Science.gov

Sample records for polymer liquid crystal

  1. Liquid crystal-templated conducting organic polymers

    DOEpatents

    Stupp, Samuel I.; Hulvat, James F.

    2004-01-20

    A method of preparing a conductive polymeric film, includes providing a liquid crystal phase comprising a plurality of hydrophobic cores, the phase on a substrate, introducing a hydrophobic component to the phase, the component a conductive polymer precursor, and applying an electric potential across the liquid crystal phase, the potential sufficient to polymerize the said precursor.

  2. Patterned cholesteric liquid crystal polymer film.

    PubMed

    Hsu, Wei-Liang; Ma, Ji; Myhre, Graham; Balakrishnan, Kaushik; Pau, Stanley

    2013-02-01

    Herein, the ability to create arbitrarily patterned circular polarized optical devices is demonstrated by using cholesteric liquid crystal polymer. Photoalignment with polarized ultraviolet light is utilized to create aligned cholesteric liquid crystal films. Two different methods, thermal annealing and solvent rinse, are utilized for patterning cholesteric liquid crystal films over large areas. The patterned cholesteric liquid crystal films are measured using a Mueller matrix imaging polarimeter, and the polarization properties, including depolarization index, circular diattenuation (CD), and circular retardance are derived. Patterned nonlinearly polarized optical devices can be fabricated with feature sizes as small as 20 μm with a CD of 0.812±0.015. Circular polarizing filters based on polymer cholesteric liquid crystal films have applications in three-dimensional displays, medical imaging, polarimetry, and interferometry. PMID:23456060

  3. Polymer Crystallization at Curved Liquid/Liquid Interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda

    Liquid/liquid interface, either flat or curved, is a unique template for studying self-assembly of a variety of nanomaterials such as nanoparticles and nanorods. The resultant monolayer films can be ordered or disordered depending on the regularity of the nanomaterials. Integration of nanoparticles into two-dimensional structure leads to intriguing collective properties of the nanoparticles. Crystallization can also be guided by liquid/liquid interface. Due to the particular shape of the interface, crystallization can happen in a different manner comparing to the normal solution crystallization. In this dissertation, liquid/liquid interface is employed to guide the crystallization of polymers, mainly focusing on using curved liquid/liquid interface. Due to the unique shape of the interface and feasibility to control the curvature, polymer crystallization can take place in different manner and lead to the formation of curved or vesicular crystals. Curved liquid/liquid interface is typically created through o/w emulsions. With the presence of surfactant, the emulsions are controlled to be stable at least for the polymer crystallization periods. The difference to normal solution crystallization is: the nuclei will diffuse to the curved interface due to the Pickering effect and guide the crystallization along the curved liquid/liquid interface. If the supercooling can be controlled to be very small, crystal growth in the bulk droplets can be avoided. The advantages of this strategy are: 1) the formation process of vesicular type crystals can be monitored by controlling the polymer supply; 2) curved crystals, bowl-like structures and enclosed capsules can be easily obtained comparing to the self-assembly method for vesicle formation; 3) the obtained vesicles will be made of polymer crystals, which will possess the extraordinary mechanical properties. Based on the nucleation type, this dissertation is divided into two parts. The first part is focused on the self

  4. Polymer single crystal membrane from liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda; Li, Christopher; Soft Matter Research Group-Drexel University Team

    2013-03-01

    Vesicles, mimicking the structure of cell membrane at the molecular scale, are small membrane-enclosed sacks that can store or transport substances. The weak mechanical properties and the nature of environment-sensitivity of the current available vesicles: liposomes, polymersomes, colloidsomes limit their applications as an excellent candidate for targeting delivery of drugs/genes in biomedical engineering and treatment. Recently, we developed an emulsion-based method to grow curved polymer single crystals. Varying the polymer concentration and/or the emulsification conditions (such as surfactant concentration, water-oil volume ratio), curved crystals with different sizes and different openness could be obtained. This growing process was attributed to polymer crystal growth along the liquid/liquid interface. In addition, the liquid/liquid interfacial crystal growth is promising for synthesis of enclosed hollow sphere.

  5. Shear-Sensitive Monomer/Polymer Liquid Crystal System

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Parmar, D. S.

    1993-01-01

    Report describes preliminary investigation of new monomer/polymer liquid crystal system, thin film of shear-sensitive cholesteric monomer liquid crystal (TI 511) on Xydar (STR800) (or equivalent) liquid crystal polymer substrate. Monomer/polymer liquid crystal films applied to surfaces provide quantitative indications of shear stresses caused by winds blowing along surfaces. Effects of shear stresses reversible in new coating system. System provides quantitative data on flows in wind tunnels.

  6. Investigation of Polymer Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.

    1996-01-01

    The positron annihilation lifetime spectroscopy (PALS) using a low energy flux generator may provide a reasonably accurate technique for measuring molecular weights of linear polymers and characterization of thin polyimide films in terms of their dielectric constants and hydrophobity etc. Among the tested samples are glassy poly arylene Ether Ketone films, epoxy and other polyimide films. One of the proposed techniques relates the free volume cell size (V(sub f)) with sample molecular weight (M) in a manner remarkably similar to that obtained by Mark Houwink (M-H) between the inherent viscosity (eta) and molecular wieght of polymer solution. The PALS has also demonstrated that free-volume cell size in thermoset is a versatile, useful parameter that relates directly to the polymer segmental molecular weight, the cross-link density, and the coefficient of thermal expansion. Thus, a determination of free volume cell size provides a viable basis for complete microstructural characterization of thermoset polyimides and also gives direct information about the cross-link density and coefficient of expansion of the test samples. Seven areas of the research conducted are reported here.

  7. Partially exposed polymer dispersed liquid crystals for boundary layer investigations

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Singh, Jag J.

    1992-01-01

    A new configuration termed partially exposed polymer dispersed liquid crystal in which the liquid crystal microdroplets dispersed in a rigid polymer matrix are partially entrapped on the free surface of the thin film deposited on a glass substrate is reported. Optical transmission characteristics of the partially exposed polymer dispersed liquid crystal thin film in response to an air flow induced shear stress field reveal its potential as a sensor for gas flow and boundary layer investigations.

