Science.gov

Sample records for polyethylene glycol-modified proteins

  1. Characterization of Polyethylene Glycol Modified Hemoglobins

    NASA Astrophysics Data System (ADS)

    Salazar, Gil; Barr, James; Morgan, Wayne; Ma, Li

    2011-03-01

    Polyethylene glycol modified hemoglobins (PEGHbs) was characterized by liquid chromatography and fluorescence methods. We prepared four samples of two different molecular weight PEG, 5KDa and 20KDa, modified bovine and human hemoglobin. We studied the oxygen affinities, stabilities, and peroxidase activities of PEGHbs. We have related oxygen affinities with different degrees of modifications. The data showed that the modification on the beta subunits was less stable than that of the alpha subunits on the human Hb based samples especially. We also compared peroxidase activities among different modified PEGHbs.

  2. Cell separation by immunoaffinity partitioning with polyethylene glycol-modified Protein A in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1988-01-01

    Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.

  3. Structure of poly(ethylene glycol)-modified horseradish peroxidase in organic solvents: infrared amide I spectral changes upon protein dehydration are largely caused by protein structural changes and not by water removal per se.

    PubMed Central

    Al-Azzam, Wasfi; Pastrana, Emil A; Ferrer, Yancy; Huang, Qing; Schweitzer-Stenner, Reinhard; Griebenow, Kai

    2002-01-01

    Fourier transform infrared (FTIR) spectroscopy has emerged as a powerful tool to guide the development of stable lyophilized protein formulations by providing information on the structure of proteins in amorphous solids. The underlying assumption is that IR spectral changes in the amide I and III region upon protein dehydration are caused by protein structural changes. However, it has been claimed that amide I IR spectral changes could be the result of water removal per se. Here, we investigated whether such claims hold true. The structure of horseradish peroxidase (HRP) and poly(ethylene glycol)-modified HRP (HRP-PEG) has been investigated under various conditions (in aqueous solution, the amorphous dehydrated state, and dissolved/suspended in toluene and benzene) by UV-visible (UV-Vis), FTIR, and resonance Raman spectroscopy. The resonance Raman and UV-Vis spectra of dehydrated HRP-PEG dissolved in neat toluene or benzene were very similar to that of HRP in aqueous buffer, and thus the heme environment (heme iron spin, coordination, and redox state) was essentially the same under both conditions. Therefore, the three-dimensional structure of HRP-PEG dissolved in benzene and toluene was similar to that in aqueous solution. The amide I IR spectra of HRP-PEG in aqueous buffer and of dehydrated HRP-PEG dissolved in neat benzene and toluene were also very similar, and the secondary structure compositions (percentages of alpha-helices and beta-sheets) were within the standard error the same. These results are irreconcilable with recent claims that water removal per se could cause substantial amide I IR spectral changes (M. van de Weert, P.I. Haris, W.E. Hennink, and D.J. Crommelin. 2001. Anal. Biochem. 297:160-169). On the contrary, amide I IR spectral changes upon protein dehydration are caused by perturbations in the secondary structure. PMID:12496131

  4. Effect of supercritical carbon dioxide as an exfoliation aid on bio-based polyethylene terephthalate glycol-modified/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Kwangho; Lee, Jae Wook; Hong, In-Kwon; Lee, Sangmook

    2013-08-01

    Bio-based PETG (bio-based glycol modified polyethylene terephthalate, Ecozen T95) / clay (organo-modified montmorillonite, OMMT, C10A) nanocomposites were prepared by co-rotating twin screw extruder attached with supercritical carbon dioxide (scCO2) injection system. The effects of nano-clay and scCO2 on the properties of PETG/clay nanocomposites were investigated by measuring thermal, rheological, tensile, impact, and barrier properties. The thermal and mechanical properties decreased with increasing nano-clay content, but they recovered or even exceeded the properties of neat PETG as scCO2 was added. It was verified due to a good dispersion of the nano-clay in PETG matrix for PETG/clay nanocomposites by XRD, SEM, and TEM. It was thought that scCO2 could be an effective exfoliation agent for many nanocomposites systems as well as for bio-based PET/clay nanocomposites.

  5. Adsorption of poly(ethylene glycol)-modified lysozyme to silica.

    PubMed

    Daly, Susan M; Przybycien, Todd M; Tilton, Robert D

    2005-02-15

    Covalent grafting of poly(ethylene glycol) (PEG) to pharmaceutical proteins, "PEGylation", is becoming more commonplace due to improved therapeutic efficacy. As these conjugates encounter interfaces in manufacture, purification, and end use and adsorption to these interfaces may alter achievable production yields and in vivo efficacies, it is important to understand how PEGylation affects protein adsorption mechanisms. To this end, we have studied the adsorption of unmodified and PEGylated chicken egg lysozyme to silica, using optical reflectometry, total internal reflection fluorescence (TIRF) spectroscopy, and atomic force microscopy (AFM) under varying conditions of ionic strength and extent of PEG modification. PEGylation of lysozyme changes the shape of the adsorption isotherm and alters the preferred orientation of lysozyme on the surface. There is an abrupt transition in the isotherm from low to high surface excess concentrations that correlates with a change in orientation of mono-PEGylated conjugates lying with the long axis parallel to the silica surface to an orientation with the long axis oriented perpendicular to the surface. No sharp transition is observed in the adsorption isotherm for di-PEGylated lysozyme within the range of concentrations examined. The net effect of PEGylation is to decrease the number of protein molecules per unit area relative to the adsorption of unmodified lysozyme, even under conditions where the surface is densely packed with conjugates. This is due to the area sterically excluded by the PEG grafts. The other major effect of PEGylation is to make conjugate adsorption significantly less irreversible than unmodified lysozyme adsorption. PMID:15697278

  6. The physiological and histopathological response of dogs to exchange transfusion with polyethylene glycol-modified bovine hemoglobin (PEG-Hb).

    PubMed

    Shum, K L; León, A; Viau, A T; Pilon, D; Nucci, M; Shorr, R G

    1996-11-01

    The performance of polyethylene glycol-modified bovine hemoglobin (PEG-Hb) was evaluated in dogs following the replacement of 30% or 50% of their blood volume with PEG-Hb or lactated Ringer's solution (LRS). Dogs fully instrumented with catheters and blood pressure probes were transfused by simultaneous bleeding from the jugular vein and infusion of PEG-Hb or LRS via the cephalic vein. Animals were monitored for abnormal behavior and clinical signs for fourteen days. No mortalities, overt toxicity, changes in body weight, food consumption or ophthalmology, or discernable trends in hematology, blood chemistry coagulation, urinalysis or hemodynamic parameters that could be attributed to PEG-Hb were noted. Blood gas analyses were steady and within physiological ranges. Dose-related histopathological findings of vacuolated histiocytes in the femoral bone marrow, splenic parenchyma, the medulla of the mesenteric and mandibular lymph nodes, and vacuolated sinusoidal cells in the liver and the renal tubular epithelial cells were believed to be related to the phagocytosis and degradation of PEG-Hb by the reticulo-endothelial system. The maintenance of high oxygen levels in the circulation for the two-week treatment period, as well as the insignificant physiological and histopathological findings indicate that PEG-Hb could be a successful blood substitute. PMID:8922234

  7. An ultrahigh dielectric constant composite based on polyvinylidene fluoride and polyethylene glycol modified ferroferric oxide

    NASA Astrophysics Data System (ADS)

    Zhu, Jiujun; Li, Weiping; Huo, Xiaoyun; Li, Lili; Li, Ya; Luo, Laihui; Zhu, Yuejin

    2015-09-01

    To improve the compatibility between a filler and polymer matrix, a polyethylene glycol (PEG) surface modifier was used for modification in the polyvinylidene fluoride (PVDF) and ferroferric oxide (Fe3O4) composites. It is found that the PEG-modified Fe3O4 and PVDF composites have a much higher dielectric constant and better suppressed dielectric loss than the other similar percolative systems. The maximum of the dielectric constant can be up to 63 000 while the dielectric loss is controlled below 4.5. Finally, the microscopic reasons for this improvement are presented. It is helpful to understand the influence of surface modification agents on the interfaces between the filler and matrix.

  8. Polyethylene Glycol Modified, Cross-Linked Starch Coated Iron Oxide Nanoparticles for Enhanced Magnetic Tumor Targeting

    PubMed Central

    Cole, Adam J.; David, Allan E.; Wang, Jianxin; Galbn, Craig J.; Hill, Hannah L.; Yang, Victor C.

    2010-01-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140190 nm) and relative PEG labeling (1.5% of surface amines A5/D5, 0.4% A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 hr) and D20 (11.75 hr) showing much longer half-lives than D (0.12 hr). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC0-? Sustained tumor exposure over 24 hours was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that both D5 and D20 are promising MNP platforms for enhanced magnetic tumor targeting, warranting further study in tumor models. PMID:21176955

  9. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: tunable selectivity for alkali and alkaline-earth metal ions.

    PubMed

    Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao

    2016-02-01

    The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively. PMID:26730814

  10. Polyethylene glycol modified magnetic carbon nanotubes as nanosorbents for the determination of methylprednisolone in rat plasma by high performance liquid chromatography.

    PubMed

    Yu, Panfeng; Ma, Hongwei; Shang, Yong; Wu, Ji; Shen, Shun

    2014-06-27

    In this paper, polyethylene glycol modified (PEGylated) magnetic carbon nanotubes were developed as solid-phase extraction nanosorbents for the determination of methylprednisolone in rat plasma. The procedure mainly involved two steps including preparation of PEGylated magnetic nanosorbents and bioanalysis. Monodisperse magnetites (Fe3O4) anchored onto multi-walled carbon nanotubes (MWCNTs) were synthesized by a facile solvothermal synthesis method. The obtained MWCNTs-Fe3O4 nanomaterials were further non-covalently functionalized by a surfactant phospholipids-polyethylene glycol (DSPE-PEG). Owing to dispersibility and high enrichment ability, water-soluble PEGylated MWCNTs-Fe3O4 nanomaterials can provide more efficient way for the extraction of methylprednisolone than only MWCNTs-Fe3O4 used. The methylprednisolone could be easily extracted via π-π stacking interactions with PEGylated MWCNTs-Fe3O4. The captured methylprednisolone/nanosorbents were isolated from the matrix by placing a magnet, and desorbed by the elution solvent composed of acetonitrile. Extraction conditions such as amount of nanosorbents added, adsorption time, desorption solvent, and desorption time were investigated and optimized. The method recoveries were obtained from 88.2% to 92.9%. Limits of quantification and limits of detection of 0.01 and 0.005μg/mL were acquired, respectively. The precision ranged from 4.2% to 7.8% for within-day measurement, and for between-day variation was in the range of 5.5-9.0%. Moreover, the analytical performance obtained by PEGylated magnetic MWCNTs was compared with that of magnetic MWCNTs. The results indicated that the approach based on PEGylated magnetic MWCNTs was useful for the analysis of methylprednisolone in the complex plasma. PMID:24837418

  11. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin.

    PubMed

    Huh, Kang Moo; Cho, Yong Woo; Chung, Hesson; Kwon, Ick Chan; Jeong, Seo Young; Ooya, Tooru; Lee, Won Kyu; Sasaki, Shintaro; Yui, Nobuhiko

    2004-02-20

    Supramolecular hydrogels have been prepared on the basis of polymer inclusion complex (PIC) formation between poly(ethylene glycol) (PEG)-modified chitosans and alpha-cyclodextrin (alpha-CD). A series of PEG-modified chitosans were synthesized by coupling reactions between chitosan and monocarboxylated PEG using water-soluble carbodiimide (EDC) as coupling agent. With simple mixing, the resultant supramolecular assembly of the polymers and alpha-CD molecules led to hydrogel formation in aqueous media. The supramolecular structure of the PIC hydrogels was confirmed by differential scanning calorimetry (DSC), X-ray diffraction, and (13)C cross-polarized/magic-angle spinning (CP/MAS) NMR characterization. The PEG side-chains on the chitosan backbones were found to form inclusion complexes (ICs) with alpha-CD molecules, resulting in the formation of channel-type crystalline micro-domains. The IC domains play an important role in holding together hydrated chitosan chains as physical junctions. The gelation property was affected by several factors including the PEG content in the polymers, the solution concentration, the mixing ratio of host and guest molecules, temperature, pH, etc. All the hydrogels in acidic conditions exhibited thermo-reversible gel-sol transitions under appropriate conditions of mixing ratio and PEG content in the mixing process. The transitions were induced by supramolecular association and dissociation. These supramolecular hydrogels were found to have phase-separated structures that consist of hydrophobic crystalline PIC domains, which were formed by the host-guest interaction between alpha-CD and PEG, and hydrated chitosan matrices below the pK(a).The formation of inclusion complexes between alpha-cyclodextrin and PEG-modified chitosan leads to the formation of hydrogels that can undergo thermo-reversible supramolecular dissociation. PMID:15468199

  12. Poly(ethylene glycol) and hydroxy functionalized alkane phosphate mixed self-assembled monolayers to control nonspecific adsorption of proteins on titanium oxide surfaces.

    PubMed

    Bozzini, Sabrina; Petrini, Paola; Tanzi, Maria Cristina; Zrcher, Stefan; Tosatti, Samuele

    2010-05-01

    The spontaneous formation of alkane phosphate self-assembled monolayers (SAMs) on titanium oxide was chosen as a tool to tailor the surface physicochemical properties in terms of nonspecific adsorption of proteins. For this aim, poly(ethylene glycol)-modified (PEG) alkane phosphate was codeposited with OH-terminated alkane phosphates. X-ray photoelectron spectroscopy and ellipsometry of the resulting mixed SAMs indicate that the PEG density can be controlled by varying the mole fraction of PEG-terminated phosphates in the solutions used during the deposition process, leading to surfaces with different degrees of protein resistance. PMID:20035571

  13. Effects of polyethylene glycol on protein interactions

    NASA Astrophysics Data System (ADS)

    Kulkarni, Amit M.; Chatterjee, Avik P.; Schweizer, Kenneth S.; Zukoski, Charles F.

    2000-12-01

    The interactions between globular proteins in the presence of poly (ethylene glycol) (PEG) are probed through the measurement of the protein solution second virial coefficient (B2). The solution properties of PEG are characterized for four molecular weights (400, 1000, 6000, and 12 000), providing an opportunity for quantitative comparison of measurements and theoretical predictions of B2. PEG displays a buffer and molecular weight-dependent lower critical solution temperature. As the polymer solution approaches phase separation, the consequences of depletion attractions increase significantly. For lysozyme and bovine serum albumin in sulfate buffers with PEG, B2 is not well described by standard depletion models. This failure is accentuated in acetate buffers where B2 is a nonmonotonic function of polymer concentration. The attractive minima in B2 are closely associated with the proximity of the heating-induced phase separation of aqueous PEG solutions. The experimental data for both proteins in the presence of PEG are well captured by the thermal polymer reference interaction site model for depletion interactions where the polymer density fluctuation correlation length is treated as a function of temperature, polymer concentration, and molecular weight.

  14. Extrusion foaming of protein-based thermoplastic and polyethylene blends

    NASA Astrophysics Data System (ADS)

    Gavin, Chanelle; Lay, Mark C.; Verbeek, Casparus J. R.

    2016-03-01

    Currently the extrusion foamability of Novatein® Thermoplastic Protein (NTP) is being investigated at the University of Waikato in collaboration with the Biopolymer Network Ltd (NZ). NTP has been developed from bloodmeal (>86 wt% protein), a co-product of the meat industry, by adding denaturants and plasticisers (tri-ethylene glycol and water) allowing it to be extruded and injection moulded. NTP alone does not readily foam when sodium bicarbonate is used as a chemical blowing agent as its extensional viscosity is too high. The thermoplastic properties of NTP were modified by blending it with different weight fractions of linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH) compatibiliser. Extrusion foaming was conducted in two ways, firstly using the existing water content in the material as the blowing agent and secondly by adding sodium bicarbonate. When processed in a twin screw extruder (L/D 25 and 10 mm die) the material readily expanded due to the internal moisture content alone, with a conditioned expansion ratio of up to ± 0.13. Cell structure was non-uniform exhibiting a broad range cell sizes at various stages of formation with some coalescence. The cell size reduced through the addition of sodium bicarbonate, overall more cells were observed and the structure was more uniform, however ruptured cells were also visible on the extrudate skin. Increasing die temperature and introducing water cooling reduced cell size, but the increased die temperature resulted in surface degradation.

  15. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks.

    PubMed

    Engberg, Kristin; Frank, Curtis W

    2011-10-01

    In this study, protein diffusion through swollen hydrogel networks prepared from end-linked poly(ethylene glycol)-diacrylate (PEG-DA) was investigated. Hydrogels were prepared via photopolymerization from PEG-DA macromonomer solutions of two molecular weights, 4600 Da and 8000 Da, with three initial solid contents: 20, 33 and 50 wt/wt% PEG. Diffusion coefficients for myoglobin traveling across the hydrogel membrane were determined for all PEG network compositions. The diffusion coefficient depended on PEG molecular weight and initial solid content, with the slowest diffusion occurring through lower molecular weight, high-solid-content networks (D(gel) = 0.16 0.02 10(-8) cm(2) s(-1)) and the fastest diffusion occurring through higher molecular weight, low-solid-content networks (D(gel) = 11.05 0.43 10(-8) cm(2) s(-1)). Myoglobin diffusion coefficients increased linearly with the increase of water content within the hydrogels. The permeability of three larger model proteins (horseradish peroxidase, bovine serum albumin and immunoglobulin G) through PEG(8000) hydrogel membranes was also examined, with the observation that globular molecules as large as 10.7 nm in hydrodynamic diameter can diffuse through the PEG network. Protein diffusion coefficients within the PEG hydrogels ranged from one to two orders of magnitude lower than the diffusion coefficients in free water. Network defects were determined to be a significant contributing factor to the observed protein diffusion. PMID:21873762

  16. Protein adsorption on various plasma-treated polyethylene terephthalate substrates.

    PubMed

    Recek, Nina; Jaganjac, Morana; Kolar, Metod; Milkovic, Lidija; Mozeti?, Miran; Stana-Kleinschek, Karin; Vesel, Alenka

    2013-01-01

    Protein adhesion and cell response to plasma-treated polymer surfaces were studied. The polymer polyethylene terephthalate (PET) was treated in either an oxygen plasma to make the surface hydrophilic, or a tetrafluoromethane CF(4) plasma to make the surface hydrophobic. The plasma source was radiofrequency (RF) discharge. The adsorption of albumin and other proteins from a cell-culture medium onto these surfaces was studied using a quartz crystal microbalance (QCM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The cellular response to plasma-treated surfaces was studied as well using an MTT assay and scanning electron microscopy (SEM). The fastest adsorption rate was found on the hydrophilic oxygen plasma-treated sample, and the lowest was found on the pristine untreated sample. Additionally, the amount of adsorbed proteins was higher for the oxygen-plasma-treated surface, and the adsorbed layer was more viscoelastic. In addition, cell adhesion studies support this finding because the best cell adhesion was observed on oxygen-plasma-treated substrates. PMID:24152668

  17. Influence of Surface Charge and Polymer Coating on Internalization and Biodistribution of Polyethylene Glycol-Modified Iron Oxide Nanoparticles.

    PubMed

    Maurizi, Lionel; Papa, Anne-Laure; Dumont, Laure; Bouyer, Frdric; Walker, Paul; Vandroux, David; Millot, Nadine

    2015-01-01

    The aim of this study was to investigate the influence of the surface charge and coating of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on their in vitro and in vivo behaviors. Neutral and negatively-charged PEG-based SPIONs were synthesized and compared to Resovist, a carboxydextran-based SPION currently used in clinics. Their cytotoxicity, cell internalization, and potential as contrast agents for magnetic resonance imaging were assessed. Neutral pegylated SPIONs were internalized less readily by the reticuloendothelial system and showed a lower uptake by the liver, compared to negatively-charged SPIONs (with carboxydextran and PEG). These results suggested that the charge of functionalized SPIONs was more relevant for their biological interactions than the nature of their coating. PMID:26301306

  18. Sustained release of protein from poly(ethylene glycol) incorporated amphiphilic comb like polymers.

    PubMed

    Srividhya, M; Preethi, S; Gnanamani, A; Reddy, B S R

    2006-12-01

    Amphiphilic comb like macromonomer containing hydrophilic poly(ethylene glycol) groups covalently linked to poly(hydromethyl siloxane) (PHMS) were prepared by hydrosilylation reaction. The epoxy reacting sites were introduced to this amphiphilic system by the reaction with allyl epoxy propyl ether (AEPE). Bovine serum albumin (BSA), a model protein drug was loaded to the PEG-PDMS system and very thin membranes were made from this macromonomer adopting solution casting technique. The in vitro protein release studies at various pH conditions showed a controlled release profile without exhibiting any initial burst. The control of the initial burst might be due to the strong linkages of the protein with the membrane and the aggregation of the protein at the surface. The morphology of the membrane before and after the protein release, and the mechanical strength were evaluated. The surface properties of the membrane were studied using the contact angle measurements. PMID:16930885

  19. Infrared investigation on the conformation of proteins deposited on polyethylene films

    NASA Astrophysics Data System (ADS)

    Sarver, Ronald W., Jr.; Krueger, William C.

    1994-01-01

    Aqueous protein solutions deposited and dried on thin polyethylene sheets were analyzed by Fourier transform infrared spectroscopy. This convenient technique provided reasonable determinations of secondary structure with 200 to 80 (mu) g of protein deposited. To determine secondary structure, principal component regression (PCR) was applied to the infrared spectra of 12 different proteins deposited as thin films. Regression with 5 principal components provided the fraction of helix and (beta) -sheet structure present in the hydrated proteins with standard deviations of 6.3% and 7.3%, respectively, compared to a reference data set of structures determined by x-ray crystallography. Prediction errors were similar to those obtained by other infrared methods. Analysis of various types of turn structure grouped together was unsuccessful.

  20. Selective adsorption of protein on micropatterned flexible poly(ethylene terephthalate) surfaces modified by vacuum ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Li, Shaoying; Wu, Zhongkui; Tang, Hongxiao; Yang, Jun

    2012-03-01

    Protein micropattern was fabricated on the flexible poly(ethylene terephthalate) (PET) surfaces modified by vacuum ultraviolet lithography (VUV). Chemical composition and topographies changes of the modified PET surfaces were characterized and analyzed by X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and static water contact angle. As demonstrated in fluorescence microscope, the protein patterns were surrounded by a protein-repellant layer of poly(ethylene glycol) (PEG) that were faithful reproductions of the copper mesh. These results suggested that this technique can be extended to other polymeric materials and will be useful in fields where arrays of protein patterns are desired.

  1. Mode of lysozyme protein adsorption at end-tethered polyethylene oxide brushes on gold surfaces determined by neutron reflectivity.

    PubMed

    Taylor, Warren; Ebbens, Stephen; Skoda, Maximillian W A; Webster, John R P; Jones, Richard A L

    2015-03-01

    The mode of lysozyme protein adsorption at end-tethered thiol-terminated polyethylene oxide brushes grafted upon gold was determined in situ by neutron reflectivity using the INTER instrument at target station 2, ISIS, RAL, UK. It was found that the most probable position of protein adsorption at these weakly protein resistive brushes was at the gold-brush interface in the so-called primary protein position. PMID:25743024

  2. Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures.

    PubMed

    Odahara, Takayuki; Odahara, Koji

    2016-04-01

    Mixtures of neutral salts and polyethylene glycol are used for various purposes in biological studies. Although the effects of each component of the mixtures are theoretically well investigated, comprehension of their integrated effects remains insufficient. In this work, their roles and effects as a precipitant were clarified by studying dependence of precipitation curves on salt concentration for integral membrane protein/detergent particles of different physicochemical properties. The dependence of precipitation curves was reasonably related to intermolecular interactions among relevant molecules such as protein, detergent and polyethylene glycol by considering their physicochemical properties. The obtained relationships are useful as basic information to learn the early stage of biological macromolecular associations. PMID:26705098

  3. Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release.

    PubMed

    Lee, Soah; Tong, Xinming; Yang, Fan

    2016-02-23

    Poly(ethylene glycol) (PEG) hydrogels are widely used to deliver therapeutic biomolecules, due to high hydrophilicity, tunable physicochemical properties, and anti-fouling properties. Although different hydrogel crosslinking mechanisms are known to result in distinct network structures, it is still unknown how these various mechanisms influence biomolecule release. Here we compared the effects of chain-growth and step-growth polymerization for hydrogel crosslinking on the efficiency of protein release and diffusivity. For chain-growth-polymerized PEG hydrogels, while decreasing PEG concentration increased both the protein release efficiency and diffusivity, it was unexpected to find out that increasing PEG molecular weight did not significantly change either parameter. In contrast, for step-growth-polymerized PEG hydrogels, both decreasing PEG concentration and increasing PEG molecular weight resulted in an increase in the protein release efficiency and diffusivity. For step-growth-polymerized hydrogels, the protein release efficiency and diffusivity were further decreased by increasing crosslink functionality (4-arm to 8-arm) of the chosen monomer. Altogether, our results demonstrate that the crosslinking mechanism has a differential effect on controlling protein release, and this study provides valuable information for the rational design of hydrogels for sophisticated drug delivery. PMID:26539660

  4. Controlling microencapsulation and release of micronized proteins using poly(ethylene glycol) and electrospraying.

    PubMed

    Bock, Nathalie; Dargaville, Tim R; Woodruff, Maria A

    2014-07-01

    The fabrication of tailored microparticles for delivery of therapeutics is a challenge relying upon a complex interplay between processing parameters and materials properties. The emerging use of electrospraying allows better tailoring of particle morphologies and sizes than current techniques, critical to reproducible release profiles. While dry encapsulation of proteins is essential for the release of active therapeutics from microparticles, it is currently uncharacterized in electrospraying. To this end, poly(ethylene glycol) (PEG) was assessed as a micronizing and solubilizing agent for dry protein encapsulation and release from electrosprayed particles made from polycaprolactone (PCL). The physical effect of PEG in protein-loaded poly(lactic-co-glycolic acid) (PLGA) particles was also studied, for comparison. The addition of 5-15 wt% PEG 6 kDa or 35 kDa resulted in reduced PCL particle sizes and broadened distributions, which could be improved by tailoring the electrospraying processing parameters, namely by reducing polymer concentration and increasing flow rate. Upon micronization, protein particle size was reduced to the micrometer domain, resulting in homogenous encapsulation in electrosprayed PCL microparticles. Microparticle size distributions were shown to be the most determinant factor for protein release by diffusion and allowed specific control of release patterns. PMID:24657821

  5. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake.

    PubMed

    Pelaz, Beatriz; del Pino, Pablo; Maffre, Pauline; Hartmann, Raimo; Gallego, Marta; Rivera-Fernández, Sara; de la Fuente, Jesus M; Nienhaus, G Ulrich; Parak, Wolfgang J

    2015-07-28

    Here we have investigated the effect of enshrouding polymer-coated nanoparticles (NPs) with polyethylene glycol (PEG) on the adsorption of proteins and uptake by cultured cells. PEG was covalently linked to the polymer surface to the maximal grafting density achievable under our experimental conditions. Changes in the effective hydrodynamic radius of the NPs upon adsorption of human serum albumin (HSA) and fibrinogen (FIB) were measured in situ using fluorescence correlation spectroscopy. For NPs without a PEG shell, a thickness increase of around 3 nm, corresponding to HSA monolayer adsorption, was measured at high HSA concentration. Only 50% of this value was found for NPs with PEGylated surfaces. While the size increase clearly reveals formation of a protein corona also for PEGylated NPs, fluorescence lifetime measurements and quenching experiments suggest that the adsorbed HSA molecules are buried within the PEG shell. For FIB adsorption onto PEGylated NPs, even less change in NP diameter was observed. In vitro uptake of the NPs by 3T3 fibroblasts was reduced to around 10% upon PEGylation with PEG chains of 10 kDa. Thus, even though the PEG coatings did not completely prevent protein adsorption, the PEGylated NPs still displayed a pronounced reduction of cellular uptake with respect to bare NPs, which is to be expected if the adsorbed proteins are not exposed on the NP surface. PMID:26079146

  6. The Formation of Protein Concentration Gradients Mediated by Density Differences of Poly(ethylene glycol) Microspheres

    PubMed Central

    Roam, Jacob L.; Xu, Hao; Nguyen, Peter K.; Elbert, Donald L.

    2010-01-01

    A critical element in the formation of scaffolds for tissue engineering is the introduction of concentration gradients of bioactive molecules. We explored the use of poly(ethylene glycol) (PEG) microspheres fabricated via a thermally induced phase separation to facilitate the creation of gradients in scaffolds. PEG microspheres were produced with different densities (buoyancies) and centrifuged to develop microsphere gradients. We previously found that the time to gelation following phase separation controlled the size of microspheres in the de-swollen state, while crosslink density affected swelling following buffer exchange into PBS. The principle factors used here to control microsphere densities were the temperature at which the PEG solutions were reacted following phase separation in aqueous sodium sulfate solutions and the length of the incubation period above the ‘cloud point’. Using different temperatures and incubation times, microspheres were formed that self-assembled into gradients upon centrifugation. The gradients were produced with sharp interfaces or gradual transitions, with up to five tiers of different microsphere types. For proof-of-concept, concentration gradients of covalently immobilized proteins were also assembled. PEG microspheres containing heparin were also fabricated. PEG-heparin microspheres were incubated with fluorescently labeled protamine and used to form gradient scaffolds. The ability to form gradients in microspheres may prove to be useful to achieve better control over the kinetics of protein release from scaffolds or to generate gradients of immobilized growth factors. PMID:20719381

  7. Protein and cell patterning in closed polymer channels by photoimmobilizing proteins on photografted poly(ethylene glycol) diacrylate

    PubMed Central

    Larsen, Esben Kjr Unmack; Larsen, Niels B.

    2014-01-01

    Definable surface chemistry is essential for many applications of microfluidic polymer systems. However, small cross-section channels with a high surface to volume ratio enhance passive adsorption of molecules that depletes active molecules in solution and contaminates the channel surface. Here, we present a one-step photochemical process to coat the inner surfaces of closed microfluidic channels with a nanometer thick layer of poly(ethylene glycol) (PEG), well known to strongly reduce non-specific adsorption, using only commercially available reagents in an aqueous environment. The coating consists of PEG diacrylate (PEGDA) covalently grafted to polymer surfaces via UV light activation of the water soluble photoinitiator benzoyl benzylamine, a benzophenone derivative. The PEGDA coating was shown to efficiently limit the adsorption of antibodies and other proteins to <5% of the adsorbed amount on uncoated polymer surfaces. The coating could also efficiently suppress the adhesion of mammalian cells as demonstrated using the HT-29 cancer cell line. In a subsequent equivalent process step, protein in aqueous solution could be anchored onto the PEGDA coating in spatially defined patterns with a resolution of <15??m using an inverted microscope as a projection lithography system. Surface patterns of the cell binding protein fibronectin were photochemically defined inside a closed microfluidic device that was initially homogeneously coated by PEGDA. The resulting fibronectin patterns were shown to greatly improve cell adhesion compared to unexposed areas. This method opens for easy surface modification of closed microfluidic systems through combining a low protein binding PEG-based coating with spatially defined protein patterns of interest. PMID:25587375

  8. Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to.

    PubMed

    Emilsson, Gustav; Schoch, Rafael L; Feuz, Laurent; Höök, Fredrik; Lim, Roderick Y H; Dahlin, Andreas B

    2015-04-15

    We present a new grafting-to method for resistant "non-fouling" poly(ethylene glycol) brushes, which is based on grafting of polymers with reactive end groups in 0.9 M Na2SO4 at room temperature. The grafting process, the resulting brushes, and the resistance toward biomolecular adsorption are investigated by surface plasmon resonance, quartz crystal microbalance, and atomic force microscopy. We determine both grafting density and thickness independently and use narrow molecular weight distributions which result in well-defined brushes. High density (e.g., 0.4 coils per nm(2) for 10 kDa) and thick (40 nm for 20 kDa) brushes are readily achieved that suppress adsorption from complete serum (10× dilution, exposure for 50 min) by up to 99% on gold (down to 4 ng/cm(2) protein coverage). The brushes outperform oligo(ethylene glycol) monolayers prepared on the same surfaces and analyzed in the same manner. The brush heights are in agreement with calculations based on a simple model similar to the de Gennes "strongly stretched" brush, where the height is proportional to molecular weight. This result has so far generally been considered to be possible only for brushes prepared by grafting-from. Our results are consistent with the theory that the brushes act as kinetic barriers rather than efficient prevention of adsorption at equilibrium. We suggest that the free energy barrier for passing the brush depends on both monomer concentration and thickness. The extraordinary simplicity of the method and good inert properties of the brushes should make our results widely applicable in biointerface science. PMID:25812004

  9. Wear properties of polyethylene-metal and polyethylene-ceramic bearings for hip joint replacements: The effect of temperature and protein precipitation in hip simulator tests

    NASA Astrophysics Data System (ADS)

    Liao, Yen-Shuo

    Ultra-high-molecular weight polyethylene (PE) cups bearing against metal or ceramic balls are the most commonly used combinations of materials for human hip joint replacements. The wear properties of these materials are typically evaluated in the laboratory using hip joint wear simulators, while lubricated with bovine serum. A previous test evaluating the PE cups against cobalt-chrome (CoCr), zirconia (Zr) and alumina balls demonstrated the sensitivity of serum proteins to elevated temperature; especially for Zr/PE, which showed the highest protein precipitation and bulk lubricant temperature but the lowest cup wear. In the present investigation, a temperature control system was used on a hip simulator to systematically evaluate the relationship between temperature and denaturation of the serum proteins which, in turn, affects the friction and wear properties of the prosthetic materials being tested. In order to control protein precipitation, the interface was temperature reduced by circulating coolant at 4C through the center of the CoCr or Zr balls during a wear test. With cooling, protein assay of the serum showed 66% and 50% reductions in protein precipitation with the CoCr and Zr balls, respectively. The wear rate of the PE cups against the CoCr balls decreased by an average of 44%, whereas two of the three PE cups running against Zr balls exhibited slight increases in their wear rates, and the third showed a two fold increase. Under scanning electron microscopy, there were marked differences in the worn surfaces of the cups for the various conditions, and differences in the morphology of the PE wear debris recovered from the serum. For example, granular particles predominated without cooling, whereas fibrous particles predominated with cooling. Since particles generated in vivo (i.e., retrieved from periprosthetic tissues) typically show approximately equal proportions of granules and fibrils, the use of an intermediate coolant temperature might provide wear in the simulator closer to that occurring with these materials in vivo. These results demonstrated the complex interaction of the variables affecting wear in the hip simulator system that should be taken into account, for example, in the development of international standard procedures.

  10. Polyvinylpyrrolidone-Poly(ethylene glycol) Modified Silver Nanorods Can Be a Safe, Noncarrier Adjuvant for HIV Vaccine.

    PubMed

    Liu, Ye; Balachandran, Yekkuni L; Li, Dan; Shao, Yiming; Jiang, Xingyu

    2016-03-22

    One of the biggest obstacles for the development of HIV vaccines is how to sufficiently trigger crucial anti-HIV immunities via a safe manner. We herein integrated surface modification-dependent immunostimulation against HIV vaccine and shape-dependent biosafety and designed a safe noncarrier adjuvant based on silver nanorods coated by both polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG). Such silver nanorods can significantly elevate crucial immunities of HIV vaccine and overcome the toxicity, which is a big problem for other existing adjuvants. This study thus provided a principle for designing a safe and high-efficacy material for an adjuvant and allow researchers to really have a safe and effective prophylaxis against HIV. We expect this material approach to be applicable to other types of vaccines, whether they are preventative or therapeutic. PMID:26844372

  11. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels

    PubMed Central

    Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

    2008-01-01

    Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with <≈100 nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

  12. Influence of blood proteins in the in vitro adhesion of Staphylococcus epidermidis to teflon, polycarbonate, polyethylene and bovine pericardium.

    PubMed

    Carballo, J; Ferreirs, C M; Criado, M T

    1991-12-01

    The influence of human plasma proteins (fibrinogen, albumin and fibronectin) on the adherence of Staphylococcus epidermis to teflon, polyethylene, polycarbonate and bovine pericardium was studied in an in vitro quantitative assay by scintillation counting. Bacterial adhesion was generally reduced by the presence of protein during the adherence assay except in the case of bovine pericardium, in which adherence remained almost unaffected. The effect of these plasma proteins on bacterial surface properties resulted in strong increases of surface charge as measured by ion-exchange chromatography and with no effect on hydrophobicity, estimated as contact angles. Adherence was not found to be correlated with these two properties, suggesting that bacteria-surface interactions must not be simplified to the influence of interfacial forces. PMID:1812542

  13. Capture of Magnetic Nanoparticles in Simulated Blood Vessels: Effects of Proteins and Coating with Poly(ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Robertson, Jaimee; Brazel, Christopher

    2012-11-01

    Magnetic nanoparticles (MNPs) have applications in cancer treatment as they can be captured and localized to a diseased site by use of an external magnetic field. After localization, cancer treatments such as magnetically targeted chemotherapy and localized hyperthermia can be applied. Previously, our lab has shown that the percent capture of MNPs is significantly reduced when MNPs are dispersed in protein solutions compared to water or aqueous polymer solutions. The purpose of this study was to determine the effects of proteins on capture efficiency and to investigate the ability of poly(ethylene glycol), PEG, coatings to reduce aggregation of MNPs with proteins, allowing for a greater capture of MNPs in flow. Using Tygon® tubing to simulate blood vessels, a maghemite nanoparticle solution was pumped through a capture zone, where a magnetic field was applied. After passing through the capture zone, the fluid flowed to a spectrophotometer, which measured the absorbance of the solution. The introduction of proteins into the nanoparticle solution reduced the percent capture of MNPs. However, coating the MNPs with PEG aided in preventing aggregation and led to higher capture efficiencies in protein solutions. Additionally, the effects of capture length and protein exposure time were examined. It was found that a higher percent capture is attainable with a longer capture length. Furthermore, on a scale of hours, the percent capture is not affected by the protein exposure time. Funded by NSF REU Grant 1062611 and NIH NCI R21CA 141388.

  14. Capillary isoelectric focusing and fluorometric detection of proteins and microorganisms dynamically modified by poly(ethylene glycol) pyrenebutanoate.

    PubMed

    Horka, Marie; Ruzicka, Filip; Horký, Jaroslav; Holá, Veronika; Slais, Karel

    2006-12-15

    The nonionogenic pyrene-based tenside, poly(ethylene glycol) pyrenebutanoate, was prepared and applied in capillary isoelectric focusing with fluorometric detection. This dye was used here as a buffer additive in capillary isoelectric focusing for a dynamic modification of the sample of proteins and microorganisms. The values of the isoelectric points of the labeled bioanalytes were calculated with use of the fluorescent pI markers and were found comparable with pI of the native compounds. The mixed cultures of proteins and microorganisms, Escherichia coli CCM 3954, Staphylococcus epidermidis CCM 4418, Proteus vulgaris, Enterococcus faecalis CCM 4224, and Stenotrophomonas maltophilia, the strains of the yeast cells, Candida albicans CCM 8180, Candida krusei, Candida parapsilosis, Candida glabrata, Candida tropicalis, and Saccharomyces cerevisiae were reproducibly focused and separated by the suggested technique. Using UV excitation for the on-column fluorometric detection, the minimum detectable amount was down to 10 cells injected on the separation capillary. PMID:17165837

  15. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)-poly(lactide) hydrogels.

    PubMed

    Hiemstra, Christine; Zhong, Zhiyuan; Van Tomme, Sophie R; van Steenbergen, Mies J; Jacobs, John J L; Otter, Willem Den; Hennink, Wim E; Feijen, Jan

    2007-06-22

    Previous studies have shown that stereocomplexed hydrogels are rapidly formed in situ by mixing aqueous solutions of eight-arm poly(ethylene glycol)-poly(L-lactide) and poly(ethylene glycol)-poly(D-lactide) star block copolymers (denoted as PEG-(PLLA)(8) and PEG-(PDLA)(8), respectively). In this study, in vitro and in vivo protein release from stereocomplexed hydrogels was investigated. These hydrogels were fully degradable under physiological conditions. Proteins could be easily loaded into the stereocomplexed hydrogels by mixing protein containing aqueous solutions of PEG-(PLLA)(8) and PEG-(PDLA)(8) copolymers. The release of the relatively small protein lysozyme (d(h)=4.1 nm) followed first order kinetics and approximately 90% was released in 10 days. Bacteria lysis experiments showed that the released lysozyme had retained its activity. The relatively large protein IgG (d(h)=10.7 nm) could be released from stereocomplexed hydrogels with nearly zero order kinetics, wherein up to 50% was released in 16 days. The in vitro release of the therapeutic protein rhIL-2 from stereocomplexed hydrogels also showed nearly zero order kinetics, wherein up to 45% was released in 7 days. The therapeutic efficacy of stereocomplexed hydrogels loaded with 1x10(6) IU of rhIL-2 was studied using SL2-lymphoma bearing DBA/2 mice. The PEG-(PLLA)(8)/PEG-(PDLA)(8)/rhIL-2 mixture could be easily injected intratumorally. The released rhIL-2 was therapeutically effective as the tumor size was reduced and the cure rate was 30%, whereas no therapeutic effect was achieved when no rhIL-2 was given. However, the cure rate of rhIL-2 loaded stereocomplexed hydrogels was lower, though not statistically significant, compared to that of a single injection with 1x10(6) IU of free rhIL-2 at the start of the therapy (cure rate=70%). The therapeutic effect of rhIL-2 loaded stereocomplexed hydrogels was retarded for approximately 1-2 weeks compared to free rhIL-2, most likely due to a slow, constant release of rhIL-2 from the hydrogels. PMID:17475360

  16. Use of Cross-Linked Poly(ethylene glycol)-Based Hydrogels for Protein Crystallization

    PubMed Central

    2015-01-01

    Poly(ethylene glycol) (PEG) hydrogels are highly biocompatible materials extensively used for biomedical and pharmaceutical applications, controlled drug release, and tissue engineering. In this work, PEG cross-linked hydrogels, synthesized under various conditions, were used to grow lysozyme crystals by the counterdiffusion technique. Crystallization experiments were conducted using a three-layer arrangement. Results demonstrated that PEG fibers were incorporated within lysozyme crystals controlling the final crystal shape. PEG hydrogels also induced the nucleation of lysozyme crystals to a higher extent than agarose. PEG hydrogels can also be used at higher concentrations (2050% w/w) as a separation chamber (plug) in counterdiffusion experiments. In this case, PEG hydrogels control the diffusion of the crystallization agent and therefore may be used to tailor the supersaturation to fine-tune crystal size. As an example, insulin crystals were grown in 10% (w/w) PEG hydrogel. The resulting crystals were of an approximate size of 500 ?m. PMID:25383049

  17. Protein selective adsorption properties of a polyethylene terephtalate artificial ligament grafted with poly(sodium styrene sulfonate) (polyNaSS): correlation with physicochemical parameters of proteins.

    PubMed

    Lessim, S; Oughlis, S; Lataillade, J J; Migonney, V; Changotade, S; Lutomski, D; Poirier, F

    2015-01-01

    Immediately after surgical placement of biomaterials, a first step consists in the adsorption of proteins from the biological environment on the artificial surfaces. Because the composition of the adsorbed protein layer modulates the cell response to the implanted material, researchers in the biomaterials field have focused on coating proteins or peptides onto surfaces to improve cell response and therefore the long-term compatibility of the implant. However, some materials used in tissue engineering, mainly synthetic polymers, are too hydrophobic to allow the optimal adsorption of proteins and have to be first submitted to physical or chemical treatments. In our laboratory, we have demonstrated that grafting of poly(sodium styrene sulfonate) (polyNaSS) onto biomaterials can strongly modulate the protein adsorption and the cellular response compared to unmodified surfaces. In this study, we used a liquid chromatography strategy coupled to proteomics to evaluate the adsorptive properties of a polyethylene terephtalate (PET) artificial ligament grafted with polyNaSS, and to identify and analyse proteins adsorbed on PET fibers. Results obtained with platelet rich plasma (PRP) proteins demonstrated that grafting significantly increases the protein adsorption of the PET and also selectively modulates the adsorption of proteins on PET fibers. Finally, regarding physicochemical parameters calculated from the amino acid sequence of identified proteins, we found that the aliphatic index is highly correlated with the selective adsorption of proteins onto the polyNaSS/PET surface. Therefore, the proteomic approach complemented with physicochemical property evaluation could provide a powerful tool for the elaboration of new biomaterials based on protein layer deposition. PMID:26658022

  18. Effects of one-seed juniper and polyethylene glycol on intake, rumen fermentation, and plasma amino acids in sheep and goats fed supplemental protein and tannins.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the effect of polyethylene glycol (PEG) on juniper and total intake, rumen fermentation, and plasma amino acids (AA) of 12 does and 12 ewes fed sudangrass and basal diets containing 10% quebracho tannins with no protein supplement (Control; 5% CP) or high rumen degradable (RDP 15% CP) or u...

  19. Polyethylenimine modified poly(ethylene terephthalate) capillary channeled-polymer fibers for anion exchange chromatography of proteins.

    PubMed

    Jiang, Liuwei; Jin, Yi; Marcus, R Kenneth

    2015-09-01

    Native poly(ethylene terephthalate) (PET) capillary-channeled polymer (C-CP) fibers have been previously studied as stationary phases for reversed phase and affinity protein separations. In this study, surface modified PET C-CP fibers were evaluated for the anion exchange separation of proteins. The native PET C-CP fibers were aminated using polyethylenimine (PEI) followed by a 1,4-butanediol diglycidyl ether (BUDGE) cross-linking step. Subsequent PEI/BUDGE treatments can be employed to further develop the polyamine layer on the fiber surfaces. The PEI densities of the modified fibers were quantified through the ninhydrin reaction, yielding values of 0.43-0.89μmolg(-1). The surface modification impact on column permeability was found to be 0.66×10(-11) to 1.33×10(-11)m(2), depending on the modification time and conditions. The dynamic binding capacities of the modified fiber media were determined to be 1.99-8.54mgmL(-1) bed volume, at linear velocities of 88-438cmmin(-1) using bovine serum albumin as the model protein. It was found that increasing the mobile phase linear velocity (up to 438cmmin(-1)) had no effect on the separation quality for a synthetic protein mixture, reflecting the lack of van Deemter C-term effects for the C-CP fiber phase. The low-cost, easy modification method and the capability of fast protein separation illustrate great potential in the use of PEI/BUDGE-modified PET C-CP fibers for high-throughput protein separation and downstream processing. PMID:26253835

  20. Analysis of partitioning of organic compounds and proteins in aqueous polyethylene glycol-sodium sulfate aqueous two-phase systems in terms of solute-solvent interactions.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, Jos A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-10-01

    Partition behavior of nine small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.5M osmolyte (sorbitol, sucrose, trehalose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. It was found out that the partition coefficient of all compounds examined (including proteins) may be described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system differ from those in polyethylene glycol-dextran system. PMID:26342872

  1. Oxygen-rich coating promotes binding of proteins and endothelialization of polyethylene terephthalate polymers.

    PubMed

    Jaganjac, Morana; Vesel, Alenka; Milkovic, Lidija; Recek, Nina; Kolar, Metod; Zarkovic, Neven; Latiff, Aishah; Kleinschek, Karin-Stana; Mozetic, Miran

    2014-07-01

    The formation of endothelial cell monolayer on prosthetic implants has not sufficiently explored. The main reasons leading to the development of thrombosis and/or intimal hyperplasia is the lack of endothelialization. In the present work, we have studied the influence of oxygen and fluorine plasma treatment of polyethylene terephthalate (PET) polymers on human microvascular endothelial cell adhesion and proliferation. We characterized the polymer surface, wettability, and oxidation potential upon plasma treatment. Moreover, binding of serum and media compounds on PET surface was monitored by Quartz crystal microbalance method, X-ray photoelectron spectroscopy, and atomic force microscopy. Cell adhesion and morphology was assessed by light and scanning electron microscopy. The influence of plasma treatment on induction of cellular oxidative stress and cell proliferation was evaluated. The results obtained showed that treatment with oxygen plasma decreased the oxidation potential of the PET surface and revealed the highest affinity for binding of serum components. Accordingly, the cells reflected the best adhesion and morphological properties on oxygen-treated PET polymers. Moreover, treatment with oxygen plasma did not induce intracellular reactive oxygen species production while it stimulated endothelial cell proliferation by 25% suggesting the possible use of oxygen plasma treatment to enhance endothelialization of synthetic vascular grafts. PMID:23946257

  2. Coat Protein-Dependent Behavior of Poly(ethylene glycol) Tails in Iron Oxide Core Virus-like Nanoparticles.

    PubMed

    Malyutin, Andrey G; Cheng, Hu; Sanchez-Felix, Olivia R; Carlson, Kenneth; Stein, Barry D; Konarev, Petr V; Svergun, Dmitri I; Dragnea, Bogdan; Bronstein, Lyudmila M

    2015-06-10

    Here we explore the formation of virus-like nanoparticles (VNPs) utilizing 22-24 nm iron oxide nanoparticles (NPs) as cores and proteins derived from viral capsids of brome mosaic virus (BMV) or hepatitis B virus (HBV) as shells. To accomplish that, hydrophobic FeO/Fe3O4 NPs prepared by thermal decomposition of iron oleate were coated with poly(maleic acid-alt-octadecene) modified with poly(ethylene glycol) (PEG) tails of different lengths and grafting densities. MRI studies show high r2/r1 relaxivity ratios of these NPs that are practically independent of the polymer coating type. The versatility and flexibility of the viral capsid protein are on display as they readily form shells that exceed their native size. The location of the long PEG tails upon shell formation was investigated by electron microscopy and small-angle X-ray scattering. PEG tails were located differently in the BMV and HBV VNPs, with the BMV VNPs preferentially entrapping the tails in the interior and the HBV VNPs allowing the tails to extend through the capsid, which highlights the differences between intersubunit interactions in these two icosahedral viruses. The robustness of the assembly reaction and the protruding PEG tails, potentially useful in modulating the immune response, make the systems introduced here a promising platform for biomedical applications. PMID:25989427

  3. The influence of poly(ethylene glycol) on the micelle formation of alkyl maltosides used in membrane protein crystallization.

    PubMed

    Mh, Frank; DiFiore, Drte; Zouni, Athina

    2015-05-01

    With the aim of better understanding the phase behavior of alkyl maltosides (n-alkyl-?-d-maltosides, CnG2) under the conditions of membrane protein crystallization, we studied the influence of poly(ethylene glycol) (PEG) 2000, a commonly used precipitating agent, on the critical micelle concentration (CMC) of the alkyl maltosides by systematic variation of the number n of carbon atoms in the alkyl chain (n = 10, 11, and 12) and the concentration of PEG2000 (?) in a buffer suitable for the crystallization of cyanobacterial photosystem II. CMC measurements were based on established fluorescence techniques using pyrene and 8-anilinonaphthalene-1-sulfonate (ANS). We found an increase of the CMC with increasing PEG concentration according to ln(CMC/CMC0) = kP?, where CMC0 is the CMC in the absence of PEG and kP is a constant that we termed the "polymer constant". In parallel, we measured the influence of PEG2000 on the surface tension of detergent-free buffer solutions. At PEG concentrations ? > 1% w/v, the surface pressure ?s(?) = ?(0) - ?(?) was found to depend linearly on the PEG concentration according to ?s(?) = ?? + ?s(0), where ?(0) is the surface tension in the absence of PEG. Based on a molecular thermodynamic modeling, CMC shifts and surface pressure due to PEG are related, and it is shown that kP = ?c(n) + ?, where c(n) is a detergent-specific constant depending inter alia on the alkyl chain length n and ? is a correction for molarity. Thus, knowledge of the surface pressure in the absence of a detergent allows for the prediction of the CMC shift. The PEG effect on the CMC is discussed concerning its molecular origin and its implications for membrane protein solubilization and crystallization. PMID:25865704

  4. Evaluation of a Polyethylene Glycol-Osteogenic Protein-1 System on Alveolar Bone Regeneration in the Mini-Pig.

    PubMed

    Catros, Sylvain; Molenberg, Aart; Freilich, Martin; Dard, Michel

    2015-08-01

    Alveolar bone regeneration associated with the local release of osteogenic protein-1 (OP-1) from a polyethylene glycol (PEG) scaffold was evaluated in 14 mini-pigs. Following extraction of mandibular teeth and 26-weeks of healing time, standardized bone defects were created bilaterally in the posterior mandibles (3 sites for each hemimandible) that were randomly assigned to treatment groups. Seven treatments groups were compared: 4 different concentrations of the PEG/OP-1 test system (n = 14 for each), a positive control (collagen/OP-1, n = 14), a negative control (PEG only, n = 7) and nontreated defects (n = 7). Each animal provided all test and control groups. The animals were sacrificed after 3 weeks of healing and samples were processed for histology and histomorphometry. Three weeks after implantation, there were positive clinical responses for all test groups. Earlier bone maturation was observed in the test groups that had higher concentrations of OP-1 (0.25, 0.5, or 1 mg/mL) compared to the negative control group (PEG alone), the low concentration group (0.1 mg/mL), and the positive control group (collagen/OP-1). However, histomorphometric quantitative analyses did not reveal any statistical difference between any of the groups. No residual PEG biomaterial or inflammatory responses to the biomaterial or growth factor were observed. This study confirmed the safe local delivery of OP-1 from PEG hydrogel. Alveolar bone regeneration was not statistically different between tests groups, negative control (PEG alone) or commercial positive control (collagen/OP-1). The semi-quantitative analysis, however, showed a trend in favor of the higher concentrations of OP-1 to induce faster bone maturation. PMID:24673473

  5. Graft copolymer-templated mesoporous TiO(2) films micropatterned with poly(ethylene glycol) hydrogel: novel platform for highly sensitive protein microarrays.

