Science.gov

Sample records for polymer degradation probed

  1. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.

    PubMed

    Lo, Meng-chen; Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Shreiber, David I; Zahn, Jeffrey D

    2015-04-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings. PMID:25681971

  2. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion

    PubMed Central

    Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B.; Kaplan, Hilton M.; Kohn, Joachim; Shreiber, David I.; Zahn, Jeffrey D.

    2016-01-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings. PMID:25681971

  3. Probing oxidative degradation in polymers using {sup 17}O NMR spectroscopy

    SciTech Connect

    Alam, T.M.; Click, C.A.; Assink, R.A.

    1997-09-01

    Understanding the mechanism of oxidative degradation remains an important goal in being able to predict the aging process in polymer materials. Nuclear magnetic resonance (NMR) spectroscopy has previously been utilized to investigate polymer degradation, including both proton ({sup 1}H) and carbon ({sup 13}C) studies. These previous NMR studies, as well as other spectroscopic investigations, are complicated by the almost overwhelming signal arising from the native undegraded polymer. This makes the identification and quantification of degradation species at small concentrations difficult. In this note we discuss recent investigation into the use of oxygen ({sup 17}O) NMR spectroscopy to probe the oxidative degradation process in polymers at a molecular level. Due to the low natural abundance (0.037%) and a nuclear spin of I=5/2 possessing an appreciable quadrupolar moment, the use of {sup 17}O NMR in polymer investigations has been limited. By utilizing synthetically enriched oxygen gas during the accelerated aging process, both the difficulties of low natural abundance and background interference signals are eliminated. For enriched samples {sup 17}O NMR spectra now provide a unique probe since all of the observed NMR resonances are the direct result of oxidative degradation.

  4. Carbon-13 Labeling Used to Probe Cure and Degradation Reactions of High- Temperature Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnston, J. Christopher

    1998-01-01

    High-temperature, crosslinked polyimides are typically insoluble, intractible materials. Consequently, in these systems it has been difficult to follow high-temperature curing or long-term degradation reactions on a molecular level. Selective labeling of the polymers with carbon-13, coupled with solid nuclear magnetic resonance spectrometry (NMR), enables these reactions to be followed. We successfully employed this technique to provide insight into both curing and degradation reactions of PMR-15, a polymer matrix resin used extensively in aircraft engine applications.

  5. Remote inhibition of polymer degradation.

    SciTech Connect

    Clough, Roger Lee; Celina, Mathias Christopher

    2005-08-01

    Polymer degradation has been explored on the basis of synergistic infectious and inhibitive interaction between separate materials. A dual stage chemiluminescence detection system with individually controlled hot stages was applied to probe for interaction effects during polymer degradation in an oxidizing environment. Experimental confirmation was obtained that volatile antioxidants can be transferred over a relatively large distance. The thermal degradation of a polypropylene (PP) sample receiving traces of inhibitive antioxidants from a remote source is delayed. Similarly, volatiles from two stabilized elastomers were also capable of retarding a degradation process remotely. This observation demonstrates inhibitive cross-talk as a novel interactive phenomenon between different polymers and is consequential for understanding general polymer interactions, fundamental degradation processes and long-term aging effects of multiple materials in a single environment.

  6. An overview of degradable polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many degradable polymers are being investigated for research purpose or for possible commercial use. This overview provides a listing of the more important degradable polymers and their mechanisms of action. Some application areas, particularly in packaging, housewares, personal care, biomaterials, ...

  7. An overview of degradable polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many degradable polymers are being investigated for research purpose or for possible commercial use. This overview provides a listing of the more important degradable polymers and their mechanisms of action. Some application areas, particularly in packaging, housewares, personal care, biomaterials...

  8. Initiation of polymer degradation via transfer of infectious species.

    SciTech Connect

    Clough, Roger Lee; Jones, Gary Dunn; Celina, Mathias Christopher

    2005-06-01

    A novel dual stage chemiluminescence detection system incorporating individually controlled hot stages has been developed and applied to probe for material interaction effects during polymer degradation. Utilization of this system has resulted in experimental confirmation for the first time that in an oxidizing environment a degrading polymer A (in this case polypropylene, PP) is capable of infecting a different polymer B (in this case polybutadiene, HTPB) over a relatively large distance. In the presence of the infectious degrading polymer A, the thermal degradation of polymer B is observed over a significantly shorter time period. Consistent with infectious volatiles from material A initiating the degradation process in material B it was demonstrated that traces (micrograms) of a thermally sensitive peroxide in the vicinity of PP could induce degradation remotely. This observation documents cross-infectious phenomena between different polymers and has major consequences for polymer interactions, understanding fundamental degradation processes and long-term aging effects under combined material exposures.

  9. Initiation of polymer degradation via transfer of infectious species.

    SciTech Connect

    Clough, Roger Lee; Jones, Gary D.; Celina, Mathias Christopher

    2005-02-01

    A novel dual stage chemiluminescence detection system incorporating individually controlled hot stages has been developed and applied to probe for material interaction effects during polymer degradation. Utilization of this system has resulted in experimental confirmation for the first time that in an oxidizing environment a degrading polymer A (in this case polypropylene, PP) is capable of infecting a different polymer B (in this case polybutadiene, HTPB) over a relatively large distance. In the presence of the infectious degrading polymer A, the thermal degradation of polymer B is observed over a significantly shorter time period. Consistent with infectious volatiles from material A initiating the degradation process in material B it was demonstrated that traces (micrograms) of a thermally sensitive peroxide in the vicinity of PP could induce degradation remotely. This observation documents cross-infectious phenomena between different polymers and has major consequences for polymer interactions, understanding fundamental degradation processes and long-term aging effects under combined material exposures.

  10. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q.; Wang, Wei

    2007-07-03

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  11. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q.; Wang, Wei

    2009-07-07

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  12. Charge trapping in polymer transistors probed by terahertz spectroscopy and scanning probe potentiometry

    NASA Astrophysics Data System (ADS)

    Lloyd-Hughes, J.; Richards, T.; Sirringhaus, H.; Castro-Camus, E.; Herz, L. M.; Johnston, M. B.

    2006-09-01

    Terahertz time-domain spectroscopy and scanning probe potentiometry were used to investigate charge trapping in polymer field-effect transistors fabricated on a silicon gate. The hole density in the transistor channel was determined from the reduction in the transmitted terahertz radiation under an applied gate voltage. Prolonged device operation creates an exponential decay in the differential terahertz transmission, compatible with an increase in the density of trapped holes in the polymer channel. Taken in combination with scanning probe potentionmetry measurements, these results indicate that device degradation is largely a consequence of hole trapping, rather than of changes to the mobility of free holes in the polymer.

  13. Degradable vinyl polymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Delplace, Vianney; Nicolas, Julien

    2015-10-01

    Vinyl polymers have been the focus of intensive research over the past few decades and are attractive materials owing to their ease of synthesis and their broad diversity of architectures, compositions and functionalities. Their carbon-carbon backbones are extremely resistant to degradation, however, and this property limits their uses. Degradable polymers are an important field of research in polymer science and have been used in a wide range of applications spanning from (nano)medicine to microelectronics and environmental protection. The development of synthetic strategies to enable complete or partial degradation of vinyl polymers is, therefore, of great importance because it will offer new opportunities for the application of these materials. This Review captures the most recent and promising approaches to the design of degradable vinyl polymers and discusses the potential of these materials for biomedical applications.

  14. Analyses of viscoelastic solid polymers undergoing degradation

    NASA Astrophysics Data System (ADS)

    Davoodi, Bentolhoda; Muliana, Anastasia; Tscharnuter, Daniel; Pinter, Gerald

    2015-08-01

    In this paper we study the three-dimensional response of isotropic viscoelastic solid-like polymers undergoing degradation due to mechanical stimuli. A single integral model is used to describe the time-dependent behaviors of polymers under general loading histories. The degradation is associated to excessive deformations in the polymers as strains continuously increase when the mechanical stimuli are prescribed, and therefore we consider a degradation threshold in terms of strains. The degradation part of the deformations is unrecoverable, and upon removal of the prescribed external stimuli, the accumulation of the degradation strains lead to residual strains. We also systematically present material parameter characterization from available experimental data under various loading histories, i.e., ramp loading with different constant rates, creep-recovery under different stresses, and relaxation under several strains. We analyze viscoelastic-degradation response of two polymers, namely polyethylene and polyoxymethylene under uniaxial tensile tests. Longer duration of loading can lead to increase in the degradation of materials due to the substantial increase in the deformations. The single integral model is capable in predicting the time-dependent responses of the polymers under various loading histories and capturing the recovery and residual strains at different stages of degradations.

  15. A constitutive law for degrading bioresorbable polymers.

    PubMed

    Samami, Hassan; Pan, Jingzhe

    2016-06-01

    This paper presents a constitutive law that predicts the changes in elastic moduli, Poisson's ratio and ultimate tensile strength of bioresorbable polymers due to biodegradation. During biodegradation, long polymer chains are cleaved by hydrolysis reaction. For semi-crystalline polymers, the chain scissions also lead to crystallisation. Treating each scission as a cavity and each new crystal as a solid inclusion, a degrading semi-crystalline polymer can be modelled as a continuum solid containing randomly distributed cavities and crystal inclusions. The effective elastic properties of a degrading polymer are calculated using existing theories for such solid and the tensile strength of the degrading polymer is predicted using scaling relations that were developed for porous materials. The theoretical model for elastic properties and the scaling law for strength form a complete constitutive relation for the degrading polymers. It is shown that the constitutive law can capture the trend of the experimental data in the literature for a range of biodegradable polymers fairly well. PMID:26971070

  16. Polymer scaffold degradation control via chemical control

    DOEpatents

    Hedberg-Dirk, Elizabeth L.; Dirk, Shawn; Cicotte, Kirsten

    2016-01-05

    A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.

  17. Polymer Composites Corrosive Degradation: A Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  18. Controlling the Degradation of Bioresorbable Polymers

    NASA Astrophysics Data System (ADS)

    Moritz, Istvan; Crowley, Brian; Brundage, Elizabeth; Rende, Deniz; Ozisik, Rahmi

    Bioresorbable polymers play a vital role in the development of implantable materials that are used in surgical procedures, controlled drug delivery systems; and tissue engineering scaffolds. The half-life of common bioresorbable polymers ranges from 3 to over 12 months and slow bioresorption rates of these polymers restrict their use to a limited set of applications. The use of embedded enzymes was previously proposed to control the degradation rate of bioresorbable polymers, and was shown to decrease average degradation time to about 0.5 months. In this study, electromagnetic actuation of iron oxide magnetic nanoparticles embedded in an encapsulant polymer, poly(ethyleneoxide), PEO, was employed to initiate enzyme assisted degradation of bioresorbable polymer poly(caprolactone), PCL. Results indicate that the internal temperature of iron oxide magnetic nanoparticle doped PEO samples can be increased via an alternating magnetic field, and temperature increase depends strongly on nanoparticle concentration and magnetic field parameters. The temperature achieved is sufficient to relax the PEO matrix and to enable the diffusion of enzymes from PEO to a surrounding PCL matrix. Current studies are directed at measuring the degradation rate of PCL due to the diffused enzyme. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  19. Accelerated Testing Of Photothermal Degradation Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  20. Degradability of Polymers for Implantable Biomedical Devices

    PubMed Central

    Lyu, SuPing; Untereker, Darrel

    2009-01-01

    Many key components of implantable medical devices are made from polymeric materials. The functions of these materials include structural support, electrical insulation, protection of other materials from the environment of the body, and biocompatibility, as well as other things such as delivery of a therapeutic drug. In such roles, the stability and integrity of the polymer, over what can be a very long period of time, is very important. For most of these functions, stability over time is desired, but in other cases, the opposite–the degradation and disappearance of the polymer over time is required. In either case, it is important to understand both the chemistry that can lead to the degradation of polymers as well as the kinetics that controls these reactions. Hydrolysis and oxidation are the two classes of reactions that lead to the breaking down of polymers. Both are discussed in detail in the context of the environmental factors that impact the utility of various polymers for medical device applications. Understanding the chemistry and kinetics allows prediction of stability as well as explanations for observations such as porosity and the unexpected behavior of polymeric composite materials in some situations. In the last part, physical degradation such interfacial delamination in composites is discussed. PMID:19865531

  1. Polymer microspheres carrying fluorescent DNA probes

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyu; Dai, Zhao; Zhang, Jimei; Xu, Shichao; Wu, Chunrong; Zheng, Guo

    2010-07-01

    A polymer microspheres carried DNA probe, which was based on resonance energy transfer, was presented in this paper when CdTe quantum dots(QDs) were as energy donors, Au nanoparticles were as energy accepters and poly(4- vinylpyrindine-co-ethylene glycol dimethacrylate) microspheres were as carriers. Polymer microspheres with functional group on surfaces were prepared by distillation-precipitation polymerization when ethylene glycol dimethacrylate was as crosslinker in acetonitrile. CdTe QDs were prepared when 3-mercaptopropionic acid(MPA) was as the stabilizer in aqueous solution. Because of the hydrogen-bonding between the carboxyl groups of MPA on QDs and the pyrindine groups on the microspheres, the QDs were self-assembled onto the surfaces of microspheres. Then, the other parts of DNA probe were finished according to the classic method. The DNA detection results indicated that this novel fluorescent DNA probe system could recognize the existence of complementary target DNA or not.

  2. Preparation and degradation mechanisms of biodegradable polymer: a review

    NASA Astrophysics Data System (ADS)

    Zeng, S. H.; Duan, P. P.; Shen, M. X.; Xue, Y. J.; Wang, Z. Y.

    2016-07-01

    Polymers are difficult to degrade completely in Nature, and their catabolites may pollute the environment. In recent years, biodegradable polymers have become the hot topic in people's daily life with increasing interest, and a controllable polymer biodegradation is one of the most important directions for future polymer science. This article presents the main preparation methods for biodegradable polymers and discusses their degradation mechanisms, the biodegradable factors, recent researches and their applications. The future researches of biodegradable polymers are also put forward.

  3. Characterization and characteristics of degradable polymer sacks

    SciTech Connect

    Davis, Georgina

    2003-10-15

    This paper reviews the categories and characteristics of degradable polymers used to manufacture sacks for the collection and subsequent treatment of organic wastes from householders. The characteristics of polyethylene (PE) and starch-based sacks were examined using a number of different methods, including scanning electron microscopy (SEM), chemical analysis and mechanical strength testing of the sacks during their use. The analyses revealed that the characteristics of the PE and starch-based sacks were very different. Photomicrographs indicated that the surface of the PE sack was much smoother than the surface of the starch-based sacks. Polyethylene sacks exhibited a greater mechanical strength, both in the unused state and over time during householder use. The severe loss of mechanical strength during use of the starch-based sacks indicated that only thicker gauge sacks were suitable for the fortnightly kerbside collection of biodegradable municipal waste (BMW). Chemical analysis of two different PE sacks indicated that transition metals and other elements were commonly incorporated into the PE structure in order to facilitate increased polymer degradation.

  4. Degradation of amine-based water treatment polymers during chloramination as N-nitrosodimethylamine (NDMA) precursors.

    PubMed

    Park, Sang-Hyuck; Wei, Shuting; Mizaikoff, Boris; Taylor, Amelia E; Favero, Cedrick; Huang, Ching-Hua

    2009-03-01

    Recent studies indicated that water treatment polymers such as poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) may form N-nitrosodimethylamine (NDMA) when in contact with chloramine water disinfectants. To minimize such potential risk and improve the polymer products, the mechanisms of how the polymers behave as NDMA precursors need to be elucidated. Direct chloramination of polymers and intermediate monomers in reagent water was conducted to probe the predominant mechanisms. The impact of polymer properties including polymer purity, polymer molecular weight and structure, residual dimethylamine (DMA), and other intermediate compounds involved in polymer synthesis, and reaction conditions such as pH, oxidant dose, and contact time on the NDMA formation potential (NDMA-FP) was investigated. Polymer degradation after reaction with chloramines was monitored at the molecular level using FT-IR and Raman spectroscopy. Overall, polyamines have greater NDMA-FP than polyDADMAC, and the NDMA formation from both polymers is strongly related to polymer degradation and DMA release during chloramination. Polyamines' tertiary amine chain ends play a major role in their NDMA-FP, while polyDADMACs' NDMA-FP is related to degradation of the quaternary ammonium ring group. PMID:19350904

  5. FOREWORD: Focus on the Degradation and Stability of Polymers

    NASA Astrophysics Data System (ADS)

    Terano, Minoru

    2008-06-01

    Modern society is so reliant on polymers that products incorporating these macromolecules are almost 'invisible'. Polymers are indispensable materials used for manufacturing compact disks, clothes, lightweight airplanes, automobiles, footware and even the humble polystyrene boxes for packing our favorite hamburgers and fries. But, like many other materials, polymers degrade and become unstable, so a deeper understanding of the physical mechanisms responsible for degradation is necessary to address issues such as potential applications, recycling and the impact of polymer-products on the environment. In particular, polymers are highly vulnerable to oxidative degradation at elevated temperatures and in sunlight. Unfortunately, in spite of extensive research on polymer degradation, our knowledge is still incomplete. The analysis of polymer degradation and stability has recently become harder and more complicated because of the wider range of polymer applications, including blends and composites. Notably, composites with nanofillers are being studied for automotive, electrical and other industrial applications. With this background, the 1st International Symposium on Ultimate Stability of NanoStructured Polymers and Composites (NT2007) was held in October at the Japan Advanced Institute of Science and Technology in Ishikawa Prefecture. The meeting provided a forum to discuss advanced research achievements to resolve problems in this field of research. The papers selected for this focus issue describe recent discoveries on the stability, weatherability and flame retardancy of polymers, as well as providing an insight into degradation mechanisms of nanostructured polymers and composites. We hope that this focus issue will serve as a timely source of information about one of the most important topics in polymer science and related technologies.

  6. Thermal Degradation of Lead Monoxide Filled Polymer Composite Radiation Shields

    SciTech Connect

    Harish, V.; Nagaiah, N.

    2011-07-15

    Lead monoxide filled Isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the thermo gravimetric analysis of the composites done to understand their thermal properties especially the effect of filler concentration on the thermal stability and degradation rate of composites. Pristine polymer exhibits single stage degradation whereas filled composites exhibit two stage degradation processes. Further, the IDT values as well as degradation rates decrease with the increased filler content in the composite.

  7. REGULATION OF COAL POLYMER DEGRADATION BY FUNGI

    SciTech Connect

    John A. Bumpus

    1998-11-30

    A variety of lignin degrading fungi mediate solubilization and subsequent biodegradation of coal macromolecules (a.k.a. coal polymer) from highly oxidized low rank coals such as leonardites. It appears that oxalate or possibly other metal chelators (i.e., certain Krebs Cycle intermediates) mediate solubilization of low rank coals while extracellular oxidases have a role in subsequent oxidation of solubilized coal macromolecule. These processes are under nutritional control. For example, in the case of P. chrysosporium, solubilization of leonardite occurred when the fungi were cultured on most but not all nutrient agars tested and subsequent biodegradation occurred only in nutrient nitrogen limited cultures. Lignin peroxidases mediate oxidation of coal macromolecule in a reaction that is dependent on the presence of veratryl alcohol and hydrogen peroxide. Kinetic evidence suggests that veratryl alcohol is oxidized to the veratryl alcohol cation radical which then mediates oxidation of the coal macromolecule. Results by others suggest that Mn peroxidases mediate formation of reactive Mn{sup 3+} complexes which also mediate oxidation of coal macromolecule. A biomimetic approach was used to study solubilization of a North Dakota leonardite. It was found that a concentration {approximately}75 mM sodium oxalate was optimal for solubilization of this low rank coal. This is important because this is well above the concentration of oxalate produced by fungi in liquid culture. Higher local concentrations probably occur in solid agar cultures and thus may account for the observation that greater solubilization occurs in agar media relative to liquid media. The characteristics of biomimetically solubilized leonardite were similar to those of biologically solubilized leonardite. Perhaps our most interesting observation was that in addition to oxalate, other common Lewis bases (phosphate/hydrogen phosphate/dihydrogen phosphate and bicarbonate/carbonate ions) are able to mediate

  8. Degradable Polymer Composites Fabricated from Starch and Alkyl Cyanoacrylate Monomer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Degradable polymer composites are fabricated from alkyl cyanoacrylate monomer and starch without special equipment. Alkyl cyanoacrylate, which is a major component of “super glue”, is a monomer that polymerizes at room temperature in the presence of initiators. During the fabrication of polymer com...

  9. Thermal Degradation and Identification of Heat-Sensitive Polymers

    ERIC Educational Resources Information Center

    Clough, Stuart C.; Goldman, Emma W.

    2005-01-01

    A study demonstrates the thermal degradation of two heat-sensitive polymers, namely, polystyrene and poly (methyl methacrylate). The experiment described in the study introduces undergraduate students to polymer structure as well as the application of spectroscopic techniques to the solution of structural problems.

  10. Long-term degradation of the ionic electroactive polymer actuators

    NASA Astrophysics Data System (ADS)

    Punning, Andres; Must, Indrek; Põldsalu, Inga; Vunder, Veiko; Kaasik, Friedrich; Temmer, Rauno; Aabloo, Alvo

    2015-04-01

    The research is focused on lifetime and degradation of ionic electroactive polymer actuators (IEAP). The lifetime measurements were carried out using identical methodology upon the different IEAP types. The experiment conducted with large number of samples shows that two types of degradation have serious effect to the IEAPs: degradation during operation and spontaneous self-degradation. Additionally, two ways of occasional damage decrease their overall reliability. In the scope of the current paper we describe degradation of two different types of IEAP actuators: with carbonaceous electrodes and with conducting polymer electrodes. Nevertheless, the common evolutionary trends, rather than the comparative data analysis or formal statistics of all particular samples, are given. Analyzing the electromechanical and electrical impedances of the samples during their whole lifetime, we have found that observing the electric current gives adequate information about the degradation level of any IEAP actuator. Moreover, tracking this electrically measurable parameter enables detecting the occasional damage of an actuator.

  11. Mechanisms of polymer degradation using an oxygen plasma generator

    NASA Technical Reports Server (NTRS)

    Colony, Joe A.; Sanford, Edward L.

    1987-01-01

    An RF oxygen plasma generator was used to produce polymer degradation which appears to be similar to that which has been observed in low Earth orbit. Mechanisms of this type of degradation were studied by collecting the reaction products in a cryogenic trap and identifying the molecular species using infrared, mass spectral, and X-ray diffraction techniques. No structurally dependent species were found from Kapton, Teflon, or Saran polymers. However, very reactive free radical entities are produced during the polymer degradation, as well as carbon dioxide and water. Reactions of the free radicals with the glass reaction vessel, with copper metal in the cold trap, and with a triphenyl phosphate scavenger in the cold trap, demonstrated the reactivity of the primary products.

  12. DEGRADATION OF FLUOROTELOMER-BASED POLYMERS

    EPA Science Inventory

    Perfluoroalkyl telomers are used to synthesize a variety of telomer-based polymer products (TBPPs). These TBPPs are used to impart soil- and liquid-repellent properties to a wide range of modern products including paper, textiles, leather and carpeting. Because of their remarka...

  13. Does a polymer chain probe solvent dynamics?

    NASA Astrophysics Data System (ADS)

    Peterson, Steve; Echeverria, Isabel; Schrag, John

    2001-03-01

    We have examined the dynamics of polyisoprene (both in bulk and in solution) using viscoelastic and oscillatory flow birefringence measurements. Surprisingly, the breadth of the relaxation time spectrum for the polymer appears to narrow significantly when going from bulk to solution conditions. This suggests an apparent flexibility difference in the polymer that may actually reflect dynamic spatial heterogeneity in the solvent (a glass former). Our results suggest a connection with experimental evidence of dynamic heterogeneities in glass forming liquids (Ediger, M.D., Annu. Rev. Phys. Chem., 2000, 51:99-128) and results of molecular dynamics simulations (Donati, C., et al., PRL, 80, 11, 1998).

  14. Hybrid semiconducting polymer nanoparticles as polarization-sensitive fluorescent probes

    PubMed Central

    Zeigler, Maxwell B.; Sun, Wei; Rong, Yu; Chiu, Daniel T.

    2013-01-01

    Much work has been done on collapsed chains of conjugated semiconducting polymers and their applications as fluorescent probes or sensors. On surfaces spin-coated with semiconducting polymers, excitation energy transfer along the polymer backbone can be used to quickly and efficiently funnel energy to chromophores with localized energy minima. If each chromophore is immobilized within its matrix, this can result in large fluorescence anisotropy. Through nanoprecipitation of a matrix polymer blended at low mass ratios with short-chain, hydrophobic, fluorescent semiconducting polymers, we take advantage of this large fluorescence anisotropy to make polarization-sensitive nanoparticles. These nanoparticles are small at approximately 7 nm in diameter; exhibit a high quantum yield of 0.75; and are easily functionalized to bind to protein targets. By exciting the nanoparticles with polarized light on a wide-field fluorescence microscope, we are able to monitor not only protein location, but also changes in their orientation. PMID:23895535

  15. Navigating conjugated polymer actuated neural probes in a brain phantom

    NASA Astrophysics Data System (ADS)

    Daneshvar, Eugene D.; Kipke, Daryl; Smela, Elisabeth

    2012-04-01

    Neural probe insertion methods have a direct impact on the longevity of the device in the brain. Initial tissue and vascular damage caused by the probe entering the brain triggers a chronic tissue response that is known to attenuate neural recordings and ultimately encapsulate the probes. Smaller devices have been found to evoke reduced inflammatory response. One way to record from undamaged neural networks may be to position the electrode sites away from the probe. To investigate this approach, we are developing probes with controllably movable electrode projections, which would move outside of the zone that is damaged by the insertion of the larger probe. The objective of this study was to test the capability of conjugated polymer bilayer actuators to actuate neural electrode projections from a probe shank into a transparent brain phantom. Parylene neural probe devices, having five electrode projections with actuating segments and with varying widths (50 - 250 μm) and lengths (200 - 1000 μm) were fabricated. The electroactive polymer polypyrrole (PPy) was used to bend or flatten the projections. The devices were inserted into the brain phantom using an electronic microdrive while simultaneously activating the actuators. Deflections were quantified based on video images. The electrode projections were successfully controlled to either remain flat or to actuate out-of-plane and into the brain phantom during insertion. The projection width had a significant effect on their ability to deflect within the phantom, with thinner probes deflecting but not the wider ones. Thus, small integrated conjugated polymer actuators may enable multiple neuro-experiments and applications not possible before.

  16. Water and UV degradable lactic acid polymers

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.

    1990-06-26

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylane glycols (PVB 6/22/90), propylene and and polypropylene (PVB 6/22/90) glycols, P-dioxanone, 1, 5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  17. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1994-11-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.

  18. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  19. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1996-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  20. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1994-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  1. Degradability of an Acrylate-Linked, Fluorotelomer Polymer in Soil

    EPA Science Inventory

    Fluorotelomer polymers are used in a broad array of products in modern societies worldwide and, if they degrade at significant rates, potentially are a significant source of perfluorooctanoic acid (PFOA) and related compounds to the environment. To evaluate this possibility, we i...

  2. {sup 17}O NMR investigations of oxidative degradation in polymers

    SciTech Connect

    Alam, T.M.; Celina, M.; Assink, R.A.; Gillen, K.T.; Clough, R.L.

    1996-12-31

    We have initiated studies using both solution and solid state magic angle spinning {sup 17}O NMR for a series of oxidatively aged polymers. This short note reports the solution {sup 17}O NMR for oxidatively degraded polypropylene, ethylene-propylene-diene, polyisoprene, and nitrile rubber. Enriched O{sub 2} is used during the accelerated aging. 3 figs, 7 refs.

  3. Degradation Testing of Fluorotelomer-based polymers (FTPs)

    EPA Science Inventory

    Over the last decade, concern about sources of per and polyfluorochemicals (PFCs) have led to an increasing need for information on the microbial and/or abiotic degradation of polymer materials that contain PFC structural fragments that may be released. EPA, OECD, ASTM and other...

  4. Partial Discharge Degradation of Several Biodegradable Polymers

    NASA Astrophysics Data System (ADS)

    Fuse, Norikazu; Fujita, Shinjiro; Hirai, Naoshi; Tanaka, Toshikatsu; Kozako, Masahiro; Kohtoh, Masanori; Okabe, Shigemitsu; Ohki, Yoshimichi

    Partial discharge (PD) resistance was examined by applying a constant voltage for four kinds of biodegradable polymers, i.e. poly-L-lactic acid (PLLA), polyethylene terephthalate succinate (PETS), poly ε-caprolactone butylene succinate (PCL-BS), and polybutylene succinate (PBS), and the results were compared with those of low density polyethylene (LDPE) and crosslinked low density polyethylene (XLPE). The PD resistance is determined by the erosion depth and the surface roughness caused by PDs, and is ranked as LDPE ≅ XLPE > PLLA ≅ PETS > PBS > PCL-BS. This means that the sample with a lower permittivity has better PD resistance. Furthermore, observations of the sample surface by a polarization microscope and a laser confocal one reveal that crystalline regions with spherulites are more resistant to PDs than amorphous regions. Therefore, good PD resistance can be achieved by the sample with a high crystallinity and a low permittivity.

  5. Studies of oxidative degradation of polymers induced by ionizing radiation

    SciTech Connect

    Clough, R.L.; Gillen, K.T.

    1989-01-01

    Radiation effects on polymers in the presence of air are characterized by complicated phenomena such as dose-rate effects and post-irradiation degradation. These time-dependent effects can be understood in these terms: (1) features of the free radical chain-reaction chemistry underlying the oxidation, and (2) oxygen diffusion effects. A profiling technique has been developed to study heterogeneous degradation resulting from oxygen diffusion, and kinetic schemes have been developed to allow long-term aging predictions from short-term high dose-rate experiments. Low molecular weight additives which act either as free-radical scavengers or else as energy-scavengers are effective as stabilizers in radiation-oxidation environments. Non-radical oxidation mechanisms, involving species such as ozone, can also be important in the radiation-oxidation of polymers. 18 refs., 15 figs.

  6. Electrical conductivity studies on individual conjugated polymer nanowires: two-probe and four-probe results.

    PubMed

    Long, Yunze; Duvail, Jeanluc; Li, Mengmeng; Gu, Changzhi; Liu, Zongwen; Ringer, Simon P

    2009-01-01

    Two- and four-probe electrical measurements on individual conjugated polymer nanowires with different diameters ranging from 20 to 190 nm have been performed to study their conductivity and nanocontact resistance. The two-probe results reveal that all the measured polymer nanowires with different diameters are semiconducting. However, the four-probe results show that the measured polymer nanowires with diameters of 190, 95-100, 35-40 and 20-25 nm are lying in the insulating, critical, metallic and insulting regimes of metal-insulator transition, respectively. The 35-40 nm nanowire displays a metal-insulator transition at around 35 K. In addition, it was found that the nanocontact resistance is in the magnitude of 104Ω at room temperature, which is comparable to the intrinsic resistance of the nanowires. These results demonstrate that four-probe electrical measurement is necessary to explore the intrinsic electronic transport properties of isolated nanowires, especially in the case of metallic nanowires, because the metallic nature of the measured nanowires may be coved by the nanocontact resistance that cannot be excluded by a two-probe technique. PMID:20652139

  7. Development of degradable renewable polymers and stimuli-responsive nanocomposites

    NASA Astrophysics Data System (ADS)

    Eyiler, Ersan

    The overall goal of this research was to explore new living radical polymerization methods and the blending of renewable polymers. Towards this latter goal, polylactic acid (PLA) was blended with a new renewable polymer, poly(trimethylene-malonate) (PTM), with the aim of improving mechanical properties, imparting faster degradation, and examining the relationship between degradation and mechanical properties. Blend films of PLA and PTM with various ratios (5, 10, and 20 wt %) were cast from chloroform. Partially miscible blends exhibited Young's modulus and elongation-to-break values that significantly extend PLA's usefulness. Atomic force microscopy (AFM) data showed that incorporation of 10 wt% PTM into PLA matrix exhibited a Young's modulus of 4.61 GPa, which is significantly higher than that of neat PLA (1.69 GPa). The second part of the bioplastics study involved a one-week hydrolytic degradation study of PTM and another new bioplastic, poly(trimethylene itaconate) (PTI) using DI water (pH 5.4) at room temperature, and the effects of degradation on crystallinity and mechanical properties of these films were examined by differential scanning calorimetry (DSC) and AFM. PTI showed an increase in crystallinity with degradation, which was attributed to predominately degradation of free amorphous regions. Depending on the crystallinity, the elastic modulus increased at first, and decreased slightly. Both bulk and surface-tethered stimuli-responsive polymers were studied on amine functionalized magnetite (Fe3O4) nanoparticles. Stimuli-responsive polymers studied, including poly(N-isopropylacrylamide) (PNIPAM), poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), and poly(itaconic acid) (PIA), were grafted via surface-initiated aqueous atom transfer radical polymerization (SI-ATRP). Both Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) spectroscopies showed the progression of the grafting. The change in particle size as a

  8. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    SciTech Connect

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  9. Degradable polymers in medicine: updating strategies and terminology.

    PubMed

    Vert, Michel

    2011-02-01

    Today, the field of biodegradable materials and devices attracts polymer scientists and healthcare professionals in surgery, dentistry, pharmacology and regenerative medicine. More than one thousand papers are published per year in the literature, while the topic appears in the title of many patents. However, the number of devices or systems that have been successfully developed for clinical and commercial uses is still very small. A critical examination of the literature suggests two main reasons for this. Firstly, biodegradation is generally considered the main goal to reach, so that academic strategies do not take into account the criteria specific to targeted applications. Secondly, the term "biodegradable" is too often used inappropriately and creates confusion. This paper aims specifically to remind readers of the complexity of in vivo polymer degradation and the need for an enriched and universally recognized terminology in order to clearly distinguish between the various possible stages, and to enable clear communication between specialists when discussing related issues. It also emphasizes the need for any novel polymer to be well characterized and to include application-specific requirements in the research strategy from the very beginning, since these determine its potential clinical and commercial uses. Based on more than a decade of efforts, this would appear to be paramount in order to provide a chance for novel polymers to reach the market. PMID:21374558

  10. EPR spin probe study of polymer associative systems.

    PubMed

    Wasserman, A M; Yasina, L L; Motyakin, M V; Aliev, I I; Churochkina, N A; Rogovina, L Z; Lysenko, E A; Baranovsky, V Yu

    2008-05-01

    Molecular dynamics of polyacrylamide gels, polymeric micelles and hydrogel of polyacrylic acid and macrodiisocyanate was investigated by the ESR spectroscopy of spin probes. The local mobility in network junction of polyacrylamide gels is found to be essentially slower than that in the micelles created by the low molecular weight detergents and does not depend on the amount and length of hydrophobic groups (C9 or C12) in the polymer chain. The immersion of 10-30 mol.% of ionic monomers into the polymer chain (sodium acrylate) influences insufficiently on the local mobility of network junctions. In aqueous solutions, polystyrene-block-poly-(N-ethyl-4-vinylpyridinium bromide) block copolymers create polymeric micelles. The local mobility in the polystyrene core of the micelles is about twice as much as that in the solid polystyrene. Partially swellable polymer network in aqueous solutions was synthesized from polyacrylic acid and macrodiisocyanate. The local mobility in hydrophobic regions of the gel is substantially lower than that in the hydrophilic regions. It was concluded that the hydrophobic and hydrophilic regions and the local dynamics of them dictate practical application of the polymer associative systems. PMID:17988940

  11. EPR spin probe study of polymer associative systems

    NASA Astrophysics Data System (ADS)

    Wasserman, A. M.; Yasina, L. L.; Motyakin, M. V.; Aliev, I. I.; Churochkina, N. A.; Rogovina, L. Z.; Lysenko, E. A.; Baranovsky, V. Yu.

    2008-05-01

    Molecular dynamics of polyacrilamide gels, polymeric micelles and hydrogel of polyacrylic acid and macrodiisocyanate was investigated by the ESR spectroscopy of spin probes. The local mobility in network junction of polyacrylamide gels is found to be essentially slower than that in the micelles created by the low molecular weight detergents and does not depend on the amount and length of hydrophobic groups (C9 or C12) in the polymer chain. The immersion of 10-30 mol.% of ionic monomers into the polymer chain (sodium acrylate) influences insufficiently on the local mobility of network junctions. In aqueous solutions, polystyrene-block-poly-( N-ethyl-4-vinylpyridinium bromide) block copolymers create polymeric micelles. The local mobility in the polystyrene core of the micelles is about twice as much as that in the solid polystyrene. Partially swellable polymer network in aqueous solutions was synthesized from polyacrylic acid and macrodiisocyanate. The local mobility in hydrophobic regions of the gel is substantially lower than that in the hydrophilic regions. It was concluded that the hydrophobic and hydrophilic regions and the local dynamics of them dictate practical application of the polymer associative systems.

  12. Probing nano-rheology in thin polymer films

    NASA Astrophysics Data System (ADS)

    Dalnoki-Veress, Kari

    2013-03-01

    In this talk I will summarize our recent work on using stepped films to uncover some of the physics relevant to polymer rheology on length scales comparable to the size of polymer molecules. The work presented will focus on the efforts of a larger collaboration (Elie Raphael's theory group in Paris and James Forrest's group in Waterloo). The simple geometry of a polymer film on a substrate with a step at the free surface is unfavourable due to the excess interface induced by the step. Laplace pressure will drive flow within the film which can be studied with optical and atomic force microscopies. Because of the excellent agreement between theory and experiment when we probe ``bulk-like'' properties, these studies provide an opportunity to study how such systems transition from the bulk to confined. Starting with some of the results of levelling experiments on simple stepped films as well as the levelling of polymer droplets on thin films, I will finish with a discussion on our more recent efforts to elucidate confinement effects.

  13. Design of Environmentally Responsive Fluorescent Polymer Probes for Cellular Imaging.

    PubMed

    Yamada, Arisa; Hiruta, Yuki; Wang, Jian; Ayano, Eri; Kanazawa, Hideko

    2015-08-10

    We report the development of environmentally responsive fluorescent polymers. The reversible temperature-induced phase transition of copolymers composed of N-isopropylacrylamide and a fluorescent monomer based on the fluorescein (FL), coumarin (CO), rhodamine (RH), or dansyl (DA) skeleton was used as a molecular switch to control the fluorescence intensity. The poly(N-isopropylacrylamide) (PNIPAAm) chain showed an expanded coil conformation below the lower critical solution temperature (LCST) due to hydration, but it changed to a globular form above the LCST due to dehydration. Through the combination of a polarity-sensitive fluorophore with PNIPAAm, the synthetic fluorescent polymer displayed a response to external temperature, with the fluorescence strength dramatically changing close to the LCST. Additionally, the P(NIPAAm-co-FL) and P(NIPAAm-co-CO) polymers, containing fluorescein and coumarin groups, respectively, exhibited pH responsiveness. The environmental responsiveness of the reported polymers is derived directly from the PNIPAAm and fluorophore structures, thus allowing for the cellular uptake of the fluorescence copolymer by RAW264.7 cells to be temperature-controlled. Cellular uptake was suppressed below the LCST but enhanced above the LCST. Furthermore, the cellular uptake of both P(NIPAAm-co-CO) and P(NIPAAm-co-RH) conjugated with a fusogenic lipid, namely, l-α-phosphatidylethanolamine, dioleoyl (DOPE), was enhanced. Such lipid-conjugated fluorescence probes are expected to be useful as physiological indicators for intracellular imaging. PMID:26121103

  14. Aliphatic polyester block polymers: renewable, degradable, and sustainable.

    PubMed

    Hillmyer, Marc A; Tolman, William B

    2014-08-19

    Nearly all polymers are derived from nonrenewable fossil resources, and their disposal at their end of use presents significant environmental problems. Nonetheless, polymers are ubiquitous, key components in myriad technologies and are simply indispensible for modern society. An important overarching goal in contemporary polymer research is to develop sustainable alternatives to "petro-polymers" that have competitive performance properties and price, are derived from renewable resources, and may be easily and safely recycled or degraded. Aliphatic polyesters are particularly attractive targets that may be prepared in highly controlled fashion by ring-opening polymerization of bioderived lactones. However, property profiles of polyesters derived from single monomers (homopolymers) can limit their applications, thus demanding alternative strategies. One such strategy is to link distinct polymeric segments in an A-B-A fashion, with A and B chosen to be thermodynamically incompatible so that they can self-organize on a nanometer-length scale and adopt morphologies that endow them with tunable properties. For example, such triblock copolymers can be useful as thermoplastic elastomers, in pressure sensitive adhesive formulations, and as toughening modifiers. Inspired by the tremendous utility of petroleum-derived styrenic triblock copolymers, we aimed to develop syntheses and understand the structure-property profiles of sustainable alternatives, focusing on all renewable and all readily degradable aliphatic polyester triblocks as targets. Building upon oxidation chemistry reported more than a century ago, a constituent of the peppermint plant, (-)-menthol, was converted to the ε-caprolactone derivative menthide. Using a diol initiator and controlled catalysis, menthide was polymerized to yield a low glass transition temperature telechelic polymer (PM) that was then further functionalized using the biomass-derived monomer lactide (LA) to yield fully renewable PLA

  15. Imaging the intracellular degradation of biodegradable polymer nanoparticles

    PubMed Central

    Barthel, Anne-Kathrin; Dass, Martin; Dröge, Melanie; Cramer, Jens-Michael; Baumann, Daniela; Urban, Markus; Landfester, Katharina; Mailänder, Volker

    2014-01-01

    Summary In recent years, the development of smart drug delivery systems based on biodegradable polymeric nanoparticles has become of great interest. Drug-loaded nanoparticles can be introduced into the cell interior via endocytotic processes followed by the slow release of the drug due to degradation of the nanoparticle. In this work, poly(L-lactic acid) (PLLA) was chosen as the biodegradable polymer. Although common degradation of PLLA has been studied in various biological environments, intracellular degradation processes have been examined only to a very limited extent. PLLA nanoparticles with an average diameter of approximately 120 nm were decorated with magnetite nanocrystals and introduced into mesenchymal stem cells (MSCs). The release of the magnetite particles from the surface of the PLLA nanoparticles during the intracellular residence was monitored by transmission electron microscopy (TEM) over a period of 14 days. It was demonstrated by the release of the magnetite nanocrystals from the PLLA surface that the PLLA nanoparticles do in fact undergo degradation within the cell. Furthermore, even after 14 days of residence, the PLLA nanoparticles were found in the MSCs. Additionally, the ultrastructural TEM examinations yield insight into the long term intercellular fate of these nanoparticles. From the statistical analysis of ultrastructural details (e.g., number of detached magnetite crystals, and the number of nanoparticles in one endosome), we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy). PMID:25383302

  16. Quantitation of buried contamination by use of solvents. [degradation of silicone polymers by amine solvents

    NASA Technical Reports Server (NTRS)

    Pappas, S. P.; Hsiao, Y. C.; Hill, L. W.

    1973-01-01

    Spore recovery form cured silicone potting compounds using amine solvents to degrade the cured polymers was investigated. A complete list of solvents and a description of the effect of each on two different silicone polymers is provided.

  17. Regulation of coal polymer degradation by fungi. Fifth quarterly report, July 1995--September 1995

    SciTech Connect

    Irvine, R.L.

    1995-10-24

    This research program investigates the solubilization and depolymerization of coal polymer degradation by Fungi. We investigate the hypothesis that solubilization and depolymerization are distinctive events.

  18. Biopolymer solution viscosity stabilization-polymer degradation and antioxidant use

    SciTech Connect

    Wellington, S.L.

    1983-12-01

    Dilute solutions of polymers used to provide mobility control for EOR often lose viscosity, especially at higher temperatures. This loss of viscosity with time brings into question the feasibility of using polymers as mobility control agents. A literature study of the many possible reaction mechanisms indicated that oxidation/reduction (redox) reactions involving free radicals probably caused polymer degradation and concomitant viscosity loss. A preliminary search for antioxidants known to retard free-radical reactions located several types and positive synergistic formulations that significantly retarded biopolymer solution viscosity loss during accelerated tests at high temperature. The most effective type formulation found contained (1) a radical transfer agent; (2) a sacrificial, easily oxidizable alcohol; (3) a compatible oxygen scavenger; and (4) sufficient brine concentration. Samples prepared with this technology have not lost viscosity after 1-year storage at 207/sup 0/F (97/sup 0/C). A high-surface-area effect (so-called ''wall effect''), known to retard radical propagation, was also found to operate in the presence of sandpacks; this should be beneficial in porous media. The variables and beneficial antioxidant formulations identified in this study allow tentative conclusions and recommendations regarding biopolymer mixing and handling procedures prior to injection.

  19. Probing of polymer surfaces in the viscoelastic regime.

    PubMed

    Chyasnavichyus, Marius; Young, Seth L; Tsukruk, Vladimir V

    2014-09-01

    In this Feature Article, we discussed the experimental and modeling methods and analyzed the limitations of the surface probing of nanomechanical properties of polymeric and biological materials in static and dynamic regimes with atomic force microscopy (AFM), which are widely utilized currently. To facilitate such measurements with minimized ambiguities, in this study we present a combined method to evaluate the viscoelastic properties of compliant polymeric materials. We collected force-distance data in the static regime for a benchmark polymer material (poly(n-butyl methacrylate)) with an easily accessible glass-transition temperature (about 25 °C) at different loading rates and different temperatures across the glassy state, glass-transition region, and rubbery state. For this analysis, we exploited a Johnson-modified Sneddon's approach in a combination with the standard linear solid model. Critical experimental steps suggested for robust probing are (i) the use of a tip with a well-characterized parabolic shape, (ii) probing in a liquid environment in order to reduce jump-in phenomenon, and (iii) minute indentations to ensure the absence of plastic deformation. Whereas the standard Sneddon's model generates quantitatively adequate elastic modulus values below and above the glass transition, this traditional approach can significantly underestimate actual modulus values in the vicinity of the glass-transition region (15 °C above or below Tg), with major deviations occurring at the loss tangent peak. The analysis of the experimental data with Sneddon's model for the elastic region (glassy and rubbery states) and Johnson's model for the viscoelastic region allowed for the restoration of the universal master curve and the evaluation of the storage modulus, loss modulus, loss tangent, relaxation times, and activation energies of the polymer surface across the glass-transition region and at relevant loading rates. PMID:24512573

  20. High Temperature Degradation Mechanisms in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Cunningham, Ronan A.

    1996-01-01

    Polymer matrix composites are increasingly used in demanding structural applications in which they may be exposed to harsh environments. The durability of such materials is a major concern, potentially limiting both the integrity of the structures and their useful lifetimes. The goal of the current investigation is to develop a mechanism-based model of the chemical degradation which occurs, such that given the external chemical environment and temperatures throughout the laminate, laminate geometry, and ply and/or constituent material properties, we can calculate the concentration of diffusing substances and extent of chemical degradation as functions of time and position throughout the laminate. This objective is met through the development and use of analytical models, coupled to an analysis-driven experimental program which offers both quantitative and qualitative information on the degradation mechanism. Preliminary analyses using a coupled diffusion/reaction model are used to gain insight into the physics of the degradation mechanisms and to identify crucial material parameters. An experimental program is defined based on the results of the preliminary analysis which allows the determination of the necessary material coefficients. Thermogravimetric analyses are carried out in nitrogen, air, and oxygen to provide quantitative information on thermal and oxidative reactions. Powdered samples are used to eliminate diffusion effects. Tests in both inert and oxidative environments allow the separation of thermal and oxidative contributions to specimen mass loss. The concentration dependency of the oxidative reactions is determined from the tests in pure oxygen. Short term isothermal tests at different temperatures are carried out on neat resin and unidirectional macroscopic specimens to identify diffusion effects. Mass loss, specimen shrinkage, the formation of degraded surface layers and surface cracking are recorded as functions of exposure time. Geometry effects

  1. Characterization and degradation studies on synthetic polymers for aerospace application

    NASA Technical Reports Server (NTRS)

    Hsu, M. T. S.

    1982-01-01

    The anti-misting additive for jet fuels known as FM-9 (proprietary polymer) was characterized by elemental analysis, solubility studies and molecular weight determination. Physical properties of surface tension, viscosity, specific gravity and other physical parameters were determined. These results are compared with properties of polyisobutylene and fuels modified with the same; the misting characteristics of polyisobutylene and FM-9 in Jet A fuel are included. Characterization and degradation of phthalocyanine and its derivatives were accomplished by use of a mass spectrometer and a pyroprobe solid pyrolyzer. Metal phthalocyanine tetracarboxylic acids and phthalocyanine-tetraamine cured epoxies were studied. Epoxy/graphite composite panels were exposed to a NASA-Ames radiant panel fire simulator in the flaming and non-flaming modes; toxic gases of HCN and HZS were measured along with oxygen, Co2, Co, and organic gases.

  2. Analytical methods for toxic gases from thermal degradation of polymers

    NASA Technical Reports Server (NTRS)

    Hsu, M.-T. S.

    1977-01-01

    Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.

  3. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design.

    PubMed

    Singh, Sagar; Lo, Meng-Chen; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Zahn, Jeffrey D; Shreiber, David I

    2016-01-01

    Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM) to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (<10% error). The ratio of the predicted buckling force-to-predicted insertion force, where a value greater than one would ideally be expected to result in successful insertion, was plotted against the actual success rate from experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the "safety factor", as it indicated the degree to which the coating should be over

  4. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design

    PubMed Central

    Singh, Sagar; Lo, Meng-Chen; Damodaran, Vinod B.; Kaplan, Hilton M.; Kohn, Joachim; Zahn, Jeffrey D.; Shreiber, David I.

    2016-01-01

    Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM) to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (<10% error). The ratio of the predicted buckling force-to-predicted insertion force, where a value greater than one would ideally be expected to result in successful insertion, was plotted against the actual success rate from experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the “safety factor”, as it indicated the degree to which the coating should be over

  5. Nanocarbon filler particles in polymer matrix - Nanosized dielectric probe

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vitaliy G.; Polschikov, Sergey V.; Nedorezova, Polina M.; Klyamkina, Alla N.; Aladyshev, Alexander M.

    2014-05-01

    Composite materials of polypropylene, graphene nanoplatelets (GNP) or fullerene C60 were synthesized by in situ polymerization. GNP particles consist of 3 - 5 graphene layers and have aspect ratio 40. In composites with pristine GNP particles their aspect ratio is 110, whereas ultrasonic processing reduces it to 40 - 50. This change of aspect ratio of filler particles and their aggregates results in different properties of composites with pristine and sonicated GNP. Percolation threshold for composites with pristine GNP is 0.25% vol. In composites with sonicated GNP it is 2-3% vol. This is due to reduction in the size of filler particles aggregates and more uniform distribution of particles in polymer matrix after ultrasonic treatment. The presence of nanocarbon filler (GNP or fullerene) makes α-transition, associated with the glass transition of the amorphous phase of polypropylene, clearly resolved. Its intensity increases with the concentration of nanofiller, which acts as a dielectric probe.

  6. Degradation of Ultra-High Molar Mass Polymers in Size-Exclusion Chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The degradation of high molar mass polymers during size-exclusion chromatography (SEC) analysis has been a topic of interest for several decades. Should a polymer degrade during analysis, the accuracy of the molar mass (M) and architectural information obtained will be compromised. To this effect,...

  7. Pathways for degradation of plastic polymers floating in the marine environment.

    PubMed

    Gewert, Berit; Plassmann, Merle M; MacLeod, Matthew

    2015-09-01

    Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids. PMID:26216708

  8. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    PubMed

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-01

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability. PMID:27187246

  9. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  10. Photoluminescence of friction-induced polymer degradation products

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Savitskiĭ, A. V.; Scherbakov, I. P.

    2008-07-01

    We have studied the photoluminescence (PL) spectra of polyethylene (PE), polypropylene, and polyamide 6 excited using laser radiation with a photon energy (˜3.68 eV) within a spectral interval (3.65 3.75 eV) corresponding to the optical absorption due to C=O bonds. The PL spectra of the products of friction-induced degradation of these polymers display an intense peak in the region of about 2 2.5 eV. In order to elucidate the nature of this peak, the surface of PE film samples upon friction (rubbing) has been studied using IR spectroscopy in the attenuated total reflection (ATR) mode. The ATR spectra of these samples exhibit a sharp increase in the intensity of bands assigned to vibrations of the conjugated sequences of carbon-carbon bonds in the backbone of PE macromolecules. This result allows the PL peak at 2 2.5 eV to be assigned to the π* → π transition in the conjugated sequences of such bonds excited by means of the intramolecular energy transfer from C=O bonds.

  11. Chemical degradation of fluorosulfonamide fuel cell membrane polymer model compounds

    NASA Astrophysics Data System (ADS)

    Alsheheri, Jamela M.; Ghassemi, Hossein; Schiraldi, David A.

    2014-12-01

    The durability of a polymer electrolyte fuel cell membrane, along with high proton conductivity and mechanical performance is critical to the success of these energy conversion devices. Extending our work in perfluorinated membrane stability, aromatic trifluoromethyl sulfonamide model compounds were prepared, and their oxidative degradation was examined. The chemical structures for the models were based on mono-, di- and tri-perfluorinated sulfonamide modified phenyl rings. Durability of the model compounds was evaluated by exposure to hydroxyl radicals generated using Fenton reagent and UV irradiation of hydrogen peroxide. LC-MS results for the mono-substituted model compound indicate greater stability to radical oxidation than the di-substituted species; loss of perfluorinated fonamide side chains appears to be an important pathway, along with dimerization and aromatic ring hydroxylation. The tri-substituted model compound also shows loss of side chains, with the mono-substituted compound being a major oxidation product, along with a limited amount of hydroxylation and dimerization of the starting material.

  12. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  13. Conjugated Polymer Actuators for Articulating Neural Probes and Electrode Interfaces

    NASA Astrophysics Data System (ADS)

    Daneshvar, Eugene Dariush

    This thesis investigated the potential use of polypyrrole (PPy) doped with dodecylbenzenesulfonate (DBS) to controllably articulate (bend or guide) flexible neural probes and electrodes. PPy(DBS) actuation performance was characterized in the ionic mixture and temperature found in the brain. Nearly all the ions in aCSF were exchanged into the PPy---the cations Na +, K+, Mg2+, Ca2+, as well as the anion PO43-; Cl- was not present. Nevertheless, deflections in aCSF were comparable to those in NaDBS and they were monotonic with oxidation level: strain increased upon reduction, with no reversal of motion despite the mixture of ionic charges and valences being exchanged. Actuation depended on temperature. Upon warming, the cyclic voltammograms showed additional peaks and an increase of 70% in the consumed charge. Actuation strain was monotonic under these conditions, demonstrating that conducting polymer actuators can indeed be used for neural interface and neural probe applications. In addition, a novel microelectro-mechanical system (MEMS) was developed to measure previously disregarded residual stress in a bilayer actuator. Residual stresses are a major concern for MEMS devices as that they can dramatically influence their yield and functionality. This device introduced a new technique to measure micro-scaled actuation forces that may be useful for characterization of other MEMS actuators. Finally, a functional movable parylene-based neural electrode prototype was developed. Employing PPy(DBS) actuators, electrode projections were successfully controlled to either remain flat or actuate out-of-plane and into a brain phantom during insertion. An electrode projection 800 microm long and 50 microm wide was able to deflect almost 800 microm away from the probe substrate. Applications that do not require insertion into tissue may also benefit from the electrode projections described here. Implantable neural interface devices are a critical component to a broad class of

  14. The rheology, degradation, processing, and characterization of renewable resource polymers

    NASA Astrophysics Data System (ADS)

    Conrad, Jason David

    Renewable resource polymers have become an increasingly popular alternative to conventional fossil fuel based polymers over the past couple decades. The push by the government as well as both industrial and consumer markets to go "green" has provided the drive for companies to research and develop new materials that are more environmentally friendly and which are derived from renewable materials. Two polymers that are currently being produced commercially are poly-lactic acid (PLA) and polyhydroxyalkanoate (PHA) copolymers, both of which can be derived from renewable feedstocks and have shown to exhibit similar properties to conventional materials such as polypropylene, polyethylene, polystyrene, and PET. PLA and PHA are being used in many applications including food packaging, disposable cups, grocery bags, and biomedical applications. In this work, we report on the rheological properties of blends of PLA and PHA copolymers. The specific materials used in the study include Natureworks RTM 7000D grade PLA and PHA copolymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Blends ranging from 10 to 50 percent PHA by weight are also examined. Shear and extensional experiments are performed to characterize the flow behavior of the materials in different flow fields. Transient experiments are performed to study the shear rheology over time in order to determine how the viscoelastic properties change under typical processing conditions and understand the thermal degradation behavior of the materials. For the blends, it is determined that increasing the PHA concentration in the blend results in a decrease in viscosity and increase in degradation. Models are fit to the viscosity of the blends using the pure material viscosities in order to be able to predict the behavior at a given blend composition. We also investigate the processability of these materials into films and examine the resultant properties of the cast films. The mechanical and thermal properties of the

  15. Far-Red Fluorescent Lipid-Polymer Probes for an Efficient Labeling of Enveloped Viruses.

    PubMed

    Lacour, William; Adjili, Salim; Blaising, Julie; Favier, Arnaud; Monier, Karine; Mezhoud, Sarra; Ladavière, Catherine; Place, Christophe; Pécheur, Eve-Isabelle; Charreyre, Marie-Thérèse

    2016-08-01

    Far-red emitting fluorescent lipid probes are desirable to label enveloped viruses, for their efficient tracking by optical microscopy inside autofluorescent cells. Most used probes are rapidly released from membranes, leading to fluorescence signal decay and loss of contrast. Here, water-soluble lipid-polymer probes are synthesized harboring hydrophilic or hydrophobic far-red emitting dyes, and exhibiting enhanced brightness. They efficiently label Hepatitis C Virus pseudotyped particles (HCVpp), more stably and reproducibly than commercial probes, and a strong fluorescence signal is observed with a high contrast. Labeling with such probes do not alter virion morphology, integrity, nor infectivity. Finally, it is shown by fluorescence microscopy that these probes enable efficient tracking of labeled HCVpp inside hepatocarcinoma cells used as model hepatocytes, in spite of their autofluorescence up to 700 nm. These novel fluorescent lipid-polymer probes should therefore enable a better characterization of early stages of infection of autofluorescent cells by enveloped viruses. PMID:27113918

  16. Polymer degradation and molecular relaxation during accelerated weathering of coatings

    NASA Astrophysics Data System (ADS)

    Fernando, B. Malcolm Dilhan

    2011-12-01

    A model polyester-urethane coating similar to those on USAF aircraft was the focus in this research. It was studied for physical property changes during accelerated weathering. Isothermal aging and natural weathering were utilized as control studies. Coatings subjected to accelerated weathering had an increase in tensile modulus, glass transition temperature and surface stiffness. DSC analysis of these coatings clearly showed evidence for 'physical aging'. This phenomenon was pursued further to find out the impact of macromolecular relaxation on the polymer physical properties. The unique feature of this research is the investigation of kinetics of macromolecular relaxation whilst a polymer undergoes simultaneous degradation. Assessment was done for some material parameters as found in theoretical models. Fictive temperature (Tf), apparent activation energy (Deltah*/R) and non linearity parameter ( x) found in Tool-Narayanswamy-Moyniham (TNM) model were explored. Tf was found to be decreasing with weathering and explained the increasingly aged 'state' of the structure. Deltah*/R was found to be increasing and explains an increased energy barrier to overcome to attain relaxation. DSC peak-shift method was used to characterize x. At early stages there is a stronger non linearity of relaxation (lower x) with a stronger structure dependence and later the relaxation kinetics seems more temperature dependent (higher x). MDSC was done to characterize the non exponentiality parameter (beta) as found in the Kohlrauch-Williams-Watts (KWW) equation. Decreasing beta value with exposure implies an increasingly broad distribution of relaxation times. The Cooperatively Rearranging Regions (CRR) concept of Adams and Gibbs was also examined. Molecular weight (Ma) of the volume (Va) represented by a CRR was compared with Mc, the molecular weight between crosslinks. Nanoindentation was done to explore the coatings' surface mechanical properties. During accelerated weathering the

  17. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    PubMed Central

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  18. Formation of microscopic particles during the degradation of different polymers.

    PubMed

    Lambert, Scott; Wagner, Martin

    2016-10-01

    This study investigated the formation and size distribution of microscopic plastic particles during the degradation of different plastic materials. Particle number concentrations in the size range 30 nm-60 μm were measured by nanoparticle tracking analysis (NTA) and Coulter Counter techniques. Each of the plastics used exhibited a measureable increase in the release of particles into the surrounding solution, with polystyrene (PS) and polylactic acid (PLA) generating the highest particle concentrations. After 112 d, particle concentrations ranged from 2147 particles ml(-1) in the control (C) to 92,465 particles ml(-1) for PS in the 2-60 μm size class; 1.2 × 10(5) particles ml(-1) (C) to 11.6 × 10(6) for PLA in the 0.6-18 μm size class; and 0.2 × 10(8) particles ml(-1) (C) to 6.4 × 10(8) particles ml(-1) for PS in the 30-2000 nm size class (84 d). A classification of samples based on principal component analysis showed a separation between the different plastic types, with PLA clustering individually in each of the three size classes. In addition, particle size distribution models were used to examine more closely the size distribution data generated by NTA. Overall, the results indicate that at the beginning of plastic weathering processes chain scission at the polymer surface causes many very small particles to be released into the surrounding solution and those concentrations may vary between plastic types. PMID:27470943

  19. Experimental degradation of polymer shopping bags (standard and degradable plastic, and biodegradable) in the gastrointestinal fluids of sea turtles.

    PubMed

    Müller, Christin; Townsend, Kathy; Matschullat, Jörg

    2012-02-01

    The persistence of marine debris such as discarded polymer bags has become globally an increasing hazard to marine life. To date, over 177 marine species have been recorded to ingest man-made polymers that cause life-threatening complications such as gut impaction and perforation. This study set out to test the decay characteristics of three common types of shopping bag polymers in sea turtle gastrointestinal fluids (GIF): standard and degradable plastic, and biodegradable. Fluids were obtained from the stomachs, small intestines and large intestines of a freshly dead Green turtle (Chelonia mydas) and a Loggerhead turtle (Caretta caretta). Controls were carried out with salt and freshwater. The degradation rate was measured over 49 days, based on mass loss. Degradation rates of the standard and the degradable plastic bags after 49 days across all treatments and controls were negligible. The biodegradable bags showed mass losses between 3 and 9%. This was a much slower rate than reported by the manufacturers in an industrial composting situation (100% in 49 days). The GIF of the herbivorous Green turtle showed an increased capacity to break down the biodegradable polymer relative to the carnivorous Loggerhead, but at a much lower rate than digestion of natural vegetative matter. While the breakdown rate of biodegradable polymers in the intestinal fluids of sea turtles is greater than standard and degradable plastics, it is proposed that this is not rapid enough to prevent morbidity. Further study is recommended to investigate the speed at which biodegradable polymers decompose outside of industrial composting situations, and their durability in marine and freshwater systems. PMID:22209368

  20. Mass spectrometric analysis for high molecular weight synthetic polymers using ultrasonic degradation and the mechanism of degradation.