  8. Ultra fast polymer network blue phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar

    2011-06-01

    Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).

  9. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.

    1991-10-08

    Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.

  10. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, Stephen D.; Marshall, Kenneth L.; Cerqua, Kathleen A.

    1991-01-01

    Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.

  11. Liquid Crystal Phases of Semiflexible Polymers

    NASA Astrophysics Data System (ADS)

    Mackay, Ian; Sullivan, Don

    2012-02-01

    Liquid crystal polymers exhibit orientational order (nematic phase) and position order (smectic phase). Previous work on semiflexible polymers using self consistent field theory studied the isotropic-nematic and nematic-smectic transition for homogenous and diblock copolymers. The nematic phase is stabilized by excluded-volume effects between wormlike cylindrical segments. The smectic phase is further stabilized by excluded-volume effects between terminal end segments. Because models of semiflexible polymers include orientational degrees of freedom, in addition to the usual positional degrees of freedom, they are computationally more demanding to study. Spectral decomposition applied to segment orientations has previously been used to make computation feasible. However this method does not converge well for strongly ordered states, which arise in many real systems. I describe a Crank-Nicolson finite difference method applied to the orientations which is expected to converge well for highly ordered systems. This method also exhibits better numerical stability and accuracy and may thus serve as a better foundation for further studies of highly ordered systems. I also describe a modification to the spectral method which can compute the tilted Smectic C phase.

  12. Photorefractive conjugated polymer-liquid crystal composites

    SciTech Connect

    Wasielewski, M. R.; Yoon, B. A.; Fuller, M.; Wiederrecht, G. P.; Niemczyk, M. P.; Svec, W. A.

    2000-05-15

    A new mechanism for space-charge field formation in photorefractive liquid crystal composites containing poly(2,5-bis(2{prime}-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV) and the electron acceptor N,N{prime}-dioctyl-1,4:5,8-naphthalenediimide, NI, is observed. Using asymmetric energy transfer (beam coupling) measurements that are diagnostic for the photorefractive effect, the direction of beam coupling as a function of grating fringe spacing inverts at a spacing of 5.5 {micro}m. The authors show that the inversion is due to a change in the dominant mechanism for space-charge field formation. At small fringe spacings, the space-charge field is formed by ion diffusion in which the photogenerated anion is the more mobile species. At larger fringe spacings, the polarity of the space charge field inverts due to dominance of a charge transport mechanism in which photogenerated holes are the most mobile species due to hole migration along the BEH-PEV chains coupled with interchain hole hopping. Control experiments are presented, which use composites that can access only one of the two charge transport mechanisms. The results show that charge migration over long distances leading to enhanced photorefractive effects can be obtained using conjugated polymers dissolved in liquid crystals.

  13. Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yang, Deng-Ke; Cui, Yue; Nemati, Hossein; Zhou, Xiaochen; Moheghi, Alireza

    2013-12-01

    We developed a phenomenological theory to describe the aligning field of polymer networks in polymer stabilized liquid crystals where sub-micron size polymer networks are phase separated from the liquid crystal in dispersion. The polymer networks are anisotropic and anchor the liquid crystals in their longitudinal direction. They inhibit the liquid crystals reorientation when external stimuli, such as electric field and temperature, are applied and reduce the relaxation time from distorted states. We model the effects produced by the polymer networks as an effective aligning field. We calculate the effective field as a function of the polymer network volume fraction and the lateral size of the network. The theory is compared with experimental results and good agreements were obtained. It is very useful in predicting how much polymer networks change the driving voltage and response time of liquid crystal devices.

  14. Effect of the Surface Affinity of Liquid Crystals and Monomers on the Orientation of Polymer-Dispersed Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Hoon; Yoon, Tae-Hoon

    2013-09-01

    We investigated the effect of the surface affinity of liquid crystals and reactive monomers on liquid crystal orientation. Liquid crystals and monomers having different contact angles with the vertical alignment polyimide were mixed and photo-polymerized using a UV light. Liquid crystals with smaller contact angles and reactive monomers with greater contact angles promoted a uniform vertical orientation of liquid crystals with a vertical polymer morphology. On the other hand, liquid crystals with greater contact angles and monomers with smaller contact angles resulted in a deformed liquid crystal orientation with an elliptical polymer structure.

  15. Theory of polymer-dispersed cholesteric liquid crystals

    SciTech Connect

    Matsuyama, Akihiko

    2013-11-07

    A mean field theory is presented to describe cholesteric phases in mixtures of a polymer and a cholesteric liquid crystal. Taking into account an anisotropic coupling between a polymer and a liquid crystal, we examine the helical pitch, twist elastic constant, and phase separations. Analytical expressions of the helical pitch of a cholesteric phase and the twist elastic constant are derived as a function of the orientational order parameters of a polymer and a liquid crystal and two intermolecular interaction parameters. We also find isotropic-cholesteric, cholesteric-cholesteric phase separations, and polymer-induced cholesteric phase on the temperature-concentration plane. We demonstrate that an anisotropic coupling between a polymer and a liquid crystal can stabilize a cholesteric phase in the mixtures. Our theory can also apply to mixtures of a nematic liquid crystal and a chiral dopant. We discuss the helical twisting power, which depends on temperature, concentration, and orientational order parameters. It is shown that our theory can qualitatively explain experimental observations.

  16. Droplet manipulation on a liquid crystal and polymer composite film

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Tsou, Yu-Shih; Chu, Ting-Yu; Chen, Jun-Lin

    2010-08-01

    A droplet manipulation on a switchable surface using a liquid crystal and polymer composite film (LCPCF) based on phase separation is developed recently. The wettability of LCPCF is electrically tunable because of the orientation of liquid crystal directors anchored among the polymer grains. A droplet on LCPCF can be manipulated owning to the wettability gradient induced by spatially orientation of LC directors. We discuss the droplet manipulation on LCPCF and demonstrate several applications of LCPCF, such as polarizer-free displays, and human semen sensing.