    PubMed

    Son, Kyung Jin; Ahn, Sung Hoon; Kim, Jong Hak; Koh, Won-Gun

    2011-02-01

    In this study, we describe the use of organized mesoporous titanium oxide (TiO(2)) films as three-dimensional templates for protein microarrays with enhanced protein loading capacity and detection sensitivity. Multilayered mesoporous TiO(2) films with high porosity and good connectivity were synthesized using a graft copolymer consisting of a poly(vinyl chloride) (PVC) backbone and poly(oxyethylene methacrylate) (POEM) side chains as a structure-directing template. The average pore size and thickness of the TiO(2) films were 50-70 nm and 1.5 ?m, respectively. Proteins were covalently immobilized onto mesoporous TiO(2) film via 3-aminopropyltriethoxysilane (APTES), and protein loading onto TiO(2) films was about four times greater than on planar glass substrates, which consequently improved the protein activity. Micropatterned mesoporous TiO(2) substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on TiO(2) films using photolithography. Because of non-adhesiveness of PEG hydrogel towards proteins, proteins were selectively immobilized onto surface-modified mesoporous TiO(2) region, creating protein microarray. Specific binding assay between streptavidin/biotin and between PSA/anti-PSA demonstrated that the mesoporous TiO(2)-based protein microarrays yielded higher fluorescence signals and were more sensitive with lower detection limits than microarrays based on planar glass slides. PMID:21291203

  6. Liquid-liquid extraction of a recombinant protein, cytochrome b5, with aqueous two-phase systems of polyethylene glycol and potassium phosphate salts.

    PubMed

    Sarmento, M J; Pires, M J; Cabral, J M; Aires-Barros, M R

    1994-05-01

    The partitioning of cytochrome b5 in aqueous two-phase systems of polyethylene glycol (PEG) and potassium phosphate salts was investigated. Cytochrome b5 partitioning is enhanced with decreasing polymer molecular mass and with increasing tieline length and pH. The effect of cytochrome b5 mutation, by substitution of the glutamic acid at positions 56 and 92 of the polypeptide chain by a lysine, on protein partitioning was also studied. Partitioning of cytochrome b5 mutants shows the same dependence on tieline length and pH, following the order cytochrome b5 > mutant 56 > mutant 92. PMID:8004226

  7. Polyethylene Glycol Propionaldehydes

    NASA Technical Reports Server (NTRS)

    Harris, Joe M.; Sedaghat-Herati, Mohammad R.; Karr, Laurel J.

    1992-01-01

    New class of compounds derived from polyethylene glycol (PEG's) namely, PEG-propionaldehydes, offers two important advantages over other classes of PEG aldehyde derivatives: compounds exhibit selective chemical reactivity toward amino groups and are stable in aqueous environment. PEG's and derivatives used to couple variety of other molecules, such as, to tether protein molecules to surfaces. Biotechnical and biomedical applications include partitioning of two phases in aqueous media; immobilization of such proteins as enzymes, antibodies, and antigens; modification of drugs; and preparation of protein-rejecting surfaces. In addition, surfaces coated with PEG's and derivatives used to control wetting and electroosmosis. Another potential application, coupling to aminated surfaces.

  8. Clinical and hip simulator comparisons of ceramic-on-polyethylene and metal-on-polyethylene wear.

    PubMed

    Clarke, I C; Gustafson, A

    2000-10-01

    The benefit of reduced polyethylene wear with ceramic in hip replacements does not seem to have been universally appreciated. In this current study, wear predictions from laboratory and clinical studies were compared for ceramic-on-polyethylene and cobalt chrome-on-polyethylene combinations. Many laboratory studies included water-based lubrication and linear-tracking mechanisms. Now it is appreciated that these were inappropriate methods, because of a propensity for very low or virtually no polyethylene wear against ceramics in water. Thus, water-based studies predicting a 20- to 80-fold advantage for ceramic-on-polyethylene compared with metal-on-polyethylene clearly were in error. However, serum-based simulator studies with high protein-concentrations generally have shown greater wear with alumina-on-polyethylene than with metal-on-polyethylene. Controversy still remains over the use of such nonphysiologic protein levels. The simulator studies were just beginning to explore the role of serum protein concentrations and the influence on the various wear models. Polyethylene wear with zirconia systems was particularly affected by serum protein concentrations. In one simulator study, use of proteins in the physiologic range resulted in the alumina-on-polyethylene wear rate decreasing to approximately 50% of that of metal-on-polyethylene. In the literature, many hip design and polyethylene variations were reported which confounded the wear analysis. Overall, the clinical data supported the superior performance of ceramic-on-polyethylene systems by a factor of 1.5- to fourfold. However, the amount of supporting data was not large. This summary of laboratory and clinical data indicated that ceramic-on-polyethylene hip replacement systems offered on average a 50% wear reduction from metal-on-polyethylene systems. PMID:11039790

  9. Chemistry and stability of thiol based polyethylene glycol surface coatings on colloidal gold and their relationship to protein adsorption and clearance in vivo

    NASA Astrophysics Data System (ADS)

    Carpinone, Paul

    Nanomaterials have presented a wide range of novel biomedical applications, with particular emphasis placed on advances in imaging and treatment delivery. Of the many particulate nanomaterials researched for biomedical applications, gold is one of the most widely used. Colloidal gold has been of great interest due to its chemical inertness and its ability to perform multiple functions, such as drug delivery, localized heating of tissues (hyperthermia), and imaging (as a contrast agent). It is also readily functionalized through the use of thiols, which spontaneously form sulfur to gold bonds with the surface. Polyethylene glycol (PEG) is the most widely used coating material for these particles as it provides both steric stability to the suspension and protein resistance. These properties extend the circulation time of the particles in blood, and consequently the efficacy of the treatment. Despite widespread use of PEG coated gold particles, the coating chemistry and stability of these particles are largely unknown. The goal of this work was to identify the mechanisms leading to degradation and stability of thiol based polyethylene glycol coatings on gold particles and to relate this behavior to protein adsorption and clearance in vivo. The results indicate that the protective PEG coating is susceptible to sources of oxidation (including dissolved oxygen) and competing adsorbates, among other factors. The quality of commercially available thiolated PEG reagents was also found to play a key role in the quality and protein resistance of the final PEG coating. Analysis of the stability of these coatings indicated that they rapidly degrade under physiological conditions, leading to the onset of protein adsorption when exposed to plasma or blood. Paralleling the protein adsorption behavior and onset of coating degradation observed in vitro, blood clearance of parenterally administered PEG coated particles in mice began after approximately 2h of circulation time. Taken together, the data presented in this work indicates that the stability of the PEG coating and the many factors affecting it represent a fundamental limitation to the use of these particles.

  10. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation.

    PubMed

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Mller, Ian Max; Song, Song-Quan

    2015-04-01

    Germination and thermoinhibition in lettuce (Lactuca sativa 'Jianyexianfeng No. 1') seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15C, at 15C after imbibition at 25C for 48 h, or at 25C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P<0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15C, 15C after imbibition at 25C for 48 h, and 25C in KNO3 seeds than in ungerminated 25C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  11. Proteomic Analysis of Lettuce Seed Germination and Thermoinhibition by Sampling of Individual Seeds at Germination and Removal of Storage Proteins by Polyethylene Glycol Fractionation1

    PubMed Central

    Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P < 0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  12. Polyethylene Glycol 3350

    MedlinePLUS

    Polyethylene glycol 3350 is used to treat occasional constipation. Polyethylene glycol 3350 is in a class of medications ... Polyethylene glycol 3350 comes as a powder to be mixed with a liquid and taken by mouth. ...

  13. Quantitative analysis of polyethylene glycol (PEG) and PEGylated proteins in animal tissues by LC-MS/MS coupled with in-source CID.

    PubMed

    Gong, Jiachang; Gu, Xiaomei; Achanzar, William E; Chadwick, Kristina D; Gan, Jinping; Brock, Barry J; Kishnani, Narendra S; Humphreys, W Griff; Iyer, Ramaswamy A

    2014-08-01

    The covalent conjugation of polyethylene glycol (PEG, typical MW > 10k) to therapeutic peptides and proteins is a well-established approach to improve their pharmacokinetic properties and diminish the potential for immunogenicity. Even though PEG is generally considered biologically inert and safe in animals and humans, the slow clearance of large PEGs raises concerns about potential adverse effects resulting from PEG accumulation in tissues following chronic administration, particularly in the central nervous system. The key information relevant to the issue is the disposition and fate of the PEG moiety after repeated dosing with PEGylated proteins. Here, we report a novel quantitative method utilizing LC-MS/MS coupled with in-source CID that is highly selective and sensitive to PEG-related materials. Both (40K)PEG and a tool PEGylated protein (ATI-1072) underwent dissociation in the ionization source of mass spectrometer to generate a series of PEG-specific ions, which were subjected to further dissociation through conventional CID. To demonstrate the potential application of the method to assess PEG biodistribution following PEGylated protein administration, a single dose study of ATI-1072 was conducted in rats. Plasma and various tissues were collected, and the concentrations of both (40K)PEG and ATI-1072 were determined using the LC-MS/MS method. The presence of (40k)PEG in plasma and tissue homogenates suggests the degradation of PEGylated proteins after dose administration to rats, given that free PEG was absent in the dosing solution. The method enables further studies for a thorough characterization of disposition and fate of PEGylated proteins. PMID:25003239

  14. Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold: effect of surface chain density.

    PubMed

    Unsworth, Larry D; Sheardown, Heather; Brash, John L

    2005-02-01

    Nonspecific protein adsorption generally occurs at the biomaterial-tissue interface and usually has adverse consequences. Thus, surfaces that are protein-resistant are eagerly sought with the expectation that these materials will exhibit improved biocompatibility. Surfaces modified with end-tethered poly(ethylene oxide) (PEO) have been shown to be protein-resistant to some degree. Although the mechanisms are unclear, it has been suggested that chain length, chain density, and chain conformation are important factors. To investigate the effects of PEO chain density, we selected a model system based on the chemisorption of chain-end thiolated PEO to a gold substrate. Chain density was varied by varying PEO solubility (proximity to cloud point) and incubation time in the chemisorption solution. The adsorption of fibrinogen and lysozyme to these surfaces was investigated. It was found that for 750 and 2000 MW PEO layers, resistance to fibrinogen increased with chain density and was maximal at a density of approximately 0.5 chains/nm(2) (80% decrease in adsorption compared to unmodified gold). As PEO chain density increased beyond 0.5/nm(2) adsorption increased. For PEO of 5000 MW the optimal chain density was 0.27/nm(2) and gave only a 60% reduction in fibrinogen adsorption. It is suggested that, at high chain density, the chemisorbed PEO is dehydrated giving a surface that is no longer protein resistant. The PEO-modified surfaces were found also to be resistant to lysozyme adsorption with reductions similar to, if somewhat less than, those for fibrinogen. The fibrinogen to lysozyme molar ratios were within the expected range for close-packed layers of these proteins in their native conformation and were relatively insensitive to PEO chain density and MW. This may suggest that such adsorption as did occur, even at chain densities giving minimum adsorption, may have been on patches of unmodified gold. PMID:15667186

  15. Efficacy of a p38 mitogen activated protein kinase inhibitor in mitigating an established inflammatory reaction to polyethylene particles in vivo.

    PubMed

    Ma, T; Ren, P-G; Larsen, D M; Suenaga, E; Zilber, S; Genovese, M; Smith, R L; Goodman, S B

    2009-04-01

    The inhibitor of p38 mitogen-activated protein kinase (MAPK) is of interest in the nonoperative treatment of periprosthetic osteolysis due to wear particles. Previous studies demonstrated that an oral p38 MAPK inhibitor did not suppress bone formation when given during the initial phase of tissue differentiation. However, the oral p38 MAPK inhibitor also did not curtail the foreign body and chronic inflammatory response to particles when given simultaneously. The purpose of the current study was to examine the efficacy of a p38 MAPK inhibitor, SCIO-323, on mitigating an established inflammatory reaction that parallels the clinical situation more closely. The Bone Harvest Chamber was implanted in rabbits and submicron polyethylene particles were placed in the chamber for 6 weeks. The contents of the chambers were harvested every 6 weeks. Oral treatment with the SCIO-323 included delivery for 3 weeks and stopping for 3 weeks, delivery for 3 weeks after an initial 3-week delay, and delivery for 6 weeks continuously. Administration of the SCIO-323 continuously for 6 weeks with/without the presence of particles, or for the initial 3 of 6 weeks had minor effects on bone ingrowth. After establishing a particle-induced chronic inflammatory reaction for 3 weeks, administration of SCIO-323 for a subsequent 3 weeks suppressed net bone formation. The activity of osteoclast-like cells remained low among all treatments when compared with the first control. Using the present model, the oral p38 MAPK inhibitor was ineffective in improving bone ingrowth in the presence of polyethylene particles. PMID:18431764

  16. Effect of a low-density polyethylene film containing butylated hydroxytoluene on lipid oxidation and protein quality of Sierra fish (Scomberomorus sierra) muscle during frozen storage.

    PubMed

    Torres-Arreola, Wilfrido; Soto-Valdez, Herlinda; Peralta, Elizabeth; Cardenas-Lpez, Jos Luis; Ezquerra-Brauer, Josafat Marina

    2007-07-25

    Fresh sierra fish (Scomberomorus sierra) fillets were packed in low-density polyethylene films with butylated hydroxytoluene (BHT-LDPE) added. Fillets packed in LDPE with no BHT were used as controls (LDPE). The packed fillets were stored at -25 degrees C for 120 days in which the film released 66.5% of the antioxidant. The influence of the antioxidant on lipid and protein quality, lipid oxidation, muscle structure changes, and shear-force resistance was recorded. As compared to LDPE films, fillets packed in BHT-LDPE films showed lower lipid oxidation, thiobarbituric acid values (4.20 +/- 0.52 vs 11.95 +/- 1.06 mg malonaldehyde/kg), peroxide values (7.20 +/- 1.38 vs 15.15 +/- 1.48 meq/kg), and free fatty acids (7.98 +/- 0.43 vs 11.83 +/- 1.26% of oleic acid). Fillets packed in BHT-LDPE films showed less tissue damage and lost less firmness than fillets packed in LDPE. A significant relationship between lipid oxidation and texture was detected (R2 adjusted, 0.70-0.73). BHT-LDPE films may be used not only to prevent lipid oxidation but also to minimize protein damage to prolong the shelf life of sierra fish. PMID:17595103

  17. Two Novel Class II Hydrophobins from Trichoderma spp. Stimulate Enzymatic Hydrolysis of Poly(Ethylene Terephthalate) when Expressed as Fusion Proteins

    PubMed Central

    Espino-Rammer, Liliana; Ribitsch, Doris; Przylucka, Agnieszka; Marold, Annemarie; Greimel, Katrin J.; Herrero Acero, Enrique; Guebitz, Georg M.; Kubicek, Christian P.

    2013-01-01

    Poly(ethylene terephthalate) (PET) can be functionalized and/or recycled via hydrolysis by microbial cutinases. The rate of hydrolysis is however low. Here, we tested whether hydrophobins (HFBs), small secreted fungal proteins containing eight positionally conserved cysteine residues, are able to enhance the rate of enzymatic hydrolysis of PET. Species of the fungal genus Trichoderma have the most proliferated arsenal of class II hydrophobin-encoding genes among fungi. To this end, we studied two novel class II HFBs (HFB4 and HFB7) of Trichoderma. HFB4 and HFB7, produced in Escherichia coli as fusions to the C terminus of glutathione S-transferase, exhibited subtle structural differences reflected in hydrophobicity plots that correlated with unequal hydrophobicity and hydrophily, respectively, of particular amino acid residues. Both proteins exhibited a dosage-dependent stimulation effect on PET hydrolysis by cutinase from Humicola insolens, with HFB4 displaying an adsorption isotherm-like behavior, whereas HFB7 was active only at very low concentrations and was inhibitory at higher concentrations. We conclude that class II HFBs can stimulate the activity of cutinases on PET, but individual HFBs can display different properties. The present findings suggest that hydrophobins can be used in the enzymatic hydrolysis of aromatic-aliphatic polyesters such as PET. PMID:23645195

  18. Influence of poly(ethylene oxide)-based copolymer on protein adsorption and bacterial adhesion on stainless steel: modulation by surface hydrophobicity.

    PubMed

    Yang, Yi; Rouxhet, Paul G; Chudziak, Dorota; Telegdi, Judit; Dupont-Gillain, Christine C

    2014-06-01

    The aim of the present work is to study the adhesion of Pseudomonas NCIMB 2021, a typical aerobic marine microorganism, on stainless steel (SS) substrate. More particularly, the potential effect on adhesion of adsorbed poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer is investigated. Bacterial attachment experiments were carried out using a modified parallel plate flow chamber, allowing different surface treatments to be compared in a single experiment. The amount of adhering bacteria was determined via DAPI staining and fluorescence microscopy. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface chemical composition of SS and hydrophobized SS before and after PEO-PPO-PEO adsorption. The adsorption of bovine serum albumin (BSA), a model protein, was investigated to test the resistance of PEO-PPO-PEO layers to protein adsorption. The results show that BSA adsorption and Pseudomonas 2021 adhesion are significantly reduced on hydrophobized SS conditioned with PEO-PPO-PEO. Although PEO-PPO-PEO is also found to adsorb on SS, it does not prevent BSA adsorption nor bacterial adhesion, which is attributed to different PEO-PPO-PEO adlayer structures on hydrophobic and hydrophilic surfaces. The obtained results open the way to a new strategy to reduce biofouling on metal oxide surfaces using PEO-PPO-PEO triblock copolymer. PMID:24650936

  19. Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly(ethylene terephthalate) when expressed as fusion proteins.

    PubMed

    Espino-Rammer, Liliana; Ribitsch, Doris; Przylucka, Agnieszka; Marold, Annemarie; Greimel, Katrin J; Herrero Acero, Enrique; Guebitz, Georg M; Kubicek, Christian P; Druzhinina, Irina S

    2013-07-01

    Poly(ethylene terephthalate) (PET) can be functionalized and/or recycled via hydrolysis by microbial cutinases. The rate of hydrolysis is however low. Here, we tested whether hydrophobins (HFBs), small secreted fungal proteins containing eight positionally conserved cysteine residues, are able to enhance the rate of enzymatic hydrolysis of PET. Species of the fungal genus Trichoderma have the most proliferated arsenal of class II hydrophobin-encoding genes among fungi. To this end, we studied two novel class II HFBs (HFB4 and HFB7) of Trichoderma. HFB4 and HFB7, produced in Escherichia coli as fusions to the C terminus of glutathione S-transferase, exhibited subtle structural differences reflected in hydrophobicity plots that correlated with unequal hydrophobicity and hydrophily, respectively, of particular amino acid residues. Both proteins exhibited a dosage-dependent stimulation effect on PET hydrolysis by cutinase from Humicola insolens, with HFB4 displaying an adsorption isotherm-like behavior, whereas HFB7 was active only at very low concentrations and was inhibitory at higher concentrations. We conclude that class II HFBs can stimulate the activity of cutinases on PET, but individual HFBs can display different properties. The present findings suggest that hydrophobins can be used in the enzymatic hydrolysis of aromatic-aliphatic polyesters such as PET. PMID:23645195

  20. Thermal stability studies of a globular protein in aqueous poly(ethylene glycol) by (1)H NMR.

    PubMed

    Hancock, T J; Hsu, J T

    1996-08-20

    The reversible folding destabilization of hen lysozyme has been confirmed by a melting temperature (T(m)) decrease in aqueous poly(ethylene glycol) (PEG). The percent denatured, extracted from the histidine 15 C2H (H15 C2H) native and denatured peak areas from 500-MHz one-dimensional proton nuclear magnetic resonance (1D (1)H NMR) spectra in D(2)O, was analyzed through denaturation temperatures at 0% and 20% (w/w) PEG 1000. The lysozyme (3.5 mM) T(m) decreased by 4.2 degrees C and 7.1 degrees C in 20% (w/w) PEG 1000 at pH 3.8 and 3.0, respectively. The T(m) decreased with increasing lysozyme concentration. Additionally, the temperature-induced resonance migrations of 17 protons from 8 residues indicate that the native lysozyme structure undergoes temperature-induced conformational changes. The changes were essentially identical in both 0% and 20% (w/w) PEG 1000 at both pH 3.0 and 3.8. This small, local restructuring of the hydrophobic box region may be a manifestation of temperature-dependent solution hydrophobicity, whereas active-site cleft fluctuations may be due to the inherent active-site flexibility. The lysozyme structure in PEG at 35 degrees C was determined to be essentially native from the (1)H nuclear Overhauser effect spectroscopy (NOESY) fingerprint regions. Additionally, lysozyme chemical shifts, from 1D spectra, in PEG 200, 300, and 1000 at 35 degrees C and various concentrations were essentially identical, further confirming that the conformation remains native in various PEG solutions. (c) 1996 John Wiley & Sons, Inc. PMID:18629793

  1. Polyethylene oxide surfaces of variable chain density by chemisorption of PEO-thiol on gold: adsorption of proteins from plasma studied by radiolabelling and immunoblotting.

    PubMed

    Unsworth, Larry D; Sheardown, Heather; Brash, John L

    2005-10-01

    The mechanisms involved in the inhibition of protein adsorption by polyethylene oxide (PEO) are not completely understood, but it is believed that PEO chain length, chain density and chain conformation all play a role. In this work, surfaces formed by chemisorption of PEO-thiol to gold were investigated: the effects of PEO chain density, chain length (600, 750, 2000 and 5000 MW) and end-group (-OH, -OCH3) on protein adsorption from plasma are reported. Similar to previous single protein adsorption studies (L.D. Unsworth et al., Langmuir 2005;21:1036-41) it was found that, of the different surfaces investigated, PEO layers formed from solutions near the cloud point adsorbed the lowest amount of fibrinogen from plasma. Layers of hydroxyl-terminated PEO of MW 600 formed under these low solubility conditions showed almost complete suppression (versus controls) of the Vroman effect, with 20+/-1 ng/cm2 adsorbed fibrinogen at the Vroman peak and 6.7+/-0.6 ng/cm2 at higher plasma concentration. By comparison, Vroman peak adsorption was 70+/-20 and 50+/-3 ng/cm2, respectively, for 750-OCH3 and 2000-OCH3 layers formed under low solubility conditions; adsorption on these surfaces at higher plasma concentration was 16+/-9 and 12+/-3 ng/cm2. Thus in addition to the effect of solution conditions noted previously, the results of this study also suggest a chain end group effect which inhibits fibrinogen adsorption to, and/or facilitates displacement from, hydroxyl terminated PEO layers. Fibrinogen adsorption from plasma was not significantly different for surfaces prepared with PEO of molecular weight 750 and 2000 when the chain density was the same ( approximately 0.5 chains/nm2) supporting the conclusion that chain density may be the key property for suppression of protein adsorption. The proteins eluted from the surfaces after contact with plasma were investigated by SDS-PAGE and immunoblotting. A number of proteins were detected on the various surfaces including fibrinogen, albumin, C3 and apolipoprotein A-I. The blot responses were zero or weak for all four proteins of the contact system; some complement activation was observed on all of the surfaces studied. PMID:15958239

  2. A comparison of gold nanoparticle surface co-functionalization approaches using Polyethylene Glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization.

    PubMed

    Harrison, Emma; Nicol, James R; Macias-Montero, Manuel; Burke, George A; Coulter, Jonathan A; Meenan, Brian J; Dixon, Dorian

    2016-05-01

    To create clinically useful gold nanoparticle (AuNP) based cancer therapeutics it is necessary to co-functionalize the AuNP surface with a range of moieties; e.g. Polyethylene Glycol (PEG), peptides and drugs. AuNPs can be functionalized by creating either a mixed monolayer by attaching all the moieties directly to the surface using thiol chemistry, or by binding groups to the surface by means of a bifunctional polyethylene glycol (PEG) linker. The linker methodology has the potential to enhance bioavailability and the amount of functional agent that can be attached. While there is a large body of published work using both surface arrangements independently, the impact of attachment methodology on stability, non-specific protein adsorption and cellular uptake is not well understood, with no published studies directly comparing the two most frequently employed approaches. This paper compares the two methodologies by synthesizing and characterizing PEG and Receptor Mediated Endocytosis (RME) peptide co-functionalized AuNPs prepared using both the mixed monolayer and linker approaches. Successful attachment of both PEG and RME peptide using the two methods was confirmed using Dynamic Light Scattering, Fourier Transform Infrared Spectroscopy and gel electrophoresis. It was observed that while the 'as synthesized' citrate capped AuNPs agglomerated under physiological salt conditions, all the mixed monolayer and PEG linker capped samples remained stable at 1M NaCl, and were stable in PBS over extended periods. While it was noted that both functionalization methods inhibited non-specific protein attachment, the mixed monolayer samples did show some changes in gel electrophoresis migration profile after incubation with fetal calf serum. PEG renders the AuNP stable in-vivo however, studies with MDA-MB-231 and MCF 10A cell lines indicated that functionalization with PEG, blocks cellular uptake. It was observed that co-functionalization with RME peptide using both the mixed monolayer and PEG linker methods greatly enhanced cellular internalization compared to PEG capped AuNPs. PMID:26952476

  3. Effect of polyethylene glycol on in vitro degradability of nitrogen and microbial protein synthesis from tannin-rich browse and herbaceous legumes.

    PubMed

    Getachew, G; Makkar, H P; Becker, K

    2000-07-01

    Determination of microbial degradability of N is important in formulating a sound supplementation strategy for efficient utilisation of basal as well as supplementary diet components. In vitro degradability of N (IVDN) from tannin-containing browses (Acacia cyanophylla, Acacia albida, Acioa barteri and Quercus ilex) and two herbaceous legumes (Desmodium intortum and Desmodium uncinatum) was determined using the in vitro gas-production method coupled with NH3-N measurement in the presence and absence of a tannin-binding agent (polyethylene glycol (PEG), molecular mass 6000). Addition of PEG to tannin-containing feeds significantly (P < 0.05) increased in vitro gas and short-chain fatty acid (SCFA) production, and IVDN. The use of PEG as a tannin-binding agent increased IVDN from 28 to 59, 32 to 72, 19 to 40, 32 to 73, 40 to 80, and 26 to 77% in A. cyanophylla, A. albida, A. barteri, D. intortum, D. uncinatum and Q. ilex respectively. There was significant correlation between total phenolic compounds (total phenol, TP; total tannin, TT) in leguminous forages and percentage increase in IVDN on addition of PEG (P < 0.05; R2 0.70 and 0.82 for TP and TT respectively). The difference in IVDN observed in the absence and presence of PEG indicates the amount of protein protected from degradation in the rumen by tannins. When measured after 24 h incubation, tannin-containing feeds incubated in absence of PEG resulted in higher microbial protein synthesis than in the presence of PEG. Addition of PEG significantly (P < 0.05) reduced the efficiency of microbial protein synthesis expressed as mumol purine/mmol SCFA. PMID:10961163

  4. Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol.

    PubMed Central

    Hershfield, M S; Chaffee, S; Koro-Johnson, L; Mary, A; Smith, A A; Short, S A

    1991-01-01

    Modification by covalent attachment of polyethylene glycol (PEG) can reduce the immunogenicity and prolong the circulating life of proteins, but the utility of this approach for any protein is restricted by the number and distribution of PEG attachment sites (e.g., epsilon-amino groups of lysine residues). We have developed a strategy for introducing additional sites for PEG attachment by using site-directed mutagenesis to selectively replace arginine with lysine codons and tested it with purine nucleoside phosphorylase (PNP) from Escherichia coli, an extremely stable but immunogenic enzyme, that could potentially be used to treat an inherited deficiency of PNP. A triple mutant, RK3, possessing three Arg----Lys substitutions was constructed that increased the number of lysines per PNP subunit from 14 to 17, providing an additional 18 potential PEG attachment sites per hexameric enzyme molecule. The wild-type and RK3 enzymes had similar catalytic activity, antigenicity, and immunogenicity. After PEG modification, both enzymes retained catalytic activity, the plasma half-life of both enzymes in mice increased from approximately 4 hr to 4 days, and the binding of both enzymes by antisera raised against each unmodified enzyme was markedly diminished. However, antibody raised against wild-type PEG-PNP did not bind the PEG-RK3 enzyme. PEG-RK3 PNP was also substantially less immunogenic than wild-type PEG-PNP. Accelerated antibody-mediated clearance of PEG-PNP occurred in 2 of 12 mice treated with PEG-RK3 PNP, compared with 10 of 16 mice treated with the modified wild-type enzyme. This combined use of directed mutagenesis and PEG modification is aimed at permitting the widest choice of proteins, including products of genetic and chemical "engineering," to be used for therapy of inherited and acquired disorders. PMID:1714590

  5. A chemiluminescence flow immunosensor based on a porous monolithic metacrylate and polyethylene composite disc modified with protein G.

    PubMed

    Jain, Seema Rani; Borowska, Ewa; Davidsson, Richard; Tudorache, Madalina; Pontn, Einar; Emnus, Jenny

    2004-03-15

    A generic, fast, sensitive and new type of flow immunosensor has been developed. The basis is a monolithic porous poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) polymer disc modified with protein G, placed in a fountain type flow cell compartment, in close proximity to a photomultiplier tube (PMT). Analyte and HRP labelled analyte derivative (tracer) compete for anti-analyte antibody binding sites. The mixture is then injected into the flow immunosensor system where the formed analyte- and tracer-antibody complexes are trapped by the monolithic protein G disc. The amount of bound tracer, inversely related to the concentration of analyte in the sample, is determined in a second step by injection of luminol, p-iodophenol and H2O2, generating enhanced chemiluminescence (CL) with horseradish peroxidase (HRP). A third and final step is need for regeneration of the protein G disc so that a new analysis cycle can take place. The performance of the disc immunosensor system was compared with a one step continuous flow injection immunoassay (FIIA) system, using the same reagents and a protein G column, in terms of assay sensitivity and influence of matrix effects from various water samples (millipore-, tap- and surface water). The detection limit for the analyte atrazine in PBS and surface water (SW) was 0.208 +/- 0.004 microg l(-1) (PBS) and 0.59 +/- 0.120 microg l(-1) (SW) for the FIIA and 0.033 +/- 0.003 microg l(-1) (PBS) and 0.038+/-0.003 microg l(-1) (SW) for the disc immunosensor. Statistical comparison of the two systems shows that the disc immunosensor results were significantly less influenced by the sample matrix, which is explained by the fact that the sample in the FIIA arrives simultaneously with the matrix to the detector, whereas these are separated in time in the disc immunosensor system. PMID:15128098

  6. A functionalized poly(ethylene glycol)-based bioassay surface chemistry that facilitates bio-immobilization and inhibits non-specific protein, bacterial, and mammalian cell adhesion

    PubMed Central

    Harbers, Gregory M.; Emoto, Kazunori; Greef, Charles; Metzger, Steven W.; Woodward, Heather N.; Mascali, James J.; Grainger, David W.; Lochhead, Michael J.

    2008-01-01

    This paper describes a new bioassay surface chemistry that effectively inhibits non-specific biomolecular and cell binding interactions, while providing a capacity for specific immobilization of desired biomolecules. Poly(ethylene glycol) (PEG) as the primary component in nonfouling film chemistry is well-established, but the multicomponent formulation described here is unique in that it (1) is applied in a single, reproducible, solution-based coating step; (2) can be applied to diverse substrate materials without the use of special primers; and (3) is readily functionalized to provide specific attachment chemistries. Surface analysis data are presented, detailing surface roughness, polymer film thickness, and film chemistry. Protein non-specific binding assays demonstrate significant inhibition of serum, fibrinogen, and lysozyme adsorption to coated glass, indium tin oxide, and tissue culture polystyrene dishes. Inhibition of S. aureus and K. pneumoniae microbial adhesion in a microfluidic flow cell, and inhibition of fibroblast cell adhesion from serum-based cell culture is shown. Effective functionalization of the coating is demonstrated by directing fibroblast adhesion to polymer surfaces activated with an RGD peptide. Batch-to-batch reproducibility data are included. The in situ cross-linked PEG-based coating chemistry is unique in its formulation, and its surface properties are attractive for a broad range of in vitro bioassay applications. PMID:18815622

  7. Chemical modification of wheat protein-based natural polymers: grafting and cross-linking reactions with poly(ethylene oxide) diglycidyl ether and ethyl diamine.

    PubMed

    Kurniawan, Lusiana; Qiao, Greg G; Zhang, Xiaoqing

    2007-09-01

    Mobile poly(ethylene oxide) diglycidyl ether (PEODGE) segments were chemically grafted onto a soluble wheat protein (WP), and different network structures were formed via coupling reactions with ethyl diamine (EDA) in different PEODGE/EDA (PE) ratios. When the PE ratio was 1:1, linear PEs were the predominant segments grafted onto WP chains and the whole WP-PEODGE-EDA (WPE) system was still soluble with an increased molecular weight. Reducing the amount of EDA in the systems produced insoluble cross-linked WPE networks. The broad distribution of network structures and chain mobility resulted in a broad glass transition for the WPE materials. However, the glass transition started at lower temperatures, and the materials became flexible at room temperature. The PE segments were present in all rigid, intermediate, and mobile phases in WPE networks, while the proportion of mobile WP chains was increased as a result of the plasticization effect from the mobile PE segments. The mobility of the most mobile component lipid was also restricted to some extent when forming the cross-linked WPE networks. The study demonstrated that the formation of different network structures with PE segments could significantly improve the flexibility of WP materials, vary the solubility, and modify the mechanical performance of WP-based natural polymer materials. PMID:17663528

  8. Resistance to moist conditions of whey protein isolate and pea starch biodegradable films and low density polyethylene nondegradable films: a comparative study

    NASA Astrophysics Data System (ADS)

    Mehyar, G. F.; Bawab, A. Al

    2015-10-01

    Biodegradable packaging materials are degraded under the natural environmental conditions. Therefore using them could alleviate the problem of plastics accumulation in nature. For effective replacement of plastics, with biodegradable materials, biodegradable packages should keep their properties under the high relative humidity (RH) conditions. Therefore the objectives of the study were to develop biodegradable packaging material based on whey protein isolate (WPI) and pea starch (PS). To study their mechanical, oxygen barrier and solubility properties under different RHs compared with those of low density polyethylene (LDPE), the most used plastic in packaging. Films of WPI and PS were prepared separately and conditioned at different RH (30-90%) then their properties were studied. At low RHs (<50%), WPI films had 2-3 times lower elongation at break (E or stretchability) than PS and LDPE. Increasing RH to 90% significantly (P<0.01) increased the elongation of PS but not WPI and LDPE films. LDPE and WPI films kept significantly (P<0.01) higher tensile strength (TS) than PS films at high RH (90%). Oxygen permeability (OP) of all films was very low (<0.5 cm3 μm m-2 d-1 kPa-1) below 40% RH but increased for PS films and became significantly (P<0.01) different than that of LDPE and WPI at > 40% RH. Oxygen permeability of WPI and LDPE did not adversely affected by increasing RH to 65%. Furthermore, WPI and LDPE films had lower degree of hydration at 50% and 90% RH and total soluble matter than PS films. These results suggest that WPI could be successfully replacing LDPE in packaging of moist products.

  9. Method for casting polyethylene pipe

    NASA Technical Reports Server (NTRS)

    Elam, R. M., Jr.

    1973-01-01

    Short lengths of 7-cm ID polyethylene pipe are cast in a mold which has a core made of room-temperature-vulcanizable (RTV) silicone. Core expands during casting and shrinks on cooling to allow for contraction of the polyethylene.

  10. Method for shaping polyethylene tubing

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  11. 21 CFR 172.260 - Oxidized polyethylene.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Oxidized polyethylene. 172.260 Section 172.260... CONSUMPTION Coatings, Films and Related Substances § 172.260 Oxidized polyethylene. Oxidized polyethylene may... polyethylene is the basic resin produced by the mild air oxidation of polyethylene. The polyethylene used...

  12. 21 CFR 172.260 - Oxidized polyethylene.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Oxidized polyethylene. 172.260 Section 172.260... CONSUMPTION Coatings, Films and Related Substances § 172.260 Oxidized polyethylene. Oxidized polyethylene may... polyethylene is the basic resin produced by the mild air oxidation of polyethylene. The polyethylene used...

  13. 21 CFR 172.260 - Oxidized polyethylene.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oxidized polyethylene. 172.260 Section 172.260... CONSUMPTION Coatings, Films and Related Substances § 172.260 Oxidized polyethylene. Oxidized polyethylene may... polyethylene is the basic resin produced by the mild air oxidation of polyethylene. The polyethylene used...

  14. Methoxy-Poly(ethylene glycol) Modified Poly(L-lactide) Enhanced Cell Affinity of Human Bone Marrow Stromal Cells by the Upregulation of 1-Cadherin and Delta-2-catenin

    PubMed Central

    Mao, Xueli; Chen, Zetao; Ling, Junqi; Quan, Jingjing; Peng, Hui; Xiao, Yin

    2014-01-01

    Poly(l-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation. This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression. PMID:24834434

  15. Methoxy-poly(ethylene glycol) modified poly(L-lactide) enhanced cell affinity of human bone marrow stromal cells by the upregulation of 1-cadherin and delta-2-catenin.

    PubMed

    Mao, Xueli; Chen, Zetao; Ling, Junqi; Quan, Jingjing; Peng, Hui; Xiao, Yin

    2014-01-01

    Poly(L-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation. This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression. PMID:24834434

  16. Poly(ethylene glycol)- and carboxylate-functionalized gold nanoparticles using polymer linkages: single-step synthesis, high stability, and plasmonic detection of proteins.

    PubMed

    Park, Garam; Seo, Daeha; Chung, Im Sik; Song, Hyunjoon

    2013-11-01

    Gold nanoparticles with suitable surface functionalities have been widely used as a versatile nanobioplatform. However, functionalized gold nanoparticles using thiol-terminated ligands have a tendency to aggregate, particularly in many enzymatic reaction buffers containing biological thiols, because of ligand exchange reactions. In the present study, we developed a one-step synthesis of poly(ethylene glycol) (PEG)ylated gold nanoparticles using poly(dimethylaminoethyl methacrylate) (PDMAEMA) in PEG as a polyol solvent. Because of the chelate effect of polymeric functionalities on the gold surface, the resulting PEGylated gold nanoparticles (Au@P-PEG) are very stable under the extreme conditions at which the thiol-monolayer-protected gold nanoparticles are easily coagulated. Using the solvent mixture of PEG and ethylene glycol (EG) and subsequent hydrolysis, gold nanoparticles bearing mixed functionalities of PEG and carboxylate are generated. The resulting particles exhibit selective adsorption of positively charged chymotrypsin (ChT) without nonselective adsorption of bovine serum albumin (BSA). The present nanoparticle system has many advantages, including high stability, simple one-step synthesis, biocompatibility, and excellent binding specificity; thus, this system can be used as a versatile platform for potential bio-related applications, such as separation, sensing, imaging, and assays. PMID:24090031

  17. Modular Poly(Ethylene Glycol) Scaffolds Provide the Ability to Decouple the Effects of Stiffness and Protein Concentration on PC12 Cells

    PubMed Central

    Scott, Rebecca A.; Elbert, Donald L.; Willits, Rebecca Kuntz

    2011-01-01

    This research focused on developing a modular poly(ethylene glycol) (PEG) scaffold, assembled from PEG microgels and collagen I, to provide an environment to decouple the chemical and mechanical cues within a three dimensional scaffold. We first characterized the microgel fabrication process, examining the size, polydispersity, swelling ratio, mesh size, and storage modulus of the polymer particles. The resulting microgels had a low polydispersity, PDI=1.08, and a diameter of ~1.6 ?m. The mesh size of the microgels, calculated from the swelling ratio, was 47.53 . Modular hydrogels (modugels) were then formed by compacting EDC/NHS activated microgels with PEG-4arm-amine and 0, 1, 10, or 100 ?g/mL collagen. Stiffness (G*) of the modugels was not significantly altered with the addition of collagen, allowing for modification of the chemical environment independent from the mechanical properties of the scaffold. PC12 cell aggregation increased in modugels as collagen concentrations increased and cell viability in modugels was improved over bulk PEG hydrogels. Overall, these results indicate that further exploration of modular scaffolds formed from microgels could allow for a better understanding of the relationship between the chemical and mechanical properties and cellular behavior. PMID:21787889

  18. Polyethylene glycol modification decreases the cardiac toxicity of carbonaceous dots in mouse and zebrafish models

    PubMed Central

    Chen, Jian-tao; Sun, Hua-qin; Wang, Wei-liang; Xu, Wen-ming; He, Qin; Shen, Shun; Qian, Jun; Gao, Hui-le

    2015-01-01

    Aim: Carbonaceous dots (CDs), which have been used for diagnosis, drug delivery and gene delivery, are accumulated in heart at high concentrations. To improve their biocompatibility, polyethylene glycol-modified CDs (PEG-CDs) were prepared. In this study we compared the cardiac toxicity of CDs and PEG-CDs in mouse and zebrafish models. Methods: Mice were intravenously treated with CDs (size: 4.9 nm, 5 mg·kg−1·d−1) or PEG-CDs (size: 8.3 nm, 5 mg·kg−1·d−1) for 21 d. Their blood biochemistry indices, ECG, and histological examination were examined for evaluation of cardiac toxicity. CDs or PEG-CDs was added in incubator of cmlc2 transgenic Zebrafish embryos at 6 hpf, and the shape and size of embryos' hearts were observed at 48 hpf using a fluorescent microscope. Furthermore, whole-mount in situ hybridization was used to examine the expression of early cardiac marker gene (clml2) at 48 hpf. Results: Administration of CDs or PEG-CDs in mice caused mild, but statistically insignificant reduction in serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels detected at 7 d, which were returned to the respective control levels at 21 d. Neither CDs nor PEG-CDs caused significant changes in the morphology of heart cells. Administration of CDs, but not PEG-CDs, in mice caused marked increase of heart rate. Both CDs and PEG-CDs did not affect other ECG parameters. In the zebrafish embryos, addition of CDs (20 μg/mL) caused heart development delay, whereas addition of CDs (80 μg/mL) led to heart malformation. In contrast, PEG-CDs caused considerably small changes in heart development, which was consistent with the results from the in situ hybridization experiments. Conclusion: CDs causes greater cardiac toxicity, especially regarding heart development. Polyethylene glycol modification can attenuate the cardiac toxicity of CDs. PMID:26456589

  19. Effects of adding protein, condensed tannins, and polyethylene glycol to diets of sheep and goats fed one-seed juniper and low quality roughage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biochemical mechanisms that limit voluntary intake of one-seed juniper by browsing ruminants are not well understood. Twelve Rambouillet ewes (78 ± 2.3 kg BW) and 12 Boer-Spanish does (54 ± 1.4 kg BW) were used in a split-plot sequence design to investigate the effects of adding protein, quebrac...

  20. Preparation of hydroxylated polyethylene surfaces.

    PubMed

    Zand, A; Walter, N; Bahu, M; Ketterer, S; Sanders, M; Sikorski, Y; Cunningham, R; Beholz, L

    2008-01-01

    The surfaces of high-density or ultra-high-molecular-weight polyethylenes were hydroxylated using a two-step process. The wetting and wear properties of the untreated (virgin) and surface hydroxylated polyethylenes were compared. The introduction of hydroxyl groups provided an increase in surface hydrophilicity resulting in reduced wear. Hydrophilicity was analyzed by optical analysis of water contact angle. Wear was determined by weight loss under conditions of a reciprocating pin-on-plate apparatus with the panels immersed in water or calf serum. These results suggest that hydroxylation of polyethylene friction-bearing orthopedic surfaces may lead to a longer joint life. PMID:18318959

  1. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene, oxidized. 177.1620 Section 177.1620... Contact Surfaces § 177.1620 Polyethylene, oxidized. Oxidized polyethylene identified in paragraph (a) of... following prescribed conditions: (a) Oxidized polyethylene is the basic resin produced by the mild...

  2. 21 CFR 172.260 - Oxidized polyethylene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oxidized polyethylene. 172.260 Section 172.260 Food... Coatings, Films and Related Substances § 172.260 Oxidized polyethylene. Oxidized polyethylene may be safely used as a component of food, subject to the following restrictions: (a) Oxidized polyethylene is...

  3. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene, chlorinated. 177.1610 Section 177... Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section... purpose of this section, chlorinated polyethylene consists of basic polymers produced by the...

  4. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene, fluorinated. 177.1615 Section 177... Contact Surfaces § 177.1615 Polyethylene, fluorinated. Fluorinated polyethylene, identified in paragraph... prescribed conditions: (a) Fluorinated polyethylene food-contact articles are produced by modifying...

  5. 21 CFR 172.260 - Oxidized polyethylene.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Oxidized polyethylene. 172.260 Section 172.260... § 172.260 Oxidized polyethylene. Oxidized polyethylene may be safely used as a component of food, subject to the following restrictions: (a) Oxidized polyethylene is the basic resin produced by the...

  6. Effects of Biomass in Polyethylene or Polylactic Acid Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that compounding Polyethylene (PE) or Polylactic acid (PLA) with a dairy-based bioplastic resulted in composites with good mechanical properties. In this study, mass ratios of a dairy-protein-based material (DBP) ranging from 0, 5, 10 and 20 wt% replaced equivalent masse...

  7. Electromagnetic Characteristics of Thin Polyethylene-Carbon-Polyethylene Films

    NASA Astrophysics Data System (ADS)

    Volynets, N. I.; Lyubimov, A. G.; Plyushch, A. O.; Poddubskaya, O. G.; Kuzhir, P. P.; Korovin, E. Yu.; Suslyaev, V. I.; Macutkevic, J.; Pikutskaya, E. S.; Baturkin, S. A.; Klochkov, A. Ya.

    2015-09-01

    A method of manufacturing a polyethylene - expanded carbon - polyethylene layered structures which allows thin (down to 90 ?m) and flexible sandwiches to be easily made, is suggested. The electromagnetic properties of the manufactured composite materials at frequencies from 1 MHz to 3 GHz, 26-37.5 GHz, and 0.1-1.4 THz are analyzed. It is established that the material so obtained is opaque for the Ka microwave band due to high reflectivity (96-97%), does not transmit electromagnetic radiation of the terahertz range, has a high conductivity (up to 1 S/m) in the frequency range from 1 MHz to 1 GHz, and retains the main physical polyethylene properties (light weight, elasticity, and flexibility).

  8. Degradable polyethylene: fantasy or reality.

    PubMed

    Roy, Prasun K; Hakkarainen, Minna; Varma, Indra K; Albertsson, Ann-Christine

    2011-05-15

    Plastic waste disposal is one of the serious environmental issues being tackled by our society today. Polyethylene, particularly in packaging films, has received criticism as it tends to accumulate over a period of time, leaving behind an undesirable visual footprint. Degradable polyethylene, which would enter the eco-cycle harmlessly through biodegradation would be a desirable solution to this problem. However, the "degradable polyethylene" which is presently being promoted as an environmentally friendly alternative to the nondegradable counterpart, does not seem to meet this criterion. This article reviews the state of the art on the aspect of degradability of polyethylene containing pro-oxidants, and more importantly the effect these polymers could have on the environment in the long run. On exposure to heat, light, and oxygen, these polymers disintegrate into small fragments, thereby reducing or increasing the visual presence. However, these fragments can remain in the environment for prolonged time periods. This article also outlines important questions, particularly in terms of time scale of complete degradation, environmental fate of the polymer residues, and possible accumulation of toxins, the answers to which need to be established prior to accepting these polymers as environmentally benign alternatives to their nondegradable equivalents. It appears from the existing literature that our search for biodegradable polyethylene has not yet been realized. PMID:21495645

  9. Profiles in garbage: Polyethylene terephthalate

    SciTech Connect

    Miller, C.

    1997-11-01

    Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks -- along with salad dressing, fruit juices, peanut butter, and other household and consumer products -- use PET bottles. PET also is used for film, sheeting for cups and food trays, oven-safe trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early 1970s. Because it is an ``engineered`` resin, PET is more expensive than commodity resins such as high-density polyethylene (HDPE) and, for the same reason, it is usually the highest valued plastic recyclable.

  10. Thiolated polyethylene oxide as a non-fouling element for nano-patterned bio-devices

    NASA Astrophysics Data System (ADS)

    Lisboa, Patrcia; Valsesia, Andrea; Colpo, Pascal; Gilliland, Douglas; Ceccone, Giacomo; Papadopoulou-Bouraoui, Andri; Rauscher, Hubert; Reniero, Fabiano; Guillou, Claude; Rossi, Franois

    2007-03-01

    This work describes the synthesis of a thiolated polyethylene oxide that self-assembles on gold to create a non-fouling surface. Thiolated polyethylene oxide was synthesised by reacting 16-mercaptohexadecanoic acid with polyethylene glycol mono methyl ether. The coverage of the thiolated polyethylene oxide on gold was studied by cyclic voltammetry, and the modified surfaces were characterised by X-ray photoelectron spectroscopy and ellipsometry. Protein resistance was assessed using quartz crystal microbalance. Results showed a non-fouling character produced by the thiolated polyethylene oxide. The synthesised product was used as the passivation layer on nano-patterned surfaces consisting of arrayed nano-spots, fabricated by plasma based colloidal lithography. The specific adsorption of anti-bovine serum albumin in the mercaptohexadecanoic acid spots was verified by atomic force microscopy.

  11. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene, oxidized. 177.1620 Section 177.1620... Components of Single and Repeated Use Food Contact Surfaces § 177.1620 Polyethylene, oxidized. Oxidized polyethylene identified in paragraph (a) of this section may be safely used as a component of...

  12. 21 CFR 573.780 - Polyethylene.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Polyethylene. 573.780 Section 573.780 Food and... Listing § 573.780 Polyethylene. (a) Identity. Polyethylene consists of basic polymers manufactured by the catalytic polymerization of ethylene. (b) Specifications. (1) For the purposes of this section,...

  13. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section may be safely used as articles or components of articles that...

  14. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene, fluorinated. 177.1615 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1615 Polyethylene, fluorinated. Fluorinated polyethylene, identified in paragraph (a) of this section, may be safely used as food-contact articles...

  15. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene, fluorinated. 177.1615 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1615 Polyethylene, fluorinated. Fluorinated polyethylene, identified in paragraph (a) of this section, may be safely used as food-contact articles...

  16. 21 CFR 573.780 - Polyethylene.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Polyethylene. 573.780 Section 573.780 Food and... Listing § 573.780 Polyethylene. (a) Identity. Polyethylene consists of basic polymers manufactured by the catalytic polymerization of ethylene. (b) Specifications. (1) For the purposes of this section,...

  17. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section may be safely used as articles or components of articles that...

  18. 21 CFR 573.780 - Polyethylene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Polyethylene. 573.780 Section 573.780 Food and... Listing § 573.780 Polyethylene. (a) Identity. Polyethylene consists of basic polymers manufactured by the catalytic polymerization of ethylene. (b) Specifications. (1) For the purposes of this section,...

  19. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene, fluorinated. 177.1615 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1615 Polyethylene, fluorinated. Fluorinated polyethylene, identified in paragraph (a) of this section, may be safely used as food-contact articles...

  20. 21 CFR 573.780 - Polyethylene.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Polyethylene. 573.780 Section 573.780 Food and... Listing § 573.780 Polyethylene. (a) Identity. Polyethylene consists of basic polymers manufactured by the catalytic polymerization of ethylene. (b) Specifications. (1) For the purposes of this section,...

  1. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section may be safely used as articles or components of articles that...

  2. 21 CFR 573.780 - Polyethylene.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Polyethylene. 573.780 Section 573.780 Food and... Listing § 573.780 Polyethylene. (a) Identity. Polyethylene consists of basic polymers manufactured by the catalytic polymerization of ethylene. (b) Specifications. (1) For the purposes of this section,...

  3. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene, oxidized. 177.1620 Section 177.1620... Components of Single and Repeated Use Food Contact Surfaces § 177.1620 Polyethylene, oxidized. Oxidized polyethylene identified in paragraph (a) of this section may be safely used as a component of...

  4. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene, oxidized. 177.1620 Section 177.1620... Components of Single and Repeated Use Food Contact Surfaces § 177.1620 Polyethylene, oxidized. Oxidized polyethylene identified in paragraph (a) of this section may be safely used as a component of...

