Science.gov

Sample records for polymer based self-healing

  1. Self-healing polymers and composites based on thermal activation

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Bolanos, Ed; Wudl, Fred; Hahn, Thomas; Kwok, Nathan

    2007-04-01

    Structural polymer composites are susceptible to premature failure in the form of microcracks in the matrix. Although benign initially when they form, these matrix cracks tend to coalesce and lead in service to critical damage modes such as ply delamination. The matrix cracks are difficult to detect and almost impossible to repair because they form inside the composite laminate. Therefore, polymers with self-healing capability would provide a promising potential to minimize maintenance costs while extending the service lifetime of composite structures. In this paper we report on a group of polymers and their composites which exhibit mendable property upon heating. The failure and healing mechanisms of the polymers involve Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions on the polymer back-bone chain, which are thermally reversible reactions requiring no catalyst. The polymers exhibited good healing property in bulk form. Composite panels were prepared by sandwiching the monomers between carbon fiber fabric layers and cured in autoclave. Microcracks were induced on the resin-rich surface of composite with Instron machine at room temperature by holding at 1% strain for 1 min. The healing ability of the composite was also demonstrated by the disappearance of microcracks after heating. In addition to the self-healing ability, the polymers and composites also exhibited shape memory property. These unique properties may provide the material multi-functional applications. Resistance heating of traditional composites and its applicability in self-healing composites is also studied to lay groundwork for a fully integrated self-healing composite.

  2. Self-healing polymers

    NASA Technical Reports Server (NTRS)

    Klein, Daniel J. (Inventor)

    2011-01-01

    A three dimensional structure fabricated from a self-healing polymeric material, comprising poly(ester amides) obtained from ethylene glycol, azelaic acid and 1,1-aminoundecanoic acid, wherein polymeric material has a melt index above 2.5 g/10 min. as determined by ASTM D1238 at 190.degree. C. and 2.16kg, impact resistance and ductility sufficient to resist cracking and brittle fracture upon impact by a 9 mm bullet fired at a temperature of about 29.degree. C. at subsonic speed in a range from about 800 feet/sec to about 1000 feet/sec. It has been determined that the important factors necessary for self-healing behavior of polymers include sufficient impact strength, control of the degree of crystallinity, low melting point and the ability to instantly melt at impacted area.

  3. A multiple-responsive self-healing supramolecular polymer gel network based on multiple orthogonal interactions.

    PubMed

    Zhan, Jiayi; Zhang, Mingming; Zhou, Mi; Liu, Bin; Chen, Dong; Liu, Yuanyuan; Chen, Qianqian; Qiu, Huayu; Yin, Shouchun

    2014-08-01

    Supramolecular polymer networks have attracted considerable attention not only due to their topological importance but also because they can show some fantastic properties such as stimuli-responsiveness and self-healing. Although various supramolecular networks are constructed by supramolecular chemists based on different non-covalent interactions, supramolecular polymer networks based on multiple orthogonal interactions are still rare. Here, a supramolecular polymer network is presented on the basis of the host-guest interactions between dibenzo-24-crown-8 (DB24C8) and dibenzylammonium salts (DBAS), the metal-ligand coordination interactions between terpyridine and Zn(OTf)2 , and between 1,2,3-triazole and PdCl2 (PhCN)2 . The topology of the networks can be easily tuned from monomer to main-chain supramolecular polymer and then to the supramolecular networks. This process is well studied by various characterization methods such as (1) H NMR, UV-vis, DOSY, viscosity, and rheological measurements. More importantly, a supramolecular gel is obtained at high concentrations of the supramolecular networks, which demonstrates both stimuli-responsiveness and self-healing properties. PMID:24943122

  4. Self-Healing Polymer Networks

    NASA Astrophysics Data System (ADS)

    Tournilhac, Francois

    2012-02-01

    Supramolecular chemistry teaches us to control non-covalent interactions between organic molecules, particularly through the use of optimized building blocks able to establish several hydrogen bonds in parallel. This discipline has emerged as a powerful tool in the design of new materials through the concept of supramolecular polymers. One of the fascinating aspects of such materials is the possibility of controlling the structure, adding functionalities, adjusting the macroscopic properties of and taking profit of the non-trivial dynamics associated to the reversibility of H-bond links. Applications of these compounds may include adhesives, coatings, rheology additives, high performance materials, etc. However, the synthesis of such polymers at the industrial scale still remains a challenge. Our first ambition is to design supramolecular polymers with original properties, the second ambition is to devise simple and environmentally friendly methods for their industrial production. In our endeavours to create novel supramolecular networks with rubbery elasticity, self-healing ability and as little as possible creep, the strategy to prolongate the relaxation time and in the same time, keep the system flexible was to synthesize rather than a single molecule, an assembly of randomly branched H-bonding oligomers. We propose a strategy to obtain through a facile one-pot synthesis a large variety of supramolecular materials that can behave as differently as associating low-viscosity liquids, semi-crystalline or amorphous thermoplastics, viscoelastic melts or self-healing rubbers.

  5. Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks

    NASA Astrophysics Data System (ADS)

    Altuna, F. I.; Antonacci, J.; Arenas, G. F.; Pettarin, V.; Hoppe, C. E.; Williams, R. J. J.

    2016-04-01

    Green laser irradiation successfully activated self-healing processes in epoxy-acid networks modified with low amounts of gold nanoparticles (NPs). A bio-based polymer matrix, obtained by crosslinking epoxidized soybean oil (ESO) with an aqueous citric acid (CA) solution, was self-healed through molecular rearrangements produced by transesterification reactions of β-hydroxyester groups generated in the polymerization reaction. The temperature increase required for the triggering of these thermally activated reactions was attained by green light irradiation of the damaged area. Compression force needed to assure a good contact between crack faces was achieved by volume dilatation generated by the same temperature rise. Gold NPs dispersed in the polymer efficiently generated heat in the presence of electromagnetic radiation under plasmon resonance, acting as nanometric heating sources and allowing remote activation of the self-healing in the crosslinked polymer.

  6. A self healing model based on polymer-mediated chromophore correlations

    NASA Astrophysics Data System (ADS)

    Ramini, Shiva K.; Kuzyk, Mark G.

    2012-08-01

    Here we present a model of self healing in which correlations between chromophores, as mediated by the polymer, are key to the recovery process. Our model determines the size distribution of the correlation volume using a grand canonical ensemble through a free energy advantage parameter. Choosing a healing rate that is proportional to the number of undamaged molecules in a correlated region, and a decay rate proportional to the intensity normalized to the correlation volume, the ensemble average is shown to correctly predict decay and recovery of the population of disperse orange 11-DO11 (1-amino-2-methylanthraquinone) molecules doped in PMMA polymer as a function of time and concentration as measured with amplified spontaneous emission and linear absorption spectroscopy using only three parameters that apply to the full set of data. Our model also predicts the temperature dependence of the process. One set of parameters should be characteristic of a particular polymer and dopant chromophore combination. Thus, the use of the model in determining these parameters for various materials systems should provide the data needed to test fundamental models of the underlying mechanism responsible for self healing.

  7. Developing Flexible, High Performance Polymers with Self-Healing Capabilities

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.

    2011-01-01

    Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface

  8. Synthesis of a Self-Healing Polymer Based on Reversible Diels-Alder Reaction: An Advanced Undergraduate Laboratory at the Interface of Organic Chemistry and Materials Science

    ERIC Educational Resources Information Center

    Weizman, Haim; Nielsen, Christian; Weizman, Or S.; Nemat-Nasser, Sia

    2011-01-01

    This laboratory experiment exposes students to the chemistry of self-healing polymers based on a Diels-Alder reaction. Students accomplish a multistep synthesis of a monomer building block and then polymerize it to form a cross-linked polymer. The healing capability of the polymer is verified by differential scanning calorimetry (DSC) experiments.…

  9. Puncture Self-Healing Polymers for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  10. Polydimethylsiloxane-based self-healing composite and coating materials

    NASA Astrophysics Data System (ADS)

    Cho, Soo Hyoun

    This thesis describes the science and technology of a new class of autonomic polymeric materials which mimic some of the functionalities of biological materials. Specifically, we demonstrate an autonomic self-healing polymer system which can heal damage in both coatings and bulk materials. The new self-healing system we developed greatly extends the capability of self-healing polymers by introducing tin catalyzed polycondensation of hydroxyl end-functionalited polydimethylsiloxane and polydiethoxysiloxane based chemistries. The components in this system are widely available and comparatively low in cost, and the healing chemistry also remains stable in humid or wet environments. These achievements significantly increase the probability that self-healing could be extended not only to polymer composites but also to coatings and thin films in harsh environments. We demonstrate the bulk self-healing property of a polymer composite composed of a phase-separated PDMS healing agent and a microencapsulated organotin catalyst by chemical and mechanical testing. Another significant research focus is on self-healing polymer coatings which prevent corrosion of a metal substrate after deep scratch damage. The anti-corrosion properties of the self-healing polymer on metal substrates are investigated by corrosion resistance and electrochemical tests. Even after scratch damage into the substrate, the coating is able to heal, while control samples which do not include all the necessary healing components reveal rapid corrosion propagation. This self-healing coating solution can be easily applied to most substrate materials, and is compatible with most common polymer matrices. Self-healing has the potential to extend the lifetime and increase the reliability of thermosetting polymers used in a wide variety of applications ranging from microelectronics to aerospace.

  11. A polymer scaffold for self-healing perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ~16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.

  12. A polymer scaffold for self-healing perovskite solar cells

    PubMed Central

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization. PMID:26732479

  13. A polymer scaffold for self-healing perovskite solar cells.

    PubMed

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼ 16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization. PMID:26732479

  14. Chemistry of crosslinking processes for self-healing polymers.

    PubMed

    Billiet, Stijn; Hillewaere, Xander K D; Teixeira, Roberto F A; Du Prez, Filip E

    2013-02-25

    Recent developments in material design have seen an exponential increase of polymers and polymer composites that can repair themselves in response to damage. In this review, a distinction is made between extrinsic materials, where the self-healing property is obtained by adding healing agents to the material to be repaired, and intrinsic materials, where self-healing is achieved by the material itself through its chemical nature. An overview of the crosslinking chemistries used in self-healing materials will be given, discussing the advantages and drawbacks of each system. The review is not only aiming to enable researchers to compare their ongoing research with the state-of-the-art but also to serve as a guide for the newcomers, which allows for a selection of the most promising self-healing chemistries. PMID:23255325

  15. Photoinduced smart, self-healing polymer sealant for photovoltaics.

    PubMed

    Banerjee, Sanjib; Tripathy, Ranjan; Cozzens, David; Nagy, Tibor; Keki, Sandor; Zsuga, Miklos; Faust, Rudolf

    2015-01-28

    Polyisobutylene (PIB)-based polymer networks potentially useful as smart coatings for photovoltaic devices have been developed. Low molecular weight coumarin functional triarm star PIB was synthesized via a single step SN2 reaction of bromoallyl functional triarm star PIB with 4-methylumbelliferone or umbelliferone in the presence of sodium hydride. Quantitative end functionality was confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. UVA (λmax = 365 nm) induced reversible photodimerization of the coumarin moieties resulted in cross-linked elastomeric films exhibiting self-healing behavior. The extent of photodimerization/photoscission was monitored by UV-vis spectroscopy. The low oxygen (1.9 × 10(-16) mol m m(-2) s(-1) Pa(-1)) and moisture (46 × 10(-16) mol m m(-2) s(-1) Pa(-1)) permeability of the cross-linked polymer films suggest excellent barrier properties of the cross-linked polymer films. The self-healing process was studied by atomic force microscopy (AFM). For this, mechanical cuts were introduced in the cross-linked PIB films through micromachining with an AFM tip and the rate of healing induced by UV, sunlight, or both was followed by taking AFM images of the film at different time intervals during the repair process. PMID:25545670

  16. Impression Testing of Self-Healing Polymers

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Huber, Amy

    2005-01-01

    As part of the BIOSANT program (biologically-inspired smart nanotechnology), scientists at NASA-Langley have identified a "self-healing" plastic that spontaneously closes the hole left by the passage of a bullet. To understand and generalize the phenomenon in question, the mechanical properties responsible for this ability are being explored. Low-rate impression testing was chosen to characterize post-yield material properties, and it turned out that materials that heal following ballistic puncture also show up to 80% healing of the low-rate impression. Preliminary results on the effects of temperature and rate of puncture are presented.

  17. Self-Healing of Unentangled Polymer Networks with Reversible Bonds

    PubMed Central

    Stukalin, Evgeny B.; Cai, Li-Heng; Kumar, N. Arun; Leibler, Ludwik; Rubinstein, Michael

    2013-01-01

    Self-healing polymeric materials are systems that after damage can revert to their original state with full or partial recovery of mechanical strength. Using scaling theory we study a simple model of autonomic self-healing of unentangled polymer networks. In this model one of the two end monomers of each polymer chain is fixed in space mimicking dangling chains attachment to a polymer network, while the sticky monomer at the other end of each chain can form pairwise reversible bond with the sticky end of another chain. We study the reaction kinetics of reversible bonds in this simple model and analyze the different stages in the self-repair process. The formation of bridges and the recovery of the material strength across the fractured interface during the healing period occur appreciably faster after shorter waiting time, during which the fractured surfaces are kept apart. We observe the slowest formation of bridges for self-adhesion after bringing into contact two bare surfaces with equilibrium (very low) density of open stickers in comparison with self-healing. The primary role of anomalous diffusion in material self-repair for short waiting times is established, while at long waiting times the recovery of bonds across fractured interface is due to hopping diffusion of stickers between different bonded partners. Acceleration in bridge formation for self-healing compared to self-adhesion is due to excess non-equilibrium concentration of open stickers. Full recovery of reversible bonds across fractured interface (formation of bridges) occurs after appreciably longer time than the equilibration time of the concentration of reversible bonds in the bulk. PMID:24347684

  18. Self-Healing of Polymer Networks with Reversible Bonds

    NASA Astrophysics Data System (ADS)

    Rubinstein, Michael

    2015-03-01

    Self-healing polymeric materials are systems that after damage can revert to their original state with full or partial recovery of mechanical strength. Using scaling theory we study a simple model of autonomic self-healing of polymer networks. In this model one of the two end monomers of each polymer chain is fixed in space mimicking dangling chains attachment to a polymer network, while the sticky monomer at the other end of each chain can form pairwise reversible bond with the sticky end of another chain. We study the reaction kinetics of reversible bonds in this simple model and analyze the different stages in the self-repair process. The formation of bridges and the recovery of the material strength across the fractured interface during the healing period occur appreciably faster after shorter waiting time, during which the fractured surfaces are kept apart. We observe the slowest formation of bridges for self-adhesion after bringing into contact two bare surfaces with equilibrium (very low) density of open stickers in comparison with self-healing. The primary role of anomalous diffusion in material self-repair for short waiting times is established, while at long waiting times the recovery of bonds across fractured interface is due to hopping diffusion of stickers between different bonded partners. Acceleration in bridge formation for self-healing compared to self-adhesion is due to excess nonequilibrium concentration of open stickers. Full recovery of reversible bonds across fractured interface (formation of bridges) occurs after appreciably longer time than the equilibration time of the concentration of reversible bonds in the bulk. The model is extended to describe enhanced toughness of dual networks with both permanent and reversible cross-links. This work was done in collaboration with Drs. Ludwik Leibler, Li-Heng Cai, Evgeny B. Stukalin, N. Arun Kumar and supported by the National Science Foundation.

  19. Dynamic sulfur chemistry as a key tool in the design of self-healing polymers

    NASA Astrophysics Data System (ADS)

    Martin, Roberto; Rekondo, Alaitz; Ruiz de Luzuriaga, Alaitz; Casuso, Pablo; Dupin, Damien; Cabañero, Germán; Grande, Hans J.; Odriozola, Ibon

    2016-08-01

    The rich variety of reversible or dynamic covalent chemistries based on sulfur offers a unique opportunity for the design of self-healing polymer networks. The reversibility of such chemical bonds can be used to create soft systems which can self-mend at ambient conditions. Here we focus on the mechanism of three different dynamic sulfur chemistries which have been used for the development of self-healing elastomers and hydrogels: thiolate/nanoparticle exchange, aromatic disulfide exchange and gold(I)-thiolate/disulfide exchange.

  20. Nature's Mechanisms for Tough, Self-healing Polymers and Polymer Adhesives

    NASA Astrophysics Data System (ADS)

    Hansma, Paul

    2007-03-01

    Spider silk^2 and the natural polymer adhesives in abalone shells^3 and bone^4,5 can give us insights into nature's mechanisms for tough, self-healing polymers and polymer adhesives. The natural polymer adhesives in biomaterials have been optimized by evolution. An optimized polymer adhesive has five characteristics. 1) It holds together the strong elements of the composite. 2) It yields just before the strong elements would otherwise break. 3) It dissipates large amounts of energy as it yields. 4) It self heals after it yields. 5) It takes just a few percent by weight. Both natural polymer adhesives and silk rely on sacrificial bonds and hidden length for toughness and self-healing.^6 A relatively large energy, of order 100eV, is required to stretch a polymer molecule after a weak bond, a sacrificial bond, breaks and liberates hidden length, which was previously hidden, typically in a loop or folded domain, from whatever was stretching the polymer. The bond is called sacrificial if it breaks at forces well below the forces that could otherwise break the polymer backbone, typically greater than 1nN. In many biological cases, the breaking of sacrificial bonds has been found to be reversible, thereby also providing a ``self-healing'' property to the material.^2-4 Individual polymer adhesive molecules based on sacrificial bonds and hidden length can supply forces of order 300pN over distances of 100s of nanometers. Model calculations show that a few percent by weight of adhesives based on these principles could be optimized adhesives for high performance composite materials including nanotube and graphene sheet composites. ^2N. Becker, E. Oroudjev, S. Mutz et al., Nature Materials 2 (4), 278 (2003). ^3B. L. Smith, T. E. Schaffer, M. Viani et al., Nature 399 (6738), 761 (1999). ^4J. B. Thompson, J. H. Kindt, B. Drake et al., Nature 414 (6865), 773 (2001). ^5G. E. Fantner, T. Hassenkam, J. H. Kindt et al., Nature Materials 4, 612 (2005). ^6G. E. Fantner, E. Oroudjev, G

  1. Self-Healing Behavior of Ethylene-Based Ionomers

    NASA Technical Reports Server (NTRS)

    Kalista, Stephen J., Jr.; Ward, Thomas C.; Oyetunji, Zainab

    2004-01-01

    The self-healing behavior of poly(ethylene-co-methacrylic acid) (EMAA)-based ionomers holds tremendous potential for use in a wide variety of unique applications. However, to effectively utilize this self-healing behavior and to design novel materials which possess this ability, the mechanism by which they heal must first be understood ionomers are a class of polymers that can be described as copolymers containing less than 15 mol% ionic content whereby the bulk properties are governed by ionic interactions within the polymer. These ionic groups aggregate into discrete regions known as multiplets which overlap forming clusters that act as physical cross-links profoundly influencing the bulk physical properties. These clusters possess an order-disorder transition (T(sub i)) where the clustered regions may rearrange themselves given time and stimuli. Recognizing the strong influence of these ionic regions on other well understood ionomer properties, their role in self-heating behavior will be assessed. The self-healing behavior is observed following projectile puncture. It has been suggested that during impact energy is passed to the ionomer material, heating it to the melt state. After penetration, it is proposed that the ionic regions maintain their attractions and flow together patching the hole. Thus, the importance of this ionic character and is unique interaction must be established. This will be accomplished through examination of materials with varying ionic content and through the analysis of the T(sub i). The specific ionomer systems examined include a number of ethylene-based materials. Materials of varying ionic content, including the non-ionic base copolymers, will be examined by peel tests, projectile impact and DSC analysis. The information will also be compared with some basic data on LDPE material.

  2. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness.

    PubMed

    Chen, Hui; Ma, Xiang; Wu, Shuaifan; Tian, He

    2014-12-15

    Development of self-healing and photostimulated luminescent supramolecular polymeric materials is important for artificial soft materials. A supramolecular polymeric hydrogel is reported based on the host-guest recognition between a β-cyclodextrin (β-CD) host polymer (poly-β-CD) and an α-bromonaphthalene (α-BrNp) polymer (poly-BrNp) without any additional gelator, which can self-heal within only about one minute under ambient atmosphere without any additive. This supramolecular polymer system can be excited to engender room-temperature phosphorescence (RTP) signals based on the fact that the inclusion of β-CD macrocycle with α-BrNp moiety is able to induce RTP emission (CD-RTP). The RTP signal can be adjusted reversibly by competitive complexation of β-CD with azobenzene moiety under specific irradiation by introducing another azobenzene guest polymer (poly-Azo). PMID:25323299

  3. Self-healing graphene-based composites with sensing capabilities.

    PubMed

    D'Elia, Eleonora; Barg, Suelen; Ni, Na; Rocha, Victoria G; Saiz, Eduardo

    2015-08-26

    A self-healing composite is fabricated by confining a supramolecular polymer in a graphene network. The network provides electrical conductivity. Upon damage, the polymer is released and flows to reform the material. Healing is repeatable and autonomous. The composite is sensitive to pressure and flexion and recovers its mechanical and electrical properties even when rejoining cut surfaces after long exposure times. PMID:26178801

  4. DYNAMERS: dynamic polymers as self-healing materials.

    PubMed

    Roy, Nabarun; Bruchmann, Bernd; Lehn, Jean-Marie

    2015-06-01

    Importing self-repair or self-healing features into inert materials is of great relevance to material scientists, since it is expected to eliminate the necessity of replenishing a damaged material. Be it material chemistry or more specifically polymer chemistry, such materials have attracted the imagination of both material scientists and chemists. A stroll down the memory lane 70 years back, this might have sounded utopian. However with the current progress in supramolecular chemistry and the emergence of dynamic covalent and non-covalent chemistries, novel perspectives have been opened up to materials science towards the development of dynamic materials (DYNAMATS) and in particular dynamic polymers (DYNAMERS), with the ability to produce such species by custom made designs. Chemistry took giant strides to gain control over the structure and features of materials and, besides basic progress, to apply it for tailor-making matter for applications in our daily life. In that applied perspective, materials science plays a paramount role in shaping our present and in contributing to a sustainable future. The goal is to develop materials, which would be dynamic enough to carry out certain functions as effectively as in biological systems with, however, the freedom to recruit the powers of chemistry on a wider scale, without the limitation imposed by life. Material scientists and in particular polymer chemists may build on chemistry, physics and biology for bridging the gap to develop dynamic materials presenting a wide range of novel functionalities and to convert dreams into reality. In this current review we will focus on developments in the area of dynamic polymers, as a class of dynamic materials presenting self-healing features and, more generally, the ability to undergo adaptation under the effect of physical and/or chemical agents, and thus function as adaptive polymers or ADAPTAMERS. PMID:25940832

  5. Self-healing ATM network based on multilink principles

    NASA Astrophysics Data System (ADS)

    Vanlandegem, Thierry; Vankwikelberge, Patrick; Vanderstreaten, Hans

    1994-01-01

    Self-healing is the ability of a network to reconfigure itself around failures such that calls in progress are not dropped and suffer of no almost no degradation in quality of service. Providing self-healing capabilities in all parts of the future ATM network in a cost effective way is therefore a key challenge. In this paper a new self-healing method based on the multilink concept is presented for dedicated parts of the ATM network, such as, for instance, feeder networks. In the multilink concept that is proposed here, the cells of an ATM connection carried by a multilink are distributed over several physical links. If a physical link supporting the multilink fails, the cells will be distributed among the remaining physical links thus providing self-healing capacity. In this way the quality of service can be maintained at the expense of a higher load on the remaining physical links. The speed of restoration only realize on the detection and signaling of the failure since spare capacity is available on the very multilink. The sharing of spare capacity in addition to the statistical multiplexing gain provides a cost effective self-healing method and leads to a simplified network resource management. The proposed multilink concept is based on extension of the multipath self-routing concept, which is currently applied by Alcatel in its ATM switching fabric.

  6. Microcapsule-Type Organogel-Based Self-Healing System Having Secondary Damage Preventing Capability.

    PubMed

    Yang, Hye-In; Kim, Dong-Min; Yu, Hwan-Chul; Chung, Chan-Moon

    2016-05-01

    We have developed a novel microcapsule-type organogel-based self-healing system in which secondary damage does not occur in the healed region. A mixture of an organogelator, poor and good solvents for the gelator is used as the healing agent; when the good solvent evaporates from this agent, a viscoelastic organogel forms. The healing agent is microencapsulated with urea-formaldehyde polymer, and the resultant microcapsules are integrated into a polymer coating to prepare self-healing coatings. When the coatings are scratched, they self-heal, as demonstrated by means of corrosion testing, electrochemical testing, optical microscopy, and scanning electron microscopy (SEM). After the healed coatings are subjected to vigorous vibration, it is demonstrated that no secondary damage occurs in the healed region. The secondary damage preventing capability of the self-healing coating is attributable to the viscoelasticity of the organogel. The result can give insight into the development of a "permanent" self-healing system. PMID:27070306

  7. Correlated aggregate model of self-healing in dye-doped polymers

    NASA Astrophysics Data System (ADS)

    Kuzyk, Mark G.; Ramini, Shiva

    2012-10-01

    Self healing of chromophores in a dye-doped polymer after photodegradation is a counterintuitive process based on the nearly universal observation that molecular damage is a thermodynamically irreversible process. We propose a new simple model of this phenomenon that takes into account all observations, including the effects of concentration, temperature, and bystander states. Critical to this model are correlations between chromophores, perhaps mediated by the polymer, which actively favors the undamaged species in analogy to Bose-Einstein condensation. We use this model to predict the behavior of decay and recovery experiments as measured with amplified spontaneous emission and absorption spectroscopy.

  8. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofan

    /matrix structure, allowing them to function in a synergistic fashion yet remain physically separated. This latter aspect is critical since it enables the control of overall composite properties and functions by separately tuning each component. Utilizing the intrinsic versatility of this approach, composites with novel properties and functions (in addition to "regular" shape memory) have been developed, including (1) shape memory elastomeric composites (SMECs; Chapter 4), (2) triple-shape polymeric composites (TSPCs; Chapter 5), and (3) electrically conductive nanocomposites (Chapter 6). Then in Chapter 7, by combining the success in both thermoplastic based self-healing and shape memory polymer composites, we demonstrate a thermally triggered self-healing coating. This coating features a unique "shape memory assisted self-healing" mechanism in which crack closure (via shape memory) and crack re-bonding (via melting and diffusion of the thermoplastic healing agent) are achieved simultaneously upon a single heating step, leading to both structural and functional (corrosion resistance) recovery. Finally, Chapter 8 presents for the first time the preparation of functionally graded shape memory polymers (SMPs) that, unlike conventional SMPs, have a range of glass transition temperatures that are spatially graded. This was achieved using a temperature gradient curing method that imposes different vitrification limits at different positions along the gradient. The resulting material is capable of responding to a wide range of thermal triggers and a good candidate for low-cost, material based temperature sensors. All the aforementioned materials and methods show great potential for practical applications due to their high performance, low cost and broad applicability. Some recommendations for future research and development are given in Chapter 9.

  9. Enhanced Access Polynomial Based Self-healing Key Distribution

    NASA Astrophysics Data System (ADS)

    Dutta, Ratna; Mukhopadhyay, Sourav; Dowling, Tom

    A fundamental concern of any secure group communication system is that of key management. Wireless environments create new key management problems and requirements to solve these problems. One such core requirement in these emerging networks is that of self-healing. In systems where users can be offline and miss updates self healing allows a user to recover lost keys and get back into the secure communication without putting extra burden on the group manager. Clearly self healing must be only available to authorized users and this creates more challenges in that we must ensure unauthorized or revoked users cannot, themselves or by means of collusion, avail of self healing. To this end we enhance the one-way key chain based self-healing key distribution of Dutta et al. by introducing a collusion resistance property between the revoked users and the newly joined users. Our scheme is based on the concept of access polynomials. These can be loosely thought of as white lists of authorized users as opposed to the more widely used revocation polynomials or black lists of revoked users. We also allow each user a pre-arranged life cycle distributed by the group manager. Our scheme provides better efficiency in terms of storage, and the communication and computation costs do not increase as the number of sessions grows as compared to most current schemes. We analyze our scheme in an appropriate security model and prove that the proposed scheme is computationally secure and not only achieving forward and backward secrecy, but also resisting collusion between the new joined users and the revoked users. Unlike most existing schemes the new scheme allows temporary revocation. Also unlike existing schemes, our construction does not collapse if the number of revoked users crosses a threshold value. This feature increases resilience against revocation based denial of service (DOS) attacks and thus improves availability of communication channel.

  10. Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(L-glutamic acid).

    PubMed

    Li, Guifei; Wu, Jie; Wang, Bo; Yan, Shifeng; Zhang, Kunxi; Ding, Jianxun; Yin, Jingbo

    2015-11-01

    Self-healing polymeric hydrogels have the capability to recover their structures and functionalities upon injury, which are extremely attractive in emerging biomedical applications. This research reports a new kind of self-healing polypeptide hydrogels based on self-assembly between cholesterol (Chol)-modified triblock poly(L-glutamic acid)-block-poly(ethylene glycol)-block-poly(L-glutamic acid) ((PLGA-b-PEG-b-PLGA)-g-Chol) and β-cyclodextrin (β-CD)-modified poly(L-glutamic acid) (PLGA-g-β-CD). The hydrogel formation relied on the host and guest linkage between β-CD and Chol. This study demonstrates the influences of polymer concentration and β-CD/Chol molar ratio on viscoelastic behavior of the hydrogels. The results showed that storage modulus was highest at polymer concentration of 15% w/v and β-CD/Chol molar ratio of 1:1. The effect of the PLGA molecular weight in (PLGA-b-PEG-b-PLGA)-g-Chol on viscoelastic behavior, mechanical properties and in vitro degradation of the supramolecular hydrogels was also studied. The hydrogels showed outstanding self-healing capability and good cytocompatibility. The multilayer structure was constructed using hydrogels with self-healing ability. The developed hydrogels provide a fascinating glimpse for the applications in tissue engineering. PMID:26414083

  11. Nature: Self-Healing Polymers and Other Improved Materials

    NASA Astrophysics Data System (ADS)

    Heinhorst, Sabine; Cannon, Gordon

    2002-01-01

    We have chosen articles from recent issues of Nature that explore ways to mimic and improve materials and processes found in nature. Some of the work has progressed toward industrial applications (e.g. using biocatalysts for selective organic syntheses), whereas other approaches (e.g. designing self-healing material) are still in their infancy but show remarkable promise for future success.