  17. Photorefractivity in polymer-stabilized nematic liquid crystals

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R. |

    1998-07-01

    Polymer-stabilized liquid crystals, consisting of low concentrations of a polymeric electron acceptor, are shown to exhibit significantly enhanced photorefractive properties. The charge generation and transport properties of these composite systems are strongly modified from nematic liquid crystals doped with electron donors and acceptors. The new composites are produced by polymerizing a small quantity of a 1,4:5,8-naphthalenediimide electron acceptor functionalized with an acrylate group in an aligned nematic liquid crystal. Photopolymerization creates an anisotropic gel-like medium in which the liquid crystal is free to reorient in the presence of a space charge field, while maintaining charge trapping sites in the polymerized regions of the material. The presence of these trapping sites results in the observation of longer lived, higher resolution holographic gratings in the polymer-stabilized liquid crystals than observed in nematic liquid crystals alone. These gratings display Bragg regime diffraction. Asymmetric beam coupling, photo-conductivity, and four-wave mixing experiments are performed to characterize the photophysics of these novel materials.

  18. Photorefractivity in polymer-stabilized nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wiederrecht, Gary P.; Wasielewski, Michael R.

    1998-10-01

    Polymer-stabilized liquid crystals, consisting of low concentrations of a polymeric electron acceptor, are shown to exhibit significantly enhanced photorefractive properties. The charge generation and transport properties of these composite systems are strongly modified from nematic liquid crystals doped with electron donors and acceptors. The new composites are produced by polymerizing a small quantity of a 1,4:5,8-naphthalenediimide electron acceptor functionalized with an acrylate group in an aligned nematic liquid crystal. Photopolymerization creates an anisotropic gel-like medium in which the liquid crystal is free to reorient in the presence of a space charge field, while maintaining charge trapping sites in the polymerized regions of the material. The presence of these trapping sites results in the observation of longer lived, higher resolution holographic gratings in the polymer-stabilized liquid crystals than observed in nematic liquid crystals alone. These gratings display Bragg regime diffraction. Asymmetric beam coupling, photo-conductivity, and four-wave mixing experiments are performed to characterize the photophysics of these novel materials.

  19. Light-scattering study of a polymer nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1985-07-01

    We study the relaxation of thermally excited orientation fluctuations in a polymer nematic liquid crystal using photon correlation spectroscopy. The material studied is poly-γ-benzyl glutamate at a concentration just above the isotropic to nematic transition point. The relaxation rates of elastic deformation modes exhibit large anisotropies. Quantitative measurements of ratios of Frank elastic constants and Leslie viscosities are described.

  20. Electrically tunable holographic polymer templated blue phase liquid crystal grating

    NASA Astrophysics Data System (ADS)

    He, Zheng-Hong; Chen, Chao-Ping; Zhu, Ji-Liang; Yuan, Ya-Chao; Li, Yan; Hu, Wei; Li, Xiao; Li, Hong-Jing; Lu, Jian-Gang; Su, Yi-Kai

    2015-06-01

    In this paper, we demonstrate an alternative approach to fabricating an electrically tunable holographic polymer templated blue phase liquid crystal grating. This grating is obtained by preforming a polymer template comprised of periodic fringes, and then refilling it with a blue phase liquid crystal. Compared with conventional holographic polymer dispersed liquid crystal gratings, our grating can remarkably reduce its switching voltage from 200 V to 43 V while maintaining a sub-millisecond response time. The holographic polymer templated blue phase liquid crystal (HPTBPLC) grating is free from electrode patterning, thus leading to a lower cost and more flexible applications. Project supported by the National Basic Research Program of China (Grant No. 2013CB328804), the National Natural Science Foundation of China (Grant No. 61307028), the Funds from the Science and Technology Commission of Shanghai Municipality (Grant Nos. 11JC1405300, 13ZR1420000, and 14ZR1422300), and the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK 2011C047).

  1. LIQUID CRYSTAL POLYMERS (LCP) USED AS A MACHINING FLUID CD

    EPA Science Inventory

    This interactive CD was produced to present the science, research activities, and beneficial environmental and machining advantages for utilizing Liquid Crystal Polymers (LCPs) as a machine fluid in the manufacturing industry.

    In 1995, the USEPA funded a project to cut flu...

  2. Novel Microstructures for Polymer-Liquid Crystal Composite Materials

    NASA Technical Reports Server (NTRS)

    Magda, Jules J.

    2004-01-01

    There are a number of interface-dominated composite materials that contain a liquid crystalline (LC) phase in intimate contact with an isotropic phase. For example, polymer- dispersed liquid crystals, used in the fabrication of windows with switchable transparency, consist of micron size LC droplets dispersed in an isotropic polymer matrix. Many other types of liquid crystal composite materials can be envisioned that might have outstanding optical properties that could be exploited in novel chemical sensors, optical switches, and computer displays. This research project was based on the premise that many of these potentially useful LC composite materials can only be fabricated under microgravity conditions where gravity driven flows are absent. In the ground-based research described below, we have focused on a new class of LC composites that we call thermotropic- lyotropic liquid crystal systems (TLLCs). TLLCs consist of nanosize droplets of water dispersed in an LC matrix, with surfactants at the interface that stabilize the structure. By varying the type of surfactant one can access almost an infinite variety of unusual LC composite microstructures. Due to the importance of the interface in these types of systems, we have also developed molecular simulation models for liquid crystals at interfaces, and made some of the first measurements of the interfacial tension between liquid crystals and water.

  3. Interaction between lyotropic chromonic liquid crystals and polymers

    NASA Astrophysics Data System (ADS)

    Yao, Xuxia; Park, Jung; Srinivasarao, Mohan

    2010-03-01

    Lyotropic chromonic liquid crystals (LCLCs) consist of various dyes, drugs, etc., so their importance is self-evident. The interaction of chromonic molecules and polymers is involved in their real applications, such as the dyeing process of fibers, textiles and food, and the functionalization of drugs in vivo. In our research, polymer dispersed LCLC droplets and polymer coated LCLC cells have been fabricated. Effect of interaction was observed by optical texture of LCLCs, as the different polymers induce different director configuration of LCLCs. A textile dye-Benzopurpurine 4B, food dye-Sunset Yellow FCF, and drug-Disodium Cromoglycate mixed with water soluble polymers, proteins and textile polymers have been all studied and compared.