  5. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene, fluorinated. 177.1615 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1615 Polyethylene, fluorinated. Fluorinated polyethylene, identified in paragraph (a) of this section, may be safely used as food-contact articles...

  6. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section may be safely used as articles or components of articles that...

  7. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene, oxidized. 177.1620 Section 177.1620... Components of Single and Repeated Use Food Contact Surfaces § 177.1620 Polyethylene, oxidized. Oxidized polyethylene identified in paragraph (a) of this section may be safely used as a component of...

  8. Modification of polyethylene, polyamide, polyethylen terephthalate films by ion implantation

    SciTech Connect

    Azarko, I.I.; Karpovich, I.A.; Kozlov, I.P.

    1995-12-01

    The polyethylene, polyamide and polyethylene-terephthalate films implanted with B{sup +} and N{sup +} ions have been studied. The existence of two competing processes taking place in the implanted polymers was suggested. The first one, the formation of two- or three-dimensional carbon structures and polyene bonds. The second is the oxidation of the radiation damaged polymer yielding the carbonyl groups. The first process predominate at implanted dose over 2 x 10{sup 16} cm{sup -2}. At lower doses the second process becomes important. The possibility of a magnetic ordering in the implanted polymer films was observed. On the base of implanted PE we have fabricated three-electrode electronic device that can function as electric key.

  9. Micropatterning of poly(ethylene glycol) diacrylate hydrogels.

    PubMed

    Ali, Saniya; Cuchiara, Maude L; West, Jennifer L

    2014-01-01

    This protocol describes the techniques to synthesize and fabricate micropatterned poly(ethylene glycol) diacrylate-based hydrogels that can be used as substrates in cellular studies and tissue engineering scaffolds. These materials provide an essentially bioinert background material due to the very low protein adsorption characteristics of poly(ethylene glycol), but the materials can be modified with covalently grafted peptides, proteins, or other biomolecules of interest to impart specific biofunctionality to the material. Further, it is possible to use micropatterning technologies to control the localization of such covalent grafting of biomolecules to the hydrogel materials, thus spatially controlling the cell-material interactions. This protocol presents a relatively simple approach for mask-based photolithographic patterning, generally best suited for patterning the surface of hydrogel materials for 2D cell studies. A more sophisticated technique, two-photon laser scanning lithography, is also presented. This technique allows free-form, 3D micropatterning in hydrogels. PMID:24560506

  10. Waste product profile: Polyethylene terephthalate

    SciTech Connect

    Miller, C.

    1996-02-01

    Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks are the primary product packaged in PET. Salad dressing, peanut butter, and other household and consumer products also use PET bottles. PET is also used for film, sheeting for cups and food trays, ovenable trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early `70s. Because it is an ``engineered`` resin, it is more expensive than commodity resins such as high-density polyethylene (HDPE). The primary market for recycled PET is the fiber industry, which uses PET for carpet fiber, sweaters and other clothing, and for other uses. Recycled PET can also be used for food and beverage containers. Export markets, particularly Asian countries, are becoming increasingly important.

  11. Covalent attachment of lactase to low-density polyethylene films.

    PubMed

    Goddard, J M; Talbert, J N; Hotchkiss, J H

    2007-01-01

    Polymer films to which bioactive compounds such as enzymes are covalently attached offer potential for in-package processing of food. Beta-galactosidase (lactase) was covalently attached to surface-functionalized low-density polyethylene films. A two-step wet chemical functionalization introduced 15.7 nmol/cm2 primary amines to the film surface. Contact angle, dye assays, X-ray photoelectron spectroscopy, and appropriate protein assays were used to characterize changes in film surface chemistry after each step in the process of attachment. Glutaraldehyde was used to covalently attach lactase to the surface at a density of 6.0 microg protein per cm2 via reductive amination. The bond between the covalently attached lactase and the functionalized polyethylene withstood heat treatment in the presence of an ionic denaturant with 74% enzyme retention, suggesting that migration of the enzyme into the food product would be unlikely. The resulting polyethylene had an enzyme activity of 0.020 lactase units (LU)/cm2 (approximately 4500 LU/g). These data suggest that enzymes that may have applications in foods can be covalently attached to inert polymer surfaces, retain significant activity, and thus have potential as a nonmigratory active packaging materials. PMID:17995883

  12. Poly(ethylene oxide) functionalization

    DOEpatents

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  13. Single electron states in polyethylene

    SciTech Connect

    Wang, Y.; School of Physics and Complex Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4 ; MacKernan, D.; Cubero, D. E-mail: n.quirke@imperial.ac.uk; Coker, D. F.; Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 ; Quirke, N. E-mail: n.quirke@imperial.ac.uk

    2014-04-21

    We report computer simulations of an excess electron in various structural motifs of polyethylene at room temperature, including lamellar and interfacial regions between amorphous and lamellae, as well as nanometre-sized voids. Electronic properties such as density of states, mobility edges, and mobilities are computed on the different phases using a block Lanczos algorithm. Our results suggest that the electronic density of states for a heterogeneous material can be approximated by summing the single phase density of states weighted by their corresponding volume fractions. Additionally, a quantitative connection between the localized states of the excess electron and the local atomic structure is presented.

  14. Shock induced dissociation of polyethylene

    SciTech Connect

    Morris, C.E.; Loughran, E.D.; Mortensen, G.F.; Gray, G.T. III; Shaw, M.S.

    1989-01-01

    To identify the physical processes occurring on the Hugoniot, shock-recovery experiments were performed. Cylindrical recovery systems were used that enabled a wide range of single-shock Hugoniot states to be examined. Mass spectroscopy was used to examine the gaseous dissociation products. X-ray and TEM measurements were made to characterize the post-shock carbon structures. A dissociation product equation of state is presented to interpret the observed results. Polyethylene (PE) samples that were multiply shocked to their final states dissociated at much higher pressures than single-shocked samples. 5 refs., 2 figs., 1 tab.

  15. Diffusion of limonene in polyethylene.

    PubMed

    Limm, W; Begley, T H; Lickly, T; Hentges, S G

    2006-07-01

    Diffusion coefficients of limonene in various linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) resins have been determined from sorption data using a thermogravimetric methodology. From these data, one can determine whether polymer synthesis parameters such as the choice of catalytic process or co-monomer result in substantial differences in how much food packaging additives might migrate to food. For example, LLDPE is currently manufactured using either one of two distinct catalytic processes: Ziegler-Natta (ZN) and metallocene, a single-site catalyst. ZN catalysis is a heterogeneous process that has dominated polyolefin synthesis over the last half-century. It involves a transition metal compound containing a metal-carbon bond that can handle repeated insertion of olefin units. In contrast, metallocene catalysis has fewer than 20 years of history, but has generated much interest due to its ability to produce highly stereospecific polymers at a very high yield. In addition to high stereospecificity, metallocene-catalysed polymers are significantly lower in polydispersity than traditional ZN counterparts. Absorption and desorption testing of heat-pressed films made from LLDPE and LDPE resins of varying processing parameters indicates that diffusion coefficients of limonene in these resins do not change substantially. PMID:16751151

  16. Polyethylene crystallization in compatibilized polyethylene/polyamide 6 blends

    NASA Astrophysics Data System (ADS)

    Ceccia, Simona; Hynstova, Katerina; Fabre, Alexandra; Trouillet-Fonti, Lise; Long, Didier; Sotta, Paul

    2011-03-01

    Blends of semicrystalline polymers can exhibit much better properties than each of the pure polymers regarding e.g. impact/modulus compromise. Controlling the crystallization mechanisms (nucleation, kinetics) is a key factor to obtain the desired morphologies which lead to these unique properties. We have studied the crystallization of polyethylene (PE) in blends of PE and polyamide 6 (PA) compatibilized by PE functionalized with maleic anhydride (PE-g-MA, 1 wt% MA) obtained by reactive blending. Samples with different amounts of PA6 (0-60 %vol) have been investigated by polarized optical microscopy and Differential Scanning Calorimetry. The samples were heated at a temperature above the melting temperature of PE and below the melting temperature of PA, and then cooled at the selected crystallization temperature. We describe how the crystallization kinetics is modified by the presence of PA and MA.

  17. How competitive is linear low density polyethylene

    SciTech Connect

    Crimmin, S.M.

    1982-12-01

    Predicts that as convertors adapt new techniques to exploit properties of linear low density polyethylene, use will shift away from other polyethylenes. The basic manufacturing process for all types of polyethylene centers around 4 variables: monomers, catalysts, heat and pressure. Comparing production costs for high pressure low density polyethylene (HPLDPE) and low pressure low density polyethylene (LPLDPE) begins with the 4 variables. Monomer and catalysts remain fairly constant as a main component of total cost. The large differences occur with heat and pressure. Estimated cost saving of operating a LPLDPE reactor is almost 25% less than that of a HPLDPE reactor. Areas where LPLDPE will begin to dominate include the film market, injection molding, rotomolding, wire and cable jacketing, and blow molding. Concludes that it is only a matter of time before existing HPLDPE plants reach obsolescence. The only negatives in LPLDPE concern the plastic convertors and extrusion equipment producers.

  18. Photolithographic patterning of polyethylene glycol hydrogels.

    PubMed

    Hahn, Mariah S; Taite, Lakeshia J; Moon, James J; Rowland, Maude C; Ruffino, Katie A; West, Jennifer L

    2006-04-01

    A simple, inexpensive photolithographic method for surface patterning deformable, solvated substrates is demonstrated using photoactive poly(ethylene glycol) (PEG)-diacrylate hydrogels as model substrates. Photolithographic masks were prepared by printing the desired patterns onto transparencies using a laser jet printer. Precursor solutions containing monoacryloyl-PEG-peptide and photoinitiator were layered onto hydrogel surfaces. The acrylated moieties in the precursor solution were then conjugated in monolayers to specific hydrogel regions by exposure to UV light through the transparency mask. The effects of UV irradiation time and precursor solution concentration on the levels of immobilized peptide were characterized, demonstrating that bound peptide concentration can be controlled by tuning these parameters. Multiple peptides can be immobilized to a single hydrogel surface in distinct patterns by sequential application of this technique, opening up its potential use in co-cultures. In addition, 3D structures can be generated by incorporating PEG-diacrylate into the precursor solution. To evaluate the feasibility of using these patterned surfaces for guiding cell behavior, human dermal fibroblast adhesion on hydrogel surfaces patterned with acryloyl-PEG-RGDS was investigated. This patterning method may find use in tissue engineering, the elucidation of fundamental structure-function relationships, and the formation of immobilized cell and protein arrays for biotechnology. PMID:16375965

  19. Chemical modification of lipase with polyethylene glycol

    SciTech Connect

    Baillargeon, M.W.; Sonnet, P.E.

    1986-05-01

    Proteins become soluble in selected organic solvents after covalent attachment of polyethylene glycol (PEG) to the free amino groups. A crude Candida rugosa lipase preparation was coupled with activated PEG to yield a PEG-lipase with both hydrolytic and synthetic activity in aqueous and organic media. The coupling step involved a modification of the procedure of Inada et al. To maintain lipase activity, mild reaction conditions were used: pH 7.5 or 8.0 buffer, 20 minutes reaction at room temperature. Up to 87% of the initial activity is retained in PEG-lipase. The PEG-lipase is soluble in aqueous solution, benzene and trichloroethane. The hydrolytic and synthetic activity of PEG-lipase in various organic solvents is compared to that of the native lipase; the PEG-lipase consistently shows higher specific activity, PEG-lipase also shows activity in iso-octane and cyclohexane, in which it is insoluble. The stability of PEG- and native lipase is solvent dependent.

  20. Reuse of polyethylene waste in road construction.

    PubMed

    Raju, S S S V Gopala; Murali, M; Rengaraju, V R

    2007-01-01

    The cost of construction of flexible pavements depends on thickness of the pavement layers. The thickness of pavement mainly depends on the strength of the subgrade. By suitable improvement to the strength of the subgrade, considerable saving in the scarce resources and economy can be achieved. Because of their lightweight, easy handling, non-breakable and corrosion free nature, polyethylene have surpassed all other materials in utility. But polyethylene waste has been a matter of concern to environmentalists as it is non-biodegradable. In this investigation, an attempt has been made to study the improvement of California Bearing Ratio (CBR) value of soils stabilized with waste polyethylene bags. This alternative material is mixed in different proportions to the gravel and clay to determine the improvement ofCBR value. Use of the waste polyethylene bags observed to have a significant impact on the strength and economy in pavement construction, when these are available locally in large quantities. PMID:18472564

  1. Maxillofacial prostheses of chlorinated polyethylene.

    PubMed

    May, P D

    1978-05-01

    There is clearly a need for maxillofacial prosthetic materials with improved properties. The chlorinated polyethylenes are thermoplastic elastomers which have particularly promising properties, and were used by us to prepare improved maxillofacial prostheses. Suitable CPE resins were compounded with other polymers and with pigments on a heated rubber mill to form thin sheets in a variety of shades. These were heated at 190 degrees C for 10 min and placed between heated linotype mold halves. The prosthesis was formed in a hand press. Sometimes heating and pressing were repeated. After cooling in water, the prosthesis was removed and hand-shaded with oil-soluble dyes. Physical properties were evaluated using standard techniques; skin irritation studies were conducted by 14-day insult patch tests on rabbits. Clinical evaluations were conducted on human volunteers. Parallel evaluations were conducted on commerically available materials for comparison. The CPE was superior to all of the three commerical materials in most properties, and comparable to the better of the three in the remaining properties. On balance, CPE was significantly superior. Early results indicate that the materials and techniques required are easily handled in the dental lab and that the final prosthesis has excellent aesthetic and patient acceptability. PMID:670262

  2. Polyethylene Wear in Knee Arthroplasty.

    PubMed

    Chakravarty, Rajit; Elmallah, Randa D K; Cherian, Jeffrey Jai; Kurtz, Steven M; Mont, Michael A

    2015-10-01

    Polyethylene (PE) wear and osteolysis are common causes for late revisions of knee arthroplasties. Several implant and surgical factors have been implicated in contributing to the development of wear, such as type of bearing surface used, inaccurate articular geometry, and poor knee kinematics. In addition, patient-related factors, such as younger age and higher activity levels, may also contribute to wear. Our purpose was to evaluate and compare the effect of these variables on wear rates following knee arthroplasty. Recently, technological advancements have been aimed at reducing the incidence of wear by improving the PE manufacturing process, creating implants that minimize contact stresses, and refining our surgical techniques. Furthermore, the development of newer highly cross-linked PEs (HXLPEs) and the introduction of additives, such as vitamin E, to the PEs may improve overall implant survivorship. As a result, with the advent of newer implant and PE designs, wear is no longer the most common cause of early failure, though it remains an important factor in limiting long-term implant survivorship. However, there are a few clinical studies evaluating the long-term outcomes of newer HXLPEs and implant designs, with further evaluations necessary to determine the best implant-PE combination for improved knee arthroplasty survivorship. PMID:26030263

  3. Radioprotective effect of polyethylene glycol

    SciTech Connect

    Shaeffer, J.; Schellenberg, K.A.; Seymore, C.H.; Schultheiss, T.E.; el-Mahdi, A.M.

    1986-07-01

    Polyethylene glycol of molecular weight 400 (PEG-400) had a radioprotective effect of about 20% against lethality when given ip 20 min prior to single or fractionated X-ray doses to the head and neck. Dose modification factors (DMF) based on LD50/15 values ranged from 1.14 to 1.24. A similar DMF of 1.12 based on LD50/30 values was obtained using single doses of whole-body X irradiation. Mice given head and neck irradiation had significantly reduced rectal temperatures (31.3 +/- 3.0/sup 0/C) 9 days post irradiation compared with unirradiated controls (35.4 +/- 0.6/sup 0/C). No such reduction was observed when PEG-400 was given with radiation (36.3 +/- 0.9/sup 0/C). PEG-400 also lessened, but not significantly, the frequency of shivering in irradiated animals. Histopathologic examination of the oral structures demonstrated only marginal protection by PEG-400. Estimation of the alpha/beta ratio from LD50 data on head and neck-irradiated mice yielded values of 4.4 +/- 1.9 (95% confidence limits) Gy without PEG-400 and 7.9 +/- 1.4 Gy with PEG-400. Since it is a non-thiol radioprotector, PEG-400 may be more useful when combined with more conventional thiol-containing radioprotectors.

  4. Charge packets modeling in polyethylene

    NASA Astrophysics Data System (ADS)

    Baudoin, F.; Laurent, C.; Teyssedre, G.; Le Roy, S.

    2014-04-01

    Charge packets in insulating polymers have been reported by many groups within the last two decades, especially in polyethylene-based materials. They consist in a pulse of net charge that remains in the form of a pulse as it crosses the insulation. In spite of a variety of characteristics depending on material properties and experimental conditions, one of the puzzling aspects of the packets is their repetitive character until they eventually die away. Several theories have been proposed to explain their formation and propagation. Two of them have the advantage of simplicity and of being physically based, being the existence of an hysteresis loop in the injection mechanism or a negative differential mobility of carriers with the electric field. Based on these descriptions, some progress has been done recently by discussing the shape of the packets during their propagation but none of the concepts has been incorporated into a transport model to describe the full evolution from the packet generation to their vanishing. Here, we used a simplified transport model featuring bipolar charge injection and transport coupled to specific conditions in charge injection or carrier mobility to reproduce experimental results. One of the salient features of the results is that both models are able to reproduce the repetitive character and the dying away of the packets that appear to be linked with the internal field distribution modulated by a bipolar space charge.

  5. Morphology of polyethylene ski base materials.

    PubMed

    Fischer, Jrg; Wallner, Gernot M; Pieber, Alois

    2010-03-01

    We used high-resolution Raman spectroscopy and differential scanning calorimetry for a comprehensive analysis of carbon black-filled polyethylene ski base grades at processing stages from the raw material to the structured ski base. Based on Raman mapping, we assessed the applicability of an advanced evaluation procedure for amorphous, disordered, and crystalline phase fractions of polyethylene for polyethylene extrusion and sinter grades. For sinter grades, a sufficient segregation between carbon black and polyethylene was confirmed, allowing for a comprehensive Raman spectroscopic morphological analysis. Significant morphological changes in polyethylene due to processing from the raw material to the semi-finished film and to the structured ski base were identified. Throughout the processing chain, we observed a decrease in crystallinity and an increase in the amorphous phase fraction. Although the raw material and the sintered semi-finished film exhibited a different but uniform polyethylene morphology, the morphological changes due to structuring of the ski base are limited to the top surface layer. The highest amorphous phase fractions were detected in the surface of the structured ski bases. PMID:20391084

  6. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  7. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  8. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  9. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  10. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  11. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  12. Current sterilization and packaging methods for polyethylene.

    PubMed

    Bargmann, L S; Bargmann, B C; Collier, J P; Currier, B H; Mayor, M B

    1999-12-01

    Gamma sterilization in an air environment can induce oxidation in polyethylene. Oxidation can lead to polyethylene embrittlement, compromising mechanical integrity and clinical performance of polyethylene bearings. For these reasons, orthopaedic manufacturers have modified their methods of sterilizing and packaging polyethylene. Two alternative approaches have emerged: sterilization by non-radiation methods and sterilization by gamma irradiation in inert environments. The current study presents a prognosis for clinical performance of polyethylene sterilized with new methods, based on material property analyses (oxidation levels, mechanical properties, crosslink density) of never implanted and retrieved bearings. Data from bearings that were never implanted which were sterilized with the new methods and shelf aged as many as 3 years, show negligible oxidation, ductility above 400%, and ultimate tensile strength near 50 MPa, all exceeding specifications of the American Society for Testing and Materials. There are significant differences in crosslink density (swell ratio) depending on the sterilization method. Retrievals indicate that bearings sterilized with these new methods are performing well clinically and that the majority are not changing with time. The current study suggests that the shelf oxidation problem has been addressed by these new sterilization techniques and that clinical performance at short followup is acceptable. However, long-term clinical performance must be evaluated in the future. PMID:10611860

  13. Polymeric compositions incorporating polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  14. Protein

    MedlinePLUS

    ... Alike Protein is built from building blocks called amino acids. Our bodies make amino acids in two different ways: Either from scratch, or by modifying others. A few amino acids (known as the essential amino acids) must come ...

  15. Hydrophilization of polyethylene film by preirradiation method

    NASA Astrophysics Data System (ADS)

    P?kala, W.; Achmatowicz, T.; Kroh, J.

    The preirradiation method of radiation grafting has been employed to produce polyethylene (PE) films as hydrophilic materials. The effects of radiation dose, atmosphere of preirradiation and monomer concentration on the grafting of methacrylic acid and its salts (NH 4,K) on low density polyethylene have been studied. The degree of grafting increases with the dose of preirradiation, time and concentration of both acid and salt form of monomer. Irradiation in air leads to a higher degree of grafting than in N 2 or in vacuum. Hydrophilic properties of grafted polyethylene film expressed as an electric resistance have been found to depend on the degree of grafting and the type of monomers used. The PE film with 90-95% grafting of methacrylic acid has been found to have electric resistance lower than 1 10 2 m?cm 2. The same conditions of grafting for the salt form give the film an electric resistance higher than 1 10 6 m?cm 2.

  16. Recent advances in polyethylene separator technology

    NASA Astrophysics Data System (ADS)

    Weighall, M. J.

    The well known technical and production benefits of polyethylene separator materials over other separator materials have prompted a dramatic increase in polyethylene separator usage in recent years. Separator trends in the United States from 1980 to 1996, and in Europe from 1987 to 1992, are shown. The manufacturing process for polyethylene separators is outlined, with particular emphasis on the latest advances in manufacturing technology. These improvements have resulted in a higher quality product, and also benefit the environment because of the sophisticated oil extraction and solvent recovery system. The product quality improvements resulting from the latest manufacturing technology include consistent conformance to dimensional specifications, low electrical resistance, close control of residual oil content, virtual elimination of pinholes, and good running properties on the battery manufacturers' plate enveloping machines. The material can also be manufactured with a very thin backweb to reduce electrical resistance still further.

  17. Polyethylene glycol-electrolyte solution (PEG-ES)

    MedlinePLUS

    Polyethylene glycol-electrolyte solution (PEG-ES) is used to empty the colon (large intestine, bowel) before a ... Polyethylene glycol-electrolyte solution (PEG-ES) comes as a powder to mix with water and take by ...

  18. Proteins

    NASA Astrophysics Data System (ADS)

    Regnier, Fred E.; Gooding, Karen M.

    Because of the complexity of cellular material and body fluids, it is seldom possible to analyze a natural product directly. Qualitative and quantitative analyses must often be preceded by some purification step that separates the molecular species being examined from interfering materials. In the case of proteins, column liquid chromatography has been used extensively for these fractionations. With the advent of gel permeation, cation exchange, anion exchange, hydrophobic, and affinity chromatography, it became possible to resolve proteins through their fundamental properties of size, charge, hydrophobicity, and biological affinity. The chromatographic separations used in the early isolation and characterization of many proteins later became analytical tools in their routine analysis. Unfortunately, these inherently simple and versatile column chromatographic techniques introduced in the 50s and 60s have a severe limitation in routine analysis-separation time. It is common to encounter 1-24 h separation times with the classical gel-type supports.

  19. Relationship between arterial thrombosis and neutralization of a polyethylene ionomer

    SciTech Connect

    Goggins, J.A.; Hiltner, A.; Jones, P.K. ); Jones, R.D. )

    1993-05-01

    The influence of three levels of sodium neutralization of an ethylene/methacrylic acid copolymer on in vivo blood compatibility was studied in a canine arterial model. Effects due to sample fabrication methods were also monitored. Sodium content, sodium release, hydrogen dissociation, and localization of anionic groups were noted. Polymer surface energy, surface morphology, water uptake, and thermal properties were characterized. Material characterization and in vivo implantation disclose the following: (1) thermal pressing generated oxidation degradation products that decreased in vivo blood compatibility. Solution-cast samples adhered and activated fewer blood elements; (2) platelets and leukocytes were sensitive to differences in shear rate in the carotid and femoral arteries, with the femoral site tending toward higher shear, more platelet deposition and fewer leukocytes; (3) the surface properties of the polyethylene control, 0% Na, and 50% Na samples tended to be similar. These properties were different from the 100% Na sample; (4) these differences were manifested in vivo by platelet activation and thrombus development on the polyethylene, 0% Na, and 50% Na implants, while the 100% Na implant surfaces were predominantly covered by singly adherent, unactivated platelets; (5) it is proposed that the improvement in biocompatibility for the 100% Na ionomer is due to the cluster development in the neutralized methacrylic component and that either directly, or through appropriate protein adsorption and/or conformational adjustment to the cluster regions, platelets are not activated and do not initiate the coagulation mechanism.

  20. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (400) monolaurate. 178.3760 Section 178.3760 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400)...

  1. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene resins, carboxyl modified. 177.1600... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface...

  2. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (400) monolaurate. 178.3760... SANITIZERS Certain Adjuvants and Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400) monolaurate containing not more than 0.1 percent by weight of ethylene...

  3. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene resins, carboxyl modified. 177.1600... Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface of articles intended for use in contact...

  4. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  5. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  6. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (400) monolaurate. 178.3760... SANITIZERS Certain Adjuvants and Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400) monolaurate containing not more than 0.1 percent by weight of ethylene...

  7. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  8. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  9. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene resins, carboxyl modified. 177.1600... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface...

  10. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (400) monolaurate. 178.3760... SANITIZERS Certain Adjuvants and Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400) monolaurate containing not more than 0.1 percent by weight of ethylene...

  11. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (400) monolaurate. 178.3760... SANITIZERS Certain Adjuvants and Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400) monolaurate containing not more than 0.1 percent by weight of ethylene...

  12. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene resins, carboxyl modified. 177.1600... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface...

  13. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  14. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene resins, carboxyl modified. 177.1600... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface...

  15. Morphological characteristics of selenium-polyethylene glycol nanocomposites

    NASA Astrophysics Data System (ADS)

    Kipper, A. I.; Titova, A. V.; Borovikova, L. N.; Pisarev, O. A.

    2015-09-01

    Hybrid organo-inorganic nanocomposites containing selenium nanoparticles stabilized with polyethylene glycols with different molecular masses were synthesized and studied by the static and dynamic scattering methods. It was shown that the morphological characteristics of nanocomposites can be regulated by varying the molecular mass of polyethylene glycols and the ratio of the selenium-polyethylene glycol components during the synthesis.

  16. Dynamic compressive behavior of foamed polyethylene film

    NASA Astrophysics Data System (ADS)

    Tateyama, Kohei; Yamada, Hiroyuki; Ogasawara, Nagahisa; Okui, Ryo; Ogawa, Kinya

    2015-09-01

    The foamed film as the shock absorption material has attracted much attention because it is thin (100 ?m 400 ?m) and has a closed cell structure. However, the dynamic mechanical properties have not been reported in the foamed film. The purpose of this study is to elucidate the compressive behavior of the foamed polyethylene film at the wide strain rate range. First, the new compressive test apparatus for the dynamic strain rate, the drop-weight testing machine with opposed load cell, was developed, which can be also evaluated the dynamic stress equilibrium of the specimen. It is confirmed that the compressive flow stress increased with increasing the strain rate, regardless of the film thickness. The foamed polyethylene film has the high strain rate sensitivity in the quasi-static deformation. On the other hand, there is almost no change of the strain rate sensitivity in the dynamic and the impact deformation. In order to investigate the mechanism of strain rate dependence, the foamed polyethylene film was observed by X-ray computed tomography scanner before and after compressive test. The fracture of the closed cell only occurred in the quasi-static deformation. It was clarified that the strain rate sensitivity of the foamed film depends strongly on that of the construction material, polyethylene.

  17. STRESS CRACK TESTING OF POLYETHYLENE GEOMEMBRANES

    EPA Science Inventory

    The sensitivity of high density polyethylene (HDPE) geomembranes to stress cracking is evaluated under accelerated conditions at a constant stress. he test specimens are according to ASTM D-1822, and are of the dumbbell shape with a constant length in the central section. he acce...

  18. POLYETHYLENE ENCAPSULATES FOR HAZARDOUS WASTE DRUMS

    EPA Science Inventory

    This capsule report summarizes studies of the use of polyethylene (P.E.) for encapsulating drums of hazardous wastes. Flat PE sheet is welded to roto moded PE containers which forms the encapsulates. Plastic pipe welding art was used, but the prototype welding apparatus required ...

  19. Preservation of Mercury in Polyethylene Containers.

    ERIC Educational Resources Information Center

    Piccolino, Samuel Paul

    1983-01-01

    Reports results of experiments favoring use of 0.5 percent nitric acid with an oxidant (potassium dichromate or potassium permanganate) to preserve samples in polyethylene containers for mercury analysis. Includes procedures used and statistical data obtained from the experiments. (JN)

  20. DNP with Trityl Radicals in Deuterated Polyethylene

    NASA Astrophysics Data System (ADS)

    Wang, Li; Meyer, W.; Berlin, A.; Herick, J.; Hess, C.; Reicherz, G.

    2016-02-01

    Chemically doping with trityl radicals was performed in fully deuterated polyethylene. The behavior of paramagnetic centers has been investigated by ESR X-band spectrometer. The highest deuteron polarization was 8% at 2.5 T and 1 K with a spin concentration of 3 × 1019 spins/g.

  1. Evaluation of Paulownia elongata wood polyethylene composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paulownia wood flour (PWF), a byproduct of milling lumber, was employed as a bio-filler and blended with high density polyethylene (HDPE) via extrusion. Paulownia wood (PW) shavings were milled through a 1-mm screen then separated via shaking into various particle fractions using sieves (#30 - < #2...

  2. Reliability evaluation of gas piping grade polyethylene

    SciTech Connect

    Chudnovsky, A.; Baron, D.; Shulkin, Y.

    1995-11-01

    A new method for predicting the reliability of a structural component made of gas piping grade polyethylene is proposed. The method employs a knowledge of the distribution of the critical sizes of defects, together with a mathematical modeling of slow crack growth in polyethylene. The population of critical size defects is obtained from fractographic analyses of the material and fitted by the distribution of extremes. The model provides a relationship linking the duration of slow crack growth process (lifetime) and applied stress at constant temperature for a prescribed material dan specimen geometry. This relationship is validated by experimental observations for various polyethylenes. According to the model, for a particular material, specimen geometry, applied stress and temperature, the lifetime is a function of initial crack size only. The relationship between the random initial crack size and the lifetime, together with the probability density for the initial crack size, yields the probability density for lifetime. The latter allows the calculation of the reliability function for a structural component. The approach is illustrated using the model data for polyethylene tensile single-edge notched specimens, and a representative distribution of defects which caused failure of rectangular bars under tension.

  3. Herbicide dissipation from low density polyethylene mulch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field and laboratory studies were conducted to examine herbicide dissipation when applied to low density polyethylene (LDPE) mulch for dry scenarios vs. washing off with water. In field studies, halosulfuron, paraquat, carfentrazone, glyphosate, and flumioxazin were applied to black 1.25-mil LDPE at...

  4. Polyethylene glycol as an alternative polymer solvent for nanoparticle preparation.

    PubMed

    Ali, Mohamed Ehab; Lamprecht, Alf

    2013-11-01

    Solvent toxicity is one of the major drawbacks in the preparation of polymeric nanoparticles today. Here, polyethylene glycols (PEGs) are proposed as non-toxic solvents for the preparation of polymeric nanoparticles. Based on a preparation process similar to the solvent displacement technique, several process parameters were examined for their effects on the properties of the prepared nanoparticles by this method to achieve the optimum preparation conditions. The investigated parameters included polymer type and concentration, volume and temperature of the dispersing phase, methods of dispersing the solvent phase into the non-solvent phase, duration and speed of stirring and washing by dialysis. Ammonio methacrylate copolymer (Eudragit RL), poly-lactide-co-glycolide (PLGA), and PEG-PLGA were found to be successful polymer candidates for the preparation of nanoparticles by this method. Nanoparticles with diameters ranging from 80 to 400 nm can be obtained. The encapsulation efficiencies of bovine serum albumin, and lysozyme as model proteins were ranging from 7.3±2.2% to 69.3±1.8% depending on the strength of polymer-protein interaction. Biological assays confirmed a full lysozyme activity after the preparation process. PEG proved to be a suitable non-toxic solvent for the preparation of polymeric protein-loaded nanoparticles, maintaining the integrity of protein. PMID:23958752

  5. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography

    NASA Technical Reports Server (NTRS)

    Revzin, A.; Russell, R. J.; Yadavalli, V. K.; Koh, W. G.; Deister, C.; Hile, D. D.; Mellott, M. B.; Pishko, M. V.

    2001-01-01

    The fabrication of hydrogel microstructures based upon poly(ethylene glycol) diacrylates, dimethacrylates, and tetraacrylates patterned photolithographically on silicon or glass substrates is described. A silicon/silicon dioxide surface was treated with 3-(trichlorosilyl)propyl methacrylate to form a self-assembled monolayer (SAM) with pendant acrylate groups. The SAM presence on the surface was verified using ellipsometry and time-of-flight secondary ion mass spectrometry. A solution containing an acrylated or methacrylated poly(ethylene glycol) derivative and a photoinitiator (2,2-dimethoxy-2-phenylacetophenone) was spin-coated onto the treated substrate, exposed to 365 nm ultraviolet light through a photomask, and developed with either toluene, water, or supercritical CO2. As a result of this process, three-dimensional, cross-linked PEG hydrogel microstructures were immobilized on the surface. Diameters of cylindrical array members were varied from 600 to 7 micrometers by the use of different photomasks, while height varied from 3 to 12 micrometers, depending on the molecular weight of the PEG macromer. In the case of 7 micrometers diameter elements, as many as 400 elements were reproducibly generated in a 1 mm2 square pattern. The resultant hydrogel patterns were hydrated for as long as 3 weeks without delamination from the substrate. In addition, micropatterning of different molecular weights of PEG was demonstrated. Arrays of hydrogel disks containing an immobilized protein conjugated to a pH sensitive fluorophore were also prepared. The pH sensitivity of the gel-immobilized dye was similar to that in an aqueous buffer, and no leaching of the dye-labeled protein from the hydrogel microstructure was observed over a 1 week period. Changes in fluorescence were also observed for immobilized fluorophore labeled acetylcholine esterase upon the addition of acetyl acholine.

  6. Assessment of polyethylene wear in total hip replacement.

    PubMed

    Devane, P A; Horne, J G

    1999-12-01

    The three-dimensional technique is a method for the measurement of polyethylene wear in patients with total hip joint replacement. Application of image processing technology allows automation of point selection from digital images of radiographs scanned into the computer. Validation of image processing modifications reveals a three-fold increase in accuracy and a 40-fold increase in reproducibility compared with manual input of points from a digitizer during bench testing. A review of three-dimensional technique application to clinical patients gives information on the factors that influence polyethylene wear. Increasing age, activity level, femoral head size, decreasing polyethylene thickness, and insertion of total hip prostheses without cement all increase polyethylene wear. Restoration of femoral offset during total hip replacement seems to decreases polyethylene wear. No apparent difference in polyethylene wear rate could be found between two groups of patients, one group had a stainless steel-polyethylene articulation and the other had a ceramic-polyethylene articulation. Measurement of the serial polyethylene wear of individual patients reveals a high rate of femoral head penetration during the first 2 years after total hip replacement using metal-backed acetabular components inserted without cement. Interpretation of this femoral head penetration as true polyethylene wear may be erroneous, however, because creep of the polyethylene and acetabular liner movement within its metal shell cannot be measured. PMID:10611861

  7. Solubility of Lysozyme in Polyethylene Glycol-Electrolyte Mixtures: The Depletion Interaction and Ion-Specific Effects

    PubMed Central

    Bon?ina, Matja; Re?i?, Jurij; Vlachy, Vojko

    2008-01-01

    The solubility of aqueous solutions of lysozyme in the presence of polyethylene glycol and various alkaline salts was studied experimentally. The protein-electrolyte mixture was titrated with polyethylene glycol, and when precipitation of the protein occurred, a strong increase of the absorbance at 340 nm was observed. The solubility data were obtained as a function of experimental variables such as protein and electrolyte concentrations, electrolyte type, degree of polymerization of polyethylene glycol, and pH of the solution; the last defines the net charge of the lysozyme. The results indicate that the solubility of lysozyme decreases with the addition of polyethylene glycol; the solubility is lower for a polyethylene glycol with a higher degree of polymerization. Further, the logarithm of the protein solubility is a linear function of the polyethylene glycol concentration. The process is reversible and the protein remains in its native form. An increase of the electrolyte (NaCl) concentration decreases the solubility of lysozyme in the presence and absence of polyethylene glycol. The effect can be explained by the screening of the charged amino residues of the protein. The solubility experiments were performed at two different pH values (pH = 4.0 and 6.0), where the lysozyme net charge was +11 and +8, respectively. Ion-specific effects were systematically investigated. Anions such as Br?, Cl?, F?, and \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{H}}_{2}{\\mathrm{PO}}_{4}^{-}\\end{equation*}\\end{document} (all in combination with Na+), when acting as counterions to a protein with positive net charge, exhibit a strong effect on the lysozyme solubility. The differences in protein solubility for chloride solutions with different cations Cs+, K+, and Na+ (coions) were much smaller. The results at pH = 4.0 show that anions decrease the lysozyme solubility in the order \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{F}}^{-}\\hspace{.167em}<\\hspace{.167em}{\\mathrm{H}}_{2}{\\mathrm{PO}}_{4}^{-}\\hspace{.167em}<\\hspace{.167em}{\\mathrm{Cl}}^{-}\\hspace{.167em}<\\hspace{.167em}{\\mathrm{Br}}^{-}\\end{equation*}\\end{document} (the inverse Hofmeister series), whereas cations follow the direct Hofmeister series (Cs+ < K+ < Na+) in this situation. PMID:18441020

  8. Polyethylene liner cementation into fixed acetabular shells.

    PubMed

    Haft, Geoffrey F; Heiner, Anneliese D; Callaghan, John J; Dorr, Lawrence D; Wan, Zhinian; Long, William; Longjohn, Donald B; Brown, Thomas D

    2002-06-01

    A patient presenting with a secure cementless acetabular component and with femoral head penetration through the polyethylene liner is a common clinical problem. Cementing a new liner into the fixed shell is one option. We evaluated this option in a clinical series of 17 cases and with a preliminary mechanical study. In the 1 clinical failure (5.9%), the failure occurred at the cement-liner interface. The most important variable in optimizing the mechanical strength of the cemented liner construct was adequate preparation of the cement-liner interface. This approach to treating the patient with a fixed cementless shell and a worn polyethylene liner can provide a durable construct with minimal morbidity. PMID:12068431

  9. Analytical rheology of metallocene-catalyzed polyethylenes

    NASA Astrophysics Data System (ADS)

    Shanbhag, Sachin; Takeh, Arsia

    2011-03-01

    A computational algorithm that seeks to invert the linear viscoelastic spectrum of single-site metallocene-catalyzed polyethylenes is presented. The algorithm uses a general linear rheological model of branched polymers as its underlying engine, and is based on a Bayesian formulation that transforms the inverse problem into a sampling problem. Given experimental rheological data on unknown single-site metallocene- catalyzed polyethylenes, it is able to quantitatively describe the range of values of weight-averaged molecular molecular weight, MW , and average branching density, bm , consistent with the data. The algorithm uses a Markov-chain Monte Carlo method to simulate the sampling problem. If, and when information about the molecular weight is available through supplementary experiments, such as chromatography or light scattering, it can easily be incorporated into the algorithm, as demonstrated. Financial support from NSF DMR 0953002.

  10. Molecular dynamics study of polyethylene extension

    NASA Astrophysics Data System (ADS)

    Melker, Alexander I.; Soloviev, Dmitri V.

    1999-05-01

    Molecular dynamics study of polyethylene extension is presented. The simulations were made using a model of a polyethylene globule containing 500 carbon and 1002 hydrogen atoms, which represents a small part of a bulk polymer specimen. The main objective of this work was to analyze the macromolecule structure evolution as well as to obtain stress- strain diagrams for the process. It is found that the stress- strain diagrams consist of three parts. The first part is due to deformation annealing, the second part is associated with work-hardening and the third one is connected with formation of an oriented structure. On the basis of the structure changes a molecular theory of deformation is suggested.

  11. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India.

    PubMed

    Harshvardhan, Kumar; Jha, Bhavanath

    2013-12-15

    Sixty marine bacteria isolated from pelagic waters were screened for their ability to degrade low-density polyethylene; among them, three were positive and able to grow in a medium containing polythene as the sole carbon source. The positive isolates were identified as Kocuria palustris M16, Bacillus pumilus M27 and Bacillus subtilis H1584 based on the 16S rRNA gene sequence homology. The weight loss of polyethylene was 1%, 1.5% and 1.75% after 30 days of incubation with the M16, M27 and H1584 isolates, respectively. The maximum (32%) cell surface hydrophobicity was observed in M16, followed by the H1584 and M27 isolates. The viability of the isolates growing on the polyethylene surface was confirmed using a triphenyltetrazolium chloride reduction test. The viability was also correlated with a concomitant increase in the protein density of the biomass. Polyethylene biodegradation was further confirmed by an increase in the Keto Carbonyl Bond Index, the Ester Carbonyl Bond Index and the Vinyl Bond Index, which were calculated from FT-IR spectra. PMID:24210946

  12. Speciation of antimony in polyethylene terephthalate bottles

    SciTech Connect

    Martin, R.R.; Ablett, J.; Shotyk, W.S.; Naftel, S.; Northrup, P.

    2009-12-18

    Antimony contamination has been reported in drinking water from polyethylene terephthalate (PET) bottles. Micro-X-ray fluorescence (XRF) analysis has been used to identify the distribution and chemical form of residual antimony used as a catalyst in the manufacture of PET bottles. The results are consistent with clusters of Sb(III) having dimensions of the order of tens of micrometers, clearly showing the ability of synchrotron radiation analyses to both map elemental distribution and determine oxidation state.

  13. Polyethylene bags and solar ultraviolet radiation

    SciTech Connect

    Holm-Hansen, O.; Helbling, E.W. )

    1993-01-22

    This technical comment questions the use of polyethylene bags to collect and store samples in a previously reported study on the effects of solar ultraviolet radiation on natural phytoplankton assemblages in Antarctic waters. A significant difference in the photosynthetic rates was noted for samples in glassware as opposed to bags, although the overall conclusions remained similar. A response by the original authors is included. 1 tab.

  14. Cyclic Behavior of High Density Polyethylene (HDPE)

    NASA Astrophysics Data System (ADS)

    Dusunceli, Necmi; Aydemir, Bulent; Terzi, Niyazi U.

    2010-06-01

    This article presents the mechanical behavior of high density polyethylene (HDPE). Samples were prepared by extracting extruded HDPE pipe. Cyclic and strain rate jump behavior of HDPE were studied under uniaxial tensile loading conditions. The strain jump tests indicated that mechanical behavior of HDPE has deformation memory. Further, it was found that increasing cycle number on cyclic loading test increased strain accumulation amount and HDPE exhibited ratcheting behavior at on loading-unloading-reloading at constant stress level.

  15. Surface modification of polyethylene by functionalized plasma

    SciTech Connect

    Yuan, S.; Marchant, R.E.

    1993-12-31

    The surface of low density polyethylene(PE) has been modified by functionalized plasma-polymerized N-vinyl-2-pyrrolidone (PPNVP) and allyl alcohol(PPAA) thin films, PPNVP and PPAA(approx. 100 nm). The surface structure and functional groups of modified surfaces were characterized by water contact angle, ATR/FTIR and ESCA techniques. Plasma polymer modified PE surfaces exhibited significant water contact angle hysteresis and a much lower value of advancing water contact angle than that of unmodified polyethylene. Reduction of PPNVP and PPAA modified surfaces by sodium borohydride coverted into hydroxyl groups. The determined concentrations of hydroxyl groups on the reduced PPNVP and PPAA modified surfaces by ESCA after gas-phase derivatization with trifluoroacetic anhydride (TFAA) were about 25% and 30% of total oxygen content, respectively. Finally, the amine containing molecules such as amine-terminated polyethylene oxide (PEO) and 3-aminopropyltriethoxysilane (APTS) were coupled to the hydroxylated surfaces. These novel modified PE surfaces are suitable for immobilization of biomolecules.

  16. Rechargeable antimicrobial surface modification of polyethylene.

    PubMed

    Goddard, J M; Hotchkiss, J H

    2008-10-01

    Polyethylene films were surface modified, to incorporate amine and amide functionalities, and subsequently were evaluated for their ability to recharge the antimicrobial N-halamine structures after contact with sodium hypochlorite, a common food-approved sanitizer. Surfaces were tested for chlorine retention and release, as well as antimicrobial activity against microorganisms relevant to food quality and food safety, including Escherichia coli K-12, Pseudomonas fluorescens, Bacillus cereus, and Listeria monocytogenes. N-Halamine functionalized polyethylene exhibited chlorine rechargeability, maintaining 5 to 7 nmol/cm2 N-halamine structures for six successive charges. The N-halamine functionalized films achieved a 4-log reduction for all organisms tested and maintained a greater than 3-log reduction for four successive uses, suggesting that the modified polyethylene films are capable of providing rechargeable antimicrobial activity. The modified films exhibited antimicrobial activity in aqueous suspensions (P < 0.05) and reduced microbial growth in diluted broth (P < 0.05), suggesting the potential for biocidal action even in the presence of organic matter. Such a rechargeable antimicrobial surface could supplement existing cleaning and sanitation programs in food processing environments to reduce the adhesion, growth, and subsequent cross-contamination of food pathogens, as well as food spoilage organisms. PMID:18939750

  17. Polyethylene solidification of low-level wastes

    SciTech Connect

    Kalb, P.D.; Colombo, P.

    1985-02-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive waste in polyethylene. Waste streams selected for this study included those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Four types of commercially available low-density polyethylenes were employed which encompass a range of processing and property characteristics. Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste and polyethylene type. Property evaluation testing was performed on laboratory-scale specimens to assess the potential behavior of actual waste forms in a disposal environment. Waste form property tests included water immersion, deformation under compressive load, thermal cycling and radionuclide leaching. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash, and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported. 37 refs., 33 figs., 22 tabs.

  18. Polyethylene in knee arthroplasty: A review.

    PubMed

    Chakrabarty, Gautam; Vashishtha, Mayank; Leeder, Daniel

    2015-06-01

    Polyethylene (PE) has been used extensively in knee arthroplasty since the mid 20th century. Progress in material manufacturing and processing has led to newer polyethylenes over last few decades with different material properties. It has been established that PE wear in knee arthroplasty causes particle induced osteolysis which is the main reason for late failure and requires revision surgery. Although there are various causes of wear, the properties of PE have long been a matter of investigation as a contributory factor. The advent of newer highly cross linked PE has been shown to improve wear rates in hip arthroplasty but the benefits have not been shown to be of the same degree in knee arthroplasty. The laboratory and clinical studies so far are limited and slightly conflicting in their conclusions. The risks of using highly cross linked PE in knee arthroplasty include tibial post fracture, disruption of locking mechanism, liner fracture which can lead to increased wear and osteolysis. The current evidence suggests that highly cross linked polyethylenes should be used with caution and only considered in younger active patients. The results of a recently completed randomized trial to compare the conventional with high molecular weight PE in knee arthroplasty are awaited. PMID:25983517

  19. Extensional Flow Induced Crystallization of Polyethylene

    NASA Astrophysics Data System (ADS)

    Nicholson, David; Locker, C. Rebecca; Tsou, Andy; Rutledge, Gregory

    2014-03-01

    The majority of manufactured polyethylene is used in films mostly through the blown film fabrication process where extensional flow induced crystallization is a critical component in affecting the development of crystalline morphology and amorphous topology. In order to optimize the blown film performance, it is critical to understand the mechanism of extensional flow induced crystallization of polyethylene. Model high density polyethylene with a Mn of 20,000 g/mol and a PDI (polydispersity) of 2 and lower were synthesized by organometallic catalysts. Extensional flow induced crystallization of these materials was measured using the SER (Sentmanat Extensional Rheometer) either at a given rate with varying temperatures or vice versa. A continuum model was applied to analyze the flow induced crystallization data. All samples after extensional flow were quenched in ice water and the resulting morphology was characterized using SAXS and WAXS. The extensional rate was found to be effective in modifying morphology whereas the temperature was not; neither temperature nor strain rate affected the final film crystallinity. With an increase in extensional rate, crystallites became thinner and narrower with potentially higher connectivity which could lead to higher toughness.

  20. Polyethylene in knee arthroplasty: A review

    PubMed Central

    Chakrabarty, Gautam; Vashishtha, Mayank; Leeder, Daniel

    2015-01-01

    Polyethylene (PE) has been used extensively in knee arthroplasty since the mid 20th century. Progress in material manufacturing and processing has led to newer polyethylenes over last few decades with different material properties. It has been established that PE wear in knee arthroplasty causes particle induced osteolysis which is the main reason for late failure and requires revision surgery. Although there are various causes of wear, the properties of PE have long been a matter of investigation as a contributory factor. The advent of newer highly cross linked PE has been shown to improve wear rates in hip arthroplasty but the benefits have not been shown to be of the same degree in knee arthroplasty. The laboratory and clinical studies so far are limited and slightly conflicting in their conclusions. The risks of using highly cross linked PE in knee arthroplasty include tibial post fracture, disruption of locking mechanism, liner fracture which can lead to increased wear and osteolysis. The current evidence suggests that highly cross linked polyethylenes should be used with caution and only considered in younger active patients. The results of a recently completed randomized trial to compare the conventional with high molecular weight PE in knee arthroplasty are awaited. PMID:25983517

  1. Method for determination of polyethylene glycol molecular weight.

    PubMed

    Pihlasalo, Sari; Hnninen, Pekka; Hrm, Harri

    2015-04-01

    A method utilizing competitive adsorption between polyethylene glycols (PEGs) and labeled protein to nanoparticles was developed for the determination of PEG molecular weight (MW) in a microtiter plate format. Two mix-and-measure systems, time-resolved luminescence resonance energy transfer (TR-LRET) with donor europium(III) polystyrene nanoparticles and acceptor-labeled protein and quenching with quencher gold nanoparticles and fluorescently labeled protein were compared for their performance. MW is estimated from the PEG MW dependent changes in the competitive adsorption properties, which are presented as the luminescence signal vs PEG mass concentration. The curves obtained with the TR-LRET system overlapped for PEGs larger than 400 g/mol providing no information on MW. Distinctly different curves were obtained with the quenching system enabling the assessment of PEG MW within a broad dynamic range. The data was processed with and without prior knowledge of the PEG concentration to measure PEGs over a MW range from 62 to 35,000 g/mol. The demonstration of the measurement independent of the PEG concentration suggests that the estimation of MW is possible with quenching nanoparticle system for neutrally charged and relatively hydrophilic polymeric molecules widening the applicability of the simple and cost-effective nanoparticle-based methods. PMID:25783500

  2. Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride.

    PubMed

    Quiroz-Castillo, J M; Rodrguez-Flix, D E; Grijalva-Monteverde, H; Del Castillo-Castro, T; Plascencia-Jatomea, M; Rodrguez-Flix, F; Herrera-Franco, P J

    2014-01-30

    Novel films of polyethylene and chitosan were obtained using extrusion. These polymers have interesting properties, and processing them with methods that are of high use in the industry, such as the extrusion method, can have a significant effect on the potential applications of these materials. The individual materials were thermally characterized; after this, extruded films of low density polyethylene and chitosan mixtures were prepared with the addition of polyethylene-graft-maleic anhydride as a compatibilizer for the blends, and glycerol, as a plasticizer for chitosan. The use of compatibilizer and plasticizer agents improved the processability and compatibility of the mixtures, as well as their mechanical properties, as revealed by mechanical property measurements and scanning electron microscopy. It was possible to prepare blends with a maximum chitosan content of 20 wt%. The material stiffness increased with the increase of chitosan in the sample. FTIR studies revealed the existence of an interaction between the compatibilizer and chitosan. PMID:24299879

  3. Fabrication and anti-fouling properties of photochemically and thermally immobilized poly(ethylene oxide) and low molecular weight poly(ethylene glycol) thin films.

    PubMed

    Wang, Hui; Ren, Jin; Hlaing, Aye; Yan, Mingdi

    2011-02-01

    Poly(ethylene oxide) (PEO) and low molecular weight poly(ethylene glycol) (PEG) were covalently immobilized on silicon wafers and gold films by way of the CH insertion reaction of perfluorophenyl azides (PFPAs) by either photolysis or thermolysis. The immobilization does not require chemical derivatization of PEO or PEG, and polymers of different molecular weights were successfully attached to the substrate to give uniform films. Microarrays were also generated by printing polymer solutions on PFPA-functionalized wafer or Au slides followed by light activation. For low molecular weight PEG, the immobilization was highly dependent on the quality of the film deposited on the substrate. While the spin-coated and printed PEG showed poor immobilization efficiency, thermal treatment of the PEG melt on PFPA-functionalized surfaces resulted in excellent film quality, giving, for example, a grafting density of 9.2×10(-4)Å(-2) and an average distance between grafted chains of 33Å for PEG 20,000. The anti-fouling property of the films was evaluated by fluorescence microscopy and surface plasmon resonance imaging (SPRi). Low protein adsorption was observed on thermally-immobilized PEG whereas the photoimmobilized PEG showed increased protein adsorption. In addition, protein arrays were created using polystyrene (PS) and PEG based on the differential protein adsorption of the two polymers. PMID:21044787

  4. Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene

    PubMed Central

    Kondyurin, Alexey V.; Naseri, Pourandokht; Tilley, Jennifer M. R.; Nosworthy, Neil J.; Bilek, Marcela M. M.; McKenzie, David R.