    Featured on the Cover

  12. Self-healing supramolecular gels formed by crown ether based host-guest interactions.

    PubMed

    Zhang, Mingming; Xu, Donghua; Yan, Xuzhou; Chen, Jianzhuang; Dong, Shengyi; Zheng, Bo; Huang, Feihe

    2012-07-01

    Automatic repair: a polymer with pendent dibenzo[24]crown-8 units (purple in picture) was cross-linked by two bisammonium salts (green) to form two supramolecular gels based on host-guest interactions. These two gels are stimuli-responsive materials that respond to changes of the pH value and are also self-healing materials, as can be seen by eye and as evidenced by rheological data. PMID:22653895

  13. Redox-responsive self-healing materials formed from host–guest polymers

    PubMed Central

    Nakahata, Masaki; Takashima, Yoshinori; Yamaguchi, Hiroyasu; Harada, Akira

    2011-01-01

    Expanding the useful lifespan of materials is becoming highly desirable, and self-healing and self-repairing materials may become valuable commodities. The formation of supramolecular materials through host–guest interactions is a powerful method to create non-conventional materials. Here we report the formation of supramolecular hydrogels and their redox-responsive and self-healing properties due to host–guest interactions. We employ cyclodextrin (CD) as a host molecule because it is environmentally benign and has diverse applications. A transparent supramolecular hydrogel quickly forms upon mixing poly(acrylic acid) (pAA) possessing β-CD as a host polymer with pAA possessing ferrocene as a guest polymer. Redox stimuli induce a sol−gel phase transition in the supramolecular hydrogel and can control self-healing properties such as re-adhesion between cut surfaces. PMID:22027591

  14. Self-healing multiphase polymers via dynamic metal-ligand interactions.

    PubMed

    Mozhdehi, Davoud; Ayala, Sergio; Cromwell, Olivia R; Guan, Zhibin

    2014-11-19

    A new self-healing multiphase polymer is developed in which a pervasive network of dynamic metal-ligand (zinc-imidazole) interactions are programmed in the soft matrix of a hard/soft two-phase brush copolymer system. The mechanical and dynamic properties of the materials can be tuned by varying a number of molecular parameters (e.g., backbone/brush degree of polymerization and brush density) as well as the ligand/metal ratio. Following mechanical damage, these thermoplastic elastomers show excellent self-healing ability under ambient conditions without any intervention. PMID:25348857

  15. Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix.

    PubMed

    Whiteley, Justin M; Taynton, Philip; Zhang, Wei; Lee, Se-Hee

    2015-11-18

    Thin solid membranes are formed by a new strategy, whereby an in situ derived self-healing polymer matrix that penetrates the void space of an inorganic solid is created. The concept is applied as a separator in an all-solid-state battery with an FeS2 -based cathode and achieves tremendous performance for over 200 cycles. Processing in dry conditions represents a paradigm shift for incorporating high active-material mass loadings into mixed-matrix membranes. PMID:26421754

  16. Self-healing nanocomposite using shape memory polymer and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi

    2013-04-01

    Carbon fiber reinforced composites are used in a wide range of applications in aerospace, mechanical, and civil structures. Due to the nature of material, most damage in composites, such as delaminations, are always barely visible to the naked eye, which makes it difficult to detect and repair. The investigation of biological systems has inspired the development and characterization of self-healing composites. This paper presents the development of a new type of self-healing material in order to impede damage progression and conduct in-situ damage repair in composite structures. Carbon nanotubes, which are highly conductive materials, are mixed with shape memory polymer to develop self-healing capability. The developed polymeric material is applied to carbon fiber reinforced composites to automatically heal the delamination between different layers. The carbon fiber reinforced composite laminates are manufactured using high pressure molding techniques. Tensile loading is applied to double cantilever beam specimens using an MTS hydraulic test frame. A direct current power source is used to generate heat within the damaged area. The application of thermal energy leads to re-crosslinking in shape memory polymers. Experimental results showed that the developed composite materials are capable of healing the matrix cracks and delaminations in the bonded areas of the test specimens. The developed self-healing material has the potential to be used as a novel structural material in mechanical, civil, aerospace applications.

  17. Seawater-Assisted Self-Healing of Catechol Polymers via Hydrogen Bonding and Coordination Interactions.

    PubMed

    Li, Jincai; Ejima, Hirotaka; Yoshie, Naoko

    2016-07-27

    It is highly desirable to prevent crack formation in polymeric materials at an early stage and to extend their lifespan, particularly when repairs to these materials would be difficult for humans. Here, we designed and synthesized catechol-functionalized polymers that can self-heal in seawater through hydrogen bonding and coordination. These bioinspired acrylate polymers are originally viscous materials, but after coordination with environmentally safe, common metal cations in seawater, namely, Ca(2+) and Mg(2+), the mechanical properties of the polymers were greatly enhanced from viscous to tough, hard materials. Reduced swelling in seawater compared with deionized water owing to the higher osmotic pressure resulted in greater toughness (∼5 MPa) and self-healing efficiencies (∼80%). PMID:27377859

  18. Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network.

    PubMed

    Yan, Tingzi; Schröter, Klaus; Herbst, Florian; Binder, Wolfgang H; Thurn-Albrecht, Thomas

    2016-01-01

    Reversible polymeric networks can show self-healing properties due to their ability to reassemble after application of stress and fracture, but typically the relation between equilibrium molecular dynamics and self-healing kinetics has been difficult to disentangle. Here we present a well-characterized, self-assembled bulk network based on supramolecular assemblies, that allows a clear distinction between chain dynamics and network relaxation. Small angle x-ray scattering and rheological measurements provide evidence for a structurally well-defined, dense network of interconnected aggregates giving mechanical strength to the material. Different from a covalent network, the dynamic character of the supramolecular bonds enables macroscopic flow on a longer time scale and the establishment of an equilibrium structure. A combination of linear and nonlinear rheological measurements clearly identifies the terminal relaxation process as being responsible for the process of self-healing. PMID:27581380

  19. Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network

    PubMed Central

    Yan, Tingzi; Schröter, Klaus; Herbst, Florian; Binder, Wolfgang H.; Thurn-Albrecht, Thomas

    2016-01-01

    Reversible polymeric networks can show self-healing properties due to their ability to reassemble after application of stress and fracture, but typically the relation between equilibrium molecular dynamics and self-healing kinetics has been difficult to disentangle. Here we present a well-characterized, self-assembled bulk network based on supramolecular assemblies, that allows a clear distinction between chain dynamics and network relaxation. Small angle x-ray scattering and rheological measurements provide evidence for a structurally well-defined, dense network of interconnected aggregates giving mechanical strength to the material. Different from a covalent network, the dynamic character of the supramolecular bonds enables macroscopic flow on a longer time scale and the establishment of an equilibrium structure. A combination of linear and nonlinear rheological measurements clearly identifies the terminal relaxation process as being responsible for the process of self-healing. PMID:27581380

  20. Repeated self-healing of microvascular carbon fibre reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Coope, T. S.; Wass, D. F.; Trask, R. S.; Bond, I. P.

    2014-11-01

    A self-healing, high performance, carbon fibre reinforced polymer (CFRP) composite is demonstrated by embedding a Lewis-acid catalytic curing agent within a laminate, manufactured using out of autoclave (OOA) composite manufacturing methods. Two configurations of healing agent delivery, pre-mixed and autonomous mixing, are investigated via injection of a healing agent through bio-inspired microvascular channels exposed on Mode I fractured crack planes. Healing is effected when an epoxy resin-solvent healing agent mixture reaches the boundary of embedded solid-state scandium(III) triflate (Sc(OTf)3) catalyst, located on the crack plane, to initiate the ring-opening polymerisation (ROP) of epoxides. Tailored self-healing agents confer high healing efficiency values after multiple healing cycles (69-108%) to successfully mitigate against crack propagation within the composite microstructure.

  1. Self Healing Fibre-reinforced Polymer Composites: an Overview

    NASA Astrophysics Data System (ADS)

    Bond, Ian P.; Trask, Richard S.; Williams, Hugo R.; Williams, Gareth J.

    Lightweight, high-strength, high-stiffness fibre-reinforced polymer composite materials are leading contenders as component materials to improve the efficiency and sustainability of many forms of transport. For example, their widespread use is critical to the success of advanced engineering applications, such as the Boeing 787 and Airbus A380. Such materials typically comprise complex architectures of fine fibrous reinforcement e.g. carbon or glass, dispersed within a bulk polymer matrix, e.g. epoxy. This can provide exceptionally strong, stiff, and lightweight materials which are inherently anisotropic, as the fibres are usually arranged at a multitude of predetermined angles within discrete stacked 2D layers. The direction orthogonal to the 2D layers is usually without reinforcement to avoid compromising in-plane performance, which results in a vulnerability to damage in the polymer matrix caused by out-of-plane loading, i.e. impact. Their inability to plastically deform leaves only energy absorption via damage creation. This damage often manifests itself internally within the material as intra-ply matrix cracks and inter-ply delaminations, and can thus be difficult to detect visually. Since relatively minor damage can lead to a significant reduction in strength, stiffness and stability, there has been some reticence by designers for their use in safety critical applications, and the adoption of a `no growth' approach (i.e. damage propagation from a defect constitutes failure) is now the mindset of the composites industry. This has led to excessively heavy components, shackling of innovative design, and a need for frequent inspection during service (Richardson 1996; Abrate 1998).

  2. Development of self-healing polymers via amine-epoxy chemistry: II. Systematic evaluation of self-healing performance

    NASA Astrophysics Data System (ADS)

    Zhang, He; Yang, Jinglei

    2014-06-01

    Part I of this study (H Zhang and J Yang 2014 Smart Mater. Struct. 23 065003) reported the preparation and characterization of epoxy microcapsules (EP-capsules) and amine loaded hollow glass bubbles (AM-HGBs), and the modeling of a two-part self-healing system. In part II, the self-healing performance of this material system is systematically investigated. Various factors including the ratio, the total concentration and the size of the two carriers are studied as well as the healing temperature and the post heat treatment process. The best healing performance is obtained at a ratio of 1:3 of EP-capsules to AM-HGBs. It is observed that a higher concentration of larger carriers, together with a higher healing temperature, enables better healing behavior. Healing efficiency of up to 93% is obtained in these systems. In addition, post heat treatment decreases the healing efficiency due to stoichiometric mismatch of healing agents caused by leakage of amine in the HGBs at elevated temperature.

  3. Polymer damage mitigation---predictive lifetime models of polymer insulation degradation and biorenewable thermosets through cationic polymerization for self-healing applications

    NASA Astrophysics Data System (ADS)

    Hondred, Peter Raymond

    repairing damage before the damage causes a failure in the polymer's function. In this work, the healing agent (adhesive) is developed using bio-renewable oils instead of solely relying on petroleum based feedstocks. Several bio-renewable thermosetting polymers were successfully prepared from tung oil through cationic polymerization for the use as the healing agent in self-healing microencapsulated applications. Modifications to both the monomers in the resin and the catalyst for polymerization were made and the subsequent changes to mechanical, thermal, and structural properties were identified. Furthermore, compressive lap shear testing was used to confirm that the adhesive properties would be beneficial for self-healing applications. Finally, scanning electron microscopy of the crack plane was used to study the fracture mechanism of the crack.

  4. Self-Healing Nanofiber-Reinforced Polymer Composites. 1. Tensile Testing and Recovery of Mechanical Properties.

    PubMed

    Lee, Min Wook; An, Seongpil; Jo, Hong Seok; Yoon, Sam S; Yarin, Alexander L

    2015-09-01

    the composites reinforced by such mats. This is the first work, to the best of our knowledge, where self-healing nanofibers and composites based on them were developed, tested, and revealed restoration of mechanical properties (stiffness) in a 24 h rest period at room temperature. PMID:26284888

  5. Self-healing antimicrobial polymer coating with efficacy in the presence of organic matter

    NASA Astrophysics Data System (ADS)

    Bastarrachea, Luis J.; Goddard, Julie M.

    2016-08-01

    A method to prepare a self-healing, antimicrobial polymer coating that retains efficacy against Escherichia coli O157:H7 in the presence of organic matter is reported. A coating composed of branched polyethyleneimine (PEI) and styrene maleic anhydride copolymer (SMA) was applied to a maleic anhydride functionalized polypropylene support. The chemistry of the polymer coating was designed to impart hydrophobicity due to the styrene subunits, intrinsic antimicrobial character (>99.9% reduction) from the cationic primary amine groups, and enhanced antimicrobial character (> 99.99% reduction) after chlorination of N-halamine forming groups. Antimicrobial effectiveness was demonstrated under conditions of increasing organic load. Up to 500 ppm horse serum, chlorinated coatings retained full antimicrobial character (>99.99% reduction). Even at 50,000 ppm of horse serum, the coating provided ∼90% reduction as prepared, and between ∼75% and ∼80% reduction in the form of N-halamines. Microscopy confirmed no evidence of bacterial adhesion on the coating surface. Finally, the coating exhibited self-healing properties after exposure to acid and alkaline solutions and restoration by heat, as confirmed through spectroscopy from the rebuilding of characteristic chemical bonds. Such robust antimicrobial polymer coatings with efficacy under conditions of increasing organic load may support reducing microbial cross-contamination in food and biomedical industries.

  6. Surface-initiated self-healing of polymers in aqueous media

    NASA Astrophysics Data System (ADS)

    Ahn, B. Kollbe; Lee, Dong Woog; Israelachvili, Jacob N.; Waite, J. Herbert

    2014-09-01

    Polymeric materials that intrinsically heal at damage sites under wet or moist conditions are urgently needed for biomedical and environmental applications. Although hydrogels with self-mending properties have been engineered by means of mussel-inspired metal-chelating catechol-functionalized polymer networks, biological self-healing in wet conditions, as occurs in self-assembled holdfast proteins in mussels and other marine organisms, is generally thought to involve more than reversible metal chelates. Here we demonstrate self-mending in metal-free water of synthetic polyacrylate and polymethacrylate materials that are surface-functionalized with mussel-inspired catechols. Wet self-mending of scission in these polymers is initiated and accelerated by hydrogen bonding between interfacial catechol moieties, and consolidated by the recruitment of other non-covalent interactions contributed by subsurface moieties. The repaired and pristine samples show similar mechanical properties, suggesting that the triggering of complete self-healing is enabled underwater by the formation of extensive catechol-mediated interfacial hydrogen bonds.

  7. Dynamic urea bond for the design of reversible and self-healing polymers

    PubMed Central

    Ying, Hanze; Zhang, Yanfeng; Cheng, Jianjun

    2014-01-01

    Polymers bearing dynamic covalent bonds may exhibit dynamic properties, such as self-healing, shape memory and environmental adaptation. However, most dynamic covalent chemistries developed so far require either catalyst or change of environmental conditions to facilitate bond reversion and dynamic property change in bulk materials. Here we report the rational design of hindered urea bonds (urea with bulky substituent attached to its nitrogen) and the use of them to make polyureas and poly(urethane-ureas) capable of catalyst-free dynamic property change and autonomous repairing at low temperature. Given the simplicity of the hindered urea bond chemistry (reaction of a bulky amine with an isocyanate), incorporation of the catalyst-free dynamic covalent urea bonds to conventional polyurea or urea-containing polymers that typically have stable bulk properties may further broaden the scope of applications of these widely used materials. PMID:24492620

  8. The role of polymer-mediated dopant correlations in damage moderation and self healing

    NASA Astrophysics Data System (ADS)

    Kuzyk, Mark G.; Ramini, Shiva

    2012-11-01

    The fact that chromophores doped into a polymer self heal after photodegradation seems to contradict the common understanding that molecular damage is a thermodynamically irreversible process. We have proposed a model that takes into account all observations, including the kinetics of photodegradation and recovery as a function of concentration, temperature, intensity, and sample thermal/intensity history. Correlations between chromophores, perhaps mediated through van der Waals forces or hydrogen bonding with the polymer, appear to actively favor the undamaged species by inducing healing in analogy to Bose-Einstein condensation. This model is shown to predict the behavior of photo-induced decay and recovery experiments as measured with amplified spontaneous emission and absorption spectroscopy.

  9. Self-healing phenomenon and dynamic hardness of C60-based nanocomposite coatings.

    PubMed

    Penkov, Oleksiy V; Pukha, Volodymyr E; Devizenko, Alexander Yu; Kim, Hae-Jin; Kim, Dae-Eun

    2014-05-14

    The phenomenon of surface self-healing in C60-based polymer coatings deposited by ion-beam assisted physical vapor deposition was investigated. Nanoindentation of the coatings led to the formation of a protrusion rather than an indent. This protrusion was accompanied by an abnormal shape of the force-distance curve, where the unloading curve lies above the loading curve due to an additional force applied in pulling the indenter out of the media. The coatings exhibited a nanocomposite structure that was strongly affected by the ratio of C60 ion and C60 molecular beam intensities during deposition. The coatings also demonstrated the dynamic hardness effect, where the effective value of the hardness depends significantly on the indentation speed. PMID:24697539

  10. Synthetic Self-Healing Methods

    SciTech Connect

    Bello, Mollie

    2014-06-02

    Given enough time, pressure, temperature fluctuation, and stress any material will fail. Currently, synthesized materials make up a large part of our everyday lives, and are used in a number of important applications such as; space travel, under water devices, precise instrumentation, transportation, and infrastructure. Structural failure of these material scan lead to expensive and dangerous consequences. In an attempt to prolong the life spans of specific materials and reduce efforts put into repairing them, biologically inspired, self-healing systems have been extensively investigated. The current review explores recent advances in three methods of synthesized self-healing: capsule based, vascular, and intrinsic. Ideally, self-healing materials require no human intervention to promote healing, are capable of surviving all the steps of polymer processing, and heal the same location repeatedly. Only the vascular method holds up to all of these idealities.

  11. Thermal breakage and self-healing of a polymer chain under tensile stress

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Dimitrov, D. I.; Rostiashvili, V. G.; Milchev, A.; Vilgis, T. A.

    2010-05-01

    We consider the thermal breakage of a tethered polymer chain of discrete segments coupled by Morse potentials under constant tensile stress. The chain dynamics at the onset of fracture is studied analytically by Kramers-Langer multidimensional theory and by extensive molecular dynamics simulations in one dimension (1D) and three dimension (3D) space. Comparison with simulation data in one and three dimensions demonstrates that the Kramers-Langer theory provides good qualitative description of the process of bond scission as caused by a collective unstable mode. We derive distributions of the probability for scission over the successive bonds along the chain which reveal the influence of chain ends on rupture in good agreement with theory. The breakage time distribution of an individual bond is found to follow an exponential law as predicted by theory. Special attention is focused on the recombination (self-healing) of broken bonds. Theoretically derived expressions for the recombination time and distance distributions comply with MD observations and indicate that the energy barrier position crossing is not a good criterion for true rupture. It is shown that the fraction of self-healing bonds increases with rising temperature and friction.

  12. Self-healing materials.

    PubMed

    Hager, Martin D; Greil, Peter; Leyens, Christoph; van der Zwaag, Sybrand; Schubert, Ulrich S

    2010-12-14

    Self-healing materials are able to partially or completely heal damage inflicted on them, e.g., crack formation; it is anticipated that the original functionality can be restored. This article covers the design and generic principles of self-healing materials through a wide range of different material classes including metals, ceramics, concrete, and polymers. Recent key developments and future challenges in the field of self-healing materials are summarised, and generic, fundamental material-independent principles and mechanism are discussed and evaluated. PMID:20839257

  13. Self-healing gels based on constitutional dynamic chemistry and their potential applications.

    PubMed

    Wei, Zhao; Yang, Jian Hai; Zhou, Jinxiong; Xu, Feng; Zrínyi, Miklós; Dussault, Patrick H; Osada, Yoshihito; Chen, Yong Mei

    2014-12-01

    As representative soft materials with widespread applications, gels with various functions have been developed. However, traditional gels are vulnerable to stress-induced formation of cracks. The propagation of these cracks may affect the integrity of network structures of gels, resulting in the loss of functionality and limiting the service life of the gels. To address this challenge, self-healing gels that can restore their functionalities and structures after damage have been developed as "smart" soft materials. In this paper, we present an overview of the current strategies for synthesizing self-healing gels based on the concept of constitutional dynamic chemistry, which involves molecular structures capable of establishing dynamic networks based upon physical interactions or chemical reactions. The characterization methods of self-healing gels and the key factors that affect self-healing properties are analyzed. We also illustrate the emerging applications of self-healing gels, with emphasis on their usage in industry (coatings, sealants) and biomedicine (tissue adhesives, agents for drug or cell delivery). We conclude with a perspective on challenges facing the field, along with prospects for future development. PMID:25144925

  14. Self-healing ATM networks based on virtual path concept

    NASA Astrophysics Data System (ADS)

    Kawanura, Ryutaro; Sato, Ken-Ichi; Tokizawa, Ikuo

    1994-01-01

    This paper proposes self-healing network techniques suitable for ATM networks in order to realize a high-reliable B-ISDN. First the characteristic of virtual paths (VP) and their influence on failure restoration are discussed. A high-speed restoration technique which exploits the benefits of VP's is then proposed and described. The technique simplifies the message transmission processes and reduces the number of generated messages by using preassigned backup virtual paths. Next, the scheme used to design the backup VP routes and spare resource distribution for each link is proposed in order to create a network that applies the proposed restoration scheme. Next, self-reconstruction techniques of backup virtual paths are proposed for the realization of a reversionless restoration cycle. Finally, the feasibility of distributed control operation is discussed.

  15. Synthesis and characterization of melamine-urea-formaldehyde microcapsules containing ENB-based self-healing agents

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Sheng, Xia; Lee, Jong Keun; Kessler, Michael R.

    2007-07-01

    Microcapsules for self-healing applications were produced with a melamine-urea-formaldehyde (MUF) polymer shell containing two different healing agent candidates, ENB (5-ethylidene-2-norbornene) and ENB with 10 wt.% of a norbornene based crosslinking agent (CL), by in-situ polymerization in an oil-in-water emulsion. Relatively neat outer surfaces with minor roughness were observed on the MUF microcapsules under optical and scanning electron microscopy. Shell thickness of the capsules ranged from 700 to 900 nm. Particle size analysis of the microcapsules showed narrow size distributions with a mean diameter of 113 μm for ENB-filled and 122 μm for ENB+CL-filled microcapsules at an agitation rate of 500 rpm. The microcapsules were found to be thermally stable up to 300°C and exhibited a 10 to 15 % weight loss when isothermally held at 150°C for 2 hr from thermogravimetric analysis. Overall, these MUF microcapsules exhibited superior properties compared to the urea-formaldehyde (UF) microcapsules used extensively for self-healing composites to date. In addition, the manufacturing process of MUF microcapsules is much simpler than those made from UF. Additional advantages of MUF microcapsules for self-healing composites are discussed.

  16. Solvent-based self-healing approaches for fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Jones, Amanda R.

    Damage in composite materials spans many length scales and is often difficult to detect or costly to repair. The incorporation of self-healing functionality in composite materials has the potential to greatly extend material lifetime and reliability. Although there has been remarkable progress in self-healing polymers over the past decade, self-repair in fiber-reinforced composite materials presents significant technical challenges due to stringent manufacturing and performance requirements. For high performance, fiber-reinforced composites, the self-healing components need to survive high temperature processing, reside in matrix interstitial regions to retain a high fiber volume fraction, and have minimal impact on the mechanical properties of the host material. This dissertation explores several microencapsulated solvent-based self-healing approaches for fiber-reinforced composites at the fiber/ matrix interface size scale as well as matrix cracking. Systems are initially developed for room temperature cured epoxies/ glass fiber interfaces and successfully transitioned to carbon fibers and high temperature-cured, thermoplastic-toughened matrices. Full recovery of interfacial bond strength after complete fiber/matrix debonding is achieved with a microencapsulated solvent-based healing chemistry. The surface of a glass fiber is functionalized with microcapsules containing varying concentrations of reactive epoxy resin and ethyl phenyl acetate (EPA) solvent. Microbond specimens consisting of a single fiber and a microdroplet of epoxy are cured at 35°C, tested, and the interfacial shear strengths (IFSS) during the initial (virgin) debonding and subsequent healing events are measured. Debonding of the fiber/matrix interface ruptures the capsules, releasing resin and solvent into the crack plane. The solvent swells the matrix, initiating transport of residual amine functionality for further curing with the epoxy resin delivered to the crack plane. Using a resin

  17. Novel Diels-Alder based self-healing epoxies for aerospace composites

    NASA Astrophysics Data System (ADS)

    Coope, T. S.; Turkenburg, D. H.; Fischer, H. R.; Luterbacher, R.; van Bracht, H.; Bond, I. P.

    2016-08-01

    Epoxy resins containing Diels-Alder (DA) furan and maleimide moieties are presented with the capability to self-heal after exposure to an external heat source. A conventional epoxy amine system has been combined with furfuryl and maleimide functional groups in a two-step process, to avoid major side-reactions, and the concentration of a thermo-reversibly binding cross-linker was considered to balance thermoset and thermoplastic behaviours, and the subsequent self-healing performance. In the context of self-repair technologies an inbuilt ‘intrinsic’ self-healing system is deemed favourable as the healing agent can be placed in known ‘hot spot’ regions (i.e. skin-stringer run outs, ply drops and around drilled holes) where operational damage predominately occurs in load bearing aerospace structures. In this study, the mechanical and self-healing performance of furan functionalised epoxy resins containing varying amounts (10, 20, 30 or 40 pph) of bismaleimide were investigated using a bulk epoxy polymer tapered double cantilever beam test specimen geometry. Two forms, a thin film and a bulk material, were evaluated to account for future integration methods into fibre reinforced polymer (FRP) composites. The highest healing efficiency, with respect to the obtained initial load value, was observed from the 20 pph bulk material derivative. The polymers were successful in achieving consistent multiple (three) healing cycles when heated at 150 °C for 5 min. This novel investigated DA material exhibits favourable processing characteristics for FRP composites as preliminary studies have shown successful coextrution with reinforcing fibres to form free standing films and dry fibre impregnation.

  18. Self-Healing and Thermoresponsive Dual-Cross-Linked Alginate Hydrogels Based on Supramolecular Inclusion Complexes.

    PubMed

    Miao, Tianxin; Fenn, Spencer L; Charron, Patrick N; Oldinski, Rachael A

    2015-12-14

    β-Cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of nonpolar guest molecules to form noncovalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically cross-linked hydrogel networks upon mixing with a guest molecule. Herein, the development and characterization of self-healing, thermoresponsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)), are described. The mechanics, flow characteristics, and thermal response were contingent on the polymer concentration and the host-guest molar ratio. Transient and reversible physical cross-linking between host and guest polymers governed self-assembly, allowing flow to occur under shear stress and facilitating complete recovery of the material's properties within a few seconds of unloading. The mechanical properties of the dual-cross-linked, multi-stimuli-responsive hydrogels were tuned as high as 30 kPa at body temperature and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214

  19. Induction and Tunability of Self-Healing Property of Dendron Based Hydrogel Using Clay Nanocomposite.

    PubMed

    Vivek, Balachandran; Kumar, Prashant; Prasad, Edamana

    2016-06-16

    Low molecular weight gels have relatively poor self-healing capacity compared to that of polymeric gels. Induction and tuning of the healing capacity of low molecular weight gels to achieve desired applications are thus challenging tasks. The present work describes the achievement of remarkable tunability of self-healing property for a low molecular weight hybrid gel, based on poly(aryl ether) dendron derivative (PAD). The hybrid gel has been synthesized using PAD and poly(amido amine) {PAMAM} dendrimer derivative (QPD), which are intercalated in the montmorillonite clay (MMT) layers. The self-healing of the hybrid gel (QPD-MMT-PAD) was demonstrated through experiments where the distorted gel regained the initial value of storage modulus (G') within a few minutes. Further, the propensity of self-healing of the gel has been tuned as a function of QPD concentration. The mechanically stable QPD-MMT-PAD hybrid gel has been utilized for the adsorption of ppm level concentration of polycyclic aromatic hydrocarbons (PAHs) such as β-naphthol, pyrene, and phenenathrene from water with excellent efficiency (80-98%). PMID:27193239

  20. A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Self-Healing Elastic Polymer.

    PubMed

    Sun, Yongming; Lopez, Jeffrey; Lee, Hyun-Wook; Liu, Nian; Zheng, Guangyuan; Wu, Chun-Lan; Sun, Jie; Liu, Wei; Chung, Jong Won; Bao, Zhenan; Cui, Yi

    2016-03-01

    A high-capacity stretchable graphitic carbon/Si foam electrode is enabled by a conformal self-healing elastic polymer coating. The composite electrode exhibits high stretchability (up to 88%) and endures 1000 stretching-releasing cycles at 25% strain with detrimental resistance increase. Meanwhile, the electrode delivers a high reversible specific capacity of 719 mA g(-1) and good cycling stability with 81% capacity retention after 100 cycles. PMID:26813780

  1. An Easily Accessible Self-Healing Transparent Film Based on a 2D Supramolecular Network of Hydrogen-Bonding Interactions between Polymeric Chains.

