustafa, Mohd Marzuki; Hussain, Aini; Mustapha, Aouache; Ramli, Suzaimah

    2014-01-01

    Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed. PMID:25485630

  19. Alteration of electroosmotic volume flow through skin by polyethylene glycols.

    PubMed

    Lee, Seung Yeon; Oh, Seaung Youl

    2015-07-01

    We have studied the effect of polyethylene glycols (PEGs) on the iontophoretic flux of acetaminophen (AAP) using conventional in vitro iontophoresis methodology. A series of PEGs with average molecular weight (MW) ranging from about 100 to 1,500 was studied. The results were analyzed to explain how PEGs affect the electroosmosis and flux through skin. As a marker molecule for the direction and magnitude of electroosmotic volume flow (EVF), AAP was used. PEG decreased both anodal and cathodal AAP flux markedly. The magnitude of this decrease in flux increased as the MW and the concentration of PEG increased. From the Helmholtz-Smoluchowski equation, it was expected that the increase in viscosity and the decrease in dielectric constant are thought to be the main reason for the decrease in EVF and the flux. The large increase in solubility of AAP in PEG solution may also play an important role, because this increase lowers the partition of AAP into the stratum corneum. When 30 % diethylene glycol solution was used, the magnitude of EVF was estimated to be about 1.5 μl/cm(2) h, and it decreased as the MW of the PEG increased. These results and discussions clearly suggest that the incorporation of organic solubilizers and penetration enhancers into the iontophoretic formulation should be carefully decided after a thorough understanding of their effect on flux. Overall, these results provide further mechanistic insights into the role of electroosmosis in flux through skin, and how they can be modulated by PEG and their MW. PMID:25331332

  20. Complex Formation Between Lysozyme and Stabilized Micelles with a Mixed Poly(ethylene oxide)/Poly(acrylic acid) Shell.

    PubMed

    Karayianni, Maria; Gancheva, Valeria; Pispas, Stergios; Petrov, Petar

    2016-03-10

    The electrostatic complexation between lysozyme and stabilized polymeric micelles (SPMs) with a poly(acrylic acid) (PAA) or a mixed poly(ethylene oxide)/poly(acrylic acid) (PEO/PAA) shell (SPMs with a mixed shell, SPMMS) and a temperature-responsive poly(propylene oxide) (PPO) core was investigated by means of dynamic, static, and electrophoretic light scattering. The SPMs and different types of SPMMS used resulted from the self-assembly of PAA-PPO-PAA triblock copolymer chains, or PAA-PPO-PAA and PEO-PPO-PEO triblock copolymer chain mixtures (with varying chain lengths and molar ratios) in aqueous solutions at pH 10 and the subsequent cross-linking of their PPO cores via loading and photo-cross-linking of pentaerythritol tetraacrylate (PETA). The solution behavior, structure and properties of the formed complexes at pH 7 and 0.01 M ionic strength, were studied as a function of the protein concentration in the solution (the concentration of the stabilized micelles was kept constant) or equivalently the ratio of the two components. The complexation process and properties of the complexes proved to be dependent on the protein concentration, while of particular interest was the effect of the structure of the shell of the SPMs on the stability/solubility of the complexes. Finally, the fluorescence and mid infrared spectroscopic investigation of the structure of the complexed protein showed that, although a small stretching of the protein molecules occurred in some cases, no protein denaturation takes place upon complexation. PMID:26881445