    2012-01-01

    The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers. PMID:24278665

  5. The yield behavior of polyethylene tubes subjected to biaxial loadings

    NASA Technical Reports Server (NTRS)

    Semeliss, M.; Wong, R.; Tuttle, M.

    1990-01-01

    High-density polyethylene is subjected to biaxial states of stress to examine the yield behavior of the semicrystalline thermoplastic under constant octahedral shear-stress rates. Combinations of internal pressures and axial loads are applied to thin-walled tubes of polyethylene, and the strain response in the axial and hoop directions are measured. The polyethylene specimens are found to be anisotropic, and the experimental measurements are compared to yield criteria that are applicable to isotropic and anisotropic materials.

  6. Patterned functional carbon fibers from polyethylene

    SciTech Connect

    Hunt, Marcus A; Saito, Tomonori; Brown, Rebecca H; Kumbhar, Amar S; Naskar, Amit K

    2012-01-01

    Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.

  7. Fracture Analysis of Medium Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Skozrit, Ivica; Tonković, Zdenko

    The paper deals with the application of the reference stress method (RSM) to estimate the J and C integrals of cracked thick-walled metal as well as medium density polyethylene (MDPE) pipes. Unlike the existing solutions, the newly developed analytical approximations of the plastic limit pressure and J-integral are applicable to a wide range of crack dimensions. Based on the experimental data from literature and analogy between plasticity and creep, the paper discusses a method used to develop the efficient computational strategy for modeling creep fracture mechanisms by slow crack growth in a MDPE pipes.

  8. Nonlinear viscoelastic characterization of thin polyethylene film

    NASA Technical Reports Server (NTRS)

    Wilbeck, J. S.

    1981-01-01

    In order to understand the state of stress and strain in a typical balloon fabricated from thin polyethylene film, experiment data in the literature reviewed. It was determined that the film behaves as a nonlinear viscoelasticity material and should be characterized accordingly. A simple uniaxial, nonlinear viscoelastic model was developed for predicting stress given a certain strain history. The simple model showed good qualitative agreement with results of constant rate, uniaxial accurately predicting stresses for cyclic strain histories typical of balloon flights. A program was outlined which will result in the development of a more complex nonlinear viscoelastic model.

  9. Biocompatible composites of ultrahigh molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Suan, T. Nguen; Ivanova, L. P.; Korchagin, M. A.; Chaikina, M. V.; Shilko, S. V.; Pleskachevskiy, Yu. M.

    2015-10-01

    Mechanical and tribotechnical characteristics of biocompatible, antifriction and extrudable composites based on ultrahigh molecular weight polyethylene (UHMWPE) as well as hybrid matrix "UHMWPE + PTFE" with biocompatible hydroxyapatite filler under the dry friction and boundary lubrication were investigated. A comparative analysis of effectiveness of adding the hydroxyapatite to improve the wear resistance of composites based on these two matrices was performed. It is shown that the wear intensity of nanocomposites based on the hybrid matrix is lower than that for the composites based on pure UHMWPE. Possibilities of using the composites of the polymer "UHMWPE-PTFE" mixture as a material for artificial joints implants are discussed.

  10. Initial Stages of the Pyrolysis of Polyethylene.

    PubMed

    Popov, Konstantin V; Knyazev, Vadim D

    2015-12-10

    An experimental study of the kinetics of the initial stages of the pyrolysis of high-density polyethylene (PE) was performed. Quantitative yields of gas-phase products (C1-C8 alkanes and alkenes) and functional groups within the remaining polyethylene melt (methyl, vinyl, vinylene, vinylidene, and branching sites) were obtained as a function of time (0-20 min) at five temperatures in the 400-440 °C range. Gas chromatography and NMR ((1)H and (13)C) were used to detect the gas- and condensed-phase products, respectively. Modeling of polyethylene pyrolysis was performed, with the primary purpose of determining the rate constants of several critical reaction types important at the initial pyrolysis stages. Detailed chemical mechanisms were created (short and extended mechanisms) and used with both the steady-state approximation and numerical integration of the differential kinetic equations. Rate constants of critical elementary reactions (C-C backbone scission, two kinds of H-atom transfer, radical addition to the double bond, and beta-scission of tertiary alkyl radicals) were adjusted, resulting in an agreement between the model and the experiment. The values of adjusted rate constants are in general agreement with those of cognate reactions of small molecules in the gas phase, with the exception of the rate constants of the backbone C-C scission, which is found to be approximately 1-2 orders of magnitude lower. This observation provides tentative support to the hypothesis that congested PE melt molecular environment impedes the tumbling motions of separating fragments in C-C bond scission, thus resulting in less "loose" transition state and lower rate constant values. Sensitivity of the calculations to selected uncertainties in model properties was studied. Values and estimated uncertainties of four combinations of rate constants are reported as derived from the experimental results via modeling. The dependence of the diffusion-limited rate constant for radical recombination on the changing molecular mass of polyethylene was explicitly quantified and included in the extended kinetic mechanism, which appears critical for the agreement between modeling and experiment, particularly the agreement between the experimental and the calculated activation energies for product formation rates. Calculations were performed to estimate the contribution to the overall rate of radical recombination of the "reaction diffusion" phenomenon, where recombination is driven not by the actual motion of the recombining radical sites but rather by the migration of the radical site through PE melt due to rapid hydrogen transfer; this contribution was shown to be negligible for the conditions of the current work. PMID:26503638

  11. Polyethylene terephthalate thin films; a luminescence study

    NASA Astrophysics Data System (ADS)

    Carmona-Téllez, S.; Alarcón-Flores, G.; Meza-Rocha, A.; Zaleta-Alejandre, E.; Aguilar-Futis, M.; Murrieta S, H.; Falcony, C.

    2015-04-01

    Polyethylene Terephthalate (PET) films doped with Rare Earths (RE3+) have been deposited on glass by spray pyrolysis technique at 240 °C, using recycled PET and (RE3+) chlorides as precursors. Cerium, terbium, dysprosium and europium were used as dopants materials, these dopants normally produce luminescent emissions at 450, 545, 573 and 612 nm respectively; the doped films also have light emissions at blue, green, yellow and red respectively. All RE3+ characteristic emissions were observed at naked eyes. Every deposited films show a high transmission in the visible range (close 80% T), films surfaces are pretty soft and homogeneous. Films thickness is around 3 μm.

  12. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. 870.3470 Section 870.3470 Food and Drugs... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. (a) Identification. An intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a...

  13. 78 FR 48147 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary... conducting an administrative review under the countervailing duty (CVD) order on polyethylene terephthalate... polyethylene terephthalate film, sheet and strip, whether extruded or coextruded. Excluded are metallized...

  14. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. 870.3470 Section 870.3470 Food and Drugs... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. (a) Identification. An intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a...

  15. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. 870.3470 Section 870.3470 Food and Drugs... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. (a) Identification. An intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a...

  16. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. 870.3470 Section 870.3470 Food and Drugs... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. (a) Identification. An intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a...

  17. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. 870.3470 Section 870.3470 Food and Drugs... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. (a) Identification. An intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a...

  18. 76 FR 9753 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... of the antidumping duty order on polyethylene terephthalate film, sheet, and strip (``PET film... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic... (``POR''), November 6, 2008, through October 31, 2009. \\1\\ See Polyethylene Terephthalate Film,...

  19. Thermoluminescence Measurements of Medical Grade Polyethylene

    NASA Astrophysics Data System (ADS)

    Lewis, Scott; Dunlap, Greg; Palmer, Jeane; Jahan, M. S.

    1999-11-01

    Ultra-high molecular weight polyethylene (UHMWPE) is a biomaterial used in hip and knee joint replacements. Because this material is implanted into the body the material must be sterilized to prevent infection after implantation. Gamma irradiation is the most common method of sterilization, but it has one drawback; it causes the formation of free radicals and subsequent oxidative degradation of PE. By using thermoluminescence (TL) technique, free radical quenching temperature can be determined. In this study, UHMWPE was X-irradiated ( ~1 MRad at 10 keV) at 32 ^oC and subsequently heated to 200 ^oC at 1 ^oC / sec. The resulting luminescence known as thermoluminescence (TL) was recorded using a commercial TL dosimeter. The TL output, known as a glow curve, consists of two glow peaks, the prominent one occurs at 70 ^oC and a second one at 120 ^oC. It is suggested that the peak at 70 ^oC results from the recombination of free radicals due to molecular motion in the amorphous region, and the 120 ^oC peak is due to the motion of crystalline medium of the polyethylene matrix. Thermal annealing of free radicals as detected by TL can be a useful technique for diagnostic test of stabilization of radiation-sterilized medical joint components. *Supported by NSF REU Program (grant number EEC9619821) at the University of Memphis.

  20. Nanostructurization and thermal properties of polyethylenes' welds.

    PubMed

    Galchun, Anatoliy; Korab, Nikolay; Kondratenko, Volodymyr; Demchenko, Valeriy; Shadrin, Andriy; Anistratenko, Vitaliy; Iurzhenko, Maksym

    2015-01-01

    As it is known, polyethylene (PE) is one of the common materials in the modern world, and PE products take the major share on industrial and trade markets. For example, various types of technical PE like PE-63, PE-80, and PE-100 have wide industrial applications, i.e., in construction, for pipeline systems etc. A rapid development of plastics industry outstrips detailed investigation of welding processes and welds' formation mechanism, so they remain unexplored. There is still no final answer to the question how weld's microstructure forms. Such conditions limit our way to the understanding of the problem and, respectively, prevent scientific approaches to the welding of more complicated (from chemical point of view) types of polymers than PE. Taking into account state-of-the-art, the article presents results of complex studies of PE weld, its structure, thermophysical and operational characteristics, analysis of these results, and basing on that some hypotheses of welded joint and weld structure formation. It is shown that welding of dissimilar types of polyethylene, like PE-80 and PE-100, leads to the formation of better-ordered crystallites, restructuring the crystalline phase, and amorphous areas with internal stresses in the welding zone. PMID:25897302

  1. Polyethylene nanofibres with very high thermal conductivities.

    PubMed

    Shen, Sheng; Henry, Asegun; Tong, Jonathan; Zheng, Ruiting; Chen, Gang

    2010-04-01

    Bulk polymers are generally regarded as thermal insulators, and typically have thermal conductivities on the order of 0.1 W m(-1) K(-1). However, recent work suggests that individual chains of polyethylene--the simplest and most widely used polymer--can have extremely high thermal conductivity. Practical applications of these polymers may also require that the individual chains form fibres or films. Here, we report the fabrication of high-quality ultra-drawn polyethylene nanofibres with diameters of 50-500 nm and lengths up to tens of millimetres. The thermal conductivity of the nanofibres was found to be as high as approximately 104 W m(-1) K(-1), which is larger than the conductivities of about half of the pure metals. The high thermal conductivity is attributed to the restructuring of the polymer chains by stretching, which improves the fibre quality toward an 'ideal' single crystalline fibre. Such thermally conductive polymers are potentially useful as heat spreaders and could supplement conventional metallic heat-transfer materials, which are used in applications such as solar hot-water collectors, heat exchangers and electronic packaging. PMID:20208547

  2. Degradation of Green Polyethylene by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Ribeiro, Karla Veloso Gonçalves; Mendes, Igor Rodrigues; Kasuya, Maria Catarina Megumi

    2015-01-01

    We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers. PMID:26076188

  3. Recycling of irradiated high-density polyethylene

    NASA Astrophysics Data System (ADS)

    Navratil, J.; Manas, M.; Mizera, A.; Bednarik, M.; Stanek, M.; Danek, M.

    2015-01-01

    Radiation crosslinking of high-density polyethylene (HDPE) is a well-recognized modification of improving basic material characteristics. This research paper deals with the utilization of electron beam irradiated HDPE (HDPEx) after the end of its lifetime. Powder of recycled HDPEx (irradiation dose 165 kGy) was used as a filler into powder of virgin low-density polyethylene (LDPE) in concentrations ranging from 10% to 60%. The effect of the filler on processability and mechanical behavior of the resulting mixtures was investigated. The results indicate that the processability, as well as mechanical behavior, highly depends on the amount of the filler. Melt flow index dropped from 13.7 to 0.8 g/10 min comparing the lowest and the highest concentration; however, the higher shear rate the lower difference between each concentration. Toughness and hardness, on the other hand, grew with increasing addition of the recycled HDPEx. Elastic modulus increased from 254 to 450 MPa and material hardness increased from 53 to 59 ShD. These results indicate resolving the problem of further recycling of irradiated polymer materials while taking advantage of the improved mechanical properties.

  4. Degradation of Green Polyethylene by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Ribeiro, Karla Veloso Gonçalves; Mendes, Igor Rodrigues; Kasuya, Maria Catarina Megumi

    2015-01-01

    We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers. PMID:26076188

  5. Nanostructurization and thermal properties of polyethylenes' welds

    NASA Astrophysics Data System (ADS)

    Galchun, Anatoliy; Korab, Nikolay; Kondratenko, Volodymyr; Demchenko, Valeriy; Shadrin, Andriy; Anistratenko, Vitaliy; Iurzhenko, Maksym

    2015-03-01

    As it is known, polyethylene (PE) is one of the common materials in the modern world, and PE products take the major share on industrial and trade markets. For example, various types of technical PE like PE-63, PE-80, and PE-100 have wide industrial applications, i.e., in construction, for pipeline systems etc. A rapid development of plastics industry outstrips detailed investigation of welding processes and welds' formation mechanism, so they remain unexplored. There is still no final answer to the question how weld's microstructure forms. Such conditions limit our way to the understanding of the problem and, respectively, prevent scientific approaches to the welding of more complicated (from chemical point of view) types of polymers than PE. Taking into account state-of-the-art, the article presents results of complex studies of PE weld, its structure, thermophysical and operational characteristics, analysis of these results, and basing on that some hypotheses of welded joint and weld structure formation. It is shown that welding of dissimilar types of polyethylene, like PE-80 and PE-100, leads to the formation of better-ordered crystallites, restructuring the crystalline phase, and amorphous areas with internal stresses in the welding zone.

  6. Biological effects summary report: polyethylene glycol

    SciTech Connect

    Silverstein, B.D.; Furcinitti, P.S.; Cameron, W.A.; Brower, J.E.; White, O. Jr.

    1984-01-01

    An evaluation of the health effects of polyethylene glycol (PEG) was made to assess its potential use as a substitute for di(2-ethylhexyl) phthalate, which is used as test aerosol in quantitative fit testing of respirators. The polyethylene glycols of primary interest are those whose average molecular weights are between 200 and 600. PEG has a very low acute and chronic toxicity in animals. Toxic effects to the kidney resulting from high doses have been observed in laboratory animals and in burn patients whose injured skin was treated topically with PEG. It is unlikely that healthy people exposed to test aerosols of PEG would encounter such risks particularly at such low concentrations. No significant adverse effects from PEG have been observed in inhalation toxicology studies, carcinogen testing, or mutagen assays. Since the PEGs present no significant health hazard in the workplace, only a nuisance dust exposure limit of 10 mg/m/sup 3/ for total dust and 5 mg/m/sup 3/ for respirable dust is recommended. No standard for protection of human health is deemed warranted at this time. Therefore, PEG 400 may be used safely for quantitative fit testing of respirators without concern for adverse effects in healthy subjects.

  7. Polyethylene nanofibres with very high thermal conductivities

    NASA Astrophysics Data System (ADS)

    Shen, Sheng; Henry, Asegun; Tong, Jonathan; Zheng, Ruiting; Chen, Gang

    2010-04-01

    Bulk polymers are generally regarded as thermal insulators, and typically have thermal conductivities on the order of 0.1 W m-1 K-1 (ref. 1). However, recent work suggests that individual chains of polyethylene-the simplest and most widely used polymer-can have extremely high thermal conductivity. Practical applications of these polymers may also require that the individual chains form fibres or films. Here, we report the fabrication of high-quality ultra-drawn polyethylene nanofibres with diameters of 50-500 nm and lengths up to tens of millimetres. The thermal conductivity of the nanofibres was found to be as high as ~104 W m-1 K-1, which is larger than the conductivities of about half of the pure metals. The high thermal conductivity is attributed to the restructuring of the polymer chains by stretching, which improves the fibre quality toward an `ideal' single crystalline fibre. Such thermally conductive polymers are potentially useful as heat spreaders and could supplement conventional metallic heat-transfer materials, which are used in applications such as solar hot-water collectors, heat exchangers and electronic packaging.

  8. SECURING CONTAINERIZED HAZARDOUS WASTES WITH POLYETHYLENE RESIN AND FIBERGLASS ENCAPSULATES

    EPA Science Inventory

    This study investigates the fabrication and use of polyethylene resin and fiberglass to encapsulate and secure containerized hazardous wastes. Laboratory-scale encapsulates of composite structure were made from powdered, high-density polyethylene (HDPE) and epoxy-resin-wetted fib...

  9. Polyethylene glycol: a game-changer laxative for children.

    PubMed

    Alper, Arik; Pashankar, Dinesh S

    2013-08-01

    Constipation is a common problem in children worldwide. It can also be a chronic problem persisting for many months to years. Successful treatment of constipation requires long-term use of laxatives. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol. Compared with other laxatives, polyethylene glycol (with and without electrolytes) is a relatively new laxative used during the last decade. Recent studies report excellent efficacy and safety of polyethylene glycol for the long-term treatment of constipation in children. Because of excellent patient acceptance, polyethylene glycol has become a preferred choice of laxative for many practitioners. This article reviews the recently published pediatric literature on biochemistry, efficacy, safety, patient acceptance, and pharmacoeconomics of polyethylene glycol. PMID:23591910

  10. The effect of frictional heating and forced cooling on the serum lubricant and wear of UHMW polyethylene cups against cobalt-chromium and zirconia balls.

    PubMed

    Liao, Y-S; McKellop, H; Lu, Z; Campbell, P; Benya, P

    2003-08-01

    Hip simulator tests of femoral balls of cobalt-chromium alloy or zirconia against acetabular cups of UHMW polyethylene were run with and without a coolant circulated inside the femoral balls. Without cooling, the wear of polyethylene against zirconia was about 48% lower than with cobalt-chromium alloy, but the steady-state temperature of the zirconia ball was higher (55 degrees C vs. 41 degrees C), and there was more precipitation of protein from the serum, which sometimes formed an adherent layer on the surface of the zirconia. Circulating coolant at 1-20 degrees C markedly reduced the bearing temperatures and the protein precipitation. With coolant at 4 degrees C, wear of the polyethylene against cobalt-chromium alloy was about 26% lower than against zirconia, but the macroscopic and microscopic appearance of the worn polyethylene surfaces were unlike that typically generated in vivo. With or without coolant, the morphology of the polyethylene wear debris was comparable to that generated in vivo, but the ratio of fibrillar to granular debris was higher at the reduced temperature. These results suggested that circulating coolant at an appropriate temperature could avoid overheating (due to non-stop running of the simulator), preventing excessive protein precipitation while providing wear surfaces and wear debris with morphologies closely comparable to those generated in vivo. PMID:12895577

  11. Polyethylene Oxide (PEO) and Polyethylene Glycol (PEG) Polymer Sieving Matrix for RNA Capillary Electrophoresis

    PubMed Central

    Yamaguchi, Yoshinori; Li, Zhenqing; Zhu, Xifang; Liu, Chenchen; Zhang, Dawei; Dou, Xiaoming

    2015-01-01

    The selection of sieving polymer for RNA fragments separation by capillary electrophoresis is imperative. We investigated the separation of RNA fragments ranged from 100 to 10,000 nt in polyethylene glycol (PEG) and polyethylene oxide (PEO) solutions with different molecular weight and different concentration. We found that the separation performance of the small RNA fragments (<1000 nt) was improved with the increase of polymer concentration, whereas the separation performance for the large ones (>4000 nt) deteriorated in PEG/PEO solutions when the concentration was above 1.0%/0.6%, respectively. By double logarithmic plot of mobility and RNA fragment size, we revealed three migration regimes for RNA in PEG (300-500k) and PEO (4,000k). Moreover, we calculated the smallest resolvable nucleotide length (Nmin) from the resolution length analysis. PMID:25933347

  12. Immobilization of silver nanoparticles on polyethylene terephthalate

    PubMed Central

    2014-01-01

    Two different procedures of grafting with silver nanoparticles (AgNP) of polyethylene terephthalate (PET), activated by plasma treatment, are studied. In the first procedure, the PET foil was grafted with biphenyl-4,4?-dithiol and subsequently with silver nanoparticles. In the second one, the PET foil was grafted with silver nanoparticles previously coated with the same dithiol. X-ray photoelectron spectroscopy and electrokinetic analysis were used for characterization of the polymer surface at different modification steps. Silver nanoparticles were characterized by ultraviolet-visible spectroscopy and by transmission electron microscopy (TEM). The first procedure was found to be more effective. It was proved that the dithiol was chemically bonded to the surface of the plasma-activated PET and that it mediates subsequent grafting of the silver nanoparticles. AgNP previously coated by dithiol bonded to the PET surface much less. PMID:24994960

  13. Thermal analysis of polyethylene + X% carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lozovyi, Fedir; Ivanenko, Kateryna; Nedilko, Sergii; Revo, Sergiy; Hamamda, Smail

    2016-02-01

    The aim of this research is to study the influence of the multi-walled carbon nanotubes (MWCNTs) on the thermomechanical and structural properties of high-density polyethylene. Several, complementary experimental techniques were used, namely, dilatometry, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman spectroscopy, and infrared (IR) spectroscopy. Dilatometry data showed that nanocomposites exhibit anisotropic behavior, and intensity of the anisotropy depends on the MWCNT concentration. The shapes of the dilatometric curves of the nanocomposites under study differ significantly for the radial and longitudinal directions of the samples. DSC results show that MWCNTs weekly influence calorimetry data, while Raman spectra show that the I D/ I G ratio decreases when MWCNT concentration increases. The IR spectra demonstrate improvement of the crystallinity of the samples as the content in MWCNTs rises.

  14. Thermoviscoelastic models for polyethylene thin films

    NASA Astrophysics Data System (ADS)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2015-11-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach is that the experimentally inaccessible out-of-plane material properties are determined by fitting the model predictions to the measured nonlinear behavior of the film. Creep tests, uniaxial tension tests, and biaxial bubble tests are used to determine the material parameters. The model has been validated experimentally, against data obtained from uniaxial tension tests and biaxial cylindrical tests at a wide range of temperatures and strain rates spanning two orders of magnitude.

  15. Role of polyethylene glycol in childhood constipation.

    PubMed

    Phatak, Uma Padhye; Pashankar, Dinesh S

    2014-09-01

    Constipation is a common and chronic problem in children worldwide. Long-term use of laxatives is necessary for successful treatment of chronic constipation. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol (PEG). Recent studies report the efficacy and safety of PEG for the long-term treatment of constipation in children. Because of its excellent patient acceptance, PEG is being used widely in children for constipation. In this commentary, we review the recently published pediatric literature on the efficacy, safety, and patient acceptance of PEG. We also assess the role of PEG in childhood constipation by comparing it with other laxatives in terms of efficacy, safety, patient acceptance, and cost. PMID:24108331

  16. Crosslinked polyethylene foams, via EB radiation

    NASA Astrophysics Data System (ADS)

    Cardoso, E. C. L.; Lugão, A. B.; Andrade E. Silva, L. G.

    1998-06-01

    Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to theses foams, imparts opitmum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine: building and insulation: packaging: domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203° C as the right blowing agent decomposition temperature. At a 22.7 kGy/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time.

  17. Thermoviscoelastic models for polyethylene thin films

    NASA Astrophysics Data System (ADS)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-02-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach is that the experimentally inaccessible out-of-plane material properties are determined by fitting the model predictions to the measured nonlinear behavior of the film. Creep tests, uniaxial tension tests, and biaxial bubble tests are used to determine the material parameters. The model has been validated experimentally, against data obtained from uniaxial tension tests and biaxial cylindrical tests at a wide range of temperatures and strain rates spanning two orders of magnitude.

  18. Depolymerization of polyethylene terephthalate in supercritical methanol

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu; Koyamoto, Hiroshi; Kodama, Akio; Hirose, Tsutomu; Nagaoka, Shoji

    2002-11-01

    The degradation of polyethylene terephthalate (PET) in supercritical methanol was investigated with the aim of developing a process for chemical recycling of waste plastics. A batch reactor was used at temperatures of 573-623 K under an estimated pressure of 20 MPa for a reaction time of 2-120 min. PET was decomposed to its monomers, dimethyl terephthalate and ethylene glycol, by methanolysis in supercritical methanol. The reaction products were analysed using size-exclusion chromatography, gas chromatography-mass spectrometry, and reversed-phase liquid chromatography. The molecular weight distribution of the products was obtained as a function of reaction time. The yields of monomer components of the decomposition products including by-products were measured. Continuous kinetics analysis was performed on the experimental data.

  19. Investigation of Raman spectra of polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Zhu, Changjun; Tong, Na; Song, Lixin; Zhang, Guoqing

    2015-08-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1750 cm-1, while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1750 cm-1 and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated.

  20. Viscoplastic tearing of polyethylene thin film

    NASA Astrophysics Data System (ADS)

    Hegyi, Dezso; Pellegrino, Sergio

    2015-05-01

    Recent advances in noncontact strain measurement techniques and large-strain constitutive modeling of the linear low-density polyethylene film used in NASA superpressure balloons StratoFilm 420 are combined to provide a novel measurement technique for the tear propagation critical value of the J-integral. Previously these measurements required complex test configurations and procedures. It is found that the critical value of the J-integral increases by approximately 50 % when the strain rate is decreased from 1.3310-4 s-1 to 1.3310-5 s-1. It is shown that there is good correlation between measurements made on uniaxially loaded dogbone samples and circular diaphragms loaded by pressure, both with a 2-mm-wide slit in the middle. This result indicates that more extensive studies of strain-rate dependence may be made with the simpler, uniaxial test configuration.

  1. Water Potential of Aqueous Polyethylene Glycol

    PubMed Central

    Steuter, Allen A.; Mozafar, Ahmad; Goodin, Joe R.

    1981-01-01

    Water potential (??) values were determined for aqueous colloids of four molecular sizes of polyethylene glycol (PEG) using freezing-point depression and vapor-pressure deficit methods. A significant third-order interaction exists between the method used to determine ??, PEG molecular size, and concentration. At low PEG concentrations, freezing-point depression measurements result in higher (less negative) values for ?? than do vapor-pressure deficit measurements. The reverse is true at high concentrations. PEG in water does not behave according to van't Hoff's law. ?? is related to molality for a given PEG but not linearly. Moreover, ?? varies with the molecular size of the PEG. It is suggested that the ?? of PEG in water may be controlled primarily by the matric forces of ethylene oxide subunits of the PEG polymer. The term matricum is proposed for PEG in soil-plant-water relation studies. PMID:16661635

  2. Thermal conductivity of electrospun polyethylene nanofibers

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Zhang, Qian; Mayo, Anthony; Ni, Zhonghua; Yi, Hong; Chen, Yunfei; Mu, Richard; Bellan, Leon M.; Li, Deyu

    2015-10-01

    We report on the structure-thermal transport property relation of individual polyethylene nanofibers fabricated by electrospinning with different deposition parameters. Measurement results show that the nanofiber thermal conductivity depends on the electric field used in the electrospinning process, with a general trend of higher thermal conductivity for fibers prepared with stronger electric field. Nanofibers produced at a 45 kV electrospinning voltage and a 150 mm needle-collector distance could have a thermal conductivity of up to 9.3 W m-1 K-1, over 20 times higher than the typical bulk value. Micro-Raman characterization suggests that the enhanced thermal conductivity is due to the highly oriented polymer chains and enhanced crystallinity in the electrospun nanofibers.

  3. Vacuum Outgassing of High Density Polyethylene

    SciTech Connect

    Dinh, L N; Sze, J; Schildbach, M A; Chinn, S C; Maxwell, R S; Raboin, P; McLean II, W

    2008-08-11

    A combination of thermogravimetric analysis (TGA) and temperature programmed decomposition (TPD) was employed to identify the outgassing species, the total amount of outgassing, and the outgassing kinetics of high density polyethylene (HDPE) in a vacuum environment. The isoconversional kinetic analysis was then used to analyze the outgassing kinetics and to predict the long-term outgassing of HDPE in vacuum applications at ambient temperature. H{sub 2}O and C{sub n}H{sub x} with n as high as 9 and x centering around 2n are the major outgassing species from solid HDPE, but the quantities evolved can be significantly reduced by vacuum baking at 368 K for a few hours prior to device assembly.

  4. Radiation grafting of styrene onto polyethylene

    NASA Astrophysics Data System (ADS)

    Izumi, Yoshinobu; Nagaike, Hiroshi; Tabuse, Shigehiko; Yoshida, Yoichi; Tagawa, Seiichi

    2001-07-01

    In order to improve the radiation stability of aliphatic polymers, radiation-induced graft polymerization of styrene onto low-density polyethylene (LDPE) has been studied. Two methods, namely, simultaneous irradiation and pre-irradiation method, were treated. In the case of simultaneous irradiation, it was indicated from the dependency of percent graft on monomer concentration and absorbed dose that grafting efficiency was reduced by the increase in the homo-polymerization of styrene. On the other hand, more highly grafting polymer could be prepared by the pre-irradiation method. Depth-profile of grafted phenyl ring was also analyzed by means of micro-FT-IR spectroscopy. Recently, radiation stability of the obtained graft polymer was tested.

  5. Crystallization of polyethylenes at very high supercooling

    NASA Astrophysics Data System (ADS)

    Wagner, John Edward

    The crystallization behavior of a series of ethylene-octene copolymers synthesized using metallocene catalysts has been studied using the Ding-Spruiell method of rapid cooling. In conventional crystallization experiments it was found, as expected, that the spherulite growth rates varied with octene content and molecular weight. When studied at rapid cooling rates the polymers generate their own pseudo-isothermal crystallization temperatures, in agreement with Ding-Spruiell's studies on other systems, however, at the lowest temperatures of crystallization, the spherulite growth rates of all the copolymers studied merge. The WAXD results indicate at the faster crystallization rates that the size of the unit cell unit decreases with decreasing crystallization temperature. A resulting increase in the surface free energy plays a role in the behavior of the copolymers such that spherulitic growth rates of copolymers begin to surpass that of the linear polyethylene at very high supercooling. This is a change in the behavior of the copolymers that should be of considerable relevance to polymer processing conditions. Spinodal transformation could play of role in the leveling off of growth rates at high supercooling. The crystallization and morphology of four LLDPE samples produced using metallocene catalysts through the copolymerization of ethylene and octene has been studied. The second part of the study is primarily concerned with the growth kinetics obtained through experimentally determined growth rates at different crystallization temperatures of low and high molecular weight samples. Using experimentally determined equilibrium melting points secondary nucleation behavior is studied in detail. Three Regimes are seen for a molecular weight 101,000 with no branching and at 60,000 with branching at 4 octenes per 1000 carbons. Two Regimes have been obtained for a sample of similar molecular weight but with branching at 17 octenes per 1000 carbons. Lamellar thickness data in the rapid cooling region correlate well with previous studies of the equilibrium melting temperature of the linear polyethylene. Andrews plot data shows a three-stem nucleus in Regime III.

  6. Fabrication and characterization of plasma-polymerized poly(ethylene glycol) film with superior biocompatibility.

    PubMed

    Choi, Changrok; Hwang, Inseong; Cho, Young-Lai; Han, Sang Y; Jo, Dong H; Jung, Donggeun; Moon, Dae W; Kim, Eun J; Jeon, Chang S; Kim, Jeong H; Chung, Taek D; Lee, Tae G

    2013-02-01

    A newly fabricated plasma-polymerized poly(ethylene glycol) (PP-PEG) film shows extremely low toxicity, low fouling, good durability, and chemical similarity to typical PEG polymers, enabling live cell patterning as well as various bioapplications using bioincompatible materials. The PP-PEG film can be overlaid on any materials via the capacitively coupled plasma chemical vapor deposition (CCP-CVD) method using nontoxic PEG200 as a precursor. The biocompatibility of the PP-PEG-coated surface is confirmed by whole blood flow experiments where no thrombi and less serum protein adsorption are observed when compared with bare glass, polyethylene (PE), and polyethylene terephthalate (PET) surfaces. Furthermore, unlike bare PE films, less fibrosis and inflammation are observed when the PP-PEG-coated PE film is implanted into subcutaneous pockets of mice groin areas. The cell-repellent property of PP-PEG is also verified via patterning of mammalian cells, such as fibroblasts and hippocampal neurons. These results show that our PP-PEG film, generated by the CCP-CVD method, is a biocompatible material that can be considered for broad applications in biomedical and functional materials fields. PMID:23281807

  7. Conglutinin binding polyethylene glycol precipitation assay for immune complexes.

    PubMed Central

    Macanovic, M; Lachmann, P J

    1979-01-01

    An assay for circulating immune complexes is described which uses radiolabelled bovine conglutinin as ligand and polyethylene glycol precipitation as the technique for separating bound ligands. The technique is simple to perform and gives good sensitivity detecting artificial immune complexes. Its use in detecting complexes in systemic lupus erythematosus and Burkitt's lymphoma is described and it is compared with the Clq binding assay also performed with polyethylene glycol. It is suggested that the simultaneous performance of polyethylene glycol assays using radiolabelled Clq and radiolabelled conglutinin may be an advantageous method for screening sera for the presence of immune complexes. PMID:118838

  8. Myocardial Matrix-Polyethylene Glycol Hybrid Hydrogels for Tissue Engineering

    PubMed Central

    Grover, Gregory N.; Rao, Nikhil

    2014-01-01

    Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of thirty minutes, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in four minutes upon irradiation allowing for 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications. PMID:24334615

  9. Cross-linked polystyrene sulfonic acid and polyethylene glycol as a low-fouling material.

    PubMed

    Alghunaim, Abdullah; Zhang Newby, Bi-Min

    2016-04-01

    A negatively charged hydrophilic low fouling film was prepared by thermally cross-linking a blend consisting of polystyrene sulfonic acid (PSS) and polyethylene glycol (PEG). The film was found to be stable by dip-washing. The fouling resistance of this material toward bacterial (Escherichia coli) and colloidal (polystyrene particles) attachment, non-specific protein (fibronectin) adsorption and cell (3T3 NIH) adhesion was evaluated and was compared with glass slides modified with polyethylene glycol (PEG) brushes, oxidized 3-mercaptopropyltrimethoxysilane (sulfonic acid, SA), and n-octadecyltrichlorosilane (OTS). The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and thermodynamic models based on surface energy were used to explain the interaction behaviors of E. coli/polystyrene particles-substrate and protein-substrate interactions, respectively. The cross-linked PSS-PEG film was found to be slightly better than SA and PEG toward resisting non-specific protein adsorption, and showed comparable low attachment results as those of PEG toward particle, bacterial and NIH-3T3 cells adhesion. The low-fouling performance of PSS-PEG, a cross-linked film by a simple thermal curing process, could allow this material to be used for applications in aqueous environments, where most low fouling hydrophilic polymers, such as PSS or PEG, could not be easily retained. PMID:26812639

  10. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  11. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  12. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (mean molecular weight 200-9... Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene... chapter. (c) The provisions of paragraph (b) of this section are not applicable to polyethylene...

  13. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  14. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (mean molecular weight 200-9... Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol... polyethylene glycol 400 shall be used to determine the total ethylene and diethylene glycol content...

  15. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  16. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  17. Purification of antibodies by precipitating impurities using Polyethylene Glycol to enable a two chromatography step process.

    PubMed

    Giese, Glen; Myrold, Adam; Gorrell, Jeffrey; Persson, Josefine

    2013-11-01

    The purification of antibodies by precipitating impurities using Polyethylene Glycol (PEG) was assessed with the objective of developing a two chromatography column purification process. A PEG precipitation method was evaluated for use in the industrial purification of recombinant monoclonal antibodies (MAbs). Effective and robust precipitation conditions including PEG concentration, pH, temperature, time, and protein concentration were identified for several different MAbs. A recovery process using two chromatography steps in combination with PEG precipitation gave acceptable yield and purity levels for IgG1 and IgG4 antibodies with a broad range of isoelectric points (pI). PEG precipitation removed host cell proteins (HCPs), high molecular weight species (HMWS), leached Protein A ligand, and host cell DNA to acceptable levels when run under appropriate conditions, and some endogenous virus removal was achieved. PMID:24036248

  18. DISSIPATION OF FIELD APPLIED HERBICIDES FROM LOW DENSITY POLYETHYLENE MULCH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies evaluated dissipation of herbicides from low density polyethylene mulch (LDPM). Herbicide dissipation was measured under dry conditions and following irrigation events. Halosulfuron, paraquat, carfentrazone, glyphosate, and oxyfluorfen were applied to black 1.5-mil LDPM at concentrat...

  19. Experimental study of rocket engine model with gaseous polyethylene fuel

    NASA Astrophysics Data System (ADS)

    Yemets, V. V.

    Experimental results for liquid rocket engine models with gaseous polyethylene fuel that is hard before its consumption are considered. The possibility of hard design element combustion in a liquid rocket engine is demonstrated.

  20. Creep behavior of 6 micrometer linear low density polyethylene film

    NASA Technical Reports Server (NTRS)

    Simpson, J. M.; Schur, W. W.

    1993-01-01

    Creep tests were performed to provide material characteristics for a 6.4-micron polyethylene film used to construct high altitude balloons. Results suggest simple power law relationships are adequate for stresses below about 4.83 MPa.

  1. TECHNICAL GUIDANCE DOCUMENT: THE FABRICATION OF POLYETHYLENE FML FIELD SEAMS

    EPA Science Inventory

    This technical guidance document is meant to augment the numerous construction quality control and construction assurance (CQC and CQA) guidelines that are presently available for high density polyethylene (HDPE) liner installation and inspection.

  2. The mechanical properties of density graded hemp/polyethylene composites

    NASA Astrophysics Data System (ADS)

    Dauvegis, Raphaël; Rodrigue, Denis

    2015-05-01

    In this work, the production and mechanical characterization of density graded biocomposites based on high density polyethylene and hemp fibres was performed. The effect of coupling agent addition (maleated polyethylene) and hemp content (0-30%) was studied to determine the effect of hemp distribution (graded content) inside the composite (uniform, linear, V and Λ). Tensile and flexural properties are reported to compare the structures, especially in terms of their stress-strain behaviors under tensile loading.

  3. Polyethylene/Boron Composites for Radiation Shielding Applications

    SciTech Connect

    Harrison, Courtney; Grulke, Eric; Burgett, Eric; Hertel, Nolan

    2008-01-21

    Multifunctional composites made with boron are absorbers of low energy nuetrons, and could be used for structural shielding materials. Polyethylene/boron carbide composites were fabricated using conventional polymer processing techniques, and were evaluated for mechanical and radiation shielding properties. Addition of neat boron carbide (powder and nanoparticles) to an injection molding grade HPDE showed superior mechanical properties compared to neat HDPE. Radiation shielding measurements of a 2 wt% boron carbide composite were improved over those of the neat polyethylene.

  4. Effect of sodium chloride on solute-solvent interactions in aqueous polyethylene glycol-sodium sulfate two-phase systems.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, Jos A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-12-18

    Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215M NaCl and 0.5M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215M NaCl system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive. PMID:26615710

  5. Organocatalytic decomposition of polyethylene terephthalate using triazabicyclodecene

    NASA Astrophysics Data System (ADS)

    Lecuyer, Julien Matsumoto

    This study focuses on the organocatalytic decomposition of polyethylene terephthalate (PET) using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to form a diverse library of aromatic amides. The reaction scheme was specifically designed to use low reaction temperatures (>150°C) and avoid using solvents during the reaction to provide a more environmentally friendly process. Of all the amines tested, PET aminolysis with aliphatic and aromatic amines demonstrated the best performance with yields higher than 72%. PET aminolysis with click functionalized and non-symmetric reagents facilitated attack on certain sites on the basis of reactivity. Finally, the performance of the PET degradation reactions with secondary amine and tertiary amine functionalized reagents yielded mixed results due to complications with isolating the product from the crude solution. Four of the PET-based monomers were also selected as modifiers for epoxy hardening to demonstrate the ability to convert waste into monomers for high-value applications. The glass transition temperatures, obtained using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) of the epoxy composite samples treated with the PET-based monomers, were generally higher in comparison to the samples cured with the basic diamines due to the hydrogen bonding and added rigidity from the aromatic amide group. Developing these monomers provides a green and commercially viable alternative to eradicating a waste product that is becoming an environmental concern.

  6. Mobile NMR for Analysis of Polyethylene Pipes

    NASA Astrophysics Data System (ADS)

    Blmich, B.; Casanova, F.; Buda, A.; Kremer, K.; Wegener, T.

    2006-07-01

    NMR relaxometry is a suitable tool to determine the morphology of semi-crystalline polymers by its ability to discriminate between rigid, mostly crystalline and soft, usually amorphous material. The NMR-MOUSE (nuclear magnetic resonance mobile universal surface explorer) was explored in this work to supply morphological data of poly(ethylene) pipes nondestructively. PE-100 pipes were investigated in the new state, after squeezing them flat, and after annealing well below the glass temperature. Furthermore, the change in morphology induced by a pressure load from the inside and a point load from the outside was investigated as a function of depth, and the morphology change across a welding line was imaged. A shear-band was detected by destructive high-field NMR imaging in an area of severe deformation of a pipe, where an anomalous depths profile was observed by the NMR-MOUSE. These results demonstrate that the NMR-MOUSE is a suitable tool for non-destructive state assessment of polymer pipes on the basis of laboratory reference data.

  7. Polarimetric studies of polyethylene terephtalate flexible substrates

    NASA Astrophysics Data System (ADS)

    Stchakovsky, M.; Garcia-Caurel, E.; Warenghem, M.

    2008-12-01

    Polymer sheets are currently used worldwide in a wide range of applications. The manufacturing process of these sheets involves extruding machines that stretch the material in both lateral and longitudinal directions with respect to the machine direction, thus inducing birefringence. In most cases, the film obtained is optically biaxial. Polarimetric spectroscopy (Ellipsometry and Mueller Matrix) combined with conoscopic observation are the methods of choice to study these properties. In this work we report an analysis of commercially available polyethylene terephtalate (PET) films used as substrate for food packaging as well as for embedded electronic devices such as solar cells or flexible displays. Initial observation of these films through polarizing microscope in conoscopic mode reveals first the trace of optical axis plane with respect to the film surface and second, whether the optical axis is acute or not. This preliminary study allows optimal sample positioning for further polarimetric studies. The measurements and modelling are done in both reflection and transmission mode on several spectroscopic polarimetric setups from UV to NIR. The models give as a main result, the dielectric tensor of the film as well as its orientation with respect to the laboratory reference frame.

  8. Rotational molding of pultruded profiles reinforced polyethylene

    NASA Astrophysics Data System (ADS)

    Greco, Antonio; Maffezzoli, Alfonso; Romano, Giorgio

    2014-05-01

    The aim of this paper is the production of fiber reinforced LLDPE components by rotational molding. To this purpose, a process upgrade was developed, for the incorporation of pultruded tapes in the rotational molding cycle. Pultruded tapes, made of 50% by weight of glass fibers dispersed in a high density polyethylene(HDPE) matrix, were glued on the internal surface of a cubic mold, and rotational molding process was run using the same processing conditions used for conventional LLDPE processing. During processing, melting of LLDPE powders and of HDPE allowed to incorporate the tapes inside rotational molded LLDPE. The glass fiber reinforced prototypes were characterized in terms of mechanical properties. Plate bending tests were performed on the square faces extracted from the rotational molded product. The rotational molding products were also subjected to internal hydrostatic pressure tests up to 10 bar. In any case, no failure of the cubic samples was observed. In both cases, it was found that addition of a single pultruded strips, which corresponds to addition of about 0.6% by weight of glass fibers, involved an increase of the stiffness of the faces by about 25%.

  9. Polyethylene Terephthalate May Yield Endocrine Disruptors

    PubMed Central

    Sax, Leonard

    2010-01-01

    Background Recent reports suggest that endocrine disruptors may leach into the contents of bottles made from polyethylene terephthalate (PET). PET is the main ingredient in most clear plastic containers used for beverages and condiments worldwide and has previously been generally assumed not to be a source of endocrine disruptors. Objective I begin by considering evidence that bottles made from PET may leach various phthalates that have been putatively identified as endocrine disruptors. I also consider evidence that leaching of antimony from PET containers may lead to endocrine-disrupting effects. Discussion The contents of the PET bottle, and the temperature at which it is stored, both appear to influence the rate and magnitude of leaching. Endocrine disruptors other than phthalates, specifically antimony, may also contribute to the endocrine-disrupting effect of water from PET containers. Conclusions More research is needed in order to clarify the mechanisms whereby beverages and condiments in PET containers may be contaminated by endocrine-disrupting chemicals. PMID:20368129

  10. Polyethylene degradation in a coal liquefaction environment

    SciTech Connect

    Rothenberger, K.S.; Cugini, A.V.; Thompson, R.L.

    1996-12-31

    The coprocessing of coal with waste materials such as plastic has shown promise as an economical means to recover the inherent value of the wastes while producing useful products. Polyethylene (PE) is one of the dominant plastic materials; recent statistics indicate that low- and high-density PE together make up about half of all municipal plastic waste. The degradation of PE in a pyrolysis environment has been well studied, and pyrolysis-based methods for the conversion of PE to fuels have been published. However, recent studies have shown that PE is among the most difficult plastics to convert in the traditional liquefaction environment, particularly in the presence of coal and/or donor solvents. The coal liquefaction environment is quite different than that encountered during thermal or catalytic pyrolysis. Understanding the degradation behavior of PE in the liquefaction environment is important to development of a successful scheme for coprocessing coal with plastics. In this paper, a novel analytical method has been developed to recover incompletely reacted PE from coprocessing product streams. Once separated from the coal-derived material, gel permeation chromatography, a conventional polymer characterization technique, was applied to the recovered material to ascertain the nature of the changes that occurred to the PE upon processing in a bench-scale continuous liquefaction unit. In a separate phase of the project, 1-L semi-batch reactions were performed to investigate the reactivity of PE and coal-PE mixtures as a function of temperature.

  11. Theory of the deformation of aligned polyethylene

    PubMed Central

    Hammad, A.; Swinburne, T. D.; Hasan, H.; Del Rosso, S.; Iannucci, L.; Sutton, A. P.

    2015-01-01

    Solitons are proposed as the agents of plastic and viscoelastic deformation in aligned polyethylene. Interactions between straight, parallel molecules are mapped rigorously onto the FrenkelKontorova model. It is shown that these molecular interactions distribute an applied load between molecules, with a characteristic transfer length equal to the soliton width. Load transfer leads to the introduction of tensile and compressive solitons at the chain ends to mark the onset of plasticity at a well-defined yield stress, which is much less than the theoretical pull-out stress. Interaction energies between solitons and an equation of motion for solitons are derived. The equation of motion is based on Langevin dynamics and the fluctuationdissipation theorem and it leads to the rigorous definition of an effective mass for solitons. It forms the basis of a soliton dynamics in direct analogy to dislocation dynamics. Close parallels are drawn between solitons in aligned polymers and dislocations in crystals, including the configurational force on a soliton. The origins of the strain rate and temperature dependencies of the viscoelastic behaviour are discussed in terms of the formation energy of solitons. A failure mechanism is proposed involving soliton condensation under a tensile load. PMID:26339196

  12. Confinement-induced vitrification in polyethylene terephthalate

    SciTech Connect

    Balta Calleja, F. J.; Flores, A.; Di Marco, G.; Pieruccini, M.

    2007-06-01

    Dynamic mechanical thermal analysis performed on cold-drawn polyethylene terephthalate (PET), cold crystallized (annealed) in the temperature interval 100-140 deg. C, reveals the presence of marginally glassy domains above the annealing temperature T{sub a}. This suggests that the thermodynamic force driving crystallization causes the structural arrest of some noncrystalline domains. The latter thus need a temperature higher than T{sub a} to completely defreeze. Differential scanning calorimetry supports this point of view. Analogous investigations on unoriented PET, cold crystallized in the same conditions, do not show the same peculiarities; thus, chain orientation is relevant to vitrification. This phenomenology is first cast in the language of thermodynamics by introducing an excess chemical potential {delta}{mu} describing the presence of structural constraints in the amorphous domains and the effect of chain orientation. For a first test of this picture, the orientation contribution to {delta}{mu} is calculated by means of the Gaussian chain model (this implicitly assumes that {delta}{mu} is related to the density fluctuations). The resulting expression is then used to discuss the structural differences between cold-drawn and unoriented PET samples reported in the literature.

  13. Entangled Diffusion in Binary Polyethylene Blends

    NASA Astrophysics Data System (ADS)

    Dirama, N.; Mattice, W. L.; von Meerwall, E.

    2003-10-01

    In continuing support of our Monte-Carlo simulations of self-diffusion in polymers near the entanglement transition we have used the proton pulsed-gradient spin-echo NMR method to augment our previous measurements in n-alkane and polyethylene (PE) melts by studying three series of blends at T = 150 deg. C across the full concentration (c) range. Blends were based on M = 33k PE and contained either n-C50 alkane, M = 1.8k PE, or M = 6.7k PE. The results are again in agreement with our earlier theoretical synthesis(1) involving a smooth transition from Rouse to reptational behavior involving constraint release, accounting for free-volume and tube-constraint host effects which depend on T, M, and c. Tube dilation effects are assumed contained in the constraint-release mechanism; contour-length fluctuations are not considered to affect center-of-mass diffusion. Contrary to our earlier findings, unentangled n-alkanes (n-C50 and even n-C12) do not appear to act as diluents able to delay the onset of entanglements in blends with PE. (1) E. von Meerwall, et al., J. Chem. Phys. 111, 750 (1999); E. von Meerwall, et al., Polymer Prepr. 44, 287 (2003).

  14. Reinforcing Poly(ethylene) with Cellulose Nanocrystals.

    PubMed

    Sapkota, Janak; Jorfi, Mehdi; Weder, Christoph; Foster, Earl Johan

    2014-09-10

    The fabrication of nanocomposites of low-density polyethylene (LDPE), one of the world's most widely used polymers, and cellulose nanocrystals (CNCs), which represent the world's most abundant bio-based nanofiller, is reported. While the hydrophobic polymer and the hydrophilic filler seem to be intrinsically incompatible, this article shows that it is possible to kinetically trap homogeneous nanocomposites by a templating approach. An organogel is first prepared by exchanging the solvent of an aqueous CNC dispersion against acetone, impregnating the resulting organogel, in which the CNCs form a percolating network with a hot LDPE solution in toluene, and compression-molding the resulting materials into thin films. At a filler content of 7.6% v/v, the resulting materials display a three- to four-fold increase in strength and stiffness compared with the neat LDPE, which confirms that the CNC network could be largely maintained. It is also possible to reprocess these nanocomposites and dilute them with LDPE using conventional melt-processing techniques. PMID:25204424

  15. Renewable polyethylene mimics derived from castor oil.

    PubMed

    Türünç, Oĝuz; Montero de Espinosa, Lucas; Meier, Michael A R

    2011-09-01

    An increasing number of reports on the syntheses of carbohydrate- and plant oil-based polymers has been published in ongoing efforts to produce plastic materials from renewable resources. Although many of these polymers are biodegradable and this is a desirable property for certain applications, in some cases non-degradable polymers are needed for long-term use purposes. Polyolefins are one of the most important classes of materials that have already taken their places in our daily life. On the other hand, their production relies on fossil resources. Therefore, within this contribution, we discuss synthetic routes toward a number of polyethylene mimics derived from fatty acids via thiol-ene and ADMET polymerization reactions in order to establish more sustainable routes toward this important class of polymers. Two different diene monomers were thus prepared from castor oil derived platform chemicals, their polymerization via the two mentioned routes was optimized and compared to each other, and their thermal properties were investigated. PMID:21710532

  16. Launch Vehicle with Combustible Polyethylene Case Gasification Chamber Design Basis

    NASA Astrophysics Data System (ADS)

    Yemets, V.

    A single-stage launch vehicle equipped with a combustible tank shell of polyethylene and a moving propulsion plant is proposed. The propulsion plant is composed of a chamber for the gasification of the shell, a compressor of pyrolysed polyethylene and a magnetic powder obturator. It is shown that the “dental” structure of the gasification chamber is necessary to achieve the necessary contact area with the polyethylene shell. This conclusion is drawn from consideration of the thermo- physical properties of polyethylene, calculating quasisteady temperature field in the gasification chamber, estimating gasification rate of polyethylene, launch vehicle shortening rate and area of gasification. Experimental determination of the gasification rate is described. The gasification chamber specific mass as well as the propulsion plant weight-to-thrust ratio are estimated under some assumptions concerning the obturator and compressor. Combustible launch vehicles are compared with conventional launch vehicles taking into consideration their payload mass ratios. Combustible launchers are preferable as small launchers for micro and nano satellites. Reusable versions of such launchers seem suitable if polyethylene tank shells filled with metal or metal hydride fine dusts are used.