    PubMed

    Kawasaki, Hideya; Takeda, Yoshiki; Arakawa, Ryuichi

    2007-06-01

    We have investigated ultrasonic degradations of poly(ethylene oxide) (PEG) and poly(methyl methacrylate) (PMMA) in aqueous media by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The ultrasonic degradation of polymers was monitored as a function of ultrasonication duration to examine the structural details of ultrasonic degradation polymers. PEG solution ultrasonication produced five types of oligomers (M approximately 1000 Da) with different end groups, irrespective of the initial average molecular masses (M=2, 6, 20, and 2000 kDa). Several degradation pathways with free radical reactions have been suggested to explain these degradation products: the ultrasonic degradation of PEG is initiated by breaking of the C-O bond in the PEG chain, generating polymeric radicals with two terminal groups, i.e., X*( approximately CH2CH2*) and Y*( approximately CH2CH2O*), followed by termination with extraction or release of a hydrogen atom. However, PMMA (M=1630 Da) ultrasonication generated only one type of degradation oligomer, which has a hydrogen group at both ends, the same as that of the original oligomer. It has been suggested that the presence of the radical terminal groups X*( approximately CH2*) and Y*( approximately (CH3)CCOO(CH3)C*) is due to selective C-C bond breaking in the chain during the ultrasonic degradation of PMMA. The MALDI-TOFMS combined with the ultrasonic degradation technique (UD/MALDI-TOFMS) developed in this study could be extended to the analysis of synthetic polymer structures with high molecular weights. PMID:17461552

  1. Probing degradation in complex engineering silicones by 1H multiple quantum NMR

    SciTech Connect

    Maxwell, R S; Chinn, S C; Giuliani, J; Herberg, J L

    2007-09-05

    Static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains.

  2. Kinetics and mechanism of thermal degradation of pentose- and hexose-based carbohydrate polymers.

    PubMed

    Akbar, Jamshed; Iqbal, Mohammad S; Massey, Shazma; Masih, Rashid

    2012-10-15

    This work aims at study of thermal degradation kinetics and mechanism of pentose- and hexose-based carbohydrate polymers isolated from Plantago ovata (PO), Salvia aegyptiaca (SA) and Ocimum basilicum (OB). The analysis was performed by isoconversional method. The materials exhibited mainly two-stage degradation. The weight loss at ambient-115°C characterized by low activation energy corresponds to loss of moisture. The kinetic triplets consisting of E, A and g(α) model of the materials were determined. The major degradation stage represents a loss of high boiling volatile components. This stage is exothermic in nature. Above 340°C complete degradation takes place leaving a residue of 10-15%. The master plots of g(α) function clearly differentiated the degradation mechanism of hexose-based OB and SA polymers and pentose-based PO polymer. The pentose-based carbohydrate polymer showed D(4) type and the hexose-based polymers showed A(4) type degradation mechanism. PMID:22939355

  3. Main chain acid-degradable polymers for the delivery of bioactive materials

    DOEpatents

    Frechet, Jean M. J.; Standley, Stephany M.; Jain, Rachna; Lee, Cameron C.

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  4. Diversity of Five Anaerobic Toluene-Degrading Microbial Communities Investigated Using Stable Isotope Probing

    PubMed Central

    Sun, Weimin

    2012-01-01

    Time-series DNA-stable isotope probing (SIP) was used to identify the microbes assimilating carbon from [13C]toluene under nitrate- or sulfate-amended conditions in a range of inoculum sources, including uncontaminated and contaminated soil and wastewater treatment samples. In all, five different phylotypes were found to be responsible for toluene degradation, and these included previously identified toluene degraders as well as novel toluene-degrading microorganisms. In microcosms constructed from granular sludge and amended with nitrate, the putative toluene degraders were classified in the genus Thauera, whereas in nitrate-amended microcosms constructed from a different source (agricultural soil), microorganisms in the family Comamonadaceae (genus unclassified) were the key putative degraders. In one set of sulfate-amended microcosms (agricultural soil), the putative toluene degraders were identified as belonging to the class Clostridia (genus Desulfosporosinus), while in other sulfate-amended microcosms, the putative degraders were in the class Deltaproteobacteria, within the family Syntrophobacteraceae (digester sludge) or Desulfobulbaceae (contaminated soil) (genus unclassified for both). Partial benzylsuccinate synthase gene (bssA, the functional gene for anaerobic toluene degradation) sequences were obtained for some samples, and quantitative PCR targeting this gene, along with SIP, was further used to confirm anaerobic toluene degradation by the identified species. The study illustrates the diversity of toluene degraders across different environments and highlights the utility of ribosomal and functional gene-based SIP for linking function with identity in microbial communities. PMID:22156434

  5. Probe diffusion in polymer solutions and hydrogels using fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Michelman-Ribeiro, Ariel; Boukari, Hacene; Horkay, Ferenc; Nossal, Ralph

    2006-03-01

    We apply fluorescence correlation spectroscopy (FCS) to measure the diffusion of small fluorescent probes (TAMRA, Mw = 430 Da; dextran, Mw = 10 kDa) in poly(vinyl alcohol) (PVA) solutions and hydrogels. PVA is a linear, neutral, biocompatible polymer, whose hydrogels have many biotechnology applications, such as drug-delivery devices and tissue scaffolds. The FCS measurements indicate that the probe diffusion decreases when the polymer solution is cross-linked. Further, the more the polymer chains are cross-linked, the slower the particles diffuse. These results suggest that the cross-link density, which is often ignored in the analysis of probe diffusion data in gels, must be taken into account. Remarkably, we find that the apparent diffusion time and the elastic modulus of the gels show a linear correlation.

  6. Spectroscopic investigations into degradation of polymer membranes for fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kruczała, Krzysztof; Szczubiałka, Krzysztof; Łańcucki, Łukasz; Zastawny, Izabela; Góra-Marek, Kinga; Dyrek, Krystyna; Sojka, Zbigniew

    2008-05-01

    The research was focused on synthesis of proton conductive, easily degradable polymer membranes, which can be used as a model system to verify the efficiency of transition metal ions (TMI) in prevention of polymer degradation. Two polymers composed of 2-hydroxyethyl methacrylate (HEMA), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS), and styrenesulfonic acid (SS) were synthesized. The copolymers were characterized by gel permeation chromatography (GPC), elementary analysis, and FTIR and fluorescence spectroscopies. The results allowed determination of weight-average molecular weight and the copolymer composition. The protons of sulfonic groups were substituted by paramagnetic transition metal ions of various spin states (Cr 3+, S = 3/2 and Mn 2+, S = 5/2) with the loading varying from 0.5 up to 10 mol%. The effectiveness of spin catalysis was checked by EPR. The results obtained indicate enhancement of polymer stability in the presence of Mn 2+.

  7. A novel thermosensitive polymer with pH-dependent degradation for drug delivery.

    PubMed

    Garripelli, V K; Kim, J-K; Namgung, R; Kim, W J; Repka, M A; Jo, S

    2010-02-01

    A class of thermosensitive biodegradable multiblock copolymers with acid-labile acetal linkages were synthesized from Pluronic triblock copolymers (Pluronic P85 and P104) and di-(ethylene glycol) divinyl ether. The novel polymers were engineered to form thermogels at body temperature and degrade in an acidic environment. The Pluronic-based acid-labile polymers were characterized using nuclear magnetic resonance, gel permeation chromatography and differential scanning calorimetry. In vitro biocompatibility of the synthesized polymers was evaluated using calorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The polymers showed reverse thermogelling behavior in water around body temperature. The sol-gel transition temperatures of the polymers synthesized from Pluronic P85 and P104 were lowered from 70.3 to 30 degrees C and from 68.5 to 26.9 degrees C, respectively, when the synthesized polymers were compared with corresponding Pluronic block copolymers at a concentration of 25wt.%. The hydrophobic dye solubilization confirmed the formation of polymeric micelles in the aqueous solution. The sizes of the multiblock copolymers increased on a rise in temperature, indicating that thermal gelation was mediated by micellar aggregation. The thermally driven hydrogels showed preferential polymer degradation at acidic pH. At pH 5.0 and 6.5, the release of 40kDa fluorescein isothiocyanate-dextran (FITC-dextran) from the thermally formed hydrogels was completed within 2 and 9 days, respectively. However, FITC-dextran was continuously released up to 30 days at neutral pH. The mechanism of FITC-dextran release at pH 5.0 was mainly an acid-catalyzed degradation, whereas both diffusion and pH-dependent degradation resulted in FITC-dextran release at pH 6.5. The novel polymers hold great potential as a pH-sensitive controlled drug delivery system owing to their interesting phase transition behavior and biocompatibility. PMID:19596093

  8. Pedigree doll disease: an application of FT-Raman spectroscopy to polymer degradation

    NASA Astrophysics Data System (ADS)

    Edwards, Howell G.; Johnson, Anthony F.; Lewis, Ian R.; Turner, Paul H.

    1994-01-01

    The deterioration of cellulose acetate polymer dolls which results in the phenomenon known as Pedigree Doll Disease (PDD) has been studied by FT-Raman spectroscopy. The disfigurement produced by PDD can be quite extensive and results in the impairment of moving parts. Viscous brown deposits were identified spectroscopically as iron acetate and their formation linked with the polymer degradation to acetic acid in the presence of iron fastenings which secure the doll's eyes and limbs.

  9. Probing anode degradation in automotive Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kwon, Ou Jung

    The lithium-ion battery is drawing attention as a power source for future clean and fuel-efficient vehicles. Although the Li-ion battery presently shows best performance for energy density and power density compared to other rechargeable batteries, some degradation problems still remain as key challenges for long-term durability in automotive applications. Among those problems, Li deposition is well known for causing permanent capacity loss. Fundamental mechanisms of Li deposition in the carbon anode are, however, not fully understood, especially at subzero temperature and/or under high rate charge. This dissertation introduces comprehensive study of Li deposition using automotive 18650 Li-ion cells. The mechanism and relevant diagnostic methods as well as preventive charging protocol are discussed. In part one, a new diagnostic tool is introduced utilizing 3-electrode cell system, which measures thermodynamic and kinetic parameters of cathode and anode, respectively, as a function of temperature and SOC (state of charge): open circuit potential (OCP); Li diffusion coefficient in active particles; and internal resistance. These data are employed to understand electrochemical reaction and its thermal interaction under charging conditions that result in Li deposition. Part two provides a threshold parameter for the onset of Li deposition, which is not commonly used anode potential but charge capacity, or more specifically the amount of Li+ ions participating in intercalation reaction without Li deposition at given charging circumstances. This is called the critical charge capacity in this thesis, beyond which capacity loss at normal operating condition is observed, which becomes more serious as temperature is lowered and/or charge C-rate increases. Based on these experimental results, the mechanism of Li deposition is proposed as the concept of anode particle surface saturation, meaning that once the anode particle surface is saturated with Li in any charging

  10. QCM-based measurement of chlorine-induced polymer degradation kinetics.

    PubMed

    Kearney, Logan T; Howarter, John A

    2014-07-29

    Highly structured network polymers are prepared via a molecular layer by layer technique (mLbL) and used as a model system to study aqueous degradation of polymer thin films in real time. Quantitative analysis of the degradation kinetics was enabled by the use of a quartz crystal microbalance (QCM). We conclude that the common metric of halogen, specifically chlorine, exposure (concentration × time) to be an ineffective normalization unit and showed a multistage adsorption process consistent with the established chemical mechanism. Additionally, degradation progression was tracked at multiple points of exposure to determine the effects of chlorination on the chemical and morphological state of the polymer structure with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. The formation of known halogenation products were corroborated with XPS through the high resolution spectra. Insight into the heterogeneous nature of the nanostructural degradation was derived from the AFM images. Periodic rinsing was found to release adsorbed chlorine but had negligible benefits on extending the exposure limits of the polyamide film. Fluorinated amine monomer (3,4-difluoroaniline) was incorporated into the surface of the polymer to determine the effect of limiting N-halogenation and the formation of the halogenated ring product. The modified surface layer reduced the rate and magnitude of chlorine adsorption relative to the neat polyamide surface. The QCM technique was shown to be an effective tool for rapid and high fidelity evaluation of molecular degradation and modification strategies to increase device lifetimes. PMID:25006981

  11. Free radical polymers with tunable and selective bio- and chemical degradability.

    PubMed

    Paulusse, Jos M J; Amir, Roey J; Evans, Richard A; Hawker, Craig J

    2009-07-22

    A versatile synthetic strategy has been developed which enables the facile incorporation of cleavable functional groups, i.e., esters, thioesters, and disulfides, into the carbon-carbon backbone of vinyl-based polymers. Through the synthesis of novel cyclic monomers, RAFT-mediated radical ring-opening copolymerizations with traditional vinyl monomers such as methyl methacrylate, N,N-dimethylaminoethyl methacrylate, and 2-hydroxyethyl methacrylate lead to the introduction of controlled degradability into these widely used vinyl copolymer systems. An additional benefit of this strategy is the inherent versatility available through the incorporation of cyclic monomers containing diverse functional groups such as esters, thioesters, disulfides, and silyl ether units that allow degradation under basic/acidic, reductive, or enzymatic conditions. By integrating multiple, orthogonal cyclic monomers into linear copolymer backbones, well-defined systems with programmable degradation profiles are obtained which allows for tunable, selective, and stepwise degradation of the vinyl polymer backbones. PMID:19555103

  12. Degradation of graphite/polymer composites in seawater

    SciTech Connect

    Tucker, W.C. )

    1991-12-01

    Glass-reinforced plastics have a substantial history of use in sea water. With the advent of high-performance graphite fibers offering greater stiffness than glass, some marine engineering applications may be implemented where glass was unsuitable. However, the nobility of graphite in the galvanic series makes it an extremely efficient cathode when coupled with metals in seawater. Degradation of the cathodic composite material is an unexpected result of the corrosion chemistry in natural seawater. Deep submergence of composite materials introduces another potential degradative mechanism in seawater due to an increase moisture uptake by damage-dependent mechanisms. In this paper other environmental exposure to sunlight, deep submergence and cyclic thermal changes which show potential for degradation of composites are discussed.

  13. The Conformation of Thermoresponsive Polymer Brushes Probed by Optical Reflectivity.

    PubMed

    Varma, Siddhartha; Bureau, Lionel; Débarre, Delphine

    2016-04-01

    We describe a microscope-based optical setup that allows us to perform space- and time-resolved measurements of the spectral reflectance of transparent substrates coated with ultrathin films. This technique is applied to investigate the behavior in water of thermosensitive polymer brushes made of poly(N-isopropylacrylamide) grafted on glass. We show that spectral reflectance measurements yield quantitative information about the conformation and axial structure of the brushes as a function of temperature. We study how parameters such as grafting density and chain length affect the hydration state of a brush, and provide one of the few experimental evidences for the occurrence of vertical phase separation in the vicinity of the lower critical solution temperature of the polymer. The origin of the hysteretic behavior of poly(N-isopropylacrylamide) brushes upon cycling the temperature is also clarified. We thus demonstrate that our optical technique allows for in-depth characterization of stimuli-responsive polymer layers, which is crucial for the rational design of smart polymer coatings in actuation, gating, or sensing applications. PMID:26986181

  14. A Review of Molecular-Level Mechanism of Membrane Degradation in the Polymer Electrolyte Fuel Cell

    PubMed Central

    Ishimoto, Takayoshi; Koyama, Michihisa

    2012-01-01

    Chemical degradation of perfluorosulfonic acid (PFSA) membrane is one of the most serious problems for stable and long-term operations of the polymer electrolyte fuel cell (PEFC). The chemical degradation is caused by the chemical reaction between the PFSA membrane and chemical species such as free radicals. Although chemical degradation of the PFSA membrane has been studied by various experimental techniques, the mechanism of chemical degradation relies much on speculations from ex-situ observations. Recent activities applying theoretical methods such as density functional theory, in situ experimental observation, and mechanistic study by using simplified model compound systems have led to gradual clarification of the atomistic details of the chemical degradation mechanism. In this review paper, we summarize recent reports on the chemical degradation mechanism of the PFSA membrane from an atomistic point of view. PMID:24958288

  15. Biocide evaluation against sessile xanthan polymer-degrading bacteria

    SciTech Connect

    O'Leary, W.B.; Boivin, J.W.; Dasinger, B.L.; Beck, D.; Goldman, I.M.; Wernau, W.C.

    1987-11-01

    This paper supports the use of formaldehyde at economically feasible concentrations as a biocide for EOR processes that use xanthan biopolymer. Its biocidal action against anaerobic sessile xanthan-degrading field organisms was clearly superior to three other biocides tested when 100% kill was used as the criterion for effectiveness.

  16. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    SciTech Connect

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  17. A Suite of Activity-Based Probes for Cellulose Degrading Enzymes

    PubMed Central

    Chauvigné-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-01-01

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes, in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic microbial cellulose degrading systems, and facilitates a greater understanding of the organismal role associated with biofuel development. PMID:23176123

  18. DNase-activatable fluorescence probes visualizing the degradation of exogenous DNA in living cells

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Shi, Bihua; Zhang, Pengfei; Hu, Dehong; Zheng, Mingbin; Zheng, Cuifang; Gao, Duyang; Cai, Lintao

    2012-03-01

    This work presents a method to visualize the degradation of exogenous DNA in living cells using a novel type of activatable fluorescence imaging probe. Deoxyribonuclease (DNase)-activatable fluorescence probes (DFProbes) are composed of double strands deoxyribonucleic acid (dsDNA) which is labeled with fluorophore (ROX or Cy3) and quencher on the end of one of its strands, and stained with SYBR Green I. In the absence of DNase, DFProbes produce the green fluorescence signal of SYBR Green I. In the presence of DNase, SYBR Green I is removed from the DFProbes and the labeled fluorophore is separated from the quencher owing to the degradation of DFProbes by DNase, resulting in the decrease of the green fluorescence signal and the occurrence of a red fluorescence signal due to fluorescence resonance energy transfer (FRET). DNase in biological samples was detected using DFProbes and the fluorescence imaging in living cells was performed using DFprobe-modified Au nanoparticles. The results show that DFProbes have good responses to DNase, and can clearly visualize the degradation of exogenous DNA in cells in real time. The well-designed probes might be useful in tracing the dynamic changes of exogenous DNA and nanocarriers in vitro and in vivo.This work presents a method to visualize the degradation of exogenous DNA in living cells using a novel type of activatable fluorescence imaging probe. Deoxyribonuclease (DNase)-activatable fluorescence probes (DFProbes) are composed of double strands deoxyribonucleic acid (dsDNA) which is labeled with fluorophore (ROX or Cy3) and quencher on the end of one of its strands, and stained with SYBR Green I. In the absence of DNase, DFProbes produce the green fluorescence signal of SYBR Green I. In the presence of DNase, SYBR Green I is removed from the DFProbes and the labeled fluorophore is separated from the quencher owing to the degradation of DFProbes by DNase, resulting in the decrease of the green fluorescence signal and the

  19. Spatially Varying Nanoconfinement as a Probe of Polymer Physics

    NASA Astrophysics Data System (ADS)

    Klotz, Alexander; Reisner, Walter

    2012-02-01

    Complex nanofluidic systems have the capability to unveil a rich landscape of new polymer physics. One-dimensional channels and two-dimensional slits have been used for precise measurements of persistence length and to verify scaling laws. Recently, devices with spatially varying confinement have been used to gain further control over single molecule polymer conformation. We use a system consisting of a nanofluidic slit embedded with a lattice of pits acting as entropic traps. Single DNA polymers in this system self-organize into discrete conformational states. We have shown that this system can be used to define stable DNA configurations at equilibrium and to fine-tune diffusion to a local minimum corresponding to stable conformational states. Measurements of mean occupancy with varying device parameters can be fit to theory, giving information about the confinement free energy of DNA in a nanoslit (a subject of controversy) and the strength of excluded volume interactions. Measurements of the excluded volume interaction provide information about the strength of intersegmental repulsive electrostatic interactions, quantified by the notion of effective width. The scaling of width with respect to salt concentration is observed in single DNA molecules for the first time.

  20. Probing charge delocalization in a semi-crystalline supramolecular polymer

    NASA Astrophysics Data System (ADS)

    Kang, Keehoon; Watanabe, Shun; Broch, Katrina; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Heeney, Martin; Sirringhaus, Henning

    2015-03-01

    Various doping methods have achieved metallic conductivity in π-conjugated polymer but most of them suffer from dopant-induced-disorder. We developed a simple and effective method of doping a high mobility semi-crystalline polymer, poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT) by forming a bi-layer with a small-molecule acceptor, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ). The doping realizes an efficient charge-transfer between pBTTT and F4-TCNQ (conductivity over 150 S/cm), while preserving the structural order of a pristine pBTTT. The charges are discovered to be sufficiently delocalized to give rise to a nearly-ideal Hall effect, and therefore, a coherent transport in a wide temperature range, with a high Hall mobility of 1.8 cm2/Vs at room temperature. The combination of a Pauli magnetic susceptibility and magnetoconductance signatures strengthen the evidence of weak localization in the supramolecular system. Comparison with other amorphous conducting polymers elucidates the role of structural order as an indicator of the degree of charge delocalization.

  1. Rotational diffusion in polymer nanocomposites as probed by anisotropic particles

    NASA Astrophysics Data System (ADS)

    Clarke, Laura

    2014-03-01

    Metal nanoparticles strongly absorb specific wavelengths of light with no (or only a very weak) radiative relaxation by which to release this energy. As a result, the absorbed energy is efficiently converted to local heat (a photothermal effect). With an effective cross-section of up to 10 times its physical size, each particle acts as a ``super-sized'' absorber even when embedded within a transparent material environment such as a polymer, resulting in dramatic heating originating at the particles. Thus, with spatially-uniform illumination, one can metaphorically reach inside a polymer nanocomposite and apply heat to pre-selected subsets (e.g., causing them to dramatically change properties due to actuation, cross-linking, crystallization, or chemical reaction) without heating the sample surface or strongly affecting the remainder of the material. By utilizing optically-accessible additives including the particles themselves, the thermal gradient from the particle outward can be experimentally determined. In particular, rotational diffusion of anisotropic particles can be used to measure the temperature at the nanoparticle, which is the warmest point in a polymeric film or nanofiber under photothermal heating. Conversely, the same technique can be utilized to measure polymer dynamics in nanocomposites in the immediate vicinity of the particle. Funding: National Science Foundation CMMI-1069108.

  2. Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products.

    PubMed

    Taylor, M S; Daniels, A U; Andriano, K P; Heller, J

    1994-01-01

    Bioabsorbable polymer implants may provide a viable alternative to metal implants for internal fracture fixation. One of the potential difficulties with absorbable implants is the possible toxicity of the polymeric degradation products especially if they accumulate and become concentrated. Accordingly, material evaluation must involve dose-response toxicity data as well as mechanical properties and degradation rates. In this study the toxicity and rates of degradation for six polymers were determined, along with the toxicity of their degradation product components. The polymers studied were poly(glycolic acid) (PGA), two samples of poly(L-lactic acid) (PLA) having different molecular weights, poly(ortho ester) (POE), poly(epsilon-caprolactone) (PCL), and poly(hydroxy butyrate valerate) (5% valerate) (PHBV). Polymeric specimens were incubated at 37 degrees C in 0.05 M Tris buffer (pH 7.4 at 37 degrees C) and sterile deionized water. The solutions were not changed during the incubation intervals, providing a worst-case model of the effects of accumulation of degradation products. The pH and acute toxicity of the incubation solutions and the mass loss and logarithmic viscosity number of the polymer samples were measured at 10 days, 4, 8, 12, and 16 weeks. Toxicity was measured using a bioluminescent bacteria, acute toxicity assay system. The acute toxicity of pure PGA, PLA, POE, and PCL degradation product components was also determined. Degradation products for PHBV were not tested. PGA incubation solutions were toxic at 10 days and at all following intervals. The lower molecular weight PLA incubation solutions were not toxic in buffer but were toxic by 4 weeks in water.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10147175

  3. Driving degradation within biodegradable polymers with embedded nanoparticles

    NASA Astrophysics Data System (ADS)

    Gorga, Russell; Firestone, Gabriel; Fontecha, Daniela; Bochinski, Jason; Clarke, Laura

    The ability to controllably trigger breaking of chemical bonds enables a substance that has robust material properties during use but can be re-worked or deteriorated upon command. Photothermal heating creates intense local heat at isolated nanoparticle locations within a sample and can result in very different material responses than those achievable with conventional (uniform) heating. In this process, irradiation with visible light resonant with the nanoparticle's surface plasmon resonance results in dramatic local heating of the particles and the surrounding material. This work studies intentional thermal degradation of poly ethyl cyanoacrylate-starch composites doped with metal nanoparticles, and explores differences in degradation speed, efficiency, and resultant mechanical properties when heated via the photothermal effect. This work was supported by the National Science Foundation, Grant #: CMMI-1462966.

  4. Review of oxidative degradations of certain heterocyclic polymers

    NASA Technical Reports Server (NTRS)

    Mayo, F. R.

    1971-01-01

    The curing and decompositions of polyphenylenes and several nitrogen-containing condensation polymers, particularly polybenzimidazoles and pyrones, are reviewed critically. It is concluded that the condensations are usually imperfect and incomplete and that in most of the published work the late stages of the condensation are complicated by the beginnings of the charring and carbonization processes. Most discussions of mechanisms in this range are highly speculative and of little value. The most promising fields for further research are at lower temperatures, where slow oxidation processes deserve study, and at higher temperatures, where it may be possible to influence carbonization processes to obtain better products.

  5. Development of degradable polymer composites from starch and poly(alkyl cyanoacrylate)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the development of degradable polymer composites that can be made at room temperature without special equipments. The developed composites were made from poly(alkyl cyanoacrylate) and starch. Alkyl cyanoacrylate monomers were mixed with starch and the polymerization reaction ...

  6. Development of Degradable Polymer Composites from Starch and Poly(alkyl cyanoacrylate)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the development of degradable polymer composites that can be made at room temperature without special equipment. The developed composites are made from poly(alkyl cyanoacrylate) and starch. Alkyl cyanoacrylate monomers are mixed with starch and the polymerization reaction of ...

  7. Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation.

    PubMed

    Patterson, Adele; Ferreira, Ana P; Banks, Elizabeth; Skeene, Kirsty; Clarke, Graham; Nicholson, Sarah; Rawlinson-Malone, Clare

    2015-01-15

    The Pharmaceutical industry is increasingly utilizing amorphous technologies to overcome solubility challenges. A common approach is the use of drug in polymer dispersions to prevent recrystallization of the amorphous drug. Understanding the factors affecting chemical and physical degradation of the drug within these complex systems, e.g., temperature and relative humidity, is an important step in the selection of a lead formulation, and development of appropriate packaging/storage control strategies. The Arrhenius equation has been used as the basis of a number of models to predict the chemical stability of formulated product. In this work, we investigate the increase in chemical degradation seen for one particular spray dried dispersion formulation using hydroxypropyl methylcellulose acetate succinate (HPMC-AS). Samples, prepared using polymers with different substitution levels, were placed on storage for 6 months under a range of different temperature and relative humidity conditions and the degradant level monitored using high-performance liquid chromatography (HPLC). While the data clearly illustrates the impact of temperature and relative humidity on the degradant levels detected, it also highlighted that these terms do not account for all the variability in the data. An extension of the Arrhenius equation to include a term for the polymer chemistry, specifically the degree of succinoyl substitution on the polymer backbone, was shown to improve the fit of the model to the data. PMID:25450477

  8. Degradation of homogeneous polymer solutions in high shear turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Elbing, B. R.; Winkel, E. S.; Solomon, M. J.; Ceccio, S. L.

    2009-12-01

    This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.

  9. Controlled release of photoswitch drugs by degradable polymer microspheres

    PubMed Central

    Groynom, Rebecca; Shoffstall, Erin; Wu, Larry S.; Kramer, Richard H.; Lavik, Erin B.

    2016-01-01

    Background QAQ and DENAQ are synthetic photoswitch compounds that change conformation in response to light, altering current flow through voltage-gated ion channels in neurons. These compounds are drug candidates for restoring light sensitivity in degenerative blinding diseases such as AMD. Purpose However, these photoswitch compounds are cleared from the eye within several days, they must be administered through repeated intravitreal injections. Therefore, we are investigating local, sustained delivery formulations to constantly replenish these molecules and have the potential to restore sight. Methods Here, we encapsulate QAQ and DENAQ into several molecular weights of PLGA through an emulsion technique to assess the viability of delivering the compounds in their therapeutic window over many weeks. We characterize the loading efficiency, release profile, and bioactivity of the compounds after encapsulation. Results A very small burst release was observed for all of the formulations with the majority being delivered over the following two months. The lowest molecular weight PLGA led to the highest loading and most linear delivery for both QAQ and DENAQ. Bioactivity was retained for both compounds across the polymers. Conclusion These results present encapsulation into polymers by emulsion as a viable option for controlled release of QAQ and DENAQ. PMID:26453166

  10. Trimethylene carbonate and epsilon-caprolactone based (co)polymer networks: mechanical properties and enzymatic degradation.

    PubMed

    Bat, Erhan; Plantinga, Josée A; Harmsen, Martin C; van Luyn, Marja J A; Zhang, Zheng; Grijpma, Dirk W; Feijen, Jan

    2008-11-01

    High molecular weight trimethylene carbonate (TMC) and epsilon-caprolactone (CL) (co)polymers were synthesized. Melt pressed (co)polymer films were cross-linked by gamma irradiation (25 kGy or 50 kGy) in vacuum, yielding gel fractions of up to 70%. The effects of copolymer composition and irradiation dose on the cytotoxicity, surface properties, degradation behavior, and mechanical and thermal properties of these (co)polymers and networks were investigated. Upon incubation with cell culture medium containing extracts of (co)polymers and networks, human foreskin fibroblasts remained viable. For all (co)polymers and networks, cell viabilities were determined to be higher than 94%. The formed networks were flexible, with elastic moduli ranging from 2.7 to 5.8 MPa. Moreover, these form-stable networks were creep resistant under dynamic conditions. The permanent deformation after 2 h relaxation was as low as 1% after elongating to 50% strain for 20 times. The in vitro enzymatic erosion behavior of these hydrophobic (co)polymers and networks was investigated using aqueous lipase solutions. The erosion rates in lipase solution could be tuned linearly from 0.8 to 45 mg/(cm (2) x day) by varying the TMC to CL ratio and the irradiation dose. The copolymers and networks degraded essentially by a surface erosion mechanism. PMID:18855440

  11. Effect of tetralin on polymer degradation in solution. [Quarterly report, January--March 1995

    SciTech Connect

    Madras, G.; Smith, J.M.; McCoy, B.J.

    1995-04-26

    The effect of a hydrogen-donor solvent (tetralin) on the thermal degradation of poly(styrene-allyl alcohol) in solution was investigated in a steady-state tubular flow reactor at 1000 psig (6.8 MPa), at various tetralin concentrations (0--50%), polymer concentrations (1--4 g/L), and temperatures (130--200 C). The molecular weight distributions of the effluent at each condition were examined as a function of residence time by gel permeation chromatography. In the presence of tetralin, the polymer degrades by deploymerization to specific low molecular weight compounds and by random chain scission. No reaction was observed in the solvent 1-butanol in the absence of tetralin. The experimental data were interpreted with a rate expression first-order in polymer concentration based on continuous mixture kinetics, and rate coefficients were determined for the specific and random degradation processes. Activation energies were in the range of 5--10 kcal/mol for specific degradation and 33 kcal/mol for the random degradation process. A plot of rate coefficients versus tetralin concentration indicates a first-order rate at low tetralin concentrations and a zero-order dependence at high tetralin concentrations.

  12. Exploiting Changes in Dielectric Dissipation to Detect Thermal Degradation in Polymers and Composites

    NASA Astrophysics Data System (ADS)

    Brady, S. K.

    2010-02-01

    Many polymers including polymer matrices of composite materials exhibit changes in their dielectric properties when thermally overexposed, i.e. "heat damaged." Studies were performed by coupling resonant circuits inductively with carbon fiber—epoxy composite samples, capacitively with rubber samples, and capacitively measuring the dielectric properties of pure epoxy samples. All of the groups of samples contained properly cured and thermally damaged specimens to allow the range of electromagnetic responses to be measured. It was found that the dielectric lossiness of the polymers tested decreased with increasing heat damage, until a fairly severe damage level had accumulated, after which the dielectric lossiness rapidly increased. This effect, especially in the monotonically-decreasing region, is useful in constructing nondestructive evaluation equipment to detect thermal degradation in polymers.

  13. Mechanical characterization of conducting polymer actuated neural probes under physiological settings

    NASA Astrophysics Data System (ADS)

    Daneshvar, Eugene D.; Smela, Elisabeth; Kipke, Daryl R.

    2010-04-01

    Most implantable chronic neural probes have fixed electrode sites on the shank of the probe. Neural probe shapes and insertion methods have been shown to have considerable effects on the resulting chronic reactive tissue response that encapsulates probes. We are developing probes with controllable articulated electrode projections, which are expected to provoke less reactive tissue response due to the projections being minimally sized, as well as to permit a degree of independence from the probe shank allowing the recording sites to "float" within the brain. The objective of this study was to predict and analyze the force-generating capability of conducting polymer bilayer actuators under physiological settings. Custom parylene beams 21 μm thick, 1 cm long, and of varying widths (200 - 1000 μm) were coated with Cr/Au. Electroplated weights were fabricated at the ends of the beams to apply known forces. Polypyrrole was potentiostatically polymerized to varying thicknesses onto the Au at 0.5 V in a solution of 0.1 M pyrrole and 0.1 M dodecylbenzenesulfonate (DBS). Using cyclic voltammetry, the bilayer beams were cycled in artificial cerebrospinal fluid (aCSF) at 37 °C, as well as in aqueous NaDBS as a control. Digital images and video were analyzed to quantify the deflections. The images and the cyclic voltammograms showed that divalent cations in the aCSF interfered with polymer reduction. By integrating polypyrrole-based conducting polymer actuators, we present a type novel neural probe. We demonstrate that actuating PPy(DBS) under physiological settings is possible, and that the technique of microfabricating weights onto the actuators is a useful tool for studying actuation forces.

  14. Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene

    SciTech Connect

    Hsienchyang Tsien; Hanson, R.S. )

    1992-03-01

    Restriction fragment length polymorphisms, Western blot (immunoblot) analysis, and fluorescence-labelled signature probes were used for the characterization of methanotrophic bacteria as well as for the identification of methanotrophs which contained the soluble methane monooxygenase (MMO) gene and were able to degrade trichloroethylene (TCE). The gene encoding a soluble MMO component B protein from Methylosinus trichosporium OB3b was cloned. It contained a 2.2-kb EcoRI fragment. With this cloned component B gene as probe, methanotroph types I, II, and X and environmental and bioreactor samples were screened for the presence of the gene encoding soluble MMO. Among twelve pure or mixed cultures, DNA fragments of seven methanotrophs hybridized with the soluble MMO B gene probe. When grown in media with limited copper, all of these bacteria degraded TCE. All of them are type II methanotrophs. The soluble MMO component B gene of the type X methanotroph, Methylococcus capsulatus Bath, did not hybridize to the M. trichosporium OB3b soluble MMO component B gene probe, although M. capsulatus Baath also produces a soluble MMO.

  15. Identification of triclosan-degrading bacteria in a triclosan enrichment culture using stable isotope probing.

    PubMed

    Lee, Do Gyun; Cho, Kun-Ching; Chu, Kung-Hui

    2014-02-01

    Triclosan, a widely used antimicrobial agent, is an emerging contaminant in the environment. Despite its antimicrobial character, biodegradation of triclosan has been observed in pure cultures, soils and activated sludge. However, little is known about the microorganisms responsible for the degradation in mixed cultures. In this study, active triclosan degraders in a triclosan-degrading enrichment culture were identified using stable isotope probing (SIP) with universally (13)C-labeled triclosan. Eleven clones contributed from active microorganisms capable of uptake the (13)C in triclosan were identified. None of these clones were similar to known triclosan-degraders/utilizers. These clones distributed among α-, β-, or γ-Proteobacteria: one belonging to Defluvibacter (α-Proteobacteria), seven belonging to Alicycliphilus (β-Proteobacteria), and three belonging to Stenotrophomonas (γ-Proteobacteria). Successive additions of triclosan caused a significant shift in the microbial community structure of the enrichment culture, with dominant ribotypes belonging to the genera Alicycliphilus and Defluvibacter. Application of SIP has successfully identified diverse uncultivable triclosan-degrading microorganisms in an activated sludge enrichment culture. The results of this study not only contributed to our understanding of the microbial ecology of triclosan biodegradation in wastewater, but also suggested that triclosan degraders are more phylogenetically diverse than previously reported. PMID:23592331

  16. Degradation mechanism of a low band gap polymer PTB7 by oxidation

    NASA Astrophysics Data System (ADS)

    Park, Soohyung; Jeong, Junkyeong; Lee, Hyunbok; Yi, Yeonjin

    Recently, the PCE of OPVs is at the 10% mark by using donor materials having a low band gap, such as poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl) (PTB7) and its analogues. In spite of the significant PCE improvement, the lifetime issue still remains open problem. To solve these technical limitations fundamentally, the degradation mechanism should be understood. It can be revealed by investigating the electronic structures of polymers with controlled exposure of oxygen, moisture and light. In this study, ultraviolet, X-ray and inverse photoelectron spectroscopy measurements were performed with step-by-step exposure of controlled oxygen, moisture and light to investigate the degradation mechanism of each polymer film. Theoretical calculations using density functional theory (DFT) were also performed to understand detailed degradation process. From the experimental results, we demonstrate that push-pull polymers are more sensitive to environmental conditions, compared with non-push-pull (conventional) polymers such as poly (3-hexylthiophene-2,5-diyl) (P3HT). In addition, we show high photo-oxidation of PTB7 is originated from the structural reason.

  17. Degradation of different elastomeric polymers in simulated geothermal environments at 300°C

    SciTech Connect

    Sugama, Toshifumi; Pyatina, Tatiana; Redline, Erica Marie; McElhanon, James R.; Blankenship, Douglas A.

    2015-07-17

    This study evaluates the degradation of six different elastomeric polymers used for O-rings: EPDM, FEPM, type I- and II-FKM, FFKM, and FSR, in five different simulated geothermal environments at 300 °C: 1) non-aerated steam/cooling cycles, 2) aerated steam/cooling cycles, 3) water-based drilling fluid, 4) CO2-rich geo-brine fluid, and, 5) heat–cool water quenching cycles. The factors assessed included the extent of oxidation, changes in thermal behavior, micro-defects, permeation of ionic species from the test environments into the O-rings, silicate-related scale-deposition, and changes in the O-rings' elastic modulus. The reliability of the O-rings to maintain their integrity depended on the elastomeric polymer composition and the exposure environment. FSR disintegrated while EPDM was oxidized only to some degree in all the environments, FKM withstood heat-water quenching but underwent chemical degradation, FEPM survived in all the environments with the exception of heat-water quenching where it underwent severe oxidation-induced degradation, and FFKM displayed outstanding compatibility with all the tested environments. This study discusses the degradation mechanisms of the polymers under the aforementioned conditions.

  18. Observation of polymer degradation processes in photovoltaic modules via luminescence detection

    NASA Astrophysics Data System (ADS)

    Röder, B.; Ermilov, E. A.; Philipp, D.; Köhl, M.

    2008-08-01

    The estimation of PV-modules lifetime facilitates the further development and helps to lower risks for producers and investors. One base for this extensive testing work is the knowledge of the degradation kinetics of encapsulating polymer materials. Besides ethylen-vinylacetate copolymer (EVA), which is the prevalent material for encapsulation, new materials like Poly-Vinyl-Butyral (PVB), and thermoplastic Poly-Urethan (TPU) become available and need the assessment of their properties and the durability impact. In this context is it very important to identify the extent of degradation caused by different parameters in order to identify the determining factor of polymer degradation as well as potential interactions between different degradation processes. To simulate long time degeneration processes accelerated aging under damp-heat and high-UV conditions was performed on different EVA, TPU, and PVB samples. In this paper we report first results on measuring fluorescence spectra from different encapsulation materials after accelerated ageing in dependence on time and aging procedure. Our investigations clearly demonstrate that it is possible to follow damp-heat and UV induced aging processes of different polymers used in PV-modules as encapsulation materials by luminescence detection.

  19. The Production of Solid Dosage Forms from Non-Degradable Polymers.

    PubMed

    Major, Ian; Fuenmayor, Evert; McConville, Christopher

    2016-01-01

    Non-degradable polymers have an important function in medicine. Solid dosage forms for longer term implantation require to be constructed from materials that will not degrade or erode over time and also offer the utmost biocompatibility and biostability. This review details the three most important non-degradable polymers for the production of solid dosage forms - silicone elastomer, ethylene vinyl acetate and thermoplastic polyurethane. The hydrophobic, thermoset silicone elastomer is utilised in the production of a broad range of devices, from urinary catheter tubing for the prevention of biofilm to intravaginal rings used to prevent HIV transmission. Ethylene vinyl acetate, a hydrophobic thermoplastic, is the material of choice of two of the world's leading forms of contraception - Nuvaring® and Implanon®. Thermoplastic polyurethane has such a diverse range of building blocks that this one polymer can be hydrophilic or hydrophobic. Yet, in spite of this versatility, it is only now finding utility in commercialised drug delivery systems. Separately then one polymer has a unique ability that differentiates it from the others and can be applied in a specific drug delivery application; but collectively these polymers provide a rich palette of material and drug delivery options to empower formulation scientists in meeting even the most demanding of unmet clinical needs. Therefore, these polymers have had a long history in controlled release, from the very beginning even, and it is pertinent that this review examines briefly this history while also detailing the state-of-the-art academic studies and inventions exploiting these materials. The paper also outlines the different production methods required to manufacture these solid dosage forms as many of the processes are uncommon to the wider pharmaceutical industry. PMID:26898737

  20. Natural polymers supported copper nanoparticles for pollutants degradation

    NASA Astrophysics Data System (ADS)

    Haider, Sajjad; Kamal, Tahseen; Khan, Sher Bahadar; Omer, Muhammad; Haider, Adnan; Khan, Farman Ullah; Asiri, Abdullah M.

    2016-11-01

    In this report, chitosan (CS) was adhered on cellulose microfiber mat (CMM) to prepare CS-CMM. This was used as host for copper (Cu) nanoparticles preparation. After adsorption of Cu2+ ions from an aqueous solution of CuSO4, the metal ions entrapped in CS coating layer was treated with sodium borohydride (NaBH4) to prepare Cu nanoparticles loaded CS-CMM (Cu/CS-CMM). Fourier transform infrared spectroscopy, and X-ray diffraction confirmed the formation of Cu/CS-CMM hybrid. Scanning electron microscopy analysis was performed to reveal the morphology of the prepared catalyst. The prepared Cu/CS-CMM was employed as a catalyst for the degradation of nitro-aromatic compounds of 2-nitrophenol (2NP) and 4-nitrophenol (4NP) as well as an organic cresyl blue (CB) dye. Remarkably, the turnover frequency in the case of 2NP and 4NP using Cu/CS-CMM reaches 103.3 and 88.6 h-1, outperforming previously reported Cu nanoparticles immobilized in hydrogel-based catalytic systems. The rate constants for 2NP, 4NP and CB were 1.2 × 10-3 s-1, 2.1 × 10-3 s-1 and, 1.3 × 10-3 s-1, respectively. Besides, we discussed the separation of the catalyst from the reaction mixture and its re-usability.

  1. Suite of activity-based probes for cellulose-degrading enzymes.

    PubMed

    Chauvigné-Hines, Lacie M; Anderson, Lindsey N; Weaver, Holly M; Brown, Joseph N; Koech, Phillip K; Nicora, Carrie D; Hofstad, Beth A; Smith, Richard D; Wilkins, Michael J; Callister, Stephen J; Wright, Aaron T

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome-producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry and to increase enzyme active site inclusion for liquid chromatography-mass spectrometry (LC-MS) analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes, in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose-degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic microbial cellulose-degrading systems and facilitates a greater understanding of the organismal role associated with biofuel development. PMID:23176123

  2. Mechanochromic Fluorescent Probe Molecules for Damage Detection in Aerospace Polymers and Composites

    NASA Astrophysics Data System (ADS)

    Toivola, Ryan E.

    The detection of damage in aerospace composites can be improved by incorporation of mechanochromic fluorescent probe molecules into the polymers used in composite parts. This study focuses on a novel series of mechanochromic probes, AJNDE15 and AJNDE17, which are incorporated in structural epoxy resin DGEBA-DETA. Chapter 1 details the characterization of the DGEBA-DETA epoxy system used in this study. The important characteristics of DGEBA-DETA's response to mechanical loading will be discussed within the larger field of glassy amorphous polymer deformation. The mechanical, thermal, and chemical properties of DGEBA-DETA relevant to this work will be measured using standardized techniques and instrumentation. Chapters 2 and 3 focus on the mechanochromic probes AJNDE15 and AJNDE17 in the DGEBA-DETA system. Chapter 2 presents research designed to identify the mechanism through which the probes display mechanochromism. The possible mechanochromic mechanisms are introduced in a literature review. Research on these probes in DGEBA-DETA will be presented and discussed with respect to the possible mechanisms, and the mechanism that best fits the results will be identified as a mechanochemical reaction. Chapter 3 continues the analysis of the mechanochromism of the probes in DGEBA-DETA. The kinetics of the mechanochromic reaction will be studied and compared with the current understanding of glassy polymer deformation. Possible models for the molecular interactions responsible for mechanochromism in this system will be put forward. Research will be presented to evaluate the mechanochromism kinetics and for comparison with the behavior predicted by the models.

  3. Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release

    PubMed Central

    Chu, David S.H.; Johnson, Russell N.; Pun, Suzie H.

    2011-01-01

    Degradable cationic polymers are desirable for in vivo nucleic acid delivery because they offer significantly decreased toxicity over non-degradable counterparts. Peptide linkers provide chemical stability and high specificity for particular endopeptidases but have not been extensively studied for nucleic acid delivery applications. In this work, enzymatically degradable peptide-HPMA copolymers were synthesized by RAFT polymerization of HPMA with methacrylated peptide macromonomers, resulting in polymers with low polydispersity and near quantitative incorporation of peptides. Three peptide-HPMA copolymers were evaluated: (i) pHCathK10, containing peptides composed of the linker phe-lys-phe-leu (FKFL), a substrate of the endosomal/lysosomal endopeptidase cathepsin B, connected to oligo-(l)-lysine for nucleic acid binding, (ii) pHCath(d)K10, containing the FKFL linker with oligo-(d)-lysine, and (iii) pH(d)Cath(d)K10, containing all (d) amino acids. Cathepsin B degraded copolymers pHCathK10 and pHCath(d)K10 within one hour while no degradation of pH(d)Cath(d)K10 was observed. Polyplexes formed with pHCathK10 copolymers show DNA release by 4 hrs of treatment with cathepsin B; comparatively, polyplexes formed with pHCath(d)K10 and pH(d)Cath(d)K10 show no DNA release within 8 hrs. Transfection efficiency in HeLa and NIH/3T3 cells were comparable between the copolymers but pHCathK10 was less toxic. This work demonstrates the successful application of peptide linkers for degradable cationic polymers and DNA release. PMID:22036879

  4. Application of (13)C-stable isotope probing to identify RDX-degrading microorganisms in groundwater.

    PubMed

    Cho, Kun-Ching; Lee, Do Gyun; Roh, Hyungkeun; Fuller, Mark E; Hatzinger, Paul B; Chu, Kung-Hui

    2013-07-01

    We employed stable isotope probing (SIP) with (13)C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to identify active microorganisms responsible for RDX biodegradation in groundwater microcosms. Sixteen different 16S rRNA gene sequences were derived from microcosms receiving (13)C-labeled RDX, suggesting the presence of microorganisms able to incorporate carbon from RDX or its breakdown products. The clones, residing in Bacteroidia, Clostridia, α-, β- and δ-Proteobacteria, and Spirochaetes, were different from previously described RDX degraders. A parallel set of microcosms was amended with cheese whey and RDX to evaluate the influence of this co-substrate on the RDX-degrading microbial community. Cheese whey stimulated RDX biotransformation, altered the types of RDX-degrading bacteria, and decreased microbial community diversity. Results of this study suggest that RDX-degrading microorganisms in groundwater are more phylogenetically diverse than what has been inferred from studies with RDX-degrading isolates. PMID:23603473

  5. Sixteenth Quarterly Report Regulation of Coal Polymer Degradation by Fungi

    SciTech Connect

    John A. Bumpus

    1998-07-31

    Three phenomena which concern coal solubilization and depolymerization were studied during this reporting period. Previous investigations have shown that lignin peroxidases mediate the oxidation of soluble coal macromolecule. Because it appears to be a substrate, soluble coal macromolecule is also an inhibitor of veratryl alcohol oxidation, a reaction that is mediated by these enzymes. The mechanism of inhibition is complex in that oxidation (as assayed by decolorization) of soluble coal macromolecule requires the presence of veratryl alcohol and veratryl alcohol oxidation occurs only after a substantial lag period during which the soluble coal macromolecule is oxidized. In a previous quarterly report we proposed a reaction mechanism by which this may occur. During the present reporting period we showed that our proposed reaction mechanism is consistent with classical enzyme kinetic theory describing enzyme activity in the presence of a potent inhibitor (i.e., an inhibitor with a very low KI ). The oxidative decolorization and depolymerization of soluble coal macromolecule was also studied. Because wood rotting fungi produce hydrogen peroxide via a variety of reactions, we studied the effect of hydrogen peroxide on soluble coal macromolecule decolorization and depolymerization. Results showed that substantial decolorization occurred only at hydrogen peroxide concentrations that are clearly non-physiological (i.e., 50 mM or greater). It was noted, however, that when grown on solid lignocellulosic substrates, wood rotting fungi, overtime, cumulatively could produce amounts of hydrogen peroxide that might cause significant oxidative degradation of soluble coal macromolecule. Thirdly, we have shown that during oxalate mediated solubilization of low rank coal, a pH increase is observed. During this reporting period we have shown that the pH of solutions containing only sodium oxalate also undergo an increase in pH, but to a lesser extent than that observed in mixtures

  6. Local Imaging of Optoelectronic Properties and Film Degradation in Polymer/Fullerene Solar Cells with Electrostatic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Cox, Phillip Alexander

    With power conversion efficiencies on the rise, organic photovoltaics (OPVs) hold promise as a next-generation thin-film solar technology. However, both device performance and stability are inextricably linked to local film structure. Methods capable of probing nanoscale electronic properties as a function of film structure are thus a crucial component of the rational design of efficient and robust devices. This dissertation describes the use of three scanning probe methods for studying local charge generation and photodegradation in polymer/fullerene solar cells. First, we show that time-resolved electrostatic force microscopy (trEFM) is capable of resolving local photocurrent from sub-bandgap excitation down to attoampere level currents, a result unattainable by traditional contact-mode methods. We find that the local charging rates measured with trEFM are proportional to external quantum efficiency (EQE) measurements made on completed devices, making trEFM images equivalent to local EQE maps across the entire solar spectrum. For both phase-segregated and well-mixed MDMO-PPV:PCBM film morphologies, we show that the local distribution of photocurrent is invariant to excitation wavelength, providing local evidence for the controversial result that the probability of generating separated charge carriers does not depend on whether excitons are formed at the singlet state or charge transfer state. Next, we describe how local dissipation imaging can be performed with commercially-available frequency-modulated electrostatic force microscopy (FM-EFM) and show that dissipation maps are highly sensitive to photo-oxidative effects in organic semiconductors. We show that photo-oxidation induced changes in cantilever energy dissipation are proportional to device performance losses. We further develop dissipation imaging by implementing ringdown imaging, which directly measures the quality factor of the cantilever, enabling quantitative dissipation mapping. Using organic

  7. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Bukhareva, P. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products

  8. Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors.

    PubMed

    Schusser, Sebastian; Krischer, Maximilian; Bäcker, Matthias; Poghossian, Arshak; Wagner, Patrick; Schöning, Michael J

    2015-07-01

    Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(D,L-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers. PMID:26016927

  9. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice

    NASA Astrophysics Data System (ADS)

    Pu, Kanyi; Shuhendler, Adam J.; Jokerst, Jesse V.; Mei, Jianguo; Gambhir, Sanjiv S.; Bao, Zhenan; Rao, Jianghong

    2014-03-01

    Photoacoustic imaging holds great promise for the visualization of physiology and pathology at the molecular level with deep tissue penetration and fine spatial resolution. To fully utilize this potential, photoacoustic molecular imaging probes have to be developed. Here, we introduce near-infrared light absorbing semiconducting polymer nanoparticles as a new class of contrast agents for photoacoustic molecular imaging. These nanoparticles can produce a stronger signal than the commonly used single-walled carbon nanotubes and gold nanorods on a per mass basis, permitting whole-body lymph-node photoacoustic mapping in living mice at a low systemic injection mass. Furthermore, the semiconducting polymer nanoparticles possess high structural flexibility, narrow photoacoustic spectral profiles and strong resistance to photodegradation and oxidation, enabling the development of the first near-infrared ratiometric photoacoustic probe for in vivo real-time imaging of reactive oxygen species--vital chemical mediators of many diseases. These results demonstrate semiconducting polymer nanoparticles to be an ideal nanoplatform for developing photoacoustic molecular probes.

  10. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice.

    PubMed

    Pu, Kanyi; Shuhendler, Adam J; Jokerst, Jesse V; Mei, Jianguo; Gambhir, Sanjiv S; Bao, Zhenan; Rao, Jianghong

    2014-03-01

    Photoacoustic imaging holds great promise for the visualization of physiology and pathology at the molecular level with deep tissue penetration and fine spatial resolution. To fully utilize this potential, photoacoustic molecular imaging probes have to be developed. Here, we introduce near-infrared light absorbing semiconducting polymer nanoparticles as a new class of contrast agents for photoacoustic molecular imaging. These nanoparticles can produce a stronger signal than the commonly used single-walled carbon nanotubes and gold nanorods on a per mass basis, permitting whole-body lymph-node photoacoustic mapping in living mice at a low systemic injection mass. Furthermore, the semiconducting polymer nanoparticles possess high structural flexibility, narrow photoacoustic spectral profiles and strong resistance to photodegradation and oxidation, enabling the development of the first near-infrared ratiometric photoacoustic probe for in vivo real-time imaging of reactive oxygen species--vital chemical mediators of many diseases. These results demonstrate semiconducting polymer nanoparticles to be an ideal nanoplatform for developing photoacoustic molecular probes. PMID:24463363

  11. Orthogonal Supramolecular Polymer Formation on Highly Oriented Pyrolytic Graphite (HOPG) Surfaces Characterized by Scanning Probe Microscopy.

    PubMed

    Gong, Yongxiang; Zhang, Siqi; Geng, Yanfang; Niu, Chunmei; Yin, Shouchun; Zeng, Qingdao; Li, Min

    2015-10-27

    Formation of an orthogonal supramolecular polymer on a highly oriented pyrolytic graphite (HOPG) surface was demonstrated for the first time by means of scanning probe microscopy (SPM). Atomic force microscopy (AFM) was employed to characterize the variation of both the thickness and the topography of the film formed from (1) monomer 1, (2) monomer 1/Zn(2+), and (3) monomer 1/Zn(2+)/cross-linker 2, respectively. Scanning tunneling microscopy (STM) was used to monitor the self-assembly behavior of monomer 1 itself, as well as 1/Zn(2+) ions binary system on graphite surface, further testifying for the formation of linear polymer via coordination interaction at the single molecule level. These results, given by the strong surface characterization tool of SPM, confirm the formation of the orthogonal polymer on the surface of graphite, which has great significance in regard to fabricating a complex superstructure on surfaces. PMID:26457462

  12. Characterization of degradation fragments released by arc-induced ablation of polymers in air

    NASA Astrophysics Data System (ADS)

    Aminlashgari, Nina; Becerra, Marley; Hakkarainen, Minna

    2016-02-01

    Polymers exposed to high intensity arc plasmas release material in a process called arc-induced ablation. In order to investigate the degradation fragments released due to this process, two different polymeric materials, poly(oxymethylene) copolymer (POM-C) and poly(methyl methacrylate) (PMMA), were exposed to a transient, high-power arc plasma in air. A small fraction of the ablated material drifting away from the arcing volume was deposited on a fixed glass substrate during the total duration of a 2 kA ac current semicycle. In addition, another fraction of the released material was deposited on a second moving substrate to obtain a time-resolved streak ‘image’ of the arc-induced ablation process. For the first time, mass spectra of degradation fragments produced by arc-induced ablation were obtained from the material deposited on the substrates by using laser desorption ionization time-of-flight mass spectrometry (LDI-ToF-MS). It was found that oligomers with mean molecular weight ranging between 400 and 600 Da were released from the surface of the studied polymers. The obtained spectra suggest that the detected degradation fragments of POM could be released by random chain scission of the polymer backbone. In turn, random chain scission and splitting-off the side groups are suggested as the main chemical mechanism leading to the release of PMMA fragments under arc-induced ablation.

  13. Enzyme-Degradable Hybrid Polymer/Silica Microbubbles as Ultrasound Contrast Agents.

    PubMed

    Tsao, Nadia H; Hall, Elizabeth A H

    2016-06-28

    The fabrication of an enzyme-degradable polymer/silica hybrid microbubble is reported that produces an ultrasound contrast image. The polymer, a triethoxysilane end-capped polycaprolactone (SiPCL), is used to incorporate enzyme-degradable components into a silica microbubble synthesis, and to impart increased elasticity for enhanced acoustic responsiveness. Formulations of 75, 85, and 95 wt % SiPCL in the polymer feed produced quite similar ratios of SiPCL and silica in the final bubble but different surface properties. The data suggest that different regions of the microbubbles were SiPCL-rich: the inner layer next to the polystyrene template core and the outer surface layer, thereby creating a sandwiched silica-rich layer of the bubble shell. Overall, the thickness of the microbubble shell was dependent on the starting TEOS concentration and the reaction time. Despite the layered structure, the microbubble could be efficiently degraded by lipase enzyme, but was stable without enzyme. The ultrasound contrast showed a general trend of increase in image intensity with SiPCL feed ratio, although the 95 wt % SiPCL bubbles did not produce a contrast image, probably due to bubble collapse. At higher normalized peak negative acoustic pressure (mechanical index, MI), a nonlinear frequency response also emerges, characterized by the third harmonic at around 3f0, and increases with MI. The threshold MI transition from linear to nonlinear response increased with decrease in SiPCL. PMID:27245495

  14. Degradable Polymer-Coated Gold Nanoparticles for Co-Delivery of DNA and siRNA

    PubMed Central

    Bishop, Corey J.; Tzeng, Stephany Y.; Green, Jordan J.

    2014-01-01

    Gold nanoparticles have utility for in vitro, ex vivo, and in vivo imaging applications as well as for serving as a scaffold for therapeutic delivery and theranostic applications. Starting with gold nanoparticles as a core, layer-by-layer degradable polymer coatings enable co-delivery of both DNA and short interfering RNA simultaneously. To engineer release kinetics, polymers which degrade through two different mechanisms can be utilized to construct hybrid inorganic/polymeric particles. During fabrication of the nanoparticles, the zeta potential reverses upon the addition of each oppositely charged polyelectrolyte layer and the final nanoparticle size reaches approximately 200 nm in diameter. When the hybrid gold/polymer/nucleic acid nanoparticles are added to human primary brain cancer cells in vitro, they are internalizable by cells and reach the cytoplasm and nucleus as visualized by transmission electron microscopy and observed through exogenous gene expression. This nanoparticle delivery leads to both exogenous DNA expression and siRNA-mediated knockdown, with the knockdown efficacy superior to that of Lipofectamine® 2000, a commercially available transfection reagent. These gold/polymer/nucleic acid hybrid nanoparticles are an enabling theranostic platform technology capable of delivering combinations of genetic therapies to human cells. PMID:25246314

  15. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA.

    PubMed

    Bishop, Corey J; Tzeng, Stephany Y; Green, Jordan J

    2015-01-01

    Gold nanoparticles have utility for in vitro, ex vivo and in vivo imaging applications as well as for serving as a scaffold for therapeutic delivery and theranostic applications. Starting with gold nanoparticles as a core, layer-by-layer degradable polymer coatings enable the simultaneous co-delivery of DNA and short interfering RNA (siRNA). To engineer release kinetics, polymers which degrade through two different mechanisms can be utilized to construct hybrid inorganic/polymeric particles. During fabrication of the nanoparticles, the zeta potential reverses upon the addition of each oppositely charged polyelectrolyte layer and the final nanoparticle size reaches approximately 200nm in diameter. When the hybrid gold/polymer/nucleic acid nanoparticles are added to human primary brain cancer cells in vitro, they are internalizable by cells and reach the cytoplasm and nucleus as visualized by transmission electron microscopy and observed through exogenous gene expression. This nanoparticle delivery leads to both exogenous DNA expression and siRNA-mediated knockdown, with the knockdown efficacy superior to that of Lipofectamine® 2000, a commercially available transfection reagent. These gold/polymer/nucleic acid hybrid nanoparticles are an enabling theranostic platform technology capable of delivering combinations of genetic therapies to human cells. PMID:25246314

  16. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes

    PubMed Central

    Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun

    2016-01-01

    Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282

  17. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes.