    PubMed

    Roy, Nabarun; Tomović, Željko; Buhler, Eric; Lehn, Jean-Marie

    2016-09-12

    Self-healing polymers hold great promise for the future, enhancing in particular the longevity of polymeric materials. We describe a self-healing covalent polymer, presenting an extensive array of hydrogen-bonding sites based on the combination of urea, urethane, and bis-acyl-hydrazine units. Solvent-cast thin-films prepared by polycondensation of a commercially available dihydrazide and a diisocyanate prepolymer exhibited excellent room temperature autonomous healing with almost full recovery of mechanical properties when two parts of a cut film were overlapped and gently pressed together. This autonomous healing upon damage may be attributed to the supramolecular dynamics of multiple lateral inter-chain hydrogen-bonding interactions between the polymer chains. The solid-state structure of a model compound incorporating the same structural backbone corroborates the existence of an extensive two-dimensional supramolecular hydrogen-bonding network. PMID:27226034

  2. Injectable and Self-Healing Carbohydrate-Based Hydrogel for Cell Encapsulation.

    PubMed

    Lü, Shaoyu; Gao, Chunmei; Xu, Xiubin; Bai, Xiao; Duan, Haogang; Gao, Nannan; Feng, Chen; Xiong, Yun; Liu, Mingzhu

    2015-06-17

    With the fast development of cell therapy, there has been a shift toward the development of injectable hydrogels as cell carriers that can overcome current limitations in cell therapy. However, the hydrogels are prone to damage during use, inducing cell apoptosis. Therefore, this study was carried out to develop an injectable and self-healing hydrogel based on chondroitin sulfate multiple aldehyde (CSMA) and N-succinyl-chitosan (SC). By varying the CSMA to SC ratio, the hydrogel stiffness, water content, and kinetics of gelation could be controlled. Gelation readily occurred at physiological conditions, predominantly due to a Schiff base reaction between the aldehyde groups on CSMA and amino groups on SC. Meanwhile, because of the dynamic equilibrium of Schiff base linkage, the hydrogel was found to be self-healing. Cells encapsulated in the hydrogel remained viable and metabolically active. In addition, the hydrogel produced minimal inflammatory response when injected subcutaneously in a rat model and showed biodegradability in vivo. This work establishes an injectable and self-healing hydrogel derived from carbohydrates with potential applications as a cell carrier and in tissue engineering. PMID:26016388

  3. A bacteria-based bead for possible self-healing marine concrete applications

    NASA Astrophysics Data System (ADS)

    Palin, D.; Wiktor, V.; Jonkers, H. M.

    2016-08-01

    This work presents a bacteria-based bead for potential self-healing concrete applications in low-temperature marine environments. The bead consisting of calcium alginate encapsulated bacterial spores and mineral precursor compounds was assessed for: oxygen consumption, swelling, and its ability to form a biocomposite in a simulative marine concrete crack solution (SMCCS) at 8 °C. After six days immersion in the SMCCS the bacteria-based beads formed a calcite crust on their surface and calcite inclusions in their network, resulting in a calcite–alginate biocomposite. Beads swelled by 300% to a maximum diameter of 3 mm, while theoretical calculations estimate that 0.112 g of the beads were able to produce ∼1 mm3 of calcite after 14 days immersion; providing the bead with considerable crack healing potential. The bacteria-based bead shows great potential for the development of self-healing concrete in low-temperature marine environments, while the formation of a biocomposite healing material represents an exciting avenue for self-healing concrete research.

  4. Correlation between molecular structure and self-healing in a series of Anthraquinone derivatives doped in PMMA polymer

    NASA Astrophysics Data System (ADS)

    Dhakal, P.; Ramini, S. K.; Kuzyk, Mark G.

    2012-10-01

    We observe that many different derivatives of anthraquinone chromophores doped in PMMA self heal after undergoing photodegradation. We are interested to know the mechanisms that are responsible for photodegradation and photorecovery, which are not yet fully understood. We used fluorescence and absorption spectroscopy as a probe of the photodegradation and recovery process while the temperature dependence is used to determine the energies of the species involved. We hypothesize that the host polymer mediates the formation of a quasi-stable state. In this scenario, once photo - damaged by intense pump laser, the molecules non radiatively decay into a tautomer state by intra molecule proton transfer, which subsequently leads to the formation of a damaged species - leading to decay of the fluorescence intensity. This hypothesis is consistent with our observation. The temperature dependent fluorescence decay and recovery studies give an insight about the different energy levels participating in optical excitation, decay and recovery. Comparing the experimental parameters such as decay and recovery rates of the fluorescence signal associated with the evolution of peaks in the fluorescence and absorbance spectrum helps us understand correlations between the efficiency of the recovery process and the structures of the dye molecules. Based on the temperature and the time-dependent observations of fluorescence and absorption, we validate qualitatively a new theoretical model which qualitatively takes into account the observed behavior and sheds light on the underlying mechanism. Preliminary measurements show good agreement with the theoretical model. More careful experiments and calculations are in process for further validation of the model.

  5. Self-healing polymers---The importance of choosing an adequate healing monomer, and the olefin metathesis polymerization of agricultural oils

    NASA Astrophysics Data System (ADS)

    Mauldin, Timothy C.

    Modern society's immense and ill-fated reliance on petrochemical-based polymeric materials will likely necessitate a shift in polymer production paradigms in the near future. The work presented herein attempts to address this issue via a two-pronged approach. First, efforts to improve the duration of composite materials by incorporation of a self-healing function are discussed, the fruitful application of which can potentially reduce or eliminate the massive carbon footprints associated with the repair/replacement of damaged materials. And second, polymeric materials derived predominately from natural and renewable feedstock---namely vegetable oils---are developed. Early microcapsule-based self-healing materials utilized dicyclopentadiene-filled microcapsules and Grubbs' olefin metathesis catalyst to initiate the healing mechanism. However, the patent-protected catalyst, made from the precious metal ruthenium and sometimes costly ligands, will likely never be inexpensive and therefore limit large-scale applications. Hence, clever approaches to reduce the healing catalyst loading in self-healing polymers are of great interest. To this end, our efforts have revolved around solving the problem of the relatively inefficient use of Grubbs' catalyst during the healing mechanism. Given that the mismatch of the olefin metathesis polymerization and Grubbs' catalyst dissolution (in monomer) kinetics is a known cause of this inefficient use of the catalyst, we attempted to tune the "latency" (i.e. pot life) of the olefin metathesis polymerization to ensure more complete dissolution of catalyst in monomer. In an alternative approach to improving efficient catalyst dissolution, we developed a simple model to predict relative dissolution rates of Grubbs' catalyst in a small library of healing monomers. This model was shown experimentally to be able to aid in the selection of, for example, reactive monomer additives that can yield impressive improvements in catalyst dissolution

  6. Imaging studies of temperature dependent photodegradation and self-healing in disperse orange 11 dye-doped polymers

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin R.; Hung, Sheng-Ting; Kuzyk, Mark G.

    2016-07-01

    Using confocal transmission imaging microscopy, we measure the temperature dependence of photodegradation and self-healing in disperse orange 11 (DO11) dye-doped (poly)methyl-methacrylate (PMMA) and polystyrene (PS). In both dye-doped polymers, an increase in sample temperature results in a greater photodegradation rate and degree of degradation, while also resulting in a slower recovery rate and larger recovery fraction. These results confirm the temperature dependence predictions of the modified correlated chromophore domain model (mCCDM) [B. R. Anderson and M. G. Kuzyk, Phys. Rev. E 89, 032601 (2014)]. Additionally, using quantitative fitting of the imaging data for DO11/PMMA, we determine the domain density parameter to be ρ = 1.19 (±0.25) × 10-2 and the domain free energy advantage to be λ = 0.282 ± 0.015 eV, which are within the uncertainty of the values previously determined using amplified spontaneous emission as the probe method [S. K. Ramini et al., Polym. Chem. 4, 4948 (2013)]. Finally, while we find photodegradation and self-healing of DO11/PS to be qualitatively consistent with the mCCDM, we find that it is quantitatively incompatible with the mCCDM as recovery in DO11/PS is found to behave as a stretched (or double) exponential as a function of time.

  7. Imaging studies of temperature dependent photodegradation and self-healing in disperse orange 11 dye-doped polymers.

    PubMed

    Anderson, Benjamin R; Hung, Sheng-Ting; Kuzyk, Mark G

    2016-07-14

    Using confocal transmission imaging microscopy, we measure the temperature dependence of photodegradation and self-healing in disperse orange 11 (DO11) dye-doped (poly)methyl-methacrylate (PMMA) and polystyrene (PS). In both dye-doped polymers, an increase in sample temperature results in a greater photodegradation rate and degree of degradation, while also resulting in a slower recovery rate and larger recovery fraction. These results confirm the temperature dependence predictions of the modified correlated chromophore domain model (mCCDM) [B. R. Anderson and M. G. Kuzyk, Phys. Rev. E 89, 032601 (2014)]. Additionally, using quantitative fitting of the imaging data for DO11/PMMA, we determine the domain density parameter to be ρ = 1.19 (±0.25) × 10(-2) and the domain free energy advantage to be λ = 0.282 ± 0.015 eV, which are within the uncertainty of the values previously determined using amplified spontaneous emission as the probe method [S. K. Ramini et al., Polym. Chem. 4, 4948 (2013)]. Finally, while we find photodegradation and self-healing of DO11/PS to be qualitatively consistent with the mCCDM, we find that it is quantitatively incompatible with the mCCDM as recovery in DO11/PS is found to behave as a stretched (or double) exponential as a function of time. PMID:27421424

  8. Self-Healing Wire Insulation

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  9. A galinstan-based inkjet printing system for highly stretchable electronics with self-healing capability.

    PubMed

    Li, Guangyong; Wu, Xuan; Lee, Dong-Weon

    2016-04-12

    We report a galinstan-based inkjet printing system to realize highly stretchable electronics with self-healing capability. The printing head made of polydimethylsiloxane (PDMS) consists of a main microfluidic channel and a coplanar channel. The main channel containing the oxidized galinstan is surrounded by the coplanar channel, which is filled with HCl. The HCl vapor effectively permeates the channel wall due to the high gas permeability of PDMS. The oxide skin of galinstan is consistently removed by chemical reaction with the HCl vapor. This allows one to maintain galinstan in a true liquid phase in the main channel. After the fabrication of the printing head with PDMS, the sizes of droplets ejected from the printing head with various flow rates have been characterized. The fabricated inkjet printing system is also utilized to generate complex galinstan patterns on various substrates. An LED-integrated circuit with self-healing capability shows excellent electrical and mechanical performance even after it is twisted more than 180° or stretched up to ∼60% more than 2000 times. The experimental results reveal that the proposed system has tremendous potential for stretchable electronic applications in the future. PMID:26987310

  10. A Rule-Based Modeling for the Description of Flexible and Self-healing Business Processes

    NASA Astrophysics Data System (ADS)

    Boukhebouze, Mohamed; Amghar, Youssef; Benharkat, Aïcha-Nabila; Maamar, Zakaria

    In this paper we discuss the importance of ensuring that business processes are label robust and agile at the same time robust and agile. To this end, we consider reviewing the way business processes are managed. For instance we consider offering a flexible way to model processes so that changes in regulations are handled through some self-healing mechanisms. These changes may raise exceptions at run-time if not properly reflected on these processes. To this end we propose a new rule based model that adopts the ECA rules and is built upon formal tools. The business logic of a process can be summarized with a set of rules that implement an organization’s policies. Each business rule is formalized using our ECAPE formalism (Event-Condition-Action-Post condition- post Event). This formalism allows translating a process into a graph of rules that is analyzed in terms of reliably and flexibility.

  11. Self-Healing and Thermo-Responsive Dual-Crosslinked Alginate Hydrogels based on Supramolecular Inclusion Complexes

    PubMed Central

    Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.

    2015-01-01

    β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were contingent on the polymer concentrations, and the host-guest molar ratio. Transient and reversible physical crosslinking between host and guest polymers governed self-assembly, allowing flow under shear stress, and facilitating complete recovery of the material properties within a few seconds of unloading. The mechanical properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at body temperature, and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214

  12. Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism

    PubMed Central

    Qian, Chunxiang; Chen, Huaicheng; Ren, Lifu; Luo, Mian

    2015-01-01

    This research investigated the self-healing potential of early age cracks in cement-based materials incorporating the bacteria which can produce carbonic anhydrase. Cement-based materials specimens were pre-cracked at the age of 7, 14, 28, 60 days to study the repair ability influenced by cracking time, the width of cracks were between 0.1 and 1.0 mm to study the healing rate influenced by width of cracks. The experimental results indicated that the bacteria showed excellent repairing ability to small cracks formed at early age of 7 days, cracks below 0.4 mm was almost completely closed. The repair effect reduced with the increasing of cracking age. Cracks width influenced self-healing effectiveness significantly. The transportation of CO2and Ca2+ controlled the self-healing process. The computer simulation analyses revealed the self-healing process and mechanism of microbiologically precipitation induced by bacteria and the depth of precipitated CaCO3 could be predicted base on valid Ca2+. PMID:26583014

  13. UV-Triggered Self-Healing of a Single Robust SiO2 Microcapsule Based on Cationic Polymerization for Potential Application in Aerospace Coatings.

    PubMed

    Guo, Wanchun; Jia, Yin; Tian, Kesong; Xu, Zhaopeng; Jiao, Jiao; Li, Ruifei; Wu, Yuehao; Cao, Ling; Wang, Haiyan

    2016-08-17

    UV-triggered self-healing of single microcapsules has been a good candidate to enhance the life of polymer-based aerospace coatings because of its rapid healing process and healing chemistry based on an accurate stoichiometric ratio. However, free radical photoinitiators used in single microcapsules commonly suffer from possible deactivation due to the presence of oxygen in the space environment. Moreover, entrapment of polymeric microcapsules into coatings often involves elevated temperature or a strong solvent, probably leading to swelling or degradation of polymer shell, and ultimately the loss of active healing species into the host matrix. We herein describe the first single robust SiO2 microcapsule self-healing system based on UV-triggered cationic polymerization for potential application in aerospace coatings. On the basis of the similarity of solubility parameters of the active healing species and the SiO2 precursor, the epoxy resin and cationic photoinitiator are successfully encapsulated into a single SiO2 microcapsule via a combined interfacial/in situ polymerization. The single SiO2 microcapsule shows solvent resistance and thermal stability, especially a strong resistance for thermal cycling in a simulated space environment. In addition, the up to 89% curing efficiency of the epoxy resin in 30 min, and the obvious filling of scratches in the epoxy matrix demonstrate the excellent UV-induced healing performance of SiO2 microcapsules, attributed to a high load of healing species within the capsule (up to 87 wt %) and healing chemistry based on an accurate stoichiometric ratio of the photoinitiator and epoxy resin at 9/100. More importantly, healing chemistry based on a UV-triggered cationic polymerization mechanism is not sensitive to oxygen, extremely facilitating future embedment of this single SiO2 microcapsule in spacecraft coatings to achieve self-healing in a space environment with abundant UV radiation and oxygen. PMID:27463101

  14. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO

    NASA Astrophysics Data System (ADS)

    Qureshi, T. S.; Al-Tabbaa, A.

    2016-08-01

    Excessive drying shrinkage is one of the major issues of concern for longevity and reduced strength performance of concrete structures. It can cause the formation of cracks in the concrete. This research aims to improve the autogenous self-healing capacity of traditional Portland cement (PC) systems, adding expansive minerals such as reactive magnesium oxide (MgO) in terms of drying shrinkage crack healing. Two different reactive grades (high ‘N50’and moderately high ‘92–200’) of MgO were added with PC. Cracks were induced in the samples with restraining end prisms through natural drying shrinkage over 28 days after casting. Samples were then cured under water for 28 and 56 days, and self-healing capacity was investigated in terms of mechanical strength recovery, crack sealing efficiency and improvement in durability. Finally, microstructures of the healing materials were investigated using FT-IR, XRD, and SEM-EDX. Overall N50 mixes show higher expansion and drying shrinkage compared to 92–200 mixes. Autogenous self-healing performance of the MgO containing samples were much higher compared to control (only PC) mixes. Cracks up to 500 μm were sealed in most MgO containing samples after 28 days. In the microstructural investigations, highly expansive Mg-rich hydro-carbonate bridges were found along with traditional calcium-based, self-healing compounds (calcite, portlandite, calcium silicate hydrates and ettringite).

  15. Self-healing of sandwich structures with a grid stiffened shape memory polymer syntactic foam core

    NASA Astrophysics Data System (ADS)

    John, Manu; Li, Guoqiang

    2010-07-01

    In this paper, a new sandwich with an orthogrid stiffened shape memory polymer (SMP) based syntactic foam core was proposed, fabricated, programmed, impacted, healed (sealed), and compression tested, for the purposes of healing impact damage repeatedly and almost autonomously. Two prestrain levels (3% and 20%), two impact energy levels (30.0 and 53.3 J), and two recovery (healing) conditions (2D confined and 3D confined) were employed in this paper. Up to seven impact-healing cycles were conducted. Macroscopic and microscopic damage-healing observation and analysis were implemented. Residual strength was evaluated using an anti-buckling compression test fixture. It was found that the healing efficiency was over 100% for almost all the impact-healing cycles; programming using 20% prestrain led to higher residual strength than that with 3% prestrain; 3D confined recovery resulted in higher residual strength than 2D confined recovery; and as the impact energy increased, the healing efficiency slightly decreased.

  16. Self-Healing Composite of Thermoset Polymer and Programmed Super Contraction Fibers

    NASA Technical Reports Server (NTRS)

    Li, Guoqiang (Inventor); Meng, Harper (Inventor)

    2016-01-01

    A composition comprising thermoset polymer, shape memory polymer to facilitate macro scale damage closure, and a thermoplastic polymer for molecular scale healing is disclosed; the composition has the ability to resolve structural defects by a bio-mimetic close-then heal process. In use, the shape memory polymer serves to bring surfaces of a structural defect into approximation, whereafter use of the thermoplastic polymer for molecular scale healing allowed for movement of the thermoplastic polymer into the defect and thus obtain molecular scale healing. The thermoplastic can be fibers, particles or spheres which are used by heating to a level at or above the thermoplastic's melting point, then cooling of the composition below the melting temperature of the thermoplastic. Compositions of the invention have the ability to not only close macroscopic defects, but also to do so repeatedly even if another wound/damage occurs in a previously healed/repaired area.

  17. Manganite-based three level memristive devices with self-healing capability

    NASA Astrophysics Data System (ADS)

    Acevedo, W. Román; Rubi, D.; Lecourt, J.; Lüders, U.; Gomez-Marlasca, F.; Granell, P.; Golmar, F.; Levy, P.

    2016-08-01

    We report on non-volatile memory devices based on multifunctional manganites. The electric field induced resistive switching of Ti/La1/3Ca2/3MnO3/n-Si devices is explored using different measurement protocols. We show that using current as the electrical stimulus (instead of standard voltage-controlled protocols) improves the electrical performance of our devices and unveils an intermediate resistance state. We observe three discrete resistance levels (low, intermediate and high), which can be set either by the application of current-voltage ramps or by means of single pulses. These states exhibit retention and endurance capabilities exceeding 104 s and 70 cycles, respectively. We rationalize our experimental observations by proposing a mixed scenario were a metallic filament and a SiOx layer coexist, accounting for the observed resistive switching. Overall electrode area dependence and temperature dependent resistance measurements support our scenario. After device failure takes place, the system can be turned functional again by heating up to low temperature (120 °C), a feature that could be exploited for the design of memristive devices with self-healing functionality. These results give insight into the existence of multiple resistive switching mechanisms in manganite-based memristive systems and provide strategies for controlling them.

  18. An Assessment of Self-Healing Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.

    2012-01-01

    Several reviews and books have been written concerning self-healing polymers over the last few years. These have focused primarily on the types of self-healing materials being studied, with minor emphasis given to composite properties. The purpose of this review is to assess the self-healing ability of these materials when utilized in fiber reinforced composites

  19. Routing and wavelength assignment algorithms for all-optical WDM networks based on virtual multiple self-healing ring architecture

    NASA Astrophysics Data System (ADS)

    Ishikawa, Akio; Kishi, Yoji

    2000-09-01

    This paper newly proposes a self-healing architecture in all- optical WDM networks based on virtual embedded multiple rings (Virtual Multiple Self Healing Rings: VM-SHR). Focusing upon the network design aspect of the proposed architecture, this paper describes design methodologies for VM-SHR networks. For two major problems in all-optical WDM network design, that is, the connection routing and wavelength assignment problems, we first established solution models based on mathematical programming formulation, each of which can be solved by common integer programming algorithms, respectively. In addition, we also developed an efficient heuristic algorithm for the wavelength assignment problem. Their usefulness and performance are demonstrated through the extensive simulation results.

  20. An Implicational View of Self-Healing and Personality Change Based on Gendlin's Theory of Experiencing.

    ERIC Educational Resources Information Center

    Bohart, Arthur C.

    There is relatively little theory on how psychotherapy clients self-heal since most theories of therapy stress the magic of the therapist's interventions. Of the theories that exist, this paper briefly discusses Carl Rogers' theory of self-actualization; and the dialectical theories of Greenberg and his colleagues, Jenkins, and Rychlak. Gendlin's…

  1. A Mechanistic-Based Healing Model for Self-Healing Glass Seals Used in Solid Oxide Fuel Cells

    SciTech Connect

    Xu, Wei; Sun, Xin; Stephens, Elizabeth V.; Mastorakos, Ioannis; Khaleel, Mohammad A.; Zbib, Hussein M.

    2012-09-01

    The usage of self-healing glass as hermetic seals is a recent advancement in sealing technology development for the planar solid oxide fuel cells (SOFCs). Because of its capability of restoring the mechanical properties at elevated temperatures, the self-healing glass seal is expected to provide high reliability in maintaining the long-term structural integrity and functionality of SOFCs. In order to accommodate the design and to evaluate the effectiveness of such engineering seals under various thermo-mechanical operating conditions, computational modeling framework needs to be developed to accurately capture and predict the healing behavior of the glass material. In the present work, a mechanistic-based two-stage model was developed to study the stress and temperature-dependent crack healing of the self-healing glass materials. The model was first calibrated by experimental measurements combined with the kinetic Monte Carlo (kMC) simulation results and then implemented into the finite element analysis (FEA). The effects of various factors, i.e. stress, temperature, crack morphology, on the healing behavior of the glass were investigated and discussed.

  2. Self-healing mortar with pH-sensitive superabsorbent polymers: testing of the sealing efficiency by water flow tests

    NASA Astrophysics Data System (ADS)

    Gruyaert, Elke; Debbaut, Brenda; Snoeck, Didier; Díaz, Pilar; Arizo, Alejandro; Tziviloglou, Eirini; Schlangen, Erik; De Belie, Nele

    2016-08-01

    Superabsorbent polymers (SAPs) have potential to be used as healing agent in self-healing concrete due to their property to attract moisture from the environment and their capacity to promote autogenous healing. A possible drawback, however, is their uptake of mixing water during concrete manufacturing, resulting in an increased volume of macro-pores in the hardened concrete. To limit this drawback, newly developed SAPs with a high swelling and pH-sensitiveness were developed and tested within the FP7 project HEALCON. Evaluation of their self-sealing performance occurred through a water permeability test via water flow, a test method also developed within HEALCON. Three different sizes of the newly developed SAP were compared with a commercial SAP. Swelling tests in cement filtrate solution indicated that the commercial and in-house synthesized SAPs performed quite similar, but the difference between the swelling capacity at pH 9 and pH 13 is more pronounced for the self-synthesized SAPs. Moreover, in comparison to the commercial SAPs, less macro-pores are formed in the cement matrix of mixes with self-synthesized SAPs and the effect on the mechanical properties is lower, but not negligible, when using high amounts of SAPs. Although the immediate sealing effect of cracks in mortar was the highest for the commercial SAPs, the in-house made SAPs with a particle size between 400 and 600 μm performed the best with regard to crack closure (mainly CaCO3 precipitation) and self-sealing efficiency, after exposing the specimens to 28 wet–dry cycles. Some specimens could even withstand a water pressure of 2 bar.

  3. Coordinated sensing and active repair for self-healing

    NASA Astrophysics Data System (ADS)

    Hurley, D. A.; Huston, D. R.

    2011-02-01

    Self-repairing structural systems have the potential for improved performance ranges and lifetimes over conventional systems. Self-healing materials are not a new phenomenon and have been used in automotive and aeronautical applications for over a century. The bulk of these systems operate by using damage to directly initiate a repair response without any supervisory coordination. Integrating sensing and supervisory control technologies with self-healing may improve the safety and reliability of critical components and structures. This project illustrates the benefit of an integrated sensing, control, and self-healing system using laboratory scale test beds. A thermoplastic polymer embedded with resistive heating wires acts as the self-healing material. Damage is detected using an electro-optical sensing scheme based on photoresistors and a PC handling control duties. As damage occurs it is detected, located, and characterized. The key to this project is the integration of sensor feedback to control healing so that repairs are executed, monitored, and completed on the basis of continuous sensor data. This proof-of-concept prototype can likely be expanded and improved with alternative sensor options, self-healing materials, and system architecture.

  4. Self-Healing Underwater Superoleophobic and Antibiofouling Coatings Based on the Assembly of Hierarchical Microgel Spheres.

    PubMed

    Chen, Kunlin; Zhou, Shuxue; Wu, Limin

    2016-01-26

    Marine biofouling has been plaguing people for thousands of years. While various strategies have been developed for antifouling (including superoleophobic) coatings, none of these exhibits self-healing properties because the bestowal of a zoetic self-repairing function to lifeless artificial water/solid interfacial materials is usually confronted with tremendous challenges. Here, we present a self-repairing underwater superoleophobic and antibiofouling coating through the self-assembly of hydrophilic polymeric chain modified hierarchical microgel spheres. The obtained surface material not only has excellent underwater superoleophobicity but also has very good subaqueous antibiofouling properties. More importantly, this surface material can recover the oil- and biofouling-resistant properties once its surface is mechanically damaged, similar to the skins of some marine organisms such as sharks or whales. This approach is feasible and easily mass-produced and could open a pathway and possibility for the fabrication of other self-healing functional water/solid interfacial materials. PMID:26687925

  5. Self-healing minefield

    NASA Astrophysics Data System (ADS)

    Rolader, Glenn E.; Rogers, John; Batteh, Jad

    2004-07-01

    The Self Healing Minefield (SHM) is comprised of a networked system of mobile anti-tank landmines. When the mines detect a breach, each calculates an appropriate response, and some fire small rockets to "hop" into the breach path, healing the breach. The purpose of the SHM is to expand the capabilities of traditional obstacles and provide an effective anti-tank obstacle that does not require Anti-Personnel (AP) submunitions. The DARPA/ATO sponsored program started in June 2000 and culminated in a full 100-unit demonstration at Fort Leonard Wood, MO in April 2003. That program went from "a concept" to a prototype system demonstration in approximately 21 months and to a full tactically significant demonstration in approximately 33 months. Significant accomplishments included the following: (1) Demonstration of a working, scalable (order of a hundred nodes), ad hoc, self-healing RF network. (2) Demonstration of an innovative distributed time synchronization scheme that does not rely on GPS. (3) Demonstration of a non-GPS based, self-mapping, relative geolocation system. (4) Development of an innovative distributed safe, arm, and fire system that allows for independent firing of eight rockets within a single node. (5) Development of a small rocket design with a novel geometry that meets the propulsion requirements.

  6. Application of a silver-olefin coordination polymer as a catalytic curing agent for self-healing epoxy polymers

    NASA Astrophysics Data System (ADS)

    Everitt, D. T.; Coope, T. S.; Trask, R. S.; Wass, D. F.; Bond, I. P.

    2015-05-01

    A silver-olefin based coordination polymer was prepared in a simple, one step process to act as an initiator to facilitate the ring-opening polymerization of epoxides. Thermal analysis found the complex to be capable of curing a range of commercially available epoxy resins used in the manufacture of conventional composite materials. Curing of the oligomeric diglycidyl ether bisphenol A resin, Epon 828, in combination with a non-toxic solvent, ethyl phenylacetate, was studied by differential scanning calorimetry. The mechanical characterization of the resultant cured polymers was conducted by single lap shear tests. Tapered double cantilever beam (TDCB) test specimens containing 2.5 pph of silver-olefin initiator, both with and without embedded microcapsules, were analyzed for their healing performance. Healing efficiency values were found to be strongly dependent on the applied healing temperature. A mean recovery of 74% fracture load was found in TDCB samples after being healed at 70 °C for 48 h.

  7. Self Healing Percolation

    NASA Astrophysics Data System (ADS)

    Scala, Antonio

    2015-03-01

    We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. Self-healing is a crucial in implementing the next generation of smart grids allowing to ensure a high quality of service to the users. We then map our self-healing procedure in a percolation problem and analyse the interplay between redundancies and topology in improving the resilience of networked infrastructures to multiple failures. We find exact results both for planar lattices and for random lattices, hinting the role of duality in the design of resilient networks. Finally, we introduce a cavity method approach to study the recovery of connectivity after damage in self-healing networks. CNR-PNR National Project ``Crisis-Lab,'' EU HOME/2013/CIPS/AG/4000005013 project CI2C and EU FET project MULTIPLEX nr.317532.