  17. Elution behavior of polyethylene and polypropylene standards on carbon sorbents.

    PubMed

    Chitta, Rajesh; Macko, Tibor; Brll, Robert; Kalies, Grid

    2010-12-01

    The elution behavior of linear polyethylene and isotactic, atactic and syndiotactic polypropylene was tested using three different carbon column packings: porous graphite (Hypercarb), porous zirconium oxide covered with carbon (ZirChrom-CARB), and activated carbon TA 95. Several polar solvents with boiling points above 150C were selected as mobile phases: 2-ethyl-1-hexanol, n-decanol, cyclohexylacetate, hexylacetate, cyclohexanone, ethylene glycol monobutyl ether and one non-polar solvent, n-decane. Polyethylene standards were completely or partially adsorbed in all tested sorbent/solvent systems. Polypropylene standards were partially adsorbed on Hypercarb and carbon TA95, but did not adsorb on ZirChrom-CARB. ZirChrom-CARB retained polyethylene pronouncedly when 2-ethyl-1-hexanol, cyclohexylacetate or hexylacetate were used as mobile phases at temperature 150 or 160C, while all three basic stereoisomers of polypropylene eluted in size exclusion mode in these sorbent/solvent pairs. This is very different from the system Hypercarb/1-decanol, which separated polypropylene according to its tacticity. The opposite elution behavior of polyethylene and polypropylene in system ZirChrom-CARB/2-ethyl-1-hexanol (polypropylene eluted, polyethylene fully adsorbed) enabled to realize separation of blends of polyethylene and polypropylene. Ethylene/1-hexene copolymers were separated according to their chemical composition using system Hypercarb/2-ethyl-1-hexanol/1,2,4-trichlorobenzene. PMID:21035809

  18. Tribological characteristics of polyethylene glycol (PEG) as a lubricant for wear resistance of ultra-high-molecular-weight polyethylene (UHMWPE ) in artificial knee join.

    PubMed

    Kobayashi, Masanori; Koide, Takayuki; Hyon, Suong-Hyu

    2014-10-01

    For the longevity of total knee joint prostheses, we have developed an artificial lubricant using polyethylene glycol (PEG) for the prevention of wear of ultra-high-molecular-weight polyethylene (UHMWPE). In the present study, the lubricative function of this PEG lubricant was evaluated by a wear test using Co-Cr alloy and UHMWPE counter surface samples. As a result, human synovial fluid including the PEG lubricant showed good result regarding the wear volume and a worn surface of UHMWPE. Considering its lubrication mechanism, it is suspected that interaction between the PEG molecules and the proteins in synovial fluid was involved. Since PE molecules are also organic compounds having a hydroxyl group at one or both ends, the albumin and PEG molecule complex would have bound more strongly to the metal oxide surface and UHMWPE surfaces might enhance and stabilize the lubricating film between the contact surfaces under the boundary lubrication. This study suggests that PEG lubricant as an intra-articular viscous supplement has the potential to prevent wear of UHMWPE by mixing with synovial fluid and to contribute to the longevity of knee joint prostheses. PMID:25016174

  19. The Use of an Enzyme-based Sensor Array to Fingerprint Proteomic Signatures of Sera from Different Mammalian Species.

    PubMed

    Tomita, Shunsuke; Yokoyama, Saki; Kurita, Ryoji; Niwa, Osamu; Yoshimoto, Keitaro

    2016-01-01

    A cross-reactive sensor array consisting of polyion complexes (PICs) between anionic enzymes and poly(ethylene glycol)-modified (PEGylated) polyamines has been used to identify the source of mammalian sera. Although the catalytic activity of enzymes was inhibited by PIC formation with PEGylated polyamines, the subsequent addition of sera caused enzyme releases from PICs through competitive interactions between PICs and serum proteins, generating unique response patterns of changes in the enzyme activity. Linear discriminant analysis of the obtained patterns enabled the discrimination of five sera from different mammalian sources. PMID:26860572

  20. Engineering Poly(ethylene glycol) Materials to Promote Cardiogenesis

    NASA Astrophysics Data System (ADS)

    Smith, Amanda Walker

    Heart failure is one of the leading causes of death worldwide, and the current costs of treatment put a significant economic burden on our societies. After an infarction, fibrotic tissue begins to form as part of the heart failure cascade. Current options to slow this process include a wide range of pharmaceutical agents, and ultimately the patient may require a heart transplant. Innovative treatment approaches are needed to bring down costs and improve quality of life. The possibility of regenerating or replacing damaged tissue with healthy cardiomyocytes is generating considerable excitement, but there are still many obstacles to overcome. First, while cell injections into the myocardium have demonstrated slight improvements in cardiac function, the actual engraftment of transplanted cells is very low. It is anticipated that improving engraftment will boost outcomes. Second, cellular differentiation and reprogramming protocols have not yet produced cells that are identical to adult cardiomyocytes, and immunogenicity continues to be a problem despite the advent of autologously derived induced pluripotent stem cells. This dissertation will explore biomaterials approaches to addressing these two obstacles. Tissue engineering scaffolds may improve cell engraftment by providing bioactive factors, preventing cell anoikis, and reducing cell washout by blood flow. Poly(ethylene glycol) (PEG) is often used as a coating to reduce implant rejection because it is highly resistant to protein adsorption. Because fibrosis of a material in contact with the myocardium could cause arrhythmias, PEG materials are highly relevant for cardiac tissue engineering applications. In Chapter 2, we describe a novel method for crosslinking PEG microspheres around cells to form a scaffold for tissue engineering. We then demonstrate that HL-1 cardiomyocyte viability and phenotype are retained throughout the fabrication process and during the first 7 weeks of culture. In the third chapter of the dissertation, we demonstrate that the use of PEG cell culture substrates can improve efficiency of direct reprogramming from fibroblasts to cardiomyocytes for cell transplantation. Standard tissue culture plastic adsorbs proteins from the cell media, increasing experimental variability via non-specific signaling. Because of its protein resistant properties, PEG provides cells with highly specific signals. In addition to improving the efficiency, we found that presentation of RGD peptides stimulated proliferation during reprogramming. Combined, the improvements enabled us to approximately double the number of cardiomyocytes produced by the protocol. In Chapter 4, we explore the effects of 3D culture on the direct reprogramming protocol described in Chapter 3. We demonstrate that the variables involved in 3D culture, including scaffold material, diffusion, cellular remodeling, and scaffold topography, have significant effects on reprogramming efficiency. This chapter provides the groundwork for future studies developing 3D microenvironments for efficient and scalable reprogramming to cardiomyocytes.

  1. The effect of polyethylene glycol on the characteristics of kenaf cellulose/low-density polyethylene biocomposites.

    PubMed

    Tajeddin, Behjat; Rahman, Russly Abdul; Abdulah, Luqman Chuah

    2010-08-01

    Toward the development of biocomposites for packaging applications, the possibility of using kenaf cellulose (KC) was investigated in the production of low-density polyethylene (LDPE)/KC/polyethylene glycol (PEG) biocomposites. First, cellulose was extracted from the cell walls of kenaf-bast fibers. Then, different weights of LDPE, KC, and PEG were blended, and the effects of varying the concentrations of KC and PEG on the synthesis process were evaluated, and the resulting composites were characterized with respect to their mechanical, thermal, biodegradability and water-absorption properties. A scanning electron microscope (SEM) was also used to observe the surface morphology of the samples before and after biodegradation tests. The results showed that the mechanical properties of the biocomposites decreased slightly as the KC content was increased from 0 to 50wt% in the biocomposite formulation; however, there was a good homogeneity between samples with added PEG. The addition of KC improved the thermal resistance of these biocomposites; PEG also had positive role in the thermal behavior of the composites. Based on a soil-burial test, the biodegradability of the composites showed a clear trend of increase degradation with increasing KC content in the formulation. While water-absorption values for the composites were higher than that of pure LDPE polymer, the addition of PEG to the formulation reduced the water absorption of the composites. PMID:20417660

  2. Effectiveness of poly(ethylene terephthalate) and high-density polyethylene in protection of milk flavor.

    PubMed

    van Aardt, M; Duncan, S E; Marcy, J E; Long, T E; Hackney, C R

    2001-06-01

    The development of certain off-flavors in whole milk (3.25% milk fat) as related to packaging material [glass, high-density polyethylene (HDPE), amber poly(ethylene terephthalate) (PETE), clear PETE, and clear PETE-UV] were evaluated after exposure to fluorescent light (1100 to 1300 lx) for 18 d at 4 degrees C. Control samples packaged and stored under identical conditions were wrapped in foil to prevent light exposure. Selected flavor compounds in milk were measured analytically on d 0, 7, 14, and 18 of storage, while intensities of "oxidation," "acetaldehyde," and "lacks freshness" off-flavors were determined by sensory analysis at the same intervals. In light-exposed samples, oxidation off-flavor was significantly lower when packaged in amber PETE versus other containers. Milk packaged in HDPE containers showed a significantly higher level of oxidation off-flavor than milk packaged in PETE-UV containers but not higher than clear PETE or glass containers. No significant difference in acetaldehyde off-flavor was found between package material treatments (exposed or protected). Acetaldehyde concentration never exceeded flavor threshold levels, regardless of packaging material. Amber and PETE-UV materials proved to be a competitive packaging choice for milk in preserving fresh milk flavor. PMID:11417691

  3. Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films.

    PubMed

    Sabetzadeh, Maryam; Bagheri, Rouhollah; Masoomi, Mahmood

    2015-03-30

    In this work, low-density polyethylene/linear low-density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) films are prepared with the aim of obtaining environmentally friendly materials containing high TPS content with required packaging properties. Blending of LDPE/LLDPE (70/30 wt/wt) with 5-20 wt% of TPS and 3 wt% of PE-grafted maleic anhydride (PE-g-MA) is performed in a twin-screw extruder, followed by the blowing process. Differential scanning calorimetric results indicate starch has more pronounced effect on crystallization of LLDPE than LDPE. Scanning electron micrograph shows a fairly good dispersion of TPS in PE matrices. Fourier transfer infrared spectra confirm compatibility between polymers using PE-g-MA as the compatibilizer. Storage modulus, loss modulus and complex viscosity increase with incorporation of starch. Tensile strength and elongation-at-break decrease from 18 to 10.5 MPa and 340 to 200%, respectively when TPS increases from 5 to 20%. However, the required mechanical properties for packaging applications are attained when 15 wt% starch is added, as specified in ASTM D4635. Finally 12% increase in water uptake is achieved with inclusion of 15 wt% starch. PMID:25563952

  4. Remote atmospheric-pressure plasma activation of the surfaces of polyethylene terephthalate and polyethylene naphthalate.

    PubMed

    Gonzalez, E; Barankin, M D; Guschl, P C; Hicks, R F

    2008-11-01

    The surfaces of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN) were treated with an atmospheric-pressure oxygen and helium plasma. Changes in the energy, adhesion, and chemical composition of the surfaces were determined by contact angle measurements, mechanical pull tests, and X-ray photoelectron spectroscopy (XPS). Surface-energy calculations revealed that after plasma treatment the polarity of PET and PEN increased 6 and 10 times, respectively. In addition, adhesive bond strengths were enhanced by up to 7 times. For PET and PEN, XPS revealed an 18-29% decrease in the area of the C 1s peak at 285 eV, which is attributable to the aromatic carbon atoms. The C 1s peak area due to ester carbon atoms increased by 11 and 24% for PET and PEN, respectively, while the C 1s peak area resulting from C-O species increased by about 5% for both polymers. These results indicate that oxygen atoms generated in the plasma rapidly oxidize the aromatic rings on the polymer chains. The Langmuir adsorption rate constants for oxidizing the polymer surfaces were 15.6 and 4.6 s(-1) for PET and PEN, respectively. PMID:18834154

  5. Effect of amine functionalized polyethylene on clay-silver dispersion for polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Sánchez-Valdes, S.; Ibarra-A, M. C.; Ramírez-V, E.; Ramos-V, L. F.; Martinez-C, J. G.; Romero-G, J.; Ledezma-P, A. S.; Rodriguez-F, O. S.

    2014-08-01

    The compatibilization provided by maleic anhydride (MA) and 2-[2-(dimethylamino)-ethoxy] ethanol (DMAE) functionalized polyethylene for forming polyethylene-based nanocomposites was studied and compared. MA was grafted into PE by melt mixing to obtain PEgMA (compatibilizer 1), thereafter, PEgMA was reacted with DMAE and an antioxidant also by melt mixing to obtain PAgDMAE (compatibilizer 2). These compatibilizers were reacted using ultrasound with a solution of AgNO3 0.04 M and Ethylene glycol. Ammonium hydroxide was added in a ratio of 2:1 molar with respect to silver nitrate. These silver coated compatibilizers were mixed with PE and nano-clay (Cloisite I28E), thus forming the different hybrid PE-clay-silver nanocomposites. FTIR confirmed the formation of these two compatibilizers. All the compatibilized nanocomposites had better filler (clay and silver) dispersion and exfoliation compared to the uncompatibilized PE nanocomposites. X-ray diffraction, mechanical and antimicrobial properties attained showed that the PEgDMAE produced the better dispersed PE, clay and silver nanocomposites. The obtained nanocomposites showed outstanding antimicrobial properties against bacteria, Escherichia coli and fungus, Aspergillus niger. It is concluded that the PEgDMAE offers an outstanding capability for preparing nanocomposites with highly exfoliated and dispersed filler into the PE matrix.

  6. Analysis of polyethylene wear in plain radiographs

    PubMed Central

    2009-01-01

    Background and purpose Two-dimensional computerized radiographic techniques are frequently used to measure in vivo polyethylene (PE) wear after total hip arthroplasty (THA), and several variables in the clinical set-up may influence the amount of wear that is measured. We compared the repeatability and concurrent validity of linear PE wear on plain radiographs using the same software but a different number of radiographs. Methods We used either 1, 2, or 6 anteroposterior (AP) hip radiographs of 11 patients from a clinical THA series with 12 years of follow-up, and measured the PE wear with the software PolyWare 3D Pro. Repeatability within and concurrent validity between the different numbers of radiograph strategies were assessed using limits of agreement (LOAs) and bias. Results Observed median wear (range) in mm was 3.4 (1.6–4.6), 2.3 (0.7–4.9), and 4.0 (2.6–6.2) for the 1-, 2-, and 6-radiograph strategies. For repeatability, no bias (p > 0.41) was observed. LOAs around the bias were ± 0.6, ± 0.4, and ± 1.2 mm for the 1-, 2-, and 6-radiograph strategies. For concurrent validity, a bias (± LOA) between all pairwise comparisons was observed (p < 0.02) with 0.8 mm (± 2.5) between the 1- and 2-radiograph strategies, 1.0 mm (± 2.2) between the 1- and 6-radiograph strategies, and 1.8 mm (± 1.2) between the 2- and 6-radiograph strategies. Interpretation The number of radiographs used for wear measurement with a shadow-casting analysis method on plain AP radiographs influences the amount of linear wear measured. Results of PE wear obtained with PolyWare in studies using a different number of radiographs are not comparable. PMID:19995318

  7. Wear of highly crosslinked polyethylene acetabular components

    PubMed Central

    Callary, Stuart A; Solomon, Lucian B; Holubowycz, Oksana T; Campbell, David G; Munn, Zachary; Howie, Donald W

    2015-01-01

    Background and purpose Wear rates of highly crosslinked polyethylene (XLPE) acetabular components have varied considerably between different published studies. This variation is in part due to the different techniques used to measure wear and to the errors inherent in measuring the relatively low amounts of wear in XLPE bearings. We undertook a scoping review of studies that have examined the in vivo wear of XLPE acetabular components using the most sensitive method available, radiostereometric analysis (RSA). Methods A systematic search of the PubMed, Scopus, and Cochrane databases was performed to identify published studies in which RSA was used to measure wear of XLPE components in primary total hip arthroplasty (THA). Results 18 publications examined 12 primary THA cohorts, comprising only 260 THAs at 2–10 years of follow-up. The mean or median proximal wear rate reported ranged from 0.00 to 0.06 mm/year. However, differences in the manner in which wear was determined made it difficult to compare some studies. Furthermore, differences in RSA methodology between studies, such as the use of supine or standing radiographs and the use of beaded or unbeaded reference segments, may limit future meta-analyses examining the effect of patient and implant variables on wear rates. Interpretation This scoping review confirmed the low wear rates of XLPE in THA, as measured by RSA. We make recommendations to enhance the standardization of reporting of RSA wear results, which will facilitate early identification of poorly performing implants and enable a better understanding of the effects of surgical and patient factors on wear. PMID:25301435

  8. Carbide process picked for Chinese polyethylene plant

    SciTech Connect

    Alperowicz, N.

    1993-02-10

    Union Carbide (Danbury, CT) is set to sign up its eighth polyethylene (PE) license in China. The company has been selected to supply its Unipol technology to Jilin Chemical Industrial Corp. (JCIC) for a 100,000-m.t./year linear low-density PE (LLDPE) plant at Jilin. The plant will form part of a $2-billion petrochemical complex, based on a 300,000-m.t./year ethylene unit awarded to a consortium made up of Samsung Engineering (Seoul) and Linde. A 10,000-m.t./year butene-1 unit will also be built. Toyo Engineering, Snamprogetti, Mitsubishi Heavy Industries, and Linde are competing for the contract to supply the LLDPE plant. The signing is expected this spring. Two contenders are vying to supply an 80,000-m.t./year phenol plant for JCIC. They are Mitsui Engineering, offering the Mitsui Petrochemical process, and Chisso, with UOP technology. Four Unipol process PE plants are under construction in China and three are in operation. At Guangzhou, Toyo Engineering is building a 100,000-m.t./year plant, due onstream in 1995, while Snamprogetti is to finish construction of two plants in the same year at Zhonguyan (120,000 m.t./year) and at Maoming (140,000 m.t./year). The Daquing Design Institute is responsible for the engineering of a 60,000-m.t./year Unipol process PE plant, expected onstream early in 1995. Existing Unipol process PE plants are located in Qilu (60,000 m.t./year LLDPE and 120,000 m.t./year HDPE) and at Taching (60,000 m.t./year HDPE).

  9. Alumina versus polyethylene in total knee arthroplasty.

    PubMed

    Oonishi, H; Aono, M; Murata, N; Kushitani, S

    1992-09-01

    The cementless alumina total knee prosthesis, which uses alumina in the portions coming in contact with the bone and a combination of alumina and ultra-high molecular-weight polyethylene (UHMWPE) in the sliding portions, is referred to as a total condylar. Alumina total knee arthroplasty was performed on 137 patients, including 103 rheumatoid arthritis (RA) and 34 osteoarthrosis (OA) patients, from January 1982 to February 1985. The follow-up period was seven years 11 months and four years ten months, respectively. At follow-up evaluation, 108 patients were available for clinical and roentgenographic examinations, amounting to a 79% follow-up rate. At follow-up examination, 67 joints (62%) were completely pain free and 28 joints (26%) caused slight pain on bearing weight. Walking ability was recovered moderately in RA and markedly in OA. In RA, 14 of 84 knees were cemented and one knee was treated with loosening. Of 72 cementless implantations, 55 sustained displacing distally and one sustained loosening in the tibia, whereas 31 sustained displacing proximally and six sustained loosening in the femur. In OA, 21 cementless knees had 17 displacings in the tibia, and ten displacings and two loosenings in the femur. Scanning electron microscopy (SEM) observation of the UHMWPE surface in tibial plates revealed smoothing and burnishing. Alumina is far superior to metal for the sliding part, although it is not always best for the portion in contact with the bone. To resolve these problems, for cementless fixation, anchoring portions of Ti alloy and alumina implants were covered with beads and coated with hydroxyapatite. For cement fixation, "the interface bioactive bone cement technique" interposing hydroxyapatite granules between bone and cement was performed. PMID:1516334

  10. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms

    PubMed Central

    Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H. P.

    2015-01-01

    Aim: The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Materials and Methods: Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. Results: All vehicles exhibited bactericidal activity at 100% concentration. Conclusion: Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only. PMID:25992336

  11. Optimizing the surface density of polyethylene glycol chains by grafting from binary solvent mixtures

    NASA Astrophysics Data System (ADS)

    Arcot, Lokanathan; Ogaki, Ryosuke; Zhang, Shuai; Meyer, Rikke L.; Kingshott, Peter

    2015-06-01

    Polyethylene glycol (PEG) brushes are very effective at controlling non-specific deposition of biological material onto surfaces, which is of paramount importance to obtaining successful outcomes in biomaterials, tissue engineered scaffolds, biosensors, filtration membranes and drug delivery devices. We report on a simple 'grafting to' approach involving binary solvent mixtures that are chosen based on Hansen's solubility parameters to optimize the solubility of PEG thereby enabling control over the graft density. The PEG thiol-gold model system enabled a thorough characterization of PEG films formed, while studies on a PEG silane-silicon system examined the versatility to be applied to any substrate-head group system by choosing an appropriate solvent pair. The ability of PEG films to resist non-specific adsorption of proteins was quantitatively assessed by full serum exposure studies and the binary solvent strategy was found to produce PEG films with optimal graft density to efficiently resist protein adsorption.

  12. Angle dependent laser nanopatterning of poly(ethylene terephthalate) surfaces

    NASA Astrophysics Data System (ADS)

    Slepi?ka, P.; Chaloupka, A.; Sajdl, P.; Heitz, J.; Hnatowicz, V.; vor?k, V.

    2011-05-01

    Interference effects can lead to the formation of ripple structures at laser-irradiated poly(ethylene terephthalate) surfaces. Poly(ethylene terephthalate) surface was irradiated with linearly polarized light of a pulsed 157 nm laser. In a certain range of irradiation parameters, the irradiation resulted in the formation of coherent ripples patterns. The dimension of the pattern depends on the angle of the laser beam incidence. The surface morphology of the nano-patterned poly(ethylene terephthalate) was analyzed by atomic force microscopy and focused ion beam-scanning electron microscopy. Oxygen concentration in the modified polymer surface was studied by angular resolved X-ray induced photo-electron spectroscopy. Gold nano-layers were consecutively sputtered onto the laser irradiated poly(ethylene terephthalate) surfaces. The morphology of the sputtered gold nano-layers was investigated with atomic force microscopy too. We found that the morphology of the gold nano-layers changes and depends on the surface pattern of the laser irradiated poly(ethylene terephthalate). Formation of gold "nano-hills" is observed at the ridges of the ripple structures. The amount of oxygen together with the morphology of prepared polymer pattern may be the dominant factors controlling the gold layer growth. The present results are compared with those obtained earlier on PET irradiated with krypton fluoride laser.

  13. Fluid-sorption phenomena in sterilized polyethylene acetabular prostheses.

    PubMed

    Clarke, I C; Starkebaum, W; Hosseinian, A; McGuire, P; Okuda, R; Salovey, R; Young, R

    1985-05-01

    The weight changes due to fluid-sorption were measured in 62 radiation-sterilized acetabular sockets and 10 unsterilized discs. The materials included two types of ultra-high molecular weight (UHMW) polyethylene (RCH 1000; Hi-Fax 1900) and a carbon-fibre-reinforced polyethylene (CFPE). The fluid absorption curve was consistently biphasic. In the first 30 d soak-period (Phase 1), the initial rate of fluid absorption averaged 153 micrograms/d for conventional UHMW polyethylene and 278 micrograms/d for carbon-fibre-reinforced polyethylene. In Phase 2, beyond 30 d and up to 400 d, fluid absorption reduced to linear rates of 27 micrograms/d for UHMW polyethylene and 43 micrograms/d for CFPE. The latter soak-weight-gain values corresponded to only 0.00016%/d and 0.00034%/d respectively. There was little difference in absorption rates between sterilized and unsterilized samples. However soak rates were generally higher in water compared to serum. PMID:4005362

  14. Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers.

    PubMed

    Thompson, Jay M; Hsieh, Ching-Hong; Luthy, Richard G

    2015-02-17

    Single-phase passive samplers are gaining acceptance as a method to measure hydrophobic organic contaminant (HOC) concentration in water. Although the relationship between the HOC concentration in water and passive sampler is linear at equilibrium, mass transfer models are needed for nonequilibrium conditions. We report measurements of organochlorine pesticide diffusion and partition coefficients with respect to polyethylene (PE), and present a Fickian approach to modeling HOC uptake by PE in aqueous systems. The model is an analytic solution to Fick's second law applied through an aqueous diffusive boundary layer and a polyethylene layer. Comparisons of the model with existing methods indicate agreement at appropriate boundary conditions. Laboratory release experiments on the organochlorine pesticides DDT, DDE, DDD, and chlordane in well-mixed slurries support the model's applicability to aqueous systems. In general, the advantage of the model is its application in the cases of well-agitated systems, low values of polyethylene-water partioning coefficients, thick polyethylene relative to the boundary layer thickness, and/or short exposure times. Another significant advantage is the ability to estimate, or at least bound, the needed exposure time to reach a desired CPE without empirical model inputs. A further finding of this work is that polyethylene diffusivity does not vary by transport direction through the sampler thickness. PMID:25607420

  15. Friction and wear of hydroxyapatite reinforced high density polyethylene against the stainless steel counterface.

    PubMed

    Wang, M; Chandrasekaran, M; Bonfield, W

    2002-06-01

    Hydroxyapatite (HA) reinforced high density polyethylene (HDPE) was invented as a biomaterial for skeletal applications. In this investigation, tribological properties (e.g. wear rate and coefficient of friction) of unfilled HDPE and HA/HDPE composites were evaluated against the duplex stainless steel in dry and lubricated conditions, with distilled water or aqueous solutions of proteins (egg albumen or glucose) being lubricants. Wear tests were conducted in a custom-built test rig for HDPE and HA/HDPE containing up to 40 vol % of HA. It was found that HA/HDPE composites had lower coefficients of friction than unfilled HDPE under certain conditions. HA/HDPE also exhibited less severe fatigue failure marks than HDPE. The degradation and fatigue failure of HDPE due to the presence of proteins were severe for low speed wear testing (100 rpm) as compared to high speed wear testing (200 rpm). This was due possibly to the high shear rate at the contact which could remove any degraded film instantaneously at high sliding speed, while with a low sliding speed the build-up of a degraded layer of protein could occur. The degraded protein layer would stay at the contact for a longer time and mechanical activation would induce adverse reactions, weakening the surface layer of HDPE. Both egg albumen and glucose were found to be corrosive to steel and adversely reactive for HDPE and HA/HDPE composites. The wear modes observed were similar to that of ultra-high molecular weight polyethylene. Specimens tested with egg albumen also displayed higher wear rates, which was again attributed to corrosion accelerated wear. PMID:15348592

  16. Photochemical modification of polyethylene terephthalate surface

    NASA Astrophysics Data System (ADS)

    Zhu, Zhengmao

    The prospect of obtaining desired surface-mediated characteristics while retaining bulk-mediated physical properties and avoiding potential environmental issues with wet chemical technology lends considerable appeal to photochemical approaches to surface modification. We undertook a combined experimental and computational approach to investigate the effect of deep UV irradiation on the polyethylene terephthalate (PET) surface. Its response to 172 nm UV from a xenon examiner lamp in the absence of oxygen was characterized with X-ray Photoelectron Spectroscopy (XPS), Time of Flight/Secondary Ion Mass Spectrometry (ToF/SIMS), transmission infrared spectroscopy (IR), and Atomic Force Microscopy (AFM). The surface chemistry details suggested that the primary photochemical reactions involved a Norrish type I based decarbonylation and a Norrish type II process yielding terminal carboxylic acid groups, consistent with the possible photochemistry from n-pi* type lowest singlet excited states of PET according to the computational modeling results. By directly populating n-pi* type excited states, 172 nm UV promoted effective surface photochemistry of PET with further helps from the high UV absorptivity and the high surface mobility of the molecules. Utilizing this active surface radical chemistry, a new grafting strategy was developed to impart desirable functional properties to the surface. A broad range of grafting chemicals can be employed in their vapor forms, demonstrated with an alkene or an alkane. Surface analysis with XPS, ToF/SIMS, AFM, and water contact angle measurements confirmed the effectiveness of the approach, supporting the notion of the surface radical initiated processes. A potentially useful anti-stain/soil coating was developed by grafting with a fluorocarbon species. Surface analysis suggested that the grafted fluorocarbon formed a nano-scale self-assembled monolayer. The coating had a similar water contact angle as that of a pure fluoropolymer but a better oil repellency due to the special molecular orientation in the graft layer. A potential antimicrobial application was demonstrated with amine chemicals. Structure characterization and computational modeling results suggested that the photochemistry of the UV active grafting chemicals also played an important role in the grafting process. A double bond structure in the amine species protected the amine functional groups and the resulting coating demonstrated antimicrobial activity against E. coli.

  17. Initial Stages of Pyrolysis of Polyethylene

    NASA Astrophysics Data System (ADS)

    Popov, Konstantin V.

    Combustion and flammability of plastics are important topics of practical interest directly related to fire safety and recycling of polymeric materials; pyrolysis of the solid is the initial step of its combustion. One of the main ways to study such complicated processes is through detailed mechanistic modeling, in which the process is represented by a set of many elementary reactions. Mechanistic modeling of combustion of plastics is considerably hindered by the lack of necessary kinetic data. In virtually all existing models of polymer pyrolysis the majority of kinetic data used are derived from the corresponding gas phase values of smaller species. The use of gas phase rate constants is, generally, not justified without an experimental justification. In the first part of the work the influence of condensed phase on the rate of scission of a carbon-carbon bond (the reaction that initiates pyrolysis and combustion) in polyethylene (PE) was studied using the method of Reactive Molecular Dynamics (RMD). A method based on a two-step kinetic mechanism was developed to decouple the cage effect from the kinetics of the reaction under study. It was observed that under the conditions of condensed phase the rate constant of C-C bond scission in PE decreased by an order of magnitude compared to that obtained in vacuum. It was also shown that under the conditions of polymer melt the rate constant does not depend on the length of the polymer chain. In the second part of the work the kinetics of liquid phase and gas phase products of PE pyrolysis were studied experimentally using Gas Chromatography and Nuclear Magnetic Resonance. Based on the assumption of applicability of gas phase kinetic data for C-C scission reaction and beta-scission reaction under the conditions of polymer melt, rate constants of hydrogen transfer, radical addition to double bonds, and radical recombination were determined via kinetic modeling of the experimental results. The obtained values of the rate constants were found to be in reasonable agreement with the constants of similar reactions of smaller molecules in the gas phase.

  18. Injectable silk-polyethylene glycol hydrogels.

    PubMed

    Wang, Xiaoqin; Partlow, Benjamin; Liu, Jian; Zheng, Zhaozhu; Su, Bo; Wang, Yansong; Kaplan, David L

    2015-01-01

    Silk hydrogels for tissue repair are usually pre-formed via chemical or physical treatments from silk solutions. For many medical applications, it is desirable to utilize injectable silk hydrogels at high concentrations (>8%) to avoid surgical implantation and to achieve slow in vivo degradation of the gel. In the present study, injectable silk solutions that formed hydrogels in situ were generated by mixing silk with low-molecular-weight polyethylene glycol (PEG), especially PEG300 and 400 (molecular weight 300 and 400g mol(-1)). Gelation time was dependent on the concentration and molecular weight of PEG. When the concentration of PEG in the gel reached 40-45%, gelation time was less than 30min, as revealed by measurements of optical density and rheological studies, with kinetics of PEG400 faster than PEG300. Gelation was accompanied by structural changes in silk, leading to the conversion from random coil in solution to crystalline ?-sheets in the gels, based on circular dichroism, attenuated total reflection Fourier transform infrared spectroscopy and X-ray diffraction. The modulus (127.5kPa) and yield strength (11.5kPa) determined were comparable to those of sonication-induced hydrogels at the same concentrations of silk. The time-dependent injectability of 15% PEG-silk hydrogel through 27G needles showed a gradual increase of compression forces from ?10 to 50N within 60min. The growth of human mesenchymal stem cells on the PEG-silk hydrogels was hindered, likely due to the presence of PEG, which grew after a 5 day delay, presumably while the PEG solubilized away from the gel. When 5% PEG-silk hydrogel was subcutaneously injected in rats, significant degradation and tissue in-growth took place after 20 days, as revealed by ultrasound imaging and histological analysis. No significant inflammation around the gel was observed. The features of injectability, slow degradation and low initial cell attachment suggests that these PEG-silk hydrogels are of interest for many biomedical applications, such as anti-fouling and anti-adhesion. PMID:25449912

  19. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  20. Space radiation transport properties of polyethylene-based composites

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Barghouty, A. F.; Dahche, H. M.

    2004-01-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  1. Radiation Transport Properties of Polyethylene-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K.; Barghouty, A. F.; Dahche, H. M.

    2003-01-01

    Composite materials that can both serve as effective shielding materials against cosmic-ray and energetic solar particles in deep space as well as structural materials for habitat and spacecraft remain a critical and mission enabling piece in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density coupled with high hydrogen content. Polyethylene fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of Polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at NASA's Marshall Space Flight Center and tested against 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  2. Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Brullot, W.; Reddy, N. K.; Wouters, J.; Valev, V. K.; Goderis, B.; Vermant, J.; Verbiest, T.

    2012-06-01

    Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles were obtained by a facile protocol and thoroughly characterized. Superparamagnetic iron oxide nanoparticles synthesized using a modified forced hydrolysis method were functionalized with polyethylene glycol silane (PEG silane), precipitated and dried. These functionalized particles are dispersable in a range of solvents and concentrations depending on the desired properties. Examples of tunable properties are magnetic behavior, optical and magneto-optical response, thermal features and rheological behavior. As such, PEG silane functionalized particles represent a platform for the development of new materials that have broad applicability in e.g. biomedical, industrial or photonic environments. Magnetic, optical, magneto-optical, thermal and rheological properties of several ferrofluids based on PEG coated particles with different concentrations of particles dispersed in low molecular mass polyethylene glycol were investigated, establishing the applicability of such materials.

  3. [In-vivo wear of the slide combinations ceramics-polyethylene as opposed to metal-polyethylene].

    PubMed

    Zichner, L; Lindenfeld, T

    1997-02-01

    The present study deals with long-term dimensional changes in cemented Mller-type total hip endoprostheses. Creep and wear contribute to different extents to the dimensional changes in polyethylene. The total amount of polyethylene wear is represented by the displacement of the femoral head into the socket. Within the first postoperative years, the head shifts up to a relatively high rate of about 0.5 mm per year. This rate diminishes after 5 years to an average of about 0.1 mm (ceramics) and 0.2 mm (metal) per year. Values exceeding 0.2 mm per year for the shift of the femoral head are considered to be unfavourable with regard to a probable loosening of the prosthesis. In this study we determined the orientation of the centre of the prosthetic head in relation to the wire marker of the polyethylene cup, comprising in all 369 total hip prostheses. After an average of 77 months, 96% of the prostheses with ceramic heads (n = 109) had a wear rate of less than 0.2 mm per year. Using metal heads (Protasul-2 and Protasul-10) this rate could only be measured in 71% (n = 109) of the prostheses (61.5 months). The combination ceramics-polyethylene produces half of the total amount of wear produced by metal-polyethylene. Younger patients should preferably be treated with a ceramic ballhead. PMID:9157352

  4. Molecular order, miscibility, and rheology of molten polyethylenes

    NASA Astrophysics Data System (ADS)

    Hussein, Ibnelwaleed Ali

    New evidence of high-temperature transitions and molecular order in molten polyethylenes is presented, and its influence on the miscibility of polyethylenes is discussed. Thermal and rheological techniques were used to investigate commercial HDPE, LDPE and Ziegler-Natta and Metallocene LLDPEs. Adequate amounts of extra antioxidants were added to the polyethylenes during melt conditioning, following a separate investigation. Polystyrene was utilized to demonstrate the typical behavior of isotropic polymer melts. Temperature sweeps during torque measurements in a melt blender, and when using a rheometer and DSC, showed thermal transitions at about 208°C and 227°C. Torque in the blender over the temperature range 208°--227°C showed a flat profile or an increase in torque near 227°C, unique behavior associated with thermotropic liquid crystal polymers (LCP). Additional support for the liquid-state order that agree with theoretical predictions for a LCP is found. These include indications of an approach to a sign change in the first normal stress difference, N1( ġ ), at low values of the steady shear rate, ġ , and a kink in the non-Newtonian viscosity eta( ġ ). A rheological investigation found no evidence of the attainment of the isotropic state at high temperature and suggested the persistence of order above these transitions. However, highly branched metallocene LLDPE ( ˜ 40 CH3/1000 C) did not show transitions or any evidence of molecular order. It is suggested that polyethylenes possess different molecular conformation in the melt state ranging from the chain-folded HDPE to the amorphous highly-branched LLDPE. It is this molecular order and mismatch of the molecular conformations of different polyethylene structures that provide an explanation for the immiscibility of polyethylenes, as revealed by the dependence of their rheological properties on blend composition. The influence of molecular weight, comonomer type, and mixing temperature on the miscibility of LLDPE and LDPE is discussed. Partial miscibility is observed in blends mixed at a temperature below 208°C, whereas blends mixed above that temperature were almost immiscible. Increasing the branch length of the LLDPE from butene to octene increased miscibility slightly. Literature reporting polyethylene melt behavior is critically reviewed over the last four decades and found to contain many anomalies of molecular order and structural transformations. The scientific community and the polyethylene processing industry need to investigate the implications of these findings.

  5. Irradiation of linear polyethylene - Partitioning between sol and gel.

    NASA Technical Reports Server (NTRS)

    Rijke, A. M.; Mandelkern, L.

    1971-01-01

    Investigation of the importance of chain-scission processes and of the applicability of the general theory of network formation to polyethylene with respect to critical conditions for gelation, using molecular weight fractions of linear polyethylene irradiated at 133 C. The partitioning between sol and gel was found to adhere to the theory just beyond the gel point. Deviations from theory occurred as the irradiation dosage was increased. It was concluded that main-chain scission at the temperatures concerned is not a significant process.

  6. Molecularly uniform poly(ethylene glycol) certified reference material

    NASA Astrophysics Data System (ADS)

    Takahashi, Kayori; Matsuyama, Shigetomo; Kinugasa, Shinichi; Ehara, Kensei; Sakurai, Hiromu; Horikawa, Yoshiteru; Kitazawa, Hideaki; Bounoshita, Masao

    2015-02-01

    A certified reference material (CRM) for poly(ethylene glycol) with no distribution in the degree of polymerization was developed. The degree of polymerization of the CRM was accurately determined to be 23. Supercritical fluid chromatography (SFC) was used to separate the molecularly uniform polymer from a standard commercial sample with wide polydispersity in its degree of polymerization. Through the use of a specific fractionation system coupled with SFC, we are able to obtain samples of poly(ethylene glycol) oligomer with exact degrees of polymerization, as required for a CRM produced by the National Metrology Institute of Japan.

  7. Biodegradation of polyethylene foils by bacterial and liver homogenates.

    PubMed

    Wasserbauer, R; Beranov, M; Vancurov, D; Dolezel, B

    1990-01-01

    The evaluation of structural changes of single linear and bifurcated polyethylene foils exposed to bacterial and liver homogenates was carried out by infrared spectrography, along with observations of changes of mechanical properties. Cell homogenates were fractionated by centrifugation and by coagulating the microsomal fraction using Ca2+ ions. Stimulation as well as inhibition of the presumed enzyme system were studied in bacterial cultures and liver homogenates of experiment animals. Results suggest that oxidation structures in polyethylene, after exposure to these cell homogenates, are caused by the monooxygenase hydroxylation system of the bacterial or liver cells. PMID:2302448

  8. Divinyl-end-functionalized polyethylenes: ready access to a range of telechelic polyethylenes through thiol-ene reactions.

    PubMed

    Norsic, Sebastien; Thomas, Coralie; D'Agosto, Franck; Boisson, Christophe

    2015-04-01

    Telechelic ?,?-iodo-vinyl-polyethylenes (Vin-PE-I) were obtained by catalytic ethylene polymerization in the presence of [(C5 Me5 )2 NdCl2 Li(OEt2 )2 ] in combination with a functionalized chain-transfer agent, namely, di(10-undecenyl)magnesium, followed by treatment of the resulting di(vinylpolyethylenyl)magnesium compounds ((vinyl-PE)2 Mg) with I2 . The iodo-functionalized vinylpolyethylenes (Vin-PE-I) were transformed into unique divinyl-functionalized polyethylenes (Vin-PE-Vin) by simple treatment with tBuOK in toluene at 95?C. Thiol-ene reactions were then successfully performed on Vin-PE-Vin with functionalized thiols in the presence of AIBN. A range of homobifunctional telechelic polyethylenes were obtained on which a hydroxy, diol, carboxylic acid, amine, ammonium chloride, trimethoxysilyl, chloro, or fluoroalkyl group was installed quantitatively at each chain end. PMID:25688747

  9. Proteomic Analysis of Lonicera japonica Thunb. Immature Flower Buds Using Combinatorial Peptide Ligand Libraries and Polyethylene Glycol Fractionation.

    PubMed

    Zhu, Wei; Xu, Xiaobao; Tian, Jingkui; Zhang, Lin; Komatsu, Setsuko

    2016-01-01

    Lonicera japonica Thunb. flower is a well-known medicinal plant that has been widely used for the treatment of human disease. To explore the molecular mechanisms underlying the biological activities of L. japonica immature flower buds, a gel-free/label-free proteomic technique was used in combination with combinatorial peptide ligand libraries (CPLL) and polyethylene glycol (PEG) fractionation for the enrichment of low-abundance proteins and removal of high-abundance proteins, respectively. A total of 177, 614, and 529 proteins were identified in crude protein extraction, CPLL fractions, and PEG fractions, respectively. Among the identified proteins, 283 and 239 proteins were specifically identified by the CPLL and PEG methods, respectively. In particular, proteins related to the oxidative pentose phosphate pathway, signaling, hormone metabolism, and transport were highly enriched by CPLL and PEG fractionation compared to crude protein extraction. A total of 28 secondary metabolism-related proteins and 25 metabolites were identified in L. japonica immature flower buds. To determine the specificity of the identified proteins and metabolites for L. japonica immature flower buds, Cerasus flower buds were used, which resulted in the abundance of hydroxymethylbutenyl 4-diphosphate synthase in L. japonica immature flower buds being 10-fold higher than that in Cerasus flower buds. These results suggest that proteins related to secondary metabolism might be responsible for the biological activities of L. japonica immature flower buds. PMID:26573373

  10. Variations in polyethylene glycol brands and their influence on the preparation process of hydrogel microspheres.

    PubMed

    Whl-Bruhn, Stefanie; Bertz, Andreas; Kuntsche, Judith; Menzel, Henning; Bunjes, Heike

    2013-11-01

    Hydrogel microspheres, e.g. for the use as protein carriers, can be prepared without the use of organic solvents via an emulsified aqueous two-phase system (ATPS) that is based on two immiscible polymer solutions. The type and concentration of the polymers can affect the ATPS and finally the distribution of incorporated drugs between the aqueous phases. For the preparation of hydrogel microspheres based on hydroxyethyl starch-hydroxyethyl methacrylate (HES-HEMA), hydroxyethyl starch-methacrylate (HES-MA), and hydroxyethyl starch-polyethylene glycol methacrylate (HES-P(EG)6MA), polyethylene glycol 12,000 (PEG 12,000) was used as second polymer. The particle size distribution and encapsulation efficiency of the microspheres depended dramatically on the type of PEG 12,000 that was used in the second phase of the ATPS. Analysis of different PEG 12,000 brands by various methods revealed differences in the salt composition and molecular weight distribution of the polymers which can explain the effects on the production process. The results illustrate that the range of product specifications may not always be tight enough to avoid variability in pharmaceutical processes like the preparation of hydrogel microspheres by an aqueous two-phase preparation process. PMID:23567486

  11. Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels

    PubMed Central

    Lin, Chien-Chi

    2015-01-01

    The design and application of biomimetic hydrogels have become an important and integral part of modern tissue engineering and regenerative medicine. Many of these hydrogels are prepared from synthetic macromers (e.g., poly(ethylene glycol) or PEG) as they provide high degrees of tunability for matrix crosslinking, degradation, and modification. For a hydrogel to be considered biomimetic, it has to recapitulate key features that are found in the native extracellular matrix, such as the appropriate matrix mechanics and permeability, the ability to sequester and deliver drugs, proteins, and or nucleic acids, as well as the ability to provide receptor-mediated cell-matrix interactions and protease-mediated matrix cleavage. A variety of chemistries have been employed to impart these biomimetic features into hydrogel crosslinking. These chemistries, such as radical-mediated polymerizations, enzyme-mediated crosslinking, bio-orthogonal click reactions, and supramolecular assembly, may be different in their crosslinking mechanisms but are required to be efficient for gel crosslinking and ligand bioconjugation under aqueous reaction conditions. The prepared biomimetic hydrogels should display a diverse array of functionalities and should also be cytocompatible for in vitro cell culture and/or in situ cell encapsulation. The focus of this article is to review recent progress in the crosslinking chemistries of biomimetic hydrogels with a special emphasis on hydrogels crosslinked from poly(ethylene glycol)-based macromers. PMID:26029357

  12. Hydrophilic polysulfone film prepared from polyethylene glycol monomethylether via coupling graft

    NASA Astrophysics Data System (ADS)

    Du, Ruikui; Gao, Baojiao; Li, Yanbin

    2013-06-01

    In the presence of acid-acceptor Na2CO3, the nucleophilic substitution between chloromethylated polysulfone (CMPSF) and polyethylene glycol monomethylether (PEGME) was conducted. Polyethylene glycol (PEG) was coupling-grafted onto the side chains of polysulfone (PSF) so that the graft copolymer PSF-g-PEG was prepared and the hydrophilic modification of polysulfone membrane material was realized. The chemical structure of PSF-g-PEG was characterized by FTIR and 1H NMR. The influence of the main factors on the coupling graft reaction was investigated. The water static contact angle of PSF-g-PEG membrane was determined and its property of resisting protein pollution was examined by using bovine serum albumin (BSA) as a model protein. The experimental results show that the coupling graft reaction between CMPSF and PEGME can proceed successfully, and the reaction of chloromethyl groups of CMPSF with the hydroxyl end groups of PEGME is a typical SN1 nucleophilic substitution reaction. The polarity of the solvents and the reaction temperature greatly influence the reaction. The suitable solvent is dimethyl acetamide with stronger polarity and 70 C is a suitable reaction temperature. After reaction of 36 h, the grafting degree of PEG can reach 48 g/100 g and the product yield is about 73.6%. The contact angle of PSF-g-PEG membrane declines rapidly with the increase of PEG grafting degree, displaying the obvious enhancement of the hydrophilicity. The adsorption capacity of BSA on PSF-g-PEG membrane decreases remarkably with the increase of PEG grafting degree, showing excellent antifouling ability of PSF-g-PEG membrane for proteins.

  13. Polyethylene composites containing a phase change material having a C14 straight chain hydrocarbon

    DOEpatents

    Salyer, Ival O.

    1987-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyethylene matrix having a straight chain alkyl hydrocarbon incorporated therein, said polyethylene being crosslinked to such a degree that said polyethylene matrix is form stable and said polyethylene matrix is capable of absorbing at least 10% by weight of said straight chain alkyl hydrocarbon; the composite is useful in forming pellets or sheets having thermal energy storage characteristics.

  14. Study On Temperature Distribution In T Fittings - Polyethylene Natural Gas Pipes Assemblies

    NASA Astrophysics Data System (ADS)

    Avrigean, Eugen

    2015-09-01

    The present paper intends to approach theoretically and experimentally an important topic concerning the operational safety of the polyethylene pipes used in natural gas distribution. We discuss the influence of temperature in the high density polyethylene elbows during welding to the polyethylene pipes.

  15. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  16. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  17. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol...)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (PMN P-09-628) is subject...

  18. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol...)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (PMN P-09-628) is subject...

  19. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  20. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  1. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  2. 75 FR 53953 - Polyethylene Retail Carrier Bags From Thailand: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... Antidumping Duty Order: Polyethylene Retail Carrier Bags From Thailand, 69 FR 48204 (August 9, 2004). On... Review, 75 FR 23673 (May 4, 2010), and Polyethylene Retail Carrier Bags From Thailand: Extension of Time...: Polyethylene Retail Carrier Bags From Thailand, 69 FR 34122, 34123 (June 18, 2004). The POR is August 1,...

  3. 40 CFR 721.10518 - Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl ether- and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (generic). 721.10518 Section... Substances § 721.10518 Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (PMN P-11-48) is subject...

  4. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl polyethylene glycol phosphate... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  5. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  6. 40 CFR 721.10546 - Pentenylated polyethylene glycol sulfate salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Pentenylated polyethylene glycol... New Uses for Specific Chemical Substances § 721.10546 Pentenylated polyethylene glycol sulfate salt... identified generically as pentenylated polyethylene glycol sulfate salt (PMN P-04-340) is subject...

  7. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  8. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl polyethylene glycol phosphate... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  9. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  10. 40 CFR 721.10546 - Pentenylated polyethylene glycol sulfate salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Pentenylated polyethylene glycol... New Uses for Specific Chemical Substances § 721.10546 Pentenylated polyethylene glycol sulfate salt... identified generically as pentenylated polyethylene glycol sulfate salt (PMN P-04-340) is subject...

  11. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol...)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (PMN P-09-628) is subject...

  12. 77 FR 46687 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Reviews and Requests for Revocation in Part, 76 FR 53404 (August 26, 2011). \\5\\ See Polyethylene... Review, 73 FR 71601 (November 25, 2008); see also Certain Polyethylene Terephthalate Film, Sheet and...: Final Modification, 77 FR 8101 (February 14, 2012). \\52\\ See Polyethylene Terephthalate Film, Sheet,...

  13. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  14. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  15. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  16. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl polyethylene glycol phosphate... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  17. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  18. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  19. 40 CFR 721.10518 - Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl ether- and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (generic). 721.10518 Section... Substances § 721.10518 Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (PMN P-11-48) is subject...

  20. Effect of radiation, heat, and aging on in vitro wear resistance of polyethylene.

    PubMed

    Muratoglu, Orhun K; Merrill, Edward W; Bragdon, Charles R; O'Connor, Daniel; Hoeffel, Daniel; Burroughs, Brian; Jasty, Murali; Harris, William H

    2003-12-01

    Radiation cross-linking increases the wear resistance of polyethylene used in total hip replacement. Radiation also generates residual free radicals, which are detrimental to long-term properties of polyethylene. Two approaches are used to stabilize the residual free radicals and terminally sterilize the components. One is postirradiation annealing with gas sterilization and the other is postirradiation melting with gamma sterilization in nitrogen. The hypothesis of the current study is that postirradiation annealing followed by gamma sterilization in nitrogen will result in more free radicals in polyethylene than gamma sterilization either in air or in nitrogen alone. To test this hypothesis, concentration of residual free radicals was quantified in polyethylene that was annealed and gamma sterilized in nitrogen and control polyethylenes gamma sterilized in air versus in nitrogen. Three crosslinked polyethylenes that were melted and gas sterilized also were included in the study. The effects of residual free radicals were studied by accelerated aging. Oxidation levels and weight loss in bidirectional pin-on-disk tests were determined before and after aging. Polyethylene that was subjected to postirradiation annealing and gamma sterilization resulted in 58% more residual free radicals than control polyethylenes. Weight loss of the annealed polyethylene increased by 16-fold on accelerated aging and had three times higher oxidation levels than that measured in control polyethylenes after aging. In contrast, polyethylenes that were stabilized with postirradiation melting and terminally gas sterilized showed no detectable residual free radicals. Accelerated aging did not affect the weight loss and oxidation levels of melted polyethylenes. PMID:14646724

  1. 78 FR 35245 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... review of the antidumping duty order on polyethylene terephthalate film, sheet, and strip (``PET film... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic... review (``POR'') is November 1, 2010, through October 31, 2011. \\1\\ See Polyethylene Terephthalate...

  2. 78 FR 45512 - Polyethylene Terephthalate Film from India and Taiwan: Extension of Time Limits for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... antidumping duty (AD) orders on polyethylene terephthalate film (PET Film) from India and Taiwan, pursuant to... International Trade Administration Polyethylene Terephthalate Film from India and Taiwan: Extension of Time... Antidumping Duty Orders on Polyethylene Terephthalate Film from India and Taiwan: Adequacy...

  3. 78 FR 47276 - Polyethylene Terephthalate (PET) Film, Sheet, and Strip From India: Final Results of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... International Trade Administration Polyethylene Terephthalate (PET) Film, Sheet, and Strip From India: Final... of the countervailing duty order on polyethylene terephthalate (PET) film, sheet, and strip (``PET...: Polyethylene Terephthalate Film, Sheet, and Strip From India, 67 FR 44179 (July 1, 2002). On April 2, 2012,......