    PubMed

    Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun

    2016-01-01

    Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282

  18. Semiconducting Polymer Nanoparticles as Photoacoustic Molecular Imaging Probes in Living Mice

    PubMed Central

    Pu, Kanyi; Shuhendler, Adam J.; Jokerst, Jesse V.; Mei, Jianguo; Gambhir, Sanjiv S.; Bao, Zhenan; Rao, Jianghong

    2014-01-01

    Photoacoustic (PA) imaging holds great promise for the visualization of physiology and pathology at the molecular level with deep tissue penetration and fine spatial resolution. To fully utilize this potential, PA molecular imaging probes have to be developed. Herein we introduce near infrared (NIR) light absorbing semiconducting polymer nanoparticles (SPNs) as a new class of contrast agents for PA molecular imaging. SPNs can produce stronger signal than commonly used single-wall carbon nanotubes and gold nanorods on a per mass basis, permitting whole-body lymph node PA mapping in living mice at a low systematic injection mass. Furthermore, SPNs possess high structural flexibility, narrow PA spectral profiles, and strong resistance to photodegradation and oxidation, which enables development of the first NIR ratiometric PA probe for in vivo real-time imaging of reactive oxygen species—vital chemical mediators of many diseases. These results demonstrate SPNs an ideal nanoplatform for developing PA molecular probes. PMID:24463363

  19. Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing

    PubMed Central

    Luo, Chunling; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ. PMID:26098417

  20. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-06-01

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as “degradation inhibitor” for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas.

  1. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics.

    PubMed

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-01-01

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as "degradation inhibitor" for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas. PMID:27338622

  2. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics

    PubMed Central

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-01-01

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as “degradation inhibitor” for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas. PMID:27338622

  3. Degradation of different elastomeric polymers in simulated geothermal environments at 300°C

    DOE PAGESBeta

    Sugama, Toshifumi; Pyatina, Tatiana; Redline, Erica Marie; McElhanon, James R.; Blankenship, Douglas A.

    2015-07-17

    This study evaluates the degradation of six different elastomeric polymers used for O-rings: EPDM, FEPM, type I- and II-FKM, FFKM, and FSR, in five different simulated geothermal environments at 300 °C: 1) non-aerated steam/cooling cycles, 2) aerated steam/cooling cycles, 3) water-based drilling fluid, 4) CO2-rich geo-brine fluid, and, 5) heat–cool water quenching cycles. The factors assessed included the extent of oxidation, changes in thermal behavior, micro-defects, permeation of ionic species from the test environments into the O-rings, silicate-related scale-deposition, and changes in the O-rings' elastic modulus. The reliability of the O-rings to maintain their integrity depended on the elastomeric polymermore » composition and the exposure environment. FSR disintegrated while EPDM was oxidized only to some degree in all the environments, FKM withstood heat-water quenching but underwent chemical degradation, FEPM survived in all the environments with the exception of heat-water quenching where it underwent severe oxidation-induced degradation, and FFKM displayed outstanding compatibility with all the tested environments. This study discusses the degradation mechanisms of the polymers under the aforementioned conditions.« less

  4. Occurrence, degradation, and effect of polymer-based materials in the environment.

    PubMed

    Lambert, Scott; Sinclair, Chris; Boxall, Alistair

    2014-01-01

    There is now a plethora of polymer-based materials (PBMs) on the market, because of the increasing demand for cheaper consumable goods, and light-weight industrial materials. Each PBM constitutes a mixture of their representative polymer/sand their various chemical additives. The major polymer types are polyethylene, polypropylene,and polyvinyl chloride, with natural rubber and biodegradable polymers becoming increasingly more important. The most important additives are those that are biologically active, because to be effective such chemicals often have properties that make them resistant to photo-degradation and biodegradation. During their lifecycle,PBMs can be released into the environment form a variety of sources. The principal introduction routes being general littering, dumping of unwanted waste materials,migration from landfills and emission during refuse collection. Once in the environment,PBMs are primarily broken down by photo-degradation processes, but due to the complex chemical makeup of PBMs, receiving environments are potentially exposed to a mixture of macro-, meso-, and micro-size polymer fragments, leached additives, and subsequent degradation products. In environments where sunlight is absent (i.e., soils and the deep sea) degradation for most PBMs is minimal .The majority of literature to date that has addressed the environmental contamination or disposition of PBMs has focused on the marine environment. This is because the oceans are identified as the major sink for macro PBMs, where they are known to present a hazard to wildlife via entanglement and ingestion. The published literature has established the occurrence of microplastics in marine environment and beach sediments, but is inadequate as regards contamination of soils and freshwater sediments. The uptake of microplastics for a limited range of aquatic organisms has also been established, but there is a lack of information regarding soil organisms, and the long-term effects of

  5. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    NASA Technical Reports Server (NTRS)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  6. Alkaline degradation studies of anion exchange polymers to enable new membrane designs

    NASA Astrophysics Data System (ADS)

    Nunez, Sean Andrew

    Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co

  7. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    SciTech Connect

    Cavallo, Dario; Portale, Giuseppe; Androsch, René

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process is followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.

  8. Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations

    NASA Astrophysics Data System (ADS)

    Karim, Mir; Indei, Tsutomu; Schieber, Jay D.; Khare, Rajesh

    2016-01-01

    Particle rheology is used to extract the linear viscoelastic properties of an entangled polymer melt from molecular dynamics simulations. The motion of a stiff, approximately spherical particle is tracked in both passive and active modes. We demonstrate that the dynamic modulus of the melt can be extracted under certain limitations using this technique. As shown before for unentangled chains [Karim et al., Phys. Rev. E 86, 051501 (2012), 10.1103/PhysRevE.86.051501], the frequency range of applicability is substantially expanded when both particle and medium inertia are properly accounted for by using our inertial version of the generalized Stokes-Einstein relation (IGSER). The system used here introduces an entanglement length dT, in addition to those length scales already relevant: monomer bead size d , probe size R , polymer radius of gyration Rg, simulation box size L , shear wave penetration length Δ , and wave period Λ . Previously, we demonstrated a number of restrictions necessary to obtain the relevant fluid properties: continuum approximation breaks down when d ≳Λ ; medium inertia is important and IGSER is required when R ≳Λ ; and the probe should not experience hydrodynamic interaction with its periodic images, L ≳Δ . These restrictions are also observed here. A simple scaling argument for entangled polymers shows that the simulation box size must scale with polymer molecular weight as Mw3. Continuum analysis requires the existence of an added mass to the probe particle from the entrained medium but was not observed in the earlier work for unentangled chains. We confirm here that this added mass is necessary only when the thickness LS of the shell around the particle that contains the added mass, LS>d . We also demonstrate that the IGSER can be used to predict particle displacement over a given timescale from knowledge of medium viscoelasticity; such ability will be of interest for designing nanoparticle-based drug delivery.

  9. DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation

    PubMed Central

    Mishamandani, Sara; Gutierrez, Tony; Aitken, Michael D.

    2014-01-01

    Marine hydrocarbon-degrading bacteria perform a fundamental role in the oxidation and ultimate removal of crude oil and its petrochemical derivatives in coastal and open ocean environments. Those with an almost exclusive ability to utilize hydrocarbons as a sole carbon and energy source have been found confined to just a few genera. Here we used stable isotope probing (SIP), a valuable tool to link the phylogeny and function of targeted microbial groups, to investigate hydrocarbon-degrading bacteria in coastal North Carolina sea water (Beaufort Inlet, USA) with uniformly labeled [13C]n-hexadecane. The dominant sequences in clone libraries constructed from 13C-enriched bacterial DNA (from n-hexadecane enrichments) were identified to belong to the genus Alcanivorax, with ≤98% sequence identity to the closest type strain—thus representing a putative novel phylogenetic taxon within this genus. Unexpectedly, we also identified 13C-enriched sequences in heavy DNA fractions that were affiliated to the genus Methylophaga. This is a contentious group since, though some of its members have been proposed to degrade hydrocarbons, substantive evidence has not previously confirmed this. We used quantitative PCR primers targeting the 16S rRNA gene of the SIP-identified Alcanivorax and Methylophaga to determine their abundance in incubations amended with unlabeled n-hexadecane. Both showed substantial increases in gene copy number during the experiments. Subsequently, we isolated a strain representing the SIP-identified Methylophaga sequences (99.9% 16S rRNA gene sequence identity) and used it to show, for the first time, direct evidence of hydrocarbon degradation by a cultured Methylophaga sp. This study demonstrates the value of coupling SIP with cultivation methods to identify and expand on the known diversity of hydrocarbon-degrading bacteria in the marine environment. PMID:24578702

  10. Degradable/non-degradable polymer composites for in-situ tissue engineering small diameter vascular prosthesis application.

    PubMed

    Wang, Fujun; Mohammed, Abedalwafa; Li, Chaojing; Ge, Peng; Wang, Lu; King, Martin W

    2014-01-01

    Various tissue-engineered vascular grafts have been studied in order to overcome the clinical disadvantages associated with conventional prostheses. However, previous tissue-engineered vascular grafts have possessed insufficient mechanical properties and thus have generally required either preoperative cellular manipulation or the use of bioreactors to improve their performance. In this study, we focused on the concept of in situ cellularization and developed a tissue-engineered vascular graft with degradable/non-degradable polymer composites for arterial reconstruction that would facilitate the renewal of autologous tissue without any pretreatment. Additionally, these composites are designed to improve the mechanical performance of a small-diameter vascular prosthesis scaffold that is made from a flexible membrane of poly(e-caprolactone) (PCL). The PCL scaffold was reinforced by embedding a tubular fabric that was knitted from polyethylene terephthalate (PET) yarns within the freeze-dried composite structure. Adding this knitted fabric component significantly improved the mechanical properties of the composite scaffold, such as its tensile strength and initial modulus, radial compliance, compression recovery, and suture retention force. Finally, this reinforced composite structure is a promising candidate for use as a tissue-engineered scaffold for a future small diameter vascular prosthesis. PMID:25226910

  11. Release of engineered nanomaterials from polymer nanocomposites: the effect of matrix degradation.

    PubMed

    Duncan, Timothy V

    2015-01-14

    Polymer nanocomposites-polymer-based materials that incorporate filler elements possessing at least one dimension in the nanometer range-are increasingly being developed for commercial applications ranging from building infrastructure to food packaging to biomedical devices and implants. Despite a wide range of intended applications, it is also important to understand the potential for exposure to these nanofillers, which could be released during routine use or abuse of these materials so that it can be determined whether they pose a risk to human health or the environment. This article is the second of a pair that review what is known about the release of engineered nanomaterials (ENMs) from polymer nanocomposites. Two roughly separate ENM release paradigms are considered in this series: the release of ENMs via passive diffusion, desorption, and dissolution into external liquid media and the release of ENMs assisted by matrix degradation. The present article is focused primarily on the second paradigm and includes a thorough, critical review of the associated body of peer-reviewed literature on ENM release by matrix degradation mechanisms, including photodegradation, thermal decomposition, mechanical wear, and hydrolysis. These release mechanisms may be especially relevant to nanocomposites that are likely to be subjected to weathering, including construction and infrastructural materials, sporting equipment, and materials that might potentially end up in landfills. This review pays particular attention to studies that shed light on specific release mechanisms and synergistic mechanistic relationships. The review concludes with a short section on knowledge gaps and future research needs. PMID:25397693

  12. Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Tavassoli, Arash; Lim, Chan; Kolodziej, Joanna; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-08-01

    Aiming at durability issues of fuel cells, this research is dedicated to a novel experimental approach in the analysis of local membrane degradation phenomena in polymer electrolyte fuel cells, shedding light on the potential effects of manufacturing imperfections on this process. With a comprehensive review on historical failure analysis data from field operated fuel cells, local sources of iron oxide contaminants, catalyst layer cracks, and catalyst layer delamination are considered as potential candidates for initiating or accelerating the local membrane degradation phenomena. Customized membrane electrode assemblies with artificial defects are designed, fabricated, and subjected to membrane accelerated stress tests followed by extensive post-mortem analysis. The results reveal a significant accelerating effect of iron oxide contamination on the global chemical degradation of the membrane, but dismiss local traces of iron oxide as a potential stressor for local membrane degradation. Anode and cathode catalyst layer cracks are observed to have negligible impact on the membrane degradation phenomena. Notably however, distinct evidence is found that anode catalyst layer delamination can accelerate local membrane thinning, while cathode delamination has no apparent effect. Moreover, a substantial mitigating effect for platinum residuals on the site of delamination is observed.

  13. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation.

    PubMed

    Bittner, B; Mäder, K; Kroll, C; Borchert, H H; Kissel, T

    1999-05-01

    Tetracycline-HCl (TCH)-loaded microspheres were prepared from poly(lactide-co-glycolide) (PLGA) by spray drying. The drug was incorporated in the polymer matrix either in solid state or as w/o emulsion. The spin probe 4-hydroxy-2,2,6, 6-tetramethyl-piperidine-1-oxyl (TEMPOL) and the spin trap tert-butyl-phenyl-nitrone (PBN) were co-encapsulated into the TCH-loaded and placebo particles. We investigated the effects of gamma-irradiation on the formation of free radicals in polymer and drug and the mechanism of chain scission after sterilization. Gamma-Irradiation was performed at 26.9 and 54.9 kGy using a 60Co source. The microspheres were characterized especially with respect to the formation of radicals and in vitro polymer degradation. Electron paramagnetic resonance (EPR) spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectroscopy (GC-MS), and scanning electron microscopy (SEM) were used for characterization of the microspheres. Using EPR spectroscopy, we successfully detected gamma-irradiation induced free radicals within the TCH-loaded microspheres, while unloaded PLGA did not contain radicals under the same conditions. The relatively low glass transition temperature of the poly(dl-lactide-co-glycolide) (37-39 degrees C) seems to favor subsequent reactions of free radicals due to the high mobility of the polymeric chains. Because of the high melting point of TCH (214 degrees C), the radicals can only be stabilized in drug loaded microspheres. In order to determine the mechanism of polymer degradation after exposure to gamma-rays, the spin trap PBN and the spin probe TEMPOL were encapsulated in the microspheres. gamma-Irradiation of microspheres containing PBN resulted in the formation of a lipophilic spin adduct, indicating that a polymeric radical was generated by random chain scission. Polymer degradation by an unzipping mechanism would have

  14. Upconversion particles coated with molecularly imprinted polymers as fluorescence probe for detection of clenbuterol.

    PubMed

    Tang, Yiwei; Gao, Ziyuan; Wang, Shuo; Gao, Xue; Gao, Jingwen; Ma, Yong; Liu, Xiuying; Li, Jianrong

    2015-09-15

    A novel fluorescence probe based on upconversion particles, YF3:Yb(3+), Er(3+), coating with molecularly imprinted polymers (MIPs@UCPs) has been synthesized for selective recognition of the analyte clenbuterol (CLB), which was characterized by scan electron microscope and X-ray powder diffraction. The fluorescence of the MIPs@UCPs probe is quenched specifically by CLB, and the effect is much stronger than the NIPs@UCPs (non-imprinting polymers, NIPs). Good linear correlation was obtained for CLB over the concentration range of 5.0-100.0 μg L(-1) with a detection limit of 0.12 μg L(-1) (S/N=3). The developed method was also used in the determination of CLB in water and pork samples, and the recoveries ranged from 81.66% to 102.46% were obtained with relative standard deviation of 2.96-4.98% (n=3). The present study provides a new and general tactics to synthesize MIPs@UCPs fluorescence probe with highly selective recognition ability to the CLB and is desirable for application widely in the near future. PMID:25884733

  15. Dose rate effects in radiation degradation of polymer-based cable materials

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.

    2003-08-01

    Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.

  16. Particulate retrieval of hydrolytically degraded poly(lactide-co-glycolide) polymers.

    PubMed

    Cordewener, F W; Dijkgraaf, L C; Ong, J L; Agrawal, C M; Zardeneta, G; Milam, S B; Schmitz, J P

    2000-04-01

    This article describes a technique for the retrieval of polymeric particulate debris following advanced hydrolytic in vitro degradation of a biodegradable polymer and presents the results of the subsequent particle analysis. Granular 80/20 poly(L-lactide-co-glycolide) (PLG) was degraded in distilled, deionized water in Pyrextrade mark test tubes at 80 degrees C for 6 weeks. Subsequently, a density gradient was created by layering isopropanol over the water, followed by a 48-h incubation. Two opaque layers formed in the PLG tubes, which were removed and filtered through 0.2-micrometer polycarbonate membrane filters. In addition, Fourier transform IR spectroscopy (FTIR) was performed to confirm the presence of polymer in the removed layers. The filters were gold sputter coated, and scanning electron microscopy (SEM) images were made. FTIR analysis confirmed that the removed material was PLG. SEM images of the extracts from the upper (lowest density) opaque layer showed a fine, powderlike substance and globular structures of 500-750 nm. The SEM images of the lower (highest density) opaque layer showed particles with a crystalline-like morphology ranging in size from 4 to 30 micrometer. Particulate PLG debris generated with the described technique can be useful for further studies of its biological role in complications associated with poly(alpha-hydroxy)ester implants. This study shows the presence of very persistent nano- and microparticles in the degradation pathway of PLG. PMID:10644964

  17. Anaerobic Methyl tert-Butyl Ether-Degrading Microorganisms Identified in Wastewater Treatment Plant Samples by Stable Isotope Probing

    PubMed Central

    Sun, Weimin; Sun, Xiaoxu

    2012-01-01

    Anaerobic methyl tert-butyl ether (MTBE) degradation potential was investigated in samples from a range of sources. From these 22 experimental variations, only one source (from wastewater treatment plant samples) exhibited MTBE degradation. These microcosms were methanogenic and were subjected to DNA-based stable isotope probing (SIP) targeted to both bacteria and archaea to identify the putative MTBE degraders. For this purpose, DNA was extracted at two time points, subjected to ultracentrifugation, fractioning, and terminal restriction fragment length polymorphism (TRFLP). In addition, bacterial and archaeal 16S rRNA gene clone libraries were constructed. The SIP experiments indicated bacteria in the phyla Firmicutes (family Ruminococcaceae) and Alphaproteobacteria (genus Sphingopyxis) were the dominant MTBE degraders. Previous studies have suggested a role for Firmicutes in anaerobic MTBE degradation; however, the putative MTBE-degrading microorganism in the current study is a novel MTBE-degrading phylotype within this phylum. Two archaeal phylotypes (genera Methanosarcina and Methanocorpusculum) were also enriched in the heavy fractions, and these organisms may be responsible for minor amounts of MTBE degradation or for the uptake of metabolites released from the primary MTBE degraders. Currently, limited information exists on the microorganisms able to degrade MTBE under anaerobic conditions. This work represents the first application of DNA-based SIP to identify anaerobic MTBE-degrading microorganisms in laboratory microcosms and therefore provides a valuable set of data to definitively link identity with anaerobic MTBE degradation. PMID:22327600

  18. Vacuum ellipsometry as a method for probing glass transition in thin polymer films

    NASA Astrophysics Data System (ADS)

    Efremov, Mikhail Yu.; Soofi, Shauheen S.; Kiyanova, Anna V.; Munoz, Claudio J.; Burgardt, Peter; Cerrina, Franco; Nealey, Paul F.

    2008-04-01

    A vacuum ellipsometer has been designed for probing the glass transition in thin supported polymer films. The device is based on the optics of a commercial spectroscopic phase-modulated ellipsometer. A custom-made vacuum chamber evacuated by oil-free pumps, variable temperature optical table, and computer-based data acquisition system was described. The performance of the tool has been demonstrated using 20-200nm thick poly(methyl methacrylate) and polystyrene films coated on silicon substrates at 10-6-10-8torr residual gas pressure. Both polymers show pronounced glass transitions. The difficulties in assigning in the glass transition temperature are discussed with respect to the experimental challenges of the measurements in thin polymer films. It is found that the experimental curves can be significantly affected by a residual gas. This effect manifests itself at lower temperatures as a decreased or even negative apparent thermal coefficient of expansion, and is related to the uptake and desorption of water by the samples during temperature scans. It is also found that an ionization gauge—the standard accessory of any high vacuum system—can cause a number of spurious phenomena including drift in the experimental data, roughening of the polymer surface, and film dewetting.

  19. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    PubMed

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-01-01

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature. PMID:26670258

  20. Model for the J-V characteristics of degraded polymer solar cells

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Gaur, Ankita

    2013-03-01

    An equivalent circuit model was developed for polymer solar cells (PSCs), which explains correctly their behavior under different test conditions. We examine here the validity of that model for degraded PSCs. For that purpose, investigations were carried out on solar cells based on the interpenetrating bulk heterojunctions of poly(3-hehylthiophene) and phenyl[6,6] C61 butyric acid methyl ester. Current density-voltage (J-V) characteristics were measured in dark and under illumination at different time intervals. The characteristics of fresh solar cells are explained well by the developed model, with exponential dependence of photocurrent on applied voltage. However, the degraded characteristics showed space charge limited conduction and the characteristics could be explained well by the same model but with different voltage dependence of photocurrent.

  1. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells

    PubMed Central

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-01-01

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature. PMID:26670258

  2. Nanoscale investigation of viscoelasticity in thin polymer films using environmental scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Schmidt, Ronald Henry

    The tribological and rheological behavior of thin polymer films at the nanometer length scale has become a topic of extreme technological and scientific interest. The friction and wear characteristics of ultrathin organic coatings are critical in magnetic storage media devices, as well as emerging technologies such as microelectromechanical devices. In the microelectronics industry, the ability to produce ultrathin coatings of photoresists and electron resists that are free of scratches and thickness fluctuations is a crucial step in any lithography process. Fortunately the need to understand the behavior of ultrathin organic films has coincided with the development of the scanning probe microscope (SPM) which is able to impose shear and tensile forces, and image the resulting deformations, on the nanometer scale. In contrast to traditional scientific disciplines like condensed matter physics and physical chemistry, the "nanoscience" community has only recently begun to examine the role of temperature in material response. This is largely because piezoelectric transducers are incompatible with substantial temperature elevation. A recent advance in SPM design has isolated the transducer and accompanying electronics from the sample, enabling investigators to heat samples to temperatures as high as 170°C without affecting the performance of the instrument. Using an environmental SPM, we examined the temperature and rate dependence of tip-imposed plastic and viscoelastic deformations in thin polymer films. Viscous flow in defects in nonwetting films was investigated as well. Chapter 1 provides a brief review of viscoelastic and plastic deformations in bulk polymers, the glass transition temperature, and the effect of confining polymer molecules to an interface on the observed glass transition temperature. Chapter 2 discusses scanning probe microscopy instrumentation, techniques, and applications to polymer thin film tribology. In Chapters 3 and 4, results are

  3. Identification of triclosan-degrading bacteria using stable isotope probing, fluorescence in situ hybridization and microautoradiography.

    PubMed

    Lolas, Ihab Bishara; Chen, Xijuan; Bester, Kai; Nielsen, Jeppe Lund

    2012-11-01

    Triclosan is considered a ubiquitous pollutant and can be detected in a wide range of environmental samples. Triclosan removal by wastewater treatment plants has been largely attributed to biodegradation processes; however, very little is known about the micro-organisms involved. In this study, DNA-based stable isotope probing (DNA-SIP) combined with microautoradiography-fluorescence in situ hybridization (MAR-FISH) was applied to identify active triclosan degraders in an enrichment culture inoculated with activated sludge. Clone library sequences of 16S rRNA genes derived from the heavy DNA fractions of enrichment culture incubated with (13)C-labelled triclosan showed a predominant enrichment of a single bacterial clade most closely related to the betaproteobacterial genus Methylobacillus. To verify that members of the genus Methylobacillus were actively utilizing triclosan, a specific probe targeting the Methylobacillus group was designed and applied to the enrichment culture incubated with (14)C-labelled triclosan for MAR-FISH. The MAR-FISH results confirmed a positive uptake of carbon from (14)C-labelled triclosan by the Methylobacillus. The high representation of Methylobacillus in the (13)C-labelled DNA clone library and its observed utilization of (14)C-labelled triclosan by MAR-FISH reveal that these micro-organisms are the primary consumers of triclosan in the enrichment culture. The results from this study show that the combination of SIP and MAR-FISH can shed light on the networks of uncultured micro-organisms involved in degradation of organic micro-pollutants. PMID:22956759

  4. Mathematical modeling of PLGA microparticles: from polymer degradation to drug release.

    PubMed

    Casalini, Tommaso; Rossi, Filippo; Lazzari, Stefano; Perale, Giuseppe; Masi, Maurizio

    2014-11-01

    The present work is focused on the development and the validation of a mechanistic model describing the degradation of drug-loaded polylactic-co-glycolic acid microparticles and the drug release process from such devices. Microparticles' degradation is described through mass conservation equations; the application of population balances allows a detailed description of the hydrolysis kinetics, which also takes into account the autocatalytic behavior that characterizes bulk eroding polymers. Drug release considers both drug dissolution and the diffusion of dissolved active principle through the polymeric matrix. The diffusion of oligomers, water, and drug is assumed to follow Fickian behavior; the use of effective diffusion coefficients takes into account the diffusivity increase due to polymer hydrolysis. The model leads to a system of partial differential equations, solved by means of the method of lines. The model predictions satisfactorily match with different sets of literature data, indicating that the model presented here, despite its simplicity, is able to describe the key phenomena governing the device behavior. PMID:25230105

  5. A Comparison of Degradable Synthetic Polymer Fibers for Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Tovar, Nick; Bourke, Sharon; Jaffe, Michael; Murthy, N. Sanjeeva; Kohn, Joachim; Gatt, Charles; Dunn, Michael G.

    2009-01-01

    We compared mechanical properties, degradation rates, and cellular compatibilities of two synthetic polymer fibers potentially useful as ACL reconstruction scaffolds: poly(desaminotyrosyl-tyrosine dodecyl dodecanedioate)(12,10), p(DTD DD) and poly(L-lactic acid), PLLA. The yield stress of ethylene oxide (ETO) sterilized wet fibers was 150 ± 22 MPa and 87 ± 12 MPa for p(DTD DD) and PLLA, respectively, with moduli of 1.7 ± 0.1 MPa and 4.4 ± 0.43 MPa. Strength and molecular weight retention were determined after incubation under physiological conditions at varying times. After 64 weeks strength decreased to 20 and 37% of the initial sterile fiber values and MW decreased to 41% and 36% of the initial values for p(DTD DD) and PLLA, respectively. ETO sterilization had no significant effect on mechanical properties. Differences in mechanical behavior may be due to the semicrystalline nature of PLLA and the small degree of crystallinity induced by mesogenic ordering in p(DTD DD) suggested by DSC analysis. Fibroblast growth was similar on 50-fiber scaffolds of both polymers through 16 days in vitro. These data suggest that p(DTD DD) fibers, with higher strength, lower stiffness, favorable degradation rate and cellular compatibility, may be a superior alternative to PLLA fibers for development of ACL reconstruction scaffolds. PMID:19623532

  6. Treatment of Osteomyelitis in Rats by Injection of Degradable Polymer Releasing Gentamicin

    PubMed Central

    Brin, Yaron S.; Golenser, Jacob; Mizrahi, Boaz; Maoz, Guy; Domb, Abraham J.; Peddada, Shyamal; Tuvia, Shmuel; Nyska, Abraham; Nyska, Meir

    2009-01-01

    We evaluated the potential of an injectable degradable polymer-Poly(sebacic-co-ricinoleic-ester-anhydride) containing gentamicin for the treatment of osteomyelitis. Osteomyelitis of both tibiae was induced in 13 female Fischer rats by injecting a suspension containing approximately 105 (CFU)/ml of S. Aureus into the tibial medullar canal. Three weeks later both tibiae were X rayed, drilled down the medullar canal, washed with 50µl gentamicin solution (80mg/2ml) and then injected with 50µl P(SARA) + gentamycin 20% w/v to the right tibia and 50µl P(SA-RA) without gentamicin to the left tibia. After an additional 3 weeks, the rats were sacrificed, and radiographs of the tibiae were taken. Histopathological evaluation of the tibiae was done in a blinded manner. X ray radiographs showed that all tibiae developed changes compatible with osteomyelitis in 3 weeks. Histological evaluation revealed significant differences between right and left tibiae in 10 rats. In the left tibia moderate intramedullary abscess formation occurred. In most treated tibiae typical changes included the absence (or minimal grade only) of abscesses. The treated group developed significantly less intramedullary abscesses; the p-value was 0.028. Locally injected degradable polymer releasing gentamicin proved to be efficient histologically in the treatment of osteomyelitis PMID:18692531

  7. An investigation on focused electron/ion beam induced degradation mechanisms of conjugated polymers.

    PubMed

    Sezen, Meltem; Plank, Harald; Fisslthaler, Evelin; Chernev, Boril; Zankel, Armin; Tchernychova, Elena; Blümel, Alexander; List, Emil J W; Grogger, Werner; Pölt, Peter

    2011-12-01

    Irradiation damage, caused by the use of beams in the electron microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures that are being processed. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on irradiation by electron and ion beams. The effect is even higher when materials are subjected to energetic species such as ions that possess high momentum and relatively low mean path due to their mass. Especially when Ga(+) ions (used as the ion source in Focused Ion Beam (FIB) instruments) are considered, the end-effect might even be the total loss of the material's properties. This paper will discuss the possible types of degradation mechanisms and defect formations that can take place during ion and electron beam irradiation of the conjugated polymers: e.g. polyfluorene (PF) and poly-3-hexylthiophene (P3HT) thin films. For the investigation of the irradiation induced degradation mechanisms in this study, complementary analytical techniques such as Raman Spectroscopy (RS), Infrared Spectroscopy (IR), Electron Energy Loss Spectroscopy (EELS), Atomic Force Microscopy (AFM), and Fluorescence Microscopy including Photoluminescence (PL) and Electroluminescence (EL) Microscopy were applied. PMID:21993473

  8. Characterization of para-Nitrophenol-Degrading Bacterial Communities in River Water by Using Functional Markers and Stable Isotope Probing.

    PubMed

    Kowalczyk, Agnieszka; Eyice, Özge; Schäfer, Hendrik; Price, Oliver R; Finnegan, Christopher J; van Egmond, Roger A; Shaw, Liz J; Barrett, Glyn; Bending, Gary D

    2015-10-01

    Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [(13)C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations. PMID:26209677

  9. Characterization of para-Nitrophenol-Degrading Bacterial Communities in River Water by Using Functional Markers and Stable Isotope Probing

    PubMed Central

    Eyice, Özge; Schäfer, Hendrik; Price, Oliver R.; Finnegan, Christopher J.; van Egmond, Roger A.; Shaw, Liz J.; Barrett, Glyn; Bending, Gary D.

    2015-01-01

    Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [13C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations. PMID:26209677

  10. Degradation of polymer electrolyte membrane fuel cell by siloxane in biogas

    NASA Astrophysics Data System (ADS)

    Seo, Ji-Sung; Kim, Da-Yeong; Hwang, Sun-Mi; Seo, Min Ho; Seo, Dong-Jun; Yang, Seung Yong; Han, Chan Hui; Jung, Yong-Min; Guim, Hwanuk; Nahm, Kee Suk; Yoon, Young-Gi; Kim, Tae-Young

    2016-06-01

    We studied the degradation and durability of polymer electrolyte membrane fuel cell (PEMFC) at membrane-electrode-assembly (MEA) level by injection of octamethylcyclotetrasiloxane (D4) as a representative siloxane, which has been found in many industrial and personal products. Specifically, i) GC/MS analysis demonstrated that the ring-opening polymerization of D4 could result in the formation of various linear and cyclic siloxanes in both electrodes of MEA; ii) post-test analysis revealed that the transformed siloxanes were transported from the anode to the cathode via free-volumes in the polymer membrane; iii) RDE measurement and DFT calculation revealed that D4 was not directly responsible for the electrocatalytic activity of Pt; iv) electrochemical analysis demonstrated that the residual methyl groups of siloxane and various siloxanes did not hinder the proton transport in the polymer membrane; and v) siloxanes accumulated in the primary and secondary pores with the exception of an external surface of carbon, causing an increase in the oxygen reactant's resistance and resulting in a decrease of the cell performance. In addition, we confirmed that injection of D4 did not affect the carbon corrosion adversely because the siloxane had little influence on water sorption in the catalyst layer.

  11. Glass Transition in Thin Supported Polymer Films Probed by Temperature-Modulated Ellipsometry in Vacuum

    NASA Astrophysics Data System (ADS)

    Efremov, Mikhail; Nealey, Paul

    2010-03-01

    Glass transition in model glass-forming polymer coatings is probed by ellipsometry in vacuum. Novel temperature-modulated modification of the technique is used alongside with traditional linear temperature program [1]. Spin-cast 2 - 200 nm thick polystyrene (PS) and 10 - 200 nm thick poly(methyl methacrylate) (PMMA) films on silicon are studied. Measurements are performed at 10-6 - 10-8 torr residual gas pressure. Temperature modulation allows effective separation of reversible glass transition from accompanying irreversible processes. It is found that glass transition in both polymers demonstrates no appreciable dependence on film thickness for more than 20 nm thick coatings. The temperature of the transition (Tg) in thinnest PS films does depend on film thickness, but does not follow often accepted Tg(h)=Tg(∞)[1-(Ah)^δ] function (where h is film thickness, A and δ are constants). Effects of polymer molecular weight and substrate surface pre-treatment on glass transition will be discussed also.[4pt] [1]. M. Yu. Efremov, A. V. Kiyanova, and P. F. Nealey, Macromolecules, 41, 5978 (2008).

  12. Probing and characterizing the early stages of cavitation in glassy polymers in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Estevez, R.; Long, D.

    2011-06-01

    This work focuses on a specific aspect of polymer fracture: the onset of cavitation during deformation. Failure in polymers involves plastic deformation by shear yielding and crazing. The competition between these two mechanisms is thought to govern the ductile versus brittle response of the material. The present molecular dynamics (MD) analysis shows that at a small scale, cavitation results from a transition between a homogeneous to a highly heterogeneous deformation field during loading. We characterize here these two regimes thanks to a scalar non-affine displacement probe, which displays a sharp transition at the onset of cavitation. Close scrutiny of cavitation allows for defining a stress-based cavitation criterion, the validity of which is checked for two temperatures in the glassy state. A mapping between the MD results and the corresponding estimates at the continuum scale indicates that the onset of cavitation at high deformation rates corresponds to a noticeably larger stress level as compared with that at low and intermediate loading rates. Since cavitation precedes failure in glassy polymers, this effect could be responsible for the marked increase in toughness reported experimentally under impact conditions.

  13. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    NASA Astrophysics Data System (ADS)

    Cardoso, Elisabeth C. L.; Scagliusi, Sandra R.; Lima, Luis F. C. P.; Bueno, Nelson R.; Brant, Antonio J. C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT).

  14. Aspects of environmental degradation and fracture in polymer films and fibers

    NASA Astrophysics Data System (ADS)

    Walsh, Peter J.

    This thesis is focused in three areas: An investigation of a thermodynamic criterion for failure by environmental stress cracking using observations of the wetting behavior of stress-cracking liquids on glassy polymer substrates; Determination of the dominant chemical and physical degradation mechanisms associated with exposure of poly-p-phenylenebisbenzoxazole fiber to moisture moisture and UV-Vis spectrum light; And finally, the effect of constraint on fracture at a bi-material interface is investigated using a model epoxy-metallic adherend specimen. The wetting behavior of an ESC liquid on polycarbonate substrates has been evaluated as a function of substrate stress using a variation of Contact Adhesion Testing, a novel method of measuring small contact angles by refraction and conventional goniometry. The inelastic and elastic strain condition and time to the onset of crazing were also observed. A normalization of the time to onset of crazing using stress state, solubility difference and diffusion coefficients was shown to collapse the kinetic observations. A comprehensive study of the degradation mechanisms of PBO AS fiber exposed in a controlled manner to challenging chemical environments, moisture and UV-Visible spectrum light was undertaken. Fibers were characterized using a broad range of mechanical and physical tests including tensile testing, Elemental Analysis, scanning electron microscopy, small angle X-ray diffraction, wide angle X-ray diffraction and attenuated total reflectance infrared spectroscopy. Degradation by moisture is found to be primarily due to a loosening of the fiber's fibrillar structure. Degradation by UV-Visible spectrum light is found to be chemical in nature involving hydrolytic disruption of the oxazole ring and possible subsequent conversion to an amide bond. Approaches to alleviation of PBO AS fiber degradation were studied including super-critical carbon dioxide extraction of residual acid, the use of UV-Vis blocking coatings

  15. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination.

    PubMed

    Liu, Baoxia; Huang, Yankai; Zhu, Xu; Hao, Yuanqiang; Ding, Yujie; Wei, Wei; Wang, Qi; Qu, Peng; Xu, Maotian

    2016-03-17

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg(2+) detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb(3+) from the quenching effect of O-H vibration in water molecules. The subsequent addition of Hg(2+) into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg(2+). As a kind of Hg(2+) nanosensor, the probe exhibited excellent selectivity for Hg(2+) and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg(2+) in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. PMID:26920783

  16. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef

    2016-09-01

    The durability of a polymer electrolyte membrane (PEM) water electrolysis single cell, assembled with regular porous transport layers (PTLs) is investigated for just over 1000 h. We observe a significant degradation rate of 194 μV h-1 and conclude that 78% of the detectable degradation can be explained by an increase in ohmic resistance, arising from the anodic Ti-PTL. Analysis of the polarization curves also indicates a decrease in the anodic exchange current density, j0, that results from the over-time contamination of the anode with Ti species. Furthermore, the average Pt-cathode particle size increases during the test, but we do not believe this phenomenon makes a significant contribution to increased cell voltages. To validate the anode Ti-PTL as a crucial source of increasing resistance, a second cell is assembled using Pt-coated Ti-PTLs. This yields a substantially reduced degradation rate of only 12 μV h-1, indicating that a non-corroding anode PTL is vital for PEM electrolyzers. It is our hope that forthcoming tailored PTLs will not only contribute to fast progress on cost-efficient stacks, but also to its long-term application of PEM electrolyzers involved in industrial processes.

  17. Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain

    PubMed Central

    Yoshida Kozai, Takashi D.; Kipke, Daryl R.

    2011-01-01

    Penetrating microscale microelectrodes made from flexible polymers tend to bend or deflect and may fail to reach their target location. The development of flexible neural probes requires methods for reliable and controlled insertion into the brain. Previous approaches for implanting flexible probes into the cortex required modifications that negate the flexibility, limit the functionality, or restrict the design of the probe. This study investigated the use of an electronegative self-assembled monolayer (SAM) as a coating on a stiff insertion shuttle to carry a polymer probe into the cerebral cortex, and then the detachment of the shuttle from the probe by altering the shuttle’s hydrophobicity. Polydimethylsiloxane (PDMS) and polyimide probes were inserted into an agarose in vitro brain model using silicon insertion shuttles. The silicon shuttles were coated with a carboxyl terminal SAM. The precision of insertion using the shuttle was measured by the percentage displacement of the probe upon shuttle removal after the probe was fully inserted. The average relative displacement of polyimide probes inserted with SAM-coated shuttles was (1.0 ± 0.66)% of the total insertion depth compared to (26.5 ± 3.7)% for uncoated silicon shuttles. The average relative displacement of PDMS probes was (2.1 ± 1.1)% of the insertion depth compared to 100% (complete removal) for uncoated silicon shuttles. SAM-coated shuttles were further validated through their use to reliably insert PDMS probes in the cerebral cortex of rodents. This study found that SAM-coated silicon shuttles are a viable method for accurately and precisely inserting flexible neural probes in the brain. PMID:19666051

  18. Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain.

    PubMed

    Kozai, Takashi D Yoshida; Kipke, Daryl R

    2009-11-15

    Penetrating microscale microelectrodes made from flexible polymers tend to bend or deflect and may fail to reach their target location. The development of flexible neural probes requires methods for reliable and controlled insertion into the brain. Previous approaches for implanting flexible probes into the cortex required modifications that negate the flexibility, limit the functionality, or restrict the design of the probe. This study investigated the use of an electronegative self-assembled monolayer (SAM) as a coating on a stiff insertion shuttle to carry a polymer probe into the cerebral cortex, and then the detachment of the shuttle from the probe by altering the shuttle's hydrophobicity. Polydimethylsiloxane (PDMS) and polyimide probes were inserted into an agarose in vitro brain model using silicon insertion shuttles. The silicon shuttles were coated with a carboxyl terminal SAM. The precision of insertion using the shuttle was measured by the percentage displacement of the probe upon shuttle removal after the probe was fully inserted. The average relative displacement of polyimide probes inserted with SAM-coated shuttles was (1.0+/-0.66)% of the total insertion depth compared to (26.5+/-3.7)% for uncoated silicon shuttles. The average relative displacement of PDMS probes was (2.1+/-1.1)% of the insertion depth compared to 100% (complete removal) for uncoated silicon shuttles. SAM-coated shuttles were further validated through their use to reliably insert PDMS probes in the cerebral cortex of rodents. This study found that SAM-coated silicon shuttles are a viable method for accurately and precisely inserting flexible neural probes in the brain. PMID:19666051

  19. Stable-Isotope Probing Identifies Uncultured Planctomycetes as Primary Degraders of a Complex Heteropolysaccharide in Soil

    PubMed Central

    Wang, Xiaoqing; Sharp, Christine E.; Jones, Gareth M.; Grasby, Stephen E.; Brady, Allyson L.

    2015-01-01

    The exopolysaccharides (EPSs) produced by some bacteria are potential growth substrates for other bacteria in soil. We used stable-isotope probing (SIP) to identify aerobic soil bacteria that assimilated the cellulose produced by Gluconacetobacter xylinus or the EPS produced by Beijerinckia indica. The latter is a heteropolysaccharide comprised primarily of l-guluronic acid, d-glucose, and d-glycero-d-mannoheptose. 13C-labeled EPS and 13C-labeled cellulose were purified from bacterial cultures grown on [13C]glucose. Two soils were incubated with these substrates, and bacteria actively assimilating them were identified via pyrosequencing of 16S rRNA genes recovered from 13C-labeled DNA. Cellulose C was assimilated primarily by soil bacteria closely related (93 to 100% 16S rRNA gene sequence identities) to known cellulose-degrading bacteria. However, B. indica EPS was assimilated primarily by bacteria with low identities (80 to 95%) to known species, particularly by different members of the phylum Planctomycetes. In one incubation, members of the Planctomycetes made up >60% of all reads in the labeled DNA and were only distantly related (<85% identity) to any described species. Although it is impossible with SIP to completely distinguish primary polysaccharide hydrolyzers from bacteria growing on produced oligo- or monosaccharides, the predominance of Planctomycetes suggested that they were primary degraders of EPS. Other bacteria assimilating B. indica EPS included members of the Verrucomicrobia, candidate division OD1, and the Armatimonadetes. The results indicate that some uncultured bacteria in soils may be adapted to using complex heteropolysaccharides for growth and suggest that the use of these substrates may provide a means for culturing new species. PMID:25934620

  20. Stable-Isotope Probing Identifies Uncultured Planctomycetes as Primary Degraders of a Complex Heteropolysaccharide in Soil.

    PubMed

    Wang, Xiaoqing; Sharp, Christine E; Jones, Gareth M; Grasby, Stephen E; Brady, Allyson L; Dunfield, Peter F

    2015-07-01

    The exopolysaccharides (EPSs) produced by some bacteria are potential growth substrates for other bacteria in soil. We used stable-isotope probing (SIP) to identify aerobic soil bacteria that assimilated the cellulose produced by Gluconacetobacter xylinus or the EPS produced by Beijerinckia indica. The latter is a heteropolysaccharide comprised primarily of l-guluronic acid, d-glucose, and d-glycero-d-mannoheptose. (13)C-labeled EPS and (13)C-labeled cellulose were purified from bacterial cultures grown on [(13)C]glucose. Two soils were incubated with these substrates, and bacteria actively assimilating them were identified via pyrosequencing of 16S rRNA genes recovered from (13)C-labeled DNA. Cellulose C was assimilated primarily by soil bacteria closely related (93 to 100% 16S rRNA gene sequence identities) to known cellulose-degrading bacteria. However, B. indica EPS was assimilated primarily by bacteria with low identities (80 to 95%) to known species, particularly by different members of the phylum Planctomycetes. In one incubation, members of the Planctomycetes made up >60% of all reads in the labeled DNA and were only distantly related (<85% identity) to any described species. Although it is impossible with SIP to completely distinguish primary polysaccharide hydrolyzers from bacteria growing on produced oligo- or monosaccharides, the predominance of Planctomycetes suggested that they were primary degraders of EPS. Other bacteria assimilating B. indica EPS included members of the Verrucomicrobia, candidate division OD1, and the Armatimonadetes. The results indicate that some uncultured bacteria in soils may be adapted to using complex heteropolysaccharides for growth and suggest that the use of these substrates may provide a means for culturing new species. PMID:25934620

  1. Degradation and reliability modelling of polymer electrolyte membrane (PEM) fuel cells

    NASA Astrophysics Data System (ADS)

    Fowler, Michael William

    To date there has been very little reliability or end of life analysis conducted for polymer electrolyte membrane (PEM) fuel cell systems. Voltage degradation as a fuel cell ages is a widely observed phenomenon, but little systematic information has been reported, nor has this phenomenon been included in electrochemical models. This work documents and classifies the failure modes that can be experienced in PEM fuel cells. A test station was adapted for the long term operation of a single, 50 cm2, internally hydrated, PEM fuel cell. An endurance test was conducted to age the cell under normal operating conditions for 1350 hours, at which time membrane failure was experienced. Changes in the polarization curve predicted by the Generalized Steady State Electrochemical Degradation Model (GSSEDM) are demonstrated from the data for the performance of typical PEM fuel cell hardware. This work develops and applies the generalized steady state electrochemical model for a PEM cell, and introduces two new terms to account for membrane electrode assembly (MEA) ageing, specifically the ageing of the MEA materials. One term is based on the concept that the water carrying capacity of the membrane deteriorates with time-in-service. The second term involves intrinsic rate constants associated with the reactions on the anode and cathode side, and the changes in catalytic activity due to catalyst degradation. The resulting model is largely mechanistic with most terms being derived from theory or including coefficients that have a theoretical basis, but also includes empirical parameters to deal with the changing performance. The value of such a generic model to predict or correlate PEM fuel cell stack voltages over the life of the fuel cell is demonstrated in this work. From the experimental data a membrane conductivity degradation rate, lambdaDR, was determined, and the value for lambdaDR was found to be -0.0007 hr -1. A term was introduced for degradation rate of the fuel cell due

  2. Application of Universal Stress Proteins in Probing the Dynamics of Potent Degraders in Complex Terephthalate Metagenome

    PubMed Central

    Mbah, Andreas N.; Isokpehi, Raphael D.

    2013-01-01

    The culture-independent strategies to study microbial diversity and function have led to a revolution in environmental genomics, enabling fundamental questions about the distribution of microbes and their influence on bioremediation to be addressed. In this research we used the expression of universal stress proteins as a probe to determine the changes in degrading microbial population from a highly toxic terephthalate wastewater to a less toxic activated sludge bioreactor. The impact of relative toxicities was significantly elaborated at the levels of genus and species. The results indicated that 23 similar prokaryotic phyla were represented in both metagenomes irrespective of their relative abundance. Furthermore, the following bacteria taxa Micromonosporaceae, Streptomyces, Cyanothece sp. PCC 7822, Alicyclobacillus acidocaldarius, Bacillus halodurans, Leuconostoc mesenteroides, Lactococcus garvieae, Brucellaceae, Ralstonia solanacearum, Verminephrobacter eiseniae, Azoarcus, Acidithiobacillus ferrooxidans, Francisella tularensis, Methanothermus fervidus, and Methanocorpusculum labreanum were represented only in the activated sludge bioreactor. These highly dynamic microbes could serve as taxonomic biomarkers for toxic thresholds related to terephthalate and its derivatives. This paper, highlights the application of universal stress proteins in metagenomics analysis. Dynamics of microbial consortium of this nature can have future in biotechnological applications in bioremediation of toxic chemicals and radionuclides. PMID:24151583

  3. Degradation of silver near-field optical probes and its electrochemical reversal

    NASA Astrophysics Data System (ADS)

    Opilik, Lothar; Dogan, Üzeyir; Szczerbiński, Jacek; Zenobi, Renato

    2015-08-01

    Deterioration of the outstanding optical properties of elemental silver due to atmospheric corrosion compromises its use in the field of plasmonics. Therefore, more chemically inert, but more lossy, metals (e.g., gold) are often used as a compromise. Silver tips for near-field optical microscopy are only utilized by specialized laboratories with in-house tip production facilities. This article presents a time-dependent study of the effect of atmospheric corrosion on the electromagnetic enhancement of solid silver tips. It was found that chemical degradation renders them unusable for tip-enhanced Raman spectroscopy (TERS) within the first two days after production. Furthermore, we present a simple electrochemical method for recovering the enhancing effect of corroded silver tips, as well as for storing freshly prepared probes, for example, for easy shipment. The present work greatly simplifies the experimental aspects of near-field optical microscopy, which should make near-field optical techniques, and, in particular, TERS, more accessible to the scientific community.

  4. Synthesis and Study of Polymers Designed for Controlled Degradation with Light as a Trigger

    NASA Astrophysics Data System (ADS)

    Olejniczak, Jason Edward

    Light is an ideal stimulus to externally control the properties of materials for many applications. Light is able to initiate chemical reactions largely independent of a material's local environment making it particularly useful as a bio-orthogonal and on-demand trigger in living systems. The benefits of light as a trigger are diminished by various drawbacks of its use. Light of relatively short wavelengths, in the UV range, is most commonly used to initiate chemistries. This is because UV light has high energy, enough to affect bonds in molecules. But this high energy causes problems in off target effects. Many biological molecules are able to absorb and be modified detrimentally by UV light, limiting the use of UV light in biological systems. The problems of UV light for release in biological systems can be potentially overcome in various ways and this dissertation will describe two main strategies. In the first chapter the use of long wavelength responsive polymers will be described. These materials are intended for the encapsulation of a payload in a polymeric nanoparticle which can degrade and release in response to two-photon absorption of near-infrared light. This long wavelength light is absorbed by far fewer biological molecules and so can penetrate deeper through tissue than UV light while also causing less damage. Another method to mitigate the damaging effects of UV light is by using a material that requires less of a stimulus to release. These materials use UV light to trigger release but are designed to need minimal amounts of light. The polymers described with these properties, a poly(?-hydroxyl acid) in chapter 2 and a polyketal in chapter 3, are intriguing novel polymer backbones on their own and could be applied with appropriate triggering groups to respond to different stimuli.

  5. Sterol metabolism regulates neuroserpin polymer degradation in the absence of the unfolded protein response in the dementia FENIB

    PubMed Central

    Roussel, Benoit D.; Newton, Timothy M.; Malzer, Elke; Simecek, Nikol; Haq, Imran; Thomas, Sally E.; Burr, Marian L.; Lehner, Paul J.; Crowther, Damian C.; Marciniak, Stefan J.; Lomas, David A.

    2013-01-01

    Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines and Drosophila models to show that the G392E mutant of neuroserpin that forms polymers is degraded by UBE2j1 E2 ligase and Hrd1 E3 ligase while truncated neuroserpin, a protein that lacks 132 amino acids, is degraded by UBE2g2 (E2) and gp78 (E3) ligases. The degradation of G392E neuroserpin results from SREBP-dependent activation of the cholesterol biosynthetic pathway in cells that express polymers of neuroserpin (G392E). Inhibition of HMGCoA reductase, the limiting enzyme of the cholesterol biosynthetic pathway, reduced the ubiquitination of G392E neuroserpin in our cell lines and increased the retention of neuroserpin polymers in both HeLa cells and primary neurones. Our data reveal a reciprocal relationship between cholesterol biosynthesis and the clearance of mutant neuroserpin. This represents the first description of a link between sterol metabolism and modulation of the proteotoxicity mediated by the EOR. PMID:23814041

  6. Decades-Scale Degradation of Commercial, Side-Chain, Fluorotelomer-Based Polymers in Soils and Water

    EPA Science Inventory

    Fluorotelomer-based polymers (FTPs) are a primary product of the jluorotelomer industry, yet the role of commercial FTPs in degrading to form perjluorocarboxylic acids (P FCAs), including perjluorooctanoic acid, and P FCA precursors, remains ill-defined. Here we report on a 376-d...

  7. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resulting in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.

  8. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    DOE PAGESBeta

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less

  9. Performance and degradation of high temperature polymer electrolyte fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Aricò, A. S.; Stassi, A.; Modica, E.; Ornelas, R.; Gatto, I.; Passalacqua, E.; Antonucci, V.

    An investigation of carbon-supported Pt/C and PtCo/C catalysts was carried out with the aim to evaluate their stability under high temperature polymer electrolyte membrane fuel cell (PEMFC) operation. Carbon-supported nanosized Pt and PtCo particles with a mean particle size between 1.5 nm and 3 nm were prepared by using a colloidal route. A suitable degree of alloying was obtained for the PtCo catalyst by using a carbothermal reduction. The catalyst stability was investigated to understand the influence of carbon black corrosion, platinum dissolution and sintering in gas-fed sulphuric acid electrolyte half-cell at 75 °C and in PEMFC at 130 °C. Electrochemical active surface area and catalyst performance were determined in PEMFC at 80 °C and 130 °C. A maximum power density of about 700 mW cm -2 at 130 °C and 3 bar abs. O 2 pressure with 0.3 mg Pt cm -2 loading was achieved. The PtCo alloy showed a better stability than Pt in sulphuric acid after cycling; yet, the PtCo/C catalyst showed a degradation after the carbon corrosion test. The PtCo/C catalyst showed smaller sintering effects than Pt/C after accelerated degradation tests in PEMFC at 130 °C.

  10. Development of a physics-based degradation model for lithium ion polymer batteries considering side reactions

    NASA Astrophysics Data System (ADS)

    Fu, Rujian; Choe, Song-Yul; Agubra, Victor; Fergus, Jeffrey

    2015-03-01

    Experimental investigations conducted on a large format lithium ion polymer battery (LiPB) have revealed that side reactions taking place at anode are the major factor for degradation of the battery performance and lead to capacity and power fade. Side reactions consume ions and solvents from the electrolyte and produce deposits that increase the thickness of the solid electrolyte interphase (SEI) layer and form a new layer between composite anode and separator. These phenomena are described using physical principles based on the Tafel and Nernst equations that are integrated into the developed electrochemical-thermal model. The key parameters for the side reactions used in the model are experimentally determined from self-discharging behavior of the battery. The integrated model is then validated against experimental data obtained from different operating conditions. Analysis has revealed that the capacity fade is predominantly caused by loss of ions and active materials. The results also show that the rate of side reactions and degradations are more severe at charging process under high SOC and high C-rate due to low overpotential of the side reactions.

  11. Microscopic study of surface degradation of glass fiber-reinforced polymer rods embedded in concrete castings subjected to environmental conditioning

    SciTech Connect

    Bank, L.C.; Puterman, M.

    1997-12-31

    The surface degradation of glass fiber-reinforced polymer (GFRP) pultruded rods when embedded in concrete castings and subjected to environmental conditioning is discussed in this paper. Investigation of the degradation of the GFRP rods were performed using optical microscopy and scanning electron microscopy (SEM). Unidirectionally reinforced pultruded rods (6.3- and 12.7-mm diameters) containing E-glass fibers in polyester and vinylester matrices were conditioned at standard laboratory conditions (21 C, 65% relative humidity) or submerged in aqueous solutions (tap water) at 80 C for durations of 14 and 84 days. Observations of the surfaces and cross-sections of the rods by optical microscopy and SEM revealed a variety of degradation phenomena. Embedded hygrothermally conditioned rods were found to have developed surface blisters of different sizes and depths. SEM studies of the surface revealed degradation of the polymer matrix material and exposure and degradation of the fibers close to the surface of the rods. The rods with the vinylester resin matrix showed less extensive degradation than those with the polyester resin matrix; however, the degradation characteristics of the two types of rods appear to be similar.

  12. Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles

    PubMed Central

    Neeves, Keith B.; Sawyer, Andrew J.; Foley, Conor P.; Saltzman, W. Mark; Olbricht, William L.

    2007-01-01

    This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequentially, nanoparticles and ECM-modifying agents. Infusions were performed in the striatum of the normal rat brain. Monodisperse polystyrene particles with a diameter of 54 nm were used as a model nanoparticle system. Because the size of these particles is comparable to the effective pore size of the ECM, their transport may be significantly hindered compared with the transport of low molecular weight molecules. To enhance the transport of the infused nanoparticles, we attempted to increase the effective pore size of the ECM by two methods: dilating the extracellular space and degrading selected constituents of the ECM. Two methods of dilating the extracellular space were investigated: co-infusion of nanoparticles and a hyperosmolar solution of mannitol, and pre-infusion of an isotonic buffer solution followed by infusion of nanoparticles. These treatments resulted in an increase in the nanoparticle distribution volume of 50% and 123%, respectively. To degrade hyaluronan, a primary structural component of the brain ECM, a pre-infusion of hyaluronidase (20,000 U/mL) was followed after 30 min by infusion of nanoparticles. This treatment resulted in an increase in the nanoparticle distribution of 64%. Our results suggest that both dilation and enzymatic digestion can be incorporated into CED protocols to enhance nanoparticle penetration. PMID:17920047

  13. External electro-optic sampling utilizing a poled polymer asymmetric Fabry Perot cavity as an electro-optical probe tip

    NASA Astrophysics Data System (ADS)

    Chen, Kaixin; Zhang, Hongbo; Zhang, Daming; Yang, Han; Yi, Maobin

    2002-09-01

    External electro-optic sampling utilizing a poled polymer asymmetry Fabry-Perot cavity as electro-optic probe tip has been demonstrated. Electro-optical polymer spin coated on the high-reflectivity mirror (HRM) was corona poled. Thus, an asymmetric F-P cavity was formed based on the different reflectivity of the polymer and HRM and it converted the phase modulation that originates from electro-optic effect of the poled polymer to amplitude modulation, so only one laser beam is needed in this system. The principle of the sampling was analyzed by multiple reflection and index ellipsoid methods. A 1.2 GHz microwave signal propagating on coplanar waveguide transmission line was sampled, and the voltage sensitivity about 0.5 mV/ Hz was obtained.

  14. Polymer damage mitigation---predictive lifetime models of polymer insulation degradation and biorenewable thermosets through cationic polymerization for self-healing applications

    NASA Astrophysics Data System (ADS)

    Hondred, Peter Raymond

    Over the past 50 years, the industrial development and applications for polymers and polymer composites has become expansive. However, as with any young technology, the techniques for predicting material damage and resolving material failure are in need of continued development and refinement. This thesis work takes two approaches to polymer damage mitigation---material lifetime prediction and spontaneous damage repair through self-healing while incorporating bio-renewable feedstock. First, material lifetime prediction offers the benefit of identifying and isolating material failures before the effects of damage results in catastrophic failure. Second, self-healing provides a systematic approach to repairing damaged polymer composites, specifically in applications where a hands-on approach or removing the part from service are not feasible. With regard to lifetime prediction, we investigated three specific polymeric materials---polytetrafluoroethylene (PTFE), poly(ethylene-alt-tetrafluoroethylene) (ETFE), and Kapton. All three have been utilized extensively in the aerospace field as a wire insulation coating. Because of the vast amount of electrical wiring used in aerospace constructions and the potential for electrical and thermal failure, this work develops mathematical models for both the thermal degradation kinetics as well as a lifetime prediction model for electrothermal breakdown. Isoconversional kinetic methods, which plot activation energy as a function of the extent of degradation, present insight into the development each kinetic model. The models for PTFE, ETFE, and Kapton are one step, consecutive three-step, and competitive and consecutive five-step respectively. Statistical analysis shows that an nth order autocatalytic reaction best defined the reaction kinetics for each polymer's degradation. Self-healing polymers arrest crack propagation through the use of an imbedded adhesive that reacts when cracks form. This form of damage mitigation focuses on

  15. Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization.

    PubMed

    Kavanagh, Paul; Leech, Dónal

    2006-04-15

    The detection of nucleic acids based upon recognition surfaces formed by co-immobilization of a redox polymer mediator and DNA probe sequences on gold electrodes is described. The recognition surface consists of a redox polymer, [Os(2,2'-bipyridine)2(polyvinylimidazole)(10)Cl](+/2+), and a model single DNA strand cross-linked and tethered to a gold electrode via an anchoring self-assembled monolayer (SAM) of cysteamine. Hybridization between the immobilized probe DNA of the recognition surface and a biotin-conjugated target DNA sequence (designed from the ssrA gene of Listeria monocytogenes), followed by addition of an enzyme (glucose oxidase)-avidin conjugate, results in electrical contact between the enzyme and the mediating redox polymer. In the presence of glucose, the current generated due to the catalytic oxidation of glucose to gluconolactone is measured, and a response is obtained that is binding-dependent. The tethering of the probe DNA and redox polymer to the SAM improves the stability of the surface to assay conditions of rigorous washing and high salt concentration (1 M). These conditions eliminate nonspecific interaction of both the target DNA and the enzyme-avidin conjugate with the recognition surfaces. The sensor response increases linearly with increasing concentration of target DNA in the range of 1 x 10(-9) to 2 x 10(-6) M. The detection limit is approximately 1.4 fmol, (corresponding to 0.2 nM of target DNA). Regeneration of the recognition surface is possible by treatment with 0.25 M NaOH solution. After rehybridization of the regenerated surface with the target DNA sequence, >95% of the current is recovered, indicating that the redox polymer and probe DNA are strongly bound to the surface. These results demonstrate the utility of the proposed approach. PMID:16615783

  16. Agmatine-Containing Bioreducible Polymer for Gene Delivery Systems and Its Dual Degradation Behavior.

    PubMed

    Choi, Ji-Yeong; Ryu, Kitae; Lee, Gyeong Jin; Kim, Kyunghwan; Kim, Tae-Il

    2015-09-14

    Agmatine-containing bioreducible polymer, poly(cystaminebis(acrylamide)-agmatine) (poly(CBA-AG)) was synthesized for gene delivery systems. It could form 200-300 nm sized and positively charged polyplexes with pDNA, which could release pDNA in reducing the environment due to the internal disulfide bonds cleavage. Poly(CBA-AG) also showed a spontaneous degradation behavior in aqueous condition in contrast to the backbone polymer, poly(cystaminebis(acrylamide)-diaminobutane) (poly(CBA-DAB)) lacking guanidine moieties, probably due to the self-catalyzed hydrolysis of internal amide bonds by guanidine moieties. The cytotoxicity of poly(CBA-AG) was cell-dependent but minimal. Poly(CBA-AG) exhibited highly enhanced transfection efficiency in comparison with poly(CBA-DAB) and even higher transfection efficiency than PEI25k. However, cellular uptake efficiency of the polyplexes did not show positive correlation with the transfection efficiency. Confocal microscopy observation revealed that pDNA delivered by poly(CBA-AG) was strongly accumulated in cell nuclei. These results suggested that high transfection efficiency of poly(CBA-AG) may be derived from the efficient pDNA localization in cell nuclei by guanidine moieties and that the polyplexes dissociation via self-catalyzed hydrolysis as well as disulfide bonds cleavage in cytosol also may facilitate the transfection process. Finally, poly(CBA-AG)/pJDK-apoptin polyplex showed a high anticancer activity induced by apoptosis, demonstrating a potential of poly(CBA-AG) as a gene carrier for cancer gene therapy. PMID:26252660

  17. XRD and XPS analysis of the degradation of the polymer electrolyte in H 2-O 2 fuel cell

    NASA Astrophysics Data System (ADS)

    Huang, Chengde; Seng Tan, Kim; Lin, Jianyi; Lee Tan, Kuang

    2003-03-01

    Nafion ® is frequently used as electrolyte membrane in polymer electrolyte fuel cells (PEFC). In this Letter the degradation of the Nafion ® polymer electrolyte was investigated using X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). XRD showed that the electrode potential and low gas humidification temperature could decrease the crystallinity of Nafion ®. XPS analysis indicated that the Nafion ® was decomposed in the hydrogen potential region of the fuel cell, through the interaction of the hydrophobic (CF 2) n groups of the membrane with H or/and C atoms.