  8. On the use of crystalline admixtures in cement based construction materials: from porosity reducers to promoters of self healing

    NASA Astrophysics Data System (ADS)

    Ferrara, Liberato; Krelani, Visar; Moretti, Fabio

    2016-08-01

    The project detailed in this paper aims at a thorough characterization of the effects of crystalline admixtures, currently employed as porosity reducing admixtures, on the self-healing capacity of the cementitious composites, i.e. their capacity to completely or partially re-seal cracks and, in case, also exhibit recovery of mechanical properties. The problem has been investigated with reference to both a normal strength concrete (NSC) and a high performance fibre reinforced cementitious composite (HPFRCC). In the latter case, the influence of flow-induced fibre alignment has also been considered in the experimental investigation. With reference to either 3-point (for NSC) or 4-point (for HPFRCC) bending tests performed up to controlled crack opening and up to failure, respectively before and after exposure/conditioning recovery of stiffness and stress bearing capacity has been evaluated to assess the self-healing capacity. In a durability-based design framework, self-healing indices to quantify the recovery of mechanical properties will also be defined. In NSC, crystalline admixtures are able to promote up to 60% of crack sealing even under exposure to open air. In the case of HPFRCCs, which would already feature autogenous healing capacity because of their peculiar mix compositions, the synergy between the dispersed fibre reinforcement and the action of the crystalline admixture has resulted in a likely ‘chemical pre-stressing’ of the same reinforcement, from which the recovery of mechanical performance of the material has greatly benefited, up to levels even higher than the performance of the virgin un-cracked material.

  9. Fatigue of Self-Healing Nanofiber-based Composites: Static Test and Subcritical Crack Propagation.

    PubMed

    Lee, Min Wook; Sett, Soumyadip; Yoon, Sam S; Yarin, Alexander L

    2016-07-20

    Here, we studied the self-healing of composite materials filled with epoxy-containing nanofibers. An initial incision in the middle of a composite sample stretched in a static fatigue test can result in either crack propagation or healing. In this study, crack evolution was observed in real time. A binary epoxy, which acted as a self-healing agent, was encapsulated in two separate types of interwoven nano/microfibers formed by dual-solution blowing, with the core containing either epoxy or hardener and the shell being formed from poly(vinylidene fluoride)/ poly(ethylene oxide) mixture. The core-shell fibers were encased in a poly(dimethylsiloxane) matrix. When the fibers were damaged by a growing crack in this fiber-reinforced composite material because of static stretching in the fatigue test, they broke and released the healing agent into the crack area. The epoxy used in this study was cured and solidified for approximately an hour at room temperature, which then conglutinated and healed the damaged location. The observations were made for at least several hours and in some cases up to several days. It was revealed that the presence of the healing agent (the epoxy) in the fibers successfully prevented the propagation of cracks in stretched samples subjected to the fatigue test. A theoretical analysis of subcritical cracks was performed, and it revealed a jumplike growth of subcritical cracks, which was in qualitative agreement with the experimental results. PMID:27332924

  10. Exponential Arithmetic Based Self-Healing Group Key Distribution Scheme with Backward Secrecy under the Resource-Constrained Wireless Networks

    PubMed Central

    Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun

    2016-01-01

    In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550

  11. Exponential Arithmetic Based Self-Healing Group Key Distribution Scheme with Backward Secrecy under the Resource-Constrained Wireless Networks.

    PubMed

    Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun

    2016-01-01

    In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550

  12. Progress in the remote-controlled activation of self-healing processes

    NASA Astrophysics Data System (ADS)

    Shaaban, Ahmad; Schmidt, Annette M.

    2016-08-01

    Self-healing materials, able to heal themselves either spontaneously or after activation, and ultimately restore diverse properties such as mechanical, optical or electrical properties, are under intense investigation for various classes of material, including polymers, cementous materials, asphalts, metals, composites, and more. Among these, on-command self-healing systems can be classified as an approach towards a spatially resolved, externally controlled activation of self-healing behavior. Towards this goal, the last decade has experienced significant progress. Various methods, mainly based on indirect heating mechanisms, such as resistive, induction, or photo-induced heating, have been presented, depending on different antenna materials and energy sources, and tailored for different applications. This review discusses the up-to-date achievements in the field of on-command self-healing materials with a focus on electromagnetic and mechanochemical activation.

  13. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli.

    PubMed

    Holten-Andersen, Niels; Harrington, Matthew J; Birkedal, Henrik; Lee, Bruce P; Messersmith, Phillip B; Lee, Ka Yee C; Waite, J Herbert

    2011-02-15

    Growing evidence supports a critical role of metal-ligand coordination in many attributes of biological materials including adhesion, self-assembly, toughness, and hardness without mineralization [Rubin DJ, Miserez A, Waite JH (2010) Advances in Insect Physiology: Insect Integument and Color, eds Jérôme C, Stephen JS (Academic Press, London), pp 75-133]. Coordination between Fe and catechol ligands has recently been correlated to the hardness and high extensibility of the cuticle of mussel byssal threads and proposed to endow self-healing properties [Harrington MJ, Masic A, Holten-Andersen N, Waite JH, Fratzl P (2010) Science 328:216-220]. Inspired by the pH jump experienced by proteins during maturation of a mussel byssus secretion, we have developed a simple method to control catechol-Fe(3+) interpolymer cross-linking via pH. The resonance Raman signature of catechol-Fe(3+) cross-linked polymer gels at high pH was similar to that from native mussel thread cuticle and the gels displayed elastic moduli (G') that approach covalently cross-linked gels as well as self-healing properties. PMID:21278337

  14. Centrally controlled self-healing wavelength division multiplexing passive optical network based on optical carrier suppression technique

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Zhang, Jiao; Sun, Xiaohan

    2015-12-01

    We proposed and demonstrated a centrally controlled and self-healing wavelength division multiplexing passive optical network with colorless optical network units (ONUs) based on optical carrier suppression technique. By switching the affected data in the OCS signal sideband to an alternate protection path, only one optical switch is provisioned at the optical line terminal, which is controlled by a logic control circuit upon monitoring of power outage on the working path. The proposed scheme can reliably protect against both distribution and feeder fiber failures. Moreover, gain-saturated reflective semiconductor optical amplifiers are used as colorless transmitters in ONUs. The protection scheme feasibility and system performances are experimentally verified with 10 Gb/s downstream and 1.25 Gb/s upstream data in both working and protection modes. The protection switching time was measured to be around 1 ms.

  15. Multiphase design of autonomic self-healing thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Chen, Yulin; Kushner, Aaron M.; Williams, Gregory A.; Guan, Zhibin

    2012-06-01

    The development of polymers that can spontaneously repair themselves after mechanical damage would significantly improve the safety, lifetime, energy efficiency and environmental impact of man-made materials. Most approaches to self-healing materials require the input of external energy, healing agents, solvent or plasticizer. Despite intense research in this area, the synthesis of a stiff material with intrinsic self-healing ability remains a key challenge. Here, we show a design of multiphase supramolecular thermoplastic elastomers that combine high modulus and toughness with spontaneous healing capability. The designed hydrogen-bonding brush polymers self-assemble into a hard-soft microphase-separated system, combining the enhanced stiffness and toughness of nanocomposites with the self-healing capability of dynamic supramolecular assemblies. In contrast to previous self-healing polymers, this new system spontaneously self-heals as a single-component solid material at ambient conditions, without the need for any external stimulus, healing agent, plasticizer or solvent.

  16. Development of self-healing polymers via amine-epoxy chemistry: I. Properties of healing agent carriers and the modelling of a two-part self-healing system

    NASA Astrophysics Data System (ADS)

    Zhang, He; Yang, Jinglei

    2014-06-01

    Two types of healing agent carriers (microcapsules containing epoxy solution, referred to as EP-capsules, and etched hollow glass bubbles (HGBs) loaded with amine solution, referred to as AM-HGBs) used in self-healing epoxy systems were prepared and characterized in this study. The core percentages were measured at about 80 wt% and 33 wt% for EP-capsules and AM-HGBs, respectively. The loaded amine in AM-HGB, after incorporation into the epoxy matrix, showed high stability at ambient temperature, but diffused out gradually during heat treatment at 80 °C. The amount and the mass ratio of the two released healants at the crack plane were correlated with the size, concentration, and core percentage of the healing agent carriers. A simplified cubic array model for randomly distributed healing agent carriers was adopted to depict the longest diffusion distance of the released healants, which is inversely proportional to the cubic root of the carrier concentration.

  17. Silicone-based tough hydrogels with high resilience, fast self-recovery, and self-healing properties.

    PubMed

    Si, Liqi; Zheng, Xiaowen; Nie, Jun; Yin, Ruixue; Hua, Yujie; Zhu, Xiaoqun

    2016-06-28

    Tough hydrogels are prepared from two monomers via photopolymerization of hydroxyethyl acrylate and sol-gel of methyltrimethoxysilane. Constitution and water content could be tuned easily because of the good water solubility of both monomers and two non-interfering polymerization processes. The hydrogels exhibit excellent integrated performance with toughness, high resilience, fast self-recovery, and self-healing. PMID:27257636

  18. Base metal alloys with self-healing native conductive oxides for electrical contact materials

    NASA Astrophysics Data System (ADS)

    Aindow, M.; Alpay, S. P.; Liu, Y.; Mantese, J. V.; Senturk, B. S.

    2010-10-01

    Base metals for electrical contacts exhibit high bulk conductivities but form low-conductivity native oxide scales in air, leading to unacceptably high contact resistances. Here we show that alloying base metals can lead to higher conductivity native scales by: doping to enhance carrier concentration; inducing mixed oxidation states to give electron/polaron hopping; and/or phase separation for conducting pathways. Data from Cu-La, Fe-V, and Ni-Ru alloys demonstrate the viability of these approaches, yielding contact resistances up to 106 times lower than that for oxidized Cu.

  19. Self-healing biomaterials(3)

    PubMed Central

    Brochu, Alice B. W.; Craig, Stephen L.; Reichert, William M.

    2010-01-01

    The goal of this review is to introduce the biomaterials community to the emerging field of self-healing materials, and also to suggest how one could utilize and modify self-healing approaches to develop new classes of biomaterials. A brief discussion of the in vivo mechanical loading and resultant failures experienced by biomedical implants is followed by presentation of the self-healing methods for combating mechanical failure. If conventional composite materials that retard failure may be considered zeroth generation self-healing materials, then taxonomically-speaking, first generation self-healing materials describe approaches that “halt” and “fill” damage, whereas second generation self-healing materials strive to “fully restore” the pre-failed material structure. In spite of limited commercial use to date, primarily because the technical details have not been suitably optimized, it is likely from a practical standpoint that first generation approaches will be the first to be employed commercially, whereas second generation approaches may take longer to implement. For self-healing biomaterials the optimization of technical considerations is further compounded by the additional constraints of toxicity and biocompatibility, necessitating inclusion of separate discussions of design criteria for self-healing biomaterials. PMID:21171168

  20. Self-Healing Laminate System

    NASA Technical Reports Server (NTRS)

    Beiermann, Brett A. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor); Sottos, Nancy R. (Inventor)

    2016-01-01

    A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.

  1. Assessment of Composite Delamination Self-Healing Under Cyclic Loading

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin

    2009-01-01

    Recently, the promise of self-healing materials for enhanced autonomous durability has been introduced using a micro-encapsulation technique where a polymer based healing agent is encapsulated in thin walled spheres and embedded into a base polymer along with a catalyst phase. For this study, composite skin-stiffener flange debonding specimens were manufactured from composite prepreg containing interleaf layers with a polymer based healing agent encapsulated in thin-walled spheres. Constant amplitude fatigue tests in three-point bending showed the effect of self-healing on the fatigue response of the skin-stiffener flange coupons. After the cycling that created debonding, fatigue tests were held at the mean load for 24 hours. For roughly half the specimens tested, when the cyclic loading was resumed a decrease in compliance (increase in stiffness) was observed, indicating that some healing had occurred. However, with continued cycling, the specimen compliance eventually increased to the original level before the hold, indicating that the damage had returned to its original state. As was noted in a prevoius study conducted with specimens tested under monotonically increasing loads to failure, healing achieved via the micro-encapsulation technique may be limited to the volume of healing agent available relative to the crack volume.

  2. Segmented molecular design of self-healing proteinaceous materials.

    PubMed

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C

    2015-01-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials. PMID:26323335

  3. Segmented molecular design of self-healing proteinaceous materials

    NASA Astrophysics Data System (ADS)

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-09-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

  4. Segmented molecular design of self-healing proteinaceous materials

    PubMed Central

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-01-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure–property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials. PMID:26323335

  5. Self Healing Composite for Aircraft's Structural Application

    NASA Astrophysics Data System (ADS)

    Teoh, S. H.; Chia, H. Y.; Lee, M. S.; Nasyitah, A. J. N.; Luqman, H. B. S. M.; Nurhidayah, S.; Tan, Willy. C. K.

    When one cuts himself, it is amazing to watch how quickly the body acts to mend the wound. Immediately, the body works to pull the skin around the cut back together. The concept of repair by bleeding of enclosed functional agents serves as the biomimetic inspiration of synthetic self repair systems. Such synthetic self repair systems are based on advancement in polymeric materials; the process of human thrombosis is the inspiration for the application of self healing fibres within the composite materials. Results based on flexural 3 point bend test on the prepared samples have shown that the doubled layer healed hollow fibre laminate subjected to a healing regime of 3 weeks has a healed strength increase of 27% compared to the damaged baseline laminate. These results gave us confidence that there is a great potential to adopt such self healing mechanism on actual composite parts like in aircraft's composite structures.

  6. Self-Healing, Inflatable, Rigidizable Shelter

    NASA Technical Reports Server (NTRS)

    Haight, Andrea; Gosau, Jan-Michael; Dixit, Anshu; Gleeson, Dan

    2012-01-01

    An inflatable, rigidizable shelter system was developed based on Rigi dization on Command (ROC) technology incorporating not only the requ ired low-stowage volume and lightweight character achieved from an i nflatable/rigidizable system, but also a self-healing foam system inc orporated between the rigidizable layers of the final structure to m inimize the damage caused by any punctures to the structure.

  7. Self healing of defected graphene

    SciTech Connect

    Chen, Jianhui; Shi, Tuwan; Cai, Tuocheng; Wu, Xiaosong; Yu, Dapeng; Xu, Tao; Sun, Litao

    2013-03-11

    For electronics applications, defects in graphene are usually undesirable because of their ability to scatter charge carriers, thereby reduce the carrier mobility. It would be extremely useful if the damage can be repaired. In this work, we employ Raman spectroscopy, X-ray photoemission spectroscopy, transmission electron microscopy, and electrical measurements to study defects in graphene introduced by argon plasma bombardment. We have found that majority of these defects can be cured by a simple thermal annealing process. The self-healing is attributed to recombination of mobile carbon adatoms with vacancies. With increasing level of plasma induced damage, the self-healing becomes less effective.

  8. Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal-Ligand Coordination.

    PubMed

    Rao, Ying-Li; Chortos, Alex; Pfattner, Raphael; Lissel, Franziska; Chiu, Yu-Cheng; Feig, Vivian; Xu, Jie; Kurosawa, Tadanori; Gu, Xiaodan; Wang, Chao; He, Mingqian; Chung, Jong Won; Bao, Zhenan

    2016-05-11

    A self-healing dielectric elastomer is achieved by the incorporation of metal-ligand coordination as cross-linking sites in nonpolar polydimethylsiloxane (PDMS) polymers. The ligand is 2,2'-bipyridine-5,5'-dicarboxylic amide, while the metal salts investigated here are Fe(2+) and Zn(2+) with various counteranions. The kinetically labile coordination between Zn(2+) and bipyridine endows the polymer fast self-healing ability at ambient condition. When integrated into organic field-effect transistors (OFETs) as gate dielectrics, transistors with FeCl2 and ZnCl2 salts cross-linked PDMS exhibited increased dielectric constants compared to PDMS and demonstrated hysteresis-free transfer characteristics, owing to the low ion conductivity in PDMS and the strong columbic interaction between metal cations and the small Cl(-) anions which can prevent mobile anions drifting under gate bias. Fully stretchable transistors with FeCl2-PDMS dielectrics were fabricated and exhibited ideal transfer characteristics. The gate leakage current remained low even after 1000 cycles at 100% strain. The mechanical robustness and stable electrical performance proved its suitability for applications in stretchable electronics. On the other hand, transistors with gate dielectrics containing large-sized anions (BF4(-), ClO4(-), CF3SO3(-)) displayed prominent hysteresis due to mobile anions drifting under gate bias voltage. This work provides insights on future design of self-healing stretchable dielectric materials based on metal-ligand cross-linked polymers. PMID:27099162

  9. Self Healing Coating/Film Project

    NASA Technical Reports Server (NTRS)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Calle, Luz; Williams, Martha

    2015-01-01

    Kennedy Space Center (KSC) has been developing self healing materials and technologies. This project seeks to further develop self healing functionality in thin films for applications such as corrosion protective coatings, inflatable structures, space suit materials, and electrical wire insulation.

  10. Rapid self-healing hydrogels

    PubMed Central

    Phadke, Ameya; Zhang, Chao; Arman, Bedri; Hsu, Cheng-Chih; Mashelkar, Raghunath A.; Lele, Ashish K.; Tauber, Michael J.; Arya, Gaurav; Varghese, Shyni

    2012-01-01

    Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allowing external control over the healing process. Moreover, the hydrogels can sustain multiple cycles of healing and separation without compromising their mechanical properties and healing kinetics. Beyond revealing how secondary interactions could be harnessed to introduce new functions to chemically cross-linked polymeric systems, we also demonstrate various potential applications of such easy-to-synthesize, smart, self-healing hydrogels. PMID:22392977

  11. Self-healing fuse development

    NASA Technical Reports Server (NTRS)

    Jones, N. D.; Kinsinger, R. E.; Harris, L. P.

    1973-01-01

    The mercury-filled self-healing fuses developed for this program afford very good protection from circuit faults with rapid reclosure. Fuse performance and design parameters have been characterized. Life tests indicate a capability of 500 fuse operations. Fuse ratings are 150 v at 5, 15, 25 and 50 circuit A. A series of sample fuses using alumina and beryllia insulation have been furnished to NASA for circuit evaluation.

  12. Development of a self-healing soft pneumatic actuator: a first concept.

    PubMed

    Terryn, Seppe; Mathijssen, Glenn; Brancart, Joost; Lefeber, Dirk; Assche, Guy Van; Vanderborght, Bram

    2015-08-01

    Inspired by the intrinsic softness and the corresponding embodied intelligence principles, soft pneumatic actuators (SPA) have been developed, which ensure safe interaction in unstructured, unknown environments. Due to their intrinsic softness, these actuators have the ability to resist large mechanical impacts. However, the soft materials used in these structures are in general susceptible to damage caused by sharp objects found in the unstructured environments. This paper proposes to integrate a self-healing (SH-) mechanism in SPAs, such that cuts, tears and perforations in the actuator can be self-healed. Diels-Alder (DA-) polymers, covalent polymer network systems based on the thermoreversible DA-reaction, were selected and their mechanical, as well as SH-properties, are described. To evaluate the feasibility of developing an SPA constructed out of SH-material, a single cell prototype, a SH-soft pneumatic cell (SH-SPC), was constructed entirely out of DA-polymers. Exploiting the SH-property of the DA-polymers, a completely new shaping process is presented in this paper, referred to as 'shaping through folding and self-healing'. 3D polygon structures, like the cubic SH-SPC, can be constructed by folding SH-polymer sheet. The sides of the structures can be sealed and made airtight using a SH-procedure at relatively low temperatures (<90 °C). Both the (thermo) mechanical and SH-properties of the SH-SPC prototype were experimentally validated and showed excellent performances. Macroscopic incisions in the prototype were completely healed using a SH-procedure (<70 °C). Starting from this single-cell prototype, it is straight-forward to develop a multi-cell prototype, the first SPA ever built completely out of SH-polymers. PMID:26151944

  13. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-03-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature.

  14. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    PubMed Central

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-01-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature. PMID:27010967

  15. Self-healing fuse development.

    NASA Technical Reports Server (NTRS)

    Jones, N. D.

    1972-01-01

    The self-healing fuse is a very fast acting current overload protective device which opens and recloses in a few milliseconds. The fuse confines a mercury column in an insulated channel and returns the mercury to the channel after firing. Ratings 5 to 50 A at 600 peak volts are possible with a life of hundreds of cycles. Compared to conventional fuses, much less fault current energy fires the fuse by heating the mercury to boiling temperature. Next an arc discharge develops while explosive forces expel the liquid mercury from the channel. Then the high impedance arc either extinguishes immediately, or operates for a few milliseconds, until a switch opens the circuit.

  16. Improved One-Way Hash Chain and Revocation Polynomial-Based Self-Healing Group Key Distribution Schemes in Resource-Constrained Wireless Networks

    PubMed Central

    Chen, Huifang; Xie, Lei

    2014-01-01

    Self-healing group key distribution (SGKD) aims to deal with the key distribution problem over an unreliable wireless network. In this paper, we investigate the SGKD issue in resource-constrained wireless networks. We propose two improved SGKD schemes using the one-way hash chain (OHC) and the revocation polynomial (RP), the OHC&RP-SGKD schemes. In the proposed OHC&RP-SGKD schemes, by introducing the unique session identifier and binding the joining time with the capability of recovering previous session keys, the problem of the collusion attack between revoked users and new joined users in existing hash chain-based SGKD schemes is resolved. Moreover, novel methods for utilizing the one-way hash chain and constructing the personal secret, the revocation polynomial and the key updating broadcast packet are presented. Hence, the proposed OHC&RP-SGKD schemes eliminate the limitation of the maximum allowed number of revoked users on the maximum allowed number of sessions, increase the maximum allowed number of revoked/colluding users, and reduce the redundancy in the key updating broadcast packet. Performance analysis and simulation results show that the proposed OHC&RP-SGKD schemes are practical for resource-constrained wireless networks in bad environments, where a strong collusion attack resistance is required and many users could be revoked. PMID:25529204

  17. Generalizing the self-healing diffusion Monte Carlo approach to finite temperature: A path for the optimization of low-energy many-body bases

    SciTech Connect

    Reboredo, Fernando A.; Kim, Jeongnim

    2014-02-21

    A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspace of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.

  18. Bioinspired Self-Healing Materials

    NASA Astrophysics Data System (ADS)

    Aksay, Ilhan

    2005-03-01

    Synthetic materials are designed to satisfy only one or two functions, but biologically produced ones are multifunctional and have properties (e.g., self-replicating, self-healing) that have yet to be introduced into man-made materials. The objective of this lecture will be to provide an understanding of the important processes for controlling materials properties through nano- and microstructural design and processing with the goal of attaining multifunctionality. A case study will be on the possibility of producing structural materials with self-healing characteristics. In an effort to mimic self-repair functions of living systems, we have been working with self-assembling complex fluids that respond to fields generated by the defects and deposit materials at the site of the defect. Presently, the techniques are limited to certain materials systems as coatings or thin films. We partially mimic the process of blood clotting as a process of colloidal aggregation at a defect site. We show that under the influence of an electrical field, colloidal particles detect a defect and aggregate at the defect site to form a protective layer. The basis of this process is the electrohdrodynamic flow generated by the inhomogeneities. We then make this a permanent protective layer through the electrodeposition of a metal binder in the interstitials of the colloidal aggregate.

  19. Self-healing hyperbranched poly(aroyltriazole)s

    PubMed Central

    Wei, Qiang; Wang, Jian; Shen, Xiaoyuan; Zhang, Xiao A.; Sun, Jing Zhi; Qin, Anjun; Tang, Ben Zhong

    2013-01-01

    The research on self-healing polymers has been a hot topic. The encapsulated-monomer/catalyst, supramolecular self-assembly, and reversible or dynamic covalent bond formation are the prevailingly adopted strategies. The alternative of irreversible covalent bond formation is, however, to be further developed. In this contribution, self-healing hyperbranched poly(aroyltriazole)s of PI and PII sharing such mechanism were developed. The polymers were synthesized by our developed metal-free click polymerizations of bis(aroylacetylene)s and triazide. They are processible and have excellent film-forming ability. High quality homogeneous films and sticks free from defects could be obtained by casting. The scratched films could be self-repaired upon general heating. The cut films and sticks could be healed by stacking or pressing the halves together at elevated temperature. Thus, these hyperbranched polymers could find broad applications in diverse areas, and our design concept for self-healing materials should be generally applicable to other hyperbranched polymers with reactive groups on their peripheries.

  20. Self-healing cable for extreme environments

    NASA Technical Reports Server (NTRS)

    Huston, Dryver R. (Inventor); Tolmie, Bernard R. (Inventor)

    2009-01-01

    Self-healing cable apparatus and methods disclosed. The self-healing cable has a central core surrounded by an adaptive cover that can extend over the entire length of the self-healing cable or just one or more portions of the self-healing cable. The adaptive cover includes an axially and/or radially compressible-expandable (C/E) foam layer that maintains its properties over a wide range of environmental conditions. A tape layer surrounds the C/E layer and is applied so that it surrounds and axially and/or radially compresses the C/E layer. When the self-healing cable is subjected to a damaging force that causes a breach in the outer jacket and the tape layer, the corresponding localized axially and/or radially compressed portion of the C/E foam layer expands into the breach to form a corresponding localized self-healed region. The self-healing cable is manufacturable with present-day commercial self-healing cable manufacturing tools.

  1. Biomimetic, Self-Healing Nanocomposites for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Morse, Daniel E.

    2003-01-01

    This final report contains a summary of significant findings, and bibliographies of publications and patents resulting from the research. The findings are grouped as follows: A) Lustrin-Mimetic Self-Healing Polymer Networks; B) Nanostructure-Directing Catalysis of Synthesis of Electronically and Optoelectronically Active Metallo-oxanes and Organometallics; C) New Discovery that Molecular Stencils Control Directional Growth to Form Light-Weight Mineral Foams.

  2. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    SciTech Connect

    Huang, Haoliang; Ye, Guang; Damidot, Denis

    2014-06-01

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.

  3. Microencapsulation of Self Healing Agents for Corrosion Control Coatings

    NASA Technical Reports Server (NTRS)

    Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.

  4. Highly flexible transparent self-healing composite based on electrospun core-shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation

    NASA Astrophysics Data System (ADS)

    An, Seongpil; Liou, Minho; Song, Kyo Yong; Jo, Hong Seok; Lee, Min Wook; Al-Deyab, Salem S.; Yarin, Alexander L.; Yoon, Sam S.

    2015-10-01

    Coaxial electrospinning was used to fabricate two types of core-shell fibers: the first type with liquid resin monomer in the core and polyacrylonitrile in the shell, and the second type with liquid curing agent in the core and polyacrylonitrile in the shell. These two types of core-shell fibers were mutually entangled and embedded into two flexible transparent matrices thus forming transparent flexible self-healing composite materials. Such materials could be formed before only using emulsion electrospinning, rather than coaxial electrospinning. The self-healing properties of such materials are associated with release of healing agents (resin monomer and cure) from nanofiber cores in damaged locations with the subsequent polymerization reaction filing the micro-crack with polydimethylsiloxane. Transparency of these materials is measured and the anti-corrosive protection provided by them is demonstrated in electrochemical experiments.

  5. Hydrogen-bonding-supported self-healing antifogging thin films.

    PubMed

    Zhang, Xiaojie; He, Junhui

    2015-01-01

    Inspired by the repair of DNA through efficient reformation of hydrogen bonds (H-bonds), herein we report a facile one-step approach to construction of self-healing antifogging thin films on the basis of partly cross-linked poly(vinyl alcohol)(PVA) and poly(acrylic acid)(PAA). By designing the molar ratio of hydroxyl groups to carboxyl groups, the cross-linked polymer thin films maintain abundant free hydroxyl groups to present excellent antifogging property, which is derived from the hydrophilicity and hygroscopicity of the thin films. The thin films showed smart intrinsic self-healing characteristics towards wounds caused by external forces, which is attributed to sufficient free hydroxyl groups at the scratched interfaces to reform H-bonds across the interfaces and a sufficient chain mobility that is indispensable for chain diffusion across the interfaces and hydroxyl groups association to form H-bonds. No synthetic surfaces reported so far possess all the unique characteristics of the polymer thin films: intrinsic self-healing, long-term antifogging, excellent mechanical property, high transmittance and large-scale feasibility. PMID:25784188

  6. Hydrogen-Bonding-Supported Self-Healing Antifogging Thin Films

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojie; He, Junhui

    2015-03-01

    Inspired by the repair of DNA through efficient reformation of hydrogen bonds (H-bonds), herein we report a facile one-step approach to construction of self-healing antifogging thin films on the basis of partly cross-linked poly(vinyl alcohol)(PVA) and poly(acrylic acid)(PAA). By designing the molar ratio of hydroxyl groups to carboxyl groups, the cross-linked polymer thin films maintain abundant free hydroxyl groups to present excellent antifogging property, which is derived from the hydrophilicity and hygroscopicity of the thin films. The thin films showed smart intrinsic self-healing characteristics towards wounds caused by external forces, which is attributed to sufficient free hydroxyl groups at the scratched interfaces to reform H-bonds across the interfaces and a sufficient chain mobility that is indispensable for chain diffusion across the interfaces and hydroxyl groups association to form H-bonds. No synthetic surfaces reported so far possess all the unique characteristics of the polymer thin films: intrinsic self-healing, long-term antifogging, excellent mechanical property, high transmittance and large-scale feasibility.

  7. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing

    NASA Astrophysics Data System (ADS)

    Ahmed, Anansa S.; Ramanujan, R. V.

    2015-09-01

    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible “skin” and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures.

  8. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing.

    PubMed

    Ahmed, Anansa S; Ramanujan, R V

    2015-01-01

    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible "skin" and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures. PMID:26348284

  9. The use of azide-alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Cao, Xiaosong; Gao, Haifeng

    2016-02-01

    The rapid development of efficient organic click coupling reactions has significantly facilitated the construction of synthetic polymers with sophisticated branched nanostructures. This Feature Article summarizes the recent progress in the application of efficient copper-catalyzed and copper-free azide-alkyne cycloaddition (CuAAC and CuFAAC) reactions in the syntheses of dendrimers, hyperbranched polymers, star polymers, graft polymers, molecular brushes, and cyclic graft polymers. Literature reports on the interesting properties and functions of these polytriazole-based nanostructured polymers are also discussed to illustrate their potential applications as self-healing polymers, adhesives, polymer catalysts, opto-electronic polymer materials and polymer carriers for drug and imaging molecules.