  4. 77 FR 14493 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic... results in the 2009-2010 antidumping duty administrative review of polyethylene terephthalate film, sheet... listed in the ``Final Results Margins'' section below. \\1\\ See Polyethylene Terephthalate Film,...

  5. 76 FR 61085 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Extension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... review of polyethylene terephthalate film, sheet, and strip (``PET film'') from the People's Republic of... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic... period for completing the preliminary results of the review by 60 days. See Polyethylene...

  6. 75 FR 40784 - Polyethylene Terephthalate Film, Sheet, and Strip from the Republic of Korea: Preliminary Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... administrative review of the antidumping duty order on polyethylene terephthalate film, sheet and strip (PET film...: Polyethylene Terephthalate Film, Sheet, and Strip from Thailand, 73 FR 24565, 24567 (May 5, 2008) (unchanged in... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip from the Republic of......

  7. 76 FR 50456 - Notice of Final Results of Antidumping Duty Changed Circumstances Review: Polyethylene...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... polyethylene terephthalate film, sheet, and strip (PET film) from Korea, effective as of the date of...: Polyethylene Terephthalate Film, Sheet, and Strip From the Republic of Korea AGENCY: Import Administration... Order and Amendment to Final Determination of Sales at Less Than Fair Value: Polyethylene...

  8. Polyethylene/clay nanocomposites prepared by polymerization compounding method.

    PubMed

    Gaboune, Asmaa; Ray, Suprakas Sinha; Ait-Kadi, Abdellatif; Riedl, Bernard; Bousmina, Mosto

    2006-02-01

    A new technique for the preparation of high density polyethylene/clay nanocomposite, "polymerization compounding," is reported. This technique was based on the chemical anchoring of a Ziegler-Natta catalyst on organically modified clay surface containing an ammonium cation bearing primary hydroxyl groups. The polymerization of ethylene was initiated after adequate activation and the growing polyethylene chains are directly adsorbed on to the clay surface through the hydroxyl-functionalized surfactant. Finally, the nanocomposite was prepared by diluting polyethylene adsorbed clay in the high density polyethylene (HDPE) matrix using a batch mixer at 180 degrees C. The as-synthesized nanocomposite was typically characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) that revealed the formation of intercalated nanocomposite. Tensile property measurements exhibit substantial increase in stiffness (approximately 50%) and strength (approximately 20%) of nanocomposite as compared to that of neat HDPE. Dynamic mechanical analysis under molten state revealed 25% increase in storage modulus when compared to that of neat HDPE. PMID:16573056

  9. Use of cotton gin trash and compatibilizers in polyethylene composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ginning of cotton produces 15-42% of foreign materials, called “cotton gin trash”, including cotton burr, stems, leaf fragment, and dirt. In this work we examined the mechanical properties of composites of low density polyethylene (LDPE) and cotton burr. The burr was ground into powder, and se...

  10. Herbicide dissipation from low density polyethylene mulch utilizing analytical techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Georgia, most of the low density polyethylene mulch (LDPM) is laid for spring vegetable production followed by a second crop in the autumn, with a potential third crop the following spring. Between these vegetable plantings, farmers often use contact and residual herbicides to control weeds that ...

  11. SECURING CONTAINERIZED HAZARDOUS WASTES WITH WELDED POLYETHYLENE ENCAPSULATES

    EPA Science Inventory

    Full-scale encapsulation of 208-liter (55-gal) drums was studied as a means for managing corroding containers of hazardous wastes in the field and rendering them suitable for transport and safe deposit within a final disposal site such as a landfill. Polyethylene (PE) receivers w...

  12. Adsorption of Polyethylene from Solution onto Starch Film Surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since starch adsorbs onto polyethylene (PE) surfaces from cooled solutions of jet cooked starch, this study was carried out to determine whether adsorption of PE onto hydrophilic starch film surfaces would also take place if starch films were placed in hot solutions of PE in organic solvents, and th...

  13. APPLICATION OF HYDROPHILIC STARCH-BASED COATINGS TO POLYETHYLENE SURFACES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coatings were applied to polyethylene film surfaces by spraying formulations prepared from a jet cooked dispersion of waxy cornstarch, a water-based epoxy resin, a wax emulsion, and a surfactant. Although the starch component separated rapidly from the coating when the film was placed in water at r...

  14. Long-term Radiographic Assessment of Cemented Polyethylene Acetabular Cups

    PubMed Central

    Isaac, Graham; Porter, Neil; Fisher, John; Older, John

    2008-01-01

    Invitro studies demonstrating excessive wear in polyethylene cups sterilized using gamma irradiation and stored in air led to the abandonment of this sterilization technique. We evaluated the clinical wear performance of a metal femoral component on a polyethylene cup in a hip prosthesis from a selected subset of implants in a group of patients followed for at least 20years and assessed the time dependency of variation in penetration rates. We measured penetration in 33 polyethylene cups in 25 patients who had a Charnley low-friction arthroplasty between 1982 and 1984. All patients had Charnley Ogee cups implanted for more than 20years and sterilized using the gamma irradiation in air technique. If degradation occurred over time invivo, it was not reflected by an increased penetration rate with increasing time invivo; even after 20years of implantation, the degree of wear remained low. This suggests gamma irradiation affects wear on ultra-high-molecular-weight polyethylene by reducing wear secondary to the crosslinking, by increasing wear as shown through invitro studies of heavily oxidized samples, or by oxidation resulting from prolonged shelf life. The effect of progressive oxidation invivo does not appear to affect wear invivo. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196419

  15. 21 CFR 177.1630 - Polyethylene phthalate polymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene phthalate polymers. 177.1630 Section 177.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  16. 21 CFR 177.1630 - Polyethylene phthalate polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene phthalate polymers. 177.1630 Section 177.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  17. 21 CFR 177.1630 - Polyethylene phthalate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene phthalate polymers. 177.1630 Section 177.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  18. Polyethylene glycol: Catalytic effect on the crystallization of phosphoglucomutase at high salt concentration

    NASA Astrophysics Data System (ADS)

    Ray, William J.; Bracker, Charles E.

    1986-08-01

    A cold, aqueous solution containing (NH 4) 2SO 4 at 53% of saturation and 5.9% w/v polyethylene glycol-400 (PEG) produces PEG-rich coacervate droplets (16%(NH 4) 2SO 4 and 37% PEG) when warmed to 25C. In partition experiments conducted at low protein concentration, phosphoglucomutase and several other common proteins concentrate at least 20-fold in the PEG-rich phase. A temperature-induced phase separation similar to that above, but conducted in the presence of 5 mg/ml of phosphoglucomutase, can produce coacervate droplets in which the concentration of protein is about 500 mg/ml and thus approaches that in the crystal phase. The nucleation and subsequent conversion of such droplets into micrometer-size crystals of phosphoglucomutase were studied by light microscopy. Nucleation usually occurs in the periphery of these droplets, and neither phase nucleates efficiently by itself, although both support growth. Most droplets do not nucleate and subsequently dissolve as the protein concentration in the surrounding medium is depleted by incorporation into growing srystals. A major role of PEG in the nucleation/crystallization process is to repress the formation of salt-induced, disordered aggregates whose non-lattice protein-protein interactions presumably are less mobile than those in the droplet phase. In this sense, PEG acts as a nucleation catalyst. Such a mode of action is supported by studies on the effect of PEG in the conversion of salt-induced aggregates of phosphoglucomutase into protein crystals. An analogous role in the nucleation and slow growth of much larger crystals under somewhat different conditions is inferred. Such a PEG-induced effect may be general for proteins that crystallize from concentrated salt solutions.

  19. Polyethylene glycol-coupled IGF1 delays motor function defects in a mouse model of spinal muscular atrophy with respiratory distress type 1.

    PubMed

    Krieger, Frank; Elflein, Nicole; Saenger, Stefanie; Wirthgen, Elisa; Rak, Kristen; Frantz, Stefan; Hoeflich, Andreas; Toyka, Klaus V; Metzger, Friedrich; Jablonka, Sibylle

    2014-05-01

    Spinal muscular atrophy with respiratory distress type 1 is a neuromuscular disorder characterized by progressive weakness and atrophy of the diaphragm and skeletal muscles, leading to death in childhood. No effective treatment is available. The neuromuscular degeneration (Nmd(2J)) mouse shares a crucial mutation in the immunoglobulin mu-binding protein 2 gene (Ighmbp2) with spinal muscular atrophy with respiratory distress type 1 patients and also displays some basic features of the human disease. This model serves as a promising tool in understanding the complex mechanisms of the disease and in exploring novel treatment modalities such as insulin-like growth factor 1 (IGF1) which supports myogenic and neurogenic survival and stimulates differentiation during development. Here we investigated the treatment effects with polyethylene glycol-coupled IGF1 and its mechanisms of action in neurons and muscles. Polyethylene glycol-coupled IGF1 was applied subcutaneously every second day from post-natal Day 14 to post-natal Day 42 and the outcome was assessed by morphology, electromyography, and molecular studies. We found reduced IGF1 serum levels in Nmd(2J) mice 2 weeks after birth, which was normalized by polyethylene glycol-coupled IGF1 treatment. Nmd(2J) mice showed marked neurogenic muscle fibre atrophy in the gastrocnemius muscle and polyethylene glycol-coupled IGF1 treatment resulted in muscle fibre hypertrophy and slowed fibre degeneration along with significantly higher numbers of functionally active axonal sprouts. In the diaphragm with predominant myogenic changes a profound protection from muscle fibre degeneration was observed under treatment. No effects of polyethylene glycol-coupled IGF1 were monitored at the level of motor neuron survival. The beneficial effects of polyethylene glycol-coupled IGF1 corresponded to a marked activation of the IGF1 receptor, resulting in enhanced phosphorylation of Akt (protein kinase B) and the ribosomal protein S6 kinase in striated muscles and spinal cord from Nmd(2J) mice. Based on these findings, polyethylene glycol-coupled IGF1 may hold promise as a candidate for future treatment trials in human patients with spinal muscular atrophy with respiratory distress type 1. PMID:24681663

  20. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients

    PubMed Central

    Boles, Erin E.; Gaines, Cameryn L.

    2015-01-01

    OBJECTIVES: The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. METHODS: A retrospective, observational, institutional review board–approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. RESULTS: Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p < 0.01). CONCLUSIONS: Theses results suggest that PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects. PMID:26170773

  1. Solvent effect in the polyethylene recovery from multilayer postconsumer aseptic packaging.

    PubMed

    Cervantes-Reyes, Alejandro; Nez-Pineda, Alejandra; Barrera-Daz, Carlos; Varela-Guerrero, Vctor; Martnez-Barrera, Gonzalo; Cuevas-Yaez, Erick

    2015-04-01

    Polyethylene films were separated and recovered from polyethylene-aluminum composites derived from recycling multilayer postconsumer aseptic packaging. A brief study about the separation process by dissolving PE-aluminum (PE-Al) composites into a series of organic solvents with a combination of time and temperature is presented. Through this procedure, 56% polyethylene is recovered from this kind of composites in optimized conditions. DSC and TGA studies were performed to determine the thermal stability of recovered polyethylene films and to establish a comparison with a PE reference commercial product, demonstrating that recovered polyethylene films kept their thermal properties. PMID:25681948

  2. Infrared, Raman and INS studies of poly-ethylene oxide oligomers

    NASA Astrophysics Data System (ADS)

    Migliardo, F.; Magazù, S.; Caccamo, M. T.

    2013-09-01

    In the present paper the experimental findings obtained by different spectroscopic techniques on water mixtures of a protein model system, i.e. PolyEthylene Oxide (PEO), are reported. By increasing the polymerization degree m, the D-LAM spectral contribution shows a behavior of the centre frequency and of linewidth which tends to reach a constant value. Also the intramolecular OH stretching contribution, by increasing m, shows a shift which tends to flatten for polymers with molecular weight higher than Mw = 600. These results can be connected with the oligomer-polymer transition, at m = 13. When in aqueous solutions the D-LAM frequency increases towards the value corresponding to that of the crystal phase; similarly one observes also a sharpening of the D-LAM spectral contribution. These evidences suggest the presence of a more ordered conformation of PEO in water in respect to the melt phase.

  3. Preferences for foods varying in macronutrients and tannins by lambs supplemented with polyethylene glycol.

    PubMed

    Titus, C H; Provenza, F D; Perevolotsky, A; Silanikove, N

    2000-06-01

    Supplemental polyethylene glycol (PEG) increases intake when animals eat foods high in tannins, but little is known about how PEG affects preference for foods that vary in concentrations of macronutrients and tannin. We investigated how varying macronutrients and tannins (commercially available extracts from quebracho trees) affected food intake, and we assessed the degree to which PEG (MW 3350) affected intake of tannin-rich foods by sheep. From 0715 to 1800 daily, lambs were offered diets that varied in concentrations of macronutrients: high energy/low protein (75% barley/25% alfalfa), medium energy/medium protein (35% barley/65% alfalfa), and low energy/high protein (100% alfalfa). Preference for these diets was determined in the absence of tannin, and then, in Trials 1 to 3, tannin was added in increasing concentrations (from 5 to 20%) to the diets with high and medium levels of energy. In Trial 4, tannin (10%) also was added to the low-energy diet. Lambs were supplemented with either 50 g of PEG mixed with 50 g of ground barley or 50 g of ground barley alone from 0700 to 1715 daily; lambs always consumed all of these supplements. In the absence of added tannins, all lambs preferred high energy/low protein > medium energy/medium protein > low energy/high protein. As tannin levels increased, preference for the high- and medium-energy foods decreased, and all lambs preferred foods that were lower in tannins and higher in protein. Lambs supplemented with PEG ate more macronutrients and tannins than unsupplemented lambs, and the effect became increasingly apparent as tannin levels increased from Trials 1 to 4. We conclude that the effectiveness of supplemental PEG may be low if alternative forages are equal or superior in nutritional quality and contain fewer metabolites with adverse effects. In such cases, animals would likely prefer alternatives to high-tannin foods. PMID:10875625

  4. Oxygen Availability in Polyethylene Glycol Solutions and Its Implications in Plant-Water Relations 1

    PubMed Central

    Mexal, John; Fisher, James T.; Osteryoung, Janet; Reid, C. P. Patrick

    1975-01-01

    The solubility of O2 in polyethylene glycol 4000 and 6000 solutions of varying concentrations was determined iodimetrically (titrimetrically) and electrochemically using a rotating glassy carbon electrode and a PAR Model 174 Polarograph. The titrimetric determination resulted in the formation of an unexpected precipitate at 2% (w/v) polyethylene glycol corresponding to the approximate critical micelle concentration of the two polyethylene glycol homologs. Beyond 5% polyethylene glycol, O2 concentration was inversely proportional to polyethylene glycol concentration, and was higher in polyethylene glycol 4000 solutions than in polyethylene glycol 6000. The electrochemical data are a direct measure of O2 transport to the electrode surface, rather than O2 activity or concentration. Results indicate that even at relatively high H2O potentials, the transport of O2 to the root surface might be insufficient to meet the plant's respiratory requirements. PMID:16659021

  5. Protein adsorption characterization.

    PubMed

    Martins, M Cristina L; Sousa, Susana R; Antunes, Joana C; Barbosa, Mrio A

    2012-01-01

    Protein adsorption from (aqueous) solutions onto a (solid) surface is a common process that takes place at biological interfaces. This phenomenon, that spontaneously occurs, changes the properties of the surface and can induce structural modifications on proteins. Proteins in solution can be easily identified/quantified using classical biochemical methods. However, adsorbed proteins are more difficult to assess since they are always associated with a substrate. The selection of the analytical method depends on the type of substrate used, the amount of adsorbed protein, the type of solution (single protein solution vs. complex biological media), and the type of information that is demanded (quantification of the adsorbed protein, adsorption kinetics, conformation, and orientation of the adsorbed protein). Until now, none of the techniques available are capable by its own to characterize all the protein adsorption process. Therefore, a multitechnique analysis is required. During this chapter, the methodologies to measure human serum albumin to poly(ethylene terephthalate) using the three different techniques, radiolabeling, ellipsometry, and quartz crystal microbalance with dissipation - QCM-D, are described in detail. The specific preparation of polymeric surfaces to be used with each technique is also presented. PMID:22042678

  6. Study of the Auger line shape of polyethylene and diamond

    NASA Technical Reports Server (NTRS)

    Dayan, M.; Pepper, S. V.

    1984-01-01

    The KVV Auger electron line shapes of carbon in polyethylene and diamond have been studied. The spectra were obtained in derivative form by electron beam excitation. They were treated by background subtraction, integration and deconvolution to produce the intrinsic Auger line shape. Electron energy loss spectra provided the response function in the deconvolution procedure. The line shape from polyethylene is compared with spectra from linear alkanes and with a previous spectrum of Kelber et al. Both spectra are compared with the self-convolution of their full valence band densities of states and of their p-projected densities. The experimental spectra could not be understood in terms of existing theories. This is so even when correlation effects are qualitatively taken into account account to the theories of Cini and Sawatzky and Lenselink.

  7. Hyperthermal atomic oxygen reactions with kapton and polyethylene. [in LEO

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Koontz, S. L.; Gregory, J. C.; Edgell, M. J.

    1990-01-01

    Gas phase reaction products produced by the interaction of high kinetic energy (1-3 eV) 3p ground state atomic oxygen (AO) with polyethylene and kapton were found to be H2, H2O, CO, and CO2 with NO being a possible secondary product from kapton. Hydrogen abstraction at high AO kinetic energy is postulated to be the key reaction controlling the erosion rate of kapton and polyethylene. An Arrhenius-like expression having an activation barrier of 0.4 eV can be fit to the data, which suggests that the rate limiting step in the AO/kapton reaction mechanism can be overcome by translational energy.

  8. Polyethylene encapsulation full-scale technology demonstration. Final report

    SciTech Connect

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental & Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control.

  9. The Structural Dilemma of Bulk Polyethylene: An Intermediary Structure

    PubMed Central

    Laridjani, Morteza; Leboucher, Pierre

    2009-01-01

    Background The Fourier space (reciprocal space) image of bulk polyethylene consists of lines superimposed on the coherent diffuse background. The mixed character of the image indicates the complex nature of these compounds. The inability in detecting full images of reciprocal space of polymeric substances without Compton radiation and the other undesirable diffuse scatterings has misled the structural analysis (structural characterisation) of these materials. Principal Findings We propose the use of anomalous diffractometry where, it is possible to obtain a real image of reciprocal space without Compton radiation and other undesirable scatterings. By using classical diffractometry techniques this procedure is not possible. This methodology permitted us to obtain the “Direct Delta function”, in the case of polycrystalline substances that was not previously detected. A new procedure was proposed to interpret the image of reciprocal space of bulk polyethylene. The results show the predominance of the geometry of local order determination compared to the crystal unit cell. The analysis of x-ray diffraction images illustrates that the elementary structural unit is a tetrahedron. This structural unit illustrates the atoms in the network scatter in a coherent diffuse manner. Moreover, the interference function derived from the coherent diffuse scattering dampens out quickly and the degree of randomness is superior to a liquid state. The radial distribution function derived from this interference function shows bond shortening in the tetrahedron configuration. It is this particular effect, which stabilises polyethylene. Conclusion Here we show by anomalous diffractometry that the traditional concept of the two-phase or the crystal-defect model is an oversimplification of the complex reality. The exploitation of anomalous diffractometry has illustrated that polyethylene has an intermediate ordered structure. PMID:19597553

  10. Do Polyethylene Plastic Covers Affect Smoke Emissions from Debris Piles?

    NASA Astrophysics Data System (ADS)

    Weise, D. R.; Jung, H.; Cocker, D.; Hosseini, E.; Li, Q.; Shrivastava, M.; McCorison, M.

    2010-12-01

    Shrubs and small diameter trees exist in the understories of many western forests. They are important from an ecological perspective; however, this vegetation also presents a potential hazard as ladder fuels or as a heat source to damage the overstory during prescribed burns. Cutting and piling of this material to burn under safe conditions is a common silvicultural practice. To improve ignition success of the piled debris, polyethylene plastic is often used to cover a portion of the pile. While burning of piled forest debris is an acceptable practice in southern California from an air quality perspective, inclusion of plastic in the piles changes these debris piles to rubbish piles which should not be burned. With support from the four National Forests in southern California, we conducted a laboratory experiment to determine if the presence of polyethylene plastic in a pile of burning wood changed the smoke emissions. Debris piles in southern California include wood and foliage from common forest trees such as sugar and ponderosa pines, white fir, incense cedar, and California black oak and shrubs such as ceanothus and manzanita in addition to forest floor material and dirt. Manzanita wood was used to represent the debris pile in order to control the effects of fuel bed composition. The mass of polyethylene plastic incorporated into the pile was 0, 0.25 and 2.5% of the wood massa range representative of field conditions. Measured emissions included NOx, CO, CO2, SO2, polycyclic and light hydrocarbons, carbonyls, particulate matter (5 to 560 nm), elemental and organic carbon. The presence of polyethylene did not alter the emissions composition from this experiment.

  11. Tensile properties of sand-reinforced low density polyethylene

    SciTech Connect

    Kandeil, A.Y.; Zahran, R.R.

    1995-10-01

    Sand-reinforced low density polyethylene samples were prepared using injection molding. The effect of some processing and structural parameters on the tensile properties of the prepared samples was investigated. The processing parameters were the melt and the die temperatures. The investigated structural parameters were sand content and sand particle size. The studied tensile properties were modulus of elasticity, tensile strength, ductility and toughness. The obtained results are thoroughly analyzed and interpreted as structure-property relationships.

  12. Post-irradiation effects in polyethylenes irradiated under various atmospheres

    NASA Astrophysics Data System (ADS)

    Suljovrujic, E.

    2013-08-01

    If a large amount of polymer free radicals remain trapped after irradiation of polymers, the post-irradiation effects may result in a significant alteration of physical properties during long-term shelf storage and use. In the case of polyethylenes (PEs) some failures are attributed to the post-irradiation oxidative degradation initiated by the reaction of residual free radicals (mainly trapped in crystal phase) with oxygen. Oxidation products such as carbonyl groups act as deep traps and introduce changes in carrier mobility and significant deterioration in the PEs electrical insulating properties. The post-irradiation behaviour of three different PEs, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) was studied; previously, the post-irradiation behaviour of the PEs was investigated after the irradiation in air (Suljovrujic, 2010). In this paper, in order to investigate the influence of different irradiation media on the post-irradiation behaviour, the samples were irradiated in air and nitrogen gas, to an absorbed dose of 300 kGy. The annealing treatment of irradiated PEs, which can substantially reduce the concentration of free radicals, is used in this study, too. Dielectric relaxation behaviour is related to the difference in the initial structure of PEs (such as branching, crystallinity etc.), to the changes induced by irradiation in different media and to the post-irradiation changes induced by storage of the samples in air. Electron spin resonance (ESR), differential scanning calorimetry (DSC), infra-red (IR) spectroscopy and gel measurements were used to determine the changes in the free radical concentration, crystal fraction, oxidation and degree of network formation, respectively.

  13. Polyethylene Glycol (PEG)-Induced Anaphylactic Reaction During Bowel Preparation

    PubMed Central

    2015-01-01

    Barium enema is used to screen patients with gastrointestinal bleeding who do not want to undergo colonoscopy. Polyethylene glycol (PEG) is usually the bowel preparation of choice. Few allergic reactions from this product have been reported; these include urticaria, angioedema, and anaphylaxis. Reactions are thought to result from a small amount of PEG crossing the intestinal mucosa, which, in some patients, is sufficient to provoke an anaphylactic reaction. PMID:26203443

  14. Polyethylene macroencapsulation - mixed waste focus area. OST reference No. 30

    SciTech Connect

    1998-02-01

    The lead waste inventory throughout the US Department of Energy (DOE) complex has been estimated between 17 million and 24 million kilograms. Decontamination of at least a portion of the lead is viable but at a substantial cost. Because of various problems with decontamination and its limited applicability and the lack of a treatment and disposal method, the current practice is indefinite storage, which is costly and often unacceptable to regulators. Macroencapsulation is an approved immobilization technology used to treat radioactively contaminated lead solids and mixed waste debris. (Mixed waste is waste materials containing both radioactive and hazardous components). DOE has funded development of a polyethylene extrusion macroencapsulation process at Brookhaven National Laboratory (BNL) that produces a durable, leach-resistant waste form. This innovative macroencapsulation technology uses commercially available single-crew extruders to melt, convey, and extrude molten polyethylene into a waste container in which mixed waste lead and debris are suspended or supported. After cooling to room temperature, the polyethylene forms a low-permeability barrier between the waste and the leaching media.

  15. Porous polyethylene implants in facial reconstruction: Outcome and complications.

    PubMed

    Ridwan-Pramana, Angela; Wolff, Jan; Raziei, Ashkan; Ashton-James, Claire E; Forouzanfar, Tymour

    2015-10-01

    The aim of the present study was to assess the indications, results and complications of patients treated with porous polyethylene (Medpor()) implants in the Department of Oral and Maxillofacial Surgery of VU Medical Centre, Amsterdam over 17 years. A total of 69 high-density porous polyethylene implants (Medpor() Biomaterial; Porex Surgical, Newman, GA) were used in forty patients (22 males, 18 females). All patients were analysed for gender, age, diagnosis, indications for surgery, follow-up period and postoperative complications. A mean age of 34.1 years was observed. The main reason for implant surgery was post-traumatic functional impairment (27.5%). Most implants were placed at the mandibular angel and the orbital floor. Unsatisfactory appearance scored the highest in postoperative complications (10.1%) followed by infection rate (7.2%). Comparing the number of implants placed over the years and the incidence of complications, makes the overall complications rate of porous polyethylene very low. A consensus about antibiotic prophylaxis is needed. The objective measurements in patient satisfaction and proper implant design would be of great use. PMID:26276064

  16. Water absorption in polyethylene under external electric fields

    NASA Astrophysics Data System (ADS)

    Johansson, E.; Bolton, K.; Ahlström, P.

    2007-07-01

    Monte Carlo simulations of the solubility and structure of water in polyethylene in thermodynamic equilibrium with liquid water were performed in external fields ranging from 2×105to4×109V/m. For a given equilibrium temperature and pressure, the water solubility decreases at higher fields. This occurs since it is energetically favorable for water molecules to be in the pure water phase than in the polyethylene matrix at high field strengths, and results in an increased density in the water phase. However, fields relevant to high voltage conduction (in the absence of defects that can lead to large local field strengths) do not change the solubility. In addition, at large fields the number of water clusters decreases for all cluster sizes. The rate of decrease is highest for large clusters, and a larger fraction of water molecules exist as monomers in the polyethylene matrix at high fields. Large fields also cause alignment of the water molecules, which leads to more clusters with linear topologies and hence an increase in the cluster radius of gyration.

  17. Effect of cenosphere on dielectric properties of low density polyethylene

    NASA Astrophysics Data System (ADS)

    Sharma, Janu; Chand, Navin; Bapat, M. N.

    2012-01-01

    Dielectric characterization of cenosphere filled low density polyethylene composites is reported in this paper. Cenosphere filled low density polyethylene (LDPE) composites with inhomogeneous dispersions of cenosphere were prepared and dielectric measurements have been performed on these composites in the temperature range 34-110 C in the frequency range 1-10 kHz. The dielectric constants of the composites with filler concentrations 0%, 10%, 15% and 20 vol.% were measured. Effect of temperature and frequency variations on dielectric constant (??), dissipation factor (tan ?) and a.c. conductivity (?a.c.) was also determined. The frequency dependent dielectric and conductivity behaviour of flyash cenosphere filled low density polyethylene (LDPE) polymer composites have been studied. Appearance of peak in the dielectric loss curves for all the concentrations confirms the presence of relaxing dipoles in the cenosphere/LDPE composites. The effect of filler distribution on the dielectric constant is examined and the observed differences are attributed to the differences in two kinds of interfaces present: one formed between the touching cenosphere particles and the other formed between LDPE and cenosphere. With the increase of cenosphere content dielectric constant decreased gradually. Maxwell-Garnett approximation fairly fits for the dielectric data obtained experimentally for these composites.

  18. Testing and evaluation of polyethylene and sulfur cement waste forms

    SciTech Connect

    Franz, E.M.; Kalb, P.D.; Colombo, P.

    1985-01-01

    This paper discusses the results of recent studies related to the use of polyethylene and modified sulfur cement as new binder materials for the improved solidification of low-level wastes. Waste streams selected for this study include those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those that remain problematic for solidification using contemporary agents (ion-exchange resins). Maximum waste loadings were determined for each waste type. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported for polyethylene. For sulfur cement the recommended waste loadings of 40 wt % sodium sulfate and boric acid salts and 43 wt % incinerator ash are reported. However, incorporation of ion-exchange resin waste in modified sulfur cement is not recommended due to poor waste form performance. The work presented in this paper will, in part, present data that can be used to assess the acceptability of polyethylene and modified sulfur cement waste forms to meet the requirements of 10 CFR 61. 8 refs., 10 figs., 6 tabs.

  19. Wear of a sequentially annealed polyethylene acetabular liner

    PubMed Central

    Gascoyne, Trevor C; Petrak, Martin J; Turgeon, Thomas R; Bohm, Eric R

    2014-01-01

    Background and purpose We previously reported on a randomized controlled trial (RCT) that examined the effect of adding tobramycin to bone cement after femoral stem migration. The present study examined femoral head penetration into both conventional and highly crosslinked polyethylene acetabular liners in the same group of RCT patients, with a minimum of 5 years of postoperative follow-up. Patients and methods Linear penetration of the femoral head into an X3 (Stryker) crosslinked polyethylene (XLPE) liner was measured in 18 patients (19 hips) using radiostereometric analysis (RSA). Femoral head penetration was also measured in 6 patients (6 hips) with a conventional polyethylene liner (CPE), which served as a control group. Results The median proximal femoral head penetration in the XLPE group after 5.5 years was 0.025 mm with a steady-state penetration rate of 0.001 mm/year between year 1 and year 5. The CPE liner showed a median proximal head penetration of 0.274 mm after 7.2 years, at a rate of 0.037 mm/year. Interpretation The Trident X3 sequentially annealed XLPE liner shows excellent in vivo wear resistance compared to non-crosslinked CPE liners at medium-term implantation. The rate of linear head penetration in the XLPE liners after > 5 years of follow-up was 0.001 mm/year, which is in close agreement with the results of previous studies. PMID:25140986

  20. Screening of stabilized crosslinked polyethylene using a novel wear tester.

    PubMed

    Hoffmann, M; Gonzalez-Mora, V; Chiesa, R; Cigada, A; Stroosnijder, M F

    2002-01-01

    A novel pin-on-disk type wear tester is described allowing a rapid screening of different types of polyethylene under both unidirectional and multidirectional sliding motion. The wear of four polyethylene materials sliding against a roughened CoCrMo alloy was evaluated: a non-irradiated UHMWPE, a UHMWPE irradiated with a dose of 25 kGy in air, and two types of crosslinked UHMWPE (100 kGy, air), which were subjected to a stabilization heat treatment in nitrogen at 155 degrees C for 72 hours (XLPE I) and in water at 130 degrees C for 72 hours (XLPE II), respectively.Under multidirectional sliding conditions both types of XLPE exhibited significantly less wear with respect to the 25 kGy irradiated UHMWPE and the non-irradiated UHMWPE, even under the rough counterface conditions applied. Under unidirectional sliding motion both types of XLPE exhibited the highest wear of all materials tested, because the orientation hardening effect acting under linear lubricated condition is less pronounced for crosslinked polyethylene. PMID:12652033

  1. Pseudotumor associated with metal-on-polyethylene total hip arthroplasty.

    PubMed

    Scully, William F; Teeny, Steven M

    2013-05-01

    This case report details the presentation, imaging results, and operative findings of a pseudotumor associated with a press-fit metal-on-polyethylene total hip arthroplasty (THA). An 80-year-old man presented approximately 7 years after undergoing THA with worsening right groin and lateral hip pain with an associated proximal thigh mass. Physical examination demonstrated a tender, large anterolateral thigh mass that was also evident on metal artifact reduction sequence magnetic resonance imaging.An exploratory operative procedure revealed extensive tissue necrosis involving nearly the entire hip capsule, short external rotators, and tendinous portion of the gluteus medius muscle. In addition, marked surface corrosion was discovered about the taper at the head-neck junction of the prosthetic femoral component and the trunnion within the femoral head. The press-fit THA components were solidly fixed. The metallic head was replaced with a ceramic component, and the polyethylene liner was exchanged. The patient had complete resolution of his preoperative symptoms but had persistent problems with dislocations.Although reports of pseudotumor and local soft tissue reactions associated with metal-on-metal THAs have become increasingly ubiquitous in the literature, similar reports involving metal-on-polyethylene THA implants are less common. PMID:23672921

  2. Polyethylene glycol rinse solution: An effective way to prevent ischemia-reperfusion injury

    PubMed Central

    Zaouali, Mohamed Amine; Bejaoui, Mohamed; Calvo, Maria; Folch-Puy, Emma; Pantazi, Eirini; Pasut, Gianfranco; Rimola, Antoni; Ben Abdennebi, Hassen; Adam, Ren; Rosell-Catafau, Joan

    2014-01-01

    AIM: To test whether a new rinse solution containing polyethylene glycol 35 (PEG-35) could prevent ischemia-reperfusion injury (IRI) in liver grafts. METHODS: Sprague-Dawley rat livers were stored in University of Wisconsin preservation solution and then washed with different rinse solutions (Ringers lactate solution and a new rinse solution enriched with PEG-35 at either 1 or 5 g/L) before ex vivo perfusion with Krebs-Heinseleit buffer solution. We assessed the following: liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity), liver function (bile output and vascular resistance), oxidative stress (malondialdehyde), nitric oxide, liver autophagy (Beclin-1 and LCB3) and cytoskeleton integrity (filament and globular actin fraction); as well as levels of metalloproteinases (MMP2 and MMP9), adenosine monophosphate-activated protein kinase (AMPK), heat shock protein 70 (HSP70) and heme oxygenase 1 (HO-1). RESULTS: When we used the PEG-35 rinse solution, reduced hepatic injury and improved liver function were noted after reperfusion. The PEG-35 rinse solution prevented oxidative stress, mitochondrial damage, and liver autophagy. Further, it increased the expression of cytoprotective heat shock proteins such as HO-1 and HSP70, activated AMPK, and contributed to the restoration of cytoskeleton integrity after IRI. CONCLUSION: Using the rinse solution containing PEG-35 was effective for decreasing liver graft vulnerability to IRI. PMID:25473175

  3. Dense Poly(ethylene glycol) Brushes Reduce Adsorption and Stabilize the Unfolded Conformation of Fibronectin.

    PubMed

    Faulón Marruecos, David; Kastantin, Mark; Schwartz, Daniel K; Kaar, Joel L

    2016-03-14

    Polymer brushes, in which polymers are end-tethered densely to a grafting surface, are commonly proposed for use as stealth coatings for various biomaterials. However, although their use has received considerable attention, a mechanistic understanding of the impact of brush properties on protein adsorption and unfolding remains elusive. We investigated the effect of the grafting density of poly(ethylene glycol) (PEG) brushes on the interactions of the brush with fibronectin (FN) using high-throughput single-molecule tracking methods, which directly measure protein adsorption and unfolding within the brush. We observed that, as grafting density increased, the rate of FN adsorption decreased; however, surface-adsorbed FN unfolded more readily, and unfolded molecules were retained on the surface for longer residence times relative to those of folded molecules. These results, which are critical for the rational design of PEG brushes, suggest that there is a critical balance between protein adsorption and conformation that underlies the utility of such brushes in physiological environments. PMID:26866385

  4. Mechanical, Rheological, and Bioactivity Properties of Ultra High-Molecular-Weight Polyethylene Bioactive Composites Containing Polyethylene Glycol and Hydroxyapatite

    PubMed Central

    Ahmad, Mazatusziha; Wahit, Mat Uzir; Abdul Kadir, Mohammed Rafiq; Mohd Dahlan, Khairul Zaman

    2012-01-01

    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50?phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis. PMID:22666129

  5. Mechanical, rheological, and bioactivity properties of ultra high-molecular-weight polyethylene bioactive composites containing polyethylene glycol and hydroxyapatite.

    PubMed

    Ahmad, Mazatusziha; Uzir Wahit, Mat; Abdul Kadir, Mohammed Rafiq; Mohd Dahlan, Khairul Zaman

    2012-01-01

    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50?phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis. PMID:22666129

  6. Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.).

    PubMed

    Yang, Zhong-Bao; Eticha, Dejene; Fhrs, Hendrik; Heintz, Dimitri; Ayoub, Daniel; Van Dorsselaer, Alain; Schlingmann, Barbara; Rao, Idupulapati Madhusudana; Braun, Hans-Peter; Horst, Walter Johannes

    2013-12-01

    Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure. PMID:24123251

  7. Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.)

    PubMed Central

    Horst, Walter Johannes

    2013-01-01

    Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure. PMID:24123251

  8. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    PubMed Central

    Parizek, Martin; Slepickova Kasalkova, Nikola; Bacakova, Lucie; Bacakova, Marketa; Lisa, Vera; Svorcik, Vaclav

    2013-01-01

    The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C), or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs), the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted. PMID:23586032

  9. Grafting of lysozyme and/or poly(ethylene glycol) to prevent biofilm growth on stainless steel surfaces.

    PubMed

    Caro, Anne; Humblot, Vincent; Mthivier, Christophe; Minier, Michel; Salmain, Michle; Pradier, Claire-Marie

    2009-02-19

    In the aim of protecting stainless steel surfaces against protein and/or bacterial adhesion, thin films including the glycosidase hen egg white lysozyme (HEWL) and/or the synthetic polymer poly(ethylene glycol) (PEG) were covalently coated onto flat substrates by wet chemical processes. Chemical grafting of both species was carried out by covalent binding to surfaces pretreated by the polyamine poly(ethylene imine) (PEI). Surfaces were characterized at each step of functionalization by means of reflection-absorption infrared spectroscopy by modulation of polarization (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to determine the atomic and molecular composition of the interfaces, respectively. Then, the ability of the so-modified surfaces to prevent protein adsorption and bacterial adhesion together with their biocide properties were demonstrated by three local tests employing bovine serum albumin (BSA), and the bacteria Listeria ivanovii and Micrococcus luteus. A new test was implemented to assess the local enzymatic properties of HEWL. Cografting of PEG and HEWL resulted in a surface with both antiadhesion and antibacterial properties. PMID:19166331

  10. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  11. Manufacturing, structure and properties of recycled polyethylene terephthalate /liquid crystal polymer/montmorillonite clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Japins, Guntis; Berzina, Rita; Zicans, Janis; Merijs Meri, Remo; Ivanova, Tatjana; Kalkis, Valdis; Reinholds, Ingars

    2013-12-01

    Polyethylene terephthalate (PET)/liquid crystal polymer (LCP)/monthmorillonite clay (MMT) compositions were obtained by melt mixing. Their mechanical, structural, rheological and thermal properties were investigated.

  12. Enhancement of the predicted drug hepatotoxicity in gel entrapped hepatocytes within polysulfone-g-poly (ethylene glycol) modified hollow fiber

    SciTech Connect

    Shen Chong; Zhang Guoliang; Meng Qin

    2010-12-01

    Collagen gel-based 3D cultures of hepatocytes have been proposed for evaluation of drug hepatotoxicity because of their more reliability than traditional monolayer culture. The collagen gel entrapment of hepatocytes in hollow fibers has been proven to well reflect the drug hepatotoxicity in vivo but was limited by adsorption of hydrophobic drugs onto hollow fibers. This study aimed to investigate the impact of hollow fibers on hepatocyte performance and drug hepatotoxicity. Polysulfone-g-poly (ethylene glycol) (PSf-g-PEG) hollow fiber was fabricated and applied for the first time to suppress the drug adsorption. Then, the impact of hollow fibers was evaluated by detecting the hepatotoxicity of eight selected drugs to gel entrapped hepatocytes within PSf and PSf-g-PEG hollow fibers, or without hollow fibers. The hepatocytes in PSf-g-PEG hollow fiber showed the highest sensitivity to drug hepatotoxicity, while those in PSf hollow fiber and cylindrical gel without hollow fiber underestimated the hepatotoxicity due to either drug adsorption or low hepatic functions. Therefore, the 3D culture of gel entrapped hepatocytes within PSf-g-PEG hollow fiber would be a promising tool for investigation of drug hepatotoxicity in vitro.

  13. Visualization of O-GlcNAc Glycosylation Stoichiometry and Dynamics using Resolvable Poly(ethylene glycol) Mass Tags

    PubMed Central

    Clark, Peter M.; Rexach, Jessica E.; Hsieh-Wilson, Linda C.

    2014-01-01

    O -GlcNAc glycosylation is a dynamic protein posttranslational modification with roles in processes such as transcription, cell cycle regulation, and metabolism. Detailed mechanistic studies of O-GlcNAc have been hindered by a lack of methods for measuring O-GlcNAc stoichiometries and the interplay of glycosylation with other posttranslational modifications. We recently developed a method for labeling O-GlcNAc-modified proteins with resolvable poly(ethylene glycol) mass tags. This mass tagging approach enables the direct measurement of glycosylation stoichiometries and the visualization of distinct O-GlcNAc-modified subpopulations. Here, we describe protocols for labeling O-GlcNAc glycoproteins in cell lysates with mass tags. PMID:24391098

  14. A biofriendly silica gel for in situ protein entrapment: biopolymer-assisted formation and its kinetic mechanism.

    PubMed

    Wang, Guan-Hai; Zhang, Li-Ming

    2009-03-01

    In an attempt to develop a biofriendly sol-gel route for the rapid formation of biofunctional silica gels, a biopolymer with good biocompatibility was used to assist the gelation of glycol-modified tetraethoxysilane (GMT) in aqueous system without the addition of any organic solvents. It was found that the biopolymer used could act as an effective accelerator for the sol-gel transition of GMT and an increase of its amount could shorten greatly the gelation time. For such a gelation reaction, its apparent activation energy was determined to be 64.9 kJ/mol according to the Arrhenius equation. In particular, the kinetic mechanism for the formation of the silica gel was investigated by using dynamic theological data and a scaling fractal model. It was revealed that the biopolymer used could change the sol-gel transition mechanism from reaction-limited kinetics to diffusion-limited kinetics. Circular dichroism analyses confirmed the suitability of using the resultant silica gel for the in situ protein encapsulation. PMID:19708206

  15. Growth of ZnO nanowires on nonwoven polyethylene fibers

    NASA Astrophysics Data System (ADS)

    Baruah, Sunandan; Thanachayanont, Chanchana; Dutta, Joydeep

    2008-04-01

    We report the growth of ZnO nanowires on nonwoven polyethylene fibers using a simple hydrothermal method at a temperature below the boiling point of water. The ZnO nanowires were grown from seed ZnO nanoparticles affixed onto the fibers. The seed ZnO nanoparticles, with diameters of about 6-7 nm, were synthesized in isopropanol by reducing zinc acetate hydrate with sodium hydroxide. The growth process was carried out in a sealed chemical bath containing an equimolar solution of zinc nitrate hexahydrate and hexamethylene tetramine at a temperature of 95 °C over a period of up to 20 h. The thickness and length of the nanowires can be controlled by using different concentrations of the starting reactants and growth durations. A 0.5 mM chemical bath yielded nanowires with an average diameter of around 50 nm, while a 25 mM bath resulted in wires with a thickness of up to about 1 μm. The length of the wires depends both on the concentration of the precursor solution as well as the growth duration, and in 20 h, nanowires as long as 10 μm can be grown. The nonwoven mesh of polyethylene fibers covered with ZnO nanowires can be used for novel applications such as water treatment by degrading pollutants by photocatalysis. Photocatalysis tests carried out on standard test contaminants revealed that the polyethylene fibers with ZnO nanowires grown on them could accelerate the photocatalytic degradation process by a factor of 3.

  16. The wear of cross-linked polyethylene against itself.

    PubMed

    Joyce, T J; Ash, H E; Unsworth, A

    1996-01-01

    Cross-linked polyethylene (XLPE) may have an application as a material for an all-plastic surface replacement finger joint. It is inexpensive, biocompatible and can be injection-moulded into the complex shapes that are found on the ends of the finger bones. Further, the cross-linking of polyethylene has significantly improved its mechanical properties. Therefore, the opportunity exists for an all-XLPE joint, and so the wear characteristics of XLPE sliding against itself have been investigated. Wear tests were carried out on both reciprocating pin-on-plate machines and a finger function simulator. The reciprocating pin-on-plate machines had pins loaded at 10 N and 40 N. All pin-on-plate tests show wear factors from the plates very much greater than those of the pins. After 349 km of sliding, a mean wear factor of 0.46 x 10(-6) mm3/N m was found for the plates compared with 0.021 x 10(-6) mm3/N m for the pins. A fatigue mechanism may be causing this phenomenon of greater plate wear. Tests using the finger function simulator give an average wear rate of 0.22 x 10(-6) mm3/N m after 368 km. This sliding distance is equivalent to 12.5 years of use in vivo. The wear factors found were comparable with those of ultra-high molecular weight polyethylene (UHMWPE) against a metallic counterface and, therefore, as the loads across the finger joint are much less than those across the knee or the hip, it is probable that an all-XLPE finger joint will be viable from a wear point of view. PMID:8663888

  17. The use of poly(ethylene oxide) for the efficient stabilization of entrapped alpha-chymotrypsin in silicone elastomers: a chemometric study.

    PubMed

    Ragheb, Amro M; Hileman, Oliver E; Brook, Michael

    2005-12-01

    The enzyme alpha-chymotrypsin, a model for catalytic proteins, was entrapped in different silicone elastomers that were formed via the condensation-cure room temperature vulcanization (CC-RTV) of silanol terminated poly(dimethylsiloxane) with tetraethyl orthosilicate as a crosslinker, in the presence of different poly(ethylene oxide) oligomers that were functionalized with triethoxysilyl groups. The effects of various chemical factors on both the activity and entrapping efficiency of proteins (leaching) were studied using a 2-level fractional factorial design--a chemometrics approach. The factors studied include the concentration and chain length of poly(ethylene oxide), enzyme content, and crosslinker (TEOS) concentration. The study indicated that poly(ethylene oxide) can stabilize the entrapped alpha-chymotrypsin in silicone rubber: the specific activity can be maximized by incorporating a relatively high content of short chain, functional PEO. Increased enzyme concentration was found to adversely affect the specific activity. The effect of TEOS was found to be insignificant when PEO was present in the elastomer, however, it does affect the activity positively in the case of simple elastomers. PMID:15992922

  18. An improved cryosection method for polyethylene glycol hydrogels used in tissue engineering.

    PubMed

    Ruan, Jia-Ling; Tulloch, Nathaniel L; Muskheli, Veronica; Genova, E Erin; Mariner, Peter D; Anseth, Kristi S; Murry, Charles E

    2013-10-01

    The high water content of hydrogels allows these materials to closely mimic the native biological extracellular conditions, but it also makes difficult the histological preparation of hydrogel-based bioengineered tissue. Paraffin-embedding techniques require dehydration of hydrogels, resulting in substantial collapse and deformation, whereas cryosectioning is hampered by the formation of ice crystals within the hydrogel material. Here, we sought to develop a method to obtain good-quality cryosections for the microscopic evaluation of hydrogel-based tissue-engineered constructs, using polyethylene glycol (PEG) as a test hydrogel. Conventional sucrose solutions, which dehydrate cells while leaving extracellular water in place, produce a hydrogel block that is brittle and difficult to section. We therefore replaced sucrose with multiple protein-based and nonprotein-based solutions as cryoprotectants. Our analysis demonstrated that overnight incubation in bovine serum albumin (BSA), fetal bovine serum (FBS), polyvinyl alcohol (PVA), optimum cutting temperature (OCT) compound, and Fisher HistoPrep frozen tissue-embedding media work well to improve the cryosectioning of hydrogels. The protein-based solutions give background staining with routine hematoxylin and eosin, but the use of nonprotein-based solutions PVA and OCT reduces this background by 50%. These methods preserve the tissue architecture and cellular details with both in vitro PEG constructs and in constructs that have been implanted in vivo. This simple hydrogel cryosectioning technique improves the methodology for creation of good-quality histological sections from hydrogels in multiple applications. PMID:23448137

  19. Preparation and characterization of a microencapsulated polyethylene glycol cross-linked polyhemoglobin.

    PubMed

    Knirsch, Marcos C; Dell'Anno, Filippo; Chicoma, Dennis; Stephano, Marco Antonio; Bou-Chacra, Ndia A; Palombo, Domenico; Converti, Attilio; Polakiewicz, Bronislaw

    2015-11-01

    Many complications are associated to the therapeutic use of blood, among which are not only transfusion adverse events but also other issues such as lack of donors and high costs for collecting, testing, preserving, and distributing blood packages. Therefore, a clinically viable "blood substitute" is considered the holy grail of traumatology and may greatly benefit medicine. One of the most successful approaches to date is conjugating hemoglobin with polyethylene glycol (PEG). This conjugation aims mainly at overcoming free cell hemoglobin toxicity, which makes its use as oxygen carrier in pure form unfeasible. To improve PEG-hemoglobin conjugates feasibility, we propose applying dual functional PEG cross-linking hemoglobin molecules encapsulated by a protein carrier. The new oxygen carrier showed mean values of the hydrodynamic diameter, dispersity, and zeta potential of 1370nm, 0.029 and -36mV, respectively, evidencing the successful synthesis of PEG bis(N-succinimidyl succinate) and polyhemoglobin as well as the structuring of protein carrier. PMID:26314399

  20. Mass Spectrometric Mapping of Fibrinogen Conformations at Poly(ethylene terephthalate) Interfaces1

    PubMed Central

    Scott, Evan A.; Elbert, Donald L.

    2007-01-01

    We have characterized the adsorption of bovine fibrinogen onto the biomedical polymer polyethylene terephthalate (PET) by performing mass spectrometric mapping with a lysine-reactive biotin label. After digestion with trypsin, MALDI-TOF mass spectrometry was used to detect peptides from biotinylated bovine fibrinogen, with the goal of identifying lysines that were more accessible for reaction with the chemical label after adsorption. Peptides within domains that are believed to contribute to heparin binding, leukocyte activation, and platelet adhesion were found to be biotin labeled only after bovine fibrinogen adsorbed to the PET surface. Additionally, the accessibility of lysine residues throughout the entire molecule was observed to increase as the concentration of the adsorbing bovine fibrinogen solution decreased, suggesting that the proximity of biologically active motifs to hydrophilic residues leads to their exposure. The surface area per adsorbed bovine fibrinogen molecule was quantified on PET using optical waveguide lightmode spectroscopy (OWLS), which revealed higher surface densities for bovine fibrinogen adsorbed from higher concentration solutions. By measuring changes in both the identity and conformation of proteins that adsorb from complex mixtures such as blood or plasma, this technique may have applications in fundamental studies of protein adsorption and may allow for more accurate predictions of the biocompatibility of materials. PMID:17582492

  1. Association of polyethylene friction and thermal unfolding of interfacial albumin molecules

    NASA Astrophysics Data System (ADS)

    Fang, Hsu-Wei; Shih, Meng-Lin; Zhao, Jian-Hua; Huang, Huei-Ting; Lin, Hsin-Yi; Liu, Hsuan-Liang; Chang, Chih-Hung; Yang, Charng-Bin; Liu, Hwa-Chang

    2007-06-01

    Under the articulation of artificial joints, ultra-high molecular weight polyethylene (UHMWPE) acts as a bearing surface under the lubrication of synovial fluid containing various proteins. Albumin is the most abundant composition and acts as the interfacial molecule in the boundary lubrication regime. The dissipated energy including thermal energy from the tribological process may lead to the conformational change of albumin molecules. In this study, a series of experiments were designed and carried out to investigate the association of thermal unfolding albumin and the frictional characteristics of highly-crosslinked UHMWPE (x-UHMWPE). An accelerated oxidation experiment was used to prepare x-UHMWPE with an oxidized surface. Analysis of the albumin protein by circular dichroism (CD) spectroscopy was performed to detect the conformational changes during a thermal process. In addition, a molecular simulation was performed to understand the structural change of albumin at various temperatures and the exposed hydrophobic contact areas. Linear reciprocating frictional tests were carried out to obtain the start-up friction coefficients. The results indicate that a decrease of ?-helix content and an unfolding of the secondary structure of albumin were observed with increasing temperatures which may come from the frictional heat of joint articulation process. The conformational change of albumin differentiates the frictional characteristics for x-UHMWPE with different oxidation levels. A model, describing that the properties of the lubricating molecules and articulating surfaces may affect the adsorption of the boundary lubrication thin film which is critical to the tribological behavior, is proposed.

  2. Single-Monomer Formulation of Polymerized Polyethylene Glycol Diacrylate as a Nonadsorptive Material for Microfluidics

    PubMed Central

    Rogers, Chad I.; Pagaduan, Jayson V.; Nordin, Gregory P.; Woolley, Adam T.