  18. Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification

    PubMed Central

    2015-01-01

    The synthesis of vinyl bromobutanoate (VBr), a new vinyl acetate monomer derivative obtained by the palladium-catalyzed vinyl exchange reaction between vinyl acetate (VAc) and 4-bromobutyric acid is reported. The homopolymerization of this new monomer using the RAFT/MADIX polymerization technique leads to the formation of novel well-defined and controlled polymers containing pendent bromine functional groups able to be modified via postpolymerization modification. Furthermore, the copolymerization of vinyl bromobutanoate with 2-methylene-1,3-dioxepane (MDO) was also performed to deliver a range of novel functional degradable copolymers, poly(MDO-co-VBr). The copolymer composition was shown to be able to be tuned to vary the amount of ester repeat units in the polymer backbone, and hence determine the degradability, while maintaining a control of the final copolymers’ molar masses. The addition of functionalities via simple postpolymerization modifications such as azidation and the 1,3-dipolar cycloaddition of a PEG alkyne to an azide is also reported and proven by 1H NMR spectroscopy, FTIR spectroscopy, and SEC analyses. These studies enable the formation of a novel class of hydrophilic functional degradable copolymers using versatile radical polymerization methods. PMID:25997518

  19. Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification.

    PubMed

    Hedir, Guillaume G; Bell, Craig A; O'Reilly, Rachel K; Dove, Andrew P

    2015-07-13

    The synthesis of vinyl bromobutanoate (VBr), a new vinyl acetate monomer derivative obtained by the palladium-catalyzed vinyl exchange reaction between vinyl acetate (VAc) and 4-bromobutyric acid is reported. The homopolymerization of this new monomer using the RAFT/MADIX polymerization technique leads to the formation of novel well-defined and controlled polymers containing pendent bromine functional groups able to be modified via postpolymerization modification. Furthermore, the copolymerization of vinyl bromobutanoate with 2-methylene-1,3-dioxepane (MDO) was also performed to deliver a range of novel functional degradable copolymers, poly(MDO-co-VBr). The copolymer composition was shown to be able to be tuned to vary the amount of ester repeat units in the polymer backbone, and hence determine the degradability, while maintaining a control of the final copolymers' molar masses. The addition of functionalities via simple postpolymerization modifications such as azidation and the 1,3-dipolar cycloaddition of a PEG alkyne to an azide is also reported and proven by (1)H NMR spectroscopy, FTIR spectroscopy, and SEC analyses. These studies enable the formation of a novel class of hydrophilic functional degradable copolymers using versatile radical polymerization methods. PMID:25997518

  20. Introduction of Environmentally Degradable Parameters to Evaluate the Biodegradability of Biodegradable Polymers

    PubMed Central

    Yang, Chao; Song, Cunjiang; Geng, Weitao; Li, Qiang; Wang, Yuanyuan; Kong, Meimei; Wang, Shufang

    2012-01-01

    Environmentally Degradable Parameter (EdK) is of importance in the describing of biodegradability of environmentally biodegradable polymers (BDPs). In this study, a concept EdK was introduced. A test procedure of using the ISO 14852 method and detecting the evolved carbon dioxide as an analytical parameter was developed, and the calculated EdK was used as an indicator for the ultimate biodegradability of materials. Starch and polyethylene used as reference materials were defined as the EdK values of 100 and 0, respectively. Natural soil samples were inoculated into bioreactors, followed by determining the rates of biodegradation of the reference materials and 15 commercial BDPs over a 2-week test period. Finally, a formula was deduced to calculate the value of EdK for each material. The EdK values of the tested materials have a positive correlation to their biodegradation rates in the simulated soil environment, and they indicated the relative biodegradation rate of each material among all the tested materials. Therefore, the EdK was shown to be a reliable indicator for quantitatively evaluating the potential biodegradability of BDPs in the natural environment. PMID:22675455

  1. Polymer electrolyte membrane fuel cell performance degradation by coolant leakage and recovery

    NASA Astrophysics Data System (ADS)

    Jung, Ju Hae; Kim, Se Hoon; Hur, Seung Hyun; Joo, Sang Hoon; Choi, Won Mook; Kim, Junbom

    2013-03-01

    Coolant leakage leads to decrease in performance during the operation of electric vehicles which make use of polymer electrolyte membrane fuel cells (PEMFC). This study examines the effects of various coolant leak conditions in 3-cell stack and single cell. The experimental results show that an irreversible reduction in performance occurs after coolant injection into the anode side of the stack. Poisoning of carbon monoxide (CO) on the platinum (Pt) catalyst is caused by electro-oxidation reaction of EG. Water cleaning is selected because CO poisoning is desorbed to reaction with water molecules. Performance is quickly reduced when the interval between coolant injections is short. Performance reduction is indicated by the experimental results for the gas diffusion layer (GDL) and the membrane electrode assembly (MEA). It shows that performance of the MEA with the GDL exposed to coolant decreased, but it is recovered after water cleaning. In contrast, results for performance of the MEA exposed to coolant for long time could not be reversed after water cleaning. Therefore, we propose that performance degradation of coolant leak on the Pt catalyst surface and GDL can be recovered by the water cleaning simply without disassembly of stack.

  2. Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Mansu; Jung, Namgee; Eom, KwangSup; Yoo, Sung Jong; Kim, Jin Young; Jang, Jong Hyun; Kim, Hyoung-Juhn; Hong, Bo Ki; Cho, EunAe

    2014-11-01

    Polymer electrolyte membrane fuel cell (PEMFC) stacks in a fuel cell vehicle can be inevitably exposed to harsh environments such as cold weather in winter, causing water flooding by the direct flow of condensed water to the electrodes. In this study, anode flooding was experimentally investigated with condensed water generated by cooling the anode gas line during a long-term operation (∼1600 h). The results showed that the performance of the PEMFC was considerably degraded. After the long-term experiment, the thickness of the anode decreased, and the ratio of Pt to carbon in the anode increased. Moreover, repeated fuel starvation of the half-cell severely oxidized the carbon surface due to the high induced potential (>1.5 VRHE). The cyclic voltammogram of the anode in the half-cell experiments indicated that the characteristic feature of the oxidized carbon surface was similar to that of the anode in the single cell under anode flooding conditions during the long-term experiment. Therefore, repeated fuel starvation by anode flooding caused severe carbon corrosion in the anode because the electrode potential locally increased to >1.0 VRHE. Consequently, the density of the tri-phase boundary decreased due to the corrosion of carbons supporting the Pt nanoparticles in the anode.

  3. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    NASA Astrophysics Data System (ADS)

    Alabbasi, Alyaa; Mehjabeen, Afrin; Kannan, M. Bobby; Ye, Qingsong; Blawert, Carsten

    2014-05-01

    An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO-PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (Rp) of the PEO-PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (icorr) of the pure Mg was reduced by 65% with the PEO coating, the PEO-PLLA coating reduced the icorr by almost 100%. As expected, the Rp of the PEO-PLLA Mg decreased with increase in exposure time. However, it was noted that the Rp of the PEO-PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  4. Synthesis, characterization and cytocompatibility of a degradable polymer using ferric catalyst for esophageal tissue engineering.

    PubMed

    Lei, Yu-Na; Zhu, Ya-Bin; Gong, Chang-Feng; Lv, Jing-Jing; Kang, Chen; Hou, Lin-Xi

    2014-02-01

    This study focused on the synthesis, characterization and cytocompatibility of a biodegradable polymer by the cross-linking from poly(ethylene glycol-co-lactide) dimethacrylate (PLEGDMA), polyethylene glycol diacrylate (PEGDA) and N-isopropylacrylamide, where PLEGDMA was synthesized by ring-opening oligomerization of poly(ethylene glycol) with different molecular weights (Mn = 400, 600, 1000, 2000 Da) and L-lactide using low toxic iron(III) acetylacetonate (Fe(acac)3) as the catalyst and subsequently being terminated with dimethacrylate. The product, PLEGDMA, was analyzed to confirm its chemistry using FTIR spectroscopy, (1)H NMR spectra and gel permeation chromatography etc. The thermodynamic properties, mechanical behaviors, surface hydrophilicity, degradability and cytotoxicity of the cross-linked product were evaluated by differential scanning calorimetry, tensile tests, contact angle measurements and cell cultures. The effects of reaction variables such as PEGDA content and reactants ratio were optimized to achieve a material with low glass transition temperature (Tg), high wettability and preferable mechanical characteristics. Using a tubular mould which has been patented in our group, a tubular scaffold with predetermined dimension and pattern was fabricated, which aims at guiding the growth and phenotype regulation of esophageal primary cells like fibroblast and smooth muscle cell towards fabricating tissue engineered esophagus in future. PMID:24150983

  5. Time-resolved emission of dye probes in a shock-compressed polymer

    NASA Astrophysics Data System (ADS)

    Brown, Kathryn E.; Fu, Yuanxi; Shaw, William L.; Dlott, Dana D.

    2012-11-01

    Simultaneous impact velocity and time-resolved emission measurements are made on shocked poly-methylmethacryalate doped with rhodamine 640 (R640) dye. Planar single-stage shocks in the 0-16 GPa range are produced using a laser-driven flyer plate apparatus. This method allows for reproducible measurements of the time-resolved dye emission intensity, redshift, and spectral width monitored with 1 ns time resolution. The redshift is used to probe the shock front, which has a two-part viscoelastic structure. The maximum dye emission redshift under shock loading stops increasing above ˜6 GPa. In static high-pressure measurements, the redshift continues to increase up to at least 10 GPa. The smaller redshift seen in shock experiments is not an effect of the shock temperature increase, and it is attributed to incomplete polymer configurational relaxation frustrated by the short duration (<15 ns) of the shock. The viscous relaxation behind the shock front has a part whose rate increases with increasing shock pressure and a part that does not. It is this latter part that causes the shock-induced emission redshift to stop increasing above 6 GPa, and the differences between the two types of relaxation are explained in the context of the free-energy needed to surmount configurational barriers.

  6. Depth-sensitive subsurface imaging of polymer nanocomposites using second harmonic Kelvin probe force microscopy.

    PubMed

    Castañeda-Uribe, Octavio Alejandro; Reifenberger, Ronald; Raman, Arvind; Avila, Alba

    2015-03-24

    We study the depth sensitivity and spatial resolution of subsurface imaging of polymer nanocomposites using second harmonic mapping in Kelvin Probe Force Microscopy (KPFM). This method allows the visualization of the clustering and percolation of buried Single Walled Carbon Nanotubes (SWCNTs) via capacitance gradient (∂C/∂z) maps. We develop a multilayered sample where thin layers of neat Polyimide (PI) (∼80 nm per layer) are sequentially spin-coated on well-dispersed SWCNT/Polyimide (PI) nanocomposite films. The multilayer nanocomposite system allows the acquisition of ∂C/∂z images of three-dimensional percolating networks of SWCNTs at different depths in the same region of the sample. We detect CNTs at a depth of ∼430 nm, and notice that the spatial resolution progressively deteriorates with increasing depth of the buried CNTs. Computational trends of ∂C/∂z vs CNT depth correlate the sensitivity and depth resolution with field penetration and spreading, and enable a possible approach to three-dimensional subsurface structure reconstruction. The results open the door to nondestructive, three-dimensional tomography and nanometrology techniques for nanocomposite applications. PMID:25591106

  7. Rigid spine reinforced polymer microelectrode array probe and method of fabrication

    SciTech Connect

    Tabada, Phillipe; Pannu, Satinderpall S

    2014-05-27

    A rigid spine-reinforced microelectrode array probe and fabrication method. The probe includes a flexible elongated probe body with conductive lines enclosed within a polymeric material. The conductive lines connect microelectrodes found near an insertion end of the probe to respective leads at a connector end of the probe. The probe also includes a rigid spine, such as made from titanium, fixedly attached to the probe body to structurally reinforce the probe body and enable the typically flexible probe body to penetrate and be inserted into tissue, such as neural tissue. By attaching or otherwise fabricating the rigid spine to connect to only an insertion section of the probe body, an integrally connected cable section of the probe body may remain flexible.

  8. Insulation degradation behavior of multilayer ceramic capacitors clarified by Kelvin probe force microscopy under ultra-high vacuum

    NASA Astrophysics Data System (ADS)

    Suzuki, Keigo; Okamoto, Takafumi; Kondo, Hiroyuki; Tanaka, Nobuhiko; Ando, Akira

    2013-02-01

    We investigated surface potential images on the cross section of degraded multilayer ceramic capacitors (MLCCs) by Kelvin probe force microscopy measured under a dc bias voltage in ultra-high vacuum. A highly accelerated lifetime test (HALT) was conducted to obtain degraded MLCCs. The high energy resolution of the present measurement allows us to observe the step-like voltage drops on dielectric layers of as-fired MLCCs. The step-like voltage drops disappear on the dielectric layers of degraded MLCCs, indicating that the resistance at grain boundaries declines with the progress of insulation degradation. Furthermore, the electric field concentrations near the electrodes are clearly observed under forward and backward bias. The discussion based on energy band diagrams suggests that the electric field concentrations near electrodes are attributable to energy barrier formed at the interface between electrode and dielectrics. In particular, the electric field concentration at cathode in HALT measured under backward bias is much higher than that at anode in HALT measured under forward bias. This implies that oxygen vacancies accumulated during HALT cause band bending near the cathode in HALT. We propose that the initial decline of resistance at grain boundaries and following electric-field concentrations at anode in HALT is essential to the insulation degradation on dielectric layers of MLCCs under dc bias voltage.

  9. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.

    PubMed

    Fukuoka, Tokuma; Shinozaki, Yukiko; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Yamazaki, Toshimasa; Kitamoto, Dai; Kitamoto, Hiroko

    2016-02-01

    Cutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL). Here, the effects of MEL on PaE-catalyzed degradation of BPs were investigated. Based on PBSA dispersion solution, the degradation of PBSA particles by PaE was inhibited in the presence of MEL. MEL behavior on BP substrates was monitored by surface plasmon resonance (SPR) using a sensor chip coated with polymer films. The positive SPR signal shift indicated that MEL readily adsorbed and spread onto the surface of a BP film. The amount of BP degradation by PaE was monitored based on the negative SPR signal shift and was decreased 1.7-fold by MEL pretreatment. Furthermore, the shape of PBSA mulch films in PaE-containing solution was maintained with MEL pretreatment, whereas untreated films were almost completely degraded and dissolved. These results suggest that MEL covering the surface of BP film inhibits adsorption of PaE and PaE-catalyzed degradation of BPs. We applied the above results to control the microbial degradation of BP mulch films. MEL pretreatment significantly inhibited BP mulch film degradation by both PaE solution and BP-degradable microorganism. Moreover, the degradation of these films was recovered after removal of the coated MEL by ethanol treatment. These results demonstrate that the biodegradation of BP films can be readily and reversibly controlled by a physical approach using MEL. PMID:26512003

  10. Enzyme-degradable self-assembled nanostructures from polymer-peptide hybrids.

    PubMed

    Bacinello, Daniel; Garanger, Elisabeth; Taton, Daniel; Tam, Kam Chiu; Lecommandoux, Sébastien

    2014-05-12

    The peptide PVGLIG, which is known to be selectively cleaved by the tumor-associated enzyme matrix metalloproteinase-2 (MMP-2), was conjugated to α-alkene poly(trimethylene carbonate) (PTMC) blocks of varying sizes via UV-initiated thiol-ene "click" chemistry. The PTMC precursor was synthesized by metal-free ring-opening polymerization using allyl alcohol as an initiator and an N-heterocyclic carbene as an organic catalyst. The unprecedented PVGLIG-b-PTMC hybrids were self-assembled in aqueous solution and various submicrometer-sized morphologies obtained by a nanoprecipitation process. Characterization of particle morphology was carried out by multiangle dynamic light scattering (DLS) and static light scattering (SLS) evidencing spherical nanoparticles with different morphologies and narrow size distributions. Microstructure details were also observed on transmission electron micrographs and were in good agreement with light scattering measurements showing the assembly of core-shell, large compound micelles, and vesicle morphologies, the particle morphology varying with the hydrophilic weight fractions (f) of the hybrids. These nanostructures displayed selective degradation in the presence of the cancer-associated enzyme MMP-2, as probed by the morphological change both by TEM and DLS. All these results demonstrated that PVGLIG-b-PTMC hybrids were suitable to target the tumor microenvironment. PMID:24670109

  11. Stable isotope probing reveals the importance of Comamonas and Pseudomonadaceae in RDX degradation in samples from a Navy detonation site.

    PubMed

    Jayamani, Indumathy; Cupples, Alison M

    2015-07-01

    This study investigated the microorganisms involved in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation from a detonation area at a Navy base. Using Illumina sequencing, microbial communities were compared between the initial sample, samples following RDX degradation, and controls not amended with RDX to determine which phylotypes increased in abundance following RDX degradation. The effect of glucose on these communities was also examined. In addition, stable isotope probing (SIP) using labeled ((13)C3, (15)N3-ring) RDX was performed. Illumina sequencing revealed that several phylotypes were more abundant following RDX degradation compared to the initial soil and the no-RDX controls. For the glucose-amended samples, this trend was strong for an unclassified Pseudomonadaceae phylotype and for Comamonas. Without glucose, Acinetobacter exhibited the greatest increase following RDX degradation compared to the initial soil and no-RDX controls. Rhodococcus, a known RDX degrader, also increased in abundance following RDX degradation. For the SIP study, unclassified Pseudomonadaceae was the most abundant phylotype in the heavy fractions in both the presence and absence of glucose. In the glucose-amended heavy fractions, the 16S ribosomal RNA (rRNA) genes of Comamonas and Anaeromxyobacter were also present. Without glucose, the heavy fractions also contained the 16S rRNA genes of Azohydromonas and Rhodococcus. However, all four phylotypes were present at a much lower level compared to unclassified Pseudomonadaceae. Overall, these data indicate that unclassified Pseudomonadaceae was primarily responsible for label uptake in both treatments. This study indicates, for the first time, the importance of Comamonas for RDX removal. PMID:25721530

  12. On the use of SPM to probe the interplay between polymer surface chemistry and polymer surface mechanics

    NASA Astrophysics Data System (ADS)

    Brogly, Maurice; Noel, Olivier; Awada, Houssein; Castelein, Gilles

    2007-03-01

    Adhesive properties of a polymer surface results from the complex contribution of surface chemistry and activation of sliding and dissipating mechanisms within the polymer surface layer. The purpose of this study is to dissociate the different contributions (chemical and mechanical) included in an AFM force-distance curve in order to establish relationships between the surface viscoelastic properties of the polymer, the surface chemistry of functionalized polymer surfaces and the adhesive forces, as determined by C-AFM experiments. Indeed we are interested in the measurements of local attractive or adhesive forces in AFM contact mode, of controlled chemical and mechanical model substrates. In order to investigate the interplay between mechanical or viscoelastic mechanisms and surface chemistry during the tip - polymer contact, we achieved force measurements on model PDMS polymer networks, whose surfaces are chemically controlled with the same functional groups as before (silicon substrates). On the basis of AFM nano-indentation experiments, surface Young moduli have been determined. The results show that the viscoelastic contribution is dominating in the adhesion force measurement. We propose an original model, which express the local adhesion force to the energy dissipated within the contact and the surface properties of the material (thermodynamic work of adhesion). Moreover we show that the dissipation function is related to Mc, the mass between crosslinks of the network.

  13. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells.

    PubMed

    Kutikov, Artem B; Song, Jie

    2013-09-01

    Electrospun polymer/hydroxyapatite (HA) composites combining biodegradability with osteoconductivity are attractive for skeletal tissue engineering applications. However, most biodegradable polymers such as poly(lactic acid) (PLA) are hydrophobic and do not blend with adequate interfacial adhesion with HA, compromising the structural homogeneity, mechanical integrity and biological performance of the composite. To overcome this challenge, we combined a hydrophilic polyethylene glycol (PEG) block with poly(d,l-lactic acid) to improve the adhesion of the degradable polymer with HA. The amphiphilic triblock copolymer PLA-PEG-PLA (PELA) improved the stability of HA-PELA suspension at 25wt.% HA content, which was readily electrospun into HA-PELA composite scaffolds with uniform fiber dimensions. HA-PELA was highly extensible (failure strain>200% vs. <40% for HA-PLA), superhydrophilic (∼0° water contact angle vs. >100° for HA-PLA), and exhibited an 8-fold storage modulus increase (unlike deterioration for HA-PLA) upon hydration, owing to the favorable interaction between HA and PEG. HA-PELA also better promoted osteochondral lineage commitment of bone marrow stromal cells in unstimulated culture and supported far more potent osteogenic gene expression upon induction than HA-PLA. We demonstrate that the chemical incorporation of PEG is an effective strategy to improve the performance of degradable polymer/HA composites for bone tissue engineering applications. PMID:23791675

  14. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells

    PubMed Central

    Kutikov, Artem B.; Song, Jie

    2013-01-01

    Electrospun polymer/hydroxyapatite (HA) composites combining biodegradability with osteoconductivity are attractive for skeletal tissue engineering applications. However, most biodegradable polymers such as PLA are hydrophobic and do not blend with adequate interfacial adhesion with HA, compromising the structural homogeneity, mechanical integrity, and biological performance of the composite. To overcome this challenge, we incorporated a hydrophilic polyethylene glycol (PEG) block to poly(D,L-lactic acid) to improve the adhesion of the degradable polymer with HA. The amphiphilic triblock copolymer PLA-PEG-PLA (PELA) improved the stability of HA-PELA suspension at 25 wt% HA content, which was readily electrospun into HA-PELA composite scaffolds with uniform fiber dimensions. HA-PELA was highly extensible (failure strain >200% vs. <40% for HA-PLA), superhydrophilic (~0° water contact angle vs. >100° for HA-PLA), and exhibited an 8-fold storage modulus increase (unlike deterioration for HA-PLA) upon hydration, owing to the favorable interaction between HA and PEG. HA-PELA also better promoted osteochondral lineage commitment of bone marrow stromal cells in unstimulated culture and supported far more potent osteogenesis upon induction than HA-PLA. We demonstrate that the chemical incorporation of PEG is an effective strategy to improve the performance of degradable polymer/HA composites for bone tissue engineering applications. PMID:23791675

  15. The organotin coordination polymer [(n-Bu3Sn)4Fe(CN)6H2O] as effective catalyst towards the oxidative degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Etaiw, S. E. H.; Saleh, Dalia I.

    2014-01-01

    The structure of the supramolecular coordination polymer SCP 1; [(n-Bu3Sn)4Fe(CN)6H2O] consists of octahedral [Fe(CN)6]4- building blocks which are connected by the TBPY-5 configured n-Bu3Sn(CN..)2 fragments creating 3D-network structure. Fenton and photo-Fenton oxidative discoloration of Methylene Blue (MB) has been investigated by hydrogen peroxide catalyzed with the SCP 1. The reaction exhibited pseudo first-order kinetics with respect to each of MB and H2O2. The irradiation of the reaction with UV-light enhanced the rate of MB mineralization, Kobs = 0.76 h-1. Mineralization of MB was investigated by FT-IR spectra. Disodium salt of terephthalic acid photoluminescence probing technology was carried out to identify the reactive oxygen species. The different parameters that affect MB degradation rate were evaluated. Moreover, the efficiency of recycled the SCP 1 and the mechanism of degradation of MB dye were investigated.

  16. Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing.

    PubMed

    El Khawand, Myriam; Crombie, Andrew T; Johnston, Antonia; Vavlline, Dmitrii V; McAuliffe, Joseph C; Latone, Jacob A; Primak, Yuliya A; Lee, Sang-Kyu; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2016-09-01

    Emissions of biogenic volatile organic compounds (bVOCs), are an important element in the global carbon cycle, accounting for a significant proportion of fixed carbon. They contribute directly and indirectly to global warming and climate change and have a major effect on atmospheric chemistry. Plants emit isoprene to the atmosphere in similar quantities to emissions of methane from all sources and each accounts for approximately one third of total VOCs. Although methanotrophs, capable of growth on methane, have been intensively studied, we know little of isoprene biodegradation. Here, we report the isolation of two isoprene-degrading strains from the terrestrial environment and describe the design and testing of polymerase chain reaction (PCR) primers targeting isoA, the gene encoding the active-site component of the conserved isoprene monooxygenase, which are capable of retrieving isoA sequences from isoprene-enriched environmental samples. Stable isotope probing experiments, using biosynthesized (13) C-labelled isoprene, identified the active isoprene-degrading bacteria in soil. This study identifies novel isoprene-degrading strains using both culture-dependent and, for the first time, culture-independent methods and provides the tools and foundations for continued investigation of the biogeography and molecular ecology of isoprene-degrading bacteria. PMID:27102583

  17. Ultrasonically enhanced delivery and degradation of PAHs in a polymer-liquid partitioning system by a microbial consortium.

    PubMed

    Isaza, Pedro A; Daugulis, Andrew J

    2009-09-01

    The current study examined the effects of ultrasonic irradiation on mass transfer and degradation of PAHs, by an enriched consortium, when delivered from polymeric matrices. Rates of release into methanol under sonicated conditions, relative to unmixed cases, for phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene were increased approximately fivefold, when delivered from Desmopan 9370 A (polyurethane). Similar effects were observed in Hytrel and Kraton D4150 K polymers as well as recycled Bridgestone tires. Enhancements were also displayed as shifts to higher release equilibria under sonicated conditions, relative to non-sonicated cases, agreeing with current knowledge in sonochemistry and attributed to cavitation. Ultrasonic effects on microbial activity were also investigated and cell damage was found to be non- permanent with consortium re-growth being observed after sonic deactivation. Finally, the lumped effect of sonication on degradation of phenanthrene delivered from Desmopan was examined under the absence and presence of sonication. Rates of degradation were found to be increased by a factor of four demonstrating the possibility of using ultrasonic irradiation for improved mass transport in solid-liquid systems. Cellular inactivation effects were not evident, and this was attributed to the attenuation of sonic energy arising from the presence of solid polymer materials in the medium. The findings of the study demonstrate that sonication can be used to improve mass transport of poorly soluble compounds in microbial degradations, and alleviate limiting steps of soil remediation processes proposed in previous research. PMID:19418561

  18. Probing the diversity of chloromethane-degrading bacteria by comparative genomics and isotopic fractionation

    PubMed Central

    Nadalig, Thierry; Greule, Markus; Bringel, Françoise; Keppler, Frank; Vuilleumier, Stéphane

    2014-01-01

    Chloromethane (CH3Cl) is produced on earth by a variety of abiotic and biological processes. It is the most important halogenated trace gas in the atmosphere, where it contributes to ozone destruction. Current estimates of the global CH3Cl budget are uncertain and suggest that microorganisms might play a more important role in degrading atmospheric CH3Cl than previously thought. Its degradation by bacteria has been demonstrated in marine, terrestrial, and phyllospheric environments. Improving our knowledge of these degradation processes and their magnitude is thus highly relevant for a better understanding of the global budget of CH3Cl. The cmu pathway, for chloromethane utilisation, is the only microbial pathway for CH3Cl degradation elucidated so far, and was characterized in detail in aerobic methylotrophic Alphaproteobacteria. Here, we reveal the potential of using a two-pronged approach involving a combination of comparative genomics and isotopic fractionation during CH3Cl degradation to newly address the question of the diversity of chloromethane-degrading bacteria in the environment. Analysis of available bacterial genome sequences reveals that several bacteria not yet known to degrade CH3Cl contain part or all of the complement of cmu genes required for CH3Cl degradation. These organisms, unlike bacteria shown to grow with CH3Cl using the cmu pathway, are obligate anaerobes. On the other hand, analysis of the complete genome of the chloromethane-degrading bacterium Leisingera methylohalidivorans MB2 showed that this bacterium does not contain cmu genes. Isotope fractionation experiments with L. methylohalidivorans MB2 suggest that the unknown pathway used by this bacterium for growth with CH3Cl can be differentiated from the cmu pathway. This result opens the prospect that contributions from bacteria with the cmu and Leisingera-type pathways to the atmospheric CH3Cl budget may be teased apart in the future. PMID:25360131

  19. Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

    PubMed Central

    Aylward, Frank O.; Burnum-Johnson, Kristin E.; Tringe, Susannah G.; Teiling, Clotilde; Tremmel, Daniel M.; Moeller, Joseph A.; Scott, Jarrod J.; Barry, Kerrie W.; Piehowski, Paul D.; Nicora, Carrie D.; Malfatti, Stephanie A.; Monroe, Matthew E.; Purvine, Samuel O.; Goodwin, Lynne A.; Smith, Richard D.; Weinstock, George M.; Gerardo, Nicole M.; Suen, Garret; Lipton, Mary S.

    2013-01-01

    Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar. PMID:23584789

  20. Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

    SciTech Connect

    Aylward, Frank O.; Burnum-Johnson, Kristin E.; Tringe, Susannah G.; Teiling, Clotilde; Tremmel, Daniel; Moeller, Joseph; Scott, Jarrod J.; Barry, Kerrie W.; Piehowski, Paul D.; Nicora, Carrie D.; Malfatti, Stephanie; Monroe, Matthew E.; Purvine, Samuel O.; Goodwin, Lynne A.; Smith, Richard D.; Weinstock, George; Gerardo, Nicole; Suen, Garret; Lipton, Mary S.; Currie, Cameron R.

    2013-06-12

    Plants represent a large reservoir of organic carbon comprised largely of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate fungus gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous symbiont that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and using genomic, metaproteomic, and phylogenetic tools we investigate its role in lignocellulose degradation in the fungus gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in fungus gardens, and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that may be playing an important but previously uncharacterized role in lignocellulose degradation. Our study provides a comprehensive analysis of plant biomass degradation in leaf-cutter ant fungus gardens and provides insight into the molecular dynamics underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  1. Probing horseradish peroxidase catalyzed degradation of azo dye from tannery wastewater.

    PubMed

    Preethi, Sadhanandam; Anumary, Ayyappan; Ashokkumar, Meiyazhagan; Thanikaivelan, Palanisamy

    2013-01-01

    Biocatalysis based effluent treatment has outclassed the presently favored physico-chemical treatments due to nil sludge production and monetary savings. Azo dyes are commonly employed in the leather industry and pose a great threat to the environment. Here, we show the degradation of C. I. Acid blue 113 using horseradish peroxidase (HRP) assisted with H2O2 as a co-substrate. It was observed that 0.08 U HRP can degrade 3 mL of 30 mg/L dye up to 80% within 45 min with the assistance of 14 μL of H2O2 at pH 6.6 and 30°C. The feasibility of using the immobilized HRP for dye degradation was also examined and the results show up to 76% dye degradation under similar conditions to that of free HRP with the exception of longer contact time of 240 min. Recycling studies reveal that the immobilized HRP can be recycled up to 3 times for dye degradation. Kinetics drawn for the free HRP catalyzed reaction marked a lower K m and higher V max values, which denotes a proper and faster affinity of the enzyme towards the dye, when compared to the immobilized HRP. The applicability of HRP for treating the actual tannery dye-house wastewater was also demonstrated. PMID:23961406

  2. Analysis of ER-associated glycoprotein degradation using synthetic glycopeptide probes

    SciTech Connect

    Hagihara, Shinya; Goda, Kazuhito; Matsuo, Ichiro; Ito, Yukishige . E-mail: yukito@riken.jp

    2007-08-24

    Quality control of proteins is an essential process for maintaining normal cell activity. It ensures that only correctly folded proteins are produced and terminally misfolded proteins are eliminated by degradation. ER-associated degradation (ERAD) of misfolded proteins is an important aspect of protein quality control system. Recent studies have revealed that glycoprotein glycans play significant roles in this process. It includes polyubiquitination, deglycosylation, and proteasomal degradation. In the present study, a systematic analysis of these steps was carried out using chemically synthesized glycopeptides. We revealed that N-linked glycopeptides are degraded by 20S proteasome, but with drastically reduced rate compared to non-glycosylated peptide. This result strongly suggests that deglycosylating activity of peptide:N-glycanase (PNGase) is important for the facile degradation of glycoproteins. Our study showed, for the first time, that PNGase cleaves truncated glycans as short as chitobiose from peptide. However, this cleavage required the presence of hydrophobic region nearby N-glycosylation site. Furthermore, analysis of interactions with F-box protein Fbs1 was conducted with fluorescent correlation spectroscopy (FCS). It was shown that the presence of Fbs1 perturb the activity of PNGase toward high-mannose-type glycopeptides.

  3. Molecular dynamics as observed with probes of different dimensions in thin polymer films

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Zhang, Hao; Yang, Jingfa; Wang, Fuyi; Liu, Di

    Rotational motion of individual fluorescence molecules doped in thin films of poly vinylacetate (PVAc) was monitored by single molecule fluorescence de-focus microscopy. Perylendiimide and its derivatives of different dimension were chosen as probes for local dynamics. The results demonstrate that the local vibration mode detected by different molecules probe depends on dimension of the probes - the larger probes the lower frequency. The population of rotating probes is found to increase with temperature elevation, depending on the molecular dimension as well. The comparison of the results with thermo-dynamic measurements helps to shed new light on the physical picture of glass transition. Supported by MoST of China.

  4. Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil

    PubMed Central

    Jones, Maiysha D.; Crandell, Douglas W.; Singleton, David R.; Aitken, Michael D.

    2016-01-01

    The bacteria responsible for the degradation of naphthalene, phenanthrene, pyrene, fluoranthene, or benz[a]anthracene in a polycyclic aromatic hydrocarbon (PAH)-contaminated soil were investigated by DNA-based stable-isotope probing (SIP). Clone libraries of 16S rRNA genes were generated from the 13C-enriched (“heavy”) DNA recovered from each SIP experiment, and quantitative PCR primers targeting the 16S rRNA gene were developed to measure the abundances of many of the SIP-identified sequences. Clone libraries from the SIP experiments with naphthalene, phenanthrene, and fluoranthene primarily contained sequences related to bacteria previously associated with the degradation of those compounds. However, Pigmentiphaga-related sequences were newly associated with naphthalene and phenanthrene degradation, and sequences from a group of uncultivated γ-Proteobacteria known as Pyrene Group 2 were newly associated with fluoranthene and benz[a]anthracene degradation. Pyrene Group 2-related sequences were the only sequences recovered from the clone library generated from SIP with pyrene, and they were 82% of the sequences recovered from the clone library generated from SIP with benz[a]anthracene. In time-course experiments with each substrate in unlabeled form, the abundance of each of the measured groups increased in response to the corresponding substrate. These results provide a comprehensive description of the microbial ecology of a PAH-contaminated soil as it relates to the biodegradation of PAHs from two to four rings, and they underscore that bacteria in Pyrene Group 2 are well-suited for the degradation of four-ring PAHs. PMID:21564459

  5. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater

    PubMed Central

    Key, Katherine C.; Sublette, Kerry L.; Duncan, Kathleen; Mackay, Douglas M.; Scow, Kate M.; Ogles, Dora

    2014-01-01

    Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate. PMID:25525320

  6. Blister Test for Measurements of Adhesion and Adhesion Degradation of Organic Polymers on AA2024-T3

    NASA Astrophysics Data System (ADS)

    Rincon Troconis, Brendy Carolina

    A key parameter for the performance of corrosion protective coatings applied to metals is adhesion. Surface preparation prior to coating application is known to be critical, but there is a lack of understanding of what controls adhesion. Numerous techniques have been developed in the last decades to measure the adhesion strength of coatings to metals. Nonetheless, they are generally non-quantitative, non-reproducible, performed in dry conditions, or overestimate adhesion. In this study, a quantitative and reproducible technique, the Blister Test (BT), is used. The BT offers the ability to study the effects of a range of parameters, including the presence or absence of a wetting liquid, and simulates the stress situation in the coating/substrate interface. The effects of roughness and surface topography were studied by the BT and Optical Profilometry, using AA2024-T3 substrates coated with polyvinyl butyral (PVB). Random abrasion generated a surface with lower average roughness than aligned abrasion due to the continual cross abrasion of the grooves. The BT could discern the effects of different mechanical treatments. An adhesion strength indicator was defined and found to be a useful parameter. The effectiveness of standard adhesion techniques such as ASTM D4541 (Pull-off Test) and ASTM D3359 (Tape Test) was compared to the BT. Also, different attempts to measure adhesion and adhesion degradation of organic polymers to AA2024-T3 were tested. The pull-off test does not produce adhesive failure across the entire interface, while the tape test is a very qualitative technique and does not discern between the effects of different coating systems on the adhesion performance. The BT produces adhesive failure of the primer studied, is very reproducible, and is able to rank different coating systems. Therefore, it was found to be superior to the others. The approaches tested for adhesion degradation were not aggressive enough to have a measurable effect. The effects of

  7. Probing the structural details of xylan degradation by real-time NMR spectroscopy.

    PubMed

    Petersen, Bent Ole; Lok, Finn; Meier, Sebastian

    2014-11-01

    The biodegradation of abundantly available cell wall polysaccharides has recently received much attention, not least because cell wall polysaccharides are substrates for the human gut microbiota and for environmentally sustainable processes of biomass conversion to value-added compounds. A major fraction of cereal cell wall polysaccharides consists of arabinoxylans. Arabinoxylan and its degradation products are therefore present in a variety of agro-industrial residues and products. Here, we undertook to track the structural details of wheat arabinoxylan degradation with high resolution NMR spectroscopy. More than 15 carbohydrate residues were distinguished in the substrate and more than 20 residues in partially degraded samples without any sample cleanup. The resolution of a plethora of structural motifs in situ permits the readout of persisting structures in degradation processes and in products. Reaction progress was visualized for the biodegradation of arabinoxylan by different crude microbial enzyme preparations. The direct observation of structural details in complex mixtures containing arabinoxylan fragments is significant, as such structural details reportedly modulate the health-promoting functions of arabinoxylan fragments. PMID:25129786

  8. The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perfluorosulfonic Acid Polymer Electrolyte Membranes

    SciTech Connect

    Pearman, Benjamin P; Mohajeri, Nahid; Slattery, Darlene; Hampton, Michael; Seal, Sudipta; Cullen, David A

    2013-01-01

    Perfluorosulfonic acid membranes, the polymer of choice for polymer electrolyte hydrogen fuel cells, are susceptible to degradation due to attacks on polymer chains from radicals. Mitigation of this attack by cerium-based radical scavengers is an approach that has shown promise. In this work, two formulations of single-crystal cerium oxide nanoparticles, with an order of magnitude difference in particle size, are incorporated into said membranes and subjected to proton conductivity measurements and ex-situ durability tests. We found that ceria is reduced to Ce(III) ions in the acidic environment of a heated, humidified membrane which negatively impacts proton conductivity. In liquid and gas Fenton testing, fluoride emission is reduced by an order of magnitude, drastically increasing membrane longevity. Side-product analysis demonstrated that in the liquid Fenton test, the main point of attack are weak polymer end groups, while in the gas Fenton test, there is additional side-chain attack. Both mechanisms are mitigated by the addition of the ceria nanoparticles, whereby the extent of the durability improvement is found to be independent of particle size.

  9. A mechanistic model for drug release in PLGA biodegradable stent coatings coupled with polymer degradation and erosion.

    PubMed

    Zhu, Xiaoxiang; Braatz, Richard D

    2015-07-01

    Biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) coating for applications in drug-eluting stents has been receiving increasing interest as a result of its unique properties compared with biodurable polymers in delivering drug for reducing stents-related side effects. In this work, a mathematical model for describing the PLGA degradation and erosion and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss that predicts multiple experimental studies in the literature. An analytical model for the change of the number-average degree of polymerization [or molecular weight (MW)] is also derived. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer MW change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model is used to describe in vitro sirolimus release from PLGA stent coating, and demonstrates the significance of simultaneous sirolimus release via diffusion through both polymer solid and pore space. The proposed model is compared to existing drug transport models, and the impact of model parameters, limitations and possible extensions of the model are also discussed. PMID:25345656

  10. RNA-Based Stable Isotope Probing and Isolation of Anaerobic Benzene-Degrading Bacteria from Gasoline-Contaminated Groundwater

    PubMed Central

    Kasai, Yuki; Takahata, Yoh; Manefield, Mike; Watanabe, Kazuya

    2006-01-01

    Stable isotope probing (SIP) of benzene-degrading bacteria in gasoline-contaminated groundwater was coupled to denaturing gradient gel electrophoresis (DGGE) of DNA fragments amplified by reverse transcription-PCR from community 16S rRNA molecules. Supplementation of the groundwater with [13C6]benzene together with an electron acceptor (nitrate, sulfate, or oxygen) showed that a phylotype affiliated with the genus Azoarcus specifically appeared in the 13C-RNA fraction only when nitrate was supplemented. This phylotype was also observed as the major band in DGGE analysis of bacterial 16S rRNA gene fragments amplified by PCR from the gasoline-contaminated groundwater. In order to isolate the Azoarcus strains, the groundwater sample was streaked on agar plates containing nonselective diluted CGY medium, and the DGGE analysis was used to screen colonies formed on the plates. This procedure identified five bacterial isolates (from 60 colonies) that corresponded to the SIP-identified Azoarcus phylotype, among which two strains (designated DN11 and AN9) degraded benzene under denitrifying conditions. Incubation of these strains with [14C]benzene showed that the labeled carbon was mostly incorporated into 14CO2 within 14 days. These results indicate that the Azoarcus population was involved in benzene degradation in the gasoline-contaminated groundwater under denitrifying conditions. We suggest that RNA-based SIP identification coupled to phylogenetic screening of nonselective isolates facilitates the isolation of enrichment/isolation-resistant microorganisms with a specific function. PMID:16672506

  11. Capillary levelling in thin polymer films as a nano-rheological tool to probe interface dynamics

    NASA Astrophysics Data System (ADS)

    McGraw, Joshua; Baeumchen, Oliver; Ferrari, Melissa; Fowler, Paul; Dalnoki-Veress, Kari

    2012-02-01

    Entanglement of polymer chains in confinement is modified as a result of altered chain conformations. According to Silberberg's principle, chain segments are reflected at an interface causing a reduction of the inter-chain entanglement density. If the interface is transient, local polymer conformation changes can be inferred from a temporal change in flow properties: over time polymer chains become more entangled, thus there is more resistance to flow. Here, we measure the gradual disappearance of an entropic interface between two melts of identical polymer chains during the flow of stepped bilayer polymer films. Samples are prepared in the glassy state and, when in the melt, flow to relieve the Laplace pressure gradient induced by a step in the topography (McGraw et al., Soft Matter, 2011). Our results reveal the dynamics of re-entanglement across the transient entropic interface.

  12. Study of thermal stability and degradation of fire resistant candidate polymers for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Hsu, M. T. S.

    1976-01-01

    The thermochemistry of bismaleimide resins and phenolphthalein polycarbonate was studied. Both materials are fire-resistant polymers and may be suitable for aircraft interiors. The chemical composition of the polymers has been determined by nuclear magnetic resonance and infrared spectroscopy and by elemental analysis. Thermal properties of these polymers have been characterized by thermogravimetric analyses. Qualitative evaluation of the volatile products formed in pyrolysis under oxidative and non-oxidative conditions has been made using infrared spectrometry. The residues after pyrolysis were analyzed by elemental analysis. The thermal stability of composite panel and thermoplastic materials for aircraft interiors was studied by thermogravimetric analyses.

  13. Spatial Dependence of Heat Flux Transients and Wetting Behavior During Immersion Quenching of Inconel 600 Probe in Brine and Polymer Media

    NASA Astrophysics Data System (ADS)

    Ramesh, G.; Narayan Prabhu, K.

    2014-08-01

    Cooling curve analysis of Inconel 600 probe during immersion quenching in brine and polymer quench media was carried out. Thermal histories at various axial and radial locations were recorded using a high-speed data acquisition system and were input to an inverse heat-conduction model for estimating the metal/quenchant heat flux transients. A high performance smart camera was used for online video imaging of the immersion quenching process. Solution to two-dimensional inverse heat-conduction problem clearly brings out the spatial dependence of boundary heat flux transients for a Inconel 600 probe with a simple cylindrical geometry. The estimated heat flux transients show large variation on axial as well as radial directions of quench probe surface for brine quenching. Polymer quenching showed less variation in metal/quenchant heat flux transients. Shorter durations of vapor film, higher rewetting temperatures, and faster movement of wetting front on quench probe surface were observed with brine quenching. Measurement of dynamic contact angle showed better spreading and good wettability for polymer medium as compared to brine quenchant. The solid-liquid interfacial tension between polymer medium and Inconel substrate was lower compared with that of solution. Rewetting and boiling processes were nonuniform and faster on quench probe surface during immersion quenching in brine solution. For the polymer quench medium, slow rewetting, uniform boiling and repeated wetting were observed.

  14. ω-Azido fatty acids as probes to detect fatty acid biosynthesis, degradation, and modification[S

    PubMed Central

    Pérez, Alexander J.; Bode, Helge B.

    2014-01-01

    FAs play a central role in the metabolism of almost all known cellular life forms. Although GC-MS is regarded as a standard method for FA analysis, other methods, such as HPLC/MS, are nowadays widespread but are rarely applied to FA analysis. Here we present azido-FAs as probes that can be used to study FA biosynthesis (elongation, desaturation) or degradation (β-oxidation) upon their uptake, activation, and metabolic conversion. These azido-FAs are readily accessible by chemical synthesis and their metabolic products can be easily detected after click-chemistry based derivatization with high sensitivity by HPLC/MS, contributing a powerful tool to FA analysis, and hence, lipid analysis in general. PMID:25013232

  15. Probing Rubber Cross-Linking Generation of Industrial Polymer Networks at Nanometer Scale.

    PubMed

    Gabrielle, Brice; Gomez, Emmanuel; Korb, Jean-Pierre

    2016-06-23

    We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale. PMID:27254797

  16. Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres

    PubMed Central

    Ford Versypt, Ashlee N.; Arendt, Paul D.; Pack, Daniel W.; Braatz, Richard D.

    2015-01-01

    A mathematical reaction-diffusion model is defined to describe the gradual decomposition of polymer microspheres composed of poly(D,L-lactic-co-glycolic acid) (PLGA) that are used for pharmaceutical drug delivery over extended periods of time. The partial differential equation (PDE) model treats simultaneous first-order generation due to chemical reaction and diffusion of reaction products in spherical geometry to capture the microsphere-size-dependent effects of autocatalysis on PLGA erosion that occurs when the microspheres are exposed to aqueous media such as biological fluids. The model is solved analytically for the concentration of the autocatalytic carboxylic acid end groups of the polymer chains that comprise the microspheres as a function of radial position and time. The analytical solution for the reaction and transport of the autocatalytic chemical species is useful for predicting the conditions under which drug release from PLGA microspheres transitions from diffusion-controlled to erosion-controlled release, for understanding the dynamic coupling between the PLGA degradation and erosion mechanisms, and for designing drug release particles. The model is the first to provide an analytical prediction for the dynamics and spatial heterogeneities of PLGA degradation and erosion within a spherical particle. The analytical solution is applicable to other spherical systems with simultaneous diffusive transport and first-order generation by reaction. PMID:26284787

  17. Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres.

    PubMed

    Ford Versypt, Ashlee N; Arendt, Paul D; Pack, Daniel W; Braatz, Richard D

    2015-01-01

    A mathematical reaction-diffusion model is defined to describe the gradual decomposition of polymer microspheres composed of poly(D,L-lactic-co-glycolic acid) (PLGA) that are used for pharmaceutical drug delivery over extended periods of time. The partial differential equation (PDE) model treats simultaneous first-order generation due to chemical reaction and diffusion of reaction products in spherical geometry to capture the microsphere-size-dependent effects of autocatalysis on PLGA erosion that occurs when the microspheres are exposed to aqueous media such as biological fluids. The model is solved analytically for the concentration of the autocatalytic carboxylic acid end groups of the polymer chains that comprise the microspheres as a function of radial position and time. The analytical solution for the reaction and transport of the autocatalytic chemical species is useful for predicting the conditions under which drug release from PLGA microspheres transitions from diffusion-controlled to erosion-controlled release, for understanding the dynamic coupling between the PLGA degradation and erosion mechanisms, and for designing drug release particles. The model is the first to provide an analytical prediction for the dynamics and spatial heterogeneities of PLGA degradation and erosion within a spherical particle. The analytical solution is applicable to other spherical systems with simultaneous diffusive transport and first-order generation by reaction. PMID:26284787

  18. Multiple DNA Extractions Coupled with Stable-Isotope Probing of Anthracene-Degrading Bacteria in Contaminated Soil▿†

    PubMed Central

    Jones, Maiysha D.; Singleton, David R.; Sun, Wei; Aitken, Michael D.

    2011-01-01

    In many of the DNA-based stable-isotope probing (SIP) studies published to date in which soil communities were investigated, a single DNA extraction was performed on the soil sample, usually using a commercial DNA extraction kit, prior to recovering the 13C-labeled (heavy) DNA by density-gradient ultracentrifugation. Recent evidence suggests, however, that a single extraction of a soil sample may not lead to representative recovery of DNA from all of the organisms in the sample. To determine whether multiple DNA extractions would affect the DNA yield, the eubacterial 16S rRNA gene copy number, or the identification of anthracene-degrading bacteria, we performed seven successive DNA extractions on the same aliquot of contaminated soil either untreated or enriched with [U-13C]anthracene. Multiple extractions were necessary to maximize the DNA yield and 16S rRNA gene copy number from both untreated and anthracene-enriched soil samples. Sequences within the order Sphingomonadales, but unrelated to any previously described genus, dominated the 16S rRNA gene clone libraries derived from 13C-enriched DNA and were designated “anthracene group 1.” Sequences clustering with Variovorax spp., which were also highly represented, and sequences related to the genus Pigmentiphaga were newly associated with anthracene degradation. The bacterial groups collectively identified across all seven extracts were all recovered in the first extract, although quantitative PCR analysis of SIP-identified groups revealed quantitative differences in extraction patterns. These results suggest that performing multiple DNA extractions on soil samples improves the extractable DNA yield and the number of quantifiable eubacterial 16S rRNA gene copies but have little qualitative effect on the identification of the bacterial groups associated with the degradation of a given carbon source by SIP. PMID:21398486

  19. Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers.

    PubMed

    Wu, Jiang; Zhao, Chao; Hu, Rundong; Lin, Weifeng; Wang, Qiuming; Zhao, Jun; Bilinovich, Stephanie M; Leeper, Thomas C; Li, Lingyan; Cheung, Harry M; Chen, Shengfu; Zheng, Jie

    2014-02-01

    Protein-polymer interactions are of great interest in a wide range of scientific and technological applications. Neutral poly(ethylene glycol) (PEG) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA) are two well-known nonfouling materials that exhibit strong surface resistance to proteins. However, it still remains unclear or unexplored how PEG and pSBMA interact with proteins in solution. In this work, we examine the interactions between two model proteins (bovine serum albumin and lysozyme) and two typical antifouling polymers of PEG and pSBMA in aqueous solution using fluorescence spectroscopy, atomic force microscopy and nuclear magnetic resonance. The effect of protein:polymer mass ratios on the interactions is also examined. Collective data clearly demonstrate the existence of weak hydrophobic interactions between PEG and proteins, while there are no detectable interactions between pSBMA and proteins. The elimination of protein interaction with pSBMA could be due to an enhanced surface hydration of zwitterionic groups in pSBMA. New evidence is given to demonstrate the interactions between PEG and proteins, which are often neglected in the literature because the PEG-protein interactions are weak and reversible, as well as the structural change caused by hydrophobic interaction. This work provides a better fundamental understanding of the intrinsic structure-activity relationship of polymers underlying polymer-protein interactions, which are important for designing new biomaterials for biosensor, medical diagnostics and drug delivery applications. PMID:24120846

  20. Impact of biofibers and coupling agents on the weathering characteristics of composites polymer degradation and stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper explores the ultraviolet (UV) weathering performance of high density polyethylene (HDPE) composites with different biofiber fillers and coupling agent. Biofiber polymer composite (BFPC) material samples were prepared using oak, cotton burr and stem (CBS) or guayule bagasse as fiber source...

  1. Polymer characterization using the time-resolved phosphorescence of singlet oxygen as a spectroscopic probe

    SciTech Connect

    Ogilby, P.R.; Kristiansen, M.; Dillon, M.P. . Dept. of Chemistry); Taylor, V.L.; Clough, R.L. )

    1990-01-01

    The lowest excited electronic state of molecular oxygen, singlet oxygen ({sup 1}{Delta}{sub g}0{sub 2}), can be produced in solid organic polymers by a variety of different methods. Once produced, singlet oxygen will return to the ground triplet state by two pathways, radiative (phosphorescence) and non-radiative decay. Although the quantum efficiency of phosphorescence is small ({minus}10{sup {minus}5}), singlet oxygen can be detected by its emission at 1270 mn in both steady-state and time-resolved experiments. The phosphorescence of singlet oxygen can be used to characterize many properties of a solid organic polymer. 2 refs., 5 figs.

  2. Rapid, Efficient and Versatile Strategies for Functionally Sophisticated Polymers and Nanoparticles: Degradable Polyphosphoesters and Anisotropic Distribution of Chemical Functionalities

    NASA Astrophysics Data System (ADS)

    Zhang, Shiyi

    The overall emphasis of this dissertation research included two kinds of asymmetrically-functionalized nanoparticles with anisotropic distributions of chemical functionalities, three degradable polymers synthesized by organocatalyzed ring-opening polymerizations, and two polyphosphoester-based nanoparticle systems for various biomedical applications. Inspired by the many hierarchical assembly processes that afford complex materials in Nature, the construction of asymmetrically-functionalized nanoparticles with efficient surface chemistries and the directional organization of those building blocks into complex structures have attracted much attention. The first method generated a Janus-faced polymer nanoparticle that presented two orthogonally click-reactive surface chemistries, thiol and azido. This robust method involved reactive functional group transfer by templating against gold nanoparticle substrates. The second method produced nanoparticles with sandwich-like distribution of crown ether functionalities through a stepwise self-assembly process that utilized crown ether-ammonium supramolecular interactions to mediate inter-particle association and the local intra-particle phase separation of unlike hydrophobic polymers. With the goal to improve the efficiency of the production of degradable polymers with tunable chemical and physical properties, a new type of reactive polyphosphoester was synthesized bearing alkynyl groups by an organocatalyzed ring-opening polymerization, the chemical availability of the alkyne groups was investigated by employing "click" type azide-alkyne Huisgen cycloaddition and thiol-yne radical-mediated reactions. Based on this alkyne-functionalized polyphosphoester polymer and its two available "click" type reactions, two degradable nanoparticle systems were developed. To develop the first system, the well defined poly(ethylene oxide)-block-polyphosphester diblock copolymer was transformed into a multifunctional Paclitaxel drug

  3. Array-Based High-Throughput Analysis of Silk-Elastinlike Protein Polymer Degradation and C-Peptide Release by Proteases.

    PubMed

    Jeon, Hye-Yoon; Jung, Se-Hui; Jung, Young Mee; Kim, Young-Myeong; Ghandehari, Hamidreza; Ha, Kwon-Soo

    2016-05-17

    The objective of this study was to utilize an on-chip degradation assay to evaluate polymer depots and the predicted drug release from the depots. We conjugated four silk-elastinlike protein (SELP) polymers including SELP-815K, SELP-815K-RS1, SELP-815K-RS2, and SELP-815K-RS5 with a Cy5-NHS ester and fabricated SELP arrays by immobilizing the conjugated polymers onto well-type amine arrays. SELP polymer degradation rates were investigated by calculating the half-maximal effective concentration (EC50). Eight cleavage enzymes were applied, all of which exhibited distinctive EC50 values for SELP-815K and its three analogues. We successfully utilized this assay to study the in vitro release of the Cy5-conjugated C-peptide from SELP-815K hydrogel arrays. Additionally, cumulative C-peptide release from the SELP-815K depots was also demonstrated using repetitive elastase treatments. Therefore, this array-based on-chip degradation assay could potentially be used for evaluating depot degradation and controlled drug release from polymer depots at the molecular level. PMID:27109435

  4. Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

    SciTech Connect

    Alam, Todd M.; Celina, Mathew; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.; Wheeler David R.

    1999-07-20

    The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

  5. Fluorescence Probe Based on Hybrid Mesoporous Silica/Quantum Dot/Molecularly Imprinted Polymer for Detection of Tetracycline.

    PubMed

    Zhang, Liang; Chen, Ligang

    2016-06-29

    A newly designed fluorescence probe made from a hybrid quantum dot/mesoporous silica/molecularly imprinted polymer (QD/MS/MIP) was successfully created, and the probe was used for the detection of tetracycline (TC) in serum sample. QD/MS/MIP was characterized by transmission electron microscope, Fourier transform infrared spectroscopy, UV spectroscopy, X-ray powder diffraction, nitrogen adsorption-desorption experiment and fluorescence spectroscopy. Tetracycline, which is a type of broad-spectrum antibiotic, was selected as the template. The monomer and the template were combined by covalent bonds. After the template was removed to form a binding site, a hydrogen bonding interaction formed between the hole and the target molecule. Moreover, when rebinding TC, a new complex was produced between the amino group of QD/MS/MIP and the hydroxyl group of TC. After that, the energy of the QDs could transfer to the complex, which explains the fluorescence quenching phenomenon. The fluorescent intensity of QD/MS/MIP decreased in 10 min, and an excellent linearity from 50 to 1000 ng mL(-1) was correspondingly obtained. This composite material has a high selectivity with an imprinting factor of 6.71. In addition, the confirmed probe strategy was successfully applied to serum sample analyses, and the recoveries were 90.2%-97.2% with relative standard deviations of 2.2%-5.7%. This current work offers a novel and suitable method to synthesize QD/MS/MIP with a highly selective recognition ability. This composite material will be valuable for use in fluorescence probe applications. PMID:27280785

  6. Experimental and modeling approaches for the formation of hydroperoxide during the auto-oxidation of polymers: Thermal-oxidative degradation of polyethylene oxide

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Yamane, Shogo; Sago, Tomohiro; Hagihara, Hideaki; Kutsuna, Shuzo; Uchimaru, Tadafumi; Suda, Hiroyuki; Sato, Hiroaki; Mizukado, Junji

    2016-07-01

    ROOH was a key intermediate compound in oxidation of polymer because it was only source of radOH radicals. ROOH was believed to be produced by ROOrad abstraction H-atom from polymer, which is thermodynamically unfavorable, but it may be facilitated due to the high polymer concentration. However, ROOH also could be produced by ROOrad reaction with HO2rad. For examining the formation scheme of ROOH, kinetics and mechanism for the thermal-oxidative degradation of PEO at 473 K in air was investigated by using the experimental and modeling approaches. The contribution of HO2rad reaction with ROOrad to the formation of ROOH was estimated.

  7. Bio-polymer coatings on neural probe surfaces: Influence of the initial sample composition

    NASA Astrophysics Data System (ADS)

    Chow, Winnie W. Y.; Herwik, Stanislav; Ruther, Patrick; Göthelid, Emmanuelle; Oscarsson, Sven

    2012-08-01

    This paper presents the results of the study of hyaluronic acid (HyA) coating on two structural materials, silicon oxide (dielectric) surface and platinum (Pt) surface used for fabrication of probes developed for neurological investigations in the framework of the EU-project NeuroProbes. The silicon-based neural probes consist of multiple Pt electrodes on the probe shafts for neural recording applications. HyA coatings were proposed to apply on the probe surfaces to enhance the biocompatibility [1]. This study aims at understanding the influence of the initial composition of the probe surface on the structure and morphology of HyA coating. HyA was chemically functionalized by SS-pyridin using (N-Succinimidyl 3-[2-pyridyldithio]-propionate) (SPDP) and was immobilized on the surfaces via a covalent bond. The dielectric and Pt surfaces were derivatized by use of (3-mercaptopropyl) methyldimethoxysilane (MPMDMS). The silanol groups in MPMDMS bind to the dielectric surface, leaving the thiol groups at the uppermost surface and the thiol groups then bind covalently to the functionalized HyA. On the Pt surface, it is the thiol group which binds on the Pt surface. The coated surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). A well-defined HyA layer was observed on both dielectric and Pt surfaces. The coating of two molecular weights (340 kDa and 1.3 MDa) of HyA was examined. The influence of the silanized layer on the HyA coating was also investigated.

  8. Mechanistic insights into ozone-initiated oxidative degradation of saturated hydrocarbons and polymers.

    PubMed

    Lee, Richmond; Coote, Michelle L

    2016-09-21

    Accurate quantum chemical calculations were employed to investigate the mechanism of ozone-initiated oxidation of C-H bonds of saturated hydrocarbons and polymers. Step wise hydrogen atom abstraction generates the first resting state the trihydroxide -COOOH, which undergoes decomposition to produce the free radical species alkoxyl -CO˙ and peroxyl ˙OOH thereby setting off a complex chain of radical processes. The H transfer from peroxyl radical to alkoxyl allows formation of inactive alcohol and the singlet excited dioxygen. Other competitive processes include the self fragmentation or β-scission of the alkoxyl -CO˙ to give rise to a carbonyl (ketone or aldehyde) and a C-centred free radical species. Tertiary C-H bonds are most susceptible to O3 oxidation followed by secondary and primary. Among the polymers studied, poly(styrene) is the least resistant to C-H bond ozonation, followed by poly(propylene), poly(methacrylate), poly(methyl methacrylate) and poly(vinyl chloride). Calculations also reveal catalytic effects of water in promoting the C-H bond oxidation process in polymer systems without competing H-bond donor groups. PMID:27545312

  9. Nanostructured fluids from degradable nonionic surfactants for the cleaning of works of art from polymer contaminants.