  10. Self-healing cable apparatus and methods

    NASA Technical Reports Server (NTRS)

    Huston, Dryver (Inventor); Esser, Brian (Inventor)

    2007-01-01

    Self-healing cable apparatus and methods are disclosed. The cable has a central core surrounded by an adaptive cover that can extend over the entire length of the cable or just one or more portions of the cable. The adaptive cover includes a protective layer having an initial damage resistance, and a reactive layer. When the cable is subjected to a localized damaging force, the reactive layer responds by creating a corresponding localized self-healed region. The self-healed region provides the cable with enhanced damage resistance as compared to the cable's initial damage resistance. Embodiments of the invention utilize conventional epoxies or foaming materials in the reactive layer that are released to form the self-healed region when the damaging force reaches the reactive layer.

  11. Self-Healing Nanocomposites for Reusable Composite Cryotanks

    NASA Technical Reports Server (NTRS)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh

    2013-01-01

    Composite cryotanks, or composite overwrapped pressure vessels (COPVs), offer advantages over currently used aluminum-lithium cryotanks, particularly with respect to weight savings. Future NASA missions are expected to use COPVs in spaceflight propellant tanks to store fuels, oxidizers, and other liquids for launch and space exploration vehicles. However, reliability, reparability, and reusability of the COPVs are still being addressed, especially in cryogenic temperature applications; this has limited the adoption of COPVs in reusable vehicle designs. The major problem with composites is the inherent brittleness of the epoxy matrix, which is prone to microcrack formation, either from exposure to cryogenic conditions or from impact from different sources. If not prevented, the microcracks increase gas permeation and leakage. Accordingly, materials innovations are needed to mitigate microcrack damage, and prevent damage in the first place, in composite cryotanks. The self-healing technology being developed is capable of healing the microcracks through the use of a novel engineered nanocomposite, where a uniquely designed nanoparticle additive is incorporated into the epoxy matrix. In particular, this results in an enhancement in the burst pressure after cryogenic cycling of the nanocomposite COPVs, relative to the control COPVs. Incorporating a novel, self-healing, epoxy-based resin into the manufacture of COPVs allows repeatable self-healing of microcracks to be performed through the simple application of a low-temperature heat source. This permits COPVs to be reparable and reusable with a high degree of reliability, as microcracks will be remediated. The unique phase-separated morphology that was imparted during COPV manufacture allows for multiple self-healing cycles. Unlike single-target approaches where one material property is often improved at the expense of another, robustness has been introduced to a COPV by a combination of a modified resin and

  12. A highly stretchable autonomous self-healing elastomer

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Hui; Wang, Chao; Keplinger, Christoph; Zuo, Jing-Lin; Jin, Lihua; Sun, Yang; Zheng, Peng; Cao, Yi; Lissel, Franziska; Linder, Christian; You, Xiao-Zeng; Bao, Zhenan

    2016-06-01

    It is a challenge to synthesize materials that possess the properties of biological muscles—strong, elastic and capable of self-healing. Herein we report a network of poly(dimethylsiloxane) polymer chains crosslinked by coordination complexes that combines high stretchability, high dielectric strength, autonomous self-healing and mechanical actuation. The healing process can take place at a temperature as low as ‑20 °C and is not significantly affected by surface ageing and moisture. The crosslinking complexes used consist of 2,6-pyridinedicarboxamide ligands that coordinate to Fe(III) centres through three different interactions: a strong pyridyl–iron one, and two weaker carboxamido–iron ones through both the nitrogen and oxygen atoms of the carboxamide groups. As a result, the iron–ligand bonds can readily break and re-form while the iron centres still remain attached to the ligands through the stronger interaction with the pyridyl ring, which enables reversible unfolding and refolding of the chains. We hypothesize that this behaviour supports the high stretchability and self-healing capability of the material.

  13. A highly stretchable autonomous self-healing elastomer.

    PubMed

    Li, Cheng-Hui; Wang, Chao; Keplinger, Christoph; Zuo, Jing-Lin; Jin, Lihua; Sun, Yang; Zheng, Peng; Cao, Yi; Lissel, Franziska; Linder, Christian; You, Xiao-Zeng; Bao, Zhenan

    2016-06-01

    It is a challenge to synthesize materials that possess the properties of biological muscles-strong, elastic and capable of self-healing. Herein we report a network of poly(dimethylsiloxane) polymer chains crosslinked by coordination complexes that combines high stretchability, high dielectric strength, autonomous self-healing and mechanical actuation. The healing process can take place at a temperature as low as -20 °C and is not significantly affected by surface ageing and moisture. The crosslinking complexes used consist of 2,6-pyridinedicarboxamide ligands that coordinate to Fe(III) centres through three different interactions: a strong pyridyl-iron one, and two weaker carboxamido-iron ones through both the nitrogen and oxygen atoms of the carboxamide groups. As a result, the iron-ligand bonds can readily break and re-form while the iron centres still remain attached to the ligands through the stronger interaction with the pyridyl ring, which enables reversible unfolding and refolding of the chains. We hypothesize that this behaviour supports the high stretchability and self-healing capability of the material. PMID:27219708

  14. Polysiloxane-Based Autonomic Self-Healing Elastomers Obtained through Dynamic Boronic Ester Bonds Prepared by Thiol-Ene "Click" Chemistry.

    PubMed

    Zuo, Yujing; Gou, Zhiming; Zhang, Changqiao; Feng, Shengyu

    2016-07-01

    Cross-linked silicone elastomers constructed with dynamic-covalent boronic esters are first synthesized by photoinitiated radical thiol-ene "click" chemistry. The resultant samples can be cut with a sharp knife into two pieces and then healed via the reversibility of the boronic ester cross-linkages to restore the original silicone sample within 30 min. Regulation of luminescent properties is achieved by incorporating organic dye into the elastomers through a "one-pot" thiol-ene reaction. The proposed synthesis procedure demonstrates a new strategy to produce boronic acid silicone materials capable of self-healing without external forces. PMID:27159536

  15. Rheokinetic evaluation of self-healing agents polymerized by Grubbs catalyst embedded in various thermosetting systems

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Sheng, Xia; Lee, Jong Keun; Kessler, Michael R.

    2007-07-01

    In self-healing polymers and composites, the activity of the embedded chemical catalyst within the thermosetting matrix is critical to healing efficiency. Rheological behavior of ring-opening metathesis polymerization (ROMP)-based healing agents, triggered by 1st or 2nd generation Grubbs catalysts that have been suspended in various thermosetting resins, was investigated using an oscillatory parallel plate rheometer. Gel times for various healing agents were determined from the crossover of storage and loss moduli vs. time curves to indicate the activity of the ROMP reaction. Gelation of healing agents initiated by 1st generation Grubbs catalyst occurred faster than those triggered by 2nd generation catalyst. It is suggested that the dissolution rate of the catalyst by the healing agent is an important factor in determining the overall ROMP reaction rate in situ. Optical and scanning electron microscopic observations showed that the finer, rod-like solid particles of the 1st generation catalyst were distributed more homogeneously throughout the cured matrix, which contributed to the faster reaction. Also discussed were effects of different healing agents and thermosetting matrix systems on the ROMP reaction. These results indicate that the self-healing methodology can be expanded to other high performance polymer matrices.

  16. Self-Healing Nanocomposite Hydrogel with Well-Controlled Dynamic Mechanics

    NASA Astrophysics Data System (ADS)

    Li, Qiaochu; Mishra, Sumeet; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels

    Network dynamics is a crucial factor that determines the macroscopic self-healing rate and efficiency in polymeric hydrogel materials, yet its controllability is seldom studied in most reported self-healing hydrogel systems. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we next designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two hierarchical relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its fast self-healing property without the need for external stimuli.

  17. Self-healing networks: redundancy and structure.

    PubMed

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-01-01

    We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. We then analyze the effect of the level of redundancy on the resilience to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. Finally, we study the effects of redundancy under different connectivity patterns-from planar grids, to small-world, up to scale-free networks-on healing performances. Small-world topologies show that introducing some long-range connections in planar grids greatly enhances the resilience to multiple failures with performances comparable to the case of the most resilient (and least realistic) scale-free structures. Obvious applications of self-healing are in the important field of infrastructural networks like gas, power, water, oil distribution systems. PMID:24533065

  18. Self healing nature of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Debroy, Sanghamitra; Pavan Kumar Miriyala, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit

    2016-08-01

    The phenomenon of self healing of cracks in bilayer graphene sheet has been studied using molecular dynamics simulations. The bilayer graphene sheet was subjected to uniaxial tensile load resulting in initiation and propagation of cracks on exceeding the ultimate tensile strength. Subsequently, all forces acting on the sheet were removed and sheet was relaxed. The cracks formed in the graphene sheet healed without any external aid within 0.4 ps The phenomenon of self healing of the cracks in graphene sheet was found to be independent of the length of the crack, but occurred for critical crack opening distance less than 5 Å for AA stacked sheet and 13 Å for AB stacked bilayer graphene sheet. Self healing was observed for both AB (mixed stacking of armchair and zigzag graphene sheet) and AA (both sheets of similar orientation i.e. either armchair-armchair or zigzag-zigzag) stacking of bilayer graphene sheet.

  19. Providing Self-Healing Ability for Wireless Sensor Node by Using Reconfigurable Hardware

    PubMed Central

    Yuan, Shenfang; Qiu, Lei; Gao, Shang; Tong, Yao; Yang, Weiwei

    2012-01-01

    Wireless sensor networks (WSNs) have received tremendous attention over the past ten years. In engineering applications of WSNs, a number of sensor nodes are usually spread across some specific geographical area. Some of these nodes have to work in harsh environments. Dependability of the Wireless Sensor Network (WSN) is very important for its successful applications in the engineering area. In ordinary research, when a node has a failure, it is usually discarded and the network is reorganized to ensure the normal operation of the WSN. Using appropriate WSN re-organization methods, though the sensor networks can be reorganized, this causes additional maintenance costs and sometimes still decreases the function of the networks. In those situations where the sensor networks cannot be reorganized, the performance of the whole WSN will surely be degraded. In order to ensure the reliable and low cost operation of WSNs, a method to develop a wireless sensor node with self-healing ability based on reconfigurable hardware is proposed in this paper. Two self-healing WSN node realization paradigms based on reconfigurable hardware are presented, including a redundancy-based self-healing paradigm and a whole FPAA/FPGA based self-healing paradigm. The nodes designed with the self-healing ability can dynamically change their node configurations to repair the nodes' hardware failures. To demonstrate these two paradigms, a strain sensor node is adopted as an illustration to show the concepts. Two strain WSN sensor nodes with self-healing ability are developed respectively according to the proposed self-healing paradigms. Evaluation experiments on self-healing ability and power consumption are performed. Experimental results show that the developed nodes can self-diagnose the failures and recover to a normal state automatically. The research presented can improve the robustness of WSNs and reduce the maintenance cost of WSNs in engineering applications. PMID:23202176

  20. Methyl methacrylate as a healing agent for self-healing cementitious materials

    NASA Astrophysics Data System (ADS)

    Van Tittelboom, K.; Adesanya, K.; Dubruel, P.; Van Puyvelde, P.; De Belie, N.

    2011-12-01

    Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice.

  1. Cytocompatible, Photoreversible, and Self-Healing Hydrogels for Regulating Bone Marrow Stromal Cell Differentiation.

    PubMed

    Yu, Lianlian; Xu, Kaige; Ge, Liangpeng; Wan, Wenbing; Darabi, Ali; Xing, Malcolm; Zhong, Wen

    2016-09-01

    Photo-crosslinking and self-healing have received considerable attention for the design of intelligent materials. A novel photostimulated, self-healing, and cytocompatible hydrogel system is reported. A coumarin methacrylate crosslinker is synthesized to modify the polyacrylamide-based hydrogels. With the [2+2] cyclo-addition of coumarin moieties, the hydrogels exhibit excellent self-healing capacity when they are exposed to light with wavelengths at 280 and 365 nm, respectively. To enhance cell compatibility, a poly (amidoamine) crosslinker is also synthesized. Variations in light exposure times and irradiation wavelengths are found to alter the self-healing property of the hydrogels. The hydrogels are shown to induce a regular cellular pattern. The hydrogels are used to regulate bone marrow stromal cells differentiation. The relative mRNA expressions are recorded to monitor the osteogenic differentiation of the cells. PMID:27280860

  2. Functionalized Agarose Self-Healing Ionogels Suitable for Supercapacitors.

    PubMed

    Trivedi, Tushar J; Bhattacharjya, Dhrubajyoti; Yu, Jong-Sung; Kumar, Arvind

    2015-10-12

    Agarose has been functionalized (acetylated/carbanilated) in an ionic liquid (IL) medium of 1-butyl-3-methylimidazolium acetate at ambient conditions. The acetylated agarose showed a highly hydrophobic nature, whereas the carbanilated agarose could be dissolved in water as well as in the IL medium. Thermoreversible ionogels were obtained by cooling the IL sols of carbanilated agarose at room temperature. The ionogel prepared from a protic-aprotic mixed-IL system (1-butyl-3-methylimidazolium chloride and N-(2-hydroxyethyl)ammonium formate) demonstrated a superior self-healing property, as confirmed from rheological measurements. The superior self-healing property of such an ionogel has been attributed to the unique inter-intra hydrogen-bonding network of functional groups inserted in the agarose. The ionogel was tested as a flexible solid electrolyte for an activated-carbon-based supercapacitor cell. The measured specific capacitance was found to be comparable with that of a liquid electrolyte system at room temperature and was maintained for up to 1000 charge-discharge cycles. Such novel functionalized-biopolymer self-healing ionogels with flexibility and good conductivity are desirable for energy-storage devices and electronic skins with superior lifespans and robustness. PMID:26280813

  3. Control algorithms of SONET integrated self-healing networks

    NASA Astrophysics Data System (ADS)

    Hasegawa, Satoshi; Okaoue, Yasuyo; Egawa, Takashi; Sakauchi, Hideki

    1994-01-01

    As the deployment of high-speed fiber transmission systems has been accelerated, they are widely recognized as a firm infrastructure of information society. Under this circumstance, the importance of network survivability has been increasing rapidly in these days. In SONET, the self-healing networks have been highlighted as one of the most advanced mechanisms to realize SONET survivable networks. Several schemes have been proposed and studied actively due to a rapid progress on the development of highly intelligent NE's. Among them in this paper, a DCS based distributed self-healing network is discussed from a viewpoint of its control algorithms. Specifically, our self-healing algorithm called TRANS is explained in detail, which possesses such desirable features as providing fast and flexible restoration with line and path level restoration applied to an individual STS-1 channel, capability to handle multiple and even node failures, and so on. Both software simulation and hardware experiment verify that TRANS works properly in a real distributed environment, the result of which is shown in the paper. In addition, the combined use of TRANS and the ring restoration control is proposed taking into account the use in a practical SONET.

  4. A Multiple-Action Self-Healing Coating

    NASA Astrophysics Data System (ADS)

    Lutz, Alexander; van den Berg, Otto; Wielant, Jan; De Graeve, Iris; Terryn, Herman

    2015-12-01

    This paper describes a self-healing coating for corrosion protection of metals which combines two different types of self-healing mechanisms in one coating with multiple-healing functionality. 2-Mercaptobenzothiazole (MBT) was loaded into layered double hydroxide (LDH) carriers which were mixed into an acrylated polycaprolactone polyurethane based shape recovery coating and applied on Hot Dip Galvanized steel (HDG). The effect of triggered release of MBT on the protection of HDG became visible when samples with manually applied defects in the coating were immersed in 0.05 M NaCl solution (first, autonomous healing mechanism). The shape recovery (second, non-autonomous healing mechanism) was triggered by heating the samples for 2 minutes to 60°C. SEM-EDX and Raman Spectroscopy proved the presence of MBT in the LDH, in the MBT-loaded LDH in the coating and the released MBT on the HDG surface in the damaged area after being in contact with a solution containing corrosive ions. Electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET) demonstrate the corrosion protection effect of MBT in the coating with a defect and the restoration of the barrier properties of the coating after defect closure. This way, the independent mechanisms of this multi-action self-healing coating could be demonstrated.

  5. Development of self-healing coatings for corrosion protection on metallic structures

    NASA Astrophysics Data System (ADS)

    Stankiewicz, Alicja; Barker, Michael B.

    2016-08-01

    Inspired by biological systems, artificial self-healing materials are designed for repairing local damage caused by external factors. The rapidly expanding field of self-healing systems contains, among others, materials with well-defined surface properties. Undoubtedly, enhancing surface functionalisation, by applying smart coatings, enjoys an extensive interest. The self-healing ability is particularly essential property for corrosion protection strategies, especially when the use of one of the most effective corrosion systems, based on chromium(VI) compounds, is now banned by the current registration, evaluation, authorisation and restriction of chemicals legislation. Self-healing protective coatings are produced using macromolecular compounds, ceramics, metals and composites. Considering the wide range of available materials, the number of potential combinations seems to be unlimited. The self-healing action of such coatings is activated by appropriate stimuli: temperature changes, radiation, pH changes, pressure changes and mechanical action. In this paper, the research and practical implications of the various approaches to achieving self-healing functionality of protective coatings, as well as potential developments in this area, are explored.

  6. Bioinspired self-healing of advanced composite structures using hollow glass fibres.

    PubMed

    Trask, R S; Williams, G J; Bond, I P

    2007-04-22

    Self-healing is receiving an increasing amount of worldwide interest as a method to autonomously address damage in materials. The incorporation of a self-healing capability within fibre-reinforced polymers has been investigated by a number of workers previously. The use of functional repair components stored inside hollow glass fibres (HGF) is one such bioinspired approach being considered. This paper considers the placement of self-healing HGF plies within both glass fibre/epoxy and carbon fibre/epoxy laminates to mitigate damage occurrence and restore mechanical strength. The study investigates the effect of embedded HGF on the host laminates mechanical properties and also the healing efficiency of the laminates after they were subjected to quasi-static impact damage. The results of flexural testing have shown that a significant fraction of flexural strength can be restored by the self-repairing effect of a healing resin stored within hollow fibres. PMID:17251131

  7. Self-healing in segmented metallized film capacitors: Experimental and theoretical investigations for engineering design

    NASA Astrophysics Data System (ADS)

    Belko, V. O.; Emelyanov, O. A.

    2016-01-01

    A significant increase in the efficiency of modern metallized film capacitors has been achieved by the application of special segmented nanometer-thick electrodes. The proper design of the electrode segmentation guarantees the best efficiency of the capacitor's self-healing (SH) ability. Meanwhile, the reported theoretical and experimental results have not led to the commonly accepted model of the SH process, since the experimental SH dissipated energy value is several times higher than the calculated one. In this paper, we show that the difference is caused by the heat outflow into polymer film. Based on this, a mathematical model of the metallized electrode destruction is developed. These insights in turn are leading to a better understanding of the SH development. The adequacy of the model is confirmed by both the experiments and the numerical calculations. A procedure of optimal segmented electrode design is offered.

  8. Robust synthesis of epoxy resin-filled microcapsules for application to self-healing materials.

    PubMed

    Bolimowski, Patryk A; Bond, Ian P; Wass, Duncan F

    2016-02-28

    Mechanically and thermally robust microcapsules containing diglycidyl ether bisphenol A-based epoxy resin and a high-boiling-point organic solvent were synthesized in high yield using in situ polymerization of urea and formaldehyde in an oil-in-water emulsion. Microcapsules were characterized in terms of their size and size distribution, shell surface morphology and thermal resistance to the curing cycles of commercially used epoxy polymers. The size distribution of the capsules and characteristics such as shell thickness can be controlled by the specific parameters of microencapsulation, including concentrations of reagents, stirrer speed and sonication. Selected microcapsules, and separated core and shell materials, were analysed using thermogravimetric analysis and differential scanning calorimetry. It is demonstrated that capsules lose minimal 2.5 wt% at temperatures no higher than 120°C. These microcapsules can be applied to self-healing carbon fibre composite structural materials, with preliminary results showing promising performance. PMID:26755765

  9. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing

    PubMed Central

    Ahmed, Anansa S.; Ramanujan, R. V.

    2015-01-01

    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible “skin” and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures. PMID:26348284

  10. Bioconcrete: next generation of self-healing concrete.

    PubMed

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-03-01

    Concrete is one of the most widely used construction materials and has a high tendency to form cracks. These cracks lead to significant reduction in concrete service life and high replacement costs. Although it is not possible to prevent crack formation, various types of techniques are in place to heal the cracks. It has been shown that some of the current concrete treatment methods such as the application of chemicals and polymers are a source of health and environmental risks, and more importantly, they are effective only in the short term. Thus, treatment methods that are environmentally friendly and long-lasting are in high demand. A microbial self-healing approach is distinguished by its potential for long-lasting, rapid and active crack repair, while also being environmentally friendly. Furthermore, the microbial self-healing approach prevails the other treatment techniques due to the efficient bonding capacity and compatibility with concrete compositions. This study provides an overview of the microbial approaches to produce calcium carbonate (CaCO3). Prospective challenges in microbial crack treatment are discussed, and recommendations are also given for areas of future research. PMID:26825821

  11. Self-healing coatings containing microcapsule

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Wei; Liao, Le-ping; Wang, Si-jie; Li, Wu-jun

    2012-01-01

    Effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resin droplets. Characteristics of these capsules were studied by 3D measuring laser microscope, particle size analyzer, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC) to investigate their surface morphology, size distribution, chemical structure and thermal stability, respectively. The results indicate that microcapsules containing epoxy resins can be synthesized successfully. The size is around 100 μm. The rough outer surface of microcapsule is composed of agglomerated urea-formaldehyde nanoparticles. The size and surface morphology of microcapsule can be controlled by selecting different processing parameters. The microcapsules basically exhibit good storage stability at room temperature, and they are chemically stable before the heating temperature is up to approximately 200 °C. The model system of self-healing coating consists of epoxy resin matrix, 10 wt% microencapsulated healing agent, 2 wt% catalyst solution. The self-healing function of this coating system is evaluated through self-healing testing of damaged and healed coated steel samples.

  12. Sunlight-induced self-healing of a microcapsule-type protective coating.

    PubMed

    Song, Young-Kyu; Jo, Ye-Hyun; Lim, Ye-Ji; Cho, Sung-Youl; Yu, Hwan-Chul; Ryu, Byung-Cheol; Lee, Sang-In; Chung, Chan-Moon

    2013-02-01

    Photopolymerization behavior of a methacryloxypropyl-terminated polydimethylsiloxane (MAT-PDMS) healing agent was investigated in the presence of benzoin isobutyl ether (BIE) photoinitiator by Fourier transform infrared (FT-IR) spectroscopy. MAT-PDMS and BIE were microencapsulated with urea-formaldehyde polymer. The surface and shell morphology of the microcapsules was investigated by scanning electron microscopy (SEM). Mean diameter and size distribution of the microcapsules could be controlled by agitation rate. A coating matrix formulation was prepared by sol-gel reaction of tetraethyl orthosilicate (TEOS) in the presence of a polysiloxane and by subsequent addition of an adhesion promoter. The formulation and microcapsules were mixed to give a self-healing coating formulation, which was then sprayed to surface of cellulose-fiber-reinforced-cement (CRC) board or mortar. Contact angle measurements showed that both the polymerized MAT-PDMS and the prepared coating matrix are hydrophobic, and the coating matrix has good wettability with MAT-PDMS. It was confirmed by optical microscopy and SEM that, when the self-healing coating is damaged, the healing agent is released from ruptured microcapsules and fills the damaged region. The self-healing coating was evaluated as protective coating for mortar, and it was demonstrated by water permeability and chloride ion penetration tests that our system has sunlight-induced self-healing capability. Our self-healing coating is the first example of capsule-type photoinduced self-healing system, and offers the advantages of catalyst-free, environmentally friendly, inexpensive, practical healing. PMID:23373694

  13. Scratch Cell Test: A Simple, Cost Effective Screening Tool to Evaluate Self-Healing in Anti-Corrosion Coatings

    NASA Astrophysics Data System (ADS)

    Rani, Amitha; Somaiah, Durga; Megha; Poddar, Mitalee

    2014-09-01

    A quick and simple scratch cell set up to evaluate the self-healing of an hybrid sol-gel (ormosil) coating was fabricated. This methacrylate-based anti-corrosion coating was applied on the aerospace aluminium alloy AA2024-T3, and cured at room temperature. This technique of evaluation requires minimum instrumentation. The inhibitors cerium nitrate, benzotriazole and 8-hydroxy quinoline (8-HQ) were used in the study. The self-healing ability of the inhibitors decreased in the following order: 8-HQ, BTZ and Ce. 8-HQ showed the highest self-healing ability and was comparable to the commercial hexavalent chromium conversion coating—Alodine. Spectroscopic analysis of the electrolyte and EDX of the coatings indicated the movement of the inhibitor from the coating to the site of damage, thereby effecting self-healing. It was observed that an increased inhibitor concentration in the coatings did not accelerate the healing process. Inhibitor release was slower in the coatings doped with inhibitor-loaded nano-containers, when compared to inhibitor-spiked coatings. This property of controlled release is desirable in self-healing coatings. Electro impedance studies further confirmed self-healing efficiency of the coatings. The scratch cell study reported here is the first of its kind with the ormosil under study on AA2024-T3 aluminium alloy. The results are encouraging and warranty a quick and simple qualitative screening of the self-healing potential of the inhibitors with minimum instrumentation.

  14. Effects of self-healing microcapsules on bending performance in composite brake pads

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Dong, Xiu-ping; Wang, Hui

    2009-07-01

    For the purpose of reducing self-weight, friction noise and cost, improving shock absorption, enhancing corrosion and wear resistance, brake pads made of composite materials with self-healing function are prepared to substitute metal ones by designing ingredients and applying optimized production technology. As self-healing capsules are chosen, new method with technology of self-healing microcapsules, dicyclpentadiene (DCPD) microcapsules coated with poly (urea-formaldehyde), is put forward in this paper. In the crack's extending process, the stress is concentrated at the crack end, where the microcapsule is designed to be located. When the stress goes through the microcapsules and causes them to break, the self-healing liquid runs out to fill the crack by the capillary and it will poly-react with catalyst in the composite. As a result, the crack is healed. In this paper, polymer matrix composite brake pads with 6 prescriptions are prepared and studied. Three-point bending tests are carried out according to standards in GB/T 3356-1999 and the elastic constants of these polymer matrix composites are obtained by experiments. In accordance with the law of the continuous fiber composite, elastic constants of the short-fiber composite can be calculated by proportions of each ingredient. Results show that the theoretical expected results and the experimental values are consistent. 0.3-1.2 % mass proportion of microcapsules has little effects on the composite's bending intensity and modulus of elasticity. These studies also show that self-healing microcapsules used in composite brake pads is feasible.

  15. Electrically conductive PEDOT coating with self-healing superhydrophobicity.

    PubMed

    Zhu, Dandan; Lu, Xuemin; Lu, Qinghua

    2014-04-29

    A self-healing electrically conductive superhydrophobic poly(3,4-ethylenedioxythiophene) (PEDOT) coating has been prepared by chemical vapor deposition of a fluoroalkylsilane (POTS) onto a PEDOT film, which was obtained by electrochemical deposition. The coating not only maintained high conductivity with a low resistivity of 3.2 × 10(-4) Ω·m, but also displayed a water contact angle larger than 156° and a sliding angle smaller than 10°. After being etched with O2 plasma, the coating showed an excellent self-healing ability, spontaneously regaining its superhydrophobicity when left under ambient conditions for 20 h. This superhydrophobicity recovery process was found to be humidity-dependent, and could be accelerated and completed within 2 h under a high humidity of 84%. The coating also exhibited good superhydrophobicity recovering ability after being corroded by strong acid solution at pH 1 or strong base solution at pH 14 for 3 h. PMID:24702588

  16. Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Sordo, Federica; Michaud, Véronique

    2016-08-01

    Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.

  17. Characterization and performance of a self-healing composite material

    NASA Astrophysics Data System (ADS)

    Kessler, Michael Richard

    The development of a self-healing polymer-matrix composite material that possesses the ability to heal cracks autonomically is described. The system uses a monomer repair agent, dicyclopentadiene (DCPD), which is stored in an epoxy matrix by dispersing microcapsules containing the liquid repair agent throughout the matrix. When the material is damaged, cracks propagate through the material and break open the microcapsules, releasing the repair agent into the crack plane. Finally, the DCPD repair agent solidifies by ring-opening metathesis polymerization (ROMP) after coming in contact with a ruthenium-based catalyst (Grubbs' catalyst) dispersed in the matrix. The process by which the DCPD-filled microcapsules are prepared and the various techniques to characterize the microcapsules are discussed. The cure kinetics of poly dicyclopentadiene (pDCPD) prepared by ROMP with three different concentrations of Grubbs' catalyst are examined using differential scanning calorimetry (DSC). The experimental data are used to test several different phenomenological kinetic models. The data are best modeled with a "model-free" isoconversional method. This analysis reveals that the activation energy increases significantly for degree of cure greater than 60%. Catalyst concentration is shown to have a large effect on the cure kinetics. Differential scanning calorimetry measurements on the catalyzed healing agent are also used to study the stability of the system to environmental conditions. A study of the healing of delamination damage in woven reinforced epoxy composites is performed. Three types of healing process are studied. In the first, a catalyzed monomer is manually injected into the delamination. In the second, a self-activated material is created by embedding the catalyst directly into the matrix of the composite, then manually injecting the monomer. In the third, a fully integrated in situ system is described with embedded microcapsules and catalyst. Double

  18. Recent Development of Durable and Self-Healing Surfaces with Special Wettability.

    PubMed

    Chen, Kunlin; Wu, Yi; Zhou, Shuxue; Wu, Limin

    2016-03-01

    Artificial special wetting surfaces have drawn much interest due to their important applications in many fields. Nevertheless, tremendous challenges still remain for the fabrication of wetting surfaces with durable and self-healing properties. Here, recent progress of durable, self-healing wetting surfaces is highlighted by discussing the fabrications of several typical wetting surfaces including superhydrophobic surfaces, superamphiphobic surfaces, underwater superoleophobic surfaces, and high hydrophilic antifouling surfaces based on expertise and related research experience. To conclude, some perspectives on the future research and development of these special wetting surfaces are presented. PMID:26833559

  19. Autonomous self-healing structural composites with bio-inspired design

    PubMed Central

    D’Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K.; Saiz, Eduardo

    2016-01-01

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli. PMID:27146382

  20. Autonomous self-healing structural composites with bio-inspired design

    NASA Astrophysics Data System (ADS)

    D’Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K.; Saiz, Eduardo

    2016-05-01

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli.