    2011-01-01

    Nonspecific adsorption in microfluidic systems can deplete target molecules in solution and prevent analytes, especially those at low concentrations, from reaching the detector. Polydimethylsiloxane (PDMS) is a widely used material for microfluidics, but is prone to nonspecific adsorption, necessitating complex chemical modification processes to address this issue. An alternative material to PDMS that does not require subsequent chemical modification is presented here. Poly(ethylene glycol) diacrylate (PEGDA) mixed with photoinitiator forms on exposure to UV radiation a polymer with inherent resistance to nonspecific adsorption. Optimization of the polymerized PEGDA (poly-PEGDA) formula imbues this material with some of the same properties, including optical clarity, water stability, and low background fluorescence, that make PDMS so popular. Poly-PEGDA demonstrates less nonspecific adsorption than PDMS over a range of concentrations of flowing fluorescently tagged bovine serum albumin solutions, and poly-PEGDA has greater resistance to permeation by small hydrophobic molecules than PDMS. Poly-PEGDA also exhibits long-term (hour scale) resistance to nonspecific adsorption compared to PDMS when exposed to a low (1 g/mL) concentration of a model adsorptive protein. Electrophoretic separations of amino acids and proteins resulted in symmetrical peaks and theoretical plate counts as high as 4 105/m. Poly-PEGDA, which displays resistance to nonspecific adsorption, could have broad use in small volume analysis and biomedical research. PMID:21728310

  3. An Improved Cryosection Method for Polyethylene Glycol Hydrogels Used in Tissue Engineering

    PubMed Central

    Ruan, Jia-Ling; Tulloch, Nathaniel L.; Muskheli, Veronica; Genova, E. Erin; Mariner, Peter D.; Anseth, Kristi S.

    2013-01-01

    The high water content of hydrogels allows these materials to closely mimic the native biological extracellular conditions, but it also makes difficult the histological preparation of hydrogel-based bioengineered tissue. Paraffin-embedding techniques require dehydration of hydrogels, resulting in substantial collapse and deformation, whereas cryosectioning is hampered by the formation of ice crystals within the hydrogel material. Here, we sought to develop a method to obtain good-quality cryosections for the microscopic evaluation of hydrogel-based tissue-engineered constructs, using polyethylene glycol (PEG) as a test hydrogel. Conventional sucrose solutions, which dehydrate cells while leaving extracellular water in place, produce a hydrogel block that is brittle and difficult to section. We therefore replaced sucrose with multiple protein-based and nonprotein-based solutions as cryoprotectants. Our analysis demonstrated that overnight incubation in bovine serum albumin (BSA), fetal bovine serum (FBS), polyvinyl alcohol (PVA), optimum cutting temperature (OCT) compound, and Fisher HistoPrep frozen tissue-embedding media work well to improve the cryosectioning of hydrogels. The protein-based solutions give background staining with routine hematoxylin and eosin, but the use of nonprotein-based solutions PVA and OCT reduces this background by 50%. These methods preserve the tissue architecture and cellular details with both in vitro PEG constructs and in constructs that have been implanted in vivo. This simple hydrogel cryosectioning technique improves the methodology for creation of good-quality histological sections from hydrogels in multiple applications. PMID:23448137

  4. THz-Spectroscopy on High Density Polyethylene with Different Crystallinity

    NASA Astrophysics Data System (ADS)

    Sommer, Stefan; Raidt, Thomas; Fischer, Bernd M.; Katzenberg, Frank; Tiller, Jrg C.; Koch, Martin

    2015-11-01

    The different crystallinity states of high density polyethylene (PE-HD) are investigated using THz time-domain spectroscopy by exploiting the complex permittivity at a frequency range from 0.5 up to 3.5 THz. We found that samples with different crystallinity can be distinguished by comparing the material specific refractive index (n) or rather the linked complex part of the permittivity (? ' '). Correlating the calorimetrically determined degrees of crystallinity with the absolute values of the refractive index and the specific absorption peak at 2.18 THz, respectively, suggests in both cases a linear correlation.

  5. THz-Spectroscopy on High Density Polyethylene with Different Crystallinity

    NASA Astrophysics Data System (ADS)

    Sommer, Stefan; Raidt, Thomas; Fischer, Bernd M.; Katzenberg, Frank; Tiller, Jörg C.; Koch, Martin

    2016-02-01

    The different crystallinity states of high density polyethylene (PE-HD) are investigated using THz time-domain spectroscopy by exploiting the complex permittivity at a frequency range from 0.5 up to 3.5 THz. We found that samples with different crystallinity can be distinguished by comparing the material specific refractive index ( n) or rather the linked complex part of the permittivity (∈ ' '). Correlating the calorimetrically determined degrees of crystallinity with the absolute values of the refractive index and the specific absorption peak at 2.18 THz, respectively, suggests in both cases a linear correlation.

  6. Pyrolysis Pathways of Sulfonated Polyethylene, an Alternative Carbon Fiber Precursor

    SciTech Connect

    Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A; Beste, Ariana; Naskar, Amit K

    2013-01-01

    Sulfonated polyethylene is an emerging precursor for the production of carbon fibers. Pyrolysis of sulfonated polyethylene was characterized by thermogravimetric analysis (TGA). n-heptane-4-sulfonic acid (H4S) was selected as a model compound for the study of sulfonated polyethylene. Density functional theory and conventional transition state theory were used to determine the rate constants of pyrolysis for H4S from 300-1000 K. Multiple reaction channels from two different mechanisms were explored: 1) internal five-centered elimination (Ei 5) and 2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain TGA plots that compared favorably to experiment. We observed that at tem- peratures < 550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial OH radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440-460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene ( 31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOSO2 became competitive to H abstraction by HOSO2, making OH the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures > 600 K. Low-scale carbonization utilizes temperatures < 620 K; thus, internal elimination will not be competitive. Ei5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids. Nonlinear Arrhenius plots were found for all bimolecular reactions. The most significant nonlinear behavior was observed for reactions where the barrier was small. For reactions with low activation barriers, nonlinearity was traced to conflicting trends between the exponential temperature dependence of the energetic term and the temperature dependence of the vibrational partition function of the transitional modes.

  7. Catalytic degradation of high density polyethylene using zeolites.

    PubMed

    Zaggout, F R; al Mughari, A R; Garforth, A

    2001-01-01

    Plastic wastes, which cause a serious environmental problem in urban areas, can serve as sources of energy. Catalytic treatment of High Density Polyethylene (HDPE) has shown that the degradation of HDPE resulted in the production of a stream of gaseous hydrocarbons varied in the range C1-C8. The degradation was carried out using diluted forms of zeolites ZSM-5, USY and Mordenite (MORD) using a fluidized bed reactor (FBR). Effect of coke formation on the activity of the catalysts was screened by thermogravimetric (TGA). ZSM-5 showed a significant resistance to deactivation because of the nature of its small pore size compared with USY and MORD. PMID:11382018

  8. Investigation of the fire endurance of borated polyethylene shielding material

    SciTech Connect

    Foote, K.L.

    1988-06-17

    We conducted nine experiments to investigate the fire endurance of a borated polyethylene shielding material to be used in the Engineering Demonstration System. Several chemistry tests were also done. The shielding material was found to melt at 93.5/degree/C, decompose at 230/degree/C, and ignite at 350/degree/C. Five fire tests were done in a realistic configuration and four tests in a pessimistic configuration. The material easily passed all nine tests. In each case, the shielding material never reached ignition temperature and was found acceptable in this proposed application. 7 refs., 10 figs., 3 tabs.

  9. Aspiration of barium-impregnated polyethylene spheres by a dog.

    PubMed

    Greci, V; Bissett, S A; Copple, C N; Hawkins, E C

    2010-05-01

    This case report describes an 11-year-old Belgian Malinois dog with acute onset of cough caused by aspiration of barium-impregnated polyethylene spheres (BIPS) and pneumonia following an episode of suspected gastric dilation. Although bronchoscopic retrieval of the BIPS was largely unsuccessful, the dog recovered uneventfully, with most of the BIPS being coughed out and swallowed over a 1-month period. Aspiration of BIPS should be considered a potential complication of their administration. Furthermore, endoscopic removal of aspirated BIPS is challenging and may not be indicated because of their inert nature and possible self-clearance. PMID:20529021

  10. Allergic reaction to polyethylene glycol in a painter.

    PubMed

    Antolin-Amerigo, D; Snchez-Gonzlez, M J; Barbarroja-Escudero, J; Rodrguez-Rodrguez, M; lvarez-Perea, A; Alvarez-Mon, M

    2015-08-01

    We report a case of a male painter who visited our outpatient clinic after developing a distinct skin reaction 15 min after the ingestion of a laxative solution containing polyethylene glycol (PEG) prior to colonoscopy. He described suffering from the same skin reaction when he was previously exposed to paints that contained PEG-4000. An exposure challenge test with pure PEG-4000, simulating his workplace conditions, elicited a generalized urticarial reaction. Allergy to PEG should be considered in painters who develop urticarial or other systemic symptoms after handling PEG-containing products. PMID:26048329

  11. Theoretical study on mechanical properties of polyethylene-SWCNT complexes

    NASA Astrophysics Data System (ADS)

    Petrushenko, Igor K.

    2016-01-01

    This paper studies the mechanical properties of polyethylene (PE)-Single-walled carbon nanotube (SWCNT) complexes by using density functional theory (DFT). At the PBE/SVP level, the Youngs modulus of the complexes is obtained as a function of PE content. It is established that, with increasing number of PE chains attached to the SWCNTs, the Youngs modulus monotonically decreases. The density of states (DOS) results show that no orbital hybridization exists between the PE chains and nanotubes. The results of this work are of importance for the design of composite materials employing SWCNTs.

  12. Analysis of the directional drilling technique for laying polyethylene pipes

    SciTech Connect

    Delorme, P.; Homand, F.

    1996-08-01

    This article reports the results of the National Microtunnels Project by the French Society Trenchless Technology. Main project components discussed include: (1) compilation of a database for worksite information; (2) drilling site descriptions, including geological conditions, techniques used, and performance obtained; and (3) in-situ measurements of tensile stresses and scratches in polyethylene pipes and drilling machinery operating parameters. An experimental approach was used to validate in-situ results through a method to calculate stresses surrounding the pipeline while being laid by directional drilling. Observations are made for each project component discussed, which are intended for use in establishing specifications for the us of directional drilling techniques. 4 refs., 7 figs.

  13. Single-molecule spectroscopy of uniaxially oriented terrylene in polyethylene.

    PubMed

    Butter, Jacqueline Y P; Crenshaw, Brent R; Weder, Christoph; Hecht, Bert

    2006-01-16

    Single terrylene molecules doped into linear low-density polyethylene can be oriented by tensile deformation of the matrix. In measurements on ensembles at ambient and on single terrylene molecules at cryogenic temperature, strong orientation along the stretching direction was observed by polarization-resolved confocal microscopy. At cryogenic temperatures narrow and spectrally stable zero-phonon lines were found. The low saturation intensity of 0.07 W cm(-2) is consistent with an uniaxial orientation of terrylene in the sample plane. PMID:16363013

  14. Atomic structure of solid and liquid polyethylene oxide

    SciTech Connect

    Johnson, J.A.; Saboungi, M.; Price, D.L.; Ansell, S.; Russell, T.P.; Halley, J.W.; Nielsen, B.

    1998-10-01

    The structure of polyethylene oxide (PEO) was investigated by neutron scattering in both semicrystalline and liquid states. Deuterated samples were studied in addition to the protonated ones in order to avoid the large incoherent scattering of hydrogen and identify features in the pair correlation functions attributable to C{endash}H pairs. Analysis of the deuterated sample gave additional information on the C{endash}O and C{endash}C pairs. The results are compared with molecular-dynamics simulations of liquid PEO. {copyright} {ital 1998 American Institute of Physics.}

  15. Lithium ion transport in a model of amorphous polyethylene oxide.

    SciTech Connect

    Boinske, P. T.; Curtiss, L.; Halley, J. W.; Lin, B.; Sutjianto, A.; Chemical Engineering; Univ. of Minnesota

    1996-01-01

    We have made a molecular dynamics study of transport of a single lithium ion in a previously reported model of amorphous polyethylene oxide. New ab initio calculations of the interaction of the lithium ion with 1,2-dimethoxyethane and with dimethyl ether are reported which are used to determine force fields for the simulation. We report preliminary calculations of solvation energies and hopping barriers and a calculation of the ionic conductivity which is independent of any assumptions about the mechanism of ion transport. We also report some details of a study of transport of the trapped lithium ion on intermediate time and length scales.

  16. Deuterated polyethylene coatings for ultra-cold neutron applications

    NASA Astrophysics Data System (ADS)

    Brenner, Th.; Fierlinger, P.; Geltenbort, P.; Gutsmiedl, E.; Hollering, A.; Lauer, T.; Petzoldt, G.; Ruhstorfer, D.; Schroffenegger, J.; Seemann, K. M.; Soltwedel, O.; Stuiber, St.; Taubenheim, B.; Windmayer, D.; Zechlau, T.

    2015-09-01

    We report on the fabrication and use of deuterated polyethylene as a coating material for ultra-cold neutron (UCN) storage and transport. The Fermi potential has been determined to be 214 neV, and the wall loss coefficient ? is 1.3 104 per wall collision. The coating technique allows for a wide range of applications in this field of physics. In particular, flexible and quasi-massless UCN guides with slit-less shutters and seamless UCN storage volumes become possible. These properties enable the use in next-generation measurements of the electric dipole moment of the neutron.

  17. Aspergillus oryzae alpha-amylase partition in potassium phosphate-polyethylene glycol aqueous two-phase systems.

    PubMed

    Porfiri, Mara Cecilia; Pic, Guillermo; Romanini, Diana; Farruggia, Beatriz

    2011-07-01

    The aim of this work is to study the partitioning of alpha-amylase from Aspergillus oryzae in polyethylene glycol-potassium phosphate systems formed by polymers of different molecular masses with different total concentrations, several NaCl concentrations and different volume ratio between the phases and at different temperatures. The enzyme was partitioned towards the top phase in the 2000-molecular-mass polyethylene glycol systems and towards the bottom phase in the other systems analyzed with higher molecular mass. The protein-medium interaction parameter (A) was determined; it increased in the same way as PEG molecular mass. The enthalpic and entropic changes found, in general, were negative and were shown to be associated by an entropic-enthalpic compensation effect suggesting that the ordered water structure in the chain of polyetyleneglycol plays a role in protein partition. The recovery in each of the phases was calculated in order to choose the best systems to be applied to enzyme isolation either from a polymer-rich or a polymer-poor phase. Enzymatic activity, circular dichroism and fluorescence were studied for the protein alone and in the presence of the different phases of the aqueous two-phase systems (ATPSs) in order to understand how they affect the enzymatic structure and the role of the protein-polymer interaction in the partitioning process. Secondary structure is not affected, in general, by the presence of the phases that do affect the enzymatic activity; therefore, there should be a change in the tertiary structure in the enzyme active site. These changes are more important for PEG 8000 than for PEG 2000 systems according to the results of the quenching of the intrinsic fluorescence. In a bio-separation process, the A. oryzae alpha-amylase could be isolated with ATPSs PEG 2000/Pi or PEG 8000/Pi with a high recovery, in the top or bottom phases, respectively. PMID:21397633

  18. Reduced Water Density in a Poly(ethylene oxide) Brush

    SciTech Connect

    Lee, Hoyoung; Kim, Dae Hwan; Park, Hae-Woong; Mahynski, Nathan A.; Kim, Kyungil; Meron, Mati; Lin, Binhua; Won, You-Yeon

    2012-09-05

    A model poly(ethylene oxide) (PEO) brush system, prepared by spreading a poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) amphiphilic diblock copolymer onto an air-water interface, was investigated under various grafting density conditions by using the X-ray reflectivity (XR) technique. The overall electron density profiles of the PEO-PnBA monolayer in the direction normal to the air-water interface were determined from the XR data. From this analysis, it was found that inside of the PEO brush, the water density is significantly lower than that of bulk water, in particular, in the region close to the PnBA-water interface. Separate XR measurements with a PnBA homopolymer monolayer confirm that the reduced water density within the PEO-PnBA monolayer is not due to unfavorable contacts between the PnBA surface and water. The above result, therefore, lends support to the notion that PEO chains provide a hydrophobic environment for the surrounding water molecules when they exist as polymer brush chains.

  19. Effect of thermal modification on rheological properties of polyethylene blends

    SciTech Connect

    Siriprumpoonthum, Monchai; Nobukawa, Shogo; Yamaguchi, Masayuki; Satoh, Yasuo; Sasaki, Hiroko

    2014-03-15

    We examined the effects of thermal modification under flow field on the rheological properties of linear low-density polyethylene (LLDPE) with high molecular weight, low-density polyethylene (LDPE), and their blends, without thermal stabilizer. Although structural changes during processing are not detected by size extrusion chromatography or nuclear magnetic resonance spectroscopy, linear viscoelastic properties changed greatly, especially for the LLDPE. A cross-linking reaction took place, leading to, presumably, star-shaped long-chain branches. Consequently, the modified LLDPE, having high zero-shear viscosity, became a thermorheologically complex melt. Moreover, it should be noted that the drawdown force, defined as the uniaxial elongational force at a constant draw ratio, was significantly enhanced for the blends. Enhancement of elongational viscosity was also detected. The drawdown force and elongational viscosity are marked for the thermally modified blend as compared with those for the blend of thermally modified pure components. Intermolecular cross-linking reactions between LDPE and LLDPE, yielding polymers with more than two branch points per chain, result in marked strain-hardening in the elongational viscosity behavior even at small strain. The recovery curve of the oscillatory modulus after the shear modification is further evidence of a branched structure.

  20. Polyethylene encapsulation of single shell tank low-level wastes

    SciTech Connect

    Kalb, P.D.; Fuhrmann, M.; Colombo, P.

    1993-04-01

    Polyethylene encapsulation is being explored for potential use in treating nitrate salts and sludges at US Department of Energy (US DOE) underground storage tank facilities. Some of these wastes contain high concentrations of fission products and are expected to maintain equilibrium temperatures of 50--70{degrees}C for many years. The potential effects of elevated temperature and high radiation conditions on key waste form properties (e.g., mechanical integrity, leachability) are examined. After 6 months of thermal conditioning, waste form tests specimens show no degradation in mechanical integrity. Leaching at elevated temperature resulted in a small increase in leach rate (a factor of less than two), while diffusion remained the dominant mechanism of release. Full-scale polyethylene waste forms containing 50--70 wt % nitrate salt can be expected to leach a total of 5--17% of the original contaminant source term after 300 years of leaching under worst-case conditions (fully saturated at 70{degrees}C).

  1. Polyethylene encapsulation of single shell tank low-level wastes

    SciTech Connect

    Kalb, P.D.; Fuhrmann, M.; Colombo, P.

    1993-01-01

    Polyethylene encapsulation is being explored for potential use in treating nitrate salts and sludges at US Department of Energy (US DOE) underground storage tank facilities. Some of these wastes contain high concentrations of fission products and are expected to maintain equilibrium temperatures of 50--70[degrees]C for many years. The potential effects of elevated temperature and high radiation conditions on key waste form properties (e.g., mechanical integrity, leachability) are examined. After 6 months of thermal conditioning, waste form tests specimens show no degradation in mechanical integrity. Leaching at elevated temperature resulted in a small increase in leach rate (a factor of less than two), while diffusion remained the dominant mechanism of release. Full-scale polyethylene waste forms containing 50--70 wt % nitrate salt can be expected to leach a total of 5--17% of the original contaminant source term after 300 years of leaching under worst-case conditions (fully saturated at 70[degrees]C).

  2. Analyzing and improving viscoelastic properties of high density polyethylene

    NASA Astrophysics Data System (ADS)

    Ahmed, Reaj Uddin

    2011-12-01

    High Density Polyethylene (HDPE) is closely packed, less branched polyethylene having higher mechanical properties, chemical resistance, and heat resistance than Low Density Polyentylene (LDPE). Better properties and cost effectiveness make it an important raw material over LDPE in packaging industries. Stacked containers made of HDPE experience static loading and deformation strain during their storage period in a warehouse. As HDPE is a viscoelastic material, dimensional stability of stacked HDPE containers depends on time dependent properties such as creep and stress relaxation. Now, light weighting is a driving force in packaging industries, which results in lower production costs but performance of the product becomes a challenge. Proper understanding of the viscoelastic properties of HDPE, with relevant FE simulation can facilitate improved designs. This research involves understanding and improving viscoelastic properties, creep behavior, and stress relaxation of HDPE. Different approaches were carried out to meet the objectives. Organic filler CaCO3 was added to HDPE at increasing weight fractions and corresponding property changes were investigated. Annealing heat treatments were also carried out for potential property improvements. The effect of ageing was also investigated on both annealed and non annealed HDPE. The related performance of different water bottles against squeeze pressure was also characterized. Both approaches, incorporation of CaCO3 and annealing, showed improvements in the properties of HDPE over neat HDPE. This research aids finding the optimum solution for improving viscoelastic properties, stress relaxation, and creep behavior of HDPE in manufacturing.

  3. Migration of wear debris of polyethylene depends on bone microarchitecture.

    PubMed

    Libouban, Hlne; Massin, Philippe; Gaudin, Christine; Mercier, Philippe; Basl, Michel F; Chappard, Daniel

    2009-08-01

    The mechanism of hip arthroplasties loosening is related to the migration of wear debris throughout the implant environment. In vivo, polyethylene particles (PE) were shown to infiltrate the bone implant interface and the medullary spaces of the cancellous bone. Our test hypothesis was that polyethylene particle migration is correlated to bone porosity. Bone samples with a high or low trabecular volume and microarchitecture were harvested in 20 calves and 20 human cadavers. They were extensively washed to remove marrow cells. Bone cylinders were filled with a light-curing monomer having the same viscosity as bone marrow. PE particles (7 and 33 microm) were deposited at the surface of the polymer. The bone cylinders were agitated during 7 days on an orbital shaker and the gel was left to polymerize at day light. X-ray microtomography was performed to characterize bone volume and microarchitecture. Cylinders were sectioned and observed under polarized light. The migration distance and rate were determined. Migration of PE particles strongly depended on trabecular bone volume and microarchitecture. We found a linear relationship (r = 0.61) between speed migration and bone volume and an exponential relationship between speed migration and bone architecture. The present in vitro model confirmed our hypothesis about the key role of bone microarchitecture in the migration of large PE wear particles. This is an explanation for the development of inflammatory reaction at distance from a prosthesis although our study did not include submicron particles. PMID:19235207

  4. Wear characteristics of ultrahigh molecular weight polyethylene (UHMWPE)

    NASA Astrophysics Data System (ADS)

    El-Domiaty, A.; El-Fadaly, M.; Nassef, A. Es.

    2002-10-01

    The wear of ultrahigh molecular weight polyethylene (UHMWPE) bearing against 316 stainless steel or cobalt chromium (Co-Cr) alloy was measured using a 12-channel wear tester especially developed for the evaluation of candidate materials for prosthetic joints. The coefficient of friction and wear rate were determined as a function of lubricant, contact stress, and metallic surface roughness in tests lasting 2 3 million cycles, the equivalent of several years use of a prosthesis. Wear was determined by the weight loss of the polyethylene (PE) specimens corrected for the effect of fluid absorption. The friction and wear processes in blood serum differed markedly from those in saline solution or distilled water. Only serum lubrication produced wear surfaces resembling those observed on removed prostheses. The experimental methods provided accurate reproducible measurement of PE wear. The long-term wear rates were proportional to load and sliding distance. Although the PE wear rate increased with increasing surface roughness, wear was not severe except with very coarse metal surfaces. The data obtained in these studies formed a comparison basis for the subsequent evaluation of potentially superior materials for prosthetic joints.

  5. On the Structure of Holographic Polymer-dispersed Polyethylene Glycol

    SciTech Connect

    Birnkrant,M.; McWilliams, H.; Li, C.; Natarajan, L.; Tondiglia, V.; Sutherland, R.; Lloyd, P.; Bunning, T.

    2006-01-01

    Holographic polymerization (H-P) has been used to fabricate polymer-dispersed liquid crystals and pattern inert nanoparticles. In this article, one-dimensional grating structures of Norland resin and polyethylene glycol (PEG) were achieved using the H-P technique. Both reflection and transmission grating structures were fabricated. The optical properties of the reflection grating structures (also known as Bragg reflectors, BRs) are thermosensitive, which is attributed to the formation and crystallization of PEG crystals. The thermal switching temperature of the BR can be tuned by using different molecular weight PEG samples. The hierarchical structure and morphology of the BR were studied using synchrotron X-ray, polarized light microscopy and transmission electron microscopy. PEG crystals were found to be confined in {approx}60 nm thick layers in the BR. Upon crystallization, the PEG lamellae were parallel to the BR surfaces and PEG chains were parallel to the BR normal, resembling the confined crystallization behavior of polyethylene oxide (PEO) in PEO-block-polystyrene (PEO-b-PS) block copolymers. This observation suggests that the tethering effect in the block copolymer systems does not play a major role in PEG chain orientation in the confined nanoenvironment.

  6. 75 FR 25207 - Polyethylene Retail Carrier Bags From Malaysia: Extension of Time Limit for Preliminary Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... Administrative Reviews and Request for Revocation in Part, 74 FR 48224 (September 22, 2009). As explained in the... International Trade Administration A-557-813 Polyethylene Retail Carrier Bags From Malaysia: Extension of Time... administrative review of the antidumping duty order on polyethylene retail carrier bags from Malaysia for...

  7. 77 FR 31833 - Polyethylene Terephthalate Film, Sheet, and Strip From Brazil: Notice of Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ..., 76 FR 82268 (December 30, 2011). This review covers Terphane, Inc. and Terphane, Ltda. Petitioners... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From Brazil: Notice of... polyethylene terephthalate film, sheet, and strip (PET Film) from Brazil for the period November 1,...

  8. 75 FR 34699 - Polyethylene Retail Carrier Bags from Thailand: Rescission of Antidumping Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ..., 74 FR 48224 (September 22, 2009). On April 19, 2010, the petitioners withdrew their request for an... International Trade Administration Polyethylene Retail Carrier Bags from Thailand: Rescission of Antidumping... order on polyethylene retail carrier bags from Thailand. The period of review is August 1, 2008,...

  9. 76 FR 76948 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Final Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... Administrative Review, 76 FR 47558 (August 5, 2011) (Preliminary Results), the following events have occurred... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From India: Final Results...) issued the preliminary results of the administrative review of polyethylene terephthalate film, sheet...

  10. 78 FR 79400 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Initiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... and Amended Final Determination of Sales at Less Than Fair Value for the United Arab Emirates, 73 FR... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic... a request for a new shipper review of the antidumping duty order on polyethylene terephthalate...

  11. 76 FR 26241 - Polyethylene Retail Carrier Bags From Thailand: Extension of Time Limit for Preliminary Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ..., 75 FR 60076 (September 29, 2010). The preliminary results of this administrative review are currently... International Trade Administration Polyethylene Retail Carrier Bags From Thailand: Extension of Time Limit for... polyethylene retail carrier bags from Thailand for the period August 1, 2009, through July 31, 2010....

  12. 75 FR 33772 - Polyethylene Retail Carrier Bags From Malaysia: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Than Fair Value: Polyethylene Retail Carrier Bags From Malaysia, 69 FR 34128 (June 18, 2004) (Final... Than Fair Value: Polyethylene Retail Carrier Bags From Malaysia, 69 FR 34128 (June 18, 2004). These... Malaysia, 69 FR 48203 (August 9, 2004). On August 3, 2009, we published in the Federal Register a notice...

  13. 75 FR 36359 - Polyethylene Retail Carrier Bags From Thailand: Extension of Time Limit for Preliminary Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... Thailand. See Antidumping Duty Order: Polyethylene Retail Carrier Bags From Thailand, 69 FR 48204 (August 9... of Sales at Less Than Fair Value: Polyethylene Retail Carrier Bags From Thailand, 69 FR 34122, 34123... Administrative Reviews and Request for Revocation in Part, 74 FR 48224, 48226 (September 22, 2009).\\1\\ The...

  14. 76 FR 75870 - Polyethylene Terephthalate Film, Sheet, and Strip From Korea: Notice of Rescission of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ..., 76 FR 45227 (July 28, 2011) (Initiation Notice). \\2\\ See Polyethylene Terephthalate Film, Sheet, and Strip from Korea: Final Results of Antidumping Duty Administrative Review and Revocation in Part, 76 FR... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From Korea: Notice...

  15. Mechanical and thermal properties of high density polyethylene – dried distillers grains with solubles composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried Distillers Grain with Solubles (DDGS) is evaluated as a bio-based fiber reinforcement. Injection molded composites of high density polyethylene (HDPE), 25% by weight of DDGS, and either 5% of 0% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding and injection mo...

  16. 78 FR 42105 - Polyethylene Terephthalate Film, Sheet, and Strip From India and Taiwan; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Polyethylene Terephthalate Film, Sheet, and Strip From India and Taiwan; Notice of Commission... countervailing duty order on polyethylene terephthalate film, sheet, and strip (``PET'' film) from India and...

  17. 75 FR 10758 - Polyethylene Terephthalate Film, Sheet and Strip from India: Initiation of Antidumping Duty and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... Order: Polyethylene Terephthalate Film, Sheet and Strip (PET Film) from India, 67 FR 44179 (July 1, 2002... India, 67 FR 44175 (July 1, 2002) (Antidumping Duty Order). The notice announcing the countervailing... International Trade Administration Polyethylene Terephthalate Film, Sheet and Strip from India: Initiation...

  18. 75 FR 22842 - Polyethylene Retail Carrier Bags From Indonesia, Taiwan, and Vietnam

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... publishing the notice in the Federal Register of December 3, 2009 (74 FR 63410). The hearing was held in... COMMISSION Polyethylene Retail Carrier Bags From Indonesia, Taiwan, and Vietnam Determinations On the basis... imports from Vietnam of polyethylene retail carrier bags (PRCBs), provided for in subheading 3923.21.00...

  19. 76 FR 47546 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... Duty Determination: Polyethylene Terephthalate Film, Sheet, and Strip (PET Film) From India, 67 FR... Determination: Polyethylene Terephthalate Film, Sheet, and Strip From India, 66 FR 65893 (December 21, 2001), at... Strip from India, 67 FR 44175 (July 1, 2002) (PET Film India Order). On July 1, 2010, the...

  20. 78 FR 2365 - Polyethylene Terephthalate Film, Sheet and Strip From India: Partial Rescission of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ..., 77 FR 52688 (August 30, 2012). \\6\\ See Polyethylene Terephthalate (PET) Film, Sheet, and Strip from... Administrative Review, 77 FR 39216, 39217 (July 2, 2012). \\2\\ Petitioners are DuPont Teijin Films, Mitsubishi... International Trade Administration Polyethylene Terephthalate Film, Sheet and Strip From India:...

  1. 76 FR 47558 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... Countervailing Duty Administrative Review: Polyethylene Terephthalate Film, Sheet, and Strip from India, 70 FR... Antidumping Duty Determination: Polyethylene Terephthalate Film, Sheet, and Strip (PET Film) From India, 66 FR... Terephthalate Film, Sheet, and Strip (PET Film) from India, 67 FR 44179 (July 1, 2002). On July 1, 2010,...

  2. Complete genome sequence of Bacillus sp. YP1, a polyethylene-degrading bacterium from waxworm's gut.

    PubMed

    Yang, Yu; Chen, Jianwei; Wu, Wei-Min; Zhao, Jiao; Yang, Jun

    2015-04-20

    Bacillus sp. strain YP1, isolated from the gut of waxworm (the larvae of Plodia interpunctella) which ate polyethylene (PE) plastic, is capable of degrading PE and utilizing PE as sole carbon source. Here we report the complete genome sequence of strain YP1, which is relevant to polyethylene depolymerization and biodegradation. PMID:25795022

  3. 77 FR 46704 - Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Administrative Review, 76 FR 47540, 47541 (August 5, 2011) (``PET Film Prelim 09- 10'') unchanged in Polyethylene..., 67 FR 35474 (May 20, 2002) (``PET Film from Taiwan Investigation''). \\15\\ See Polyethylene... Duty Administrative Review(``Pet Film Prelim 08-09''), 75 FR 49902 (August 16, 2010), unchanged...

  4. 76 FR 42113 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Extension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... of polyethylene terephthalate film, sheet, and strip (``PET film'') from the People's Republic of... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic... notice of initiation of the second administrative review of the antidumping duty order on PET film...

  5. Properties of high density polyethylene Paulownia wood flour composites via injection molding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...

  6. 78 FR 50376 - Polyethylene Retail Carrier Bags From Thailand: Final Results of Antidumping Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Antidumping Duty Administrative Review; 2011- 2012, 78 FR 28192 (May 14, 2013) (Preliminary Results). The... at Less Than Fair Value: Polyethylene Retail Carrier Bags From Thailand, 69 FR 34122- 34124 (June 18... Review, 72 FR 1982, 1983 (January 17, 2007), Polyethylene Retail Carrier Bags from Thailand:...

  7. 75 FR 38978 - Polyethylene Retail Carrier Bags From the People's Republic of China, Malaysia, and Thailand...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... amended (the Act). See Initiation of Five-year (``Sunset'') Review, 74 FR 31412 (July 1, 2009); see also Polyethylene Retail Carrier Bags From China, Malaysia, and Thailand, 74 FR 31750 (July 2, 2009). \\1\\ On August...: Polyethylene Retail Carrier Bags From the People's Republic of China, 69 FR 48201 (August 9, 2004);...

  8. Nd:Yag laser irradiation of single lap joints made by polyethylene and polyethylene doped by carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Visco, A. M.; Brancato, V.; Cutroneo, M.; Torrisi, L.

    2014-04-01

    Thermoplastic polyethylene can be welded by the transmission laser welding technique (TTLW) that exhibits some process related benefits with respect other conventional joining methods. This justifies its large use in wide fields, from the automotive to medical or domestic appliances. In this research, we studied single lap joints made by polyethylene pure and filled with carbon nanomaterials (0.2% in weight) to make the polymer laser absorbent. The joints were irradiated by a Nd:YAG laser operating at 1064 nm (first harmonic) with an intensity of 107 W/cm2 and 1 30Hz, a maximum pulse energy of 300mJ and a laser spot of ? 1 cm2 (no focusing lens were employed). The joints were characterized by morphological analysis, mechanical shear tests and calorimetric analysis. The results suggested that the laser exposition time must be opportunely balanced in order to avoid a poor adhesion between the polymer sheets and to realized efficient joints. In particular the mechanical test showed that the laser exposition time of 40 seconds is the best conditions to obtain the highest shear strength of the joints of 140 N. After too prolonged laser exposure times, degrading phenomena starts.

  9. Effect of nanoclay on the properties of low density polyethylene/linear low density polyethylene/thermoplastic starch blend films.

    PubMed

    Sabetzadeh, Maryam; Bagheri, Rouhollah; Masoomi, Mahmood

    2016-05-01

    The aim of this work is to study effect of nanoclay (Cloisite(®)15A) on morphology and properties of low-density polyethylene/linear low-density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) blend films. LDPE/LLDPE blend (70/30wt/wt) containing 15wt.% TPS in the presence of PE-grafted maleic anhydride (PE-g-MA, 3wt.%) with 1, 3 and 5phr of nanoclay are compounded in a twin-screw extruder and then film blown using a blowing machine. Nanocomposites with intercalated structures are obtained, based on the X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. However, some exfoliated single platelets in the samples are also observable. Scanning electron microscopic (SEM) images confirm the ability of both exfoliated nanoclay and PE-g-MA to reduce the size of TPS domains and deform their particles within the PE matrices. As the nanoclay content increases from 1 to 5phr, the tensile strength, tear resistance and impact strength of the films increase, whereas a slight decrease in the elongation at break is observed. The film samples with 5phr nanoclay possess the required packaging properties, as specified by ASTM D4635. These films provide desired optical transparency and surface roughness which are more attractive for packaging applications. PMID:26876998

  10. Effective Blending of Ultrahigh Molecular Weight Polyethylene with High-Density Polyethylene via Solid-State Shear Pulverization (SSSP)

    NASA Astrophysics Data System (ADS)

    Diop, Mirian; Torkelson, John

    2014-03-01

    Compared with conventional polyolefins, ultrahigh molecular weight polyethylene (UHMWPE) possesses outstanding mechanical properties, including impact strength and crack resistance, that make it it highly desirable for applications ranging from body armor to implants. Unfortunately, UHMWPE has an ultrahigh melt viscosity that renders common melt processes ineffective for making products from UHMWPE. Attempts to overcome this problem by blending UHMWPE with polyethylene (PE) by conventional melt mixing have been unsuccessful because of the enormous viscosity mismatch between blend components and have led to large suspensions of UHMWPE particles within a PE matrix. Here, we show the utility of solid-state shear pulverization (SSSP) in achieving effectively and intimately mixed UHMWPE/PE blends. For blends with up to 50 wt% UHMWPE we observe only slight increases in viscosity (?) at high shear rates but major increases in ? with increasing UHMWPE content at low shear rates. Using extensional rheology, we confirm the strain hardening behavior of SSSP blends. Additionally, shear rheology and differential scanning calorimetry data indicate that the degree of mixing between UHMWPE and HDPE domains can be increased dramatically with subsequent passes of SSSP and single screw extrusion. Finally, blends prepared via SSSP show dramatic increases in impact strength; e.g., for a 30/70 wt% UHMWPE/HDPE blend, impact strength increases by about 300 % (relative to the parent neat HDPE).

  11. Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency

    PubMed Central

    Shao, Ruixin; Xin, Longfei; Mao, Jun; Li, Leilei; Kang, Guozhang; Yang, Qinghua

    2015-01-01

    After maize seedlings grown in full-strength Hoagland solution for 20 days were exposed to 20% polyethylene glycol (PEG)-stimulated water deficiency for two days, plant height, shoot fresh and dry weights, and pigment contents significantly decreased, whereas malondialdehyde (MDA) content greatly increased. Using transmission electron microscopy, we observed that chloroplasts of mesophyll cells in PEG-treated maize seedlings were swollen, with a disintegrating envelope and disrupted grana thylakoid lamellae. Using two-dimensional gel electrophoresis (2-DE) method, we were able to identify 22 protein spots with significantly altered abundance in the leaves of treated seedlings in response to water deficiency, 16 of which were successfully identified. These protein species were functionally classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, and unknown categories. The change in the abundance of the identified protein species may be closely related to the phenotypic and physiological changes due to PEG-stimulated water deficiency. Most of the identified protein species were putatively located in chloroplasts, indicating that chloroplasts may be prone to damage by PEG stimulated-water deficiency in maize seedlings. Our results help clarify the molecular mechanisms of the responses of higher plants to severe water deficiency. PMID:26370980

  12. Effect of binding of cations to polyethylene glycol on its interactions with sodium dodecyl sulfate

    SciTech Connect

    Maltesh, C.; Somasundaran, P.

    1992-08-01

    Interactions between polyethylene glycol and sodium dodecyl sulfate have been studied using fluorescence spectroscopy. Changes in polymer conformation on its association with the surfactant were monitored using polymers end-labeled with pyrene. The effect of various salts of sodium, cesium, lithium, and magnesium on the binding between polymer and surfactant was determined. The conformation of the polyethylene glycol is affected significantly by sodium dodecyl sulfate binding. Initial binding of the polyethylene glycol is affected significantly by sodium dodecyl sulfate binding. Initial binding of the surfactant causes the polymer to coil whereas saturation of the polymer by the surfactant causes the coiled polymer to stretch out. The amount of surfactant bound to the polymer depends on the cations in the solution as well as the affinity of the cation toward polyethylene glycol. The stronger the binding of the cation to polyethylene glycol the less is the interaction between sodium dodecyl sulfate and the polymer. 29 refs., 6 figs., 2 tabs.

  13. Environmental evaluation of polyethylene oxide when used as a flocculant for clay wastes

    SciTech Connect

    Zatko, J.R.

    1980-01-01

    A method of flocculation dewatering of phosphatic clay wastes using polyethylene oxide as the flocculant is reported. Research was conducted to determine whether ethylene oxide gas was present in the air in the vicinity of disposed waste materials which had been flocculated with polyethylene oxide. Samples of clay waste materials containing polyethylene oxide were prepared in stoppered glass bottles in simulated disposal environments. Gaseous samples, removed over a 75-day period using an airtight syringe, were injected into a gas chromatograph that was capable of separating ethylene oxide from air. The presence of ethylene oxide gas was not detected in any sample. To determine possible degradation products of polyethylene oxide, the properties and reactions of ethylene oxide and its polymers were reviewed. Based upon the literature survey and experimental study, it was concluded that adverse environmental effects were not likely to result from the use of polyethylene oxide for flocculating phosphatic clay waste products.

  14. Insulin Particle Formation in Supersaturated Aqueous Solutions of Poly(Ethylene Glycol)

    PubMed Central

    Bromberg, Lev; Rashba-Step, Julia; Scott, Terrence

    2005-01-01

    Protein microspheres are of particular utility in the field of drug delivery. A novel, completely aqueous, process of microsphere fabrication has been devised based on controlled phase separation of protein from water-soluble polymers such as polyethylene glycols. The fabrication process results in the formation of spherical microparticles with narrow particle size distributions. Cooling of preheated human insulin-poly(ethylene glycol)-water solutions results in the facile formation of insulin particles. To map out the supersaturation conditions conducive to particle nucleation and growth, we determined the temperature- and concentration-dependent boundaries of an equilibrium liquid-solid phase separation. The kinetics of formation of microspheres were followed by dynamic and continuous-angle static light scattering techniques. The presence of PEG at a pH that was close to the protein's isoelectric point resulted in rapid nucleation and growth. The time elapsed from the moment of creation of a supersaturated solution and the detection of a solid phase in the system (the induction period, tind) ranged from tens to several hundreds of seconds. The dependence of tind on supersaturation could be described within the framework of classical nucleation theory, with the time needed for the formation of a critical nucleus (size <10 nm) being much longer than the time of the onset of particle growth. The growth was limited by cluster diffusion kinetics. The interfacial energies of the insulin particles were determined to be 3.2–3.4 and 2.2 mJ/m2 at equilibrium temperatures of 25 and 37°C, respectively. The insulin particles formed as a result of the process were monodisperse and uniformly spherical, in clear distinction to previously reported processes of microcrystalline insulin particle formation. PMID:16254391

  15. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava.

    PubMed

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-01-01

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment. PMID:26927071

  16. Elaboration et caracterisation de nanocomposites polyethylene/montmorillonite

    NASA Astrophysics Data System (ADS)

    Stoeffler, Karen

    This research project consists in preparing polyethylene/montmorillonite nanocomposites for film packaging applications. Montmorillonite is a natural clay with an exceptional aspect ratio. In recent years, its incorporation in polymer matrices has attracted great interest. The pioneer work from Toyota on polyamide-6/montmorillonite composites has shown that it was possible to disperse the clay at a nanometric scale. Such a structure, so-called exfoliated, leads to a significant increase in mechanical, barrier and fire retardant properties, even at low volumetric fractions of clay. This allows a valorization of the polymeric material at moderate cost. Due to its high polarity, montmorilloite exfoliation in polymeric matrices is problematic. In the particular case of polyolefin matrices, the platelets dispersion remains limited: most frequently, the composites obtained exhibit conventional structures (microcomposites) or intercalated structures. To solve this problem, two techniques are commonly employed: the surface treatment of the clay, which allows the expansion of the interfoliar gallery while increasing the affinity between the clay and the polymer, and the use of a polar compatibilizing agent (grafted polyolefin). The first part of this thesis deals with the preparation and the characterization of highly thermally stable organophilic montmorillonites. Commercial organophilic montmorillonites are treated with quaternary ammonium intercalating agents. However, those intercalating agents present a poor thermal stability and are susceptible to decompose upon processing, thus affecting the clay dispersion and the final properties of the nanocomposites. In this work, it was proposed to modify the clay with alkyl pyridinium, alkyl imidazolium and alkyl phosphonium intercalating agents, which are more stable than ammonium based cations. Organophilic montmorillonites with enhanced thermal stabilites compared to commercial organoclays (+20°C to +70°C) were prepared. The effect of the chemical structure of the intercalating agent on the capacity of the organoclay to be dispersed in polyethylene matrices was analyzed. In addition, the influence of the dispersion on the thermal stability of the nanocomposites prepared is discussed. In a second part, the effect of the compatibilizing agent characteristics on the quality of the clay dispersion in polyethylene/montmorillonite nanocomposites was analyzed. The mechanical properties and the oxygen permeability of the nanocomposites were evaluated and related to the level of clay delamination and to the strength of the polymer/clay interface, which was evaluated through surface tension measurements.

  17. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels

    PubMed Central

    Smith, Amanda W.; Hoyne, Jake D.; Nguyen, Peter K.; McCreedy, Dylan A.; Aly, Haytham; Efimov, Igor R.; Rentschler, Stacey; Elbert, Donald L.

    2013-01-01

    Direct reprogramming strategies enable rapid conversion of somatic cells to cardiomyocytes or cardiomyocyte-like cells without going through the pluripotent state. A recently described protocol couples Yamanaka factor induction with pluripotency inhibition followed by BMP4 treatment to achieve rapid reprogramming of mouse fibroblasts to beating cardiomyocyte-like cells. The original study was performed using Matrigel-coated tissue culture polystyrene (TCPS), a stiff material that also non-specifically adsorbs serum proteins. Protein adsorption-resistant poly(ethylene glycol) (PEG) materials can be covalently modified to present precise concentrations of adhesion proteins or peptides without the unintended effects of non-specifically adsorbed proteins. Here, we describe an improved protocol that incorporates custom-engineered materials. We first reproduced the Efe et al. protocol on Matrigel-coated TCPS (the original material), reprogramming adult mouse tail tip mouse fibroblasts (TTF) and mouse embryonic fibroblasts (MEF) to cardiomyocyte-like cells that demonstrated striated sarcomeric ?-actinin staining, spontaneous calcium transients, and visible beating. We then designed poly(ethylene glycol) culture substrates to promote MEF adhesion via laminin and RGD-binding integrins. PEG hydrogels improved proliferation and reprogramming efficiency (evidenced by beating patch number and area, gene expression, and flow cytometry), yielding almost twice the number of sarcomeric ?-actinin positive cardiomyocyte-like cells as the originally described substrate. These results illustrate that cellular reprogramming may be enhanced using custom-engineered materials. PMID:23773820

  18. 40 CFR 721.10472 - 1,3-Benzenedimethanamine, polymers with epichlorohydrin-polyethylene glycol reaction products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with epichlorohydrin-polyethylene glycol reaction products. 721.10472 Section 721.10472 Protection of...-Benzenedimethanamine, polymers with epichlorohydrin-polyethylene glycol reaction products. (a) Chemical substance and..., polymers with epichlorohydrin-polyethylene glycol reaction products (PMN P-03-645; CAS No. 652968-34-8)...

  19. 40 CFR 721.10472 - 1,3-Benzenedimethanamine, polymers with epichlorohydrin-polyethylene glycol reaction products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with epichlorohydrin-polyethylene glycol reaction products. 721.10472 Section 721.10472 Protection of...-Benzenedimethanamine, polymers with epichlorohydrin-polyethylene glycol reaction products. (a) Chemical substance and..., polymers with epichlorohydrin-polyethylene glycol reaction products (PMN P-03-645; CAS No. 652968-34-8)...

  20. 75 FR 75454 - Polyethylene Retail Carrier Bags From Thailand: Extension of Time Limit for the Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... polyethylene retail carrier bags from Thailand. See Polyethylene Retail Carrier Bags From Thailand: Preliminary Results of Antidumping Duty Administrative Review, 75 FR 53953 (September 2, 2010). The administrative... International Trade Administration Polyethylene Retail Carrier Bags From Thailand: Extension of Time Limit...

  1. 78 FR 9363 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... polyethylene terephthalate (``PET'') chips. \\4\\ See Remand Opinion and Order. Pursuant to the CIT's remand... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic... Shaoxing Xiangyu Green Packing Co., Ltd. \\2\\ See Polyethylene Terephthalate Film, Sheet, and Strip From...

  2. 78 FR 52500 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic... Tianjin Wanhua Co., Ltd. (``Wanhua''). \\2\\ See Polyethylene Terephthalate Film, Sheet, and Strip From the... Trade 2013); Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of...

  3. Optimization of Protein Extraction for Lichen Thalli

    PubMed Central

    Kondratiuk, Anna S.; Savchuk, Oleksiy M.

    2015-01-01

    Lichen-forming fungal proteins have been seldom searched due to many difficulties in their extraction. Phenols, quinones, proteases, and other components released during cell disruption have been known to be the greatest challenges related to protein extraction from lichens. To overcome these problems and maintain good electrophoretic resolution and high protein concentration, an extraction buffer containing polyvinylpolypyrrolidone, ascorbic acid, Triton X-100, polyethylene glycol, proteinase, and oxidase inhibitors in sodium phosphate buffer was developed. This extraction buffer showed high efficiency for all lichen species tested in the study. PMID:26190923

  4. Precision Polyolefin Structure: Modeling Polyethylene Containing Methyl and Ethyl Branches

    NASA Astrophysics Data System (ADS)

    Rojas, Giovanni; Wagener, Kenneth B.

    Sequenced copolymers of ethylene and diverse species have been created using acyclic diene metathesis (ADMET) polymerization, a step growth, condensation- type polymerization driven to high conversion by the removal of ethylene. ADMET permits control over branch content and branch length, which can be predetermined during the monomer synthesis, allowing sequence control in the resultant unsaturated polymer. Monomers are symmetrical ?,?dienes with a pendant functionality. Diverse functional groups are compatible with ADMET polymerization when Schrocks or first-generation Grubbs catalysts are used. Saturation with hydrogen after ADMET polymerization affords a polyethylene (PE) backbone bearing specific functionalities in precise places. Varying both the pendant functional group and the spacing between functionalities alters the physical and chemical properties of the polymer. Incorporation of alkyl chains into the PE backbone via ADMET leads to the study of perfect structures modeling the copolymerization of ethylene with ?-olefins such as 1-propene, 1-butene, 1-hexene, and 1-octene.

  5. High-strength welds in metallocene Polypropylene/Polyethylene laminates

    PubMed

    Chaffin; Knutsen; Brant; Bates

    2000-06-23

    Spectacular advances in organometallic chemistry over the past two decades have resulted in single-site catalysts that are revolutionizing production of polyethylene (PE) and isotactic polypropylene (iPP). This report describes an unanticipated benefit of metallocene-catalyzed semicrystalline polyolefins, namely welded joint strengths in PE/iPP laminates that can exceed the cohesive strength of the constituents. We propose that interfacial polymer entanglements, established in the molten state and subsequently anchored in chain-folded lamellae upon crystallization, are responsible for this intrinsic property. The poor adhesion exhibited by traditional Ziegler-Natta-catalyzed polyolefins is shown to derive from the accumulation of amorphous polymer, a by-product of the polymerization reactions, at the interface. These results should facilitate fabrication and improve the properties of composites based on materials that dominate the plastics industry. PMID:10864863

  6. The characterisation of two different degradable polyethylene (PE) sacks

    SciTech Connect

    Davis, G. . E-mail: gudavis@cytanet.com.cy

    2006-12-15

    The compostability of two different polyethylene (PE) products on the UK market under open-windrow composting conditions is explored within this paper. Chemical analysis of the PE bags has established their constituents in order to examine how the PE bags have an increased degradability depending on additives. Weight loss of the two different PE products within open-windrow composting conditions was recorded in order to establish the percentage weight loss as an indication of the degradability of the two products and their relative suitability for open-windrow composting. Scanning electron microscopy (SEM) of the PE products over the composting duration established the degradation processes for the PE products within the compost. These analyses concluded that one of the PE product mixes was more degradable than the other. However, neither product completed degraded within the timeframe of 12-14 weeks generally accepted for open-windrow composting in the UK.

  7. Reinforced polyethylene/clay nanocomposites: influence of different silane

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Zhang, Liying; Chen, Xuelong; Hu, Xiao

    2015-03-01

    Montmorillonite (MMT) was first cation exchanged by cetyltrimethyl ammonium bromide (CTAB) and then treated by short chain silane (methyltrimethoxylsilane) or different amount of long chain silane (dodecyltrimethoxylsilane). High density polyethylene (HDPE)/clay nanocomposites were prepared through twin screw extruder using these silane modified clays without any compatibilizer. Thermal gravimetric analysis (TGA) proved the successful grafting of silanes onto clay. The effects of the chain length and content of the silanes on the dispersion state of clay and properties of the composites were studied using X-ray diffraction (XRD), transmission electron microscope (TEM), mechanical tests, creep tests and so on. The results indicate that the grafting of long chain silanes at higher content could improve the compatibility between clay and PE, thus more efficiently enhancing mechanical and creep properties of the composites than other silane treated clays.