    PubMed

    Baglioni, M; Raudino, M; Berti, D; Keiderling, U; Bordes, R; Holmberg, K; Baglioni, P

    2014-09-21

    Nanostructured fluids containing anionic surfactants are among the best performing systems for the cleaning of works of art. Though efficient, their application may result in the formation of a precipitate, due to the combination with divalent cations that might leach out from the artifact. We propose here two new aqueous formulations based on nonionic surfactants, which are non-toxic, readily biodegradable and insensitive to the presence of divalent ions. The cleaning properties of water-nonionic surfactant-2-butanone (MEK) were assessed both on model surfaces and on a XIII century fresco that could not be cleaned using conventional methods. Structural information on nanofluids has been gathered by means of small-angle neutron scattering, dynamic light scattering and nuclear magnetic resonance with diffusion monitoring. Beside the above-mentioned advantages, these formulations turned out to be considerably more efficient in the removal of polymer coatings than those based on anionic surfactants. Our results indicate that the cleaning process most likely consists of two steps: initially, the polymer film is swollen by the MEK dissolved in the continuous domain of the nanofluid; in the second stage, surfactant aggregates come into play by promoting the removal of the polymer film with a detergency-like mechanism. The efficiency can be tuned by the composition and nature of amphiphiles and is promoted by working as close as possible to the cloud point of the formulation, where the second step proceeds at maximum rate. PMID:25079380

  10. Regulation of coal polymer degradation by fungi. Fourth quarterly progress report, May 1995--June 1995

    SciTech Connect

    Irvine, R.L.

    1995-07-24

    To test the hypothesis that coal (leonardite) Solubilization and the subsequent depolymerization of the solubilized coal macromolecules are distinct events in lignin degrading fungi. In addition to T versicolor, Phanerochaete chrysosporium, another lignin degrading fungus that also has the ability to solubilize coal, will be studied. To test the hypothesis that the processes of coal (leonardite) solubilization and coal macro molecule depolymerization in lignin degrading fungi can be regulated by altering the nutritional status of the microorganism. Coal solubilization is expected to occur in nutrient rich media whereas depolymerization of solubilized coal macromolecules is expected to occur in nutrient limited media. To determine the role of extracellular enzymes (laccases, lignin peroxidases and Mn peroxidases) that are secreted by lignin degrading fungi during coal solubilization or coal macro molecule depolymerization. To assess the role of enzymatically generated oxygen radicals, non-radical active oxygen species, veratryl alcohol radicals and Mn{sup +++} complexes in coal macro molecule depolymerization. To characterize products of coal solubilization and coal macro molecule depolymerization that are formed by T. versicolor and P. chrysosporium and their respective extracellular enzymes. Solubilization products formed using oxalic acid and other metal chelators will also be characterized and compared.

  11. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    SciTech Connect

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer; Austin, Kevin N.; Chambers, Robert S.

    2015-08-06

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted for by the glass transition temperature, Tg, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, Tref, by the same amount as the Tg depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive Tg depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.

  12. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    DOE PAGESBeta

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer; Austin, Kevin N.; Chambers, Robert S.

    2015-08-06

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted formore » by the glass transition temperature, Tg, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, Tref, by the same amount as the Tg depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive Tg depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.« less

  13. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    PubMed Central

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-01-01

    A “turn-on” thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future. PMID:25394758

  14. Application of Tapping-Mode Scanning Probe Electrospray Ionization to Mass Spectrometry Imaging of Additives in Polymer Films

    PubMed Central

    Shimazu, Ryo; Yamoto, Yoshinari; Kosaka, Tomoya; Kawasaki, Hideya; Arakawa, Ryuichi

    2014-01-01

    We report the application of tapping-mode scanning probe electrospray ionization (t-SPESI) to mass spectrometry imaging of industrial materials. The t-SPESI parameters including tapping solvent composition, solvent flow rate, number of tapping at each spot, and step-size were optimized using a quadrupole mass spectrometer to improve mass spectrometry (MS) imaging of thin-layer chromatography (TLC) and additives in polymer films. Spatial resolution of approximately 100 μm was achieved by t-SPESI imaging mass spectrometry using a fused-silica capillary (50 μm i.d., 150 μm o.d.) with the flow rate set at 0.2 μL/min. This allowed us to obtain discriminable MS imaging profiles of three dyes separated by TLC and the additive stripe pattern of a PMMA model film depleted by UV irradiation. PMID:26819894

  15. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  16. Demonstration of Carbon Catabolite Repression in Naphthalene Degrading Soil Bacteria via Raman Spectroscopy Based Stable Isotope Probing.

    PubMed

    Kumar B N, Vinay; Guo, Shuxia; Bocklitz, Thomas; Rösch, Petra; Popp, Jürgen

    2016-08-01

    Carbon catabolite repression (CCR) is a regulatory phenomenon occurring in both lower organisms like bacteria and higher organisms like yeast, which allows them to preferentially utilize a specific carbon source to achieve highest metabolic activity and cell growth. CCR has been intensely studied in the model organisms Escherichia coli and Bacillus subtilis by following diauxic growth curves, assays to estimate the utilization or depletion of carbon sources, enzyme assays, Western blotting and mass spectrometric analysis to monitor and quantify the involvement of specific enzymes and proteins involved in CCR. In this study, we have visualized this process in three species of naphthalene degrading soil bacteria at a single cell level via Raman spectroscopy based stable isotope probing (Raman-SIP) using a single and double labeling approach. This is achieved using a combination of (2)H and (13)C isotope labeled carbon sources like glucose, galactose, fructose, and naphthalene. Time dependent metabolic flux of (13)C and (2)H isotopes has been followed via semi quantification and 2D Raman correlation analysis. For this, the relative intensities of Raman marker bands corresponding to (2)H and (13)C incorporation in newly synthesized macromolecules like proteins and lipids have been utilized. The 2D correlation analysis of time dependent Raman spectra readily identified small sequential changes resulting from isotope incorporation. Overall, we show that Raman-SIP has the potential to be used to obtain information about regulatory processes like CCR in bacteria at a single cell level within a time span of 3 h in fast growing bacteria. We also demonstrate the potential of this approach in identifying the most efficient naphthalene degraders asserting its importance for use in bioremediation. PMID:27305464

  17. Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films

    NASA Astrophysics Data System (ADS)

    Choukourov, A.; Grinevich, A.; Slavinska, D.; Biederman, H.; Saito, N.; Takai, O.

    2008-03-01

    Composite Ti/hydrocarbon plasma polymer films with different Ti concentration were deposited on silicon by dc magnetron sputtering of titanium in an atmosphere of argon and hexane. As measured by Kelvin force microscopy and visco-elastic atomic force microscopy, respectively, surface potential and hardness increase with increasing Ti content. Adhesion force to silicon and to fibrinogen molecules was stronger for the Ti-rich films as evaluated from the AFM force-distance curves. Fibrinogen forms a very soft layer on these composites with part of the protein molecules embedded in the outermost region of the plasma polymer. An increase of the surface charge due to fibrinogen adsorption has been observed and attributed to positively charged αC domains of fibrinogen molecule.

  18. An effective approach for alleviating cation-induced backbone degradation in aromatic ether-based alkaline polymer electrolytes.

    PubMed

    Han, Juanjuan; Liu, Qiong; Li, Xueqi; Pan, Jing; Wei, Ling; Wu, Ying; Peng, Hanqing; Wang, Ying; Li, Guangwei; Chen, Chen; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2015-02-01

    Aromatic ether-based alkaline polymer electrolytes (APEs) are one of the most popular types of APEs being used in fuel cells. However, recent studies have demonstrated that upon being grafted by proximal cations some polar groups in the backbone of such APEs can be attacked by OH(-), leading to backbone degradation in an alkaline environment. To resolve this issue, we performed a systematic study on six APEs. We first replaced the polysulfone (PS) backbone with polyphenylsulfone (PPSU) and polyphenylether (PPO), whose molecular structures contain fewer polar groups. Although improved stability was seen after this change, cation-induced degradation was still obvious. Thus, our second move was to replace the ordinary quaternary ammonia (QA) cation, which had been closely attached to the polymer backbone, with a pendant-type QA (pQA), which was linked to the backbone through a long side chain. After a stability test in a 1 mol/L KOH solution at 80 °C for 30 days, all pQA-type APEs (pQAPS, pQAPPSU, and pQAPPO) exhibited as low as 8 wt % weight loss, which is close to the level of the bare backbone (5 wt %) and remarkably lower than those of the QA-type APEs (QAPS, QAPPSU, and QAPPO), whose weight losses under the same conditions were >30%. The pQA-type APEs also possessed clear microphase segregation morphology, which led to ionic conductivities that were higher, and water uptakes and degrees of membrane swelling that were lower, than those of the QA-type APEs. These observations unambiguously indicate that designing pendant-type cations is an effective approach to increasing the chemical stability of aromatic ether-based APEs. PMID:25594224

  19. Environmentally Benign CO2-Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum-Polymer Conjugates.

    PubMed

    Tsai, Fu-Te; Wang, Yanyan; Darensbourg, Donald J

    2016-04-01

    (S)-3,4-Dihydroxybutyric acid ((S)-3,4-DHBA), an endogenous straight chain fatty acid, is a normal human urinary metabolite and can be obtained as a valuable chiral biomass for synthesizing statin-class drugs. Hence, its epoxide derivatives should serve as promising monomers for producing biocompatible polymers via alternating copolymerization with carbon dioxide. In this report, we demonstrate the production of poly(tert-butyl 3,4-dihydroxybutanoate carbonate) from racemic-tert-butyl 3,4-epoxybutanoate (rac-(t)Bu 3,4-EB) and CO2 using bifunctional cobalt(III) salen catalysts. The copolymer exhibited greater than 99% carbonate linkages, 100% head-to-tail regioselectivity, and a glass-transition temperature (Tg) of 37 °C. By way of comparison, the similarly derived polycarbonate from the sterically less congested monomer, methyl 3,4-epoxybutanoate, displayed 91.8% head-to-tail content and a lower Tg of 18 °C. The tert-butyl protecting group of the pendant carboxylate group was removed using trifluoroacetic acid to afford poly(3,4-dihydroxybutyric acid carbonate). Depolymerization of poly(tert-butyl 3,4-dihydroxybutanoate carbonate) in the presence of strong base results in a stepwise unzipping of the polymer chain to yield the corresponding cyclic carbonate. Furthermore, the full degradation of the acetyl-capped poly(potassium 3,4-dihydroxybutyrate carbonate) resulted in formation of the biomasses, β-hydroxy-γ-butyrolacetone and 3,4-dihydroxybutyrate, in water (pH = 8) at 37 °C. In addition, water-soluble platinum-polymer conjugates were synthesized with platinum loading of 21.3-29.5%, suggesting poly(3,4-dihydroxybutyric acid carbonate) and related derivatives may serve as platinum drug delivery carriers. PMID:26974858

  20. On the pH Responsive, Charge Selective, Polymer Brush-Mediated Transport Probed by Traditional and Scanning Fluorescence Correlation Spectroscopy

    PubMed Central

    Daniels, C. R.; Tauzin, L. J.; Foster, E.; Advincula, R. C.; Landes, C. F.

    2013-01-01

    The complete and reversible charge-selective sequestration of fluorophores by a weak polyelectrolyte brush, poly(2-(dimethylamino) ethyl-methacrylate) (PDMAEMA) was demonstrated using Fluorescence Correlation Spectroscopy (FCS). The chemistry and thickness of the weak polyelectrolyte PDMAEMA was tuned reversibly between neutral and cationic polymer forms. Thus, by switching the pH successively, the brush architecture was tuned to selectively trap and release anionic dye probes, while continuously excluding cationic molecules. In addition, line-scan FCS was implemented and applied for the first time to a synthetic polymer system, and used to identify a new, slower diffusion time on the order of seconds for the sequestered anionic probe under acidic conditions. These results, which quantify the selective sequestration properties of the PDMAEMA brush, are important because they enable a better understanding of transport in polymers, and establish a spectroscopic means of evaluating materials with proposed applications in separations science, charge storage/release and environmental remediation. PMID:23092304

  1. On the pH-responsive, charge-selective, polymer-brush-mediated transport probed by traditional and scanning fluorescence correlation spectroscopy.

    PubMed

    Daniels, C R; Tauzin, L J; Foster, E; Advincula, R C; Landes, C F

    2013-04-25

    The complete and reversible charge-selective sequestration of fluorophores by a weak polyelectrolyte brush, poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA) was demonstrated using fluorescence correlation spectroscopy (FCS). The chemistry and thickness of the weak polyelectrolyte PDMAEMA was tuned reversibly between neutral and cationic polymer forms. Thus, by switching the pH successively, the brush architecture was tuned to selectively trap and release anionic dye probes while continuously excluding cationic molecules. In addition, line-scan FCS was implemented and applied for the first time to a synthetic polymer system and used to identify a new, slower diffusion time on the order of seconds for the sequestered anionic probe under acidic conditions. These results, which quantify the selective sequestration properties of the PDMAEMA brush, are important because they enable a better understanding of transport in polymers and establish a spectroscopic means of evaluating materials with proposed applications in separations science, charge storage/release, and environmental remediation. PMID:23092304

  2. 16S rDNA-based probes for two polycyclic aromatic hydrocarbon (PAH)-degrading soil Mycobacteria

    SciTech Connect

    Govindaswami, M.; Feldhake, D.J.; Loper, J.C.

    1994-12-31

    PAHs are a class of widespread pollutants, some of which have been shown to be genotoxic, hence the fate of these compounds in the environment is of considerable interest. Research on the biodegradation of 4 and 5 ring PAHs has been limited by the general lack of microbial isolates or consortia which can completely degrade these toxicants. Heitkamp and Cerniglia have described an oxidative soil Mycobacterium-strain PYR-1 that metabolizes pyrene and fluoranthene more rapidly than the 2 and 3 ring naphthalene and phenanthrene; although some metabolites of benzo-(a)-pyrene (BaP) were detected, no mineralization of BaP was observed. In 1991 Grosser et al. reported the isolation of a Mycobacterium sp. which mineralizes pyrene and also causing some mineralization of BaP. Their study describes a comparative analysis of these two strains, which show very similar colony morphology, growth rate and yellow-orange pigmentation. Genetic differences were shown by DNA amplification fingerprinting (DAF) using two arbitrary GC-rich octanucleotide primers, and by sequence comparison of PCR amplified 16S rDNA, although both strains show similarity closest to that of the genus Mycobacteria. These 16S rDNA sequences are in use for the construction of strain-specific DNA probes to monitor the presence, survival and growth of these isolates in PAH-contaminated soils in studies of biodegradation.

  3. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing.

    PubMed

    Tong, Hui; Liu, Chengshuai; Li, Fangbai; Luo, Chunling; Chen, Manjia; Hu, Min

    2015-11-15

    Pentachlorophenol (PCP) is a common residual persistent pesticide in paddy soil and has resulted in harmful effect on soil ecosystem. The anaerobic microbial transformation of PCP, therefore, has been received much attentions, especially the functional microbial communities for the reductive transformation. However, the key functional microorganisms for PCP mineralization in the paddy soil still remain unknown. In this work, DNA-based stable isotope probing (SIP) was applied to explore the key microorganisms responsible for PCP mineralization in paddy soil. The SIP results indicated that the dominant bacteria responsible for PCP biodegradation belonged to the genus Dechloromonas of the class β-Proteobacteria. In addition, the increased production of (13)CH4 and (13)CO2 indicated that the addition of lactate enhanced the rate of biodegradation and mineralization of PCP. Two archaea classified as the genera of Methanosaeta and Methanocella of class Methanobacteria were enriched in the heavy fraction when with lactate, whereas no archaea was detected in the absence of lactate. These findings provide direct evidence for the species of bacteria and archaea responsible for anaerobic PCP or its breakdown products mineralization and reveal a new insight into the microorganisms linked with PCP degradation in paddy soil. PMID:26073380

  4. Stability and Degradation Mechanisms of Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis.

    PubMed

    Albert, Albert; Lochner, Tim; Schmidt, Thomas J; Gubler, L

    2016-06-22

    Radiation-grafted membranes are a promising alternative to commercial membranes for water electrolyzers, since they exhibit lower hydrogen crossover and area resistance, better mechanical properties, and are of potentially lower cost than perfluoroalkylsulfonic acid membranes, such as Nafion. Stability is an important factor in view of the expected lifetime of 40 000 h or more of an electrolyzer. In this study, combinations of styrene (St), α-methylstyrene (AMS), acrylonitrile (AN), and 1,3-diisopropenylbenzene (DiPB) are cografted into 50 μm preirradiated poly(ethylene-co-tetrafluoroethylene) (ETFE) base film, followed by sulfonation to produce radiation-grafted membranes. The stability of the membranes with different monomer combinations is compared under an accelerated stress test (AST), and the degradation mechanisms are investigated. To mimic the conditions in an electrolyzer, in which the membrane is always in contact with liquid water at elevated temperature, the membranes are immersed in water for 5 days at 90 °C, so-called thermal stress test (TST). In addition to testing in air atmosphere tests are also carried out under argon to investigate the effect of the absence of oxygen. The water is analyzed with UV-vis spectroscopy and ion chromatography. The ion exchange capacity (IEC), swelling degree, and Fourier transform infrared (FTIR) spectra of the membranes are compared before and after the test. Furthermore, energy-dispersive X-ray (EDX) spectroscopic analysis of the membrane cross-section is performed. Finally, the influence of the TST to the membrane area resistance and hydrogen crossover is measured. The stability increases along the sequence St/AN, St/AN/DiPB, AMS/AN, and AMS/AN/DiPB grafted membrane. The degradation at the weak-link, oxygen-induced degradation, and hydrothermal degradation are proposed in addition to the "swelling-induced detachment" reported in the literature. By mitigating the possible paths of degradation, the AMS

  5. Determination of polymer electrolyte membrane (PEM) degradation products in fuel cell water using electrospray ionization tandem mass spectrometry.

    PubMed

    Zedda, Marco; Tuerk, Jochen; Peil, Stefan; Schmidt, Torsten C

    2010-12-30

    Within the scope of research of membrane degradation phenomena during fuel cell operation a reliable analytical procedure for the extraction, detection and quantification of possible membrane oxidation products has been developed. These oxidation products originate from the attack of hydroxyl or peroxyl radicals on the membrane polymer. Such radicals are formed in situ (during fuel cell operation) or ex situ (Fenton test as oxidative stress simulation). The analysis of membrane oxidation products was carried out by electrospray ionization tandem mass spectrometry. Five potential membrane oxidation products (4-hydroxybenzoic acid (4-HBA), 4-hydroxybenzaldehyde (4-HBAD), 4,4-biphenol (4,4-BP), 4-hydroxybenzenesulfonate (4-HBS), and 4,4-sulfonylbiphenol (4,4-SBP)) were selected based on the molecular structure of the sulfonated polyarylether membrane used. In conjunction with the development of a multiple reaction monitoring (MRM) method, the ionization and fragmentation of the selected compounds were investigated. For 4,4-BP a molecular ion (M(+•) ) was observed in the positive ionization mode and used for MRM method development. Reproducible extraction of the model compounds was achieved using a mixed-mode sorbent material with both weak anion-exchange and reversed-phase retention properties. By using the developed analytical procedure, the identities of two membrane degradation products (4-HBA and 4-HBAD) were determined in situ and ex situ. In addition to the investigation of membrane degradation phenomena, the combination of extraction on a mixed-mode sorbent material and tandem mass spectrometric detection is attractive for the analysis of aromatic sulfonic acids, phenolic acids and phenols. PMID:21080505

  6. In-Situ Anomalous Small-Angle X-ray Scattering Studies of Polymer Electrolyte Membrane Fuel Cell Catalyst Degradation

    NASA Astrophysics Data System (ADS)

    Gilbert, James Andrew

    Polymer electrolyte membrane fuel cells (PEMFCs) are a promising high efficiency energy conversion technology, but their cost effective implementation, especially for automotive power, has been hindered by degradation of the electrochemically-active surface area (ECA) of the Pt nanoparticle electrocatalysts. While numerous studies using ex-situ post-mortem techniques have provided insight into the effect of operating conditions on ECA loss, the governing mechanisms and underlying processes are not fully understood. Toward the goal of elucidating the electrocatalyst degradation mechanisms, we have followed particle size distribution (PSD) growth evolutions of Pt and Pt-alloy nanoparticle catalysts during potential cycling in an aqueous acidic environment (with and without flow of electrolyte) and in a fuel cell environment using in-situ anomalous small-angle X-ray scattering (ASAXS). The results of this thesis show a surface area loss mechanism of Pt nanoparticles supported on carbon to be predominantly controlled by Pt dissolution, the particle size dependence of Pt dissolution, the loss of dissolved Pt into the membrane and electrolyte, and, to a lesser extent, the re-deposition of dissolved Pt onto larger particles. The relative extent of these loss mechanisms are shown to be dependent on the environment, the temperature, and the potential cycling conditions. Correlation of ASAXS-determined particle growth with both calculated and voltammetrically-determined oxide coverages demonstrates that the oxide coverage is playing a key role in the dissolution process and in the corresponding growth of the mean Pt nanoparticle size and loss of ECA. This understanding potentially reduces the complex changes in PSDs and ECA resulting from various voltage profiles to the response to a single variable, oxide coverage. A better understanding of the degradation mechanisms of Pt and Pt-alloy nanoparticle distributions could lead to more stable electrocatalysts while

  7. Separation of complex branched polymers by size-exclusion chromatography probed with multiple detection.

    PubMed

    Gaborieau, Marianne; Nicolas, Julien; Save, Maud; Charleux, Bernadette; Vairon, Jean-Pierre; Gilbert, Robert G; Castignolles, Patrice

    2008-05-01

    Size-exclusion chromatography (SEC) separates polymers by hydrodynamic volume (the universal calibration principle). Molecular weights can be determined using viscometry (relying on universal calibration) and light scattering (independent of universal calibration). In the case of complex branched polyacrylates with tetrahydrofuran as eluent, universal calibration is valid, although the separation in term of molecular weight is incomplete: a given elution slice contains a range of molecular weights, described in terms of a 'local polydispersity'. The local polydispersity index decreases when the number of branches per chain increases and complete separation is reached for highly branched chains. PMID:18378255

  8. Probing photocurrent generation mechanisms in hybrid IR-senstive quantum dot/conjugated polymer solar cells

    NASA Astrophysics Data System (ADS)

    Strein, Elisabeth

    The work in this dissertation aims to improve the ability of hybrid polymer/quantum dot solar cells to harvest and utilize sunlight by contributing mechanistic insights into photocurrent generation. The mechanisms of charge transfer and energy transfer are explored spectroscopically in chapter three and both are found to contribute to photocurrent. Chapter four looks at excitation energy in excess of the bandgap and finds a rise in polaron yield which correlates with excess photon energy. Chapter two discusses details of the experimental techniques used to access the data discussed in the chapters that follow.

  9. Positron Annihilation Spectroscopy as a Probe of Microscopic Structure and Physical Aging in Polymer.

    NASA Astrophysics Data System (ADS)

    Yu, Minzi

    Positron annihilation is studied as a characterization method for the properties of polymers. Previous studies indicate that the ortho-positronium lifetime tau _3 and intensity I_3 is correlated to the free volume "hole" size and number density of holes in a polymer. Positron annihilation lifetime (PAL) studies in polymers measure the change in free volume, and they are sensitive to different physical environments. PAL studies of the temperature dependence of a bisphenol-A polycarbonate shows that the free volume increases with increasing temperature, and it also obtains the transition temperatures T_{rm g} and T_beta^', from the tau_3 curve and the I_3 curve, respectively. The isothermal aging in polycarbonate shows that: I_3 decreases while tau_3 remains constant during a long-time annealing at a temperature far below T_{rm g}; and I_3 remains constant while tau_3 goes through a "over shooting" in the first few hours after quenching and annealing at a temperature just below T_{rm g}. The free volume in polycarbonate increases (as a result of an increase in tau_3 ) with applied tensile strain up to 4%, then levels off. Similarly, the free volume in polymethyl methacrylate (PMMA) decreases (as the result of tau_3 ) with applied compressional strain also up to -4% then levels off. A negative change in both tau_3 and I _3 has been observed when polycarbonate is under 3% tensile strain and after release of strain. A more advance technique of positron annihilation, PAL-momentum correlation which can give more detailed information about free volume structure in polymers, has also been studied and improved. Two 5-cm-diameter, 5-cm-long CsF scintillation detectors for lifetime measurement, and a 30-cm-diameter Anger camera whose y-analog pulse gives one-dimensional ACAR information, comprise a new experimental arrangement of PAL-momentum correlation system. Its triple -coincidence counting rate is about 2.5 per minute per microcurie of positron source and system time

  10. Applications of X-Ray Photoelectron Spectroscopy. Part I. High T(c) Superconductors. Part II. Polymer Degradation.

    NASA Astrophysics Data System (ADS)

    Allan, Kristi Ann

    1990-08-01

    X-ray Photoelectron Spectroscopy (XPS) was applied to two different areas of research: (1) high T _{rm c} cuprate superconductors, (2) X-ray induced polymer degradation. The metallic perovskite LaCuO_3 was synthesized using a high oxygen pressure synthesis. In the XPS spectra of this compound the Cu (2p_ {3/2}) peak exhibited a shift to higher binding energy and the L_3VV Auger kinetic energy is lower than that of CuO. These shifts are representative of Cu(III) in an octahedral site linked to neighboring Cu(III) via a single 180^ circ Cu-O-Cu bridge in a metallic phase similar to copper found in the CuO_2 sheets of the cuprate superconductors. This spectrum is therefore a useful standard for comparison with the XPS spectra of new high T_{rm c} cuprate superconductors. XPS measurements of Tl_{rm 2 - y}Ba_2CuO _{rm 6 - x} as a function of oxygen content to determine the oxidation/reduction mechanism of the CuO_2 sheet. Oxidation/reduction of the CuO_2 sheets beyond or below the formal valence of Cu^{2+} is one of the necessary conditions to induce superconductivity. By employing two new chemical analyses and XPS we determined that the oxidation/reduction mechanism of the CuO _2 sheets is achieved internally by the overlap of the Tl:6s band with the CuO_2 conduction band. Changes in the oxygen content resulted in (1) changes in the phase as evidenced by the appearance or lack of T_{rm c}, (2) changes in the crystal symmetry, and (3) changes in the c axis lattice parameter obtained from X-ray diffraction measurements. Thallium is extruded during the annealing process and this was verified by both the X-ray diffraction and the XPS measurements. Recently, in a study of the anchoring of organometallic compounds on polyvinyl alcohol (PVA, -(CH_2 -HCOH)_{rm n} -), we observed X-ray exposure-dependent changes in the polymer composition. This motivated the detailed study of the X-ray induced compositional modifications of a solvent cast polyvinyl alcohol (PVA) polymer films

  11. Balancing the Rates of New Bone Formation and Polymer Degradation Enhances Healing of Weight-Bearing Allograft/Polyurethane Composites in Rabbit Femoral Defects

    PubMed Central

    Dumas, Jerald E.; Prieto, Edna M.; Zienkiewicz, Katarzyna J.; Guda, Teja; Wenke, Joseph C.; Bible, Jesse; Holt, Ginger E.

    2014-01-01

    There is a compelling clinical need for bone grafts with initial bone-like mechanical properties that actively remodel for repair of weight-bearing bone defects, such as fractures of the tibial plateau and vertebrae. However, there is a paucity of studies investigating remodeling of weight-bearing bone grafts in preclinical models, and consequently there is limited understanding of the mechanisms by which these grafts remodel in vivo. In this study, we investigated the effects of the rates of new bone formation, matrix resorption, and polymer degradation on healing of settable weight-bearing polyurethane/allograft composites in a rabbit femoral condyle defect model. The grafts induced progressive healing in vivo, as evidenced by an increase in new bone formation, as well as a decrease in residual allograft and polymer from 6 to 12 weeks. However, the mismatch between the rates of autocatalytic polymer degradation and zero-order (independent of time) new bone formation resulted in incomplete healing in the interior of the composite. Augmentation of the grafts with recombinant human bone morphogenetic protein-2 not only increased the rate of new bone formation, but also altered the degradation mechanism of the polymer to approximate a zero-order process. The consequent matching of the rates of new bone formation and polymer degradation resulted in more extensive healing at later time points in all regions of the graft. These observations underscore the importance of balancing the rates of new bone formation and degradation to promote healing of settable weight-bearing bone grafts that maintain bone-like strength, while actively remodeling. PMID:23941405

  12. Degradable polymeric nanoparticles by aggregation of thermoresponsive polymers and ``click'' chemistry

    NASA Astrophysics Data System (ADS)

    Dworak, Andrzej; Lipowska, Daria; Szweda, Dawid; Suwinski, Jerzy; Trzebicka, Barbara; Szweda, Roza

    2015-10-01

    This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent stabilization of aggregated chains was performed by a ``click'' reaction between the azide and alkyne groups. Due to the presence of a carbamate bond the nanoparticles undergo pH dependent degradation under mild basic conditions. The proposed procedure opens a route to new carriers for the controlled release of active species.This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent

  13. Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications

    PubMed Central

    Wang, Qinmei; Wang, Qiong; Teng, Wei

    2016-01-01

    Injectable electroactive hydrogels (eGels) are promising in regenerative medicine and drug delivery, however, it is still a challenge to obtain such hydrogels simultaneously possessing other properties including uniform structure, degradability, robustness, and biocompatibility. An emerging strategy to endow hydrogels with desirable properties is to incorporate functional nanoparticles in their network. Herein, we report the synthesis and characterization of an injectable hydrogel based on oxidized alginate (OA) crosslinking gelatin reinforced by electroactive tetraaniline-graft-OA nanoparticles (nEOAs), where nEOAs are expected to impart electroactivity besides reinforcement without significantly degrading the other properties of hydrogels. Assays of transmission electron microscopy, 1H nuclear magnetic resonance, and dynamic light scattering reveal that EOA can spontaneously and quickly self-assemble into robust nanoparticles in water, and this nanoparticle structure can be kept at pH 3~9. Measurement of the gel time by rheometer and the stir bar method confirms the formation of the eGels, and their gel time is dependent on the weight content of nEOAs. As expected, adding nEOAs to hydrogels does not cause the phase separation (scanning electron microscopy observation), but it improves mechanical strength up to ~8 kPa and conductivity up to ~10−6 S/cm in our studied range. Incubating eGels in phosphate-buffered saline leads to their further swelling with an increase of water content <6% and gradual degradation. When growing mesenchymal stem cells on eGels with nEOA content ≤14%, the growth curves and morphology of cells were found to be similar to that on tissue culture plastic; when implanting these eGels on a chick chorioallantoic membrane for 1 week, mild inflammation response appeared without any other structural changes, indicating their good in vitro and in vivo biocompatibility. With injectability, uniformity, degradability, electroactivity, relative

  14. Regulation of coal polymer degradation by fungi. Eighth quarterly report, [April--June 1996

    SciTech Connect

    Irvine, R.L.; Bumpus, J.A.

    1996-07-28

    This project addresses the solubilization of low-rank coal (leonardite) by lignin degrading fungi. During this reporting period efforts were focused on determining the effect of pH on coal solubilization by oxalate ion and other biologically important compounds that might function as metal chelators, on the role of laccase in coal solubilization and metabolism, on decolorization of soluble coal macromolecule by Phanerochaete chrysosporium and T. versicolor in solid agar media, and on solubilization of coal in slurry cultures and solid phase reactors.

  15. Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications.

    PubMed

    Wang, Qinmei; Wang, Qiong; Teng, Wei

    2016-01-01

    Injectable electroactive hydrogels (eGels) are promising in regenerative medicine and drug delivery, however, it is still a challenge to obtain such hydrogels simultaneously possessing other properties including uniform structure, degradability, robustness, and biocompatibility. An emerging strategy to endow hydrogels with desirable properties is to incorporate functional nanoparticles in their network. Herein, we report the synthesis and characterization of an injectable hydrogel based on oxidized alginate (OA) crosslinking gelatin reinforced by electroactive tetraaniline-graft-OA nanoparticles (nEOAs), where nEOAs are expected to impart electroactivity besides reinforcement without significantly degrading the other properties of hydrogels. Assays of transmission electron microscopy, (1)H nuclear magnetic resonance, and dynamic light scattering reveal that EOA can spontaneously and quickly self-assemble into robust nanoparticles in water, and this nanoparticle structure can be kept at pH 3~9. Measurement of the gel time by rheometer and the stir bar method confirms the formation of the eGels, and their gel time is dependent on the weight content of nEOAs. As expected, adding nEOAs to hydrogels does not cause the phase separation (scanning electron microscopy observation), but it improves mechanical strength up to ~8 kPa and conductivity up to ~10(-6) S/cm in our studied range. Incubating eGels in phosphate-buffered saline leads to their further swelling with an increase of water content <6% and gradual degradation. When growing mesenchymal stem cells on eGels with nEOA content ≤14%, the growth curves and morphology of cells were found to be similar to that on tissue culture plastic; when implanting these eGels on a chick chorioallantoic membrane for 1 week, mild inflammation response appeared without any other structural changes, indicating their good in vitro and in vivo biocompatibility. With injectability, uniformity, degradability, electroactivity, relative

  16. Polymer Aging Techniques Applied to Degradation of a Polyurethane Propellant Binder

    SciTech Connect

    Assink, R.A.; Celina, M.; Graham, A.C.; Minier, L.M.

    1999-07-27

    The oxidative thermal aging of a crosslinked hydroxy-terminated polybutadiene (HTPB)/isophorone diisocyanate (IPDI) polyurethane rubber, commonly used as the polymeric binder matrix in solid rocket propellants, was studied at temperatures of RT to 125 C. We investigate changes in tensile elongation, mechanical hardening, polymer network properties, density, O{sub 2} permeation and molecular chain dynamics using a range of techniques including solvent swelling, detailed modulus profiling and NMR relaxation measurements. Using extensive data superposition and highly sensitive oxygen consumption measurements, we critically evaluate the Arrhenius methodology, which normally assumes a linear extrapolation of high temperature aging data. Significant curvature in the Arrhenius diagram of these oxidation rates was observed similar to previous results found for other rubber materials. Preliminary gel/network properties suggest that crosslinking is the dominant process at higher temperatures. We also assess the importance of other constituents such as ammonium perchlorate or aluminum powder in the propellant formulation.

  17. Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer

    SciTech Connect

    Xu, G.; McGrath, P.B.; Burns, C.W.

    1996-12-31

    Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some of the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.

  18. Regulation of coal polymer degradation by fungi. Quarterly report, 31 July 1997--30 September 1997

    SciTech Connect

    Not Available

    1997-12-31

    During this reporting period the authors continued their investigations of how low rank coals are degraded by wood rotting fungi. Previous investigations showed that ligninolytic cultures of P. chrysosporium could decolorize soluble low rank coal macromolecule. The authors continue to investigate this phenomenon. Consistent with earlier observations they conclude that soluble coal macromolecule is decolorized in ligninolytic cultures of P. chrysosporium. To determine if this fungus can depolymerize coal macromolecule, samples were analyzed by GPC-HPLC. These analyses suggested that when coal macromolecules were incubated with ligninolytic cultures of P. chrysosporium a slight decrease in the average peak molecular weight of this mixture had occurred. During this reporting period they also discovered that changes in buffer composition can alter the peak retention times of coal macromolecules during GPC-HPLC probably by causing dissociation and reassociation of individual macromolecules. In other experiments it has been shown that lignin peroxidases that are secreted by ligninolytic cultures of P. chrysosporium are responsible, at least in part, for decolorization of coal macromolecules. Taken together, these studies show that the lignin degrading system of P. chrysosporium is able to enzymatically attack macromolecules solubilized from low rank coal. The ability of nonacclimated bacteria from sewage sludge to used leonardite and soluble coal macromolecule as a substrate for methanogenesis was also investigated. To date, the bacterial consortium studied was unable to use these substrates for this purpose.

  19. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil.

    PubMed

    Song, Mengke; Jiang, Longfei; Zhang, Dayi; Luo, Chunling; Wang, Yan; Yu, Zhiqiang; Yin, Hua; Zhang, Gan

    2016-05-01

    Information on microorganisms possessing the ability to metabolize different polycyclic aromatic hydrocarbons (PAHs) in complex environments helps in understanding PAHs behavior in natural environment and developing bioremediation strategies. In the present study, stable-isotope probing (SIP) was applied to investigate degraders of PAHs in a forest soil with the addition of individually (13)C-labeled phenanthrene, anthracene, and fluoranthene. Three distinct phylotypes were identified as the active phenanthrene-, anthracene- and fluoranthene-degrading bacteria. The putative phenanthrene degraders were classified as belonging to the genus Sphingomona. For anthracene, bacteria of the genus Rhodanobacter were the putative degraders, and in the microcosm amended with fluoranthene, the putative degraders were identified as belonging to the phylum Acidobacteria. Our results from DNA-SIP are the first to directly link Rhodanobacter- and Acidobacteria-related bacteria with anthracene and fluoranthene degradation, respectively. The results also illustrate the specificity and diversity of three- and four-ring PAHs degraders in forest soil, contributes to our understanding on natural PAHs biodegradation processes, and also proves the feasibility and practicality of DNA-based SIP for linking functions with identity especially uncultured microorganisms in complex microbial biota. PMID:26808242

  20. Relationships between structure and rheology in polymer nanocomposites probed via X-ray scattering

    NASA Astrophysics Data System (ADS)

    Pujari, Saswati

    Polymer nanocomposites have received intense attention due to their potential for significantly enhanced polymer properties like mechanical strength, thermal stability, electrical conductivity, etc. Melt state processing of these materials exposes the nanofillers to complex flow fields, which can induce changes in nanocomposite microstructure, including particle dispersion and the orientation of anisotropic nanoparticles in the polymer matrix. Since nanocomposite properties are strongly correlated with both these structural features, it is essential to develop methods to characterize such microstructural changes. This thesis reports extensive measurements of mechanical rheology and particle orientation during flow of nanocomposites based on multi-walled carbon nanotubes, clays, and graphene nanosheets. Changes in orientation of anisotropic nanoparticles are manifested in x-ray scattering images collected during shear. In-situ studies of orientation are enabled by custom designed x-ray adapted shear cells and high energy synchrotron radiation at the Advanced Photon Source in Argonne National Laboratory where these experiments were conducted. Studies of flow induced orientation in model nanotube dispersions revealed increasing sample anisotropy with increasing shear rate across concentrations and aspect ratios. In dilute dispersions the orientation dynamics was dominated by flow induced aggregation/disaggregation of MWNTs, with anisotropy primarily attributed to individually dispersed nanotubes. In concentrated suspensions, sample anisotropy resulted from flow induced elastic deformation within entangled MWNT clusters. Release of elastic energy upon flow cessation resulted in an unexpected relaxation of induced anisotropy. These studies were followed with study of more complex, but, industrially relevant nanocomposites made with polypropylene as the dispersing matrix. The high viscosity of polypropylene makes dispersion of nanoparticles difficult, and hence a careful

  1. Probing the Mucoadhesive Interactions Between Porcine Gastric Mucin and Some Water-Soluble Polymers.

    PubMed

    Albarkah, Yasser A; Green, Rebecca J; Khutoryanskiy, Vitaliy V

    2015-11-01

    This study investigates the structural features of porcine gastric mucin (PGM) in aqueous dispersions and its interactions with water-soluble polymers (poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(ethylene oxide), and poly(ethylene glycol)) using isothermal titration calorimetry, turbidimetric titration, dynamic light scattering, and transmission electron microscopy. It is established that PAA (450 kDa) and PMAA (100 kDa) exhibit strong specific interactions with PGM causing further aggregation of its particles, while PAA (2 kDa), poly(ethylene oxide) (1 000 kDa), and poly(ethylene glycol) (10 kDa) do not show any detectable effects on mucin. Sonication of mucin dispersions prior to their mixing with PAA (450 kDa) and PMAA (100 kDa) leads to more pronounced intensity of interactions. PMID:26102520

  2. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    DOE PAGESBeta

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less

  3. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA were more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.

  4. Environmental degradation of Air Products` Vinex, Airflex and Airvol polymers through composting

    SciTech Connect

    Larson, M.A.; O`Brien, N.M.

    1995-12-31

    With the growing public concern for environmental awareness, it has become increasingly important to market products which are considered environmentally friendly, i.e., non-toxic, recyclable or compostable. This concern, in part, represents a need to reduce waste streams currently entering landfills. Most compost facilities now in operation deal mainly with grass, leaves, yard waste and wastewater treatment plant sludges or other specific industrial waste streams. However, there are a growing number of experimental compost operations that are attempting to integrate a larger variety of waste streams, including plastics, into large scale compost operations. This study marks the first time that a full scale composting study has been used at Air Products to evaluate and demonstrate the degradation of Vinex thermoplastic PVOH resins and Airflex and Airvol emulsion binders. Results here have served to differentiate the Vinex product line for research and development, product application and marketing.

  5. Study on performance simulation of polymer electrolyte fuel cell for preventing degradation

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Fukuda, T.; Doi, M.; Hashimoto, R.; Kanematsu, H.; Utsumi, Y.

    2013-04-01

    In the present study, the distribution of water content in the membrane of PEFC was analyzed by using a numerical simulation as well as understanding the behavior of internal moisture of PEFC. Eight parameters were selected for the simulation then 18 combinations of the parameters were allocated by design of experiments, thus the data obtained were analyzed by multiple regression analysis to understand the influence factor of operating conditions quantitatively. As a result, the influence of the operating parameters on the dryness of the membrane for the anode side and the cathode side of PEFC was quantitatively shown by using the method of the multiple regression analysis. Further it was found that the area where cerium carbonate ought to be coated for preventing the degradation without decreasing performance.

  6. DNA Compaction Induced by a Cationic Polymer or Surfactant Impact Gene Expression and DNA Degradation

    PubMed Central

    Ainalem, Marie-Louise; Bartles, Andrew; Muck, Joscha; Dias, Rita S.; Carnerup, Anna M.; Zink, Daniele; Nylander, Tommy

    2014-01-01

    There is an increasing interest in achieving gene regulation in biotechnological and biomedical applications by using synthetic DNA-binding agents. Most studies have so far focused on synthetic sequence-specific DNA-binding agents. Such approaches are relatively complicated and cost intensive and their level of sophistication is not always required, in particular for biotechnological application. Our study is inspired by in vivo data that suggest that DNA compaction might contribute to gene regulation. This study exploits the potential of using synthetic DNA compacting agents that are not sequence-specific to achieve gene regulation for in vitro systems. The semi-synthetic in vitro system we use include common cationic DNA-compacting agents, poly(amido amine) (PAMAM) dendrimers and the surfactant hexadecyltrimethylammonium bromide (CTAB), which we apply to linearized plasmid DNA encoding for the luciferase reporter gene. We show that complexing the DNA with either of the cationic agents leads to gene expression inhibition in a manner that depends on the extent of compaction. This is demonstrated by using a coupled in vitro transcription-translation system. We show that compaction can also protect DNA against degradation in a dose-dependent manner. Furthermore, our study shows that these effects are reversible and DNA can be released from the complexes. Release of DNA leads to restoration of gene expression and makes the DNA susceptible to degradation by Dnase. A highly charged polyelectrolyte, heparin, is needed to release DNA from dendrimers, while DNA complexed with CTAB dissociates with the non-ionic surfactant C12E5. Our results demonstrate the relation between DNA compaction by non-specific DNA-binding agents and gene expression and gene regulation can be achieved in vitro systems in a reliable dose-dependent and reversible manner. PMID:24671109

  7. Influence of the Piping-material-originated Metal-ion on Cell Degradation of Polymer Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Amitani, Chieko; Ishikawa, Masahiko; Mori, Kouya; Tanaka, Kenji; Hori, Michio

    Influences of metal-ion adulterations into Polymer Electrolyte Fuel Cells (PEFC) were examined on PEFC generation characteristics and structural changes. Cupper and aluminun, novel candidate materials for forthcoming PEFC system, were introduced into polymer electrolyte membranes (PEM) by ion-exchange method as contaminants, and ca. 500-hour generation tests of PEFC cells with these PEMs were conducted in this study. Introduced metal ions were to be combined to sulfonic acid groups in PEMs by electrostatic forces. For the cell containing cupric ions (Cu2+) equivalent to 1000 pmm of supfonic acid groups in PEM, a decrease in deteriorating rate of cell voltage was observed to be 83 mV/kh during 500-hour generation, in comparison with the cell without metal-ion comtamination showing 154 mV/kh. On the other hand, an increase in deteriorating rates were observed for the cells containing 10 % Cu2+ or 1000 ppm aluminum ions (Al3+). Al3+ adulteration in PEFC set off increases in activation overpotential and fluoride ion release rate (FRR) with proceeding genaration test. An increase in activation overpotentials was supressed in 1000 ppm Cu2+-adulterated cell and the reverse was observed in 10 % Cu2+-adulterated one, though Cu2+ adulterations suppressed growths of platinum catalyst particles in size and FRR regardless of Cu2+ concentration. Restriction effect of 1000 ppm Cu2+-adulteration into PEM on PEFC voltage deterioration has found to be the unprecedented knoledge with respect to PEFC degradation phenomena. Mechanisms of those influences were also discussed.

  8. Hierarchical analysis of the degradation of fibre-reinforced polymers under the presence of void imperfections.

    PubMed

    Liebig, Wilfried V; Schulte, Karl; Fiedler, Bodo

    2016-07-13

    The subject of this work is the investigation of the influence of voids on the mechanical properties of fibre-reinforced polymers (FRPs) under compression loading. To specify the damage accumulation of FRPs in the presence of voids, the complex three-dimensional structure of the composite including voids was analysed and a reduced mechanical model composite was derived. The hierarchical analysis of the model composite on a micro-scale level implies the description of the stress and strain behaviour of the matrix using the photoelasticity technique and digital image correlation technology. These studies are presented along with an analytical examination of the stability of a single fibre. As a result of the experimental and analytical studies, the stiffness of the matrix and fibre as well as their bonding, the initial fibre orientation and the fibre diameter have the highest impact on the failure initiation. All these facts lead to a premature fibre-matrix debonding with ongoing loss of stability of the fibre and followed by kink-band formation. Additional studies on the meso-scale of transparent glass FRPs including a unique void showed that the experiments carried out on the model composites could be transferred to real composites. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242296

  9. Investigation of degradation effects in polymer electrolyte fuel cells under automotive-related operating conditions

    NASA Astrophysics Data System (ADS)

    Enz, S.; Dao, T. A.; Messerschmidt, M.; Scholta, J.

    2015-01-01

    The influence of artificial starvation effects during automotive-related operating conditions is investigated within a polymer electrolyte fuel cell (PEFC) using non-dispersive infrared sensors and a current scan shunt. Driving cycles (DC) and single load change experiments are performed with specific fuel and oxidant starvation conditions. Within the DC experiments, a maximal CO2 amount of 4.67 μmol per cycle is detected in the cathode and 0.97 μmol per cycle in the anode exhaust without reaching fuel starvation conditions during the DC. Massive cell reversal conditions occur within the single load change experiments as a result of anodic fuel starvation. As soon as a fuel starvation appears, the emitted CO2 increases exponentially in the anode and cathode exhaust. A maximal CO2 amount of 143.8 μmol CO2 on the anode side and 5.8 μmol CO2 on the cathode side is detected in the exhaust gases. The critical cell reversal conditions only occur by using hydrogen reformate as anode reactant. The influence of the starvation effects on the PEFC performance is investigated via polarization curves, cyclic and linear sweep voltammetry as well as electrochemical impedance spectroscopy. The PEFC performance is reduced by 47% as a consequence of the dynamic operation.

  10. Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications.

    PubMed

    Jayalekshmi, A C; Victor, Sunita Prem; Sharma, Chandra P

    2013-01-01

    The present study focuses on the development of a biocompatible and biodegradable iron oxide incorporated chitosan-gelatin bioglass composite nanoparticles [Fe-BG]. The developed composite nanoparticle was analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermo gravimetric analysis (TG) and differential scanning calorimetry analysis (DSC). The size of the negatively charged composite nanoparticle was in the range of 43-51 nm. The in vitro analysis of the composite nanoparticles was carried out by cell aggregation, protein adsorption and haemolytic activity. The magnetic hysteresis value of the composite nanoparticle showed that it is a soft magnetic material. The presence of iron oxide in the chitosan-gelatin bioglass [BG] matrix enhances biodegradability as indicated in the TG studies. Iron-oxide in equal amount to bioglass in the polymer matrix has been obtained as the optimized system. The developed composite nanoparticle is a soft magnetic material and is suitable for the magnetic hyperthermia treatment and drug delivery. More detailed in vivo studies are needed to confirm the biodegradation profile and biological activity of the material. PMID:22809595

  11. Probing biofouling resistant polymer brush surfaces by atomic force microscopy based force spectroscopy.

    PubMed

    Schön, Peter; Kutnyanszky, Edit; ten Donkelaar, Bas; Santonicola, M Gabriella; Tecim, Tugba; Aldred, Nick; Clare, Anthony S; Vancso, G Julius

    2013-02-01

    The protein repellency and biofouling resistance of zwitterionic poly(sulfobetaine methacrylate)(pSBMA) brushes grafted via surface initiated polymerization (SIP) from silicon and glass substrata was assessed using atomic force microscopy (AFM) adherence experiments. Laboratory settlement assays were conducted with cypris larvae of the barnacle Balanus amphitrite. AFM adherence includes the determination of contact rupture forces when AFM probe tips are withdrawn from the substratum. When the surface of the AFM tip is modified, adherence can be assessed with chemical specifity using a method known as chemical force microscopy (CFM). In this study, AFM tips were chemically functionalized with (a) fibronectin- here used as model for a nonspecifically adhering protein - and (b) arginine-glycine-aspartic acid (RGD) peptide motifs covalently attached to poly(methacrylic acid) (PMAA) brushes as biomimics of cellular adhesion receptors. Fibronectin functionalized tips showed significantly reduced nonspecific adhesion to pSBMA-modified substrata compared to bare gold (2.3±0.75 nN) and octadecanethiol (ODT) self-assembled monolayers (1.3±0.75 nN). PMAA and PMAA-RGD modified probes showed no significant adhesion to pSBMA modified silicon substrata. The results gathered through AFM protein adherence studies were complemented by laboratory fouling studies, which showed no adhesion of cypris larvae of Balanus amphitrite on pSBMA. With regard to its unusually high non-specific adsorption to a wide variety of materials the behavior of fibronectin is analogous to the barnacle cyprid temporary adhesive that also binds well to surfaces differing in polarity, charge and free energy. The antifouling efficacy of pSBMA may, therefore, be directly related to the ability of this surface to resist nonspecific protein adsorption. PMID:23138001

  12. Nonphotochemical hole burning of organic dyes and rare earth ions in polymers and glasses: a probe of the amorphous state

    SciTech Connect

    Fearey, B.L.

    1986-01-01

    New and in depth studies of amorphous materials (e.g., glasses and polymers) probed via the low temperature optical technique of nonphotochemical hole burning (NPHB) are presented. An extensive review of the phenomena itself, along with selected topics involving the use of persistent hole burning techniques, is given. In addition, a semi-complete tabulation of essentially all hole burning systems to date is included. The deuteration dependence in an amorphous host is examined for the system of tetracene in an ethanol/methanol mixture. The results illustrate the importance of hydrogen bonding in the hole burning process. The discovery of a highly efficient (or facile) class of hole burning systems, i.e., ionic dyes in hydroxylated polymers (i.e., poly(vinyl alcohol) (PVOH) and poly(acrylic acid) (PAA)), is presented and discussed. Ultrafast relaxation processes (i.e., dephasing) are studied for the system of cresyl violet perchlorate (CV) in PVOH. Further, for the first time, NPHB of rare earth ions, specifically Pr/sup +3/ and Nd/sup +3/, in a soft organic glass (i.e., PVOH) is discussed briefly. Detailed experimental results of two related phenomena, spontaneous hole filling (SPHF) and laser induced hole filling (LIHF), are presented and discussed for several systems: rhodamine 560 perchlorate (R560), rhodamine 640 perchlorate (R640), CV, Pr/sup +3/ and Nd..mu../sup 3/ in either PVOH or PAA. A theoretical model is developed for SPHF. The model invokes a correlated feedback mechanism from the anti-hole, which is able to account for the fact that no line broadening is observed. A tentative model is also presented for the phenomenon of LIHF.

  13. Nucleophilic Polymers and Gels in Hydrolytic Degradation of Chemical Warfare Agents.

    PubMed

    Bromberg, Lev; Creasy, William R; McGarvey, David J; Wilusz, Eugene; Hatton, T Alan

    2015-10-01

    Water- and solvent-soluble polymeric materials based on polyalkylamines modified with nucleophilic groups are introduced as catalysts of chemical warfare agent (CWA) hydrolysis. A comparative study conducted at constant pH and based on the criteria of the synthetic route simplicity, aqueous solubility, and rate of hydrolysis of CWA mimic, diisopropylfluorophosphate (DFP), indicated that 4-aminopyridine-substituted polyallylamine (PAAm-APy) and polyvinylamine substituted with 4-aminopyridine (PVAm-APy) were advantageous over 4-pyridinealdoxime-modified PVAm and PAAm, poly(butadiene-co-pyrrolidinopyridine), and PAAm modified with bipyridine and its complex with Cu(II). The synthesis of PVAm-APy and PAAm-APy involved generation of a betaine derivative of acrylamide and its covalent attachment onto the polyalkylamine chain followed by basic hydrolysis. Hydrogel particles of PAAm-APy and PVAm-APy cross-linked by epichlorohydrin exhibited pH-dependent swelling and ionization patterns that affected the rate constants of DFP nucleophilic hydrolysis. Deprotonation of the aminopyridine and amine groups increased the rates of the nucleophilic hydrolysis. The second-order rate of nucleophilic hydrolysis was 5.5- to 10-fold higher with the nucleophile-modified gels compared to those obtained by cross-linking of unmodified PAAm, throughout the pH range. Testing of VX and soman (GD) was conducted in 2.5-3.7 wt % PVAm-APy suspensions or gels swollen in water or DMSO/water mixtures. The half-lives of GD in aqueous PVAm-APy were 12 and 770 min at pH 8.5 and 5, respectively. Addition of VX into 3.5-3.7 wt % suspensions of PVAm-APy in DMSO-d6 and D2O at initial VX concentration of 0.2 vol % resulted in 100% VX degradation in less than 20 min. The unmodified PVAm and PAAm were 2 orders of magnitude less active than PVAm-APy and PAAm-APy, with VX half-lives in the range of 24 h. Furthermore, the PVAm-APy and PAAm-APy gels facilitated the dehydrochlorination reaction of sulfur mustard

  14. Probing the adhesion of particles to responsive polymer coatings with hydrodynamic shear stresses

    NASA Astrophysics Data System (ADS)

    Toomey, Ryan; Efe, Gulnur

    2015-03-01

    Lower critical solution temperature (LCST) polymers in confined geometries have found success in applications that benefit from reversible modulation of surface properties, including drug delivery, separations, tissue cultures, and chromatography. In this talk, we present the adhesion of polystyrene microspheres to cross-linked poly(N-isopropylacrylamide), or poly(NIPAAm) coatings, as studied with a spinning disk method. This method applies a linear range of hydrodynamic shear forces to physically adsorbed microspheres along the radius of a coated disk. Quantification of detachment is accomplished by optical microscopy to evaluate the minimum shear stress to remove adherent particles. Experiments were performed to assess the relationship between the surface chemistry of the microsphere, the thickness and cross-link density of the poly(NIPAAm) coating, the adsorption (or incubation) time, and the temperature on the detachment profiles of the microspheres. Results show that both the shear modulus and slow dynamic processes in the poly(NIPAAm) films strongly influence the detachment shear stresses. Moreover, whether an adsorbed microsphere can be released (through a modulation in the swelling of the poly(NIPAAm) coating by temperature) depends on both the surface chemistry of the microsphere and the extent of the adsorption time. Finally, the results show that the structure of the poly(NIPAAm) coating can significantly affect performance, which may explain several of the conflicting findings that have been reported in the literature.

  15. Li dynamics in carbon-rich polymer-derived SiCN ceramics probed by NMR

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Reinold, Lukas; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Buechner, Bernd; Grafe, Hajo

    2014-03-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei at room temperature, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  16. Cooperative polymer dynamics under nanoscopic pore confinements probed by field-cycling NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Fatkullin, Nail; Kausik, Ravinath; Kimmich, Rainer

    2007-03-01

    Reptational dynamics of bulk polymer chains on a time scale between the Rouse mode relaxation time and the so-called disengagement time is not compatible with the basic thermodynamic law of fluctuations of the number of segments in a given volume. On the other hand, experimental field-cycling NMR relaxometry data of perfluoropolyether melts confined in Vycor, a porous silica glass of nominal pore dimension of 4nm, closely display the predicted signatures for the molecular weight and frequency dependences of the spin-lattice relaxation time in this particular limit, namely T1∝M-1/2ν1/2. It is shown that this contradiction is an apparent one. In this paper a formalism is developed suggesting cooperative chain dynamics under nanoscopic pore confinements. The result is a cooperative reptational displacement phenomenon reducing the root-mean-squared displacement rate correspondingly but showing the same characteristic dependences as the ordinary reptation model. The tube diameter effective for cooperative reptation is estimated on this basis for the sample system under consideration and is found to be of the same order of magnitude as the nominal pore diameter of Vycor.

  17. Molecular self-assembly of conducting polymer by Conducting Probe Technique in Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shin-ichi; Ogawa, Kazufumi

    2007-04-01

    A polypyrrole derivative monolayer was investigated for the application as a wire. First, a pyrrole derivative monolayer was prepared by chemically adsorbing (self-assembling) monolayer (CAM) of 6-pyrrolylhexyl-12,12,12-trichloro-12- siladodecanoate (PEN) on a glass substrate. Then, the monolayer was polymerized in the presence of pure water by electrooxidation. The surface characterization of the molecular interaction was investigated by measuring the properties of CAMs attached to the glass substrate in the lateral direction. We formed PEN having polypyrrolyl groups, using Pt-patterned electrodes on glass surfaces and measured the conductance under a small bias voltage, using a conductive cantilever of atomic force microscopy (AFM). The polypyrrole derivative monolayer thus synthesized was covalently bonded to the glass substrate and showed conductivity as high as 3.05..103 S/cm after electro-oxidized. The method of preparing a conductive polymer monolayer by the combining chemical adsorption and electro-oxidation leads to a lot molecular wire to perpendicular to the Pt electrodes, and it is one of the key technologies for molecular devices.

  18. Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles.

    PubMed

    Singh, Raman Preet; Ramarao, Poduri

    2013-11-01

    Polymeric nanoparticles (PNPs) are a promising platform for drug, gene, and vaccine delivery. Although generally regarded as safe, the toxicity of PNPs is not well documented. The present study investigated in vitro toxicity of poly-ε-caprolactone, poly(DL-lactic acid), poly(lactide-cocaprolactone), and poly(lactide-co-glycide) NPs and possible mechanism of toxicity. The concentration-dependent effect of PNPs on cell viability was determined in a macrophage (RAW 264.7), hepatocyte (Hep G2), lung epithelial (A549), kidney epithelial (A498), and neuronal (Neuro 2A) cell lines. PNPs show toxicity at high concentrations in all cell lines. PNPs were efficiently internalized by RAW 264.7 cells and stimulated reactive oxygen species and tumor necrosis factor-alpha production. However, reactive nitrogen species and interleukin-6 production as well as lysosomal and mitochondrial stability remained unaffected. The intracellular degradation of PNPs was determined by monitoring changes in osmolality of culture medium and a novel fluorescence recovery after quenching assay. Cell death showed a good correlation with osmolality of culture medium suggesting the role of increased osmolality in cell death. PMID:23976781

  19. Development of a novel fluorescent imaging probe for tumor hypoxia by use of a fusion protein with oxygen-dependent degradation domain of HIF-1α

    NASA Astrophysics Data System (ADS)

    Tanaka, Shotaro; Kizaka-Kondoh, Shinae; Harada, Hiroshi; Hiraoka, Masahiro

    2007-02-01

    More malignant tumors contain more hypoxic regions. In hypoxic tumor cells, expression of a series of hypoxiaresponsive genes related to malignant phenotype such as angiogenesis and metastasis are induced. Hypoxia-inducible factor-1 (HIF-1) is a master transcriptional activator of such genes, and thus imaging of hypoxic tumor cells where HIF-1 is active, is important in cancer therapy. We have been developing PTD-ODD fusion proteins, which contain protein transduction domain (PTD) and the VHL-mediated protein destruction motif in oxygen-dependent degradation (ODD) domain of HIF-1 alpha subunit (HIF-1α). Thus PTD-ODD fusion proteins can be delivered to any tissue in vivo through PTD function and specifically stabilized in hypoxic cells through ODD function. To investigate if PTD-ODD fusion protein can be applied to construct hypoxia-specific imaging probes, we first constructed a fluorescent probe because optical imaging enable us to evaluate a probe easily, quickly and economically in a small animal. We first construct a model fusion porein PTD-ODD-EGFP-Cy5.5 named POEC, which is PTD-ODD protein fused with EGFP for in vitro imaging and stabilization of fusion protein, and conjugated with a near-infrared dye Cy5.5. This probe is designed to be degraded in normoxic cells through the function of ODD domain and followed by quick clearance of free fluorescent dye. On the other hand, this prove is stabilized in hypoxic tumor cells and thus the dye is stayed in the cells. Between normoxic and hypoxic conditions, the difference in the clearance rate of the dye will reveals suited contrast for tumor-hypoxia imaging. The optical imaging probe has not been optimized yet but the results presented here exhibit a potential of PTD-ODD fusion protein as a hypoxia-specific imaging probe.