  4. Fluorinated Azobenzenes for Shape-Persistent Liquid Crystal Polymer Networks.

    PubMed

    Iamsaard, Supitchaya; Anger, Emmanuel; Aßhoff, Sarah Jane; Depauw, Alexis; Fletcher, Stephen P; Katsonis, Nathalie

    2016-08-16

    Liquid crystal polymer networks respond with an anisotropic deformation to a range of external stimuli. When doped with molecular photoswitches, these materials undergo complex shape modifications under illumination. As the deformations are reversed when irradiation stops, applications where the activated shape is required to have thermal stability have been precluded. Previous attempts to incorporate molecular switches into thermally stable photoisomers were unsuccessful at photogenerating macroscopic shapes that are retained over time. Herein, we show that to preserve photoactivated molecular deformation on the macroscopic scale, it is important not only to engineer the thermal stability of the photoswitch but also to adjust the cross-linking density in the polymer network and to optimize the molecular orientations in the material. Our strategy resulted in materials containing fluorinated azobenzenes that retain their photochemical shape for more than eight days, which constitutes the first demonstration of long-lived photomechanical deformation in liquid-crystal polymer networks. PMID:27430357

  5. Correlation measurements of light transmittance in polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Maksimyak, P. P.; Nehrych, A. L.

    2015-11-01

    The methods of correlation optics are for the first time applied to study structure of liquid crystal (LC) - polymer (P) composites at various concentrations of LC and P. Their phase correlation function (PCF) was obtained considering LC-P composite as a random phase screen. The amplitude of PCF contains information about number of LC domains and structure of LC director inside of them, while a half-width of this function is connected with a size of these domains. We studied unpowered and powered composite layers with a thickness of 5 μm. As liquid crystal and polymer were used nematic LC E7 from Merck and photopolymer composition NOA65 from Norland. Concentration of polymer φP was varied in a range 10-55 vol. %. In good agreement with previous studies by SEM technique we detected monotone decrease of LC domains with concentration of polymer. With application of electric field, amplitude of PCF behaves differently for the samples with different polymer content. For the samples with φP>35 vol. % (samples having morphology of polymer dispersed LC), this dependence is monotonic. In turn, if φP<35 vol. % (samples with polymer network LC morphology), the amplitude of PCF non-monotonically depends on the applied voltage going through a maximum. The latter fact is explained by transformation of orientational defects of LC phase with the applied voltage.

  6. Nonlinear optical studies of liquid crystals and polymers

    NASA Astrophysics Data System (ADS)

    Hong, Seok-Cheol

    Polymers are indispensable in our life. A life is a continuous event maintained by many complex processes in which biological polymers participate. It also gets help from a variety of natural and synthetic polymers with useful functions. Such functions depend on the chemical and conformational structures of polymers and often largely on the surface structures and properties of polymers. We used second order nonlinear optical techniques (sum frequency vibrational spectroscopy (SFVS) and second harmonic generation (SHG)) to obtain structural information on polymers. We also studied liquid crystal molecules deposited on polymer surfaces. The first part of the thesis is aimed at understanding liquid crystal (LC) alignment on rubbed polymer surfaces by determining the molecular orientations of LC adsorbates and surface polymer chains. The alignment of LCs by rubbed polymers is not only of fundamental interest but also of practical importance because it is a technique enabling production of commercial liquid crystal displays. We observed that rubbing induces alignment of surface polymer chains along the rubbing direction, and there is a strong correlation between the molecular orientations of LC adsorbates and the surface chains of rubbed polymers such as polyvinyl alcohol (PVA) and polyimide (6FDA-6CBO). The latter revealed a relatively large but negative pretilt angle, which is highly unusual. On a rubbed polystyrene (PS) surface, we found that the phenyl side groups of PS are oriented perpendicularly to the rubbing direction at the surface, rendering an LC alignment also perpendicular to the rubbing direction. The second part of the thesis is our discovery of rubbing-induced polar ordering on nylon 11 surfaces. Nylon 11 is known to be ferroelectric. We found that mechanical rubbing can induce strong ferroelectric polarization on an initially amorphous film of nylon 11. The surface chains of rubbed nylon 11 are aligned along the rubbing direction while the induced

  7. Chromonic liquid crystals and their dispersion in polymers

    NASA Astrophysics Data System (ADS)

    Park, Jung; Yao, Xuxia; Srinivasarao, Mohan

    2010-03-01

    Chromonic liquid crystals can self-assemble into an ordered complex fluid, potentially applicable for biosensor, polarizers, optical compensetors and organic solar cells. Different from common amphiphilic lyotropic mesophases, aggregation of the chromonic liquid crystals is thought to be isodesmic and without optimum aggregation size. We studied the aggregation behavior by Vis-spectroscopy, and the phase behavior by polarizing optical microscopy and differential scanning calorimetry. We also used capillary flow to achieve uniform planar alignment in a flat capillary, and measured polarized Raman scattering, from which the temperature and concentration dependence of order parameters, both and , and the orientation distribution were deduced. Order parameters increase as concentration increases and decrease as temperature increases. Polymer dispersed chromonic droplets with different director configurations were obtained by using different water soluble polymers and those anchoring phenomena were compared.

  8. Spinodal decomposition in liquid-crystal/polymer mixtures

    NASA Astrophysics Data System (ADS)

    Lapeña, Amelia M.; Nyquist, Rebecca M.; Liu, Andrea J.; Sunaidi, Abdullah Al; Glotzer, Sharon C.; Langer, Stephen A.; Lukovich, Jennifer; Ennis, Roland

    1997-03-01

    Materials based on mixtures of liquid crystals and polymers are used for a variety of optical devices, and are often formed by kinetic processes that involve both phase separation and orientational ordering. Here we describe a simplified model that allows for composition and orientation fields to evolve with time in a coupled fashion, based on previous work by Liu and Fredrickson(A. J. Liu and G. H. Fredrickson, Macromolecules 29), 8000 (1996).. Because of this coupling, orientational ordering can influence domain morphology. We present phase diagrams and the linear stability analysis of spinodal decomposition from a mixed isotropic phase into coexisting polymer-rich isotropic and liquid-crystal-rich nematic phases. We show how the kinetics can amplify thermodynamic tendencies and lead to anisotropic domain shapes. We are currently working on numerical solutions of the nonlinear equations of motion.