  1. Autonomous self-healing structural composites with bio-inspired design.

    PubMed

    D'Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K; Saiz, Eduardo

    2016-01-01

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli. PMID:27146382

  2. Supramolecular polymer networks: hydrogels and bulk materials.

    PubMed

    Voorhaar, Lenny; Hoogenboom, Richard

    2016-07-21

    Supramolecular polymer networks are materials crosslinked by reversible supramolecular interactions, such as hydrogen bonding or electrostatic interactions. Supramolecular materials show very interesting and useful properties resulting from their dynamic nature, such as self-healing, stimuli-responsiveness and adaptability. Here we will discuss recent progress in polymer-based supramolecular networks for the formation of hydrogels and bulk materials. PMID:27206244

  3. Assisted self-healing in ripped graphene

    SciTech Connect

    Blaeckberg, L.; Sjoestrand, H.; Klintenberg, M.; Ringbom, A.

    2010-11-15

    A monolayer of sp{sup 2}-bonded carbon (graphene) is a material with great technological promise because of, for example, its transport, electrical, optical, and mechanical properties. In this work noble gas diffusion through ripped graphene sheets is explored. The motivation is improved detection systems used worldwide to verify compliance of the Comprehensive Nuclear-Test-Ban Treaty. It is demonstrated that even ripped graphene sheets and/or nonoverlapping graphene flakes inhibit noble gas diffusion. The latter has been shown for He and Xe where an infinitely long rip was constructed to have Stone-Wales edges. It is also shown that the ripped graphene layer self-heal in an alternating pentagon, hexagon, heptagon (5-6-7) and 7-6-5 pattern perpendicular to the rip. Moreover, the noble gas (He and Xe) assists in the healing process of wider rips.

  4. Active self-healing encapsulation of vaccine antigens in PLGA microspheres.

    PubMed

    Desai, Kashappa-Goud H; Schwendeman, Steven P

    2013-01-10

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to "actively" load the protein in the polymer pores and facilitate polymer self-healing at a temperature>the hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigens in PLGA was investigated. Active self-healing encapsulation of two antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvants (aluminum hydroxide (Al(OH)₃) or calcium phosphate). Active loading of vaccine antigen in Al(OH)₃-PLGA microspheres was found to: a) increase with an increasing loading of Al(OH)₃ (0.88-3 wt.%) and addition of porosigen, b) decrease when the inner Al(OH)₃/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively >0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)₃ in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt.% TT) and encapsulation efficiency (~97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer, and d

  5. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    PubMed Central

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  6. Geometric optimization of self-healing power capacitor with consideration of multiple factors

    NASA Astrophysics Data System (ADS)

    Wang, Zijian; Yan, Fei; Hua, Zheng; Qi, Lingna; Hou, Zhijian; Xu, Zhiniu

    2016-08-01

    To decrease temperature rise in self-healing power capacitor and lay foundation for improvement of applied voltage and lifetime, the influence of elements orientation on the temperature distribution of self-healing capacitor is investigated using Fluent15.0 and validated by thermal stability test. Based on the above investigations, the influences of parameters of film, electrode and element on power loss and temperature rise of capacitor are systematically investigated. The results reveal that if geometry and volume of capacitor remain constant, orientation of spray coating has little influence on temperature rise. In view of manufacturing processes, the mode of spray coating close to the large surface should be selected. The power loss will decrease with increasing/decreasing in film thickness/width. Therefore, thicker film should be selected and its width should be less than 75 mm. Temperature rise decreases slowly with element diameter. However, the element diameter should be a moderate value because of the influence of it on the number of self-healing point. A capacitor group with rated voltage of 11/ √{ 3} kV and capacity of 334 kvar is designed and the scheme with the lowest temperature rise is selected. This study provides a reference to self-healing capacitor geometric optimization and lifetime improvement.

  7. Self-healing multilayer polyelectrolyte composite film with chitosan and poly(acrylic acid).

    PubMed

    Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-11-21

    If self-healing materials can be prepared via simple technology and methods using nontoxic materials, this would be a great step forward in the creation of environmentally friendly self-healing materials. In this paper, the specific structural parameters of the various hydrogen bonds between chitosan (CS) and polyacrylic acid (PAA) were calculated. Then, multilayer polyelectrolyte films were fabricated with CS and PAA based on layer-by-layer (LbL) self-assembly technology at different pH values. The possible influence of pH on the (CS/PAA) × 30 multilayer polyelectrolyte film was investigated. The results show that the interactions between CS and PAA, swelling capacity, microstructure, wettability, and self-healing ability are all governed by the pH of the CS solution. When the pH value of the CS solution is 3.0, the prepared multilayer polyelectrolyte film (CS3.0/PAA2.8) × 30 has fine-tuned interactions, a network-like structure, good swelling ability, good hydrophilicity, and excellent self-healing ability. This promises to greatly widen the future applications of environmentally friendly materials and bio-materials. PMID:26364567

  8. Molecular self-healing mechanisms between C60-fullerene and anthracene unveiled by Raman and two-dimensional correlation spectroscopy.

    PubMed

    Geitner, R; Kötteritzsch, J; Siegmann, M; Fritzsch, R; Bocklitz, T W; Hager, M D; Schubert, U S; Gräfe, S; Dietzek, B; Schmitt, M; Popp, J

    2016-07-21

    The self-healing polymer P(LMA-co-MeAMMA) crosslinked with C60-fullerene has been studied by FT-Raman spectroscopy in combination with two-dimensional (2D) correlation analysis and density functional theory calculations. To unveil the molecular changes during the self-healing process mediated by the Diels-Alder equilibrium between 10-methyl-9-anthracenyl groups and C60-fullerene different anthracene-C60-fullerene adducts have been synthesized and characterized by time-, concentration- and temperature-dependent FT-Raman measurements. The self-healing process could be monitored via the C60-fullerene vibrations at 270, 432 and 1469 cm(-1). Furthermore, the detailed analysis of the concentration-dependent FT-Raman spectra point towards the formation of anthracene-C60-fullerene adducts with an unusual high amount of anthracene bound to C60-fullerene in the polymer film, while the 2D correlation analysis of the temperature-dependent Raman spectra suggests a stepwise dissociation of anthracene-C60-fullerene adducts, which are responsible for the self-healing of the polymer. PMID:27327116

  9. Self-Healing Elastin-Bioglass Hydrogels.

    PubMed

    Zeng, Qiongyu; Desai, Malav S; Jin, Hyo-Eon; Lee, Ju Hun; Chang, Jiang; Lee, Seung-Wuk

    2016-08-01

    Tailorable hydrogels that are mechanically robust, injectable, and self-healable, are useful for many biomedical applications including tissue repair and drug delivery. Here we use biological and chemical engineering approaches to develop a novel in situ forming organic/inorganic composite hydrogel with dynamic aldimine cross-links using elastin-like polypeptides (ELP) and bioglass (BG). The resulting ELP/BG biocomposites exhibit tunable gelling behavior and mechanical characteristics in a composition and concentration dependent manner. We also demonstrate self-healing in the ELP/BG hydrogels by successfully reattaching severed pieces as well as through rheology. In addition, we show the strength of genetic engineering to easily customize ELP by fusing cell-stimulating "RGD" peptide motifs. We showed that the resulting composite materials are cytocompatible as they support the cellular growth and attachment. Our robust in situ forming ELP/BG composite hydrogels will be useful as injectable scaffolds for delivering cell and drug molecules to promote soft tissue regeneration in the future. PMID:27380227

  10. Self-healing, an intrinsic property of biomineralization processes.

    PubMed

    Müller, Werner E G; Wang, Xiaohong; Jochum, Klaus Peter; Schröder, Heinz C

    2013-05-01

    The sponge siliceous spicules are formed enzymatically via silicatein, in contrast to other siliceous biominerals. Originally, silicatein had been described as a major structural protein of the spicules that has the property to allow a specific deposition of silica onto their surface. More recently, it had been unequivocally demonstrated that silicatein displays a genuine enzyme activity, initiating and maintaining silica biopolycondensation at low precursor concentrations (<2 mM). Even more, as silicatein becomes embedded into the biosilica polymer, formed by the enzyme, it retains its functionality to enable a controlled biosilica deposition. The protection of silicatein through the biosilica mantel is so strong that it conserves the functionality of the enzyme for thousands of years. The implication of this finding, the preservation of the enzyme function over such long time periods, is that the intrinsic property of silicatein to display its enzymatic activity remains in the biosilica deposits. This self-healing property of sponge biosilica can be utilized to engineer novel hybrid materials, with silicatein as a functional template, which are more resistant toward physical stress and fracture. Those hybrid materials can even be used for the fabrication of silica dielectrics coupled to optical nanowires. PMID:23509013

  11. Activation-deactivation of self-healing in supramolecular rubbers

    NASA Astrophysics Data System (ADS)

    Corte, Laurent; Maes, Florine; Montarnal, Damien; Cantournet, Sabine; Tournilhac, Francois; Leibler, Ludwik; Mines-Paristech Cnrs (Umr7633) Team; Espci-Paristech Cnrs (Umr7167) Team

    2011-03-01

    Self-healing materials have the ability to restore autonomously their structural integrity after damage. Such a remarkable property was obtained recently in supramolecular rubbers formed by a network of small molecules associated via hydrogen bonds. Here we explore this self-healing through an original tack experiment where two parts of supramolecular rubber are brought into contact and then separated. These experiments reveal that a strong self-healing ability is activated by damage even though the surfaces of a molded part are weakly self-adhesive. In our testing conditions, a five minute contact between crack faces is sufficient to recover most mechanical properties of the bulk while days are required to obtain such adhesion levels with melt-pressed surfaces. We show that the deactivation of this self-healing ability seems unexpectedly slow as compared to the predicted dynamics of supramolecular networks. Fracture faces stored apart at room temperature still self-heal after days but are fully deactivated within hours by annealing. Combining these results with microstructural observations gives us a deeper insight into the mechanisms involved in this self-healing process.

  12. Molecular structure of self-healing polyampholyte hydrogels analyzed from tensile behaviors.

    PubMed

    Sun, Tao Lin; Luo, Feng; Kurokawa, Takayuki; Karobi, Sadia Nazneen; Nakajima, Tasuku; Gong, Jian Ping

    2015-12-28

    Recently, charge balanced polyampholytes (PA) have been found to form tough and self-healing hydrogels. This class of physical hydrogels have a very high equilibrated polymer concentration in water (ca. 40-50 wt%), and are strongly viscoelastic. They are synthesized by random copolymerization of equal amounts of oppositely charged monomers at a high concentration, followed by a dialysis process of the small counter-ions and co-ions in water. The randomly distributed, opposite charges of the polymer form multiple ionic bonds of intra- and inter-chains with strength distribution. The strong inter-chain bonds, stabilized by topological entanglement, serve as quasi-permanent crosslinks, imparting the elasticity, while the weak bonds, both inter- and intra-chains, reversibly break and re-form to dissipate energy to toughen the materials. In this work, we intend to clarify the structure of the physical PA hydrogels from the tensile behaviors of the PA hydrogels. To clarify the structure and its formation mechanism, we analysed the tensile behaviors of the samples before and after the dialysis. We separated the quasi-permanent crosslinking of strong inter-chain bonds and the dynamic crosslinking of weak inter-chain bonds by using a combined model that consists of the Upper Convected Maxwell model and the Gent strain hardening model. The model fitting of the tensile behaviors extracts quantitative structural parameters, including the densities of weak and strong inter-chain bonds and the theoretical finite extensibility of polymer chains. Based on the fitting results of the combined model, the structural parameters of partial chains at a fixed observation time, including the Kuhn number, Kuhn length, and chain conformation, are determined using the scaling theory. The effects of monomer concentration at preparation, the effect of dialysis and the initial strain rate on the dynamic structure of PA gels, are discussed based on these analyses. PMID:26435107

  13. Solution-Blown Core-Shell Self-Healing Nano- and Microfibers.

    PubMed

    Lee, Min Wook; Yoon, Sam S; Yarin, Alexander L

    2016-02-24

    Self-healing microfibers with core-shell geometry were studied. A commercial binary epoxy was encased in solution-blown polymer nano-/microfibers in the 0.2-2.6 μm diameter range. The core-shell microfibers were formed by coaxial nozzles, which encapsulated the epoxy resin and its hardener in separate cores. Solution blowing, the fiber-forming process used in this work, was at least 30 times faster than the electrospinning method used previously and has already been scaled up to the industrial level. These core-shell microfibers show self-healing capability, in which epoxy and hardener are released from the cores of damaged fibers, resulting in polymerization. The epoxy used had a higher strength and shorter solidification time than poly(dimethylsiloxane) (PDMS) used previously. Also, the larger fiber diameters in the present study facilitated faster release of the epoxy resin and its hardener from the fiber cores, shortening the solidification time in comparison to the previous studies. Blister tests were conducted, which measured the adhesion energy of microfiber mats to substrates and the cohesion energy between layers of microfiber mats before and after fatigue damage followed by self-healing. PMID:26836581

  14. Processing and Damage Tolerance of Continuous Carbon Fiber Composites Containing Puncture Self-Healing Thermoplastic Matrix

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Gordon, Keith L.; Czabaj, Michael W.; Cano, Roberto J.; Siochi, Emilie J.

    2012-01-01

    Research at NASA Langley Research Center (NASA LaRC) has identified several commercially available thermoplastic polymers that self-heal after ballistic impact and through-penetration. One of these resins, polybutadiene graft copolymer (PB(sub g)), was processed with unsized IM7 carbon fibers to fabricate reinforced composite material for further evaluation. Temperature dependent characteristics, such as the degradation point, glass transition (T(sub g)), and viscosity of the PBg polymer were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic parallel plate rheology. The PBg resin was processed into approximately equal to 22.0 cm wide unidirectional prepreg tape in the NASA LaRC Advanced Composites Processing Research Laboratory. Data from polymer thermal characterization guided the determination of a processing cycle used to fabricate quasi-isotropic 32-ply laminate panels in various dimensions up to 30.5cm x 30.5cm in a vacuum press. The consolidation quality of these panels was analyzed by optical microscopy and acid digestion. The process cycle was further optimized based on these results and quasi-isotropic, [45/0/-45/90]4S, 15.24cm x 15.24cm laminate panels were fabricated for mechanical property characterization. The compression strength after impact (CAI) of the IM7/pBG composites was measured both before and after an elevated temperature and pressure healing cycle. The results of the processing development effort of this composite material as well as the results of the mechanical property characterization are presented in this paper.

  15. Self-healing concrete by use of microencapsulated bacterial spores

    SciTech Connect

    Wang, J.Y.; Soens, H.; Verstraete, W.; De Belie, N.

    2014-02-15

    Microcapsules were applied to encapsulate bacterial spores for self-healing concrete. The viability of encapsulated spores and the influence of microcapsules on mortar specimens were investigated first. Breakage of the microcapsules upon cracking was verified by Scanning Electron Microscopy. Self-healing capacity was evaluated by crack healing ratio and the water permeability. The results indicated that the healing ratio in the specimens with bio-microcapsules was higher (48%–80%) than in those without bacteria (18%–50%). The maximum crack width healed in the specimens of the bacteria series was 970 μm, about 4 times that of the non-bacteria series (max 250 μm). The overall water permeability in the bacteria series was about 10 times lower than that in non-bacteria series. Wet–dry cycles were found to stimulate self-healing in mortar specimens with encapsulated bacteria. No self-healing was observed in all specimens stored at 95%RH, indicating that the presence of liquid water is an essential component for self-healing.

  16. Assessment of Composite Delamination Self-Healing Via Micro-Encapsulation

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; White, Scott R.

    2008-01-01

    Composite skin/stringer flange debond specimens manufactured from composite prepreg containing interleaf layers with a polymer based healing agent encapsulated in thin walled spheres were tested. As a crack develops and grows in the base polymer, the spheres fracture releasing the healing agent. The agent reacts with catalyst and polymerizes healing the crack. In addition, through-thickness reinforcement, in the form of pultruded carbon z-pins were included near the flange tips to improve the resistance to debonding. Specimens were manufactured with 14 plies in the skin and 10 plies in the stiffener flange. Three-point bend tests were performed to measure the skin/stiffener debonding strength and the recovered strength after healing. The first three tests performed indicated no healing following unloading and reloading. Micrographs showed that delaminations could migrate to the top of the interleaf layer due to the asymmetric loading, and hence, bypass most of the embedded capsules. For two subsequent tests, specimens were clamped in reverse bending before reloading. In one case, healing was observed as evidenced by healing agent that leaked to the specimen edge forming a visible "scar". The residual strength measured upon reloading was 96% of the original strength indicating healing had occurred. Hence, self-healing is possible in fiber reinforced composite material under controlled conditions, i.e., given enough time and contact with pressure on the crack surfaces. The micro-encapsulation technique may prove more robust when capsule sizes can be produced that are small enough to be embedded in the matrix resin without the need for using an interleaf layer. However, in either configuration, the amount of healing that can occur may be limited to the volume of healing agent available relative to the crack volume that must be filled.

  17. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties

    NASA Astrophysics Data System (ADS)

    Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Xu, Ben; Fu, Yongqing; Liu, Yanju; Leng, Jinsong

    2016-01-01

    A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ɛ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin-based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix.

  18. Quantitative comparison of self-healing ability between Bessel–Gaussian beam and Airy beam

    SciTech Connect

    Wen, Wei; Chu, Xiuxiang

    2015-09-15

    The self-healing ability during propagation process is one of the most important properties of non-diffracting beams. This ability has crucial advantages to light sheet-based microscopy to reduce scattering artefacts, increase the quality of the image and enhance the resolution of microscopy. Based on similarity between two infinite-dimensional complex vectors in Hilbert space, the ability to a Bessel–Gaussian beam and an Airy beam have been studied and compared. Comparing the evolution of the similarity of Bessel–Gaussian beam with Airy beam under the same conditions, we find that Bessel–Gaussian beam has stronger self-healing ability and is more stable than that of Airy beam. To confirm this result, the intensity profiles of Bessel–Gaussian beam and Airy beam with different similarities are numerically calculated and compared.

  19. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications

    NASA Astrophysics Data System (ADS)

    Tee, Benjamin C.-K.; Wang, Chao; Allen, Ranulfo; Bao, Zhenan

    2012-12-01

    Pressure sensitivity and mechanical self-healing are two vital functions of the human skin. A flexible and electrically conducting material that can sense mechanical forces and yet be able to self-heal repeatably can be of use in emerging fields such as soft robotics and biomimetic prostheses, but combining all these properties together remains a challenging task. Here, we describe a composite material composed of a supramolecular organic polymer with embedded nickel nanostructured microparticles, which shows mechanical and electrical self-healing properties at ambient conditions. We also show that our material is pressure- and flexion-sensitive, and therefore suitable for electronic skin applications. The electrical conductivity can be tuned by varying the amount of nickel particles and can reach values as high as 40 S cm-1. On rupture, the initial conductivity is repeatably restored with ~90% efficiency after 15 s healing time, and the mechanical properties are completely restored after ~10 min. The composite resistance varies inversely with applied flexion and tactile forces. These results demonstrate that natural skin's repeatable self-healing capability can be mimicked in conductive and piezoresistive materials, thus potentially expanding the scope of applications of current electronic skin systems.

  20. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating.

    PubMed

    Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng

    2015-09-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto a porous stainless-steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water-air interface, collect and convert solar light into heat, and locally heat only the water surface for enhanced evaporation. PMID:26184454

  1. Self-Healing Metals and Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Ferguson, J. B.; Schultz, Benjamin F.; Rohatgi, Pradeep K.

    2014-06-01

    Self-healing in inorganic materials is a relatively new area in materials science and engineering that draws inspiration from biological systems that can self-repair damage. This article reviews the preliminary attempts to impart self-healing behavior to metals. Several challenges yet exist in the development of metallic alloys that can self-repair damage, including surface bonding issues, such as liquid/solid contact angle (wetting) and oxidation, and practical issues, such as capillary pressure for delivery of a liquid metal to a damaged area or crack, and the overall mechanical properties of a composite system. Although the applied research approaches reviewed have obtained marginal success, the development of self-healing metallic systems has the potential to benefit a wide range of industrial applications and thus deserves greater investment in fundamental research.

  2. Impact of self-healing capability on network robustness

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2015-04-01

    A wide spectrum of real-life systems ranging from neurons to botnets display spontaneous recovery ability. Using the generating function formalism applied to static uncorrelated random networks with arbitrary degree distributions, the microscopic mechanism underlying the depreciation-recovery process is characterized and the effect of varying self-healing capability on network robustness is revealed. It is found that the self-healing capability of nodes has a profound impact on the phase transition in the emergence of percolating clusters, and that salient difference exists in upholding network integrity under random failures and intentional attacks. The results provide a theoretical framework for quantitatively understanding the self-healing phenomenon in varied complex systems.

  3. Impact of self-healing capability on network robustness.

    PubMed

    Shang, Yilun

    2015-04-01

    A wide spectrum of real-life systems ranging from neurons to botnets display spontaneous recovery ability. Using the generating function formalism applied to static uncorrelated random networks with arbitrary degree distributions, the microscopic mechanism underlying the depreciation-recovery process is characterized and the effect of varying self-healing capability on network robustness is revealed. It is found that the self-healing capability of nodes has a profound impact on the phase transition in the emergence of percolating clusters, and that salient difference exists in upholding network integrity under random failures and intentional attacks. The results provide a theoretical framework for quantitatively understanding the self-healing phenomenon in varied complex systems. PMID:25974544

  4. Electrical self-healing of mechanically damaged zinc oxide nanobelts.

    PubMed

    Zang, Jianfeng; Xu, Zhi-Hui; Webb, Richard A; Li, Xiaodong

    2011-01-12

    We report the observation of remarkable electrical self-healing in mechanically damaged ZnO nanobelts. Nanoindentation into intrinsically defect-free ZnO nanobelts induces deformation and crack damage, causing a dramatic electrical signal decrease. Two self-healing regimes in the nanoindented ZnO nanobelts are revealed. The physical mechanism for the observed phenomena is analyzed in terms of the nanoindentation-induced dislocations, the short-range atomic diffusion in nanostructures, and the local heating of the dislocation zone in the electrical measurement. PMID:21121680

  5. Fast-acting self-healing metallic fuse.

    NASA Technical Reports Server (NTRS)

    Schwartz, F. C.; Renton, C. A.; Rabinovici, B.

    1971-01-01

    Description of a fast-acting nonmechanical self-healing mercury fuse capable of protecting a high current circuit or device from overcurrent fault damages. Basically the self-healing fuse consists of two enclosed mercury reservoirs connected by a fine capillary tube filled with mercury that serves as the fusing element. It is pointed out that a better understanding of the energy conversion process involved in the operation of the device could help explore other device configurations (such as a tapering geometry and use of magnetic field to drive the arc into the fuse wall on inductive loads, etc.) and thus extend the range of capabilities for this type of protective device.

  6. Damage, self-healing, and hysteresis in spider silks.

    PubMed

    De Tommasi, D; Puglisi, G; Saccomandi, G

    2010-05-19

    In this article, we propose a microstructure-based continuum model to describe the material behavior of spider silks. We suppose that the material is composed of a soft fraction with entropic elasticity and a hard, damageable fraction. The hard fraction models the presence of stiffer, crystal-rich, oriented regions and accounts for the effect of softening induced by the breaking of hydrogen bonds. To describe the observed presence of crystals with different size, composition, and orientation, this hard fraction is modeled as a distribution of materials with variable properties. The soft fraction describes the remaining regions of amorphous material and is here modeled as a wormlike chain. During stretching, we consider the effect of bond-breaking as a transition from the hard- to the soft-material phase. As we demonstrate, a crucial effect of bond-breaking that accompanies the softening of the material is an increase in contour length associated with chains unraveling. The model describes also the self-healing properties of the material by assuming partial bond reconnection upon unloading. Despite its simplicity, the proposed mechanical system reproduces the main experimental effects observed in cyclic loading of spider silks. Moreover, our approach is amenable to two- or three-dimensional extensions and may prove to be a useful tool in the field of microstructure optimization for bioinspired materials. PMID:20441758

  7. Bioinspired engineering study of Plantae vascules for self-healing composite structures

    PubMed Central

    Trask, R. S.; Bond, I. P.

    2010-01-01

    This paper presents the first conceptual study into creating a Plantae-inspired vascular network within a fibre-reinforced polymer composite laminate, which provides an ongoing self-healing functionality without incurring a mass penalty. Through the application of a ‘lost-wax’ technique, orthogonal hollow vascules, inspired by the ‘ray cell’ structures found in ring porous hardwoods, were successfully introduced within a carbon fibre-reinforced epoxy polymer composite laminate. The influence on fibre architecture and mechanical behaviour of single vascules (located on the laminate centreline) when aligned parallel and transverse to the local host ply was characterized experimentally using a compression-after-impact test methodology. Ultrasonic C-scanning and high-resolution micro-CT X-ray was undertaken to identify the influence of and interaction between the internal vasculature and impact damage. The results clearly show that damage morphology is influenced by vascule orientation and that a 10 J low-velocity impact damage event is sufficient to breach the vasculature; a prerequisite for any subsequent self-healing function. The residual compressive strength after a 10 J impact was found to be dependent upon vascule orientation. In general, residual compressive strength decreased to 70 per cent of undamaged strength when vasculature was aligned parallel to the local host ply and a value of 63 per cent when aligned transverse. This bioinspired engineering study has illustrated the potential that a vasculature concept has to offer in terms of providing a self-healing function with minimum mass penalty, without initiating premature failure within a composite structure. PMID:19955122

  8. Bioinspired engineering study of Plantae vascules for self-healing composite structures.

    PubMed

    Trask, R S; Bond, I P

    2010-06-01

    This paper presents the first conceptual study into creating a Plantae-inspired vascular network within a fibre-reinforced polymer composite laminate, which provides an ongoing self-healing functionality without incurring a mass penalty. Through the application of a 'lost-wax' technique, orthogonal hollow vascules, inspired by the 'ray cell' structures found in ring porous hardwoods, were successfully introduced within a carbon fibre-reinforced epoxy polymer composite laminate. The influence on fibre architecture and mechanical behaviour of single vascules (located on the laminate centreline) when aligned parallel and transverse to the local host ply was characterized experimentally using a compression-after-impact test methodology. Ultrasonic C-scanning and high-resolution micro-CT X-ray was undertaken to identify the influence of and interaction between the internal vasculature and impact damage. The results clearly show that damage morphology is influenced by vascule orientation and that a 10 J low-velocity impact damage event is sufficient to breach the vasculature; a prerequisite for any subsequent self-healing function. The residual compressive strength after a 10 J impact was found to be dependent upon vascule orientation. In general, residual compressive strength decreased to 70 per cent of undamaged strength when vasculature was aligned parallel to the local host ply and a value of 63 per cent when aligned transverse. This bioinspired engineering study has illustrated the potential that a vasculature concept has to offer in terms of providing a self-healing function with minimum mass penalty, without initiating premature failure within a composite structure. PMID:19955122

  9. Functional Metal Matrix Composites: Self-lubricating, Self-healing, and Nanocomposites-An Outlook

    NASA Astrophysics Data System (ADS)

    Dorri Moghadam, Afsaneh; Schultz, Benjamin F.; Ferguson, J. B.; Omrani, Emad; Rohatgi, Pradeep K.; Gupta, Nikhil

    2014-06-01

    Many different types of advanced metal matrix composites are now available, some of which possess functional properties. Recent work on particle-reinforced, self-lubricating and self-healing metals and metal matrix nanocomposites (MMNCs) synthesized by solidification synthesis is reviewed. Particle-based MMNCs have been developed by several modern processing tools based on either solid- or liquid-phase synthesis techniques that are claimed to exhibit exciting mechanical properties including improvements of modulus, yield strength, and ultimate tensile strength. This article presents a brief and objective review of the work done over the last decade to identify the challenges and future opportunities in the area of functional nanocomposites. Increasing interest in lightweight materials has resulted in studies on hollow particle-filled metal matrix syntactic foams. Syntactic foams seem especially suitable for development with functional properties such as self-healing and self-lubrication. The metal matrix micro and nanocomposites, and syntactic foams having combinations of ultrahigh strength and wear resistance, self-lubricating, and/or self-healing properties can lead to increased energy efficiency, reliability, comfort of operation, reparability, and safety of vehicles. The focus of the present review is aluminum and magnesium matrix functional materials.

  10. Use of composite materials, health monitoring and self-healing concepts to refurbish our civil and military infrastructure.

    SciTech Connect

    Roach, Dennis Patrick; Delong, Waylon Anthony; White, Scott; Yepez, Esteban; Rackow, Kirk A.; Reedy, Earl David, Jr.