  20. The effect of degradable polymer surfaces on co-cultures of monocytes and smooth muscle cells.

    PubMed

    McBane, Joanne E; Battiston, Kyle G; Wadhwani, Aman; Sharifpoor, Soroor; Labow, Rosalind S; Santerre, J Paul

    2011-05-01

    Strategies to optimize biomaterial chemistry for applications in vascular tissue engineering attempt to promote endothelial and smooth muscle cell recruitment into porous material constructs. The primary objective is to facilitate relevant tissue formation in a wound healing versus pro-inflammatory manner. The present work investigated the interactive co-cellular response of human monocytes and human vascular smooth muscle cells (VSMCs) with a novel degradable, polar/hydrophobic/ionic (D-PHI) polyurethane and compared it to a commercially available biomaterial, poly-lactic-glycolic acid (PLGA) as well as tissue culture polystyrene (TCPS). D-PHI triggered a smaller pro-inflammatory response (acid phosphatase, esterase, tumor necrosis factor-α) at later time points (>14 d) than PLGA suggesting that monocytes may be transitioning to a more wound-healing phenotype on the D-PHI surface. When D-PHI was coated with collagen, monocyte cell attachment did not differ with the native D-PHI; however, PLGA showed significant differences between collagen coated versus uncoated surfaces. There were more VSMCs and monocytes attached in co-culture to D-PHI when compared to PLGA. Co-cultures on D-PHI released more IL-10 (anti-inflammatory) than monocytes cultured alone, while the VSMCs retained the expression of its marker protein calponin. Together the above data suggest that co-culturing monocytes with VSMCs may aid in stimulating the attachment of VSMCs to D-PHI while eliciting the desired functional phenotypes for both monocytes (i.e. low inflammation based on IL-10 values) and VSMCs (expressing calponin, a marker of contractility). Moreover, the results of this study demonstrated that D-PHI performed equally or better to PLGA in terms of the assayed biological parameters. PMID:21345489

  1. Probing the subglass relaxation behavior in model heterocyclic polymer networks by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Kramarenko, V. Yu.; Ezquerra, T. A.; Privalko, V. P.

    2001-11-01

    The subglass relaxation (β) in model heterocyclic polymer networks (HPNs) with a controlled ratio of trimerized mono- and diisocyanates was characterized by dielectric spectroscopy in the frequency domain. The β relaxation in the investigated HPNs follows the Arrhenius law with unusually low values of the preexponential factor (10-17<τβ0<10-15 s). However, little influence of the local environment, as characterized by the network density, on the apparent activation energies ΔEβ is observed. This fact, combined with their fairly low absolute values (50.4-58.3 kJ/mol), were considered as typical of a noncooperative relaxation in loosely packed regions of a glassy quasilattice. Both the intensity and dielectric strength of the β relaxation in HPNs increase with increasing apparent network density (i.e., with lower ratios of linear and network structures in the system, L/N). This effect was explained by a model assuming that the total, composition-invariant, free volume available was distributed between densely packed domains comprising linear, two-arm isocyanurate heterocycles (ISHs) and loosely packed, three-arm ISHs, which form continuous, three-dimensional network structures. The experimental data for HPNs confirm Ngai's correlation between the logarithm of the secondary β-relaxation time and the Kohlrausch-Williams-Watts stretching exponent for the primary α relaxation. It is suggested that the absence of conjugated bonds within isocyanurate heterocycles makes them sufficiently flexible to allow for specific conformational transitions, like the ``chair-boat-chair'' transition in the structurally similar cyclohexyl ring.

  2. Time-Resolved DNA Stable Isotope Probing Links Desulfobacterales- and Coriobacteriaceae-Related Bacteria to Anaerobic Degradation of Benzene under Methanogenic Conditions

    PubMed Central

    Noguchi, Mana; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki

    2014-01-01

    To identify the microorganisms involved in benzene degradation, DNA-stable isotope probing (SIP) with 13C-benzene was applied to a methanogenic benzene-degrading enrichment culture. Pyrosequencing of ribosomal RNA (rRNA) gene sequences revealed that the community structure was highly complex in spite of a 3-year incubation only with benzene. The culture degraded 98% of approximately 1 mM 13C-benzene and mineralized 72% of that within 63 d. The terminal restriction fragment length polymorphism (T-RFLP) profiles of the buoyant density fractions revealed the incorporation of 13C into two phylotypes after 64 d. These two phylotypes were determined to be Desulfobacterales- and Coriobacteriaceae-related bacteria by cloning and sequencing of the 16S rRNA gene in the 13C-labeled DNA abundant fraction. Comparative pyrosequencing analysis of the buoyant density fractions of 12C- and 13C-labeled samples indicated the incorporation of 13C into three bacterial and one archaeal OTUs related to Desulfobacterales, Coriobacteriales, Rhodocyclaceae, and Methanosarcinales. The first two OTUs included the bacteria detected by T-RFLP-cloning-sequencing analysis. Furthermore, time-resolved SIP analysis confirmed that the activity of all these microbes appeared at the earliest stage of degradation. In this methanogenic culture, Desulfobacterales- and Coriobacteriaceae-related bacteria were most likely to be the major benzene degraders. PMID:24909708

  3. Formation of analogs of cometary nitrogen-rich refractory organics from thermal degradation of tholin and HCN polymer

    NASA Astrophysics Data System (ADS)

    Bonnet, Jean-Yves; Quirico, Eric; Buch, Arnaud; Thissen, Roland; Szopa, Cyril; Carrasco, Nathalie; Cernogora, Guy; Fray, Nicolas; Cottin, Hervé; Roy, Lena Le; Montagnac, Gilles; Dartois, Emmanuel; Brunetto, Rosario; Engrand, Cécile; Duprat, Jean

    2015-04-01

    Nitrogen-rich refractory organics are scarce phases recovered as a fraction of stratospheric IDPs and constitute the bulk of the organic matter of some ultracarbonaceous Antarctic micrometeorites. They are likely formed under very specific conditions within a nitrogen-rich environment and may provide valuable clues on the origin of the population of interplanetary dusts accreted by Earth. In this study, we produced relevant analogs of such refractory organics characterized in three ultracarbonaceous Antarctic micrometeorites, starting from the carbonization of an HCN polymer and a tholin. Indeed, carbonization is a process that can increase the polyaromatic character toward a structure similar to that observed in these cosmomaterials. Both these precursors were degraded in an Ar atmosphere at 300, 500, 700 and 1000 °C over ∼1 h and characterized by elemental analysis, micro-FTIR and Raman micro-spectroscopy (at 244 and 514 nm excitation wavelengths). Our results show that the precursors evolve along distinct chemical and structural pathways during carbonization and that the influence of the precursor structure is still very strong at 1000 °C. Interestingly, these different carbonization routes appear in the spectral characteristics of the G and D bands of their Raman spectra. Several of the residues present chemical and structural similarities with three recently studied ultracarbonaceous micrometeorites (Dobrica et al. [2011]. Meteorit. Planet. Sci. 46, 1363; Dartois et al. [2013]. Icarus 224, 243) and with N-rich inclusions in stratospheric IDPs. However, the residues do not simultaneously account for the carbon structure (Raman) and the chemical composition (IR, N/C ratio). This indicates that the precursors and/or heating conditions in our experiments are not fully relevant. Despite this lack of full relevancy, the formation of a polyaromatic structure fairly similar to that of UCAMMs and IDPs suggests that the origin of N-rich refractory organics lies in a

  4. Patterned enzymatic degradation of poly(ε-caprolactone) by high-affinity microcontact printing and polymer pen lithography.

    PubMed

    Ganesh, Manoj; Nachman, Jonathan; Mao, Zhantong; Lyons, Alan; Rafailovich, Miriam; Gross, Richard

    2013-08-12

    This paper reports deposition of Candida antarctica Lipase B (CALB) on relatively thick poly(ε-caprolactone) (PCL) films (300-500 nm) to create well-defined patterns using two different writing techniques: high-affinity microcontact (HA-μCL) and polymer pen (PPL) lithography. For both, an aqueous CALB ink is absorbed onto a polydimethylsiloxane (PDMS) writing implement (PDMS stamp or a PDMS pen tip), which is transferred to a spun-cast PCL film. HA-μCL experiments demonstrated the importance of applied pressure to obtain high-resolution patterns since uniform contact is needed between raised 20 μm parallel line regions of the PDMS stamp and the surface. AFM imaging shows pattern formation evolves gradually over incubation time only in areas stamped with CALB cutting through spherulites without apparent influence by grain boundaries. Strong binding of CALB to PCL is postulated as the mechanism by which lateral diffusion is limited. PPL enables formation of an arbitrary image by appropriate programming of the robot. The PDMS pen tips were coated with an aqueous CALB solution and then brought into contact with the PCL film to transfer CALB onto the surface. By repeating the ink transfer step multiple times where pen tips are brought into contact with the PCL film at a different locations, a pattern of dots is formed. After printing, patterns were developed at 37 °C and 95% RH. Over a 7-day period, CALB progressively etched the PCL down to the silicon wafer on which it was spun (350 nm) giving round holes with diameters about 10 μm. AFM images show the formation of steep PCL walls indicating CALB degraded the PCL film in areas to which it was applied. This work demonstrates that high-resolution patterns can be achieved without immobilizing the enzyme on the surface of polymeric stamps that limits the depth of features obtained as well as the throughput of the process. PMID:23808571

  5. APPLICATION OF FLUORESCENCE SPECTROSCOPIC TECHNIQUES AND PROBES TO THE DETECTION OF BIOPOLYMER DEGRADATION IN NATURAL ENVIRONMENTS. (R825159)

    EPA Science Inventory

    The activities and substrate specificities of extracellular enzymes in natural systems are not well understood, despite their critical role in microbial remineralization of organic carbon. These enzymes initiate organic carbon degradation by selectively hydrolyzing high molecular...

  6. Degradation of Methyl Bromide and Methyl Chloride in Soil Microcosms: Use of Stable C Isotope Fractionation and Stable Isotope Probing to Identify Reactions and the Responsible Microorganisms

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Warner, K. L.; Baesman, S. M.; Oremland, R. S.; McDonald, I. R.; Radajewski, S.; Murrell, J. C.

    2003-12-01

    Methyl bromide (MeBr) and methyl chloride (MeCl) are important atmospheric trace gases that contribute directly to stratospheric ozone depletion. These compounds have natural and anthropogenic sources and sinks in both aquatic and terrestrial environments. Soils comprise the largest known sink for MeBr on the Earth's surface and are also a large sink for MeCl. However, the processes that influence the flux of these compounds from air to soil or soil to air are poorly understood at present. Bacteria in soil microcosm experiments oxidized both MeCl and MeBr, the former compound more rapidly than the latter. MeBr was also removed by chemical reactions while MeCl was not. Chemical degradation of MeBr accounted for more than half of its total loss. We applied new techniques to determine if different bacteria were responsible for degrading MeBr and MeCl. Stable isotope probing revealed that different populations of soil bacteria assimilated added 13C-labeled MeBr and MeCl. Soil bacterial oxidation of MeBr and MeCl was characterized by different kinetic isotope effects (KIEs). The KIE for MeBr oxidation by bacteria was 22 +/- 5 \\permil and the KIE for MeCl oxidation was 56 +/- 3 \\permil, suggesting that different bacteria were responsible for degrading each compound. The identity of the active MeBr and MeCl degrading bacteria in soil was determined by analysis of 16S rDNA sequences amplified from 13C-DNA fractions. The diverse population of active bacteria was reflected by the range of sequences found for the cmuA gene, which codes for the enzyme that catalyzes the initial step in the oxidation of MeBr and MeCl. The diversity and number of different bacteria actively degrading MeBr and MeCl in the soil and the number of bacteria identified that contain the enzyme capable of degrading methyl halides were in contrast to the limited number of methyl halide degrading bacteria that have been isolated thus far from soil and aquatic environments; thus suggesting that the

  7. Photoluminescence quenching and degradation studies to determine the effect of nanotube inclusions on polymer morphology in conjugated polymer-carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Ryan, Kevin P.; Lipson, Stephen M.; O'Flaherty, Sean M.; Barron, Valerie; Cadek, Martin; Drury, Anna; Byrne, Hugh J.; Wool, R. P.; Blau, Werner J.; Coleman, Jonathan N.

    2003-03-01

    The change in morphology of a polymer matrix upon the introduction of carbon nanotubes is characterized in this study. Multi-walled carbon nanotubes were dispersed in the conjugated copolymer poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) (PmPV) to produce a composite material. Photoluminescence (PL) measurements show a reduction in PL efficiency as the nanotube content is increased. Electron microscopy studies have shown an ordering of the polymer around the nanotubes allowing a layer thickness of 25nm to be estimated. This observed thickness agrees well with the expected value of 55nm calculated using a model relating the PL decrease to the changes in conformation that result from polymer - nanotube interactions. Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR) techniques have been employed to investigate how the polycrystallinity of the polymer is affected due to the presence of nanotubes. The results indicate an increase in polymer crystallinity occurs due to an interfacial interaction between the polymer and the nanotube.

  8. Simple and highly sensitive measurement method for detection of glass transition temperatures of polymers: application of ESR power saturation phenomenon with conventional spin-probe technique.

    PubMed

    Miwa, Yohei; Yamamoto, Katsuhiro

    2012-08-01

    A combination of the microwave power saturation (MPS) method of electron spin resonance (ESR) and spin probing is proposed as a simple and practical technique for detecting the glass transition temperatures, T(g), of polymers with high sensitivity. Effects of the spin-probe size and concentration on the T(g) value of polystyrene (PS) determined by MPS, T(g,ESR), were first evaluated. Spin-probed PS with four types of nitroxides, namely, di-tert-butyl nitroxide (DBN), 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (BZONO), and 4',4'-dimethyl-spiro(5α-cholestane-3,2'-oxazolidin)-3'-yloxy free radical (CHOL), having molecular weights of 144, 156, 276, and 473, respectively, and spin-labeled PS with TEMPO were prepared. The T(g,ESR) values for the spin-probed PS with DBN, TEMPO, BZONO, and CHOL and spin-labeled PS were determined to 360, 363, 374, 374, and 375 K, respectively, within experimental uncertainties of 2 K, whereas the glass transition temperature determined by DSC, T(g,DSC), was 375 K for all samples. A significant decrease in T(g,ESR) for small spin probes was shown to be due to decoupling between the mobilities of small spin probes and PS segments. Concerning the concentration, a decrease in the saturation factor, S, induced by shortening of the spin-spin relaxation time was observed for the spin-probed PS with CHOL when the concentration of CHOL was more than 1.0 wt %. Furthermore, T(g,ESR) decreased slightly with increasing weight fraction of CHOL because of the "plasticizer effect" of CHOL. However, the T(g,ESR) and T(g,DSC) values corresponded for each concentration. Thus, large spin probes, such as CHOL and BZONO, are appropriate for the determination of T(g,ESR) values; the concentration of the spin probes does not affect the T(g,ESR) value unless the overall T(g) value is reduced by blending of excess spin probes. Finally, measurements of T(g,ESR) in PS/silica composites containing more than 95 wt

  9. AFM probing of polymer/nanofiller interfacial adhesion and its correlation with bulk mechanical properties in a poly(ethylene terephthalate) nanocomposite.

    PubMed

    Aoyama, Shigeru; Park, Yong Tae; Macosko, Christopher W; Ougizawa, Toshiaki; Haugstad, Greg

    2014-11-01

    The interfacial adhesion between polymer and nanofiller plays an important role in affecting the properties of nanocomposites. The detailed relationship between interfacial adhesion and bulk properties, however, is unclear. In this work, we developed an atomic force microscopy (AFM)-based abrasive scanning methodology, as applied to model laminate systems, to probe the strength of interfacial adhesion relevant to poly(ethylene terephthalate) (PET)/graphene or clay nanocomposites. Graphite and mica substrates covered with ∼2 nm thick PET films were abrasively sheared by an AFM tip as a model measurement of interfacial strength between matrix PET and dispersed graphene and clay, respectively. During several abrasive raster-scan cycles, PET was shear-displaced from the scanned region. At temperatures below the PET glass transition, PET on graphite exhibited abrupt delamination (i.e., full adhesive failure), whereas PET on mica did not; rather, it exhibited a degree of cohesive failure within the shear-displaced layer. Moreover, 100-fold higher force scanning procedures were required to abrade through an ultimate "precursor" layer of PET only ∼0.2-0.5 nm thick, which must be largely disentangled from the matrix polymer. Thus, the adhesive interface of relevance to the strength of clay-filler nanocomposites is between matrix polymer and strongly bound polymer. At 90 °C, above the bulk PET glass transition temperature, the PET film exhibited cohesive failure on both graphite and mica. Our results suggest that there is little difference in the strength of the relevant interfacial adhesion in the two nanocomposites within the rubbery dynamic regime. Further, the bulk mechanical properties of melt mixed PET/graphene and PET/clay nanocomposites were evaluated by dynamic mechanical analysis. The glassy dynamic storage modulus of the PET/clay nanocomposite was higher than that of PET/graphene, correlating with the differences in interfacial adhesion probed by AFM. PMID

  10. A Fluorescent Polymer Probe with High Selectivity toward Vascular Endothelial Cells for and beyond Noninvasive Two-Photon Intravital Imaging of Brain Vasculature.

    PubMed

    Mettra, B; Appaix, F; Olesiak-Banska, J; Le Bahers, T; Leung, A; Matczyszyn, K; Samoc, M; van der Sanden, B; Monnereau, C; Andraud, C

    2016-07-13

    A chromophore-engineering strategy that relies on the introduction of a ground-state distortion in a quadrupolar chromophore was used to obtain a quasi-quadrupolar chromophore with red emission and large two-photon absorption (2PA) cross-section in polar solvents. This molecule was functionalized with water-solubilizing polymer chains. It constitutes not only a remarkable contrast agent for intravital two-photon microscopy of the functional cerebral vasculature in a minimally invasive configuration but presents intriguing endothelial staining ability that makes it a valuable probe for premortem histological staining. PMID:27267494

  11. Probing the Degradation Mechanism of Li2MnO3 Cathode for Li-Ion Batteries

    SciTech Connect

    Yan, Pengfei; Xiao, Liang; Zheng, Jianming; Zhou, Yungang; He, Yang; Zu, Xiaotao; Mao, Scott X.; Xiao, Jie; Gao, Fei; Zhang, Jiguang; Wang, Chong M.

    2015-02-10

    Capacity and voltage fading of Li2MnO3 is a major challenge for the application of this category of material, which is believed to be associated with the structural and chemical evolution of the materials. This paper reports the detailed structural and chemical evolutions of Li2MnO3 cathode captured by using aberration corrected scanning/transmission electron microscope (S/TEM) after certain numbers of charge-discharge cycling of the batteries. It is found that structural degradation occurs from the very first cycle and is spatially initiated from the surface of the particle and propagates towards the inner bulk as cyclic number increase, featuring the formation of the surface phase transformation layer and gradual thickening of this layer. The structure degradation is found to follow a sequential phase transformation: monoclinic C2/m → tetragonal I41 → cubic spinel, which is consistently supported by the decreasing lattice formation energy based on DFT calculations. For the first time, high spatial resolution quantitative chemical analysis reveals that 20% oxygen in the surface phase transformation layer is removed and such newly developed surface layer is a Li-depleted layer with reduced Mn cations. This work demonstrates a direct correlation between structural degradation and cell’s electrochemical degradation, which enhances our understanding of Li-Mn-rich (LMR) cathode materials.

  12. Hydrothermal synthesis of Bismuth(III) coordination polymer and its transformation to nano α-Bi2O3 for photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Jing; Zheng, Yue-Qing; Zhu, Hong-Lin; Wang, Jin-Jian

    2016-07-01

    A new Bi(III) coordination polymer Bi2(Hpdc)2(pdc)2·2H2O (H2pdc=pyridine-2,6-dicarboxylic acid) was synthesized by hydrothermal method. Solid state thermal decomposition of this complex under 500 °C for 1 h led to the foliated Bi2O3 nanoparticles, which were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Comparative study on their photocatalytic activity toward the degradation of rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) in polluted water was explored, and the mechanism of these photocatalytic degradation was discussed. These results provided some interesting insights into their photocatalytic applications.

  13. High Resolution DNA Stable Isotope Probing Reveals that Root Exudate Addition to Soil Changes the Identity of the Microbes that Degrade Cellulose but not the Rate of Degradation

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Pepe-Ranney, C. P.; Nguyen, A. V. T.; Buckley, D. H.

    2015-12-01

    Plant roots release compounds, such as root exudates, which can alter soil organic matter (SOM) decomposition and have large impacts on soil carbon (C) retention. The changes in SOM turnover resulting from the addition of organic and/or inorganic substrates are termed 'priming effects'. In this study we examine the effects of root exudates on the priming of cellulose added as particulate organic matter. We amended soil microcosms with 13C-cellulose in the presence or absence of artificial root exudate additions and incubated over time for 45 days. Soils receiving the root exudate (RE) were given either one large dose or multiple, small doses of RE. In each treatment we tracked operational taxonomic units (OTUs) assimilating 13C from cellulose (herein, known as a 'responder') over time using DNA stable isotope probing coupled with next generation sequencing. In all treatments the same amount of cellulose-13C was respired indicating the addition of RE did not result in the priming of cellulose decomposition. However, cellulose responders were different depending on treatment and time of sampling (days 14, 28 and 45). We identified a total of 10,361 OTUs, of which there were 369 cellulose responders in the cellulose only treatment, 273 in the repeated, small dose RE treatment, and 358 in the RE single, large dose treatment. Most of the cellulose responders found in all treatments belonged to phyla Bacteroidetes, Planctomycetes, Proteobacteria, Verrucomicrobia, and Chloroflexi. The response time of phyla varies; for instance, more OTUs in Bacteroidetes were observed on day 14 and diminish with each subsequent sampling time. On the other hand, OTUs in Verrucomicrobia increased in response over time. Our study shows no priming effect resulting from the addition of root exudates, although the identity of the microbial mediators of cellulose decomposition varies in each treatment.

  14. Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects.

    PubMed

    James, K; Levene, H; Parsons, J R; Kohn, J

    1999-12-01

    In a series of homologous, tyrosine-based polycarbonates, small changes in the chemical structure of the polymer pendent chain were found to affect the bone response in a long-term (1280 d) implantation study. Identically sized pins, prepared from poly(DTE carbonate), poly(DTB carbonate), poly(DTH carbonate), and poly(DTO carbonate) were implanted transcortically in the proximal tibia and the distal femur of skeletally mature New Zealand White Rabbits. The tissue response at the bone-implant interface was characterized in terms of the absence of a fibrous capsule (direct bone apposition, indicative of a bone bonding response) or the presence of a fibrous capsule (referred to as the encapsulation response). The relative frequency of direct bone apposition versus encapsulation was recorded for each polymer throughout the entire period of the study. While all four polymers were tissue compatible, there was a correlation between the chemical structure of the pendent chain and the type of bone response observed, with poly(DTE carbonate) having the highest tendency to elicit direct bone apposition. Based on in vivo degradation data and the ability of model polymers with carboxylate groups at their surface to chelate calcium ions, it is proposed that the ability of poly(DTE carbonate) to bond to bone is caused by the facile hydrolysis of the pendent ethyl ester groups which creates calcium ion chelation sites on the polymer surface. The incorporation of calcium chelation sites into the chemical structure of an implant material appears to be a key requirement if direct bone apposition/bone bonding is desired. This study demonstrates that very subtle changes in the chemical composition of an implant material can have significant effects on the long-term tissue response in a clinically relevant model. PMID:10614927

  15. Innovative Protocols for in SITU MTBE Degradation by Using Molecular Probes-An Enhanced Chemical-Bio Oxidation Technique

    SciTech Connect

    Paul Fallgren

    2009-02-20

    In situ chemical oxidation (ISCO) is a common technology to cleanup petroleum hydrocarbon-contaminated soils and groundwater. Sodium percarbonate (SPC) is an oxidant which is activated by iron (Fe) to produce Fenton-like reactions. Western Research Institute, in conjunction with Regenesis and the U.S. Department of Energy, conducted a study that investigated the performance of a 'safe' oxidant, SPC, to cleanup groundwater and soils contaminated with petroleum hydrocarbons and associated contaminants (e.g., MTBE). Results from a field pilot test in Frenchglen, Oregon showed VOC concentrations in groundwater decreased substantially within 2 weeks after injecting activated SPC (RegenOx). A protocol was established for determining RegenOx TOD in soils and groundwater. Total oxidant demand tests were necessary to determine the correct dosage of RegenOx to apply in the field and sufficiently degrade the contaminants of concern. Bench studies with RegenOx showed this technology was effective in degrading diesel fuel and 1,4-dioxane. The Fe-silica activator (RegenOx Part B) was tested with another oxidant, sodium persulfate. Bench tests results showed the combination of sodium persulfate and RegenOx Part B was effective in reducing PCE, MTBE, benzene, and n-heptane concentrations in water. Overall, the results of this project indicated that most petroleum contaminants in soil and groundwater can be sufficiently degraded using the RegenOx technology.

  16. Two-photon excited quantum dots with compact surface coatings of polymer ligands used as an upconversion luminescent probe for dopamine detection in biological fluids.

    PubMed

    Jin, Hui; Gui, Rijun; Wang, Zonghua; Zhang, Feifei; Xia, Jianfei; Yang, Min; Bi, Sai; Xia, Yanzhi

    2015-03-21

    Water-soluble multidentate polymer coated CdTe quantum dots (QDs) were prepared via a stepwise addition of raw materials in a one-pot aqueous solution under ambient conditions. Just by adjusting the compositions of raw materials, different sized CdTe QDs were achieved within a short time. The as-prepared QDs showed compact surface coating (1.6-1.8 nm) of polymer ligands and photoluminescence (PL) emitted at 533-567 nm, as well as high colloidal/photo-stability and quantum yields (58-67%). Moreover, these QDs exhibited significant upconversion luminescence (UCL) upon excitation using an 800 nm femtosecond laser. Experimental results confirm that the UCL was ascribed to the two-photon assisted process via a virtual energy state. Then, the two-photon excited QDs were further developed as a novel UCL probe of dopamine (DA) due to self-assembled binding of DA molecules with QDs via non-covalent bonding. As a receptor, the DA attached onto the QD surface induced an electron transfer from QDs to DA, triggering UCL quenching of QDs. This UCL probe of DA presented a low limit of detection (ca. 5.4 nM), and high selectivity and sensitivity in the presence of potential interferences. In particular, it was favorably applied to the detection of DA in biological fluids, with quantitative recoveries (96.0-102.6%). PMID:25684191

  17. Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this

    PubMed Central

    Ruiz‐Dueñas, Francisco J.; Martínez, Ángel T.

    2009-01-01

    Summary Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non‐phenolic phenylpropanoid units form a complex three‐dimensional network linked by a variety of ether and carbon–carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one‐electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide‐generating oxidases. These peroxidases posses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non‐phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl‐free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure–function information currently available is being used to build tailor‐made peroxidases and other oxidoreductases as industrial biocatalysts. PMID:21261911

  18. Polymer dynamics near the surface and in the bulk of poly(tetrafluoroethylene) probed by zero-field muon-spin-relaxation spectroscopy

    NASA Astrophysics Data System (ADS)

    McKenzie, Iain; Salman, Zaher; Giblin, Sean R.; Han, Yun Yu; Leach, Gary W.; Morenzoni, Elvezio; Prokscha, Thomas; Suter, Andreas

    2014-02-01

    The results of many experiments on polymers such as polystyrene indicate that the polymer chains near a free surface exhibit enhanced dynamics when compared with the bulk. We have investigated whether this is the case for poly(tetrafluoroethylene) (PTFE) by using zero-field muon-spin-relaxation spectroscopy to characterize a local probe, the F-Mu+-F state, which forms when spin-polarized positive muons are implanted in PTFE. Low-energy muons (implantation energies from 2.0 to 23.0 keV) were used to study the F-Mu+-F state between ˜23 and 191 nm from the free surface of PTFE. Measurements were also made with surface muons (4.1 MeV) where the mean implantation depth is on the order of ˜0.6 mm. The relaxation rate of the F-Mu+-F state up to ˜150 K was found to be significantly higher for muons implanted at 2.0 keV than for higher implantation energies, which suggests that the polymer chains in a region on the order of a few tens of nanometers from the free surface are more mobile than those in the bulk.

  19. Polymer dynamics near the surface and in the bulk of poly(tetrafluoroethylene) probed by zero-field muon-spin-relaxation spectroscopy.

    PubMed

    McKenzie, Iain; Salman, Zaher; Giblin, Sean R; Han, Yun Yu; Leach, Gary W; Morenzoni, Elvezio; Prokscha, Thomas; Suter, Andreas

    2014-02-01

    The results of many experiments on polymers such as polystyrene indicate that the polymer chains near a free surface exhibit enhanced dynamics when compared with the bulk. We have investigated whether this is the case for poly(tetrafluoroethylene) (PTFE) by using zero-field muon-spin-relaxation spectroscopy to characterize a local probe, the F-Mu(+)-F state, which forms when spin-polarized positive muons are implanted in PTFE. Low-energy muons (implantation energies from 2.0 to 23.0 keV) were used to study the F-Mu(+)-F state between ∼ 23 and 191 nm from the free surface of PTFE. Measurements were also made with surface muons (4.1 MeV) where the mean implantation depth is on the order of ∼ 0.6 mm. The relaxation rate of the F-Mu(+)-F state up to ∼ 150 K was found to be significantly higher for muons implanted at 2.0 keV than for higher implantation energies, which suggests that the polymer chains in a region on the order of a few tens of nanometers from the free surface are more mobile than those in the bulk. PMID:25353500

  20. Evaluation of reversible and irreversible degradation rates of polymer electrolyte membrane fuel cells tested in automotive conditions

    NASA Astrophysics Data System (ADS)

    Gazdzick, Pawel; Mitzel, Jens; Garcia Sanchez, Daniel; Schulze, Mathias; Friedrich, K. Andreas

    2016-09-01

    This work provides single cell durability tests of membrane electrode assemblies in dynamic operation regularly interrupted by recovery procedures for the removal of reversible voltage losses. Degradation rates at different loads in one single test can be determined from these tests. Hence, it is possible to report degradation rates versus current density instead of a single degradation rate value. A clear discrimination between reversible and irreversible voltage loss rates is provided. The irreversible degradation rate can be described by a linear regression of voltage values after the recovery steps. Using voltage values before refresh is less adequate due to possible impacts of reversible effects. The reversible contribution to the voltage decay is dominated by an exponential decay after restart, eventually turning into a linear one. A linear-exponential function is proposed to fit the reversible voltage degradation. Due to this function, the degradation behavior of an automotive fuel cell can be described correctly during the first hours after restart. The fit parameters decay constant, exponential amplitude and linear slope are evaluated. Eventually, the reasons for the voltage recovery during shutdown are analyzed showing that ionomer effects in the catalyst layer and/or membrane seem to be the key factor in this process.

  1. Resonant Soft X-Ray Contrast Variation Methods as Composition-Specific Probes of Thin Polymer Film Structure

    SciTech Connect

    Welch, Cynthia; Welch, Cynthia F.; Hjelm, Rex P.; Mang, Joseph T.; Hawley, Marilyn E.; Wrobleski, Debra A.; Orler, E. Bruce; Kortright, Jeffrey B

    2008-04-04

    We have developed complementary soft x-ray scattering and reflectometry techniques that allow for the morphological analysis of thin polymer films without resorting to chemical modification or isotopic 2 labeling. With these techniques, we achieve significant, x-ray energy-dependent contrast between carbon atoms in different chemical environments using soft x-ray resonance at the carbon edge. Because carbon-containing samples absorb strongly in this region, the scattering length density depends on both the real and imaginary parts of the atomic scattering factors. Using a model polymer film of poly(styrene-b-methyl methacrylate), we show that the soft x-ray reflectivity data is much more sensitive to these atomic scattering factors than the soft x-ray scattering data. Nevertheless, fits to both types of data yield useful morphological details on the polymer?slamellar structure that are consistent with each other and with literature values.

  2. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis.

    PubMed

    Kim, So-Jeong; Park, Soo-Je; Cha, In-Tae; Min, Deullae; Kim, Jin-Seog; Chung, Won-Hyung; Chae, Jong-Chan; Jeon, Che Ok; Rhee, Sung-Keun

    2014-01-01

    DNA stable isotope probing and metagenomic sequencing were used to assess the metabolic potential of iron-reducing bacteria involved in anaerobic aromatic hydrocarbon degradation in oil spill-affected tidal flats. In a microcosm experiment, (13) C-toluene was degraded with the simultaneous reduction of Fe(III)-NTA, which was also verified by quasi-stoichiometric (13) C-CO2 release. The metabolic potential of the dominant member affiliated with the genus Desulfuromonas in the heavy DNA fraction was inferred using assembled scaffolds (designated TF genome, 4.40 Mbp with 58.8 GC mol%), which were obtained by Illumina sequencing. The gene clusters with peripheral pathways for toluene and benzoate conversion possessed the features of strict and facultative anaerobes. In addition to the class II-type benzoyl-CoA reductase (Bam) of strict anaerobes, the class I-type (Bcr) of facultative anaerobes was encoded. Genes related to the utilization of various anaerobic electron acceptors, including iron, nitrate (to ammonia), sulfur and fumarate, were identified. Furthermore, genes encoding terminal oxidases (caa3 , cbb3 and bd) and a diverse array of genes for oxidative stress responses were detected in the TF genome. This metabolic versatility may be an adaptation to the fluctuating availability of electron acceptors and donors in tidal flats. PMID:24118987

  3. Thermal degradation of β-carotene studied by ion mobility atmospheric solid analysis probe mass spectrometry: full product pattern and selective ionization enhancement.

    PubMed

    Xiao, Xiaoyin; Miller, Lance L; Bernstein, Robert; Hochrein, James M

    2016-04-01

    Atmospheric solid analysis probe mass spectrometry has the capability of capturing full product patterns simultaneously including both volatile and semi-volatile compounds produced at elevated temperatures. Real-time low-energy collision-induced fragmentation combined with ion mobility separations enables rapid identification of the chemical structures of products. We present here for the first time the recognition of full product patterns resulting from the thermal degradation of β-carotene at temperatures up to 600 °C. Solvent vapor-induced ionization enhancement is observed, which reveals parallel thermal dissociation processes that lead to even- and odd-numbered mass products. The drift-time distributions of high mass products, along with β-carotene, were monitored with temperature, showing multiple conformations that are associated with the presence of two β-rings. Products of masses 346/347, however, show a single conformation distribution, which indicates the separation of two β-rings resulting from the direct bond scission at the polyene hydrocarbon chain. The thermal degradation pathways are evaluated and discussed. PMID:27041662

  4. DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions.

    PubMed

    Laban, Nidal Abu; Dao, Anh; Foght, Julia

    2015-05-01

    Oil sands tailings ponds are anaerobic repositories of fluid wastes produced by extraction of bitumen from oil sands ores. Diverse indigenous microbiota biodegrade hydrocarbons (including toluene) in situ, producing methane, carbon dioxide and/or hydrogen sulfide, depending on electron acceptor availability. Stable-isotope probing of cultures enriched from tailings associated specific taxa and functional genes to (13)C6- and (12)C7-toluene degradation under methanogenic and sulfate-reducing conditions. Total DNA was subjected to isopycnic ultracentrifugation followed by gradient fraction analysis using terminal restriction fragment length polymorphism (T-RFLP) and construction of 16S rRNA, benzylsuccinate synthase (bssA) and dissimilatory sulfite reductase (dsrB) gene clone libraries. T-RFLP analysis plus sequencing and in silico digestion of cloned taxonomic and functional genes revealed that Clostridiales, particularly Desulfosporosinus (136 bp T-RF) contained bssA genes and were key toluene degraders during methanogenesis dominated by Methanosaeta. Deltaproteobacterial Desulfobulbaceae (157 bp T-RF) became dominant under sulfidogenic conditions, likely because the Desulfosporosinus T-RF 136 apparently lacks dsrB and therefore, unlike its close relatives, is presumed incapable of dissimilatory sulfate reduction. We infer incomplete oxidation of toluene by Desulfosporosinus in syntrophic association with Methanosaeta under methanogenic conditions, and complete toluene oxidation by Desulfobulbaceae during sulfate reduction. PMID:25873466

  5. Development of efficiency improved polymer-modified TiO2 for the photocatalytic degradation of an organic dye from wastewater environment

    NASA Astrophysics Data System (ADS)

    Sangareswari, Murugan; Meenakshi Sundaram, Mariappan

    2015-10-01

    In this study, the photocatalytic activity of polypyrrole-TiO2 nanocomposite was studied experimentally for the degradation of methylene blue (MB) dye under simulating solar light irradiation. To improve the photocatalytic activity of TiO2 under sunlight irradiation, conducting polymers such as polypyrrole (PPy) and its derivatives are generally used as photosensitizers. The PPy-TiO2 nanocomposite was prepared by the chemical oxidative polymerization method. The prepared nanocomposite showed better photocatalytic activity than bare TiO2 under sunlight irradiation for the degradation of MB dye. The prepared nanocomposite was subjected to characterization techniques such as SEM-EDAX, FT-IR, UV-DRS, XRD, TGA and PL spectral analysis. Different influencing operating parameters like initial concentration of dye, irradiation time, pH and amount of PPy-TiO2 nanocomposite used have also been studied. The optical density of the dye degradation was measured by UV-Visible spectrophotometer. The repeatability of photocatalytic activity was also tested. A plausible mechanism was proposed and discussed on the basis of experimental results.

  6. Solid-state linear sweep voltammetry. A probe of diffusion in thin films of polymer ion conductors on microdisk electrodes

    SciTech Connect

    Geng, L.; Reed, R.A.; Longmire, M.; Murray, R.W.

    1987-05-21

    Pt microdisk electrodes of diameter 10-70 ..mu..m sealed in glass, lying in the same plane with Ag pseudoreference and Pt auxiliary disk electrodes, and coated with a few micrometers of ionically conducting polymer film containing electroactive solutes provide a convenient experimental microcell format for solid-state linear sweep and cyclic voltammetry of the electroactive solutes. Transport rates of the solutes in the polymer depend on composition of the bathing (plasticizing) gas around the microcell, the temperature (polymer fluidity), and solute charge, size, and physical diffusion vs. electron self-exchange rates. Investigation of such transport phenomena requires theoretical analysis of the transport geometry of the microcell, which is the main subject of this paper. The preferred situations for measurements of transport rate are (i) polymer films thick in comparison to electrode diameter and transport rate, so that semi-infinite transport applies, and (ii) films thin in the same respects, so that currents are a summation of thin layer cell and microcylindrical geometries. Measured diffusion constants are confirmed with data from a four-electrode interdigitated array electrode experiment.

  7. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers

    PubMed Central

    2015-01-01

    Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL–1. Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes PMID:26258729

  8. A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light.

    PubMed

    Geetha, D; Kavitha, S; Ramesh, P S

    2015-11-01

    In the present work we defined a novel method of TiO2 doped silver nanocomposite synthesis and stabilization using bio-degradable polymers viz., chitosan (Cts) and polyethylene glycol (PEG). These polymers are used as reducing agents. The instant formation of AgNPs was analyzed by visual observation and UV-visible spectrophotometer. TiO2 nanoparticles doped at different concentrations viz., 0.03, 0.06 and 0.09mM on PEG/Cts stabilized silver (0.04wt%) were successfully synthesized. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the nanomaterial, producing ternary hybrid inorganic-organic nanomaterials. The results reveal that they have higher photocatalytic efficiencies under natural sun light. The synthesized TiO2 doped Ag nanocomposites (NCs) were characterized by SEM/EDS, TEM, XRD, FTIR and DLS with zeta potential. The stability of Ag/TiO2 nanocomposite is due to the high negative values of zeta potential and capping of constituents present in the biodegradable polymer which is evident from zeta potential and FT-IR studies. The XRD and EDS pattern of synthesized Ag/TiO2 NCs showed their crystalline structure, with face centered cubic geometry oriented in (111) plane. AFM and DLS studies revealed that the diameter of stable Ag/TiO2 NCs was approximately 35nm. Moreover the catalytic activity of synthesize Ag/TiO2 NCs in the reduction of methylene blue was studied by UV-visible spectrophotometer. The synthesized Ag/TiO2 NCs are observed to have a good catalytic activity on the reduction of methylene blue by bio-degradable which is confirmed by the decrease in absorbance maximum value of methylene blue with respect to time using UV-vis spectrophotometer. The significant enhancement in the photocatalytic activity of Ag/TiO2 nanocomposites under sun light irradiation can be ascribed to the effect of noble metal Ag by acting as electron traps in TiO2 band gap. PMID:25976106

  9. Ultrafast carrier photogeneration dynamics in polymer: fullerene solar cells probed by photocurrent-detected two-dimensional coherence spectroscopy (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Silva, Carlos

    2015-08-01

    In solar cells that incorporate semiconductor polymers as electron donors and fullerene derivatives as acceptors, a number of reports based on ultrafast optical probes reveal that charges can be generated on timescales significantly faster than ~100 fs in certain solid-state microstructures. Techniques that have been applied in these studies include variants of visible transient absorption and photoluminescence spectroscopy, terahertz spectroscopy, time-resolved infrared spectroscopy, and femtosecond stimulated Raman spectroscopy. These probes allow measurement of population dynamics of relevant photoexcitations (excitons, polarons) but do not reveal directly how these interact to produce photocarriers. Here, we present a non-linear coherent spectroscopy, photocurrent-detected two-dimensional spectroscopy (2DPC), which is an ultrafast optical thechnique belonging to a family of 2D Fourier- domain spectroscopies that allows measurement of correlations between optical transitions induced by short optical pulses. In our implementation, spectral correlations are detected via the time-integrated photocurrent produced in a photovoltaic diode. Four collinear ultrashort laser pulses (10 fs, centered at 600 nm in our experimental setup) excite the semiconductor polymer in the solar cell, with a variable delay that is independently controlled between each pulse in the sequence. Each pulse separately excites a quantum wavepacket with spectral phase and amplitude imparted by that pulse, while the effect of the pulse sequence is to collectively excite multiple quantum coherences. Interferences between the various combinations of the wavepackets determine linear and non-linear contributions to the material optical response. The fourth-order signal terms of the detected photocurrent are read using phase-sensitive detection schemes with reference waveforms corresponding to a modulation of specific phase combinations of the four femtosecond excitation pulses. By scanning the time

  10. Use of Field-Based Stable Isotope Probing To Identify Adapted Populations and Track Carbon Flow through a Phenol-Degrading Soil Microbial Community

    PubMed Central

    DeRito, Christopher M.; Pumphrey, Graham M.; Madsen, Eugene L.

    2005-01-01

    The goal of this field study was to provide insight into three distinct populations of microorganisms involved in in situ metabolism of phenol. Our approach measured 13CO2 respired from [13C]phenol and stable isotope probing (SIP) of soil DNA at an agricultural field site. Traditionally, SIP-based investigations have been subject to the uncertainties posed by carbon cross-feeding. By altering our field-based, substrate-dosing methodologies, experiments were designed to look beyond primary degraders to detect trophically related populations in the food chain. Using gas chromatography-mass spectrometry (GC/MS), it was shown that 13C-labeled biomass, derived from primary phenol degraders in soil, was a suitable growth substrate for other members of the soil microbial community. Next, three dosing regimes were designed to examine active members of the microbial community involved in phenol metabolism in situ: (i) 1 dose of [13C]phenol, (ii) 11 daily doses of unlabeled phenol followed by 1 dose of [13C]phenol, and (iii) 12 daily doses of [13C]phenol. GC/MS analysis demonstrated that prior exposure to phenol boosted 13CO2 evolution by a factor of 10. Furthermore, imaging of 13C-treated soil using secondary ion mass spectrometry (SIMS) verified that individual bacteria incorporated 13C into their biomass. PCR amplification and 16S rRNA gene sequencing of 13C-labeled soil DNA from the 3 dosing regimes revealed three distinct clone libraries: (i) unenriched, primary phenol degraders were most diverse, consisting of α-, β-, and γ-proteobacteria and high-G+C-content gram-positive bacteria, (ii) enriched primary phenol degraders were dominated by members of the genera Kocuria and Staphylococcus, and (iii) trophically related (carbon cross-feeders) were dominated by members of the genus Pseudomonas. These data show that SIP has the potential to document population shifts caused by substrate preexposure and to follow the flow of carbon through terrestrial microbial food

  11. Degradation of methyl bromide and methyl chloride in soil microcosms: Use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms

    USGS Publications Warehouse

    Miller, L.G.; Warner, K.L.; Baesman, S.M.; Oremland, R.S.; McDonald, I.R.; Radajewski, S.; Murrell, J.C.

    2004-01-01

    Bacteria in soil microcosm experiments oxidized elevated levels of methyl chloride (MeCl) and methyl bromide (MeBr), the former compound more rapidly than the latter. MeBr was also removed by chemical reactions while MeCl was not. Chemical degradation dominated the early removal of MeBr and accounted for more than half of its total loss. Fractionation of stable carbon isotopes during chemical degradation of MeBr resulted in a kinetic isotope effect (KIE) of 59 ?? 7???. Soil bacterial oxidation dominated the later removal of MeBr and MeCl and was characterized by different KIEs for each compound. The KIE for MeBr oxidation was 69 ?? 9??? and the KIE for MeCl oxidation was 49 ?? 3???. Stable isotope probing revealed that different populations of soil bacteria assimilated added 13C-labeled MeBr and MeCl. The identity of the active MeBr and MeCl degrading bacteria in soil was determined by analysis of 16S rRNA gene sequences amplified from 13C-DNA fractions, which identified a number of sequences from organisms not previously thought to be involved in methyl halide degradation. These included Burkholderia , the major clone type in the 13C-MeBr fraction, and Rhodobacter, Lysobacter and Nocardioides the major clone types in the 13C-MeCl fraction. None of the 16S rRNA gene sequences for methyl halide oxidizing bacteria currently in culture (including Aminobacter strain IMB-1 isolated from fumigated soil) were identified. Functional gene clone types closely related to Aminobacter spp. were identified in libraries containing the sequences for the cmuA gene, which codes for the enzyme known to catalyze the initial step in the oxidation of MeBr and MeCl. The cmuA gene was limited to members of the alpha-Proteobacteria whereas the greater diversity demonstrated by the 16S rRNA gene may indicate that other enzymes catalyze methyl halide oxidation in different groups of bacteria. Copyright ?? 2004 Elsevier Ltd.

  12. Degradation of methyl bromide and methyl chloride in soil microcosms: Use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms

    NASA Astrophysics Data System (ADS)

    Miller, Laurence G.; Warner, Karen L.; Baesman, Shaun M.; Oremland, Ronald S.; McDonald, Ian R.; Radajewski, Stefan; Murrell, J. Colin

    2004-08-01

    Bacteria in soil microcosm experiments oxidized elevated levels of methyl chloride (MeCl) and methyl bromide (MeBr), the former compound more rapidly than the latter. MeBr was also removed by chemical reactions while MeCl was not. Chemical degradation dominated the early removal of MeBr and accounted for more than half of its total loss. Fractionation of stable carbon isotopes during chemical degradation of MeBr resulted in a kinetic isotope effect (KIE) of 59 ± 7‰. Soil bacterial oxidation dominated the later removal of MeBr and MeCl and was characterized by different KIEs for each compound. The KIE for MeBr oxidation was 69 ± 9‰ and the KIE for MeCl oxidation was 49 ± 3‰. Stable isotope probing revealed that different populations of soil bacteria assimilated added 13C-labeled MeBr and MeCl. The identity of the active MeBr and MeCl degrading bacteria in soil was determined by analysis of 16S rRNA gene sequences amplified from 13C-DNA fractions, which identified a number of sequences from organisms not previously thought to be involved in methyl halide degradation. These included Burkholderia, the major clone type in the 13C-MeBr fraction, and Rhodobacter, Lysobacter and Nocardioides the major clone types in the 13C-MeCl fraction. None of the 16S rRNA gene sequences for methyl halide oxidizing bacteria currently in culture (including Aminobacter strain IMB-1 isolated from fumigated soil) were identified. Functional gene clone types closely related to Aminobacter spp. were identified in libraries containing the sequences for the cmuA gene, which codes for the enzyme known to catalyze the initial step in the oxidation of MeBr and MeCl. The cmuA gene was limited to members of the alpha-Proteobacteria whereas the greater diversity demonstrated by the 16S rRNA gene may indicate that other enzymes catalyze methyl halide oxidation in different groups of bacteria.

  13. Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products

    EPA Science Inventory

    A pair of homologous series of polyfluorinated degradation products have been identified, both having structures similar to perfluorocarboxylic acids but (i) having a H substitution for F on the α carbon for 2H polyfluorocarboxylic acids (2HPFCAs) and (ii) bearing a double ...

  14. Local know model of entangled polymer chains. 2. Theory of probe fluctuation and diffusion coefficient of a single local knot

    SciTech Connect

    Iwata, Kazuyoshi

    1992-05-14

    The local knot (LK) theory is tested by computer simulations in parts 1 and 2. Here, theoretical problems of the simulations are mainly discussed. The probe fluctuation found in part 1 is studied theoretically, and a method for separating the Markov motion of a LK from its probe fluctuation is proposed. A detailed discussions on the mechanism of the probe fluctuation and the uncertainty principal are given. A modified expression of the diffusion coefficient of a LK is derived that cancels the interference of the probe fluctuations, and its numerical calculation is performed. A correction for short memory effects of LK motion is also done. The theoretical value of d{sub 0} thus computed is 0.0393 bond{sup 2}/u.t. (u.t. - unit time) which is comparable to its simulation value 0.0172 bond{sup 2}/u.t. obtained in part 1. Finally, it is concluded that the LK theory is proved by the results of parts 1 and 2 and, by this, a true molecular theory of entanglement has been first established. 13 refs., 7 figs., 1 tab.

  15. Dimethylselenide as a probe for reactions of halogenated alkoxyl radicals in aqueous solution. Degradation of dichloro- and dibromomethane.

    PubMed

    Makogon, Oksana; Flyunt, Roman; Tobien, Thomas; Naumov, Sergej; Bonifacić, Marija

    2008-07-01

    Using pulse radiolysis and steady-state gamma-radiolysis techniques, it has been established that, in air-saturated aqueous solutions, peroxyl radicals CH 2HalOO (*) (Hal = halogen) derived from CH 2Cl 2 and CH 2Br 2 react with dimethyl selenide (Me 2Se), with k on the order of 7 x 10 (7) M (-1) s (-1), to form HCO 2H, CH 2O, CO 2, and CO as final products. An overall two-electron oxidation process leads directly to dimethyl selenoxide (Me 2SeO), along with oxyl radical CH 2HalO (*). The latter subsequently oxidizes another Me 2Se molecule by a much faster one-electron transfer mechanism, leading to the formation of equal yields of CH 2O and the dimer radical cation (Me 2Se) 2 (*+). In absolute terms, these yields amount to 18% and 28% of the CH 2ClO (*) and CH 2BrO (*) yields, respectively, at 1 mM Me 2Se. In competition, CH 2HalO (*) rearranges into (*)CH(OH)Hal. These C-centered radicals react further via two pathways: (a) Addition of an oxygen molecule leads to the corresponding peroxyl radicals, that is, species prone to decomposition into H (+)/O 2 (*-) and formylhalide, HC(O)Hal, which further degrades mostly to H (+)/Hal (-) and CO. (b) Elimination of HHal yields the formyl radical H-C(*)=O with a rate constant of about 6 x 10 (5) s (-1) for Hal = Cl. In an air-saturated solution, the predominant reaction pathway of the H-C(*)=O radical is addition of oxygen. The formylperoxyl radical HC(O)OO (*) thus formed reacts with Me 2Se via an overall two-electron transfer mechanism, giving additional Me 2SeO and formyloxyl radicals HC(O)O(*). The latter rearrange via a 1,2 H-atom shift into (*)C(O)OH, which reacts with O2 to give CO2 and O2(*)(-). The minor fraction of H-C(*)=O undergoes hydration, with an estimated rate constant of k approximately 2 x 10(5) s(-1). The resulting HC(*)(OH)2 radical, upon reaction with O2, yields HCO 2H and H (+)/O2(*-). Some of the conclusions about the reactions of halogenated alkoxyl radicals are supported by quantum chemical

  16. Probing dispersion and re-agglomeration phenomena upon melt-mixing of polymer-functionalized graphite nanoplates.

    PubMed

    Santos, R M; Vilaverde, C; Cunha, E; Paiva, M C; Covas, J A

    2016-01-01

    A one-step melt-mixing method is proposed to study dispersion and re-agglomeration phenomena of the as-received and functionalized graphite nanoplates in polypropylene melts. Graphite nanoplates were chemically modified via 1,3-dipolar cycloaddition of an azomethine ylide and then grafted with polypropylene-graft-maleic anhydride. The effect of surface functionalization on the dispersion kinetics, nanoparticle re-agglomeration and interface bonding with the polymer is investigated. Nanocomposites with 2 or 10 wt% of as-received and functionalized graphite nanoplates were prepared in a small-scale prototype mixer coupled to a capillary rheometer. Samples were collected along the flow axis and characterized by optical microscopy, scanning electron microscopy and electrical conductivity measurements. The as-received graphite nanoplates tend to re-agglomerate upon stress relaxation of the polymer melt. The covalent attachment of a polymer to the nanoparticle surface enhances the stability of dispersion, delaying the re-agglomeration. Surface modification also improves interfacial interactions and the resulting composites presented improved electrical conductivity. PMID:26439171

  17. PPV-Based Conjugated Polymer Nanoparticles as a Versatile Bioimaging Probe: A Closer Look at the Inherent Optical Properties and Nanoparticle-Cell Interactions.

    PubMed

    Peters, Martijn; Zaquen, Neomy; D'Olieslaeger, Lien; Bové, Hannelore; Vanderzande, Dirk; Hellings, Niels; Junkers, Thomas; Ethirajan, Anitha

    2016-08-01

    Conjugated polymers have attracted significant interest in the bioimaging field due to their excellent optical properties and biocompatibility. Tailor-made poly(p-phenylenevinylene) (PPV) conjugated polymer nanoparticles (NPs) are in here described. Two different nanoparticle systems using poly[2-methoxy-5-(3',7'-dimethoxyoctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and a functional statistical copolymer 2-(5'-methoxycarbonylpentyloxy)-5-methoxy-1,4-phenylenevinylene (CPM-MDMO-PPV), containing ester groups on the alkoxy side chains, were synthesized by combining miniemulsion and solvent evaporation processes. The hydrolysis of ester groups into carboxylic acid groups on the CPM-MDMO-PPV NPs surface allows for biomolecule conjugation. The NPs exhibited excellent optical properties with a high fluorescent brightness and photostability. The NPs were in vitro tested as potential fluorescent nanoprobes for studying cell populations within the central nervous system. The cell studies demonstrated biocompatibility and surface charge dependent cellular uptake of the NPs. This study highlights that PPV-derivative based particles are a promising bioimaging probe and can cater potential applications in the field of nanomedicine. PMID:27345494

  18. Catalyzed oxidative degradation of methyl orange over Au catalyst prepared by ionic liquid-polymer modified silica

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Guo, J. S.

    2015-07-01

    A new type of hybrid material was prepared by grafting an ionic liquid monomer, 1-(p-vinylbenzyl)-3-methylimidazolium chloride, on the surface of the porous silica which was synthesized via sodium silicate hydrolysis. The as-synthesized products were characterized by scanning electron microscope, nitrogen physisorption experiment, thermogravimetric analysis and Fourier transform infrared spectra. A catalyst with Au was prepared using the hybrid material as carrier. The experimental results show that the catalyst exhibits a better catalytic effect of hydrogen peroxide on the degradation of methyl orange. The reason may be that the metal component of the catalyst facilitated the dissociation of hydrogen peroxide to produce abundant highly active free radicals which can rapidly ruin the structure of methyl orange molecules in water. Finally, a probable catalytic degradation mechanism based on diffusion was discussed.

  19. The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy.

    PubMed

    Hashizume, Ryotaro; Hong, Yi; Takanari, Keisuke; Fujimoto, Kazuro L; Tobita, Kimimasa; Wagner, William R

    2013-10-01

    Biodegradable polyurethane patches have been applied as temporary mechanical supports to positively alter the remodeling and functional loss following myocardial infarction. How long such materials need to remain in place is unclear. Our objective was to compare the efficacy of porous onlay support patches made from one of three types of biodegradable polyurethane with relatively fast (poly(ester urethane)urea; PEUU), moderate (poly(ester carbonate urethane)urea; PECUU), and slow (poly(carbonate urethane)urea; PCUU) degradation rates in a rat model of ischemic cardiomyopathy. Microporous PEUU, PECUU or PCUU (n = 10 each) patches were implanted over left ventricular lesions 2 wk following myocardial infarction in rat hearts. Infarcted rats without patching and age-matched healthy rats (n = 10 each) were controls. Echocardiography was performed every 4 wk up to 16 wk, at which time hemodynamic and histological assessments were performed. The end-diastolic area for the PEUU group at 12 and 16 wk was significantly larger than for the PECUU or PCUU groups. Histological analysis demonstrated greater vascular density in the infarct region for the PECUU or PCUU versus PEUU group at 16 wk. Improved left ventricular contractility and diastolic performance in the PECUU group was observed at 16 wk compared to infarction controls. The results indicate that the degradation rate of an applied elastic patch influences the functional benefits associated patch placement, with a moderately slow degrading PECUU patch providing improved outcomes. PMID:23827185

  20. Synthesis and In Vivo Pharmacokinetic Evaluation of Degradable Shell Crosslinked Polymer Nanoparticles with Poly(carboxybetaine) vs. Poly(ethylene glycol) Surface-grafted Coatings

    PubMed Central

    Li, Ang; Luehmann, Hannah P.; Sun, Guorong; Samarajeewa, Sandani; Zou, Jiong; Zhang, Shiyi; Zhang, Fuwu; Welch, Michael J.; Liu, Yongjian; Wooley, Karen L.

    2012-01-01

    Nanoparticles with tunable pharmacokinetics are desirable for various biomedical applications. Poly(ethylene glycol) (PEG) is well known to create “stealth” effects to stabilize and extend the blood circulation of nanoparticles. In this work, poly(carboxybetaine) (PCB), a new non-fouling polymer material, was incorporated as surface-grafted coatings, conjugated onto degradable shell crosslinked knedel-like nanoparticles (dSCKs) composed of poly(acrylic acid)- based shells and poly(lactic acid) (PLA) cores, to compare the in vivo pharmacokinetics to their PEG-functionalized analogs. A series of five dSCKs was prepared from amphiphilic block copolymers, having different numbers and lengths of either PEG or PCB grafts, by supramolecular assembly in water followed by shell crosslinking, and then studied by a lactate assay to confirm their core hydrolytic degradabilities. Each dSCK was also conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocyclic chelators and tyramine moieties to provide for 64Cu and/or radiohalogen labeling. The high specific activity of 64Cu radiolabeling ensured nanogram administration of dSCKs for in vivo evaluation of their pharmacokinetics. Biodistribution studies demonstrated comparable in vivo pharmacokinetic profiles of PCB-grafted dSCKs to their PEG-conjugated counterparts. These results indicated that PCB-functionalized dSCKs have great potential as a theranostic platform for translational research. PMID:23043240

  1. Anomalous Diffusion in Polymer Solution as Probed by Fluorescence Correlation Spectroscopy and Its Universal Importance in Biological Systems

    NASA Astrophysics Data System (ADS)

    Ushida, Kiminori

    2008-02-01

    Experimental evidence of anomalous diffusion occurring in an inhomogeneous media (hyaluronan aquous solution) was obtained by use of fluorescence correlation spectroscopy (FCS) combined with other techniques (PFG-NMR and Photochemical reactions). The diffusion coefficient was obtained as a function of diffusion time or diffusion distance. Since this polymer solution can be regarded as a model system of extracellular matrices (ECMs), intercellular communication, which takes part in ECM, is greatly influenced by this anomalous diffusion mode. Therefore universal importance of anomalous diffusion in biological activity is identified in this series of independent experiments to measure diffusion coefficients.

  2. Optical and magnetic probes of hot singlet exciton fission in π-conjugated polymers for organic photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Zhai, Yaxin; Olejnik, Ella; Vardeny, Z. Valy

    2015-09-01

    We used steady state and picosecond transient photoinduced absorption (PA), excitation dependence (EXPA(ω)) spectrum of the triplet exciton PA band, and its magneto-PA (MPA(B)) response to investigate singlet fission (SF) of hot-excitons into two separated triplet excitons in luminescent π-conjugated polymers. From the high energy step in the triplet EXPA(ω) spectrum of poly(dioctyloxy)-phenylenevinylene (DOO-PPV) films, we identified a hot-exciton SF (HE-SF) process having threshold energy at E≍2ET (=2.8 eV, where ET is the energy of the lowest lying triplet exciton), which is about 0.8 eV above the lowest singlet exciton energy. The picosecond transient PA with 3.1 eV pump excitation shows that in DOO-PPV film a triplet exciton is generated at time, t<500 ps. However the ultrafast triplet generation is missing in DOO-PPV solution, indicating that the HE-SF is predominantly interchain in nature. The HE-SF process was confirmed by the triplet MPA(B) response for excitation at E>2ET, which shows a typical SF response. Our work shows that the SF process in π-conjugated polymers is a much more general process than thought previously.

  3. Temperature Dependence of the Viscoelastic Properties of a Confined Liquid Polymer Measured by Using an Oscillating Optical Fiber Probe

    NASA Astrophysics Data System (ADS)

    Itoh, Shintaro; Fukuzawa, Kenji; Hamamoto, Yuya; Zhang, Hedong

    2010-08-01

    We measured the temperature dependence of the viscoelastic properties of a liquid polymer confined and sheared within a nanometer-sized gap. In the viscoelastic measurements, we used the fiber wobbling method, a highly sensitive method that we have developed for measuring shear forces. As a liquid sample, we used the fluoropolyether lubricant Fomblin Zdol4000. Our experimental results showed that the temperature dependence of the viscosity was well expressed by the well-known Andrade equation, even in the confined state. The activation enthalpy was calculated by assuming that Eyring's theory of viscosity holds for gaps of a width ranging from 100 nm down to a few nanometers. We observed a significant decrease in the activation enthalpy for gaps smaller than 10 nm. Elasticity, which only appeared for confinement in gaps smaller than 10 nm, roughly decreased with increasing temperature.

  4. A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Brocorens, Patrick; Tonnelé, Claire; Beljonne, David; Surin, Mathieu; George, Subi J.

    2014-12-01

    Design of artificial systems, which can respond to fluctuations in concentration of adenosine phosphates (APs), can be useful in understanding various biological processes. Helical assemblies of chromophores, which dynamically respond to such changes, can provide real-time chiroptical readout of various chemical transformations. Towards this concept, here we present a supramolecular helix of achiral chromophores, which shows chiral APs responsive tunable handedness along with dynamically switchable helicity. This system, composing of naphthalenediimides with phosphate recognition unit, shows opposite handedness on binding with ATP compared with ADP or AMP, which is comprehensively analysed with molecular dynamic simulations. Such differential signalling along with stimuli-dependent fast stereomutations have been capitalized to probe the reaction kinetics of enzymatic ATP hydrolysis. Detailed chiroptical analyses provide mechanistic insights into the enzymatic hydrolysis and various intermediate steps. Thus, a unique dynamic helical assembly to monitor the real-time reaction processes via its stimuli-responsive chiroptical signalling is conceptualized.