  9. Electrically tunable polymer stabilized liquid-crystal lens

    NASA Astrophysics Data System (ADS)

    Presnyakov, Vladimir V.; Galstian, Tigran V.

    2005-05-01

    A tunable focal lens using flat electro-optical liquid-crystal cell with uniform pixel-free electrodes is developed. The lenslike gradient refractive index profile is created in the cell via the spatially distributed polymer network obtained by photopolymerization using a spatially nonuniform laser beam. The conditions of the polymer network generation are optimized to improve the optical quality of the lens and its focusing properties. Low optical loss (scattering) is achieved for a focal length smoothly tunable from infinity to 0.8m. Obtained results can be applied to develop lenses that have no moving parts and allow the electro-optical zooming.

  10. Electrically tunable polymer stabilized liquid-crystal lens

    SciTech Connect

    Presnyakov, Vladimir V.; Galstian, Tigran V.

    2005-05-15

    A tunable focal lens using flat electro-optical liquid-crystal cell with uniform pixel-free electrodes is developed. The lenslike gradient refractive index profile is created in the cell via the spatially distributed polymer network obtained by photopolymerization using a spatially nonuniform laser beam. The conditions of the polymer network generation are optimized to improve the optical quality of the lens and its focusing properties. Low optical loss (scattering) is achieved for a focal length smoothly tunable from infinity to 0.8 m. Obtained results can be applied to develop lenses that have no moving parts and allow the electro-optical zooming.

  11. A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Tsou, Yu-Shih

    2011-12-01

    A polarization-independent liquid crystal (LC) phase modulation using the surface pinning effect of polymer dispersed liquid crystals (SP-PDLC) is demonstrated. In the bulk region of the SP-PDLC, the orientations of LC directors are randomly dispersed; thus, any polarization of incident light experiences the same averaged refractive index. In the regions near glass substrates, the LC droplets are pinned. The orientations of top and bottom droplets are orthogonal. Two eigen-polarizations of an incident light experience the same phase shift. As a result, the SP-PDLC is polarization independent. Polarizer-free microlens arrays of SP-PDLC are also demonstrated. The SP-PDLC has potential for application in spatial light modulators, laser beam steering, and electrically tunable microprisms.

  12. Photocontrol of fluid slugs in liquid crystal polymer microactuators.

    PubMed

    Lv, Jiu-An; Liu, Yuyun; Wei, Jia; Chen, Erqiang; Qin, Lang; Yu, Yanlei

    2016-01-01

    The manipulation of small amounts of liquids has applications ranging from biomedical devices to liquid transfer. Direct light-driven manipulation of liquids, especially when triggered by light-induced capillary forces, is of particular interest because light can provide contactless spatial and temporal control. However, existing light-driven technologies suffer from an inherent limitation in that liquid motion is strongly resisted by the effect of contact-line pinning. Here we report a strategy to manipulate fluid slugs by photo-induced asymmetric deformation of tubular microactuators, which induces capillary forces for liquid propulsion. Microactuators with various shapes (straight, 'Y'-shaped, serpentine and helical) are fabricated from a mechanically robust linear liquid crystal polymer. These microactuators are able to exert photocontrol of a wide diversity of liquids over a long distance with controllable velocity and direction, and hence to mix multiphase liquids, to combine liquids and even to make liquids run uphill. We anticipate that this photodeformable microactuator will find use in micro-reactors, in laboratory-on-a-chip settings and in micro-optomechanical systems. PMID:27604946

  13. Photorefractivity in liquid crystals doped with a soluble conjugated polymer.

    SciTech Connect

    Niemczyk, M. P.; Svec, W. A.; Wasielewski, M. R.; Wiederrecht, G. P.

    1999-07-07

    Photoconductive polymers are doped into liquid crystals to create a new mechanism for space-charge field formation in photorefractive liquid crystal composites. The composites contain poly(2,5-bis(2{prime}-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV) and the electron acceptor N,N{prime}-dioctyl-1,4:5,8-naphthalenediimide, NI. Using asymmetric energy transfer (beam coupling) measurements that are diagnostic for the photorefractive effect, the direction of beam coupling as a function of grating fringe spacing inverts at a spacing of 5.5 {micro}m. We show that the inversion is due to a change in the dominant mechanism for space-charge field formation. At small fringe spacings, the space-charge field is formed by ion diffusion in which the photogenerated anion is the more mobile species. At larger fringe spacings, the polarity of the space charge field inverts due to dominance of a charge transport mechanism in which photogenerated holes are the most mobile species due to hole migration along the BEH-PPV chains coupled with interchain hole hopping. Control experiments are presented, which use composites that can access only one of the two charge transport mechanisms. The results show that charge migration over long distances leading to enhanced photorefractive effects can be obtained using conjugated polymers dissolved in liquid crystals.

  14. Photorefractivity in liquid crystals doped with a soluble conjugated polymer

    NASA Astrophysics Data System (ADS)

    Wiederrecht, Gary P.; Svec, Walter A.; Niemczyk, Mark P.; Wasielewski, Michael R.

    1999-10-01

    Photoconductive polymers are doped into liquid crystals to create a new mechanism for space-charge field formation in photorefractive liquid crystal composites. The composites contain poly(2,5-bis(2'-ethylhexyloxy)-1,4- phenylenevinylene) (BEH-PPV) and the electron acceptor N,N'- dioctyl-1,4:5,8-naphthalenediimide, NI. Using asymmetric energy transfer (beam coupling) measurements that are diagnostic for the photorefractive effect, the direction of beam coupling as a function of grating fringe spacing inverts at a spacing of 5.5 micrometers . We show that the inversion is due to a change in the dominant mechanism for space-charge field formation. At small fringe spacings, the space-charge field is formed by ion diffusion in which the photogenerated anion is the more mobile species. At larger fringe spacings, the polarity of the space charge field inverts due to dominance of a charge transport mechanism in which photogenerated holes are the most mobile spaces due to hole migration along the BEH-PPV chains coupled with interchain hole hopping. Control experiments are presented, which use composites that can access only one of the two charge transport mechanisms. The results show that charge migration over long distances leading to enhanced photorefractive effects can be obtained using conjugated polymers dissolved in liquid crystals.