    2007-09-01

    An unavoidable by-product of a metallic structure's use is the appearance of crack, corrosion, erosion and other flaws. Economic barriers to the replacement of these structures have created an aging civil and military infrastructure and placed even greater demands on efficient and safe repair and inspection methods. As a result of Homeland Security issues and these aging infrastructure concerns, increased attention has been focused on the rapid repair and preemptive reinforcement of structures such as buildings and bridges. This Laboratory Directed Research and Development (LDRD) program established the viability of using bonded composite patches to repair metallic structures. High modulus fiber-reinforced polymer (FRP) material may be used in lieu of mechanically fastened metallic patches or welds to reinforce or repair damaged structures. Their use produces a wide array of engineering and economic advantages. Current techniques for strengthening steel structures have several drawbacks including requiring heavy equipment for installation, poor fatigue performance, and the need for ongoing maintenance due to continued corrosion attack or crack growth. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are currently no rehabilitation options. Applications include such diverse structures as: buildings, bridges, railroad cars, trucks and other heavy machinery, steel power and communication towers, pipelines, factories, mining equipment, ships, tanks and other military vehicles. This LDRD also proved the concept of a living infrastructure by developing custom sensors and self-healing chemistry and linking this technology with the application of advanced composite materials. Structural Health Monitoring (SHM) systems and mountable, miniature sensors were designed to continuously or periodically assess structural integrity. Such systems are able to detect

  11. Polymer based tunneling sensor

    NASA Technical Reports Server (NTRS)

    Cui, Tianhong (Inventor); Wang, Jing (Inventor); Zhao, Yongjun (Inventor)

    2006-01-01

    A process for fabricating a polymer based circuit by the following steps. A mold of a design is formed through a lithography process. The design is transferred to a polymer substrate through a hot embossing process. A metal layer is then deposited over at least part of said design and at least one electrical lead is connected to said metal layer.

  12. A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications

    PubMed Central

    Hou, Chengyi; Huang, Tao; Wang, Hongzhi; Yu, Hao; Zhang, Qinghong; Li, Yaogang

    2013-01-01

    Artificial skin, which mimics the functions of natural skin, will be very important in the future for robots used by humans in daily life. However, combining skin's pressure sensitivity and mechanical self-healing properties in a man-made material remains a challenging task. Here, we show that graphene and polymers can be integrated into a thin film which mimics both the mechanical self-healing and pressure sensitivity behavior of natural skin without any external power supply. Its ultimate strain and tensile strength are even two and ten times larger than the corresponding values of human skin, respectively. It also demonstrates highly stable sensitivity to a very light touch (0.02 kPa), even in bending or stretching states. PMID:24190511

  13. Design of Self-Healing Supramolecular Rubbers by Introducing Ionic Cross-Links into Natural Rubber via a Controlled Vulcanization.

    PubMed

    Xu, Chuanhui; Cao, Liming; Lin, Baofeng; Liang, Xingquan; Chen, Yukun

    2016-07-13

    Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups. PMID:27337545

  14. Mussel-Inspired Materials: Self-Healing through Coordination Chemistry.

    PubMed

    Krogsgaard, Marie; Nue, Vicki; Birkedal, Henrik

    2016-01-18

    Improved understanding of the underwater attachment strategy of the blue mussels and other marine organisms has inspired researchers to find new routes to advanced materials. Mussels use polyphenols, such as the catechol-containing amino acid 3,4-dihydroxyphenylalanine (DOPA), to attach to surfaces. Catechols and their analogues can undergo both oxidative covalent cross-linking under alkaline conditions and take part in coordination chemistry. The former has resulted in the widespread use of polydopamine and related materials. The latter is emerging as a tool to make self-healing materials due to the reversible nature of coordination bonds. We review how mussel-inspired materials have been made with a focus on the less developed use of metal coordination and illustrate how this chemistry can be widely to make self-healing materials. PMID:26558881

  15. Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy.

    PubMed

    Dong, Ruonan; Zhao, Xin; Guo, Baolin; Ma, Peter X

    2016-07-13

    Cell therapy is a promising strategy to regenerate cardiac tissue for myocardial infarction. Injectable hydrogels with conductivity and self-healing ability are highly desirable as cell delivery vehicles for cardiac regeneration. Here, we developed self-healable conductive injectable hydrogels based on chitosan-graft-aniline tetramer (CS-AT) and dibenzaldehyde-terminated poly(ethylene glycol) (PEG-DA) as cell delivery vehicles for myocardial infarction. Self-healed electroactive hydrogels were obtained after mixing CS-AT and PEG-DA solutions at physiological conditions. Rapid self-healing behavior was investigated by rheometer. Swelling behavior, morphology, mechanical strength, electrochemistry, conductivity, adhesiveness to host tissue and antibacterial property of the injectable hydrogels were fully studied. Conductivity of the hydrogels is ∼10(-3) S·cm(-1), which is quite close to native cardiac tissue. Proliferation of C2C12 myoblasts in the hydrogel showed its good biocompatibility. After injection, viability of C2C12 cells in the hydrogels showed no significant difference with that before injection. Two different cell types were successfully encapsulated in the hydrogels by self-healing effect. Cell delivery profile of C2C12 myoblasts and H9c2 cardiac cells showed a tunable release rate, and in vivo cell retention in the conductive hydrogels was also studied. Subcutaneous injection and in vivo degradation of the hydrogels demonstrated their injectability and biodegradability. Together, these self-healing conductive biodegradable injectable hydrogels are excellent candidates as cell delivery vehicle for cardiac repair. PMID:27311127

  16. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly.

    PubMed

    Wu, Yaobin; Wang, Ling; Zhao, Xin; Hou, Sen; Guo, Baolin; Ma, Peter X

    2016-10-01

    Mimicking native functional dynamics for traditional biomaterials such as thermoset elastomers is limited due to their lack of responsiveness to biological stimuli and difficulties to incorporate biofunctionalities. Furthermore, the mechanical fracture of traditional thermoset elastomers caused by irreversible covalent bond rupture would lead to their permanent loss of properties. To overcome these challenges, degradable self-healed supramolecular bioelastomers are designed by an elastic poly(glycerol sebacate) (PGS) backbone and multiple hydrogen-bonding ureido-pyrimidinone (UPy) grafts. These supramolecular elastic polymers exhibit efficient self-healing, rapid shape-memory abilities and highly tunable mechanical properties due to the dynamic supramolecular interactions, and perform a good biocompatibility in vitro and a mild host response in vivo. By combining modular approaches, these supramolecular bioelastomers have been further assembled into a multifunctional platform to expand their applications in different biomedical fields. These include a complex 3D scaffold with shape-memory capacity and anisotropic mechanical properties, a controllable drug delivery model via a layer-by-layer technique, a surface antibacterial composite by physical modification, and a spatial oriented cell co-culture system via incorporating different cell-laden self-healing films, demonstrating their potential as building blocks in a wide range of biomedical applications where dynamic properties and biological functions are desired. PMID:27424213

  17. Propagation and self-healing ability of a Bessel-Gaussian beam modulated by Bessel gratings

    NASA Astrophysics Data System (ADS)

    Qiao, Chunhong; Feng, Xiaoxing; Chu, Xiuxiang

    2016-04-01

    A new type of Bessel-like beam which can be generated by using Bessel gratings to modulate the amplitude and phase of a Bessel beam is proposed. In analogy to study a Bessel beam in free space, the intensity evolution and self-healing property of the Bessel-like beam have been studied. Meanwhile, based on the Fresnel diffraction integral, the propagation of the Bessel-like beam in free space has also been investigated. Results show that the Bessel-like beam and the Bessel-Gaussian-like beams have some special and interesting properties.

  18. Innovative Self-Healing Seals for Solid Oxide Fuel Cells (SOFC)

    SciTech Connect

    Raj Singh

    2012-06-30

    Solid oxide fuel cell (SOFC) technology is critical to several national initiatives. Solid State Energy Conversion Alliance (SECA) addresses the technology needs through its comprehensive programs on SOFC. A reliable and cost-effective seal that works at high temperatures is essential to the long-term performance of the SOFC for 40,000 hours at 800°C. Consequently, seals remain an area of highest priority for the SECA program and its industry teams. An innovative concept based on self-healing glasses was advanced and successfully demonstrated through seal tests for 3000 hours and 300 thermal cycles to minimize internal stresses under both steady state and thermal transients for making reliable seals for the SECA program. The self-healing concept requires glasses with low viscosity at the SOFC operating temperature of 800°C but this requirement may lead to excessive flow of the glass in areas forming the seal. To address this challenge, a modification to glass properties by addition of particulate fillers is pursued in the project. The underlying idea is that a non-reactive ceramic particulate filler is expected to form glass-ceramic composite and increase the seal viscosity thereby increasing the creep resistance of the glass-composite seals under load. The objectives of the program are to select appropriate filler materials for making glass-composite, fabricate glass-composites, measure thermal expansion behaviors, and determine stability of the glass-composites in air and fuel environments of a SOFC. Self-healing glass-YSZ composites are further developed and tested over a longer time periods under conditions typical of the SOFCs to validate the long-term stability up to 2000 hours. The new concepts of glass-composite seals, developed and nurtured in this program, are expected to be cost-effective as these are based on conventional processing approaches and use of the inexpensive materials.

  19. Self-healing of unitarity in Higgs inflation

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier; Casadio, Roberto

    2014-06-01

    We reconsider perturbative unitarity violation in the standard model Higgs inflation model. We show that the Cutkosky cutting rule implied by perturbative unitarity is fulfilled at one-loop. This is a strong indication that unitarity is restored order by order in perturbation theory. We then resum certain one-loop diagrams and show that the relevant dressed amplitude fulfills the Cutkosky rule exactly. This is an example of the self-healing mechanism. The original Higgs inflation model is thus consistent and does not require any new physics beyond the standard model at least up to the Planck scale.

  20. Enzymetically regulating the self-healing of protein hydrogels with high healing efficiency.

    PubMed

    Gao, Yuzhou; Luo, Quan; Qiao, Shanpeng; Wang, Liang; Dong, Zeyuan; Xu, Jiayun; Liu, Junqiu

    2014-08-25

    Enzyme-mediated self-healing of dynamic covalent bond-driven protein hydrogels was realized by the synergy of two enzymes, glucose oxidase (GOX) and catalase (CAT). The reversible covalent attachment of glutaraldehyde to lysine residues of GOX, CAT, and bovine serum albumin (BSA) led to the formation and functionalization of the self-healing protein hydrogel system. The enzyme-mediated protein hydrogels exhibit excellent self-healing properties with 100% recovery. The self-healing process was reversible and effective with an external glucose stimulus at room temperature. PMID:25044612

  1. A shape-recovery polymer coating for the corrosion protection of metallic surfaces.

    PubMed

    Lutz, Alexander; van den Berg, Otto; Van Damme, Jonas; Verheyen, Karen; Bauters, Erwin; De Graeve, Iris; Du Prez, Filip E; Terryn, Herman

    2015-01-14

    Self-healing polymer coatings are a type of smart material aimed for advanced corrosion protection of metals. This paper presents the synthesis and characterization of two new UV-cure self-healing coatings based on acrylated polycaprolactone polyurethanes. On a macroscopic scale, the cured films all show outstanding mechanical properties, combining relatively high Young's modulus of up to 270 MPa with a strain at break above 350%. After thermal activation the strained films recover up to 97% of their original length. Optical and electron microscopy reveals the self-healing properties of these coatings on hot dip galvanized steel with scratches and microindentations. The temperature-induced closing of such defects restores the corrosion protection and barrier properties of the coating as shown by electrochemical impedance spectroscopy and scanning vibrating electrode technique. Therefore, such coatings are a complementary option for encapsulation-based autonomous corrosion protection systems. PMID:25517028

  2. Abalone water-soluble matrix for self-healing biomineralization of tooth defects.

    PubMed

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53wt% the abalone water-soluble protein (AWSPro) and 2.04wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. PMID:27287112

  3. Ant aggregations self-heal to compensate for the Ringelmann effect.

    PubMed

    Phonekeo, Sulisay; Dave, Tanvi; Kern, Matthew; Franklin, Scott V; Hu, David L

    2016-05-14

    Fire ants, Solenopsis invicta, link their bodies together to form structures such as rafts, bivouacs and bridges. Such structures are in danger of being damaged by natural disturbances such as passing water currents. In this combined experimental and theoretical study, we investigate the self-healing of ant assemblages. We press two ant aggregations together and measure the forces to pull them apart. As the group size increases, the contribution of each ant decreases. This phenomenon, known as the Ringelmann effect, or social loafing, has previously been shown for cattle and humans. In this study, we show that it is a challenge for ants as well. We rationalize this effect with an agent-based simulation which exhibits the Ringelmann effect of ants that periodically make and break links with each other, but grip with higher probability if the ants are stretched. Over time, ants compensate for the Ringelmann effect by building more links. We use a mathematical model to show that the rate of new links is proportional to the number of free ants in the cluster. The principles found here may inspire new directions in self-healing and active materials. PMID:27040612

  4. Processing and performance of self-healing materials

    NASA Astrophysics Data System (ADS)

    Tan, P. S.; Zhang, M. Q.; Bhattacharyya, D.

    2009-08-01

    Two self-healing methods were implemented into composite materials with self-healing capabilities, using hollow glass fibres (HGF) and microencapsulated epoxy resin with mercaptan as the hardener. For the HGF approach, two perpendicular layers of HGF were put into an E-glass/epoxy composite, and were filled with coloured epoxy resin and hardener. The HGF samples had a novel ball indentation test method done on them. The samples were analysed using micro-CT scanning, confocal microscopy and penetrant dye. Micro-CT and confocal microscopy produced limited success, but their viability was established. Penetrant dye images showed resin obstructing flow of dye through damage regions, suggesting infiltration of resin into cracks. Three-point bend tests showed that overall performance could be affected by the flaws arising from embedding HGF in the material. For the microcapsule approach, samples were prepared for novel double-torsion tests used to generate large cracks. The samples were compared with pure resin samples by analysing them using photoelastic imaging and scanning electron microscope (SEM) on crack surfaces. Photoelastic imaging established the consolidation of cracks while SEM showed a wide spread of microcapsules with their distribution being affected by gravity. Further double-torsion testing showed that healing recovered approximately 24% of material strength.

  5. Performance characteristics of a self-sealing/self-healing barrier

    SciTech Connect

    McGregor, R.G. |; Stegemann, J.A.

    1997-12-31

    Environment Canada and the Netherlands Energy Research Foundation are co-developers of a patented Self-Sealing/Self-Healing (SS/SH) Barrier system for containment of wastes which is licensed to Water Technology International Corporation. The SS/SH Barrier is intended for use as either a liner or cover for landfills, contaminated sites, secondary containment areas, etc., in the industrial, chemical, mining and municipal sectors, and also as a barrier to hydraulic flow for the transportation and construction industry. The SS/SH Barrier`s most significant feature is its capability for self-repair in the event of a breach. By contrast, conventional barrier systems, such as clay, geomembrane, or geosynthetic clay liners can not be repaired without laborious excavation and reconstruction. Laboratory investigations have shown that the SS/SH Barrier concept will function with a variety of reactive materials. Self-Sealing/Self-Healing Barriers are cost competitive and consistently exhibit hydraulic conductivities ranging from 10{sup -9} to 10{sup -13} m/s, which decrease with time. These measurements meet or exceed the recommended hydraulic conductivity required by EPA for clay liners (<1x10{sup -9} m/s) used in landfills and hazardous waste sites. Results of mineralogical examination of the seal, diffusion testing, hydraulic conductivity measurement, and durability testing, including wet/dry, freeze/thaw cycling and leachate compatibility are also presented.

  6. Self-healing of creep damage in heat resisting steels

    NASA Astrophysics Data System (ADS)

    Shinya, Norio; Kyono, Junro

    2002-07-01

    In heat resisting steels, micro holes, called creep cavities, are formed at grain boundaries by long term use at high temperatures. These creep cavities grow along grain boundaries, form grain boundary cracks by linking up each other anc cause low ductility and premature fracture as shown in Fig. 1. Therefore long term creep rupture strength and ductilities chiefly depend upon the behavior of nucleation and growth of creep cavities. If the growth of creep cavities could be suppressed, creep rupture strength and ductilities should be improved remarkably. Present work is intended to propose a self-healing process for the cavitation, and improve the creep rupture properties by the self-healing. It is thought that chemical compound of BN precipitates at inside surface of creep cavity by addition of B and N to heat resisting steels. As the BN is very stable at high temperatures, the precipitation of BN at creep cavity surface is expected to suppress the creep cavity growth and bring about the healing effect on the cavitation.

  7. Networked Microgrids for Self-healing Power Systems

    SciTech Connect

    Wang, Zhaoyu; Chen, Bokan; Wang, Jianhui; Chen, Chen

    2015-06-17

    This paper proposes a transformative architecture for the normal operation and self-healing of networked microgrids (MGs). MGs can support and interchange electricity with each other in the proposed infrastructure. The networked MGs are connected by a physical common bus and a designed two-layer cyber communication network. The lower layer is within each MG where the energy management system (EMS) schedules the MG operation; the upper layer links a number of EMSs for global optimization and communication. In the normal operation mode, the objective is to schedule dispatchable distributed generators (DGs), energy storage systems (ESs) and controllable loads to minimize the operation costs and maximize the supply adequacy of each MG. When a generation deficiency or fault happens in a MG, the model switches to the self-healing mode and the local generation capacities of other MGs can be used to support the on-emergency portion of the system. A consensus algorithm is used to distribute portions of the desired power support to each individual MG in a decentralized way. The allocated portion corresponds to each MG’s local power exchange target which is used by its EMS to perform the optimal schedule. The resultant aggregated power output of networked MGs will be used to provide the requested power support. Test cases demonstrate the effectiveness of the proposed methodology.

  8. Microfluidic encapsulation for self-healing material and investigation of its impacts on composite performance

    NASA Astrophysics Data System (ADS)

    Lemmens, Ryan J.

    Encapsulation is a key enabling technology of self-healing materials for which incorporation of reactive materials into a composite, without loss of functionality, is required for damage repair. The functionalized particles resulting from such processes must be readily incorporable into a composite and have minimal detrimental impact on its undamaged properties. At the same time, their morphology must preferentially promote the release of their content during a damage event. However, there is still a need for new techniques capable of fine tuning particle properties for the controlled design of composite performance. To introduce superior processing control, two microfluidics based encapsulation processes have been developed, one each for the individual components of a two-part chemical healing system, namely dicyclopentadiene and Grubb's catalyst. These processes have enabled significantly enhanced performance of self-healing epoxy composites by introducing unprecedented control over particle morphology. The microfluidics based encapsulation platform is first demonstrated by emulsification, using droplet microfluidics, and subsequent encapsulation of dicyclopentadiene. The reported approach allows for facile control of mean microcapsule diameter thru variation of fluid flow rates. The microcapsules exhibit coefficients of variation (CV) of diameter in the range 1-3 (i.e. monodisperse is typically defined as CV smaller than 5), an order of magnitude reduction when compared with conventional batch emulsification methods whose typical CV is 20-40. This control over microcapsule uniformity has led to significant improvement in self-healing composite performance as exemplified by ˜25% higher undamaged fracture toughness. A microfluidic solution spinning process is then developed to encapsulate Grubb's catalyst, the most expensive component of this particular material system, in a novel fibrous morphology. The continuous, on-chip fiber production allows for

  9. Self-healing properties of nanocrystalline materials: a first-principles analysis of the role of grain boundaries.

    PubMed

    Xu, Jian; Liu, Jian-Bo; Li, Shun-Ning; Liu, Bai-Xin; Jiang, Yong

    2016-07-21

    Understanding the self-healing mechanisms of defects in nanocrystalline materials is of particular importance for developing structural materials that can support the extended lifetime of components under extremely hostile conditions in nuclear reactors. Since grain boundaries are prevalent in nanocrystalline materials, they must affect, to some extent, the overall self-healing properties and the resultant mechanical responses. In the present work, first principles calculations are carried out to investigate the energetic landscape of point defects (i.e. self-interstitials, He-interstitials, and vacancies) induced by the irradiation damage and the kinetics of the self-healing process in the vicinity of grain boundaries (GBs) in copper, focusing on six symmetric tilt grain boundaries that vary in their energies. Our results indicate that the interaction of vacancies with the self-interstitial- and He-interstitial-loaded GBs is very sensitive to the GB character. Low-energy GBs are generally accompanied by a higher propensity for self-healing behavior, in which the inter-granular interstitials and intra-granular vacancies recombine with each other. The recombination process is proved to be regulated by two mechanisms: the interstitial emission mechanism and the vacancy mediated mechanism. For low-energy GBs, the former mechanism demonstrates its efficiency in describing the atomic motion, while for the high-energy ones, the latter turns out to be superior. With the aid of these mechanisms, we conclude that low-energy GBs are comparatively more radiation-resistant than the high-energy counterparts, which may shed light on the rational design of high-performance structural materials based on nanocrystalline alloys. PMID:27326789

  10. Self-healing catalysts: Co(3)O(4) nanorods for Fischer-Tropsch synthesis.

    PubMed

    Wen, Cun; Dunbar, Darrius; Zhang, Xin; Lauterbach, Jochen; Hattrick-Simpers, Jason

    2014-05-01

    We combine kinetic and spectroscopic data to demonstrate the concept of a self-healing catalyst, which effectively eliminates the need for catalyst regeneration. The observed self-healing is triggered by controlling the crystallographic orientation at the catalyst surface. PMID:24668124

  11. Development of Micro and Nanostructured Materials for Interfacial Self-Healing

    ERIC Educational Resources Information Center

    Blaiszik, Benjamin James

    2009-01-01

    Damage in polymeric coatings, adhesives, microelectronic components, and composites spans many length scales. For small scale damage, autonomic self-healing can repair multiple damage modes without manual intervention. In autonomic self-healing materials, a healing response is triggered by damage to the material. Size scale considerations, such as…

  12. A self-healing hydrogel formation strategy via exploiting endothermic interactions between polyelectrolytes.

    PubMed

    Ren, Ying; Lou, Ruyun; Liu, Xiaocen; Gao, Meng; Zheng, Huizhen; Yang, Ting; Xie, Hongguo; Yu, Weiting; Ma, Xiaojun

    2016-05-01

    We report a strategy to synthesize self-healing hydrogels via exploiting endothermic interactions between polyelectrolytes. Natural polysaccharides and their derivatives were used to form reversible polyelectrolyte complexes by selecting appropriately charged chemical groups and counterions. This simple and effective method to fabricate self-healing hydrogels will find applications in diverse fields such as surface coating and 3D printing. PMID:27078585

  13. A mimic of self-healing juvenile cutaneous mucinosis?

    PubMed

    Williams, Charles A; Merkel, Kimberly L

    2014-01-01

    A 14-year-old boy presented with a chronic history of atypical papular mucinosis consisting of multiple subcutaneous nodules and confluent papular skin lesions. He initially presented at age 2 years with the rapid onset of numerous subcutaneous nodular lesions that completely resolved over a period of years. Clinical and histologic evidence, together with his clinical course, were suggestive of self-healing juvenile cutaneous mucinosis (SHJCM), but a few years later, during childhood, he experienced a recurrence of the subcutaneous nodules involving the limbs, trunk, and face, in addition to new findings of multiple flesh-colored papules coalescing into plaques on his neck and back. Although his early childhood course and histologic picture were suggestive of SHJCM, the progressive nature of his disorder is not like that seen in SHJCM and appears different from other reported disorders involving cutaneous mucinosis. PMID:25233809

  14. Congenital self-healing reticulohistiocytosis: an underreported entity.

    PubMed

    Kassardjian, Michael; Patel, Mayha; Shitabata, Paul; Horowitz, David

    2016-04-01

    Langerhans cell histiocytosis (LCH), also known as histiocytosis X, is a group of rare disorders characterized by the continuous replication of a particular white blood cell called Langerhans cells. These cells are derived from the bone marrow and are found in the epidermis, playing a large role in immune surveillance and the elimination of foreign substances from the body. Additionally, Langerhans cells are capable of migrating from the skin to lymph nodes, and in LCH, these cells begin to congregate on the bone, particularly in the head and neck region, causing a multitude of problems. Langerhans cell histiocytosis is classified into 4 variants: congenital self-healing reticulohistiocytosis (CSHR)(also known as Hashimoto-Pritzker disease), Letterer-Siwe disease, Hand-Schüller-Christian disease, and eosinophilic granuloma. Despite various clinical presentations and severity, all subtypes are pathologically caused by the proliferation of the Langerhans cell. PMID:27163913

  15. Solid state self-healing system: Effects of using PDGEBA, PVC and PVA as linear healing agents

    NASA Astrophysics Data System (ADS)

    Muhamad, Noor Nabilah; Jamil, Mohd. Suzeren Md.; Abdullah, Shahrum

    2014-09-01

    The solid state self-healing system was obtained by employing a thermosetting epoxy resin, into which a thermoplastic is dissolved. In this study, the effect of healing efficiency was investigated by using different thermoplastic polymers which are poly(bisphenol-A-co-epichlorohydrin), polyvinyl chloride and polyvinyl alcohol as healing agents. Healing was achieved by heating the fractured resins to a specific temperature i.e. above their glass transition temperature (Tg) which obtained from dynamic mechanical analysis (DMA) to mobilize the polymeric chains of the healing agent. The curing reaction in the epoxy resins were characterized by means of Fourier transform infrared spectroscopy (FTIR). Izod impact test was been performed to demonstrate self-healing of the different specimens. Under test, it was found that healable resin with PDGEBA has highest healing efficiency followed by PVC and PVA, with 63%, 35% and 18% of average percentage healing efficiencies respectively. These results are due to the different solubility parameters of the thermoset/network and thermoplastic polymer which led to the phase separation. Morphological studies prove the fracture-healing process and morphological properties of the resins.

  16. Comparison of self-healing ionomer to aluminium-alloy bumpers for protecting spacecraft equipment from space debris impacts

    NASA Astrophysics Data System (ADS)

    Francesconi, A.; Giacomuzzo, C.; Grande, A. M.; Mudric, T.; Zaccariotto, M.; Etemadi, E.; Di Landro, L.; Galvanetto, U.

    2013-03-01

    This paper discusses the impact behavior of a self-healing ionomeric polymer and compares its protection capability against space debris impacts to that of simple aluminium-alloy bumpers. To this end, 14 impact experiments on both ionomer and Al-7075-T6 thin plates with similar surface density were made with 1.5 mm aluminium spheres at velocity between 1 and 4 km/s.First, the perforation extent in both materials was evaluated vis-à-vis the prediction of well known hole-size equations; then, attention was given to the damage potential of the cloud of fragments ejected from the rear side of the target by analysing the craters pattern and the momentum transferred to witness plates mounted on a ballistic pendulum behind the bumpers.Self-healing was completely successful in all but one ionomer samples and the primary damage on ionomeric polymers was found to be significantly lower than that on aluminium. On the other hand, aluminium plates exhibited slightly better debris fragmentation abilities, even though the protecting performance of ionomers seemed to improve at increasing impact speed.

  17. Glass fibre polyester composite with in vivo vascular channel for use in self-healing

    NASA Astrophysics Data System (ADS)

    Fifo, Omosola; Ryan, Kevin; Basu, Biswajit

    2014-09-01

    The embedment of adhesive-filled hollow glass fibres (HGF) has been reported as a way of combating micro-crack development in fibre-reinforced polymer (FRP) structures. However, hollow fibres can critically undermine the effectiveness of self-healing systems and have been reported to be a potential impediment to the healing agent flow path. On the other hand, attempting to use non-hollow vascular systems in higher dimensions has largely been restricted to bulk polymers that lack reinforcing fibres. This paper investigates an alternative technique where a simple two-dimensional (2D) network of hollow channels is created within a glass-fibre-reinforced polyester-composite structure. The network is created using a fugitive preforming material at the ply level of interest, similar to a direct ink writing procedure. The temporary structure is extracted as a part of the curing and post-curing processes. The channels formed are used to deliver cyanoacrylate adhesive (CA) to areas that have been damaged under a flexural three-point bending test. Subsequent post-repair mechanical testing, under the same mode, evaluates the success of the repair process. The results show good recovery of the stiffness, a paramount mechanical property, and indicate how the grade of the repairing agent used influences the recovered loading strength of the FRP samples.

  18. Effect of using miscible and immiscible healing agent on solid state self-healing system

    NASA Astrophysics Data System (ADS)

    Makenan, Siti Mastura; Jamil, Mohd Suzeren Md.

    2014-09-01

    The aim of this study is to identify the effect of using various healing agent which are miscible; poly(bisphenol-A-co-epichlorohydrin), and immiscible; poly(ethylene-co-acetate) and poly(ethylene-co-acrylic acid), on self-healing resin system. The specimens were analysed by Fourier-transform Infrared Spectrometer (FTIR), Dynamic Mechanical Thermal Analysis (DMTA), and izod test. Optical image of the sample morphology was observed using optical microscope. Healing efficiencies (HE) were evaluated using izod test. The concept of healing recovery was proved based on the use of miscible and immiscible healing agent. From the results, it can be concluded that the healable resin with miscible healing agent has the highest HE within the third healing cycle.