  5. A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis.

    PubMed

    Kumar, Mohit; Brocorens, Patrick; Tonnelé, Claire; Beljonne, David; Surin, Mathieu; George, Subi J

    2014-01-01

    Design of artificial systems, which can respond to fluctuations in concentration of adenosine phosphates (APs), can be useful in understanding various biological processes. Helical assemblies of chromophores, which dynamically respond to such changes, can provide real-time chiroptical readout of various chemical transformations. Towards this concept, here we present a supramolecular helix of achiral chromophores, which shows chiral APs responsive tunable handedness along with dynamically switchable helicity. This system, composing of naphthalenediimides with phosphate recognition unit, shows opposite handedness on binding with ATP compared with ADP or AMP, which is comprehensively analysed with molecular dynamic simulations. Such differential signalling along with stimuli-dependent fast stereomutations have been capitalized to probe the reaction kinetics of enzymatic ATP hydrolysis. Detailed chiroptical analyses provide mechanistic insights into the enzymatic hydrolysis and various intermediate steps. Thus, a unique dynamic helical assembly to monitor the real-time reaction processes via its stimuli-responsive chiroptical signalling is conceptualized. PMID:25511998

  6. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes.

    PubMed

    Zhou, Jing; Gan, Ning; Li, Tianhua; Hu, Futao; Li, Xing; Wang, Lihong; Zheng, Lei

    2014-04-15

    In this report, a rapid and cost-effective sandwich electrochemiluminescence (ECL) immunosensor was constructed for the ultrasensitive detection of human immunodeficiency virus type 1 antibody (anti-HIV-1) using magnetic molecularly imprinted polymers (MMIPs) as capture probes by combining surface and epitope imprinting techniques and antigen conjugated with horseradish peroxidase (HRP-HIV-1) as labels. First, 3-aminobenzeneboronic acid (APBA) was used as the functional monomer and cross-linking reagent, which was polymerized on the surface of silicate-coated magnetic iron oxide nanoparticles (Fe3O4@SiO2 NPs) in the presence of human immunoglobulin G (HIgG), as the template exhibiting the same Fc region but different Fab region to anti-HIV-1 after the addition of the initiator, ammonium persulfate. This process resulted in grafting a hydrophilic molecularly imprinted polymer (MIP) film on the Fe3O4@SiO2 NPs. Thus, MMIPs, which could be reused after eluting the template, were used to recognize and enrich ultra-trace levels of anti-HIV-1. Subsequently, a novel sandwich ECL immunosensor was formed through the immunoreaction between MMIPs conjugated with varied concentrations of anti-HIV-1 and HRP-HIV-1. By the catalysis of HRP immobilized onto HRP-HIV-1 on the ECL system of Luminol-H2O2, a linear response range of the anti-HIV-1 dilution ratio (standard positive serum) was achieved from 1:20,000 to 1:50, with a detection limit of 1:60,000 (S/N=3). The developed method provides a low-cost, simple, and sensitive way for the early diagnosis of HIV infected patients. PMID:24280050

  7. Application of (13)C and (15)N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions.

    PubMed

    Cho, Kun-Ching; Lee, Do Gyun; Fuller, Mark E; Hatzinger, Paul B; Condee, Charles W; Chu, Kung-Hui

    2015-10-30

    This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using (13)C and (15)N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with (13)C3- or ring-(15)N3-, nitro-(15)N3-, or fully-labeled (15)N6-RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the (13)C-DNA fractions. A total of twenty seven sequences were derived from different (15)N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled (13)C or (15)N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that (13)C- and (15)N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions. PMID:25935409

  8. Mono/bimetallic water-stable lanthanide coordination polymers as luminescent probes for detecting cations, anions and organic solvent molecules.

    PubMed

    Wang, Huarui; Qin, Jianhua; Huang, Chao; Han, Yanbing; Xu, Wenjuan; Hou, Hongwei

    2016-08-01

    Eleven water-stable isostructural mono/bimetallic lanthanide coordination polymers (Ln-CPs) {[EuxTb1-x (HL)(H2O)3]·H2O}n (x = 1.0 (1), 0.9 (3), 0.8 (4), 0.7 (5), 0.6 (6), 0.4 (7), 0.3 (8), 0.2 (9), 0.1 (10), 0.05 (11), 0 (2), H4L = 5,5'-(1H-2,3,5-triazole-1,4-diyl)diisophthalic acid) with uncoordinated Lewis basic triazole sites within the pores were prepared. The Ln-CPs represented by 1 showed a rapid and drastic emission quenching induced by external Fe(3+) and Cr(3+) cations and CrO4(2-) and CO3(2-) anions in aqueous solution. In addition, because of the comparable emission intensities of Eu(3+) and Tb(3+) ions, bimetallic CP 8 can be used as a ratiometric luminescent sensor for organic solvent molecules. Moreover, the luminescent color of the 8 sensor in pyridine and in other guest solvents undergoes obvious changes that can be clearly distinguished by the naked eye. PMID:27443408

  9. Probing adsorption of polyacrylamide-based polymers on anisotropic Basal planes of kaolinite using quartz crystal microbalance.

    PubMed

    Alagha, Lana; Wang, Shengqun; Yan, Lujie; Xu, Zhenghe; Masliyah, Jacob

    2013-03-26

    Quartz crystal microbalance with dissipation (QCM-D) was applied to investigate the adsorption characteristics of polyacrylamide-based polymers (PAMs) on anisotropic basal planes of kaolinite. Kaolinite basal planes were differentiated by depositing kaolinite nanoparticles (KNPs) on silica and alumina sensors in solutions of controlled pH values. Adsorption of an in-house synthesized organic-inorganic Al(OH)3-PAM (Al-PAM) as an example of cationic hybrid PAM and a commercially available partially hydrolyzed polyacrylamide (MF1011) as an example of anionic PAM was studied. Cationic Al-PAM was found to adsorb irreversibly and preferentially on tetrahedral silica basal planes of kaolinite. In contrast, anionic MF1011 adsorbed strongly on aluminum-hydroxy basal planes, while its adsorption on tetrahedral silica basal planes was weak and reversible. Adsorption study revealed that both electrostatic attraction and hydrogen-bonding mechanisms contribute to adsorption of PAMs on kaolinite. The adsorbed Al-PAM layer was able to release trapped water overtime and became more compact, while MF1011 film became more dissipative as backbones stretched out from kaolinite surface with minimal overlapping. Experimental results obtained from this study provide clear insights into the phenomenon that governs flocculation-based solid-liquid separation processes using multicomponent flocculants of anionic and cationic nature. PMID:23398356

  10. Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Reinold, Lukas Mirko; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Büchner, Bernd; Grafe, Hans-Joachim

    2014-05-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature (T) and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  11. Temperature-Modulated Ellipsometry in Vacuum: A New Tool for Probing Glass Transition in Thin Supported Polymer Films

    NASA Astrophysics Data System (ADS)

    Efremov, Mikhail; Soofi, Shauheen; Kiyanova, Anna; Cerrina, Franco; Nealey, Paul

    2009-03-01

    Observation of glass transition in thin polymer films is a good example of experimental challenges that measurements at the nanoscale may present. The standard technique in the field, ellipsometry, has been advanced by state-of-the-art approaches: measurements in vacuum and temperature modulation. Glass transition in 5 -- 200 nm thick spin-cast polystyrene (PS) and poly(methyl methacrylate) (PMMA) films on silicon has been studied at 10-6 -- 10-8 torr residual gas pressure, using both linear and modulated temperature scans [1, 2]. A well-defined glass transition in 5 nm thick PS and 10 nm thick PMMA films is observed. Factors that can alter glass transition temperature assignment will be discussed. Residual gas can affect data even at the pressures mentioned above [1]. An ionization gauge, the standard vacuum equipment, causes sample deterioration [1]. Temperature modulation effectively separates reversible glass transition from accompanying irreversible processes [2]. [1]. M. Yu. Efremov, S. S. Soofi, A. V. Kiyanova, C. J. Munoz, P. Burgardt, F. Cerrina, and P. F. Nealey, Rev. Sci. Instr., 79, 043903 (2008). [2]. M. Yu. Efremov, A. V. Kiyanova, and P. F. Nealey, Macromolecules, 41, 5978 (2008).

  12. Measurement Of Molecular Mobilities Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Tsay, Fun-Dow

    1989-01-01

    New molecular-probe technique used to measure molecular mobility of polymer. Method based on use of time-resolved electron-spin resonance (ESR) spectroscopy to monitor decay of transient nutation amplitudes from photoexcited triplet states of probe molecules with which polymer is doped. The higher molecular mobility of polymer matrix, the faster nutation amplitudes of the probe molecules decay.

  13. Operational electrochemical stability of thiophene-thiazole copolymers probed by resonant Raman spectroscopy

    SciTech Connect

    Wade, Jessica; Wood, Sebastian; Kim, Ji-Seon; Beatrup, Daniel; Hurhangee, Michael; McCulloch, Iain; Durrant, James R.; Bronstein, Hugo

    2015-06-28

    We report on the electrochemical stability of hole polarons in three conjugated polymers probed by resonant Raman spectroscopy. The materials considered are all isostructural to poly(3-hexyl)thiophene, where thiazole units have been included to systematically deepen the energy level of the highest occupied molecular orbital (HOMO). We demonstrate that increasing the thiazole content planarizes the main conjugated backbone of the polymer and improves the electrochemical stability in the ground state. However, these more planar thiazole containing polymers are increasingly susceptible to electrochemical degradation in the polaronic excited state. We identify the degradation mechanism, which targets the C=N bond in the thiazole units and results in disruption of the main polymer backbone conjugation. The introduction of thiazole units to deepen the HOMO energy level and increase the conjugated backbone planarity can be beneficial for the performance of certain optoelectronic devices, but the reduced electrochemical stability of the hole polaron may compromise their operational stability.

  14. Re-Mendable Polymers

    NASA Astrophysics Data System (ADS)

    Bergman, Sheba D.; Wudl, Fred

    Polymers have become an indispensable material resource, representing billions of dollars worth of material consumption every year. The rising prices and exhaust of natural resources such as petroleum, combined with rising environmental concerns, have prompted the development of recyclable and degradable polymers. Polymers that can be reverted back to their monomers or to shorter repolymerizable oligomers, hence, reversible polymers are particularly enticing in this respect because they essentially prevent any material loss with multiple recycling. While reversible polymers have been known for a long time, there has been recent renewed interest in such polymers, since their reversibility can be exploited for repair at the molecular level.

  15. Structural characterization of synthetic polymers and copolymers using multidimensional mass spectrometry interfaced with thermal degradation, liquid chromatography and/or ion mobility separation

    NASA Astrophysics Data System (ADS)

    Alawani, Nadrah

    This dissertation focuses on coupling mass spectrometry (MS) and tandem mass spectrometry (MS/MS) to thermal degradation, liquid chromatography (LC) and/or ion mobility (IM) spectrometry for the characterization of complex mixtures. In chapter II, an introduction of the history and the principles of MS and LC are discussed. Chapter III illustrates the materials and instrumentation used to complete this dissertation. Polyethers have been characterized utilizing MS/MS, as presented in Chapter IV and Chapter VI. Diblock copolymers of polyethylene oxide and polycaprolactone, PEO-b-PCL, have been characterized by matrix-assisted laser desorption/ionization quadrupole/time-of-flight mass spectrometry (MALDI-Q/ToF) and LC-MS/MS (Chapter V). Thermoplastic elastomers have been characterized by thermal degradation using an atmospheric solids analysis probe (ASAP) and ion mobility mass spectrometry (IM-MS), as discussed in Chapter VII. Interfacing separation techniques with mass spectrometry permitted the detection of species present with low concentration in complex materials and improved the sensitivity of MS. In chapter IV, the fragmentation mechanisms in MS/MS experiments of cyclic and linear poly(ethylene oxide) macroinitiators are discussed. This study aimed at determining the influence of end groups on the fragmentation pathways. In the study reported in Chapter V, ultra high performance liquid chromatography (UHPLC) was interfaced with MS and MS/MS to achieve the separation and in-depth characterization and separation of amphiphilic diblock copolymers (PEO- b-PCL) in which the architecture of the PEO block is linear or cyclic. Applying UPLC-MS and UPLC-MS/MS provides fast accurate information about the number and type of the blocks in the copolymers. Chapter VI reports MS/MS and IM-MS analyses which were performed to elucidate the influence of molecular size and collision energy on the fragmentation pathways of polyethers subjected to collisionally activated

  16. Catalytic degradation of high-density polyethylene on an ultrastable-Y zeolite. Nature of initial polymer reactions, pattern of formation of gas and liquid products, and temperature effects

    SciTech Connect

    Manos, G.; Garforth, A.; Dwyer, J.

    2000-05-01

    The catalytic degradation of high-density polyethylene (hdPE) over ultrastable Y zeolite in a semibatch reactor was studied at different heating rates and reaction temperatures. Catalytic degradation of the polymer occurred at much lower temperatures than pure thermal degradation. When gel permeation chromatography was used to determine the molar mass distribution, it was found that solid state reactions occur only in the presence of a catalyst. These reactions change the polymer structure well before the formation of significant amounts of volatile products. The pattern of formation of gaseous and liquid products was studied and found to follow the temperature increase. After the system reached its final temperature, the reaction rate of formation of volatile products decreased rapidly. The product range was typically between C{sub 3} and C{sub 15}. Isobutane and isopentane were the main gaseous products. The liquid product fraction was alkane-rich, as alkenes rapidly undergo bimolecular hydrogen transfer reactions to give alkanes as secondary products.

  17. Analysis of Synthetic Polymers.

    ERIC Educational Resources Information Center

    Smith, Charles G.; And Others

    1989-01-01

    Reviews techniques for the characterization and analysis of synthetic polymers, copolymers, and blends. Includes techniques for structure determination, separation, and quantitation of additives and residual monomers; determination of molecular weight; and the study of thermal properties including degradation mechanisms. (MVL)

  18. Characterizing Fluorotelomer and Polyfluoroalkyl Substances in New and Aged Fluorotelomer-Based Polymers for Degradation Studies with GC/MS and LC/MS/MS

    EPA Science Inventory

    Fluorotelomer-based polymers (FTPs), the dominant product of the fluorotelomer industry, are antistaining and antiwetting agents that permeate the products and surfaces of modern society. However, the degree to which these materials expose humans and the environment to fluorotelo...

  19. Effect of Glucose on the Fatty Acid Composition of Cupriavidus necator JMP134 during 2,4-Dichlorophenoxyacetic Acid Degradation: Implications for Lipid-Based Stable Isotope Probing Methods▿†

    PubMed Central

    Lerch, Thomas Z.; Dignac, Marie-France; Barriuso, Enrique; Mariotti, André

    2011-01-01

    Combining lipid biomarker profiling with stable isotope probing (SIP) is a powerful technique for studying specific microbial populations responsible for the degradation of organic pollutants in various natural environments. However, the presence of other easily degradable substrates may induce significant physiological changes by altering both the rate of incorporation of the target compound into the biomass and the microbial lipid profiles. In order to test this hypothesis, Cupriavidus necator JMP134, a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium, was incubated with [13C]2,4-D, [13C]glucose, or mixtures of both substrates alternatively labeled with 13C. C. necator JMP134 exhibited a preferential use of 2,4-D over glucose. The isotopic analysis showed that glucose had only a small effect on the incorporation of the acetic chain of 2,4-D into the biomass (at days 2 and 3) and no effect on that of the benzenic ring. The addition of glucose did change the fatty acid methyl ester (FAME) composition. However, the overall FAME isotopic signature reflected that of the entire biomass. Compound-specific individual isotopic analyses of FAME composition showed that the 13C-enriched FAME profiles were slightly or not affected when tracing the 2,4-D acetic chain or 2,4-D benzenic ring, respectively. This batch study is a necessary step for validating the use of lipid-based SIP methods in complex environments. PMID:21856833

  20. Use of a sub-gasket and soft gas diffusion layer to mitigate mechanical degradation of a hydrocarbon membrane for polymer electrolyte fuel cells in wet-dry cycling

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiroshi; Teramoto, Takeshi; Ueyama, Yasuhiro; Sugawara, Yasushi; Sakiyama, Yoko; Kusakabe, Masato; Miyatake, Kenji; Uchida, Makoto

    2016-09-01

    The mechanical durability of hydrocarbon (HC) membranes, used for polymer electrolyte fuel cells (PEFCs), was evaluated by the United States Department of Energy (USDOE) stress protocol involving wet-dry cycling, and the degradation mechanism is discussed. The HC membrane ruptured in the edge region of the membrane electrode assembly (MEA) after 300 cycles due to a concentration of the mechanical stress. Post-test analysis of stress-strain measurements revealed that the membrane mechanical strain decreased more than 80% in the edge region of the MEA and about 50% in the electrode region, compared with the pristine condition. Size exclusion chromatography (SEC) indicated that the average molecular weight of the HC polymer increased slightly, indicating some cross-linking, while the IEC decreased slightly, indicating ionomer degradation. As a result of two types of modifications, a sub-gasket (SG) and a soft gas diffusion layer (GDL) in the MEA edge region, the mechanical stress decreased, and the durability increased, the membrane lasting more than 30,000 cycles without mechanical failure.

  1. Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH.

    PubMed

    Mazille, F; Schoettl, T; Klamerth, N; Malato, S; Pulgarin, C

    2010-05-01

    Photocatalytic degradation of phenol, nalidixic acid, mixture of pesticides, and another of emerging contaminants in water was mediated by TiO(2) and iron oxide immobilized on functionalized polyvinyl fluoride films (PVF(f)-TiO(2)-Fe oxide) in a compound parabolic collector (CPC) solar photoreactor. During degradation, little iron leaching (<0.2mgL(-1)) was observed. Phenol was efficiently degraded and mineralized at operational pH<5 and nalidixic acid degradation was complete even at pH 7, but mineralization stopped at 35%. Pesticide mixture was slowly degraded (50%) after 150min of irradiation. Degradation of the emergent contaminant mixture was successful for eight compounds and less efficient for six other compounds. The significant reactivity differences between tested compounds were assigned to the differences in structure namely that the presence of complexing or chelating groups enhanced the rates. PVF(f)-TiO(2)-Fe oxide photoactivity gradually increased during 20 days of experiments. X-ray photoelectron spectroscopy (XPS) measurements revealed significant changes on the catalyst surface. These analyses confirm that during photocatalysis mediated by PVF(f)-TiO(2)-Fe oxide, some iron leaching led to enlargement of the TiO(2) surface exposed to light, increasing its synergy with iron oxides and leading to enhanced pollutant degradation. PMID:20362319

  2. A Cell-Based Internalization and Degradation Assay with an Activatable Fluorescence–Quencher Probe as a Tool for Functional Antibody Screening

    PubMed Central

    Liu, Peter Corbett; Shen, Yang; Snavely, Marshall D.; Hiraga, Kaori

    2015-01-01

    For the development of therapeutically potent anti-cancer antibody drugs, it is often important to identify antibodies that internalize into cells efficiently, rather than just binding to antigens on the cell surface. Such antibodies can mediate receptor endocytosis, resulting in receptor downregulation on the cell surface and potentially inhibiting receptor function and tumor growth. Also, efficient antibody internalization is a prerequisite for the delivery of cytotoxic drugs into target cells and is critical for the development of antibody–drug conjugates. Here we describe a novel activatable fluorescence–quencher pair to quantify the extent of antibody internalization and degradation in the target cells. In this assay, candidate antibodies were labeled with a fluorescent dye and a quencher. Fluorescence is inhibited outside and on the surface of cells, but activated upon endocytosis and degradation of the antibody. This assay enabled the development of a process for rapid characterization of candidate antibodies potentially in a high-throughput format. By employing an activatable secondary antibody, primary antibodies in purified form or in culture supernatants can be screened for internalization and degradation. Because purification of candidate antibodies is not required, this method represents a direct functional screen to identify antibodies that internalize efficiently early in the discovery process. PMID:26024945

  3. A Cell-Based Internalization and Degradation Assay with an Activatable Fluorescence-Quencher Probe as a Tool for Functional Antibody Screening.

    PubMed

    Li, Yan; Liu, Peter Corbett; Shen, Yang; Snavely, Marshall D; Hiraga, Kaori

    2015-08-01

    For the development of therapeutically potent anti-cancer antibody drugs, it is often important to identify antibodies that internalize into cells efficiently, rather than just binding to antigens on the cell surface. Such antibodies can mediate receptor endocytosis, resulting in receptor downregulation on the cell surface and potentially inhibiting receptor function and tumor growth. Also, efficient antibody internalization is a prerequisite for the delivery of cytotoxic drugs into target cells and is critical for the development of antibody-drug conjugates. Here we describe a novel activatable fluorescence-quencher pair to quantify the extent of antibody internalization and degradation in the target cells. In this assay, candidate antibodies were labeled with a fluorescent dye and a quencher. Fluorescence is inhibited outside and on the surface of cells, but activated upon endocytosis and degradation of the antibody. This assay enabled the development of a process for rapid characterization of candidate antibodies potentially in a high-throughput format. By employing an activatable secondary antibody, primary antibodies in purified form or in culture supernatants can be screened for internalization and degradation. Because purification of candidate antibodies is not required, this method represents a direct functional screen to identify antibodies that internalize efficiently early in the discovery process. PMID:26024945

  4. Targeted Protein Degradation of Outer Membrane Decaheme Cytochrome MtrC Metal Reductase in Shewanella oneidensis MR-1 Measured Using Biarsenical Probe CrAsH-EDT2

    SciTech Connect

    Xiong, Yijia; Chen, Baowei; Shi, Liang; Fredrickson, Jim K.; Bigelow, Diana J.; Squier, Thomas C.

    2011-10-14

    Development of efficient microbial biofuel cells requires an ability to exploit interfacial electron transfer reactions to external electron acceptors, such as metal oxides; such reactions occur in the facultative anaerobic gram-negative bacterium Shewanella oneidensis MR-1 through the catalytic activity of the outer membrane decaheme c-type cytochrome MtrC. Central to the utility of this pathway to synthetic biology is an understanding of cellular mechanisms that maintain optimal MtrC function, cellular localization, and renewal by degradation and resynthesis. In order to monitor trafficking to the outer membrane, and the environmental sensitivity of MtrC, we have engineered a tetracysteine tag (i.e., CCPGCC) at its C-terminus that permits labeling by the cell impermeable biarsenical fluorophore, carboxy-FlAsH (CrAsH) of MtrC at the surface of living Shewanella oneidensis MR-1 cells. In comparison, the cell permeable reagent FlAsH permits labeling of the entire population of MtrC, including proteolytic fragments resulting from incorrect maturation. We demonstrate specific labeling by CrAsH of engineered MtrC which is dependent on the presence of a functional type-2 secretion system (T2S), as evidenced by T2S system gspD or gspG deletion mutants which are incapable of CrAsH labeling. Under these latter conditions, MtrC undergoes proteolytic degradation to form a large 35-38 kDa fragment; this degradation product is also resolved during normal turnover of the CrAsH-labeled MtrC protein. No MtrC protein is released into the medium during turnover, suggesting the presence of cellular turnover systems involving MtrC reuptake and degradation. The mature MtrC localized on the outer membrane is a long-lived protein, with a turnover rate of 0.043 hr-1 that is insensitive to O2 concentration. Maturation of MtrC is relatively inefficient, with substantial rates of turnover of the immature protein prior to export to the outer membrane (i.e., 0.028 hr-1) that are consistent

  5. Targeted protein degradation of outer membrane decaheme cytochrome MtrC metal reductase in Shewanella oneidensis MR-1 measured using biarsenical probe CrAsH-EDT(2).

    PubMed

    Xiong, Yijia; Chen, Baowei; Shi, Liang; Fredrickson, James K; Bigelow, Diana J; Squier, Thomas C

    2011-11-15

    Development of efficient microbial biofuel cells requires an ability to exploit interfacial electron transfer reactions to external electron acceptors, such as metal oxides; such reactions occur in the facultative anaerobic Gram-negative bacterium Shewanella oneidensis MR-1 through the catalytic activity of the outer membrane decaheme c-type cytochrome MtrC. Central to the utility of this pathway to synthetic biology is an understanding of cellular mechanisms that maintain optimal MtrC function, cellular localization, and renewal by degradation and resynthesis. In order to monitor trafficking to the outer membrane, and the environmental sensitivity of MtrC, we have engineered a tetracysteine tag (i.e., CCPGCC) at its C-terminus that permits labeling by the cell impermeable biarsenical fluorophore carboxy-FlAsH (CrAsH) of MtrC at the surface of living Shewanella oneidensis MR-1 cells. In comparison, the cell permeable reagent FlAsH permits labeling of the entire population of MtrC, including proteolytic fragments resulting from incorrect maturation. We demonstrate specific labeling by CrAsH of engineered MtrC (MtrC*) which is dependent on the presence of a functional type 2 secretion system (T2S), as evidenced by T2S system gspD or gspG deletion mutants which are incapable of CrAsH labeling. Under these latter conditions, MtrC* undergoes proteolytic degradation to form a large 35-38 kDa fragment; this degradation product is also resolved during normal turnover of the CrAsH-labeled MtrC protein. No MtrC protein is released into the medium during turnover, suggesting the presence of cellular turnover systems involving MtrC reuptake and degradation. The mature MtrC localized on the outer membrane is a long-lived protein, with a turnover rate of 0.043 h(-1) that is insensitive to O(2) concentration. Maturation of MtrC is relatively inefficient, with substantial rates of turnover of the immature protein prior to export to the outer membrane (i.e., 0.028 h(-1)) that are

  6. Step-by-step thermal transformations of a new porous coordination polymer [(H2O)5CuBa(Me2mal)2]n (Me2mal2-=dimethylmalonate): Thermal degradation to barium cuprate

    NASA Astrophysics Data System (ADS)

    Zauzolkova, Natalya; Dobrokhotova, Zhanna; Lermontov, Anatoly; Zorina, Ekaterina; Emelina, Anna; Bukov, Mikhail; Chernyshev, Vladimir; Sidorov, Aleksey; Kiskin, Mikhail; Bogomyakov, Artem; Lytvynenko, Anton; Kolotilov, Sergey; Velikodnyi, Yuriy; Kovba, Maksim; Novotortsev, Vladimir; Eremenko, Igor

    2013-01-01

    The reactions of CuSO4·5H2O, dimethylmalonic acid and Ba(OH)2·H2O (Cu: H2Me2mal: Ba=1: 2: 2) in aqueous and aqueous-ethanol solutions (H2O: EtOH=1: 1) resulted in formation of 3D-porous coordination polymers [(H2O)3(μ-H2O)2CuBa(μ3-Me2mal)(Me2mal)]n (1) and [(μ-H2O)CuBa(μ3-Me2mal)(μ4-Me2mal)]n (2), respectively. It has been shown that compound 2 was an intermediate in the thermal degradation of compound 1. Thorough studies of solid-state thermolysis of 1 and 2 allowed to detect formation of coordination polymer [CuBa(μ4-Me2mal)(μ5-Me2mal)]n (3), structure of which was determined by X-ray powder diffraction. It has been found that the channels in polymer 3 were accessible for guest molecules (MeOH). Theoretical estimation of methanol diffusion barrier was carried out. Complete solid-phase thermolysis of 1 and 2 leads to a mixture of BaCuO2, BaCO3, and CuO. Special conditions for obtaining of a crystalline phase of pure cubic BaCuO2 were determined.

  7. Electrical condition monitoring method for polymers

    DOEpatents

    Watkins, Jr. Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  8. Probing effect of solvent concentration on glass transition and sub-Tg structural relaxation in polymer solvent mixtures: The case of polystyrene-toluene system

    NASA Astrophysics Data System (ADS)

    Pierleoni, Davide; Scherillo, Giuseppe; Minelli, Matteo; Mensitieri, Giuseppe; Doghieri, Ferruccio

    2016-05-01

    A novel experimental method for the analysis of volume relaxation induced by solvents in glassy polymers is presented. A gravimetric technique is used to evaluate the isothermal solvent mass uptake at controlled increasing/decreasing solvent pressure at constant rate. Fundamental properties of the solvent/polymer system can be obtained directly, and models can be applied, combining both nonequilibrium thermodynamics and mechanics of volume relaxation contribution. The fundamental case of polystyrene and toluene mixtures are thus accounted for, and various experimental conditions have been explored, varying the temperature, and spanning over different pressure increase/decrease rates. The results obtained allowed to evaluate the isothermal second order transition induced by solvent sorption, as well as the determination of the effect of the pressure rate. Therefore, this work proposes a new standard for the characterization and the understanding of the relaxational behavior of glassy polymers.

  9. Chemical State Mapping of Degraded B4C Control Rod Investigated with Soft X-ray Emission Spectrometer in Electron Probe Micro-analysis

    PubMed Central

    Kasada, R.; Ha, Y.; Higuchi, T.; Sakamoto, K.

    2016-01-01

    B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test. PMID:27161666

  10. Chemical State Mapping of Degraded B4C Control Rod Investigated with Soft X-ray Emission Spectrometer in Electron Probe Micro-analysis.

    PubMed

    Kasada, R; Ha, Y; Higuchi, T; Sakamoto, K

    2016-01-01

    B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test. PMID:27161666

  11. Chemical State Mapping of Degraded B4C Control Rod Investigated with Soft X-ray Emission Spectrometer in Electron Probe Micro-analysis

    NASA Astrophysics Data System (ADS)

    Kasada, R.; Ha, Y.; Higuchi, T.; Sakamoto, K.

    2016-05-01

    B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test.

  12. Probing the cross-effect of strains in non-linear elasticity of nearly regular polymer networks by pure shear deformation.

    PubMed

    Katashima, Takuya; Urayama, Kenji; Chung, Ung-il; Sakai, Takamasa

    2015-05-01

    The pure shear deformation of the Tetra-polyethylene glycol gels reveals the presence of an explicit cross-effect of strains in the strain energy density function even for the polymer networks with nearly regular structure including no appreciable amount of structural defect such as trapped entanglement. This result is in contrast to the expectation of the classical Gaussian network model (Neo Hookean model), i.e., the vanishing of the cross effect in regular networks with no trapped entanglement. The results show that (1) the cross effect of strains is not dependent on the network-strand length; (2) the cross effect is not affected by the presence of non-network strands; (3) the cross effect is proportional to the network polymer concentration including both elastically effective and ineffective strands; (4) no cross effect is expected exclusively in zero limit of network concentration in real polymer networks. These features indicate that the real polymer networks with regular network structures have an explicit cross-effect of strains, which originates from some interaction between network strands (other than entanglement effect) such as nematic interaction, topological interaction, and excluded volume interaction. PMID:25956121

  13. 08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research

    SciTech Connect

    Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

    2011-03-07

    A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

  14. Thermal stability and degradation of chitosan modified by benzophenone

    NASA Astrophysics Data System (ADS)

    Diab, M. A.; El-Sonbati, A. Z.; Bader, D. M. D.

    2011-09-01

    N-(biphenylmethylidenyl) chitosan polymer was prepared, characterized and thermal stability was compared with chitosan. Thermal degradation products of the modified polymer were identified by GC-MS technique. It seems that the mechanism of degradation of the prepared polymer is characterized by formation of low molecular weight radicals, followed by random scission mechanism along the backbond chain.

  15. Probe assembly

    SciTech Connect

    Avera, C.J.

    1981-01-06

    A hand-held probe assembly, suitable for monitoring a radioactive fibrinogen tracer, is disclosed comprising a substantially cylindrically shaped probe handle having an open end. The probe handle is adapted to be interconnected with electrical circuitry for monitoring radioactivity that is sensed or detected by the probe assembly. Mounted within the probe handle is a probe body assembly that includes a cylindrically shaped probe body inserted through the open end of the probe handle. The probe body includes a photomultiplier tube that is electrically connected with a male connector positioned at the rearward end of the probe body. Mounted at the opposite end of the probe body is a probe head which supports an optical coupler therewithin. The probe head is interconnected with a probe cap which supports a detecting crystal. The probe body assembly, which consists of the probe body, the probe head, and the probe cap is supported within the probe handle by means of a pair of compressible o-rings which permit the probe assembly to be freely rotatable, preferably through 360*, within the probe handle and removable therefrom without requiring any disassembly.

  16. Mitochondria-specific Conjugated Polymer Nanoparticles

    PubMed Central

    Twomey, Megan; Mendez, Eladio; Manian, Rajesh Kumar

    2016-01-01

    Biodegradable conjugated polymer nanoparticles (CPNs) were prepared for high mitochondria targeting in live cancer cells. The degradable CPNs are nontoxic and specifically localized to mitochondria of live tumor cells through macropinocytosis followed by intracellular degradation and trafficking. PMID:26974193

  17. Ex situ testing method to characterize cathode catalysts degradation under simulated start-up/shut-down conditions - A contribution to polymer electrolyte membrane fuel cell benchmarking

    NASA Astrophysics Data System (ADS)

    Marcu, A.; Toth, G.; Kundu, S.; Colmenares, L. C.; Behm, R. J.

    2012-10-01

    The paper introduces a novel ex situ test procedure that was developed to quantify the ageing of catalyst layers under critical automotive fuel cell conditions during start-up/shut-down phases. It is based on liquid electrolyte measurements, using a thin film catalyst electrode. The overall degradation under start-up/shut-down conditions is assessed by the decay in electrochemically active surface area. Furthermore, contributions from different processes leading to catalyst degradation such as Pt dissolution and Pt particle growth/agglomeration can be separated. Finally, using a differential electrochemical mass spectrometry (DEMS) set-up, also the extent and role of carbon corrosion under these conditions is accessible. The potential of this, compared to in situ fuel cell stack tests, rather fast and less costly ex situ test procedure is demonstrated in measurements using a commercial, graphitized carbon-supported Pt catalyst. The results of the degradation test and in particular the contributions from different degradation processes such as Pt dissolution, Pt particle growth/agglomeration and carbon corrosion during different stages of catalyst ageing are discussed.

  18. Protein mutagenesis with monodispersity-based quality probing: selective inactivation of p53 degradation and DNA-binding properties of HPV E6 oncoprotein.

    PubMed

    Ristriani, Tutik; Nominé, Yves; Laurent, Cécile; Weiss, Etienne; Travé, Gilles

    2002-12-01

    Interpretation of protein mutagenesis experiments requires the ability to distinguish functionally relevant mutations from mutations affecting the structure. When a protein is expressed soluble in bacteria, properly folded mutants are expected to remain soluble whereas misfolded mutants should form insoluble aggregates. However, this rule may fail for proteins fused to highly soluble carrier proteins. In a previous study, we analysed the biophysical status of HPV oncoprotein E6 fused to the C-terminus of maltose-binding protein (MBP) and found that misfolded E6 moieties fused to MBP formed soluble aggregates of high molecular weight. By contrast, preparations of properly folded E6 fused to MBP were monodisperse. Here, we have used this finding to evaluate the quality of 19 MBP-fused E6 site-directed mutants by using a light scattering assay performed in a fluorimeter. This assay guided us to rule out structurally defective mutants and to obtain functionally relevant E6 mutants selectively altered for two molecular activities: degradation of tumour suppressor p53 and DNA recognition. PMID:12460759

  19. Enzymatic degradation of polycaprolactone-gelatin blend

    NASA Astrophysics Data System (ADS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-04-01

    Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL-gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL-gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants.

  20. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  1. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  2. Degradable PEGylated Protein Conjugates Utilizing RAFT Polymerization

    PubMed Central

    Decker, Caitlin G.; Maynard, Heather D.

    2015-01-01

    Poly(ethylene glycol) (PEG)-protein therapeutics exhibit enhanced pharmacokinetics, but have drawbacks including decreased protein activities and polymer accumulation in the body. Therefore a major aim for second-generation polymer therapeutics is to introduce degradability into the backbone. Herein we describe the synthesis of poly(poly(ethylene glycol methyl ether methacrylate)) (pPEGMA) degradable polymers with protein-reactive end-groups via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the subsequent covalent attachment to lysozyme through a reducible disulfide linkage. RAFT copolymerization of cyclic ketene acetal (CKA) monomer 5,6-benzo-2-methylene-1,3-dioxepane (BMDO) with PEGMA yielded two polymers with number-average molecular weight (Mn) (GPC) of 10.9 and 20.9 kDa and molecular weight dispersities (Ð) of 1.34 and 1.71, respectively. Hydrolytic degradation of the polymers was analyzed by 1H-NMR and GPC under basic and acidic conditions. The reversible covalent attachment of these polymers to lysozyme, as well as the hydrolytic and reductive cleavage of the polymer from the protein, was analyzed by gel electrophoresis and mass spectrometry. Following reductive cleavage of the polymer, an increase in activity was observed for both conjugates, with the released protein having full activity. This represents a method to prepare PEGylated proteins, where the polymer is readily cleaved from the protein and the main chain of the polymer is degradable. PMID:25937643

  3. The influence of different coordination environments on one-dimensional Cu(ii) coordination polymers for the photo-degradation of organic dyes.

    PubMed

    Hussain, Navid; Bhardwaj, Vimal K

    2016-05-01

    Three new Cu(ii) coordination polymers, namely, {[Cu3(L(1))(NO3)2(DMF)(H2O)]·3(DMF)}n (), [Cu3(L(1))(Cl)2(DMF)2]n () and [Cu3(L(2))(NO3)4(H2O)4]n (), were synthesized from pyridine-2,6-dicarbohydrazide based imine linked tritopic ligands. All the complexes were characterized using elemental analysis, IR, UV-vis spectroscopy and ESI-MS. The solid state structures of complexes were determined using single crystal X-ray crystallography. The complexes contain trinuclear copper units connected through different anions that lead to the formation of one dimensional (ID) chain structures. Depending upon the anion of the copper salt and donor atoms of the ligands used in complexation, a small variation in the structures was observed. In complex , the trinuclear copper units are connected by phenoxo-bridging (μ2-O(-)) along with one coordinated water molecule, whereas complex is connected through chloride bridging (μ2-Cl) and complex is connected through nitrate ions (μ-[O-N-O]) along with four water molecules. Photo-catalytic activities of the synthesized complexes () were investigated. All the complexes were found to be photo-catalytically active; however, the distinct coordination environment of the metal ions (i.e. difference in the coordinated water molecules and donor sites of ligands) played a significant role in the catalytic activities. Therefore, this study presents comparative photo-catalytic studies of different coordination environments of metal ions in one-dimensional Cu(ii) coordination polymers. The results provide a potential pathway for the rational design of more efficient photo-catalysts. PMID:27054292

  4. Preparation of a photo-degradation- resistant quantum dot-polymer composite plate for use in the fabrication of a high-stability white-light-emitting diode

    NASA Astrophysics Data System (ADS)

    Jang, Eun-Pyo; Song, Woo-Seuk; Lee, Ki-Heon; Yang, Heesun

    2013-02-01

    We report on the synthesis of highly fluorescent double-ZnS-shell-capped, yellow-emitting Cu-In-S quantum dots (QDs) with a surprisingly high quantum yield of 92%, the preparation of a free-standing QD-polymethylmethacrylate composite plate, and the application of the QD plate in the fabrication of QD-based white-light-emitting diodes (WLEDs). A free-standing QD plate with QDs embedded uniformly inside a polymeric matrix is used to fabricate a remote-type, resin-free WLED. The QD plate-based WLED displays a high luminous efficiency; however, it suffers from a significantly unstable device performance due to QD degradation upon prolonged photo-excitation. An exceptional operational stability of the QD plate-based WLED is realized by generating hybrid double layers of an organic adhesion layer and a gas barrier layer of sol-gel-derived silica, rendering the QD plate impermeable to oxygen. Our success in achieving a color converter robust against photo-degradation and applying it in the fabrication of a reliable QD-based LED is greatly encouraging as regards the development of next-generation QD-based LED lighting sources.

  5. Preparation of a photo-degradation- resistant quantum dot-polymer composite plate for use in the fabrication of a high-stability white-light-emitting diode.

    PubMed

    Jang, Eun-Pyo; Song, Woo-Seuk; Lee, Ki-Heon; Yang, Heesun

    2013-02-01

    We report on the synthesis of highly fluorescent double-ZnS-shell-capped, yellow-emitting Cu-In-S quantum dots (QDs) with a surprisingly high quantum yield of 92%, the preparation of a free-standing QD-polymethylmethacrylate composite plate, and the application of the QD plate in the fabrication of QD-based white-light-emitting diodes (WLEDs). A free-standing QD plate with QDs embedded uniformly inside a polymeric matrix is used to fabricate a remote-type, resin-free WLED. The QD plate-based WLED displays a high luminous efficiency; however, it suffers from a significantly unstable device performance due to QD degradation upon prolonged photo-excitation. An exceptional operational stability of the QD plate-based WLED is realized by generating hybrid double layers of an organic adhesion layer and a gas barrier layer of sol-gel-derived silica, rendering the QD plate impermeable to oxygen. Our success in achieving a color converter robust against photo-degradation and applying it in the fabrication of a reliable QD-based LED is greatly encouraging as regards the development of next-generation QD-based LED lighting sources. PMID:23299514

  6. Part I: In-situ fluorometric quantification of microalgal neutral lipids. Part II: Thermal degradation behavior of investment casting polymer patterns

    NASA Astrophysics Data System (ADS)

    Zhao, Hongfang

    Research described in this dissertation covers two topics. Part-I is focused on in-situ determination of neutral lipid content of microalgae using a lipophilic fluorescent dye. The traditional Nile red stain-based method for detecting microalgal intracellular lipids is limited due to varying composition and thickness of rigid cell walls. In this study, the addition of dilute acid and heating of solution, were found to greatly enhance staining efficiency of Nile red for microalgal species evaluated. Oil-in-water (O/W) microemulsion stabilized by a non-ionic surfactant was employed as a pseudo-standard that mimics lipid-bearing microalgal cells suspended in water. The average neutral lipid contents determined were very close to the results obtained by traditional gravimetric method and solid phase extraction. Part II of the dissertation explores thermo-physico-chemical properties of polymeric pattern materials, including expanded polystyrene (EPS) foam, polyurethane foam, and epoxy stereolithography (SLA) patterns, that are used in investment casting. Density, elastic modulus, expansion coefficient, thermal degradation behavior, etc. were experimentally investigated for their effects on metal casting quality. The reduction in toxic hydrogen cyanide (HCN) generated during thermal decomposition of polyurethane pattern was achieved by increasing either oxidant level or residence time in heated zone. Thermal degradation kinetics of the pattern materials were examined with a thermogravimetric analysis and activation energies were determined by Kissinger and Flynn-Wall-Ozawa methods.

  7. Nonlinear optical studies of polymer interfaces

    SciTech Connect

    Shen, Y.R. |

    1993-11-01

    Second-order nonlinear optical processes can be used as effective surface probes. They can provide some unique opportunities for studies of polymer interfaces. Here the author describes two examples to illustrate the potential of the techniques. One is on the formation of metal/polymer interfaces. The other is on the alignment of liquid crystal films by mechanically rubbed polymer surfaces.

  8. ESR Analysis of Polymer Photo-Oxidation

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow; Gupta, Amitave

    1987-01-01

    Electron-spin resonance identifies polymer-degradation reactions and their kinetics. New technique enables derivation of kinetic model of specific chemical reactions involved in degradation of particular polymer. Detailed information provided by new method enables prediction of aging characteristics long before manifestation of macroscopic mechanical properties.

  9. Starch-filled polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the development of degradable polymer composites that can be made at room temperature without special equipments. The developed composites are made from ethyl cyanoacrylate and starch. The polymer composites produced by this procedure contain 60 wt% of starch with compressive s...

  10. Highly-controllable imprinted polymer nanoshell at the surface of silica nanoparticles based room-temperature phosphorescence probe for detection of 2,4-dichlorophenol.

    PubMed

    Wei, Xiao; Zhou, Zhiping; Hao, Tongfan; Li, Hongji; Xu, Yeqing; Lu, Kai; Wu, Yilin; Dai, Jiangdong; Pan, Jianming; Yan, Yongsheng

    2015-04-22

    This paper reports a facile and general method for preparing an imprinted polymer thin shell with Mn-doped ZnS quantum dots (QDs) at the surface of silica nanoparticles by stepwise precipitation polymerization to form the highly-controllable core-shell nanoparticles (MIPs@SiO2-ZnS:Mn QDs) and sensitively recognize the target 2,4-dichlorophenol (2,4-DCP). Acrylamide (AM) and ethyl glycol dimethacrylate (EGDMA) were used as the functional monomer and the cross-linker, respectively. The MIPs@SiO2-ZnS:Mn QDs had a controllable shell thickness and a high density of effective recognition sites, and the thickness of uniform core-shell 2,4-DCP-imprinted nanoparticles was controlled by the total amounts of monomers. The MIPs@SiO2-ZnS:Mn QDs with a shell thickness of 45 nm exhibited the largest quenching efficiency to 2,4-DCP by using the spectrofluorometer. After the experimental conditions were optimized, a linear relationship was obtained covering the linear range of 1.0-84 μmol L(-1) with a correlation coefficient of 0.9981 and the detection limit (3σ/k) was 0.15 μmol L(-1). The feasibility of the developed method was successfully evaluated through the determination of 2,4-DCP in real samples. This study provides a general strategy to fabricate highly-controllable core-shell imprinted polymer-contained QDs with highly selective recognition ability. PMID:25819790

  11. Simple and Sensitive Molecularly Imprinted Polymer - Mn-Doped ZnS Quantum Dots Based Fluorescence Probe for Cocaine and Metabolites Determination in Urine.

    PubMed

    Chantada-Vázquez, María Pilar; Sánchez-González, Juan; Peña-Vázquez, Elena; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2016-03-01

    A new molecularly imprinted polymer (MIP)-based fluorescent artificial receptor has been prepared by anchoring a selective MIP for cocaine (COC) on the surface of polyethylene glycol (PEG) modified Mn-doped ZnS quantum dots (QDs). The prepared material combines the high selectivity attributed to MIPs and the sensitive fluorescent property of the Mn-doped ZnS QDs. Simple and low cost methods have therefore been optimized for assessing cocaine abuse in urine by monitoring the fluorescence quenching when the template (COC) and also metabolites from COC [benzoylecgonine (BZE) and ecgonine methyl ester (EME)] are present. Fluorescence quenching was not observed when performing experiments with other drugs of abuse (and their metabolites) or when using nonimprinted polymer (NIP)-coated QDs. Under optimized operating conditions (1.5 mL of 200 mg L(-1) MIP-coated QDs solution, pH 5.5, and 15 min before fluorescence scanning) two analytical methods were developed/validated. One of the procedures (direct method) consisted of urine sample 1:20 dilution before fluorescence measurements. The method has been found to be fast, precise, and accurate, but the standard addition technique for performing the analysis was required because of the existence of matrix effect. The second procedure performed a solid phase extraction (SPE) first, avoiding matrix effect and allowing external calibration. The limits of detection of the methods were 0.076 mg L(-1) (direct method) and 0.0042 mg L(-1) (SPE based method), which are lower than the cutoff values for confirmative conclusions regarding cocaine abuse. PMID:26857857

  12. Charge collection kinetics on ferroelectric polymer surface using charge gradient microscopy.

    PubMed

    Choi, Yoon-Young; Tong, Sheng; Ducharme, Stephen; Roelofs, Andreas; Hong, Seungbum

    2016-01-01

    A charge gradient microscopy (CGM) probe was used to collect surface screening charges on poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. These charges are naturally formed on unscreened ferroelectric domains in ambient condition. The CGM data were used to map the local electric current originating from the collected surface charges on the poled ferroelectric domains in the P(VDF-TrFE) thin films. Both the direction and amount of the collected current were controlled by changing the polarity and area of the poled domains. The endurance of charge collection by rubbing the CGM tip on the polymer film was limited to 20 scan cycles, after which the current reduced to almost zero. This degradation was attributed to the increase of the chemical bonding strength between the external screening charges and the polarization charges. Once this degradation mechanism is mitigated, the CGM technique can be applied to efficient energy harvesting devices using polymer ferroelectrics. PMID:27138943

  13. Charge collection kinetics on ferroelectric polymer surface using charge gradient microscopy

    PubMed Central

    Choi, Yoon-Young; Tong, Sheng; Ducharme, Stephen; Roelofs, Andreas; Hong, Seungbum

    2016-01-01

    A charge gradient microscopy (CGM) probe was used to collect surface screening charges on poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. These charges are naturally formed on unscreened ferroelectric domains in ambient condition. The CGM data were used to map the local electric current originating from the collected surface charges on the poled ferroelectric domains in the P(VDF-TrFE) thin films. Both the direction and amount of the collected current were controlled by changing the polarity and area of the poled domains. The endurance of charge collection by rubbing the CGM tip on the polymer film was limited to 20 scan cycles, after which the current reduced to almost zero. This degradation was attributed to the increase of the chemical bonding strength between the external screening charges and the polarization charges. Once this degradation mechanism is mitigated, the CGM technique can be applied to efficient energy harvesting devices using polymer ferroelectrics. PMID:27138943

  14. Charge collection kinetics on ferroelectric polymer surface using charge gradient microscopy

    NASA Astrophysics Data System (ADS)

    Choi, Yoon-Young; Tong, Sheng; Ducharme, Stephen; Roelofs, Andreas; Hong, Seungbum

    2016-05-01

    A charge gradient microscopy (CGM) probe was used to collect surface screening charges on poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. These charges are naturally formed on unscreened ferroelectric domains in ambient condition. The CGM data were used to map the local electric current originating from the collected surface charges on the poled ferroelectric domains in the P(VDF-TrFE) thin films. Both the direction and amount of the collected current were controlled by changing the polarity and area of the poled domains. The endurance of charge collection by rubbing the CGM tip on the polymer film was limited to 20 scan cycles, after which the current reduced to almost zero. This degradation was attributed to the increase of the chemical bonding strength between the external screening charges and the polarization charges. Once this degradation mechanism is mitigated, the CGM technique can be applied to efficient energy harvesting devices using polymer ferroelectrics.

  15. Non-ideal behavior in a model system: Contact degradation in a molecularly doped polymer revealed by variable-temperature electric force microscopy

    NASA Astrophysics Data System (ADS)

    Ng, Tse Nga; Silveira, William R.; Marohn, John A.

    2006-08-01

    We present an electric force microscope and transport study of the degradation of the contact between Au and TPD, a triarylamine widely employed as a hole transporting layer in light emitting diodes. TPD was dispersed into a polystyrene (PS) binder and spin casted onto a quartz substrate with coplanar gold electrodes. Electric force microscopy was used to map the electrostatic potential drop in the device channel while a voltage was applied and the current was measured. Two contact degradation mechanisms were observed. When the TPD-PS film was allowed to age in high vacuum, the TPD crystallized out of solution. We show that the observed loss of current is the result of both a decrease in bulk mobility and a decrease in injection efficiency. The operating temperature of a freshly prepared device was then varied from 296 K to 330 K to simulate heating that might occur during light emitting diode operation. While the current increased in an apparently smooth way as the temperature was raised, electric force microscopy revealed that the underlying injection efficiency had undergone a dramatic change. Above a temperature of 330 K, running current through the device led to a dramatic decrease in injection efficiency which we found was associated with the creation of a dipole layer at the injecting contact. Upon decreasing temperature, we found that a measurable charge remained in the device channel when the applied voltage was switched to zero. The decay of the associated electrostatic potential, which appears to be governed primarily by charge-charge repulsion and not diffusion, provides an estimate the zero-field mobility of the holes in the film.

  16. Green polymer chemistry: biocatalysis and biomaterials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This overview briefly surveys the practice of green chemistry in polymer science. Eight related themes can be discerned from the current research activities: 1) biocatalysis, 2) bio-based building blocks and agricultural products, 3) degradable polymers, 4) recycling of polymer products and catalys...

  17. Green polymer chemistry: a brief review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review briefly surveys the research done on green polymer chemistry in the past few years. For convenience, these research activities can be grouped into 8 themes: 1) greener catalysis, 2) diverse feedstock base, 3) degradable polymers and waste minimization, 4) recycling of polymer products a...

  18. Improving Plasmonic Enhancement of Spectroscopic Signals from Polymer Analytes

    NASA Astrophysics Data System (ADS)

    Agapov, Rebecca; Malkovskiy, Andrey; Barrios, Carlos; Sokolov, Alexei; Foster, Mark

    2010-03-01

    Tip enhanced Raman spectroscopy (TERS), an emerging technique that combines optical microscopy and scanning probe microscopy, provides the sensitivity and selectivity necessary for high-resolution chemical imaging of polymer surfaces. An unprecedented 20 nm lateral resolution for the chemical imaging has been achieved. Unfortunately, the fragile plasmonic structures used to enhance the electric field are prone to mechanical, chemical, and thermal degradation. Developing robust noble metal nanostructures with stable plasmonic resonance is essential to reliable high resolution chemical imaging. Covering the metal layer with protective ultrathin coatings is being investigated to extend the plasmonic activity of the engineered nanostructures. Addition of an ultrathin aluminum oxide (Al2O3) coating to a silver-coated scanning probe microscopy tip for TERS significantly improves plasmonic structure stability without sacrificing the initial enhancement efficiency. The properties of this coating, the structure of its interface with the plasmonic structure, and its effect on the optical properties of the metal-coated tip are being investigated.

  19. Degradation of degradable starch-polyethylene plastics in a compost environment

    SciTech Connect

    Johnson, K.E.; Pometto, A.L. III; Nikolov, Z.L. )

    1993-04-01

    Degradable plastics have differing degradation rates. Three types of degradation of polyethylene in the starch-polyethylene polymers can occur: chemical degradation, photodegradation, and biological degradation. This study examines all three types of degradation in 11 commercially produced degradable starch-polyethylene bags. Different rates for chemical and photo-degradation were found within a 20 day or an 8-week period. Results indicated that both the 70[degree]C oven and HT-HH film treatments were appropriate methods to evaluate oxidative degradation. In a compost environment, oxygen tension on the surface of the film appears to be the rate-limiting component for both chemical and biological degradation. Levels of starch in all bags was similar, so the prooxidant additive was critical in promoting the oxidative degradation of polyethylene. The Fe-Mn additive displayed the best catalytic activity. This study overall confirms degradation of starch-polyethylene plastics in a natural environment. 17 refs., 6 figs., 2 tabs.

  20. Estimation of water distribution and degradation mechanisms in polymer electrolyte membrane fuel cell gas diffusion layers using a 3D Monte Carlo model

    NASA Astrophysics Data System (ADS)

    Seidenberger, K.; Wilhelm, F.; Schmitt, T.; Lehnert, W.; Scholta, J.

    Understanding of both water management in PEM fuel cells and degradation mechanisms of the gas diffusion layer (GDL) and their mutual impact is still at least incomplete. Different modelling approaches contribute to gain deeper insight into the processes occurring during fuel cell operation. Considering the GDL, the models can help to obtain information about the distribution of liquid water within the material. Especially, flooded regions can be identified, and the water distribution can be linked to the system geometry. Employed for material development, this information can help to increase the life time of the GDL as a fuel cell component and the fuel cell as the entire system. The Monte Carlo (MC) model presented here helps to simulate and analyse the water household in PEM fuel cell GDLs. This model comprises a three-dimensional, voxel-based representation of the GDL substrate, a section of the flowfield channel and the corresponding rib. Information on the water distribution within the substrate part of the GDL can be estimated.

  1. Ultraviolet-Induced Mirror Degradation

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T. T.; Cleland, E. L.

    1982-01-01

    Recent tests of second-surface mirrors show that ultraviolet radiation penetrates glass and metalized zone and impinges upon backing paint. According to report, many backing materials are degraded by ultraviolet radiation. Mirror corrosion is a serious problem in solar-energy collection systems. Effects of UV on polymeric materials have been studied, and in general, all are degraded by UV. Polymers most resistant to UV radiation are polyimides.

  2. Understanding degradation phenomena in organic electronic devices

    NASA Astrophysics Data System (ADS)

    A. K., Jagdish; Pavankumar, G.; Ramamurthy, Praveen C.; Roy Mahapatra, D.; Hegde, Gopalkrishna

    2015-03-01

    This study addresses a unique degradation mechanism in organic electronic devices occurring due to combined effects of electric field and temperature. A simple polymer diode structure consisting of a semiconducting polymer sandwiched between two electrodes (ITO and Al) is considered for degradation studies. It is observed that voltages beyond a certain value lead to fracture of polymer and aluminium films. As characterized, these defects show that the degradation nucleates in the form of a chain-like pattern consisting of alternating polymer fracture sites (hinges) and aluminium rupture sites (links). A mechanism is hypothesized based on experimental observations to explain the phenomenon. This is further validated by an analytical model for stress at degradation sites due to electric field and temperature. The model is used to develop a failure criteria based on device geometry, operating voltage and temperature. Experiments and modelling predict that this mechanism might be unique to soft thin film electronic devices.

  3. Probing long-range carrier-pair spin-spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    NASA Astrophysics Data System (ADS)

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; Lupton, John M.; Boehme, Christoph

    2015-04-01

    Weakly coupled electron spin pairs that experience weak spin-orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices, which show how interparticle spin-spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5+/-1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1+/-0.1 nm.

  4. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    PubMed Central

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; Lupton, John M.; Boehme, Christoph

    2015-01-01

    Weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices, which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm. PMID:25868686

  5. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  6. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  7. Scanning Probe Microscopy of Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Reid, Obadiah G.

    Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than tr

  8. The importance of correcting for variable probe-sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film.

    PubMed

    Barlow, Daniel E; Biffinger, Justin C; Cockrell-Zugell, Allison L; Lo, Michael; Kjoller, Kevin; Cook, Debra; Lee, Woo Kyung; Pehrsson, Pehr E; Crookes-Goodson, Wendy J; Hung, Chia-Suei; Nadeau, Lloyd J; Russell, John N

    2016-08-01

    AFM-IR is a combined atomic force microscopy-infrared spectroscopy method that shows promise for nanoscale chemical characterization of biological-materials interactions. In an effort to apply this method to quantitatively probe mechanisms of microbiologically induced polyurethane degradation, we have investigated monolayer clusters of ∼200 nm thick Pseudomonas protegens Pf-5 bacteria (Pf) on a 300 nm thick polyether-polyurethane (PU) film. Here, the impact of the different biological and polymer mechanical properties on the thermomechanical AFM-IR detection mechanism was first assessed without the additional complication of polymer degradation. AFM-IR spectra of Pf and PU were compared with FTIR and showed good agreement. Local AFM-IR spectra of Pf on PU (Pf-PU) exhibited bands from both constituents, showing that AFM-IR is sensitive to chemical composition both at and below the surface. One distinct difference in local AFM-IR spectra on Pf-PU was an anomalous ∼4× increase in IR peak intensities for the probe in contact with Pf versus PU. This was attributed to differences in probe-sample interactions. In particular, significantly higher cantilever damping was observed for probe contact with PU, with a ∼10× smaller Q factor. AFM-IR chemical mapping at single wavelengths was also affected. We demonstrate ratioing of mapping data for chemical analysis as a simple method to cancel the extreme effects of the variable probe-sample interactions. PMID:27403761

  9. Degradation of endogenous bacterial cell wall polymers by the muralytic enzyme mutanolysin prevents hepatobiliary injury in genetically susceptible rats with experimental intestinal bacterial overgrowth.

    PubMed Central

    Lichtman, S N; Okoruwa, E E; Keku, J; Schwab, J H; Sartor, R B

    1992-01-01

    Jejunal self-filling blind loops with subsequent small bowel bacterial overgrowth (SBBO) induce hepatobiliary injury in genetically susceptible Lewis rats. Lesions consist of portal tract inflammation, bile duct proliferation, and destruction. To determine the pathogenesis of SBBO-induced hepatobiliary injury, we treated Lewis rats with SBBO by using several agents with different mechanisms of activity. Buffer treatment, ursodeoxycholic acid, prednisone, methotrexate, and cyclosporin A failed to prevent SBBO-induced injury as demonstrated by increased plasma aspartate aminotransferase (AST) and elevated histology scores. However, hepatic injury was prevented by mutanolysin, a muralytic enzyme whose only known activity is to split the beta 1-4 N-acetylmuramyl-N-acetylglucosamine linkage of peptidoglycan-polysaccharide (PG-PS), a bacterial cell wall polymer with potent inflammatory and immunoregulatory properties. Mutanolysin therapy started on the day blind loops were surgically created and continued for 8 wk significantly diminished AST (101 +/- 37 U/liter) and liver histology scores (2.2 +/- 2.7) compared to buffer-treated rats (228 +/- 146 U/liter, P < 0.05, 8.2 +/- 1.9, P < 0.001 respectively). Mutanolysin treatment started during the early phase of hepatic injury, 16-21 d after surgery, decreased AST in 7 of 11 rats from 142 +/- 80 to 103 +/- 24 U/liter contrasted to increased AST in 9 of 11 buffer-treated rats from 108 +/- 52 to 247 +/- 142 U/liter, P < 0.05. Mutanolysin did not change total bacterial numbers within the loop, eliminate Bacteroides sp., have in vitro antibiotic effects, or diminish mucosal PG-PS transport. However, mutanolysin treatment prevented elevation of plasma anti-PG antibodies and tumor necrosis factor-alpha (TNF alpha) levels which occurred in buffer treated rats with SBBO and decreased TNF alpha production in isolated Kupffer cells stimulated in vitro with PG-PS. Based on the preventive and therapeutic activity of this highly specific

  10. Polystyrene as a model system to probe the impact of ambient gas chemistry on polymer surface modifications using remote atmospheric pressure plasma under well-controlled conditions.

    PubMed

    Bartis, Elliot A J; Luan, Pingshan; Knoll, Andrew J; Hart, Connor; Seog, Joonil; Oehrlein, Gottlieb S

    2015-01-01

    , but nitridation only occurs under specific conditions with the overall nitrogen content never exceeding 3%. Possible mechanisms for these processes are discussed. This work demonstrates the need to control plasma-ambient interactions and indicates a potential to take advantage of plasma-ambient interactions to fine-tune the reactive species output of APP sources, which is required for specialized applications, including polymer surface modifications and plasma medicine. PMID:25930012

  11. Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery

    NASA Astrophysics Data System (ADS)

    Lecomte, A.; Castagnola, V.; Descamps, E.; Dahan, L.; Blatché, M. C.; Dinis, T. M.; Leclerc, E.; Egles, C.; Bergaud, C.