  15. Morphology and Rheology of Polymer/Liquid Crystal Blends

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Wu, Youjun; Zhou, Chixing

    2008-07-01

    The morphology and rheology of immiscible polymer blends has been the subjects of many researches. It is well known that the properties of blends depend on the rheology of components fluids as well as the properties of interface. For blends composed of isotropic fluids, the capillary number, defined as the ratio between the shear stress and the interfacial stress, controls the behaviors of dispersed droplet under flow field. When one component becomes an anisotropic fluid, it is expected that the anisotropic interfacial properties would greatly affect the properties of the blends. The effect of anisotropic properties of interface between a polymer and a liquid crystal (LC) on the steady and transient behavior of morphological evolution and rheology properties is the main interest of the present work. The deformation and relaxation behavior of a LC droplet immersed in a polymer matrix is investigated and compared with the predictions of our recent model.

  16. Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber.

    PubMed

    Zito, Gianluigi; Pissadakis, Stavros

    2013-09-01

    A polymer/liquid crystal-based fiber Bragg grating (PLC-FBG) is fabricated with visible two-beam holography by photo-induced modulation of a prepolymer/liquid crystal solution infiltrated into the hollow channels of a solid core photonic crystal fiber (PCF). The fabrication process and effects related to the photonic bandgap guidance into the infiltrated PCF, and characterization of the PLC-FBG, are discussed. Experimental data presented here demonstrate that the liquid crystal inclusions of the PLC-FBG lead to high thermal and bending sensitivities. The microscopic behavior of the polymer/liquid crystal phase separation inside the PCF capillaries is examined using scanning electron microscopy, and is discussed further. PMID:23988927

  17. Intrinsic response of polymer liquid crystals in photochemical phase transition

    SciTech Connect

    Ikeda, Tomiki; Sasaki, Takeo; Kim, Haengboo )

    1991-01-24

    Time-resolved measurements were performed on the photochemically induced isothermal phase transition of polymer liquid crystals (PLC) with mesogenic side chains of phenyl benzoate (PAPB3) and cyanobiphenyl (PACB3) under conditions wherein the photochemical reaction of the doped photoresponsive molecule (4-butyl-4-{prime}-methoxyazobenzene, BMAB) was completed within {approximately} 10 ns, and the subsequent phase transition of the matrix PLC from nematic (N) to isotropic (I) state was followed by time-resolved measurements of the birefringence of the system. Formation of a sufficient amount of the cis isomer of BMAB with a single pulse of a laser lowered the N-I phase transition temperature of the mixture, inducing the N-I phase transition of PLCs isothermally in a time range of {approximately} 200 ms. This time range is comparable to that of low molecular weight liquid crystals, indicating that suppression in mobility of mesogens in PLCs does not affect significantly the thermodynamically controlled process.

  18. Skin friction measurement with partially exposed polymer dispersed liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Holmes, H. K.

    1993-01-01

    Partially exposed polymer dispersed liquid crystal thin film (10-25 microns) deposited on a flat glass substrate has been used for the first time to measure skin friction. Utilizing the shear-stress-induced director reorientation in the partially exposed liquid-crystal droplets, optical transmission under crossed polarization has been measured as a function of the air flow differential pressure. Direct measurement of the skin friction with a skin friction drag balance, under the same aerodynamic conditions, lets us correlate the skin friction with optical transmission. This provides a unique technique for the direct measurement of skin friction from the transmitted light intensity. The results are in excellent agreement with the model suggested in this paper.

  19. Mesogenic linear azobenzene polymer-stabilized nematic liquid crystals

    SciTech Connect

    Bagramyan, Arutyun; Thibault-Maheu, Olivier; Galstian, Tigran; Bessette, Andre; Zhao, Yue

    2011-03-15

    We describe the detailed study of a polymer stabilized liquid crystal compound, which was created by using a reactive (monofunctional) azobenzene mesogenic guest and a nematic liquid crystal host. The resonant interaction of light with the azobenzene segment of the guest and the mesogenic nature of the latter enable the optical alignment of host molecules and the permanent fixing of that orientation by means of UV polymerization of the guest. We use dynamic spectral, polarimetric, and scattering techniques to study the orientational ordering and interaction of the guest-host system. We show that the uniform UV polymerization of this compound results in a low scattering material system with dielectric and elastic properties that are relatively close to those of the host, while still providing the capacity for optical configuration of its morphology.

  20. Effect of nanoconfinement on liquid-crystal polymer chains

    NASA Astrophysics Data System (ADS)

    Micheletti, Davide; Muccioli, Luca; Berardi, Roberto; Ricci, Matteo; Zannoni, Claudio

    2005-12-01

    We apply a Monte Carlo polymerization model for Gay-Berne [J. Chem. Phys. 74, 3316 (1981)] monomers that we have recently introduced [J. Chem. Phys. 121, 9123 (2004)] to investigate with computer simulations the effects of nanoconfinement and anchoring type on the structure of the main-chain liquid-crystal polymers formed in thin films, in the presence of several types of surface alignment: parallel to the interface (random and uniform) or perpendicular to it (homeotropic). We perform first a study of the confined monomers and then we examine the features of the polymer chains obtained from an isotropic or nematic sample. We find a significant effect of the anchoring conditions on the characteristics of the chains and particularly striking differences between planar and homeotropic boundaries. Furthermore, our results indicate that the choice of different anchorings could be used to tune the linearity and degree of polymerization of the chains.