  19. Repetitive Biomimetic Self-healing of Ca(2+)-Induced Nanocomposite Protein Hydrogels.

    PubMed

    Chen, Jun; Dong, Qiuchen; Ma, Xiaoyu; Fan, Tai-Hsi; Lei, Yu

    2016-01-01

    Self-healing is a capacity observed in most biological systems in which the healing processes are autonomously triggered after the damage. Inspired by this natural behavior, researchers believed that a synthetic material possessing similar self-recovery capability could also be developed. Albeit various intrinsic self-healing systems have been developed over the past few decades, restriction on the biocompatibility due to the required synthetic conditions under extreme pH and with poisonous cross-linker significantly limits their application in biomedical field. In this study, a highly biocompatible nanocomposite protein hydrogel with excellent biomimetic self-healing property is presented. The self-healing protein gel is made by inducing calcium ions into the mixture of heat-induced BSA nano-aggregates and pristine BSA molecules at room temperature and under physiological pH due to the ion-mediated protein-protein association and the bridging effect of divalent Ca(2+) ions. The as-prepared protein hydrogel shows excellent repetitive self-healing properties without using any external stimuli at ambient condition. Such outstanding self-recovery performance was quantitatively evaluated/validated by both dynamic and oscillatory rheological analysis. Moreover, with the presence of calcium ions, the self-healing behavior can be significantly facilitated/enhanced. Finally, the superior biocompatibility demonstrated by in vitro cytotoxicity analysis suggests that it is a promising self-healing material well-suited for biomedical applications. PMID:27545280

  20. Repetitive Biomimetic Self-healing of Ca2+-Induced Nanocomposite Protein Hydrogels

    PubMed Central

    Chen, Jun; Dong, Qiuchen; Ma, Xiaoyu; Fan, Tai-Hsi; Lei, Yu

    2016-01-01

    Self-healing is a capacity observed in most biological systems in which the healing processes are autonomously triggered after the damage. Inspired by this natural behavior, researchers believed that a synthetic material possessing similar self-recovery capability could also be developed. Albeit various intrinsic self-healing systems have been developed over the past few decades, restriction on the biocompatibility due to the required synthetic conditions under extreme pH and with poisonous cross-linker significantly limits their application in biomedical field. In this study, a highly biocompatible nanocomposite protein hydrogel with excellent biomimetic self-healing property is presented. The self-healing protein gel is made by inducing calcium ions into the mixture of heat-induced BSA nano-aggregates and pristine BSA molecules at room temperature and under physiological pH due to the ion-mediated protein-protein association and the bridging effect of divalent Ca2+ ions. The as-prepared protein hydrogel shows excellent repetitive self-healing properties without using any external stimuli at ambient condition. Such outstanding self-recovery performance was quantitatively evaluated/validated by both dynamic and oscillatory rheological analysis. Moreover, with the presence of calcium ions, the self-healing behavior can be significantly facilitated/enhanced. Finally, the superior biocompatibility demonstrated by in vitro cytotoxicity analysis suggests that it is a promising self-healing material well-suited for biomedical applications. PMID:27545280

  1. Adhesion and Long-Term Barrier Restoration of Intrinsic Self-Healing Hybrid Sol-Gel Coatings.

    PubMed

    Abdolah Zadeh, Mina; van der Zwaag, Sybrand; Garcia, Santiago J

    2016-02-17

    Self-healing polymeric coatings aiming at smart and on-demand protection of metallic substrates have lately attracted considerable attention. In the present paper, the potential application of a dual network hybrid sol-gel polymer containing reversible tetrasulfide groups as a protective coating for the AA2024-T3 substrate is presented. Depending on the constituent ratio, the developed polymer exhibited a hydrophobic surface, high adhesion strength, and an effective long-term corrosion protection in 0.5 M NaCl solution. Upon thermal treatment, the healable hybrid sol-gel coating demonstrated full restoration of the barrier properties as well as recovery of the coating adhesion and surface properties (e.g., hydrophobicity and surface topology) necessary for lifetime extension of corrosion protective coatings. Excellent long-term barrier restoration of the coating was only obtained if the scratch width was less than the coating thickness. PMID:26780101

  2. Using feedback control to actively regulate the healing rate of a self-healing process subjected to low cycle dynamic stress

    NASA Astrophysics Data System (ADS)

    Kuponu, O. S.; Kadirkamanathan, V.; Bhattacharya, B.; Pope, S. A.

    2016-05-01

    Intrinsic and extrinsic self-healing approaches through which materials can be healed generally suffer from several problems. One key problem is that to ensure effective healing and to minimise the propagation of a fault, the healing rate needs to be matched to the damage rate. This requirement is usually not met with passive approaches. An alternative to passive healing is active self-healing, whereby the healing mechanism and in particular the healing rate, is controlled in the face of uncertainty and varying conditions. Active self-healing takes advantage of sensing and added external energy to achieve a desired healing rate. To demonstrate active self-healing, an electrochemical material based on the principles of piezoelectricity and electrolysis is modelled and adaptive feedback control is implemented. The adaptive feedback control compensates for the insufficient piezo-induced voltage and guarantees a response that meets the desired healing rate. Importantly, fault propagation can be eliminated or minimised by attaining a match between the healing and damage rate quicker than can be achieved with the equivalent passive system. The desired healing rate is a function of the fault propagation and is assumed known in this paper, but can be estimated in practice through established prognostic techniques.

  3. Diagnostic of the self-healing of metallized polypropylene film by modeling of the broadening emission lines of aluminum emitted by plasma discharge

    SciTech Connect

    Tortai, J.-H.; Bonifaci, N.; Denat, A.; Trassy, C.

    2005-03-01

    Metallized-film capacitors have the property, even under high continuous voltage, to self-heal i.e., to clear a defect in the dielectric. The self-healing process is a consequence of a transient arc discharge. It has been previously shown that during the discharge, due to Joule effect, the metal is vaporized until the arc extinguishes. The discharge duration has been found to be inversely proportional to the mechanical pressure applied on the layers of metallized films making up a capacitor. The aim of this study is to understand the physical processes involved in this spontaneous extinction of the arc discharge. Emission spectroscopy has been used to provide information about the physical properties (temperatures, electronic and neutral particles densities, etc.) of the plasma induces by a self-healing. An analysis, based on the broadenings and shifts of Al atomic lines, of the experimental light spectra obtained has shown that the self-healing process leads to the generation, from the vaporized metal, of a high-density and relatively weakly ionized aluminum plasma. The plasma density increases with the pressure applied on the film layers and, consequently, the density power needed to extend the plasma zone increases as well and the arc discharge goes out faster as experimentally observed.

  4. Influence of Functionalization of Nanocontainers on Self-Healing Anticorrosive Coatings.

    PubMed

    Zheng, Zhaoliang; Schenderlein, Matthias; Huang, Xing; Brownbill, Nick J; Blanc, Frédéric; Shchukin, Dmitry

    2015-10-21

    Feedback coating based on pH-induced release of inhibitor from organosilyl-functionalized containers is considered as a compelling candidate to achieve smart self-healing corrosion protection. Four key factors that determine the overall coating performance include (1) the uptake and release capacity of containers, (2) prevention of the premature leakage, (3) compatibility of containers in coating matrix, and (4) cost and procedure simplicity consideration. The critical influence introduced by organosilyl-functionalization of containers is systematically demonstrated by investigating MCM-41 silica nanoparticles modified with ethylenediamine (en), en-4-oxobutanoic acid salt (en-COO(-)), and en-triacetate (en-(COO(-))3) with higher and lower organic contents. The properties of the modified silica nanoparticles as containers were mainly characterized by solid-state (13)C nuclear magnetic resonance, scanning and transmission electron microscopy, N2 sorption, thermogravimetric analysis, small-angle X-ray scattering, dynamic light scattering, and UV-vis spectroscopy. Finally, the self-healing ability and anticorrosive performances of hybrid coatings were examined through scanning vibrating electrode technique (SVET) and electrochemical impedance spectroscopy (EIS). We found that en-(COO(-))3-type functionalization with content of only 0.23 mmol/g performed the best as a candidate for establishing pH-induced release system because the resulting capped and loaded (C-L) functionalized silica nanocontainers (FSNs) exhibit high loading (26 wt %) and release (80%) capacities for inhibitor, prevention of premature leakage (less than 2%), good dispersibility in coating matrix, and cost effectiveness. PMID:26393678

  5. High Temperature Lightweight Self-Healing Ceramic Composites for Aircraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Singh, Mrityunjay; Bhatt, Ramakrishna T.

    2014-01-01

    The present research effort was undertaken to develop a new generation of SiC fiber- reinforced engineered matrix composites (EMCs) with sufficient high temperature plasticity to reduce crack propagation and self-healing capabilities to fill surface-connected cracks to prevent the oxygen ingress to the fibers. A matrix engineered with these capabilities is expected to increase the load bearing capabilities of SiCSiC CMCs at high temperatures. Several matrix compositions were designed to match the coefficient of thermal expansion (CTE) of the SiC fibers using a rule of mixture (ROM) approach. The CTE values of these matrices were determined and it was demonstrated that they were generally in good agreement with that of monolithic SiC between room temperature and 1525 K. The parameters to hot press the powders were optimized, and specimens were fabricated for determining bend strength, CTE, oxidation and microstructural characteristics of the engineered matrices. The oxidation tests revealed that some of the matrices exhibited catastrophic oxidation, and therefore, these were eliminated from further consideration. Two promising compositions were down selected based on these results for further development. Four-point bend tests were conducted on these two promising matrices between room temperature and 1698 K. Although theses matrices were brittle and failed at low stresses at room temperature, they exhibited high temperature ductility and higher stresses at the higher temperatures. The effects of different additives on the self-healing capabilities of these matrices were investigated. The results of preliminary studies conducted to slurry and melt infiltration trials with CrSi2 are described.

  6. Modeling the nanoscratching of self-healing materials

    NASA Astrophysics Data System (ADS)

    Duki, Solomon F.; Kolmakov, German V.; Yashin, Victor V.; Kowalewski, Tomasz; Matyjaszewski, Krzysztof; Balazs, Anna C.

    2011-02-01

    We use computational modeling to determine the mechanical response of crosslinked nanogels to an atomic force microscope (AFM) tip that is moved through the sample. We focus on two-dimensional systems where the nanogels are interconnected by both strong and labile bonds. To simulate this system, we modify the lattice spring model (LSM) to extend the applicability of this method to a broader range of elastic materials. Via this modified LSM, we model each nanogel as a deformable particle. We utilize the Bell model to describe the bonds between these nanogel particles, and subsequently, simulate the rupturing of bonds due to the force exerted by the moving indenter. The ruptured labile bonds can readily reform and thus can effectively mend the cavities formed by the moving AFM tip. We determine how the fraction of labile bonds, the nanogel stiffness, and the size and velocity of the moving tip affect the self-healing behavior of the material. We find that samples containing just 10% of labile bonds can heal to approximately 90% of their original, undeformed morphology. Our results provide guidelines for creating reconfigurable materials that can undergo self-repair and thereby withstand greater mechanical stress under everyday use.

  7. Modeling the Nano-indentation of Self-healing Materials

    NASA Astrophysics Data System (ADS)

    Duki, Solomon F.; Kolmakov, German V.; Yashin, Victor V.; Kowalewski, Tomasz; Matyjaszewski, Krzysztof; Balazs, Anna C.

    2011-03-01

    We use computational modeling to determine the mechanical response of crosslinked nanogels to an atomic force microscope (AFM) tip that is moved through the sample. We focus on two-dimensional systems where the nanogels are interconnected by both strong and labile bonds. We model each nanogel as a deformable particle using the modified lattice spring model that is applicable to a broad range of elastic materials.We utilize the Bell model to describe the bonds between these nanogel particles, and subsequently, simulate the rupturing of bonds due the force exerted by the moving indenter. The ruptured labile bonds can readily reform and thus, can effectively mend the cavities formed by the moving AFM tip. We determine how the fraction of labile bonds, the nanogel stiffness, and the size and velocity of the moving tip affect the self-healing behavior of the material. We find that samples containing just 10 % of labile bonds can heal to approximately 90 % of their original, undeformed morphology.

  8. Multiscale Modeling of Biomimetic Self-Healing Materials

    NASA Astrophysics Data System (ADS)

    Kolmakov, German; Scarbrough, Amy; Gnegy, Chet; Salib, Isaac; Matyjaszewski, Krzysztof; Balazs, Anna

    2011-03-01

    We use a hybrid computational approach to examine the self-healing behavior of polymeric materials composed of soft nanogel particles crosslinked by a network of both stable and labile bonds. The latter are highly reactive and therefore, can break and readily reform. To capture the multiscale structure of the material, we take advantage of the multi-level Hierarchical Bell Model (mHBM) where the labile crosslinks are organized into M levels of interconnected elements, each of them represents a number of bonds that lie in parallel and is described by a single-level HBM. We vary the number of hierarchical levels M and the number of labile bonds in each element to determine optimal conditions for improving strength and toughness of the material. We also compare the properties of the multiscale material with those for the gel, in which only single-level interconnections are presented. This study takes its inspiration from biological systems that show remarkable resilience in response to mechanical deformation.

  9. Autonomous stimulus triggered self-healing in smart structural composites

    NASA Astrophysics Data System (ADS)

    Norris, C. J.; White, J. A. P.; McCombe, G.; Chatterjee, P.; Bond, I. P.; Trask, R. S.

    2012-09-01

    Inspired by the ability of biological systems to sense and autonomously heal damage, this research has successfully demonstrated the first autonomous, stimulus triggered, self-healing system in a structural composite material. Both the sensing and healing mechanisms are reliant on microvascular channels incorporated within a laminated composite material. For the triggering mechanism, a single air filled vessel was pressurized, sealed and monitored. Upon drop weight impact (10 J), delamination and microcrack connectivity between the pressurized vessel and those open to ambient led to a pressure loss which, with the use of a suitable sensor, triggered a pump to deliver a healing agent to the damage zone. Using this autonomous healing approach, near full recovery of post-impact compression strength was achieved (94% on average). A simplified alternative system with healing agent continuously flowing through the vessels, akin to blood flow, was found to offer 100% recovery of the material’s virgin strength. Optical microscopy and ultrasonic C-scanning provided further evidence of large-scale infusion of matrix damage with the healing agent. The successful implementation of this bioinspired technology could substantially enhance the integrity and reliability of aerospace structures, whilst offering benefits through improved performance/weight ratios and extended lifetimes.

  10. Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages.

    PubMed

    Wang, Hongxia; Zhou, Hua; Gestos, Adrian; Fang, Jian; Lin, Tong

    2013-10-23

    Superamphiphobic coatings with excellent repellency to low surface tension liquids and multiple self-healing abilities are very useful for practical applications, but remain challenging to realize. Previous papers on self-healing superamphiphobic coatings have demonstrated limited liquid repellency with single self-healing ability against either physical or chemical damage. Herein, we describe a superamphiphobic fabric that has remarkable multi-self-healing ability against both physical and chemical damages. The superamphiphobicity was prepared by a two-step surface coating technique. Fabric after coating treatment showed exceptional liquid-repellency to low surface tension liquids including ethanol. The fabric coating was also durable to withstand 200 cycles of laundries and 5000 cycles of Martindale abrasion without apparently changing the superamphiphobicity. This highly robust, superamphiphobic fabric may find applications for the development of "smart" functional textiles for various applications. PMID:24073919

  11. Modeling of self-healing against cascading overload failures in complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Chaoran; Li, Daqing; Fu, Bowen; Yang, Shunkun; Wang, Yunpeng; Lu, Guangquan

    2014-09-01

    The development of online prognostic and fast-recovery technology promotes the realization of self-healing techniques. Considering the cascading overload failures as one of the major failure modes in real networks, we introduce a model for self-healing against overload propagation in complex networks due to malicious attack. Especially, we study the role of basic quantities (restoration timing and resource) in general self-healing restoration against cascading overload failures in network models of homogeneous (Erdős-Rényi) and heterogeneous (scale-free) networks. We demonstrate how networks during cascading failures can be saved from the brink of collapse by proper combination of both restoration timing and resource. And we find that optimal restoration timing for the model and realistic networks exists at a given restoration resource in the self-healing process.

  12. Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.

    PubMed

    Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C

    2016-08-10

    Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics. PMID:27419265

  13. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    NASA Astrophysics Data System (ADS)

    Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu

    2016-03-01

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lap shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.

  14. Poly(vinyl alcohol)-Poly(ethylene glycol) Double-Network Hydrogel: A General Approach to Shape Memory and Self-Healing Functionalities.

    PubMed

    Li, Guo; Zhang, Hongji; Fortin, Daniel; Xia, Hesheng; Zhao, Yue

    2015-10-27

    A double-network polymer hydrogel composed of chemically cross-linked poly(ethylene glycol) (PEG) and physically cross-linked poly(vinyl alcohol) (PVA) was prepared. When the hydrogel (70 wt % of water) is subjected to freezing/thawing treatment under strain, the enhanced physical network as a result of crystallization of PVA chains can stabilize the hydrogel deformation after removal of the external force at room temperature. Subsequent disruption of the physical network of PVA by heating allows for the recovery of the initial shape of the hydrogel. Moreover, the double-network hydrogel exhibits self-healing capability stemming from the physical network of PVA by virtue of the extensive interchain hydrogen bonding between the hydroxyl side groups. This study thus demonstrates a general approach to imparting both the shape memory and self-healing properties to chemically cross-linked hydrogels that otherwise do not have such functionalities. Moreover, by making use of the fixed hydrogel elongation, the effect of anisotropy arising from chain orientation on the self-healing was also observed. PMID:26442631

  15. The Role of Multiple, Reformable Parallel Bonds on the Self-healing Behavior of Dual Crosslinked Nanogel Materials

    NASA Astrophysics Data System (ADS)

    Salib, Isaac G.; Kolmakov, German V.; Gnegy, Chet N.; Matyjaszewski, Krzysztof; Balazs, Anna C.

    2011-03-01

    Using computational modeling, we design novel self-healing materials composed of nanoscopic polymer gel particles, or nanogels. The particles are interconnected via both labile bonds (e.g., disulfide bonds) and stronger, less reactive bonds (e.g, C-C bonds) and therefore the nanogels form a ``dual crosslinked'' network. The stable bonds provide a rigid backbone while the labile bonds allow the material to undergo a dynamic reconfiguration in response to stress. We adapt the Hierarchical Bell Model (HBM) to describe the labile bonding interactions. The HBM effectively allows us to model cases where the ligands on neighboring nanogels interact through multiple sites. We show that the introduction of a small number of labile bonds that lie in parallel significantly increases the strength of the material relative to samples crosslinked solely by the stable bonds. We also isolate an optimal range of labile interconnections that provide high-strength, tough materials that are capable of self-repair.

  16. Photodegradation and self-healing in a Rhodamine 6G dye and nanoparticle-doped polyurethane random laser

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin R.; Gunawidjaja, Ray; Eilers, Hergen

    2015-07-01

    One of the fundamental difficulties in implementing organic dyes in random lasers is irreversible photodegradation of the dye molecules, leading to loss of performance and the need to replace the dye. We report the observation of self-healing after photodegradation in a Rhodamine 6G dye and nanoparticle-doped polyurethane random laser. During irradiation, we observe two distinct temporal regions in which the random lasing emission first increases in intensity and redshifts, followed by further redshifting, spectral broadening, and decay in the emission intensity. After irradiation, the emission intensity is found to recover back to its peak value, while still being broadened and redshifted, which leads to the result of an enhancement of the spectrally integrated intensity. We also perform IR-VIS absorbance measurements and find that the results suggest that during irradiation, some of the dye molecules form dimers and trimers and that the polymer host is irreversibly damaged by photooxidation and Norrish type I photocleavage.

  17. Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles

    PubMed Central

    Wu, Junling; Weir, Michael D.; Melo, Mary Anne S.; Xu, Hockin H. K.

    2015-01-01

    Objectives Fracture and secondary caries are the primary reasons for dental restoration failure. The objective of this study was to develop a self-healing composite to heal cracks, while containing dimethylaminohexadecyl methacrylate (DMAHDM) for antibacterial function and nanoparticles of amorphous calcium phosphate (NACP) for remineralization. Methods Microcapsules were synthesized with poly(urea-formaldehyde) (PUF) shells containing triethylene glycol dimethacrylate (TEGDMA) and N,N-dihydroxyethyl-p-toluidine (DHEPT) as healing liquid. Composite contained 20 mass% of NACP and 35% glass fillers. In addition, composite contained 0%, 2.5%, 5%, 7.5%, or 10% of microcapsules. A single edge V-notched beam method measured fracture toughness (KIC) and self-healing efficiency. A dental plaque microcosm biofilm model was used to test the antibacterial properties. Results Incorporation of microcapsules up to 7.5% into the composite did not adversely affect the mechanical properties (p > 0.1). Successful self-healing was achieved, with KIC recovery of 65–81% (mean ± sd; n = 6) to regain the load-bearing capability after composite fracture. The self-healing DMAHDM-NACP composite displayed a strong antibacterial potency, inhibiting biofilm viability and lactic acid production, and reducing colony-forming units by 3–4 orders of magnitude, compared to control composite without DMAHDM. Conclusions A dental composite was developed with triple benefits of self-healing after fracture, antibacterial activity, and remineralization capability for the first time. Clinical significance The self-healing, antibacterial and remineralizing composite may be promising for tooth cavity restorations to combat bulk fracture and secondary caries. The method of using triple agents (self-healing microcapsules, DMAHDM, and NACP) may have wide applicability to other dental composites, adhesives, sealants and cements. PMID:25625674

  18. Polymer compositions based on PXE

    SciTech Connect

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2015-09-15

    New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.

  19. Self healing of high strength concrete after deterioration by freeze/thaw

    SciTech Connect

    Jacobsen, S.; Sellevold, E.J.

    1996-01-01

    Some experiments have been performed to investigate the self healing of concretes deteriorated by internal cracking in the ASTM C666 procedure A rapid freeze/thaw test. Six different well cured concretes were deteriorated to various degrees. Then the specimens (concrete beams) were stored in water for 2--3 months. Resonance frequency, weight, volume and compressive strength were measured during deterioration and self healing. Concretes that lost as much as 50% of their initial relative dynamic modulus during freeze/thaw could recover almost completely during subsequent storage in water, somewhat varying with concrete composition and degree of deterioration. Compressive strength showed reductions of 22--29% on deterioration, but only 4--5% recovery on self healing. Freeze/thaw tests on deteriorated and self-healed specimens in partly sealed condition showed clearly that the deterioration was governed by the ability to take up water; the more water that leaked through the plastic foil during freeze/thaw, the larger the deterioration. Self healing may be an important factor giving concrete better frost durability in field than when submitting specimens to freeze/thaw cycles in water.

  20. Conductive polymer-based material

    DOEpatents

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  1. Polyphosphazine-based polymer materials

    DOEpatents

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  2. Monitoring the self-healing process of biomimetic mortar using coda wave interferometry method

    NASA Astrophysics Data System (ADS)

    Liu, Shukui; Basaran, Zeynep; Zhu, Jinying; Ferron, Raissa

    2014-02-01

    Internal stresses might induce microscopic cracks in concrete, which can provide pathways for ingress of harmful chemicals and can lead to loss of strength. Recent research in concrete materials suggests that it might be possible to develop a smart cement-based material that is capable of self-healing by leveraging the metabolic activity of microorganisms to provide biomineralization. Limited research on biomineralization in cement-based systems has shown promising results that healing of cracks can occur on the surface of concrete and reduce permeability. This paper presents the results from an investigation regarding the potential for a cement-based material to repair itself internally through biomineralization. Compressive strength test and coda wave interferometry (CWI) analyses were conducted on mortar samples that were loaded to 70% of their compressive strength and cured in different conditions. Experimental results indicate that the damaged mortar samples with microorganisms showed significantly higher strength development and higher increase of ultrasonic wave velocity compared to samples without microorganisms at 7 and 28 days.

  3. Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process.

    PubMed

    Zhang, J L; Wu, R S; Li, Y M; Zhong, J Y; Deng, X; Liu, B; Han, N X; Xing, F

    2016-08-01

    A novel high-throughput strategy was developed to determine the calcium precipitation activity (CPA) of mineralization bacteria used for self-healing of concrete cracks. A bacterial strain designated as H4 with the highest CPA of 94.8 % was screened and identified as a Bacillus species based on 16S rDNA sequence and phylogenetic tree analysis. Furthermore, the effects of certain influential factors on the microbial calcium precipitation process of H4 were evaluated. The results showed that lactate and nitrate are the best carbon and nitrogen sources, with optimal concentrations of approximately 25 and 18 mM, respectively. The H4 strain is able to maintain a high CPA in the pH range of 9.5-11.0, and a suitable initial spore concentration is 4.0 × 10(7) spores/ml. Moreover, an ambient Ca(2+) concentration greater than 60 mM resulted in a serious adverse impact not only on the CPA but also on the growth of H4, suggesting that the maintenance of the Ca(2+) concentration at a low level is necessary for microbial self-healing of concrete cracks. PMID:26883348

  4. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing

    PubMed Central

    Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele

    2015-01-01

    Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications. PMID:26528254

  5. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.

    PubMed

    Dong, Shengyi; Zheng, Bo; Wang, Feng; Huang, Feihe

    2014-07-15

    /physical properties, including stimuli responsiveness, self-healing, and environmental adaptation. It has been reported that macrocycle-based supramolecular polymers can respond to pH change, photoirradition, anions, cations, temperature, and solvent. Macrocycle-based supramolecular polymers have been prepared in solution, in gel, and in the solid state. Furthermore, the solvent has a very important influence on the formation of these supramolecular polymers. Crown ether- and pillararene-based supramolecular polymers have mainly formed in organic solvents, such as chloroform, acetone, and acetonitrile, while cyclodextrin- and cucurbituril-based supramolecular polymerizations have been usually observed in aqueous solutions. For calixarenes, both organic solvents and water have been used as suitable media for supramolecular polymerization. With the development of supramolecular chemistry and polymer science, various methods, such as nuclear magnetic resonance spectroscopy, X-ray techniques, electron microscopies, and theoretical calculation and computer simulation, have been applied for characterizing supramolecular polymers. The fabrication of macrocycle-based supramolecular polymers has become a currently hot research topic. In this Account, we summarize recent results in the investigation of supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs. These supramolecular polymers are classified based on the different macrocycles used in them. Their monomer design, structure control, stimuli-responsiveness, and applications in various areas are discussed, and future research directions are proposed. It is expected that the development of supramolecular polymers will not only change the way we live and work but also exert significant influence on scientific research. PMID:24684594

  6. Generation and self-healing of a radially polarized Bessel-Gauss beam

    NASA Astrophysics Data System (ADS)

    Wu, Gaofeng; Wang, Fei; Cai, Yangjian

    2014-04-01

    We report experimental generation of a radially polarized Bessel-Gauss (RPBG) beam of order 1 with the help of a spatial light modulator, a spiral phase plate, and a radial polarization converter. Furthermore, we carry out a comparative study of the self-healing properties of a RPBG beam and a linearly polarized Bessel-Gauss (LPBG) beam which are blocked by a sector-shaped opaque obstacle both experimentally and numerically. Our results clearly show that the self-healing ability of a RPBG beam indeed is superior to that of a LPBG beam, and some physical interpretations are given. Our results will be useful for particle trapping and microscopy.

  7. Self-healing of optical functions by molecular metabolism in a swollen elastomer

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Nishimura, Tatsuya; Sakiyama, Kohei; Inagaki, Sota

    2012-12-01

    Optical functions of organic dyes, e.g., fluorescence or photochromism, tend to degrade by light irradiation, which causes a short lifetime of photonic devices. Self-healing of optical functions is attainable by metabolizing bleached molecules with nonirradiated ones. A polydimethylsiloxane elastomer provides a useful matrix for dye molecules, since its flexible structure with nano-sized intermolecular spaces allows dye diffusion from a reservoir to an operation region. Swelling the elastomer with a suitable solvent promotes both dissolution and diffusion of dye molecules. This self-healing function was demonstrated by an experiment in which a photochromic elastomer exhibited improved durability against a repeated coloring-decoloring process.

  8. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  9. Microencapsulation of 2-octylcyanoacrylate tissue adhesive for self-healing acrylic bone cement

    PubMed Central

    Brochu, Alice B. W.; Chyan, William J.; Reichert, William M.

    2014-01-01

    Here, we report the first phase of developing self-healing acrylic bone cement: the preparation and characterization of polyurethane (PUR) microcapsules containing a medical cyanoacrylate tissue adhesive. Capsules were prepared by interfacial polymerization of a toluene-2,4-diisocyanate-based polyurethane prepolymer with 1,4-butanediol to encapsulate 2-octylcyanoacrylate (OCA). Various capsule characteristics, including: resultant morphology, average size and size distribution, shell thickness, content and reactivity of encapsulated agent, and shelf life are investigated and their reliance on solvent type and amount, surfactant type and amount, temperature, pH, agitation rate, reaction time, and mode of addition of the oil phase to the aqueous phase are presented. Capsules had average diameters ranging from 74 to 222 μm and average shell thicknesses ranging from 1.5 to 6 μm. The capsule content was determined via thermogravimetric analysis and subsequent analysis of the capsules following up to 8 weeks storage revealed minimal loss of core contents. Mechanical testing of OCA-containing capsules showed individual capsules withstood compressive forces up to a few tenths of Newtons, and the contents released from crushed capsules generated tensile adhesive forces of a few Newtons. Capsules were successfully mixed into the poly(- methyl methacrylate) bone cement, surviving the mixing process, exposure to methyl methacrylate monomer, and the resulting exothermic matrix curing. PMID:22807313

  10. Self-healing and adsorbate-induced removal of defects on graphene and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tsetseris, Leonidas; Pantelides, Sokrates

    2009-03-01

    The presence of point defects is known to induce significant changes in the electronic, chemical, transport, and mechanical properties of graphitic systems. Here, we use first-principles calculations based on density-functional theory to describe several adatom-related processes that alter key physical traits of graphene and carbon nanotubes. We find that, while pairs of C adatoms and clusters of four or more self-interstitials stay idle unless the system is heated to very high temperatures, clustering of three C adatoms leads to removal of hillock-like features and creates mobile species, resulting in self-healing of defective structures. We also demonstrate the reactivity of defect pairs using hydrogen and oxygen as prototype adsorbates, and we show that interaction with extrinsic species is an alternative healing mechanism for adatom structures in the above systems. The results relate to the evolution of defects either during growth of carbon nanotubes or during post-growth treatment and operation of related devices. This work was supported in part by DOE Grant DEFG0203ER46096.