    2015-12-01

    The use of soft materials as substrate for neural probes aims at achieving better compliance with the surrounding neurons while maintaining minimal rejection. Many strategies have emerged to enable such probes to penetrate the cortex, among which the use of resorbable polymers. We performed several tests involving two resorbable polymers considered most promising: polyethylene glycol (PEG) and silk fibroin (SF) from Bombyx Mori silkworms. Our coating method provides a repeatable, uniform structure optimized for a stress-reduced insertion of a parylene-C neural probe. Standard compression tests as well as in vitro and in vivo insertion assessments show that both SF and PEG-coated probes are stiff enough to avoid the buckling effect during insertion in the cortex. However, with a buckling force of 300 mN and a mechanical holding in vitro of tens of minutes, we assess silk fibroin to be more reliable for practical handling. In vivo first try-outs in mouse brain showed neither buckling issues of the probe nor undesired alteration of the signal recording. Moreover, we evidenced two distinct time scales in the bioresorption of our polymer coatings: silk fibroin degrades itself in a matter of weeks and PEG dissolves itself within seconds in the presence of water. We then present a hybrid PEG and SF coating that could be used as a drug delivery system with different time scales to reduce both the acute and the chronic body reaction.

  12. Degradable polyethylene: fantasy or reality.

    PubMed

    Roy, Prasun K; Hakkarainen, Minna; Varma, Indra K; Albertsson, Ann-Christine

    2011-05-15

    Plastic waste disposal is one of the serious environmental issues being tackled by our society today. Polyethylene, particularly in packaging films, has received criticism as it tends to accumulate over a period of time, leaving behind an undesirable visual footprint. Degradable polyethylene, which would enter the eco-cycle harmlessly through biodegradation would be a desirable solution to this problem. However, the "degradable polyethylene" which is presently being promoted as an environmentally friendly alternative to the nondegradable counterpart, does not seem to meet this criterion. This article reviews the state of the art on the aspect of degradability of polyethylene containing pro-oxidants, and more importantly the effect these polymers could have on the environment in the long run. On exposure to heat, light, and oxygen, these polymers disintegrate into small fragments, thereby reducing or increasing the visual presence. However, these fragments can remain in the environment for prolonged time periods. This article also outlines important questions, particularly in terms of time scale of complete degradation, environmental fate of the polymer residues, and possible accumulation of toxins, the answers to which need to be established prior to accepting these polymers as environmentally benign alternatives to their nondegradable equivalents. It appears from the existing literature that our search for biodegradable polyethylene has not yet been realized. PMID:21495645

  13. Synthesis and degradation behavior of poly(ethyl cyanoacrylate)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(ethyl cyanoacrylate) was synthesized using N, N'-dimethyl-p-toulidine (DMPT) as an initiator through anionic/zwitterionic pathway. The degradability and the degradation mechanism of the prepared polymers were carefully examined from various points of views. It was found that the polymers were...

  14. Atomic step-and-terrace surface of polyimide sheet for advanced polymer substrate engineering.

    PubMed

    Tan, G; Shimada, K; Nozawa, Y; Kaneko, S; Urakami, T; Koyama, K; Komura, M; Matsuda, A; Yoshimoto, M

    2016-07-22

    Typical thermostable and flexible polyimide polymers exhibit many excellent properties such as strong mechanical and chemical resistance. However, in contrast to single-crystal substrates like silicon or sapphire, polymers mostly display disordered and rough surfaces, which may result in instability and degradation of the interfaces between thin films and polymer substrates. As a step toward the development of next-generation polymer substrates, we here report single-atom-layer imprinting onto the polyimide sheets, resulting in an ultrasmooth 0.3 nm high atomic step-and-terrace surface on the polyimides. The ultrasmooth polymer substrates are expected to be applied to the fabrication of nanostructures such as superlattices, nanowires, or quantum dots in nanoscale-controlled electronic devices. We fabricate smooth and atomically stepped indium tin oxide transparent conducting oxide thin films on the imprinted polyimide sheets for future use in organic-based optoelectronic devices processed with nanoscale precision. Furthermore, toward 2D polymer substrate nanoengineering, we demonstrate nanoscale letter writing on the atomic step-and-terrace polyimide surface via atomic force microscopy probe scratching. PMID:27284690

  15. Atomic step-and-terrace surface of polyimide sheet for advanced polymer substrate engineering

    NASA Astrophysics Data System (ADS)

    Tan, G.; Shimada, K.; Nozawa, Y.; Kaneko, S.; Urakami, T.; Koyama, K.; Komura, M.; Matsuda, A.; Yoshimoto, M.

    2016-07-01

    Typical thermostable and flexible polyimide polymers exhibit many excellent properties such as strong mechanical and chemical resistance. However, in contrast to single-crystal substrates like silicon or sapphire, polymers mostly display disordered and rough surfaces, which may result in instability and degradation of the interfaces between thin films and polymer substrates. As a step toward the development of next-generation polymer substrates, we here report single-atom-layer imprinting onto the polyimide sheets, resulting in an ultrasmooth 0.3 nm high atomic step-and-terrace surface on the polyimides. The ultrasmooth polymer substrates are expected to be applied to the fabrication of nanostructures such as superlattices, nanowires, or quantum dots in nanoscale-controlled electronic devices. We fabricate smooth and atomically stepped indium tin oxide transparent conducting oxide thin films on the imprinted polyimide sheets for future use in organic-based optoelectronic devices processed with nanoscale precision. Furthermore, toward 2D polymer substrate nanoengineering, we demonstrate nanoscale letter writing on the atomic step-and-terrace polyimide surface via atomic force microscopy probe scratching.

  16. Examining Adsorbed Polymer Conformations with Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Parkes, Maria; Chennaoui, Mourad; Wong, Janet; Tribology Group, Dept. of Mechanical Engineering Team

    2011-03-01

    The conformation of adsorbed polymers can have significant impact on their properties such as dynamics and elasticity as well as their ability to take part in reactions with other molecules. Experimental research to determine adsorbed polymer conformation has relied mainly on atomic force microscopy (AFM) studies. During an AFM scan, the contact between the scanning probe and the polymer could affect the polymer conformation, particularly where parts of the polymer might have formed projected loops and tails. In this work, conformations of model polymers are examined with total internal reflection fluorescence microscopy (TIRFM). The advantage of TIRFM over AFM is that TIRFM is a non contact technique. Lambda DNA labelled along its length with fluorescent probes was adsorbed in a projected 2D -- 3D state. With TIRFM, the relationship between intensity and depth was used as a basis to determine how the conformation of the adsorbed polymers evolved with time using our custom algorithm.

  17. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  18. Synthetic Polymers from Readily Available Monosaccharides

    NASA Astrophysics Data System (ADS)

    Galbis, J. A.; García-Martín, M. G.

    The low degradability of petroleum-based polymers and the massive use of these materials constitute a serious problem because of the environmental pollution that they can cause. Thus, sustained efforts have been extensively devoted to produce new polymers based on natural renewing resources and with higher degradability. Of the different natural sources, carbohydrates stand out as highly convenient raw materials because they are inexpensive, readily available, and provide great stereochemical diversity. New polymers, analogous to the more accredited technical polymers, but based on chiral monomers, have been synthesized from natural and available sugars. This chapter describes the potential of sugar-based monomers as precursors to a wide variety of macromolecular materials.

  19. Atomizing apparatus for making polymer and metal powders and whiskers

    DOEpatents

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2003-03-18

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  20. Durability Improvements Through Degradation Mechanism Studies

    SciTech Connect

    Borup, Rodney L.; Mukundan, Rangachary; Spernjak, Dusan; Baker, Andrew M.; Lujan, Roger W.; Langlois, David Alan; Ahluwalia, Rajesh; Papadia, D. D.; Weber, Adam Z.; Kusoglu, Ahmet; Shi, Shouwnen; More, K. L.; Grot, Steve

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  1. Triggerable Degradation of Polyurethanes for Tissue Engineering Applications.

    PubMed

    Xu, Cancan; Huang, Yihui; Wu, Jinglei; Tang, Liping; Hong, Yi

    2015-09-16

    Tissue engineered and bioactive scaffolds with different degradation rates are required for the regeneration of diverse tissues/organs. To optimize tissue regeneration in different tissues, it is desirable that the degradation rate of scaffolds can be manipulated to comply with various stages of tissue regeneration. Unfortunately, the degradation of most degradable polymers relies solely on passive controlled degradation mechanisms. To overcome this challenge, we report a new family of reduction-sensitive biodegradable elastomeric polyurethanes containing various amounts of disulfide bonds (PU-SS), in which degradation can be initiated and accelerated with the supplement of a biological product: antioxidant-glutathione (GSH). The polyurethanes can be processed into films and electrospun fibrous scaffolds. Synthesized materials exhibited robust mechanical properties and high elasticity. Accelerated degradation of the materials was observed in the presence of GSH, and the rate of such degradation depends on the amount of disulfide present in the polymer backbone. The polymers and their degradation products exhibited no apparent cell toxicity while the electrospun scaffolds supported fibroblast growth in vitro. The in vivo subcutaneous implantation model showed that the polymers prompt minimal inflammatory responses, and as anticipated, the polymer with the higher disulfide bond amount had faster degradation in vivo. This new family of polyurethanes offers tremendous potential for directed scaffold degradation to promote maximal tissue regeneration. PMID:26312436

  2. Biomedical Applications of Biodegradable Polymers

    PubMed Central

    Ulery, Bret D.; Nair, Lakshmi S.; Laurencin, Cato T.

    2011-01-01

    Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications. PMID:21769165

  3. Polymer thermolysis for plastics recycling

    SciTech Connect

    Madras, G.; Smith, J.M.; McCoy, B.J.

    1996-12-31

    One approach to plastics recycling is the thermolytic degradation of polymer in solution to simpler molecules. We have investigated fundamental aspects of polymer thermolysis in a steady-state flow reactor operated at low temperatures (relative to pyrolysis) and at pressures high enough to maintain a liquid solution. The molecular-weight distributions (MWDs) of the feed and effluent at each condition were examined by gel permeation chromatography (GPC) as a function of residence time. In general the polymers are degraded by either random chain scission, and/or by depolymerization to specific low molecular-weight compounds (e.g., monomers, dimers,...). The experimental data for MWDs were interpreted with rate expressions based on continuous kinetics, and rate coefficients and activation energies were determined for the specific and random degradation processes. Experimental results are described for poly(styrene-allyl alcohol), poly(x-methyl styrene), and poly(methyl methacrylate). 10 refs.

  4. Regulation of Coal Polymer Degradation by Fungi

    SciTech Connect

    Irvine, Robert L.; Bumpus, John A.

    1996-12-01

    Several investigations have demonstrated that oxalate anion secreted by fungi is able to mediate solubilization of Ieonardite, a highly oxidized lignite. During this reporting period, we have used a biomimetic approach to study oxalate mediated solubilization of several Argonne Premium Coals. Results showed that, relative to Ieonardite, oxalate solubilized minimal amounts of these coals. Other studies showed that pH has a dramatic effect on solubilization of Ieonardite by several Lewis bases. In general, solubilization appeared to be a function of ionization of the Lewis base. Coal solubilization is estimated by an increase in the visible spectrum of aqueous solutions containing coal and a solubilizing agent. Because Ieonardite solubilization was studied over a broad pH range, it was necessary to determine if pH has a substantial effect on the absorbance of soluble coal macromolecule. Results showed that absorbance at 600 nm increased by {approx}56% between pH 4.5 and pH 12.0. Clearly, this increase must be considered when interpreting coal solubilization data. The decolonization of soluble coal macromolecule in nutrient nitrogen limited cultures of Phanerochaete chrysosporium was also studied. In stationary and agitated cultures, respectively, 83.8% {+-} 2.3% and 89.6% {+-} 1.0% of the coal macromolecule was decolorized during 8 days of incubation.

  5. Regulation of Coal Polymer Degradation by Fungi

    SciTech Connect

    Irvin, R.L.; Bumpus, J.A.

    1997-04-30

    Previous studies in our laboratory used a spectrophotometric assay to study biomimetic solubilization of leonardite by sodium oxalate. It was found, however, that in extended incubations of several days, this assay resulted in overestimation of the percent of leonardite that was solubilized. This problem did not appear to be significant for short term incubations (ie., up to -24 h) and was circumvented in long term incubations by using a gravimetric assay to assay for solubilization. In other studies during this reporting period we examined oxalate production by P. chrysosporium and T. versicolor grown in Fahreus-Reinhammar medium in agitated pelleted culture. It was found that in this system concentrations of oxalate are produced that are much lower than those that would be optimal for leonardite solubilization.

  6. Regulation of Coal Polymer Degradation by Fungi

    SciTech Connect

    1998-09-01

    During this reporting period we have further studied the oxidation of soluble coal macromolecules by lignin peroxidase from Phanerochaete chrysosporium . Previous studies by others have suggested that a soluble fraction (coal macromolecule B-111) from a nitric acid solubilized North Dakota Lignite is depolymerized by this enzyme. Our investigations indicate that fraction B-111 is a substrate for lignin peroxidase as this material is decolorized in the presence of lignin peroxidase H8 and hydrogen peroxide. Of interest, however, is the observation that little, if any, depolymerization of this material occurs. Instead, it appears that lignin peroxidase and coal macromolecule B-111 form a precipitate. These results are similar to those observed in our investigations of lignin peroxidase mediated oxidation of oxalate solubilize coal macromolecule. Previous studies in our laboratory using a spectrophotometric assay suggested that, in addition to oxalate, several other fungal metabolites are able to solubilize leonardite. We have reinvestigated this phenomenon using a more reliable gravimetric procedure for assessing solubilization. Our results confirm our earlier findings that malate, oxaloacetate and citrate are effective solubilizing agents whereas succinate, fumarate and x-ketoglutarate solubilize relatively small amounts of leonardite. Finally, we have studied the composition of the insoluble material remaining following extensive solubilization by sodium oxalate. The ratio of hydrogen to carbon is increased in the insoluble material relative to the parent leonardite. However, the ratio of oxygen to carbon is also increased in the insoluble material. Thus, the insoluble material does not appear to be more highly reduced that the parent leonardite and is not likely to be a better fuel that the parent material.

  7. Effect of polymer-nanoparticle interactions on the capillary rise infiltration of polymers into nanoporous media

    NASA Astrophysics Data System (ADS)

    Ring, David; Shavit, Amit; Riggleman, Rob; Lee, Daeyeon

    By wicking a polymer into a porous packing of nanoparticles, it is possible to generate polymer nanocomposites with extremely high filler fractions. Although capillary rise of simple fluids in porous media is fairly well understood based on the Lucas-Washburn model, there remain many unanswered questions related to the infiltration of high molecular weight polymer melts in nanoporous media. In this work, we probe the thermally induced infiltration of polymers into packings of nanoparticles using molecular dynamics (MD) simulations. In particular, we investigate the effect of polymer-nanoparticle interactions on the three phase contact angle of the polymer on the nanoparticle surface, and probe how the infiltration process is affected by changes in these interactions. We also study the effect of molecular weight on the capillary rise behavior of polymers in nanoparticle packings. XSEDE, MRSEC.

  8. Inorganic polymer engineering materials

    SciTech Connect

    Stone, M.L.

    1993-06-01

    Phosphazene-based, inorganic-polymer composites have been produced and evaluated as potential engineering materials. The thermal, chemical, and mechanical properties of several different composites made from one polymer formulation have been measured. Measured properties are very good, and the composites show excellent promise for structural applications in harsh environments. Chopped fiberglass, mineral, cellulose, and woodflour filled composites were tested. Chopped fiberglass filled composites showed the best overall properties. The phosphazene composites are very hard and rigid. They have low dielectric constants and typical linear thermal expansion coefficients for polymers. In most cases, the phosphazene materials performed as well or better than analogous, commercially available, filled phenolic composites. After 3 to 5 weeks of exposure, both the phosphazene and phenolics were degraded to aqueous bases and acids. The glass filled phosphazene samples were least affected.

  9. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)

    1974-01-01

    A class of polymers is provided, namely, poly(diarylsiloxy) arylazines. These polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers of the present invention useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides aromatic azines which are useful in the preparation of polymers such as those of the present invention.

  10. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)

    1976-01-01

    A new class of polymers is provided, namely, poly (diarylsiloxy) arylazines. These novel polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides novel aromatic azines which are useful in the preparation of polymers such as those described.

  11. Nanoscale Study of Polymer Dynamics.

    PubMed

    Keshavarz, Masoumeh; Engelkamp, Hans; Xu, Jialiang; Braeken, Els; Otten, Matthijs B J; Uji-I, Hiroshi; Schwartz, Erik; Koepf, Matthieu; Vananroye, Anja; Vermant, Jan; Nolte, Roeland J M; De Schryver, Frans; Maan, Jan C; Hofkens, Johan; Christianen, Peter C M; Rowan, Alan E

    2016-01-26

    The thermal motion of polymer chains in a crowded environment is anisotropic and highly confined. Whereas theoretical and experimental progress has been made, typically only indirect evidence of polymer dynamics is obtained either from scattering or mechanical response. Toward a complete understanding of the complicated polymer dynamics in crowded media such as biological cells, it is of great importance to unravel the role of heterogeneity and molecular individualism. In the present work, we investigate the dynamics of synthetic polymers and the tube-like motion of individual chains using time-resolved fluorescence microscopy. A single fluorescently labeled polymer molecule is observed in a sea of unlabeled polymers, giving access to not only the dynamics of the probe chain itself but also to that of the surrounding network. We demonstrate that it is possible to extract the characteristic time constants and length scales in one experiment, providing a detailed understanding of polymer dynamics at the single chain level. The quantitative agreement with bulk rheology measurements is promising for using local probes to study heterogeneity in complex, crowded systems. PMID:26688072

  12. Probing Polymer-Segment Motions By ESR

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Gupta, Amitava

    1988-01-01

    Molecular origins of mechanical properties and aging processes studied. Rotational motions of segments of poly(methyl methacrylate) molecules studied theoretically and experimentally. Activation energies of these motions as determined from temperature dependencies of ESR spectra agree closely with predictions of theory.

  13. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  14. Biodegradable Polymers for the Environment

    NASA Astrophysics Data System (ADS)

    Gross, Richard A.; Kalra, Bhanu

    2002-08-01

    Biodegradable polymers are designed to degrade upon disposal by the action of living organisms. Extraordinary progress has been made in the development of practical processes and products from polymers such as starch, cellulose, and lactic acid. The need to create alternative biodegradable water-soluble polymers for down-the-drain products such as detergents and cosmetics has taken on increasing importance. Consumers have, however, thus far attached little or no added value to the property of biodegradability, forcing industry to compete head-to-head on a cost-performance basis with existing familiar products. In addition, no suitable infrastructure for the disposal of biodegradable materials exists as yet.

  15. Binning of shallowly sampled metagenomic sequence fragments reveals that low abundance bacteria play important roles in sulfur cycling and degradation of complex organic polymers in an acid mine drainage community

    NASA Astrophysics Data System (ADS)

    Dick, G. J.; Andersson, A.; Banfield, J. F.

    2007-12-01

    not expected to reflect the tetranucleotide frequency signature of the host genome. Four unknown tetranucleotide frequency clusters with significant sequence (6 Mb total) were noted and analyzed further. Based on phylogenetic markers and BLAST results, these clusters represent low abundance bacteria including Acintobacteria, Firmicutes, and Proteobacteria. Functional analysis of these clusters revealved that the low- abundance bacteria harbor genes that could potentially encode important ecosystem functions such as sulfur utilization (e.g. polysulfide reductase) and polymer degradation (e.g. chitinase and glycoside hydrolase). We conclude that ESOM clustering of tetranucleotide frequency patterns is an effective method for rapidly binning shotgun community genomic sequences and a valuable tool for analyzing minor community members, which despite their low abundance may play crucial ecological roles.

  16. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  17. Mechanosensitive membrane probes.

    PubMed

    Dal Molin, Marta; Verolet, Quentin; Soleimanpour, Saeideh; Matile, Stefan

    2015-04-13

    This article assembles pertinent insights behind the concept of planarizable push-pull probes. As a response to the planarization of their polarized ground state, a red shift of their excitation maximum is expected to report on either the disorder, the tension, or the potential of biomembranes. The combination of chromophore planarization and polarization contributes to various, usually more complex processes in nature. Examples include the color change of crabs or lobsters during cooking or the chemistry of vision, particularly color vision. The summary of lessons from nature is followed by an overview of mechanosensitive organic materials. Although often twisted and sometimes also polarized, their change of color under pressure usually originates from changes in their crystal packing. Intriguing exceptions include the planarization of several elegantly twisted phenylethynyl oligomers and polymers. Also mechanosensitive probes in plastics usually respond to stretching by disassembly. True ground-state planarization in response to molecular recognition is best exemplified with the binding of thoughtfully twisted cationic polythiophenes to single- and double-stranded oligonucleotides. Molecular rotors, en vogue as viscosity sensors in cells, operate by deplanarization of the first excited state. Pertinent recent examples are described, focusing on λ-ratiometry and intracellular targeting. Complementary to planarization of the ground state with twisted push-pull probes, molecular rotors report on environmental changes with quenching or shifts in emission rather than absorption. The labeling of mechanosensitive channels is discussed as a bioengineering approach to bypass the challenge to create molecular mechanosensitivity and use biological systems instead to sense membrane tension. With planarizable push-pull probes, this challenge is met not with twistome screening, but with "fluorescent flippers," a new concept to insert large and bright monomers into oligomeric

  18. Use of Chiral Alcohols for Elucidating the Mode and Kinetics of Degradation of Fluorotelomer Compounds

    EPA Science Inventory

    Fluorotelomer polymers are the dominant product line of the fluorotelomer industry. Fluorotelomer polymers have been shown to degrade under environmental conditions to form numerous fluorotelomer and perfluorinated monomers that are of environmental and toxicological concern; how...

  19. Green polymer chemistry: Some recent developments and examples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Green polymer chemistry continues to be a popular field, with many books and publications in print. Research is being conducted in several areas within this field, including: 1) green catalysis, 2) diverse feedstock base, 3) degradable polymers and waste minimization, 4) recycling of polymer produc...

  20. Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air.

    The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air.

    The needles on the probe are 15 millimeters (0.6 inch) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Advanced Polymer For Multilayer Insulating Blankets

    NASA Technical Reports Server (NTRS)

    Haghighat, R. Ross; Shepp, Allan

    1996-01-01

    Polymer resisting degradation by monatomic oxygen undergoing commercial development under trade name "Aorimide" ("atomic-oxygen-resistant imidazole"). Intended for use in thermal blankets for spacecraft in low orbit, useful on Earth in outdoor applications in which sunlight and ozone degrades other plastics. Also used, for example, to make threads and to make films coated with metals for reflectivity.

  2. Fire-retardant epoxy polymers

    NASA Technical Reports Server (NTRS)

    Akawie, R. I.; Bilow, N.; Giants, T. W.

    1978-01-01

    Phosphorus atoms in molecular structure of epoxies make them fire-retardant without degrading their adhesive strength. Moreover, polymers are transparent, unlike compounds that contain arsenic or other inorganics. They have been used to bond polyvinylfluoride and polyether sulfone films onto polyimide glass laminates.

  3. Engineered Polymers for Advanced Drug Delivery

    PubMed Central

    Kim, Sungwon; Kim, Jong-Ho; Jeon, Oju; Kwon, Ick Chan; Park, Kinam

    2009-01-01

    Engineered polymers have been utilized for developing advanced drug delivery systems. The development of such polymers has caused advances in polymer chemistry, which, in turn, has resulted in smart polymers that can respond to changes in environmental condition, such as temperature, pH, and biomolecules. The responses vary widely from swelling/deswelling to degradation. Drug-polymer conjugates and drug-containing nano/micro-particles have been used for drug targeting. Engineered polymers and polymeric systems have also been used in new areas, such as molecular imaging as well as in nanotechnology. This review examines the engineered polymers that have been used as traditional drug delivery and as more recent applications in nanotechnology. PMID:18977434

  4. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  5. Compatibility of hydrosoluble polymers with corrodible materials

    SciTech Connect

    Audibert, A.; Lecourtier, J. )

    1992-05-01

    This paper reports that application of water-soluble polymers in the oil industry (e.g., fluid-loss reducer, polymer flooding, and water-based drilling muds) requires hydrosoluble polymers to be compatible with corrodible materials. The behavior of polyacrylamides and xanthans in the presence of various materials used for oil production (steel, stainless steel, carbon steel, and Inconel) has been studied vs. different water salinities, oxygen contents, and temperatures. The influence of such commonly used additives as oxygen scavengers and sequestrants on corrosion and polymer stability has also been investigated. For both types of polymers, as corrosion occurs under anaerobic conditions, strong interactions between polymer chains and divalent cations (Fe{sup 2+} to Fe{sup 2+}) are observed. Such interactions also depend on polymer quality. In the presence of oxygen, corrosion induces a molecular-weight degradation of the polymer followed by a gelation process for xanthan. Some additives may accelerate the transformation of Fe{sup 2+} to Fe{sup 3+}, thus inducing polymer degradation, but this reaction depends on the nature of the chelating agent. These results provide guidelines for the implementation of polymers in oil production, including the selection of materials, water treatment, or mud formulation.

  6. MALDI-TOF MS Imaging evidences spatial differences in the degradation of solid polycaprolactone diol in water under aerobic and denitrifying conditions.

    PubMed

    Rivas, Daniel; Ginebreda, Antoni; Pérez, Sandra; Quero, Carmen; Barceló, Damià

    2016-10-01

    Degradation of solid polymers in the aquatic environment encompasses a variety of biotic and abiotic processes giving rise to heterogeneous patterns across the surface of the material, which cannot be investigated using conventional Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that only renders an "average" picture of the sample. In that context, MALDI-TOF MS Imaging (MALDI MSI) provides a rapid and efficient tool to study 2D spatial changes occurred in the chemical composition of the polymer surface. Commercial polycaprolactone diol (average molecular weight of 1250Da) was selected as test material because it had been previously known to be amenable to biological degradation. The test oligomer probe was incubated under aerobic and denitrifying conditions using synthetic water and denitrifying mixed liquor obtained from a wastewater treatment plant respectively. After ca. seven days of exposure the mass spectra obtained by MALDI MSI showed the occurrence of chemical modifications in the sample surface. Observed heterogeneity across the probe's surface indicated significant degradation and suggested the contribution of biotic processes. The results were investigated using different image processing tools. Major changes on the oligomer surface were observed when exposed to denitrifying conditions. PMID:27213667

  7. Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  8. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings. PMID:27299693

  9. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  10. Exploring bacterial lignin degradation.

    PubMed

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. PMID:24780273

  11. Radiation degradation of cellulose

    NASA Astrophysics Data System (ADS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Hübert, S.

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20 % up to about 80 %. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given.

  12. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  13. Degradation mechanisms and accelerated aging test design

    SciTech Connect

    Clough, R L; Gillen, K T

    1985-01-01

    The fundamental mechanisms underlying the chemical degradation of polymers can change as a function of environmental stress level. When this occurs, it greatly complicates any attempt to use accelerated tests for predicting long-term material degradation behaviors. Understanding how degradation mechanisms can change at different stress levels facilitates both the design and the interpretation of aging tests. Oxidative degradation is a predominant mechanism for many polymers exposed to a variety of different environments in the presence of air, and there are two mechanistic considerations which are widely applicable to material oxidation. One involves a physical process, oxygen diffusion, as a rate-limiting step. This mechanism can predominate at high stress levels. The second is a chemical process, the time-dependent decomposition of peroxide species. This leads to chain branching and can become a rate-controlling factor at lower stress levels involving time-scales applicable to use environments. The authors describe methods for identifying the operation of these mechanisms and illustrate the dramatic influence they can have on the degradation behaviors of a number of polymer types. Several commonly used approaches to accelerated aging tests are discussed in light of the behaviors which result from changes in degradation mechanisms. 9 references, 4 figures.

  14. Solid polymer membrane program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented for a solid polymer electrolyte fuel cell development program. Failure mechanism was identified and resolution of the mechanism experienced in small stack testing was demonstrated. The effect included laboratory analysis and evaluation of a matrix of configurations and operational variables for effects on the degree of hydrogen fluoride released from the cell and on the degree of blistering/delamination occurring in the reactant inlet areas of the cell and to correlate these conditions with cell life capabilities. The laboratory evaluation tests were run at conditions intended to accelerate the degradation of the solid polymer electrolyte in order to obtain relative evaluations as quick as possible. Evaluation of the resolutions for the identified failure mechanism in space shuttle configuration cell assemblies was achieved with the fabrication and life testing of two small stack buildups of four cell assemblies and eight cells each.

  15. Polymer Informatics

    NASA Astrophysics Data System (ADS)

    Adams, Nico

    Polymers are arguably the most important set of materials in common use. The increasing adoption of both combinatorial as well as high-throughput approaches, coupled with an increasing amount of interdisciplinarity, has wrought tremendous change in the field of polymer science. Yet the informatics tools required to support and further enhance these changes are almost completely absent. In the first part of the chapter, a critical analysis of the challenges facing modern polymer informatics is provided. It is argued, that most of the problems facing the field today are rooted in the current scholarly communication process and the way in which chemists and polymer scientists handle and publish data. Furthermore, the chapter reviews existing modes of representing and communicating polymer information and discusses the impact, which the emergence of semantic technologies will have on the way in which scientific and polymer data is published and transmitted. In the second part, a review of the use of informatics tools for the prediction of polymer properties and in silico design of polymers is offered.

  16. Polymers & People

    ERIC Educational Resources Information Center

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  17. Fluorescent probes for shock compression spectroscopy

    NASA Astrophysics Data System (ADS)

    Banishev, Alexandr; Christensen, James; Dlott, Dana

    We have demonstrated the capability of using Rhodamine 6G dye as an ultrafast emission probe in high-speed shock compression of condensed matter. The ultimate time response of the probe, which functions as a high-speed pressure sensor, is limited by fundamental photophysical processes such as radiative rates, internal conversion rates and intersystem crossing rates. The time response has been greatly improved by encapsulating the dye in silica nano or microparticles. This probe was used to observed nanosecond viscoelastic shock compression of a polymer (PMMA), and has been used to monitor the response of individual grains of sand to high-speed impact.

  18. Effect of solvents on the enzyme mediated degradation of copolymers

    NASA Astrophysics Data System (ADS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-09-01

    The biodegradation of polycaprolactone (PCL), polylactic acid (PLA), polyglycolide (PGA) and their copolymers, poly (lactide-co-glycolide) and poly (D, L-lactide-co-caprolactone) (PLCL) was investigated. The influence of different solvents on the degradation of these polymers at 37 °C in the presence of two different lipases namely Novozym 435 and the free lipase of porcine pancreas was investigated. The rate coefficients for the polymer degradation and enzyme deactivation were determined using continuous distribution kinetics. Among the homopolymers, the degradation of PGA was nearly an order of magnitude lower than that for PCL and PLA. The overall rate coefficients of the copolymers were higher than their respective homopolymers. Thus, PLCL degraded faster than either PCL or PLA. The degradation was highly dependent on the viscosity of the solvent used with the highest degradation observed in acetone. The degradation of the polymers in acetone was nearly twice that observed in dimethyl sulfoxide indicating that the degradation decreases with increase in the solvent viscosity. The degradation of the polymers in water-solvent mixtures indicated an optimal water content of 2.5 wt% of water.

  19. More Than Just a Polymer

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Triton atomic Oxygen Resistant polymers TOR(TM), were developed by Chelmsford, Massachusetts-based Triton Systems, Inc., through a Small Business Innovation Research (SBIR) contract from NASA's Langley Research Center. The new family of polymers comes from a Langley-developed polymer technology, which marks a new class of aerospace materials that resist the extreme effects of low Earth orbit (LEO). When applied to spacecraft surfaces, TOR polymers protect against erosion caused by the atomic oxygen and radiation present in space. Other polymers, such as Teflon(R) and Kapton(R), are subject to degradation from atomic oxygen and ultraviolet radiation, but TOR polymers use atomic oxygen to their advantage. A long-lasting protective barrier means major savings in the cost of spacecraft maintenance and the time spent performing repairs. While the obvious application of this material lies with the aerospace industry, an underlying benefit is found in the field of electronics. TOR polymers can be made electrically conductive, and then utilized in the creation of sensors that react to the presence of chemical and biological agents by exhibiting a detectable change in electrical conductivity. These sensors have applications in the defense, medical, and industrial sectors.

  20. THERMAL DEGRADATION OF POLY (ALPHA-METHYLSTYRENE) IN SOLUTION

    EPA Science Inventory

    The thermal degradation of poly(alpha-methylstyrene) in solution was investigated at various temperatures (150-225 C) and polymer concentrations (2.00-20-0 g/l) at 6.8 MPa (1000 psig). The molecular weight distributions (MWDs) of the reacted polymer at these conditions were exami...

  1. Thermal stability of sulfonated polymers

    SciTech Connect

    Audibert, A.; Argillier, J.F.

    1995-11-01

    Polyacrylamides which are used in oil applications i.e. polymer flooding and water based muds, are hydrolyzed versus time and temperature. This leads to a lack of tolerance towards electrolyte contamination and to a rapid degradation inducing a loss of their properties. Modifications of polyacrylamide structure have been proposed to postpone their thermal stability to higher temperatures. Monomers such as acrylamido methylpropane sulfonate (AMPS) or sulfonated styrene/maleic anhydride can be used to prevent acrylamide comonomer from hydrolysis. The aim of this work is to study under controlled conditions, i.e. anaerobic atmosphere, neutral pH, the stability of sulfonated polymers in order to distinguish between hydrolysis and radical degradation reactions. It has been observed that up to 100 C, the AMPS group is stable and protects the acrylamide function from hydrolysis up to 80%. At higher temperature, even the hydrolysis of the AMPS group occurs, giving acrylate and {beta},{beta} dimethyl taurine, with a kinetics that depends on temperature and time. Degradation in terms of molecular weight then occurs indicating that it follows a radical decarboxylation reaction. It can be limited either by the use of free radical scavenger or when the polymer is in the presence of a mineral phase such as bentonite. These results provide valuable data for the determination of the limits of use of sulfonated copolymers and guidelines for optimizing chemical structure of sulfonated polymers used in water based formulation, in particular to enhance their thermal stability.

  2. Semi-Degradable Poly(β-amino ester) Networks with Temporally-Controlled Enhancement of Mechanical Properties

    PubMed Central

    Safranski, David L.; Weiss, Daiana; Clark, J. Brian; Taylor, W.R.; Gall, Ken

    2014-01-01

    Biodegradable polymers are clinically used in numerous biomedical applications, and classically show a loss in mechanical properties within weeks of implantation. This work demonstrates a new class of semi-degradable polymers that show an increase in mechanical properties through degradation via a controlled shift in a thermal transition. Semi-degradable polymer networks, poly(β-amino ester)-co-methyl methacrylate, were formed from a low glass transition temperature crosslinker, poly(β-amino ester), and high glass transition temperature monomer, methyl methacrylate, which degraded in a manner dependent upon the crosslinker chemical structure. In vitro and in vivo degradation revealed changes in mechanical behavior due to the degradation of the crosslinker from the polymer network. This novel polymer system demonstrates a strategy to temporally control the mechanical behavior of polymers and to enhance the initial performance of smart biomedical devices. PMID:24769113

  3. Understanding Polymer Properties through Imaging of Molecules.

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei

    2008-03-01

    The unique advantage of Scanning Probe Microscopy (SPM) is that it allows imaging of flexible polymer molecules, whose overall size and local curvature are below the optical resolution limit. The role of molecular visualization has grown to be especially profound with the synthesis of complex macromolecules whose structure is difficult to confirm using conventional techniques such as NMR and light scattering. This is especially true for molecules that are branched, heterogeneous, and polydisperse. Here, SPM images provide unambiguous proof of the molecular architecture along with accurate analysis of size, conformation, and ordering of molecules on surfaces. The unique advantage of SPM is that one obtains molecular dimensions in direct space. This offers more opportunities for statistical analysis including fractionation of molecules by size, branching topology, and chemical composition as well as sorting out the irrelevant species. Unlike molecular characterization of static molecules, it remains challenging to study molecules as they move and react on surfaces. We will discuss pioneering AFM studies of flowing monolayers one molecule at a time. Through use of AFM, the flow process was monitored over a broad range of length scales from the millimeter long precursor film all the way down to the movements of individual molecules within the film. Molecular imaging enabled independent measurements both the driving and frictional forces that control spreading rate. In these studies, one also discovered a new type of flow instability in polymer monolayers caused by flow-induced conformational transitions. Recently, molecular imaging has been successfully used to monitor adsorption-induced degradation of branched molecules. These experiments open an entirely new perspective in chemistry wherein the chemical bonds can be mechanically activated upon the physical contact of a macromolecule with a substrate. This research directly impacts coatings, lubrication, heterogeneous

  4. Soft stylus probes for scanning electrochemical microscopy.

    PubMed

    Cortés-Salazar, Fernando; Träuble, Markus; Li, Fei; Busnel, Jean-Marc; Gassner, Anne-Laure; Hojeij, Mohamad; Wittstock, Gunther; Girault, Hubert H

    2009-08-15

    A soft stylus microelectrode probe has been developed to carry out scanning electrochemical microscopy (SECM) of rough, tilted, and large substrates in contact mode. It is fabricated by first ablating a microchannel in a polyethylene terephthalate thin film and filling it with a conductive carbon ink. After curing the carbon track and lamination with a polymer film, the V-shaped stylus was cut thereby forming a probe, with the cross section of the carbon track at the tip being exposed either by UV-photoablation machining or by blade cutting followed by polishing to produce a crescent moon-shaped carbon microelectrode. The probe properties have been assessed by cyclic voltammetry, approach curves, and line scans over electrochemically active and inactive substrates of different roughness. The influence of probe bending on contact mode imaging was then characterized using simple patterns. Boundary element method simulations were employed to rationalize the distance-dependent electrochemical response of the soft stylus probes. PMID:19630394

  5. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  6. Imine Hydrogels with Tunable Degradability

    PubMed Central

    Boehnke, Natalie; Cam, Cynthia; Bat, Erhan; Segura, Tatiana; Maynard, Heather D.

    2015-01-01

    A shortage of available organ donors has created a need for engineered tissues. In this context, polymer-based hydrogels that break down inside the body are often used as constructs for growth factors and cells. Herein, we report imine cross-linked gels where degradation is controllable by the introduction of mixed imine cross-links. Specifically, hydrazide-functionalized poly(ethylene glycol) (PEG) reacts with aldehyde-functionalized PEG (PEG-CHO) to form hydrazone linked hydrogels that degrade quickly in media. The time to degradation can be controlled by changing the structure of the hydrazide group or by introducing hydroxylamines to form non-reversible oxime linkages. Hydrogels containing adipohydrazide-functionalized PEG (PEG-ADH) and PEG-CHO were found to degrade more rapidly than gels formed from carbodihydrazide-functionalized PEG (PEG-CDH). Incorporating oxime linkages via aminooxy-functionalized PEG (PEG-AO) into the hydrazone cross-linked gels further stabilized the hydrogels. This imine crosslinking approach should be useful for modulating the degradation characteristics of 3D cell culture supports for controlled cell release. PMID:26061010

  7. An SEC/MALS Study of Alternan Degradation During Size-exclusion Chromatographic Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The degradation of high molar mass polymers during size-exclusion chromatography (SEC) analysis has been a topic of interest for several decades. Should a polymer degrade during analysis, the accuracy of the molar mass (M) and architectural information obtained will be compromised. To this effect,...

  8. Light-triggered chemical amplification to accelerate degradation and release from polymeric particles.

    PubMed

    Olejniczak, Jason; Nguyen Huu, Viet Anh; Lux, Jacques; Grossman, Madeleine; He, Sha; Almutairi, Adah

    2015-12-11

    We describe a means of chemical amplification to accelerate triggered degradation of a polymer and particles composed thereof. We designed a light-degradable copolymer containing carboxylic acids masked by photolabile groups and ketals. Photolysis allows the unmasked acidic groups in the polymer backbone to accelerate ketal hydrolysis even at neutral pH. PMID:26445896

  9. Polymer precursors for ceramic composites

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1986-01-01

    The fiber composite approach to reinforced ceramics provides the possibility of achieving ceramics with high fracture toughness relative to monolithics. Fabrication of ceramic composites, however, demands low processing temperatures to avoid fiber degradation. Formation of complex shapes further requires small diameter fibers as well as techniques for infiltrating the matrix between fibers. Polymers offer low temperature processability, control of rheology not available with ceramic powders, and should serve as precursors to matrix fibers. In recent years, a number of polysilanes and polysilezanes were investigated as potential presursors. A review of candidate polymers is presented, including recent studies of silsesquioxanes.

  10. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    PubMed Central

    BaoLin, GUO; MA, Peter X.

    2015-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glycerol sebacate) are summarized in this article. New developments in conducting polymers, photoresponsive polymers, amino-acid-based polymers, enzymatically degradable polymers, and peptide-activated polymers are also discussed. In addition to chemical functionalization, the scaffold designs that mimic the nano and micro features of the extracellular matrix (ECM) are presented as well, and composite and nanocomposite scaffolds are also reviewed. PMID:25729390

  11. Organometallic Polymers.

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  12. Polymer flooding

    SciTech Connect

    Littmann, W.

    1988-01-01

    This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10-15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. An indispensable book for reservoir engineers, production engineers and lab. technicians within the petroleum industry.

  13. Polymers All Around You!

    ERIC Educational Resources Information Center

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  14. Final report for the designed synthesis of controlled degradative materials LDRD

    SciTech Connect

    LOY,DOUGLAS A.; ULIBARRI,TAMARA A.; CURRO,JOHN G.; SAUNDERS,R.; DERZON,DORA K.; GUESS,TOMMY R.; BAUGHER,B.M.

    2000-02-01

    The main goal of this research was to develop degradable systems either by developing weaklink-containing polymers or identifying commercial polymeric systems which are easily degraded. In both cases, the degradation method involves environmentally friendly chemistries. The weaklinks are easily degradable fragments which are introduced either randomly or regularly in the polymer backbone or as crosslinking sites to make high molecular weight systems via branching. The authors targeted three general application areas: (1) non-lethal deterrents, (2) removable encapsulants, and (3) readily recyclable/environmentally friendly polymers for structural and thin film applications.

  15. Synthesis, Biodegradability, and Biocompatibility of Lysine Diisocyanate–Glucose Polymers

    PubMed Central

    ZHANG, JIAN-YING; BECKMAN, ERIC J.; HU, JING; YANG, GUO-GUANG; AGARWAL, SUDHA; HOLLINGER, JEFFREY O.

    2016-01-01

    The success of a tissue-engineering application depends on the use of suitable biomaterials that degrade in a timely manner and induce the least immunogenicity in the host. With this purpose in mind, we have attempted to synthesize a novel nontoxic biodegradable lysine diisocyanate (LDI)-and glucose-based polymer via polymerization of highly purified LDI with glucose and its subsequent hydration to form a spongy matrix. The LDI–glucose polymer was degradable in aqueous solutions at 37, 22, and 4°C, and yielded lysine and glucose as breakdown products. The degradation products of the LDI–glucose polymer did not significantly affect the pH of the solution. The physical properties of the polymer were found to be adequate for supporting cell growth in vitro, as evidenced by the fact that rabbit bone marrow stromal cells (BMSCs) attached to the polymer matrix, remained viable on its surface, and formed multilayered confluent cultures with retention of their phenotype over a period of 2 to 4 weeks. These observations suggest that the LDI–glucose polymer and its degradation products were nontoxic in vitro. Further examination in vivo over 8 weeks revealed that subcutaneous implantation of hydrated matrix degraded in vivo three times faster than in vitro. The implanted polymer was not immunogenic and did not induce antibody responses in the host. Histological analysis of the implanted polymer showed that LDI–glucose polymer induced a minimal foreign body reaction, with formation of a capsule around the degrading polymer. The results suggest that biodegradable peptide-based polymers can be synthesized, and may potentially find their way into biomedical applications because of their biodegradability and biocompatibility. PMID:12459056

  16. Shock wave diagnostics using fluorescent dye probes

    NASA Astrophysics Data System (ADS)

    Banishev, Alexandr; Christensen, James; Dlott, Dana

    2015-06-01

    Fluorescent probes are highly developed, and have found increasing use in a wide variety of applications. We have studied shock compression of various materials with embedded dye probes used as high speed probes of pressure and temperature. Under the right conditions, dye emission can be used to make a map of the pressure distribution in shocked microstructured materials with high time (1 ns) and space (1 micrometer) resolution. In order to accomplish this goal, we started by studying shock compression of PMMA polymer with rhodamine 6G dye (R6G), as a function of shock pressure and shock duration. We observed the shock-induced spectral redshift and the shock-induced intensity loss. We investigated the fundamental mechanisms of R6G response to pressure. We showed that the time response of a dye probe is limited by its photophysical behavior under shock. We developed superemissive ultrafast dye probes by embedding R6G in a silica nanoparticle. More recently, we have searched for dye probes that have better responses. For instance, we have found that the dye Nile Red embedded in the right polymer matrix has 1.7 times larger pressure-induced redshift than R6G.

  17. Drug Release Kinetics and Transport Mechanisms of Non-degradable and Degradable Polymeric Delivery Systems

    PubMed Central

    Fu, Yao; Kao, Weiyuan John

    2010-01-01

    Importance of the field The advancement in material design and engineering has led to the rapid development of novel materials with increasing complexity and functions. Both non-degradable and degradable polymers have found wide applications in the controlled delivery field. Studies on drug release kinetics provide important information into the function of material systems. To elucidate the detailed transport mechanism and the structure-function relationship of a material system, it is critical to bridge the gap between the macroscopic data and the transport behavior at the molecular level. Areas covered in this review The structure and function information of selected non-degradable and degradable polymers have been collected and summarized from literatures published after 1990s. The release kinetics of selected drug compounds from various material systems will be discussed in case studies. Recent progresses in the mathematical models based on different transport mechanisms will be highlighted. What the reader will gain This article aims to provide an overview of structure-function relationships of selected non-degradable and degradable polymers as drug delivery matrices. Take home message Understanding the structure-function relationship of the material system is key to the successful design of a delivery system for a particular application. Moreover, developing complex polymeric matrices requires more robust mathematical models to elucidate the solute transport mechanisms. PMID:20331353

  18. Review: photopolymerizable and degradable biomaterials for tissue engineering applications.

    PubMed

    Ifkovits, Jamie L; Burdick, Jason A

    2007-10-01

    Photopolymerizable and degradable biomaterials are finding widespread application in the field of tissue engineering for the engineering of tissues such as bone, cartilage, and liver. The spatial and temporal control afforded by photoinitiated polymerizations has allowed for the development of injectable materials that can deliver cells and growth factors, as well as for the fabrication of scaffolding with complex structures. The materials developed for these applications range from entirely synthetic polymers (e.g., poly(ethylene glycol)) to purely natural polymers (e.g., hyaluronic acid) that are modified with photoreactive groups, with degradation based on the hydrolytic or enzymatic degradation of bonds in the polymer backbone or crosslinks. The degradation behavior also ranges from purely bulk to entirely surface degrading, based on the nature of the backbone chemistry and type of degradable units. The mechanical properties of these polymers are primarily based on factors such as the network crosslinking density and polymer concentration. As we better understand biological features necessary to control cellular behavior, smarter materials are being developed that can incorporate and mimic many of these factors. PMID:17658993

  19. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    SciTech Connect

    Cui, Zhongping; Qi, Ji; Xu, Xinxin Liu, Lu; Wang, Yi

    2013-09-15

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer composite material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future.

  20. Fast and reliable method of conductive carbon nanotube-probe fabrication for scanning probe microscopy

    SciTech Connect

    Dremov, Vyacheslav Fedorov, Pavel; Grebenko, Artem; Fedoseev, Vitaly

    2015-05-15

    We demonstrate the procedure of scanning probe microscopy (SPM) conductive probe fabrication with a single multi-walled carbon nanotube (MWNT) on a silicon cantilever pyramid. The nanotube bundle reliably attached to the metal-covered pyramid is formed using dielectrophoresis technique from the MWNT suspension. It is shown that the dimpled aluminum sample can be used both for shortening/modification of the nanotube bundle by applying pulse voltage between the probe and the sample and for controlling the probe shape via atomic force microscopy imaging the sample. Carbon nanotube attached to cantilever covered with noble metal is suitable for SPM imaging in such modulation regimes as capacitance contrast microscopy, Kelvin probe microscopy, and scanning gate microscopy. The majority of such probes are conductive with conductivity not degrading within hours of SPM imaging.

  1. Fast and reliable method of conductive carbon nanotube-probe fabrication for scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Dremov, Vyacheslav; Fedoseev, Vitaly; Fedorov, Pavel; Grebenko, Artem

    2015-05-01

    We demonstrate the procedure of scanning probe microscopy (SPM) conductive probe fabrication with a single multi-walled carbon nanotube (MWNT) on a silicon cantilever pyramid. The nanotube bundle reliably attached to the metal-covered pyramid is formed using dielectrophoresis technique from the MWNT suspension. It is shown that the dimpled aluminum sample can be used both for shortening/modification of the nanotube bundle by applying pulse voltage between the probe and the sample and for controlling the probe shape via atomic force microscopy imaging the sample. Carbon nanotube attached to cantilever covered with noble metal is suitable for SPM imaging in such modulation regimes as capacitance contrast microscopy, Kelvin probe microscopy, and scanning gate microscopy. The majority of such probes are conductive with conductivity not degrading within hours of SPM imaging.

  2. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack

    NASA Astrophysics Data System (ADS)

    Sun, Shucheng; Shao, Zhigang; Yu, Hongmei; Li, Guangfu; Yi, Baolian

    2014-12-01

    A 9-cell proton exchange membrane (PEM) water electrolysis stack is developed and tested for 7800 h. The average degradation rate of 35.5 μV h-1 per cell is measured. The 4th MEA of the stack is offline investigated and characterized. The electrochemical impedance spectroscopy (EIS) shows that the charge transfer resistance and ionic resistance of the cell both increase. The linear sweep scan (LSV) shows the hydrogen crossover rate of the membrane has slight increase. The electron probe X-ray microanalyze (EPMA) illustrates further that Ca, Cu and Fe elements distribute in the membrane and catalyst layers of the catalyst-coated membranes (CCMs). The cations occupy the ion exchange sites of the Nafion polymer electrolyte in the catalyst layers and membrane, which results in the increase in the anode and the cathode overpotentials. The metallic impurities originate mainly from the feed water and the components of the electrolysis unit. Fortunately, the degradation was reversible and can be almost recovered to the initial performance by using 0.5 M H2SO4. This indicates the performance degradation of the stack running 7800 h is mainly caused by a recoverable contamination.

  3. Improved Process for Fabricating Carbon Nanotube Probes

    NASA Technical Reports Server (NTRS)

    Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, Jie

    2003-01-01

    An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure.

  4. Microstructural Characterization of Polymers with Positrons

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1997-01-01

    Positrons provide a versatile probe for monitoring microstructural features of molecular solids. In this paper, we report on positron lifetime measurements in two different types of polymers. The first group comprises polyacrylates processed on earth and in space. The second group includes fully-compatible and totally-incompatible Semi-Interpenetrating polymer networks of thermosetting and thermoplastic polyimides. On the basis of lifetime measurements, it is concluded that free volumes are a direct reflection of physical/electromagnetic properties of the host polymers.

  5. Slow-Positron Generator For Studying Polymer Films

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; St. Clair, Terry L.; Eftekhari, Abe

    1992-01-01

    Aspects of molecular structures probed by positron-annihilation spectroscopy (PAS). Slow-positron-beam generator suitable for PAS measurements in thin polymer films. Includes Na22 source of positrons and two moderators made of well-annealed tungsten foil. With proper choice of voltage, positrons emitted by inward-facing surfaces of moderators made to stop in polymer films tested.

  6. Controlled release drug coatings on flexible neural probes.

    PubMed

    Mercanzini, Andre; Reddy, Sai; Velluto, Diana; Colin, Philippe; Maillard, Anne; Bensadoun, Jean-Charles; Bertsch, Arnaud; Hubbell, Jeffrey A; Renaud, Philippe

    2007-01-01

    We present the development, characterization and in vivo validation of a novel drug eluting coating that has been applied to flexible neural probes. The coating consists of drug eluting nanoparticles loaded with an anti-inflammatory drug embedded in a biodegradable polymer. The drug eluting coating is applied to flexible polymer neural probes with platinum electrodes. The drug eluting device is implanted in one hemisphere of a rat, while a control device is implanted in the opposite hemisphere. Impedance measurements are performed to determine the effect of the drug eluting coating on the tissue reaction surrounding the probe and the electrical characteristics of the devices. Probes that are coated with drug eluting coatings show better long term impedance characteristics over control probes. These coatings can be used to increase the reliability and long term success of neural prostheses. PMID:18003541

  7. Antimocrobial Polymer

    DOEpatents

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  8. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  9. Polymer inflation

    NASA Astrophysics Data System (ADS)

    Hassan, Syed Moeez; Husain, Viqar; Seahra, Sanjeev S.

    2015-03-01

    We consider the semiclassical dynamics of a free massive scalar field in a homogeneous and isotropic cosmological spacetime. The scalar field is quantized using the polymer quantization method assuming that it is described by a Gaussian coherent state. For quadratic potentials, the semiclassical equations of motion yield a universe that has an early "polymer inflation" phase which is generic and almost exactly de Sitter, followed by an epoch of slow-roll inflation. We compute polymer corrections to the slow-roll formalism, and discuss the probability of inflation in this model using a physical Hamiltonian arising from time gauge fixing. We also show how in this model, it is possible to obtain a significant amount of slow-roll inflation from sub-Planckian initial data, hence circumventing some of the criticisms of standard scenarios. These results show the extent to which a quantum gravity motivated quantization method affects early universe dynamics.

  10. Mechanisms of Morphology Development and Control in Polymer- Polymer Blends

    NASA Astrophysics Data System (ADS)

    Macosko, Christopher W.

    1998-03-01

    Compatibilizers?" accepted for publication by Journal of Polymer Science, Polymer Physics Edition, 1997. Levitt, L. and C. W. Macosko, "Extensional Rheometry of Polymer Multilayers: A Sensitive Probe of Interfaces," J. Rheol, 41, 3, 671-685, (1997). Levitt, L., C.W. Macosko and S.D. Pearson, "Influence of Normal Stress Difference on Polymer Drop Deformation," Polym. Eng. Sci., 36, Part 12, 1647-1655 (1996). Nakayama, A., T. Inoue, A. Hirao, P. Guegan, A. Khandpur, and C. W. Macosko, "Compatibilization of Blends: Effect of Reaction Rate," PPS Proceedings, Sorrento, May 1996. Levitt, L., "Microlayer Morphology Via Polymer Melt Processing, Ph.D. Thesis, Department of Chemical Engineering & Materials Science, University of Minnesota, 1997. Orr, C. A., A. Adedeji, A. Hirao, F. S. Bates, and C. W. Macosko, "Flow-Induced Reactive Self-Assembly", Macromolecules, 30, 4, 1243-1246, (1997). Orr, C. A., "Reactive Compatibilization of Polymer Blends," Ph.D. Thesis, Department of Chemical Engineering & Materials Science, University of Minnesota, 1997. Scott, C. E., and C. W. Macosko, "Morphology Development During the Initial Stages of Polymer-Polymer Blending," Polymer, 36, 461-470 (1995). Scott, C. E. and C. W. Macosko, "Model Experiments Concerning Morphology Development During the Initial Stages of Polymer Blending," Polymer Bulletin 26, 341- 348 (1991). Sundararaj, U., C. K. Shih, and C. W. Macosko, "Evidence For Inversion of Phase Continuity During Morphology Development in Polymer Blending," Polymer Eng. and Sci., 36, 1769-1781 (1996). Sundararaj, U., and C. W. Macosko, "Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization, Macromolecules, 28, 2647-2657 (1995). Sundararaj, U., Y. Dori and C. W. Macosko, "Sheet Formation in Immiscible Polymer Blends: Model Experiments on Initial Blend Morphology," Polymer, 36, 1957-1968 (1995). Sundararaj, U., C. W. Macosko, A. Nakayama, and T. Inoue, "Milligrams to Kilograms: An Evaluation of Mixers for

  11. HAZARDOUS WASTE DEGRADATION BY WOOD DEGRADING FUNGI

    EPA Science Inventory

    The persistence and toxicity of many hazardous waste constituents indicates that the environment has limited capacity to degrade such materials. he competence and presence of degrading organisms significantly effects our ability to treat and detoxify these hazardous waste chemica...

  12. Controlled drug release and hydrolysis mechanism of polymer-magnetic nanoparticle composite.

    PubMed

    Yang, Fang; Zhang, Xiaoxian; Song, Lina; Cui, Huating; Myers, John N; Bai, Tingting; Zhou, Ying; Chen, Zhan; Gu, Ning

    2015-05-13

    Uniform and multifunctional poly(lactic acid) (PLA)-nanoparticle composite has enormous potential for applications in biomedical and materials science. A detailed understanding of the surface and interface chemistry of these composites is essential to design such materials with optimized function. Herein, we designed and investigated a simple PLA-magnetic nanoparticle composite system to elucidate the impact of nanoparticles on the degradation of polymer-nanoparticle composites. In order to have an in-depth understanding of the mechanisms of hydrolysis in PLA-nanoparticle composites, degradation processes were monitored by several surface sensitive techniques, including scanning electron microscopy, contact angle goniometry, atomic force microscopy, and sum frequency generation spectroscopy. As a second-order nonlinear optical technique, SFG spectroscopy was introduced to directly probe in situ chemical nature at the PLA-magnetic nanoparticle composite/aqueous interface, which allowed for the delineation of molecular mechanisms of various hydrolysis processes for degradation at the molecular level. The best PLA-NP material, with a concentration of 20% MNP in the composite, was found to enhance the drug release rate greater than 200 times while maintaining excellent controlled drug release characteristics. It was also found that during hydrolysis, various crystalline-like PLA domains on the surfaces of PLA-nanoparticle composites influenced various hydrolysis behaviors of PLA. Results from this study provide new insight into the design of nanomaterials with controlled degradation and drug release properties, and the underlined molecular mechanisms. The methodology developed in this study to characterize the polymer-nanoparticle composites is general and widely applicable. PMID:25881356

  13. Bioreducible Polymers for Therapeutic Gene Delivery

    PubMed Central

    Lee, Young Sook; Kim, Sung Wan

    2014-01-01

    Most currently available cationic polymers have significant acute toxicity concerns such as cellular toxicity, aggregation of erythrocytes, and entrapment in the lung capillary bed, largely due to their poor biocompatibility and non-degradability under physiological conditions. To develop more intelligent polymers, disulfide bonds are introduced in the design of biodegradable polymers. Herein, the sustained innovations of biomimetic nanosized constructs with bioreducible poly(disulfide amine)s demonstrate a viable clinical tool for the treatment of cardiovascular disease, anemia, diabetes, and cancer. PMID:24746626

  14. Bacterial degradation of natural and synthetic rubber.

    PubMed

    Bode, H B; Kerkhoff, K; Jendrossek, D

    2001-01-01

    The degradation of natural rubber (NR), synthetic poly(cis-1,4-isoprene) (SR), and cross-linked NR (latex gloves) by Gram-positive and Gram-negative bacteria was analyzed by weight loss, gel permeation chromatography, and determination of the protein content. Weight losses of 11-18% and an increase in protein up to 850 microg/mL after incubation of Nocardia sp. DSMZ43191, Streptomyces coelicolor, Streptomyces griseus, bacterial isolate 18a, Acinetobacter calcoaceticus, and Xanthomonas sp. with latex gloves as a carbon source indicated degradation of the polymer. An increase of protein up to 1250 microg/mL was obtained upon incubation of the bacteria with SR. No or only little weight losses and no increase in the protein content were found for nondegrading control strains such as Streptomyces lividans and Streptomyces exfoliatus and for mutants of degrading strains of S. coelicolor and S. griseus, which have been identified by their inability to produce clearing zones on opaque latex agar. Measurement of the average molecular weight of synthetic rubber before and after degradation showed a time-dependent shift to lower values for the degrading strains. Diketone derivates of oligo(cis-1,4-isoprene) were identified as metabolites of rubber degradation. An oxidative degradation pathway of poly(cis-1,4-isoprene) to acetyl-coenzymeA and propionyl-coenzymeA by beta-oxidation is suggested for bacterial degradation of isoprene rubber. PMID:11749186

  15. Protease-activated quantum dot probes

    NASA Astrophysics Data System (ADS)

    Chang, Emmanuel; Sun, Jiantang; Miller, Jordan S.; Yu, William W.; Colvin, Vicki L.; West, Jennifer L.; Drezek, Rebekah

    2006-04-01

    We demonstrate a novel quantum dot based probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This probe may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically-degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Peptide cleavage results in release of AuNPs and restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 hours of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker.

  16. Thermal Spray Formation of Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Coquill, Scott; Galbraith, Stephen L.; Tuss. Darren L.; Ivosevic, Milan

    2008-01-01

    This innovation forms a sprayable polymer film using powdered precursor materials and an in-process heating method. This device directly applies a powdered polymer onto a substrate to form an adherent, mechanically-sound, and thickness-regulated film. The process can be used to lay down both fully dense and porous, e.g., foam, coatings. This system is field-deployable and includes power distribution, heater controls, polymer constituent material bins, flow controls, material transportation functions, and a thermal spray apparatus. The only thing required for operation in the field is a power source. Because this method does not require solvents, it does not release the toxic, volatile organic compounds of previous methods. Also, the sprayed polymer material is not degraded because this method does not use hot combustion gas or hot plasma gas. This keeps the polymer from becoming rough, porous, or poorly bonded.

  17. Electrically conductive and redox electroactive organic polymers

    SciTech Connect

    Reynolds, J.R.; Balanda, P.B.; Sotzing, G.A.

    1995-12-01

    We describe new fully conjugated bis(pyrrol-2-yl)arylene and bis(3,4-dioxyethylenethiophene)arylene monomers which electropolymerize at low potentials avoiding degradative side reactions to yield highly stable redox switchable polymers. We outline the properties of DOET polymers which exhibit low electronic band gaps allowing for the formation of conducting complexes with a high degree of optical transmission of visible light and show their electrochromic properties. Finally, we discuss the properties of polymers containing electron donor molecules as an integral part of the polymer backbone and as pendant substituents. These donor molecules have been chosen due to their propensity to form metallic, and in some instances superconducting, crystalline complexes and suggest these properties can be extended to highly processible organic polymers.