  1. Effect of nanoconfinement on liquid-crystal polymer chains.

    PubMed

    Micheletti, Davide; Muccioli, Luca; Berardi, Roberto; Ricci, Matteo; Zannoni, Claudio

    2005-12-01

    We apply a Monte Carlo polymerization model for Gay-Berne [J. Chem. Phys. 74, 3316 (1981)] monomers that we have recently introduced [J. Chem. Phys. 121, 9123 (2004)] to investigate with computer simulations the effects of nanoconfinement and anchoring type on the structure of the main-chain liquid-crystal polymers formed in thin films, in the presence of several types of surface alignment: parallel to the interface (random and uniform) or perpendicular to it (homeotropic). We perform first a study of the confined monomers and then we examine the features of the polymer chains obtained from an isotropic or nematic sample. We find a significant effect of the anchoring conditions on the characteristics of the chains and particularly striking differences between planar and homeotropic boundaries. Furthermore, our results indicate that the choice of different anchorings could be used to tune the linearity and degree of polymerization of the chains. PMID:16375493

  2. Thermal tunability of photonic bandgaps in liquid crystal filled polymer photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wang, Doudou; Chen, Guoxiang; Wang, Lili

    2016-05-01

    A highly tunable bandgap-guiding polymer photonic crystal fiber is designed by infiltrating the cladding air holes with liquid crystal 5CB. Structural parameter dependence and thermal tunability of the photonic bandgaps, mode properties and confinement losses of the designed fiber are investigated. Bandgaps red shift as the temperature goes up. Average thermal tuning sensitivity of 30.9 nm/°C and 20.6 nm/°C is achieved around room temperature for the first and second photonic bandgap, respectively. Our results provide theoretical references for applications of polymer photonic crystal fiber in sensing and tunable fiber-optic devices.

  3. A liquid crystal and polymer composite film for liquid crystal lenses

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chen, Hung-Shan; Wang, Yu-Jen; Chang, Chia-Ming

    2015-03-01

    Liquid crystal (LC) lenses offer novel opportunities for applications of ophthalmic lenses, camera modules, pico projectors, endoscopes, and optical zoom systems owing to electrically tunable lens power. Nevertheless, the tunable lens power and the aperture size of LC lenses are limited by the optical phase resulting from limit birefringence of LC materials. Recently, we developed a liquid crystal and polymer composite film (LCPCF) as a separation layer and an alignment layer for a multi-layered structure of LC lenses in order to enlarge the polarization-independent optical phase modulation. However, the physical properties and mechanical properties of the LCPCF are not clearly investigated. In this paper, we show the mechanical and physical properties of the LCPCF. The anchoring energy of the LCPCF is comparable with the standard rubbing-induced alignment layer. The transmission efficiency is around 97% neglecting the Fresnel reflection. The surface roughness is under 2 nm by using AFM scanning. The bending strength test indicates that the LCPCF can hold the LC material with reasonable deformation. We believe this study provides a deeper insight to the LC lens structure embedded with LCPCF.

  4. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    SciTech Connect

    Ouskova, Elena; Sio, Luciano De Vergara, Rafael; Tabiryan, Nelson; White, Timothy J.; Bunning, Timothy J.

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  5. The application of liquid crystal polymers to turbomachinery

    NASA Astrophysics Data System (ADS)

    Mueller, Mark A.; Schmidt, Ed E.

    1992-02-01

    The Advanced Materials for Turbomachinery program is investigating the use of thermotropic Liquid Crystal Polymers (LCP's) as a housing material in turbopump assemblies. A requirement for this application is the compatibility of the LCP's with the working fluids (propellants) of the turbopump. A study was therefore undertaken to assess the physical and chemical properties of several commercial thermotropic LCP's in both storable and cryogenic propellants. Compatibility tests in storable propellants showed the LCP's to be incompatible with monomethyl hydrazine due to the breakdown of ester linkages in the polymer chains. Several LCP's were found to be compatible with nitrogen tetroxide under ambient conditions. Compatibility tests in oxygen environments determined that, although they have high autoignition temperatures, thermotropic LCP's are sensitive to ignition by means of mechanical impact and have high flame propagation rates. Pneumatic burst testing under ambient and cryogenic (liquid nitrogen) conditions showed that burst pressures generally increased at cryogenic temperatures. However, the burst pressure data showed large standard deviations leading to the conclusion that the mechanical properties of thermotropic LCP's are extremely sensitive to material processing parameters.

  6. Orientational photorefractive properties in polymer-dispersed liquid crystals with different polymer matrixes

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Saito, Isao; Kawatsuki, Nobuhiro

    1998-10-01

    We report orientational photorefractive effects observed in photoconductive liquid crystals (LCs) contained with three kinds of polymer, i.e., poly(methyl methacrylate) (PMMA), poly(vinyl alcohol) (PVA) and a side-chain liquid crystalline polymer (SLCP1). The morphology of the photorefractive composites depended on the kind of polymer strongly. In both PMMA and PVA cases, LC and polymer were phase-separated and the composite showed memory effects. In SLCP1 case, the phase-separation in the composite dose not occur and the high resolution could be achieved. In this case, the photorefractive Bragg gratings were generated and a high two-beam coupling gain coefficient with a low applied field of 4 V/micrometers was observed.

  7. Formation and performance of polymer dispersed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Chan, Philip Kwok-Kiou

    Polymer dispersed liquid crystals (PDLC's) are novel composite materials consisting of micron-size liquid crystalline droplets dispersed uniformly in a solid polymer matrix. PDLC's are formed by spinodal decomposition induced by thermal quenching or polymerization. These materials have excellent magneto-optical properties, and have great potential in applications that require efficient light scattering. Present commercial applications include switchable windows for privacy control and large-scale billboards. The optical properties depend on the droplet size, shape and positional order, which are determined during the formation stage, and reorientation dynamics of the liquid crystalline molecules confined within the droplets which occurs during product use. In this thesis, new complex mathematical models that describe the formation and performance of PDLC's are successfully developed, implemented, solved and validated. The nonequilibrium thermodynamic formation model takes into account initial thermal fluctuations computed using Monte Carlo simulations and realistic arbitrary boundary conditions. The performance model is based on classical nematic liquid crystalline magneto-viscoelastic theories, and incorporates transient viscoelastic boundary conditions. The simulations are able to reproduce successfully all the experimentally observed significant dynamical and morphological features of film formation as well as all the dynamical stages observed during the use of these thin optical films. In addition, the sensitivity of the phase separating morphology to processing conditions and material parameters is elucidated. Furthermore, a new scaling method is introduced to describe the phase separation phenomena during the early and intermediate stages of spinodal decomposition induced by thermal quenching. The droplet size selection mechanism for the polymerization-induced phase separation method of forming PDLC films is identified and explained for the first time. Lastly

  8. Surface dynamics and mechanics in liquid crystal polymer coatings

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  9. Vortex retarders produced from photo-aligned liquid crystal polymers.