  8. Anaphylactic shock caused by ingestion of polyethylene glycol.

    PubMed

    Lee, Sun Hee; Cha, Jae Myung; Lee, Joung Il; Joo, Kwang Ro; Shin, Hyun Phil; Baek, Il Hyun; Jeon, Jung Won; Lim, Jun Uk; Lee, Jung Lok; Lee, Hyae Min; Cho, Young-Hak

    2015-01-01

    Colonoscopy is the current standard method for evaluation of the colon. The diagnostic accuracy and therapeutic safety of colonoscopy depend on the quality of colonic cleansing and preparation. Generally, all these preparations have been demonstrated to be safe for use in healthy individuals without significant comorbid conditions. Based on safety and efficacy concerns, polyethylene glycol (PEG) is most commonly utilized as a bowel preparation solution for colonoscopy. Adverse events in patients receiving PEG are mostly clinically non-significant. However, fatal adverse events rarely have been shown to occur in the few individuals who experience vomiting or aspiration. Anaphylactic shock associated with ingestion of PEG electrolyte solution is an extremely rare fatal complication, and reported mainly in Western countries. Here, we report the first case of anaphylactic shock following the ingestion of PEG solution in Korea. PMID:25691849

  9. In vitro antibacterial activity of concentrated polyethylene glycol 400 solutions.

    PubMed Central

    Chirife, J; Herszage, L; Joseph, A; Bozzini, J P; Leardini, N; Kohn, E S

    1983-01-01

    It was found that concentrated polyethylene glycol 400 (PEG 400) solutions have significant antibacterial activity against various pathogenic bacteria, including Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. This effect might be attributed to two effects: lowering of water activity and, superimposed on this, the specific action of PEG-400 molecules on bacterial cells. Phase-contrast microscopic observations of cells placed in contact with PEG 400 revealed clumping and morphological changes of bacterial cells. The larger changes in appearance were evidenced by the species which were more rapidly killed by PEG 400. The results obtained suggested that concentrated PEG 400 solutions may have a potential value in medicine as a topical antibacterial agent. The feasibility of this application is the subject of present investigation. Images PMID:6638996

  10. Electrospun Polyaniline/Polyethylene Oxide Nanofiber Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    Pinto, N. J.; Johnson, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A.

    2003-01-01

    We report on the observation of field effect transistor (FET) behavior in electrospun camphorsulfonic acid doped polyaniline(PANi)/polyethylene oxide(PE0) nanofibers. Saturation channel currents are observed at surprisingly low source/drain voltages. The hole mobility in the depletion regime is 1.4 x 10(exp -4) sq cm/V s while the 1-D charge density (at zero gate bias) is calculated to be approximately 1 hole per 50 two-ring repeat units of polyaniline, consistent with the rather high channel conductivity (approx. 10(exp -3) S/cm). Reducing or eliminating the PEO content in the fiber is expected to enhance device parameters. Electrospinning is thus proposed as a simple method of fabricating 1-D polymer FET's.

  11. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    PubMed

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  12. Textural changes in metallurgical coke prepared with polyethylene

    NASA Astrophysics Data System (ADS)

    Gornostayev, Stanislav S.; Heino, Jyrki J.; Kokkonen, Tommi M. T.; Makkonen, Hannu T.; Huttunen, Satu M. M.; Fabritius, Timo M. J.

    2014-10-01

    The effect of high-density polyethylene (HDPE) on the textural features of experimental coke was investigated using polarized-light optical microscopy and wavelet-based image analysis. Metallurgical coke samples were prepared in a laboratory-scale furnace with 2.5%, 5.0%, 7.5%, 10.0%, and 12.5% HDPE by mass, and one sample was prepared by 100% coal. The amounts and distribution of textures (isotropic, mosaic and banded) and pores were obtained. The calculations reveal that the addition of HDPE results in a decrease of mosaic texture and an increase of isotropic texture. Ethylene formed from the decomposition of HDPE is considered as a probable reason for the texture modifications. The approach used in this study can be applied to indirect evaluation for the reactivity and strength of coke.

  13. The effect of polyethylene glycol on shellac stability

    NASA Astrophysics Data System (ADS)

    Khairuddin; Pramono, Edi; Budi Utomo, Suryadi; Wulandari, Viki; A'an Zahrotul, W.; Clegg, Francis

    2016-02-01

    The effect of polyethylene glycol (PEG) having amolecular weight of 1000 and 2000 on shellac stability has been investigated in this research. The shellac was shellac wax free, and the solvent was ethanol 96%. Shellac films were prepared by solventevaporationmethod. The stability of shellac was investigated using insoluble solid test, Fourier Transform Infra Red (FTIR), Thermogravimetry Analyzer (TGA), and Water Vapour Transmission Rate (WVTR). The results showed that stability of shellac decreased after heating at 125oC for 10,30,90,and 180 minutes, and storing for 1 month at 27 oC and 85 relative humidity (RH). PEG improved the stability, and the most stable effect was achieved through PEG1000.

  14. Simulation of polyethylene glycol and calcium-mediated membrane fusion

    SciTech Connect

    Pannuzzo, Martina; De Jong, Djurre H.; Marrink, Siewert J.; Raudino, Antonio

    2014-03-28

    We report on the mechanism of membrane fusion mediated by polyethylene glycol (PEG) and Ca{sup 2+} by means of a coarse-grained molecular dynamics simulation approach. Our data provide a detailed view on the role of cations and polymer in modulating the interaction between negatively charged apposed membranes. The PEG chains cause a reduction of the inter-lamellar distance and cause an increase in concentration of divalent cations. When thermally driven fluctuations bring the membranes at close contact, a switch from cis to trans Ca{sup 2+}-lipid complexes stabilizes a focal contact acting as a nucleation site for further expansion of the adhesion region. Flipping of lipid tails induces subsequent stalk formation. Together, our results provide a molecular explanation for the synergistic effect of Ca{sup 2+} and PEG on membrane fusion.

  15. Irradiation of linear polyethylene - Partitioning between sol and gel.

    NASA Technical Reports Server (NTRS)

    Rijke, A. M.; Mandelkern, L.

    1971-01-01

    Molecular weight fractions of linear polyethylene were irradiated at 133 C, in the completely molten and highly crystalline states, for the purpose of assessing the importance of chain-scission processes and establishing the critical conditions for gelation. The partitioning between sol and gel in either state was found to adhere to the theory for the intermolecular cross-linking of monodisperse species for dosages just beyond the gel point. Deviations from theory occurred as the dosage was increased further. It was concluded that main-chain scission, at these temperatures, is not a significant process. High molecular weight samples in the completely molten state obeyed the Flory-Stockmayer condition for critical gelation.

  16. Hydrophobic composition based on mixed-molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Gorlenko, Nikolay; Debelova, Natalya; Sarkisov, Yuriy; Volokitin, Gennadiy; Zavyalova, Elena; Lapova, Tatyana

    2016-01-01

    The paper presents investigations of compositions based on low and high molecular weight polyethylene so as to synthesize a hydrophobic composition for moisture protection of timber. X-ray phase analysis and measurements of the tear-off force of hydrophobic coating needed to apply to the timber surface and the limiting wetting angle are carried out to detect the hydrophobic, adhesive, electrophysical, and physicochemical properties of compositions. Kinetic dependencies are given for moisture absorption of timber specimens. It is shown that the preliminary formation of the texture by the surface patterning or its treatment with low-temperature plasma with the following protective coating results in the improvement of hydrophobic properties of the suggested compositions. These compositions can be used in the capacity of water repellents to protect building materials from moisture including restoration works.

  17. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity

    NASA Astrophysics Data System (ADS)

    Zviov, Vlasta; Konerack, Martina; M?kov, Marta; Lazov, Jana; Jurkov, Alena; Lancz, Gbor; Tomaovi?ov, Natlia; Timko, Milan; Kov?, Jozef; Vvra, Ivo; Fabin, Martin; Feoktystov, Artem V.; Garamus, Vasil M.; Avdeev, Mikhail V.; Kop?ansk, Peter

    2011-05-01

    Poly(ethylene glycol) (PEG)-containing magnetic fluids - magnetite (Fe 3O 4) stabilized by sodium oleate - were prepared. Magnetic measurements confirmed superparamagnetic behaviour at room temperature. The structure of that kind of magnetic fluid was characterized using different techniques, including electron microscopy, photon cross correlation spectroscopy and small-angle neutron scattering, while the adsorption of PEG on magnetic particles was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. From the in vitro toxicity tests it was found that a magnetic fluid containing PEG (MFPEG) partially inhibited the growth of cancerous B16 cells at the highest tested dose (2.1 mg/ml of Fe 3O 4 in MFPEG).

  18. [Analysis of formaldehyde, acetaldehyde and oligomers in recycled polyethylene terephthalate].

    PubMed

    Ohkado, Yuka; Kawamura, Yoko; Mutsuga, Motoh; Tamura, Hiro-omi; Tanamoto, Kenichi

    2005-10-01

    Formaldehyde (FA), acetaldehyde (AA) and oligomers in recycled polyethylene terephthalate (PET) were analyzed by HPLC. All of the physically recycled PET contained detectable levels of FA, AA and oligomers, and the levels were almost the same as in used bottles. Most superclean-like and chemically recycled PET contained lower levels than new pellets. These compounds showed no decrease upon physical recycling, but showed a marked decrease upon superclean-like recycling. In PET sheets made using physically recycled PET, FA was decreased, though AA was increased by the sheeting process as same as new one. FA, AA and oligomers originated from PET resin and their levels in recycled products were almost equivalent to those in new products. It was concluded that there is no particular safety concern about their presence in recycled PET. PMID:16305177

  19. [Analysis of residual volatiles in recycled polyethylene terephthalate].

    PubMed

    Ohkado, Yuka; Kawamura, Yoko; Mutsuga, Motoh; Tamura, Hiro-omi; Tanamoto, Kenichi

    2005-02-01

    The residual volatiles in recycled polyethylene terephthalate (PET) were analyzed using headspace/GC/MS. Recycled PET samples were made from PET bottles used for beverages, alcohol and soy sauce, and they were recycled in physical recycling plants, chemical recycling plants and superclean-like recycling trials. The physically recycled PET flakes contained small amounts of volatiles such as ethanol, limonene, 2-methyl-1,3-dioxolane, acetone, octanal and nonanal. Most of them originated from foods packed in bottles, and only 2-methyl-1,3-dioxolane was derived from polymer impurities. In contrast, the superclean-like or chemically recycled PET contained no detectable volatiles, like new PET pellets. The PET sheets shaped from physically recycled PET had no detectable volatiles. Not only the chemically and superclean-like recycled PET, but also the physically recycled PET contained no hazardous volatiles. It was concluded that there is no safety concern about volatiles in recycled PET, for the present use. PMID:15881250

  20. Gel permeation chromatography (GPC) of repeatedly extruded polyethylene terephthalate (PET).

    PubMed

    Milana, M R; Denaro, M; Arrivabene, L; Maggio, A; Gramiccioni, L

    1998-04-01

    The paper deals with gel permeation chromatography (GPC) monitoring of the behaviour of PET (polyethylene terephthalate) after repeated extrusions. Virgin PET was submitted to three successive extrusion/drying cycles and then the samples were swelled with hexafluoroisopropanol and treated with chloroform. GPC analysis was carried out at room temperature on a B.C.S. Serial LC 2000 GPC system equipped with a series of four GPC columns with UV detection at 254 nm and chloroform as eluent. GPC results showed that after each extrusion step the molecular weight distribution of the PET was different and Mw, Mn and Mz decreased. These findings suggest that during each extrusion degradation occurs and that repeated extrusions, as in the case of the recycling PET, may cause an alteration of the molecular weight distribution of the original PET. PMID:9666895

  1. The structure and tensile properties of crystalline polymers: Linear polyethylene

    SciTech Connect

    Mandelkern, L.

    1995-12-01

    Force-elongation curves and the key tensile parameters of a series of molecular weight fractions of linear polyethylene as well as those having most probable molecular weight distributions were investigated. Emphasis was given to the role of the key structural variables that define the crystalline state. These quantities were varied over very wide ranges by control of molecular weight and crystallization conditions. Specific matters to be discussed are the dependence of the character of the nominal stress-strain curves on molecular weight, crystallinity level and supermolecular structure; the factors involved in the transition from a brittle to a ductile type deformation; the nature of the yield stress; strain-hardening; and ultimate properties.

  2. Polyethylene glycol diffusion in ex vivo skin tissue

    NASA Astrophysics Data System (ADS)

    Genin, V. D.; Tuchina, D. K.; Bashkatov, A. N.; Genina, E. A.; Tuchin, V. V.

    2015-11-01

    Optical clearing of the rat skin under the action of polyethylene glycol (PEG) with molecular weight 300 and 400 Dalton was studied ex vivo. The collimated transmittance was measured at the wavelength range 500-900 nm. It was found that collimated transmittance of skin samples increased, whereas weight, thickness and area of the samples decreased during PEG penetration in skin tissue. A mechanism of the optical clearing under the action of PEG is discussed. Taking into account the kinetics of volume and thickness of the skin samples, diffusion coefficient of PEGs in skin tissue has been estimated as (1.832.22)10-6 cm2/s and (1.701.47)10-6 cm2/s for PEG-300 and PEG-400, respectively. The presented results can be useful for enhancement of many methods of laser therapy and optical diagnostics of skin diseases and localization of subcutaneous neoplasms.

  3. Absorption of ignitable liquids into polyethylene/polyvinylidine dichloride bags.

    PubMed

    Kocisko, M J

    2001-03-01

    Clear plastic bags are often used for the collection, sampling and storage of ignitable liquid evidence. They are popular because they are easy to store. transport and are inexpensive. Cryovac and Globus brand polyethylene/polyvinylidine dichloride bags were tested for suitability in storing ignitable liquid evidence. Standards of diesel, kerosene and gasoline were placed in the bags and sampled by passive headspace adsorption. The bags were then heated to determine if absorbed components of the standards could be released upon heating. Recovered extracts were analyzed by GC and GCMS. These bags were found to absorb components of diesel, kerosene, and gasoline. and were also found to produce interfering by-products that obstruct the chromatographic results. Evidence containers need to be tested to ensure that low levels of ignitable liquids are not missed. PMID:11305441

  4. Horseradish Peroxidase Inactivation: Heme Destruction and Influence of Polyethylene Glycol

    PubMed Central

    Mao, Liang; Luo, Siqiang; Huang, Qingguo; Lu, Junhe

    2013-01-01

    Horseradish peroxidase (HRP) mediates efficient conversion of many phenolic contaminants and thus has potential applications for pollution control. Such potentially important applications suffer however from the fact that the enzyme becomes quickly inactivated during phenol oxidation and polymerization. The work here provides the first experimental data of heme consumption and iron releases to support the hypothesis that HRP is inactivated by heme destruction. Product of heme destruction is identified using liquid chromatography with mass spectrometry. The heme macrocycle destruction involving deprivation of the heme iron and oxidation of the 4-vinyl group in heme occurs as a result of the reaction. We also demonstrated that heme consumption and iron releases resulting from HRP destruction are largely reduced in the presence of polyethylene glycol (PEG), providing the first evidence to indicate that heme destruction is effectively suppressed by co-dissolved PEG. These findings advance a better understanding of the mechanisms of HRP inactivation. PMID:24185130

  5. Antibacterial Performance of Alginic Acid Coating on Polyethylene Film

    PubMed Central

    Karbassi, Elika; Asadinezhad, Ahmad; Lehocký, Marian; Humpolíček, Petr; Vesel, Alenka; Novák, Igor; Sáha, Petr

    2014-01-01

    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance. PMID:25196604

  6. Production and Structural Investigation of Polyethylene Composites with Modified Kaolin

    NASA Astrophysics Data System (ADS)

    Domka, L.; Malicka, A.; Stachowiak, N.

    2008-08-01

    The study was undertaken to evaluate the effect of the filler (kaolin) modification with silane coupling agents on the properties of the polyethylene (HDPE Hostalen ACP 5831) composites. Powder mineral fillers are added to polymers to modify the properties of the latter and to reduce the cost of their production. A very important factor is the filler dispersion in the polymer matrix. Kaolin modified with 3-methacryloxypropyltrimethoxysilane and pure kaolin were characterised by surface area, pore size, water absorbing capacity, paraffin oil absorbing capacity, bulk density, scanning electron microscopy observations and X-ray diffraction measurements. Their performance was characterised by determination of the mechanical resistance upon static stretching and tearing, and their structure was observed in scanning electron microscopy images. The results were compared to those obtained for the composites with unmodified filler and pure HDPE.

  7. The Osmotic Potential of Polyethylene Glycol 6000 1

    PubMed Central

    Michel, Burlyn E.; Kaufmann, Merrill R.

    1973-01-01

    Osmotic potential (?s) of aqueous solutions of polyethylene glycol 6000 (PEG-6000) was curvilinearly related to concentration. At given concentrations, ?s increased linearly with temperature. The effects of concentration and temperature on ?s of PEG-6000 solutions differ from those for most salts and sugars and apparently are related to structural changes in the PEG polymer. Measurements of ?s with thermocouple psychrometers are more negative than those with a vapor pressure osmometer, with the psychrometer probably giving the more nearly correct ?s for bulk solutions. An empirical equation permits calculation of ?s from known concentrations of PEG-6000 over a temperature range of 15 to 35 C. Viscometery and gravimetric analysis are convenient methods by which the concentrations of PEG-6000 solutions may be measured. PMID:16658439

  8. Compatibilization of a polyethylene/polyamide 6 blend nanocomposite

    NASA Astrophysics Data System (ADS)

    Mistretta, M. C.; Ceraulo, M.; La Mantia, F. P.; Morreale, M.

    2014-05-01

    Polymer blends of incompatible components need to be compatibilized to give rise to a blend with good properties. At the same way, polymer/clay nanocomposites show the same problem because of different chemical nature of the polymer matrix and of the clay. Compatibilization is then necessary if an incompatible polymer blend is filled with an organomodified clay. In this work a polyethylene/polyamide 6 blend filled with an organomodified clay has been compatibilized with a maleic anyhidride grafted SEBS (styrene-ethylene-butylene-styrene) copolymer and a glicidylmethacrylate-ethylene copolymer. The results show that compatibilization improves the mechanical properties in terms of elongation at break; furthermore, an unexpected effect has been found, since going from the isotropic to the anisotropic material, a fragile-ductile transition occurs, with a significant increase of the elongation values.

  9. Use of fillers to enable the microwave processing of polyethylene.

    PubMed

    Harper, John; Price, Duncan; Zhang, Jie

    2007-01-01

    Microwave heating has a number of advantages over conventional heating due to the ability to heat specimens directly through specific interaction of electromagnetic radiation with the material. Thus it is possible to consider highly localised, rapid melting of thermoplastics using microwave radiation as a means of forming and welding. However, most polymers exhibit very low dielectric losses in the GHz region, which means that it is difficult to heat them efficiently by this means. We have therefore studied the use of fillers such as talc, zinc oxide and carbon black as a way of increasing the susceptibility of common polymers to microwave processing. Carbon black was found to be the most effective susceptor for high density polyethylene and its efficiency was directly proportional to its surface area and loading. PMID:17847676

  10. Modeling Low Density Polyethylene with Precisely Placed Butyl Branches

    NASA Astrophysics Data System (ADS)

    Rojas, Giovanni; Wagener, Kenneth B.

    Polyethylene (PE) is a commodity produced on a massive scale and also is one of the most studied macromolecules. Crystallinity can be controlled by copolymerizing ethylene with ?-olefins, producing a wide range of material responses. Physical properties of PE, obtained via ? olefin copolymerization, depend on the branch content that is directly related to the comonomer incorporation into the PE backbone. Materials with unknown primary structures are produced via chaingrowth chemistry, because unwanted side reactions generate defects in the main backbone that alter the morphological behavior and thermal response. Acyclic diene metathesis (ADMET) polymerization/hydrogenation methodology produce perfect sequenced copolymers of ethylene with ?-olefins. Synthesis and thermal properties of PE with butyl branches precisely placed along the polymer backbone using ADMET chemistry is described within.

  11. High-density polyethylene damage at extreme tensile conditions

    NASA Astrophysics Data System (ADS)

    Brown, E. N.; Furmanski, J.; Ramos, K. J.; Dattelbaum, D. M.; Jensen, B. J.; Iverson, A. J.; Carlson, C. A.; Fezzaa, K.; Gray, G. T., III; Patterson, B. M.; Trujillo, C. P.; Martinez, D. T.; Pierce, T. H.

    2014-05-01

    In-situ and postmortem observations of the dynamic tensile failure and damage evolution of high-density polyethylene (HDPE) are made during Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) loading. The Dyn-Ten-Ext technique probes the tensile response of materials at large strains (>1) and high strain-rates (>105 s-1) by firing projectiles through a conical die. Postmortem sectioning elucidates a mechanism of internal damage inception and progression. X-ray computed tomography corroborates shear damage with cracks nearly aligned with the extrusion axis but separated by unfailed internal bridges of material. In-situ measurements of damage are made with the impact system for ultrafast synchrotron experiments (IMPULSE) using the advanced imaging X-ray methods available at the Advanced Photon Source. Multiple frame phase-contrast imaging (PCI) elucidates the evolution of damage features in HDPE during Dyn-Ten-Ext loading that is observed in postmortem sectioning and X-ray tomography.

  12. Thermal conductivity of boron nitride reinforced polyethylene composites

    SciTech Connect

    Zhou Wenying Qi Shuhua; An Qunli; Zhao Hongzhen; Liu Nailiang

    2007-10-02

    The thermal conductivity of boron nitride (BN) particulates reinforced high density polyethylene (HDPE) composites was investigated under a special dispersion state of BN particles in HDPE, i.e., BN particles surrounding HDPE particles. The effects of BN content, particle size of HDPE and temperature on the thermal conductivity of the composites were discussed. The results indicate that the special dispersion of BN in matrix provides the composites with high thermal conductivity; moreover, the thermal conductivity of composites is higher for the larger size HDPE than for the smaller size one. The thermal conductivity increases with increasing filler content, and significantly deviates the predictions from the theoretic models. It is found also that the combined use of BN particles and alumina short fiber obtains higher thermal conductivity of composites compared to the BN particles used alone.

  13. Texturation and superhydrophobicity of polyethylene terephthalate thanks to plasma technology

    NASA Astrophysics Data System (ADS)

    Tarrade, Jeanne; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Guittard, Frdric; Debarnot, Dominique; Poncin-Epaillard, Fabienne

    2014-02-01

    Anti-bioadhesive surfaces were designed from polyethylene terephthalate (PET) by three steps plasma-treatment. First, the nano-pattern is created by oxygen plasma-treatment with controlled dimensions. Then, the plasma-treated polymeric surface was hydrophobized with a tetrafluorocarbon plasma, allowing to obtain a water contact angle of 145 4. However, the SEM pictures give evidence to show the degradation of the structuration caused by the CF4-plasma and consequently, the superhydrophobicity was not reached. Thus, a plasma-polypyrrole layer was deposited before the plasma-fluorination, which has a protective role against the degradation generated by fluorinated species, preserving the structuration and improving the fluorination rate. Therefore, the obtained surfaces are superhydrophobic with water contact angle of 157 2 and a hysteresis of 65 3. The ability of these surfaces to reduce bioadhesion will be performed in further work.

  14. Anaphylactic Shock Caused by Ingestion of Polyethylene Glycol

    PubMed Central

    Lee, Sun Hee; Lee, Joung Il; Joo, Kwang Ro; Shin, Hyun Phil; Baek, Il Hyun; Jeon, Jung Won; Lim, Jun Uk; Lee, Jung Lok; Lee, Hyae Min; Cho, Young-Hak

    2015-01-01

    Colonoscopy is the current standard method for evaluation of the colon. The diagnostic accuracy and therapeutic safety of colonoscopy depend on the quality of colonic cleansing and preparation. Generally, all these preparations have been demonstrated to be safe for use in healthy individuals without significant comorbid conditions. Based on safety and efficacy concerns, polyethylene glycol (PEG) is most commonly utilized as a bowel preparation solution for colonoscopy. Adverse events in patients receiving PEG are mostly clinically non-significant. However, fatal adverse events rarely have been shown to occur in the few individuals who experience vomiting or aspiration. Anaphylactic shock associated with ingestion of PEG electrolyte solution is an extremely rare fatal complication, and reported mainly in Western countries. Here, we report the first case of anaphylactic shock following the ingestion of PEG solution in Korea. PMID:25691849

  15. A Molecular Mechanism of viscoelasticity in aligned polyethylene

    NASA Astrophysics Data System (ADS)

    Hammad, A.; Hasan, H.; Swinburne, T. D.; Khawaja, M.; Del-Rosso, S.; Iannucci, L.; Sutton, A. P.

    2015-03-01

    The key observed property of aligned polyethylene is its viscoelastic behaviour, which is traditionally fitted with Maxwell models. Although these empirical models are successful at reproducing the mechanical response of the material, they fail to capture the underlying molecular mechanisms that lead to the observed viscoelastic behaviour. We explain the observed viscoelastic behaviour in terms of the formation, interaction and movement of solitons, and relate these molecular mechanisms to the semi-crystalline microstructure of the material. Using Molecular Dynamics we demonstrate the following results: (a) The formation of solitons from interfaces between crystalline and amorphous regions (b) The transfer of tensile load between molecular chains (c) the pile-up of solitons in a molecular chain that allows the concentration of stress at particular points (d) The disassociation of solitons into π-twistons at 300K. European Science Research Council (EPSRC).

  16. Enhanced polyethylene implants: have we been there before?

    PubMed

    Ries, Michael D

    2005-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been used as a bearing surface in total hip arthroplasty for nearly 40 years. Early failures have been attributed to gamma irradiation in air sterilization, poor implant design, and high patient activity. Currently available implants address the problems of gamma irradiation in air by using sterilization methods that avoid oxidative degradation. Previous efforts to modify UHMWPE, including carbon reinforcement, hot isostatic pressure, and heat pressing, have not resulted in improved clinical performance. More recently, highly cross-linked UHMWPEs have been developed that markedly reduced wear in hip simulators. However, cross-linking also reduces the mechanical properties, including fatigue crack propagation resistance. Although early clinical results with highly cross-linked UHMWPE are favorable, longer follow-up will be necessary to determine whether the results of in vitro testing accurately reflect long-term in vivo behavior. PMID:15948446

  17. Gels and foams from ultrahigh molecular weight polyethylene

    SciTech Connect

    Hair, L.M.; Letts, S.A.; Tillotson, T.

    1988-07-01

    Ultrahigh molecular weight polyethylene (UHMW PE) foams with densities from 0.04 to 0.2 g/cm{sup 3} have routinely been made in our laboratory. First, an entangled solution of UHMW PE is made. Then, the solution is geled by cooling to crystallize the PE. The gel is later dried to a foam by critical point drying. Viscometry and cloud point measurements were used to determine the gelatin point and the critical gelatin concentrations. Polarized light microscopy and differential scanning calorimetry were used to investigate the effects of cooling rate on the gel, while the effects of cooling rate on the foam were investigated via x-ray diffraction and scanning electron microscopy. We found that rapid cooling of 5 wt % UHMW PE/tetralin solutions to {minus}10{degree}c yielded small, uniform structure at the expense of crystallinity and strength; cooling over three days yielded spherulitic structure with strength. 5 refs., 3 figs.

  18. Scoping study. High density polyethylene (HDPE) in salstone service

    SciTech Connect

    Phifer, Mark A.

    2005-02-18

    An evaluation of the use of high density polyethylene (HDPE) geomembranes in Saltstone service has been conducted due to the potential benefits that could be derived from such usage. HDPE is one of the simplest hydrocarbon polymers and one of the most common polymers utilized in the production of geomembranes, which means that its costs are relatively low. Additionally, HDPE geomembranes have an extremely low permeability and an extremely low water vapor diffusional flux, which means that it is a good barrier to contaminant transport. The primary consideration in association with HDPE geomembranes in Saltstone service is the potential impact of Saltstone on the degradation of the HDPE geomembranes. Therefore, the evaluation documented herein has primarily focused upon the potential HDPE degradation in Saltstone service.

  19. Fracture of composites based on polyethylene and elastic particles

    NASA Astrophysics Data System (ADS)

    Serenko, O. A.; Karaeva, A. A.; Goncharuk, G. P.; Zaderenko, T. V.; Bazhenov, S. L.

    2009-06-01

    The composites based on low-density polyethylene with elastomer filling particles are studied. A fracture mechanism induced by the fracture of filler particles or their separation from the matrix polymer is revealed. The fracture of the composites is caused by the growth of formed rhombic pores. The natural relative elongation in a neck is shown to be an important characteristic of a polymer. If the relative elongation in a neck is lower than the strain of appearance of rhombic pores, they form at the stage of uniform tension after necking, and the composite remains plastic. If the relative elongation in a neck is higher than the strain of formation of rhombic pores, they nucleate during necking, and the material undergoes quasi-brittle fracture. Good adhesion between the matrix polymer and elastic particles hinders the appearance of rhombic pores in a neck and, thus, retains high deformation properties of the composites.

  20. Pyrolysis pathways of sulfonated polyethylene, an alternative carbon fiber precursor.

    PubMed

    Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A; Naskar, Amit K; Beste, Ariana

    2013-04-24

    Polyethylene is an emerging precursor material for the production of carbon fibers. Its sulfonated derivative yields ordered carbon when pyrolyzed under inert atmosphere. Here, we investigate its pyrolysis pathways by selecting n-heptane-4-sulfonic acid (H4S) as a model compound. Density functional theory and transition state theory were used to determine the rate constants of pyrolysis for H4S from 300 to 1000 K. Multiple reaction channels from two different mechanisms were explored: (1) internal five-centered elimination (Ei5) and (2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain thermogravimetric (TGA) plots that compared favorably to experiment. We observed that at temperatures <550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial ?H radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440 to 460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene (~31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOS?2 became competitive to ?-H abstraction by HOS?2, making ?H the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures >600 K. Low-scale carbonization utilizes temperatures <620 K; thus, internal elimination will not be competitive. E(i)5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids. PMID:23560686

  1. Quantification of the influence of protein-protein interactions on adsorbed protein structure and bioactivity.

    PubMed

    Wei, Yang; Thyparambil, Aby A; Latour, Robert A

    2013-10-01

    While protein-surface interactions have been widely studied, relatively little is understood at this time regarding how protein-surface interaction effects are influenced by protein-protein interactions and how these effects combine with the internal stability of a protein to influence its adsorbed-state structure and bioactivity. The objectives of this study were to develop a method to study these combined effects under widely varying protein-protein interaction conditions using hen egg-white lysozyme (HEWL) adsorbed on silica glass, poly(methyl methacrylate), and polyethylene as our model systems. In order to vary protein-protein interaction effects over a wide range, HEWL was first adsorbed to each surface type under widely varying protein solution concentrations for 2h to saturate the surface, followed by immersion in pure buffer solution for 15h to equilibrate the adsorbed protein layers in the absence of additionally adsorbing protein. Periodic measurements were made at selected time points of the areal density of the adsorbed protein layer as an indicator of the level of protein-protein interaction effects within the layer, and these values were then correlated with measurements of the adsorbed protein's secondary structure and bioactivity. The results from these studies indicate that protein-protein interaction effects help stabilize the structure of HEWL adsorbed on silica glass, have little influence on the structural behavior of HEWL on HDPE, and actually serve to destabilize HEWL's structure on PMMA. The bioactivity of HEWL on silica glass and HDPE was found to decrease in direct proportion to the degree of adsorption-induce protein unfolding. A direct correlation between bioactivity and the conformational state of adsorbed HEWL was less apparent on PMMA, thus suggesting that other factors influenced HEWL's bioactivity on this surface, such as the accessibility of HEWL's bioactive site being blocked by neighboring proteins or the surface itself. The developed methods provide an effective means to characterize the influence of protein-protein interaction effects and provide new molecular-level insights into how protein-protein interaction effects combine with protein-surface interaction and internal protein stability effects to influence the structure and bioactivity of adsorbed protein. PMID:23751416

  2. Characteristics of Cultured Tomato Cells after Prolonged Exposure to Medium Containing Polyethylene Glycol 1

    PubMed Central

    Handa, Avtar K.; Bressan, Ray A.; Handa, Sangita; Hasegawa, Paul M.

    1982-01-01

    Cell lines of tomato (Lycopersicon esculentum Mill., cv. VFNT-Cherry) have been isolated, which are capable of growing in media containing polyethylene glycol (PEG) 6000 with water potentials as low as ?15 or ?22 bar. After prolonged exposure to media containing PEG, these cell populations have reduced abilities to grow in the absence of PEG. Upon resuspension in PEG-free medium, the cells swell and begin to release metabolites, including protein. Measurement by plasmometry of the osmotic potential of cells selected in medium with ?22 bar water potential indicates that they maintain, at the end of the growth cycle, an osmotic potential of approximately ?26 bar. This is compared to an osmotic potential of ?9 bar for nonselected cells in medium without PEG, having an initial water potential of ?4 bar. Thus, considerable osmotic adjustment occurs as a result of exposure to external low water potential. The results also indicate that PEG does not contribute significantly to osmotic adjustment of the cells. Images PMID:16662239

  3. Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity

    PubMed Central

    2015-01-01

    A synthetic mimic of mussel adhesive protein, dopamine-modified four-armed poly(ethylene glycol) (PEG-D4), was combined with a synthetic nanosilicate, Laponite (Na0.7+(Mg5.5Li0.3Si8)O20(OH)4)0.7), to form an injectable naoncomposite tissue adhesive hydrogel. Incorporation of up to 2 wt % Laponite significantly reduced the cure time while enhancing the bulk mechanical and adhesive properties of the adhesive due to strong interfacial binding between dopamine and Laponite. The addition of Laponite did not alter the degradation rate and cytocompatibility of PEG-D4 adhesive. On the basis of subcutaneous implantation in rat, PEG-D4 nanocomposite hydrogels elicited minimal inflammatory response and exhibited an enhanced level of cellular infiltration as compared to Laponite-free samples. The addition of Laponite is potentially a simple and effective method for promoting bioactivity in a bioinert, synthetic PEG-based adhesive while simultaneously enhancing its mechanical and adhesive properties. PMID:25222290

  4. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation

    PubMed Central

    Bejaoui, Mohamed; Pantazi, Eirini; Folch-Puy, Emma; Panisello, Arnau; Calvo, Mara; Pasut, Gianfranco; Rimola, Antoni; Navasa, Miquel; Adam, Ren; Rosell-Catafau, Joan

    2015-01-01

    Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35?kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24?h, 4C) and after reperfusion (2?h, 37C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10?mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI. PMID:26543868

  5. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    SciTech Connect

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K.

    2012-03-15

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  6. Prevention of peritendinous adhesions with electrospun polyethylene glycol/polycaprolactone nanofibrous membranes.

    PubMed

    Chen, Chih-Hao; Chen, Shih-Hsien; Shalumon, K T; Chen, Jyh-Ping

    2015-09-01

    Postoperative adhesion formation is the major complication that could occur after acute tendon surgery. The application of an anti-adhesive membrane at the post-surgical site is deemed as a potential way to solve this problem by preventing adhesive fibrotic tissue development. In this study, we fabricated electrospun composite poly(ethylene glycol) (PEG)/poly(caprolactone) (PCL) nanofibrous membrane (NFM) to prevent peritendinous adhesions, which could act as a barrier between the tendon and surrounding tissues, without interrupting mass transfer and normal tendon gliding. PCL/PEG NFMs of 0% PEG (PCL), 25% PEG (25PECL), 50% PEG (50PECL) and 75% PEG (75PECL) were prepared and characterized for physico-chemical properties. The PCL NFM shows the lowest protein permeability while 25PECL NFM exhibited the largest fiber diameter, smallest pore size and the largest ultimate stress and strain. The 75PECL NFM had the lowest water contact angle and the highest Young's modulus. In vitro cell adhesion and migration experiments with fibroblasts indicate that all NFMs could prevent cell penetration, with 75PECL NFM having the least cell attachment. In vivo application of 75PECL NFM on the repaired site of rabbit flexor tendon rupture model demonstrated improved efficacy compared with the PCL NFM and a commercial anti-adhesion barrier (Seprafilm), from gross observation, histological analysis and functional assays. We concluded that 75PECL NFM could function as an effective anti-adhesion membrane after tendon surgery in a clinical setting. PMID:26115533

  7. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation.

    PubMed

    Bejaoui, Mohamed; Pantazi, Eirini; Folch-Puy, Emma; Panisello, Arnau; Calvo, Mara; Pasut, Gianfranco; Rimola, Antoni; Navasa, Miquel; Adam, Ren; Rosell-Catafau, Joan

    2015-01-01

    Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4C) and after reperfusion (2 h, 37C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI. PMID:26543868

  8. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry.

    PubMed

    Barker, Karolyn; Rastogi, Shiva K; Dominguez, Jose; Cantu, Travis; Brittain, William; Irvin, Jennifer; Betancourt, Tania

    2016-01-01

    Significant research has focused on investigating the potential of hydrogels in various applications and, in particular, in medicine. Specifically, hydrogels that are biodegradable lend promise to many therapeutic and biosensing applications. Endonucleases are critical for mechanisms of DNA repair. However, they are also known to be overexpressed in cancer and to be present in wounds with bacterial contamination. In this work, we set out to demonstrate the preparation of DNA-enabled hydrogels that could be degraded by nucleases. Specifically, hydrogels were prepared through the reaction of dibenzocyclooctyne-functionalized multi-arm poly(ethylene glycol) with azide-functionalized single-stranded DNA in aqueous solutions via copper-free click chemistry. Through the use of this method, biodegradable hydrogels were formed at room temperature in buffered saline solutions that mimic physiological conditions, avoiding possible harmful effects associated with other polymerization techniques that can be detrimental to cells or other bioactive molecules. The degradation of these DNA-cross-linked hydrogels upon exposure to the model endonucleases Benzonase(®) and DNase I was studied. In addition, the ability of the hydrogels to act as depots for encapsulation and nuclease-controlled release of a model protein was demonstrated. This model has the potential to be tailored and expanded upon for use in a variety of applications where mild hydrogel preparation techniques and controlled material degradation are necessary including in drug delivery and wound healing systems. PMID:26541212

  9. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement.

    PubMed

    Wang, Weiping; Huang, Xin; Yin, Haiyan; Fan, Wenling; Zhang, Tao; Li, Lei; Mao, Chun

    2015-12-01

    In this study, polyethylene glycol acrylate (PEGA) was introduced onto the surface of polysulphone (PSF) membrane to prepare PSF-PEGA membranes through low-temperature plasma technology for haemocompatibility improvement of artificial lungs. The effects of plasma power, PEGA solution concentration and dipcoating temperature on surface modification were systematically investigated. Results of Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and PEGA grafting degree confirmed that PEGA was successfully grafted onto the PSF membranes. Contact angle values showed that the hydrophilicity of the PSF-PEGA membrane surface increased by 21.5%. The results of the protein adsorption, platelet adhesion and coagulation tests further showed the excellent haemocompatibility of the modified membrane. Gas exchange tests also revealed that at a porcine blood flow rate of 5 l min(-1), O2 and CO2 exchange rates through the PSF-PEGA membrane were 198.6 and 170.9 ml min(-1), respectively; approximately this is the gas exchange capacity of commercial respiratory assistance devices. PMID:26658212

  10. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence TimeS?

    PubMed Central

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J. G.

    2011-01-01

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo. PMID:21890748

  11. Preparation of polyethylene sacks for collection of precipitation samples for chemical analysis

    USGS Publications Warehouse

    Schroder, L.J.; Bricker, A.W.

    1985-01-01

    Polyethylene sacks are used to collect precipitation samples. Washing polyethylene with acetone, hexane, methanol, or nitric acid can change the adsorptive characteristics of the polyethylene. In this study, simulated precipitation at pH 4.5 was in contact with the polyethylene sacks for 21 days; subsamples were removed for chemical analysis at 7, 14, and 21 days after intitial contact. Sacks washed with acetone adsorbed iron and lithium; sacks washed with hexane adsorbed barium, iron , and lithium; sacks washed with methanol adsorbed calcium and iron; and sacks washed with 0.30 N nitric acid adsorbed iron. Leaching the plastic sacks with 0.15 N nitric acid did not result in 100-percent recovery of any of the adsorbed metals. Washing polyethylene sacks with dilute nitric acid caused the pH of the simulated precipitation to be decreased by 0.2 pH unit after 1 week of contact with the polyethylene. The specific conductance increased by 10 microsiemens per centimeter. Contamination of precipitation samples by lead was determined to be about 0.1 microgram per liter from contact with precleaned polyethylene sacks. No measurable contamination of precipitation samples by zinc occurred. (USGS)

  12. Influence of Pelvic Tilt on Polyethylene Wear after Total Hip Arthroplasty

    PubMed Central

    Tezuka, Taro; Inaba, Yutaka; Kobayashi, Naomi; Ike, Hiroyuki; Kubota, So; Kawamura, Masaki; Saito, Tomoyuki

    2015-01-01

    We aimed to evaluate the effects of pelvic tilt on polyethylene wear after total hip arthroplasty (THA). A total of 105 joints treated with primary THA were included; conventional polyethylene (CPE) liners were used in 43 hips and highly cross-linked polyethylene (HXLPE) liners were used in the remaining 62 hips. The pelvis was tilted 6 posteriorly in the standing position as compared to the supine position, which resulted in significant increases of 1.7 and 2.8 in cup inclination in the CPE and HXLPE groups, respectively. Moreover, the change in pelvic tilt resulted in significant increases of 3.6 and 4.9 in cup anteversion in the CPE and HXLPE groups, respectively. For the CPE group, multiple regression analysis showed a significant association between the angle of pelvic tilt (PTA) and cup inclination and the polyethylene wear ratio. The adjusted R2 of the regression model was larger for measures obtained in the standing position as compared to the supine position. For the HXLPE group, there was no significant relationship between radiographic parameters and polyethylene wear. Close observation of polyethylene wear is recommended for patients with severe posterior pelvic tilt who have undergone THA with conventional polyethylene. PMID:26258136

  13. Solution and film properties of sodium caseinate/glycerol and sodium caseinate/polyethylene glycol edible coating systems.

    PubMed

    Siew, D C; Heilmann, C; Easteal, A J; Cooney, R P

    1999-08-01

    The aim of this study is to determine the effects of plasticizer hydrogen bonding capability and chain length on the molecular structure of sodium caseinate (NaCAS), in NaCAS/glycerol and NaCAS/polyethylene glycol 400 (PEG) systems. Both solution and film phases were investigated. Glycerol and PEG reduced the viscosity of aqueous NaCAS, with the latter having a greater effect. This was explained in terms of protein/plasticizer aggregate size and changes to the conformation of the caseinate chain. In the film phase, glycerol caused more pronounced changes to the film tensile strength compared with PEG. However, the effect of glycerol on film water vapor permeability was smaller. These observations are attributed to the differences in plasticizer size and hydrogen bonding strength that controls the protein-plasticizer and protein-protein interactions in the films. Glass transition calculations from the tensile strength data indicate that the distribution of bonding interactions is more homogeneous in NaCAS/PEG films than in NaCAS/glycerol films. PMID:10552668

  14. Effect of ultraviolet radiation in the photo-oxidation of High Density Polyethylene and Biodegradable Polyethylene films

    NASA Astrophysics Data System (ADS)

    Martnez-Romo, A.; Gonzlez Mota, R.; Bernal, J. J. Soto; Frausto Reyes, C.; Rosales Candelas, I.

    2015-01-01

    One of the most widely used plastics in the world is the High density polyethylene (HDPE), it is a stable material due to its carbon-carbon bonds, causing their slow degradation; which is why we are looking for alternative ways to accelerate the degradation process of this polymer. An alternative is the addition of oxidized groups in its molecular structure, which results in the development of polymers susceptible to biodegradation (PE-BIO). In this paper, HDPE and PE-BIO films were exposed to UV-B radiation (320-280 nm) at different exposure times, 0-60 days. The effects of UV radiation in samples of HDPE and PE-BIO were characterized using infrared spectroscopy with attenuated total reflectance (ATR). The results show that the exposed materials undergo changes in their molecular structure, due to the infrared bands formed which corresponds to the photo-oxidation of HDPE and PE films when submitted to UV-B radiation.

  15. Hot embossed polyethylene through-hole chips for bead-based microfluidic devices

    PubMed Central

    Chou, Jie; Du, Nan; Ou, Tina; Floriano, Pierre N.; Christodoulides, Nicolaos; McDevitt, John T.

    2013-01-01

    Over the past decade, there has been a growth of interest in the translation of microfluidic systems into real-world clinical practice, especially for use in point-of-care or near patient settings. While initial fabrication advances in microfluidics involved mainly the etching of silicon and glass, the economics of scaling of these materials is not amendable for point-of-care usage where single-test applications forces cost considerations to be kept low and throughput high. As such, a materials base more consistent with point-of-care needs is required. In this manuscript, the fabrication of a hot embossed, through-hole low-density polyethylene ensembles derived from an anisotropically etched silicon wafer is discussed. This semi-opaque polymer that can be easily sterilized and recycled provides low background noise for fluorescence measurements and yields more affordable cost than other thermoplastics commonly used for microfluidic applications such as cyclic olefin copolymer (COC). To fabrication through-hole microchips from this alternative material for microfluidics, a fabrication technique that uses a high-temperature, high-pressure resistant mold is described. This aluminum-based epoxy mold, serving as the positive master mold for embossing, is casted over etched arrays of pyramidal pits in a silicon wafer. Methods of surface treatment of the wafer prior to casting and PDMS casting of the epoxy are discussed to preserve the silicon wafer for future use. Changes in the thickness of polyethylene are observed for varying embossing temperatures. The methodology described herein can quickly fabricate 20 disposable, single use chips in less than 30 minutes with the ability to scale up 4x by using multiple molds simultaneously. When coupled as a platform supporting porous bead sensors, as in the recently developed Programmable Bio-Nano-Chip, this bead chip system can achieve limits of detection, for the cardiac biomarker C-reactive protein, of 0.3 ng/mL, thereby demonstrating the approach is compatible with high performance, real-world clinical measurements in the context of point-of-care testing. PMID:23183187

  16. Multifunctional copolymer coating of polyethylene glycol, glycidyl methacrylate, and REDV to enhance the selectivity of endothelial cells.

    PubMed

    Wei, Yu; Zhang, Jingxun; Li, Haolie; Zhang, Li; Bi, Hong

    2015-12-01

    Multifunctional polymer coatings have potential applications in biomaterials. These coatings possess reactive functional groups for the immobilization of specific biological factors that can influence cellular behavior. These coatings also display low nonspecific protein adsorption. In this study, we prepared a multifunctional polymer coating through the deposition of random copolymers of poly(ethylene glycol) methacrylate (PEGMA) and glycidyl methacrylate (GMA) to prevent nonspecific attachment and enable the covalence of Arg-Glu-Asp-Val (REDV) peptide with endothelial cells (ECs) selectivity. Coatings were characterized by X-ray photoelectron spectroscopy (XPS). The adhesion and proliferation of ECs and smooth muscle cells (SMCs) onto the REDV-modified surface were investigated to understand the synergistic action of antifouling PEG and EC selective REDV peptide conjugated GMA. The copolymers containing GMA and PEG groups are very useful as a multifunctional coating material with anti-fouling and ECs specific adhesion for implant materials surface modification. PMID:26381476

  17. Effect of Short Chain Poly(ethylene glycol)s on the Hydration Structure and Dynamics around Human Serum Albumin.

    PubMed

    Samanta, Nirnay; Luong, Trung Quan; Das Mahanta, Debasish; Mitra, Rajib Kumar; Havenith, Martina

    2016-01-26

    We report the changes in the hydration dynamics around a globular protein, human serum albumin (HSA), in the presence of two short chain crowding agents, namely poly(ethylene glycol)s (PEG 200 and 400). The change in the network water structure is investigated using FTIR spectroscopy in the far-infrared (FIR) frequency range. Site specific changes are obtained by time-resolved fluorescence spectroscopic technique using the intrinsic fluorophore tryptophan (Trp214) of HSA. The collective hydration dynamics of HSA in the presence of PEG molecules are obtained using terahertz (THz) time domain spectroscopy (TTDS) and high intensity p-Ge THz measurements. Our study affirms a considerable perturbation of HSA hydration beyond a critical concentration of PEG. PMID:26720549

  18. Graphite/Ultra-High Modulus Polyethylene Hybrid Fiber Composites with Epoxy and Polyethylene Matrices for Cosmic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One of the most significant technical challenges in long-duration space missions is that of protecting the crew from harmful radiation. Protection against such radiation on a manned Mars mission will be of vital importance both during transit and while on the surface of the planet. The development of multifunctional materials that serve as integral structural members of the space vehicle and provide the necessary radiation shielding for the crew would be both mission enabling and cost effective. Additionally, combining shielding and structure could reduce total vehicle mass. Hybrid laminated composite materials having both ultramodulus polyethylene (PE) and graphite fibers in epoxy and PE matrices could meet such mission requirements. PE fibers have excellent physical properties, including the highest specific strength of any known fiber. Moreover, the high hydrogen (H) content of polyethylene makes the material an excellent shielding material for cosmic radiation. When such materials are incorporated into an epoxy or PE matrix a very effective shielding material is expected. Boron (B) may be added to the matrix resin or used as a coating to further increase the shielding effectiveness due to B s ability to slow thermal neutrons. These materials may also serve as micrometeorites shields due to PE s high impact energy absorption properties. It should be noted that such materials can be fabricated by existing equipment and methods. It is the objective of this work therefore to: (a) perform preliminary analysis of the radiation transport within these materials; (b) fabricate panels for mechanical property testing before and after radiation exposure. Preliminary determination on the effectiveness of the combinations of material components on both shielding and structural efficiency will be made.

  19. Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue.

    PubMed

    Robinson, Kye J; Coffey, Jacob W; Muller, David A; Young, Paul R; Kendall, Mark A F; Thurecht, Kristofer J; Grndahl, Lisbeth; Corrie, Simon R

    2015-01-01

    Selective capture of disease-related proteins in complex biological fluids and tissues is an important aim in developing sensitive protein biosensors for in vivo applications. Microprojection arrays are biomedical devices whose mechanical and chemical properties can be tuned to allow efficient penetration of skin, coupled with highly selective biomarker capture from the complex biological environment of skin tissue. Herein, the authors describe an improved surface modification strategy to produce amine-modified polycarbonate arrays, followed by the attachment of an antifouling poly(sulfobetaine-methacrylate) (pSBMA) polymer or a linear polyethylene glycol (PEG) polymer of comparative molecular weight and hydrodynamic radius. Using a "grafting to" approach, pSBMA and linear PEG coatings yielded comparative antifouling behavior in single protein solutions, diluted plasma, or when applied to mouse flank skin penetrating into the vascularized dermal tissue. Interestingly, the density of immobilized immunoglobulin G (IgG) or bovine serum albumin protein on pSBMA surfaces was significantly higher than that on the PEG surfaces, while the nonspecific adsorption was comparable for each protein. When incubated in buffer or plasma solutions containing dengue non-structural protein 1 (NS1), anti-NS1-IgG-coated pSBMA surfaces captured significantly more NS1 in comparison to PEG-coated devices. Similarly, when wearable microprojection arrays were applied to the skin of dengue-infected mice using the same coatings, the pSBMA-coated devices showed significantly higher capture efficiency (>2-fold increase in signal) than the PEG-coated substrates, which showed comparative signal when applied to nave mice. In conclusion, zwitterionic pSBMA polymers (of equivalent hydrodynamic radii to PEG) allowed detection of dengue NS1 disease biomarker in a preclinical model of dengue infection, showing significantly higher signal-to-noise ratio in comparison to the PEG controls. The results of this study will be useful in the future development of a range of protein biosensors designed for use in vivo. PMID:26446192

  20. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents.

    PubMed

    Garay, Ricardo P; El-Gewely, Raafat; Armstrong, Jonathan K; Garratty, George; Richette, Pascal

    2012-11-01

    In contrast to the accepted general assumption that polyethylene glycol (PEG) is non-immunogenic and non-antigenic, animal studies clearly showed that uricase, ovalbumin and some other PEGylated agents can elicit antibody formation against PEG (anti-PEG). In humans, anti-PEG may limit therapeutic efficacy and/or reduce tolerance of PEG-asparaginase (PEG-ASNase) in patients with acute lymphoblastic leukemia and of pegloticase in patients with chronic gout, but did not impair hyposensitization of allergic patients with mPEG-modified ragweed extract or honeybee venom or the response to PEG-IFN in patients with hepatitis C. Of major importance is the recent finding of a 22 - 25% occurrence of anti-PEG in healthy blood donors, compared with a very low 0.2% occurrence two decades earlier. This increase may be due to an improvement of the limit of detection of antibodies during the years and to greater exposure to PEG and PEG-containing compounds in cosmetics, pharmaceuticals and processed food products. These results raise obvious concerns regarding the efficacy of PEG-conjugated drugs for a subset of patients. To address these concerns, the immunogenicity and antigenicity of approved PEGylated compounds should be carefully examined in humans. With all these data in hand, patients should be pre-screened and monitored for anti-PEG prior to and throughout a course of treatment with a PEGylated compound. Finally, protein conjugates with the poorly immunogenic hydroxy-PEG sequence or other hydrophilic polymers are in early phases of development and may represent an alternative to immunogenic PEGylated proteins. PMID:22931049