    PubMed

    McEldowney, Scott C; Shemo, David M; Chipman, Russell A

    2008-05-12

    We present developments using photo-aligned liquid crystal polymers for creating vortex retarders, halfwave retarders with a continuously variable fast axis. Polarization properties of components designed to create different polarization vortex modes are presented. We assess the viability of these components using the theoretical and experimental point spread functions and optical transfer functions in Mueller matrix format, point spread matrix (PSM) and optical transfer matrix (OTM). The measured PSM and OTM of these components in an optical system is very close to the theoretically predicted values thus showing that these components should provide excellent performance in applications utilizing polarized optical vortices. The impact of aberrations and of vortex retarder misalignment on the PSM and OTM are presented. PMID:18545435

  10. Broadband Wavelength Spanning Holographic Polymer Dispersed Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Rai, Kashma; Shriyan, Sameet; Fontecchio, Adam

    2008-03-01

    Broadened interaction wavelength of holographic polymer dispersed liquid crystals (HPDLCs) have extensive applications in beam steering for instrument clusters, hyperspectral imaging, wavelength filtering and construction of lightweight optics. A novel simultaneous time and spatial multiplexing formation configuration is proposed here, to increase narrow wavelength reflecting notch to broad range wavelength spanning device. HPDLC films have electro-optic controllability by applying field. No moving parts, light weight, small footprint compared to prisms and lenses, high color purity make the broadband wavelength HPDLCs desirable for the above applications. Varying the incident laser beam exposure angles using motorized rotating stage, during formation is the key step here for their formation in a single medium. The fabricated broadband wavelength sensitive HPDLCs are characterized for the uniformity of the reflected peak and electro optic response. Their output wavefront is analyzed using wavefront analysis technique.

  11. Shear Alignment Behavior of Nematic Solutions Induced by Ultralong Side-Group Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Kempe, M. D.; Kornfield, J. A.

    2003-03-01

    Addition of a low concentration of a very long (430 kg/mol) side group liquid crystal polymer is shown to produce dramatic changes in the flow characteristics of a calamitic nematic liquid crystal. This polymer causes a typical flow-aligning nematic liquid crystal to align near the velocity gradient direction rather than near the velocity direction, corresponding to having a tumbling parameter λ<-1, for concentrations greater than 7.5% polymer. Such flow-aligning behavior has not been reported previously in a calamitic nematic. The large molecular weight of the present polymer relative to those examined in the prior literature is responsible for these new phenomena.

  12. Influence of polymer network in polymer-stabilized ferroelectric liquid crystals and its direct observation using a confocal microscope

    NASA Astrophysics Data System (ADS)

    Petkovšek, R.; Pirš, J.; Kralj, S.; Čopič, M.; Šuput, D.

    2006-01-01

    The paper presents the analysis of the three-dimensional polymer network distribution inside the polymer-stabilized ferroelectric liquid-crystal layer based on the laser scanning fluorescence confocal microscopy and a fluorescent dye tagging of the polymer. The studies of polymer-stabilized ferroelectric liquid-crystal structures described in this paper are focused on the comparison of the influence of polymer network in case that the polymerization is initiated in the chevron as well as in the quasibookshelf liquid-crystal molecular orientation. In the case of the chevron structure the regular distribution of the polymer network within the layer leads to the monostability of the chevron state. On the other hand the specific distribution of the polymer in the polymer-stabilized quasibookshelf stripe textures leads to the perfect bistability, improved multiplex driving, and analog gray scale capability.

  13. The Frozen State in the Liquid Phase of Side-Chain Liquid-Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Mendil, H.; Noirez, L.; Baroni, P.; Grillo, I.

    2006-02-01

    Quenched isotropic melts of side-chain liquid-crystal polymers reveal surprisingly an anisotropic polymer conformation. This small-angle neutron-scattering (SANS) result is consistent with the identification of a macroscopic, solidlike response in the isotropic phase. Both experiments (rheology and SANS) indicate that the polymer system appears frozen on millimeter length scales and at the time scales of the observation. This result implies that the flow behavior is not the terminal behavior and that cross-links or entanglements are not a necessary condition to provide elasticity in melts.

  14. Nematic polymer liquid-crystal wave plate for high-power lasers at 1054 nm

    SciTech Connect

    Kreuzer, F. ); Korenic, E.M.; Jacobs, S.D.; Houghton, J.K.; Schmid, A. )

    1994-04-01

    A nematic polymer liquid crystal is used to construct wave plates for use at 1054 nm. Three methods of wave-plate construction are discussed: double substrate with fiber spacers in homogeneous distribution, double substrate with fiber spacers in annular distribution, and single substrate. The polymer liquid crystal shows high laser-damage resistance, making it particularly useful for high-peak-power laser applications. Alignment techniques and measurement of birefringence for the highly viscous polymer are described.

  15. Simulation of a Liquid Crystal at a Polymer Surface

    NASA Astrophysics Data System (ADS)

    Doerr, T. P.; Taylor, P. L.

    2002-03-01

    Atomistic molecular dynamics simulations of anchoring of the liquid crystals 5CB and 8CB at the surface of polyvinyl alcohol have been performed. Simulations were performed with various substrate configurations in order to investigate the microscopic origins of rubbing induced orientation. Multiple initial configurations for the liquid crystal were also used to check dependence on initial conditions. Connection is made with experiments.

  16. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystal with orthogonal alignment layers

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin

    2012-10-01

    A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.

  17. Shear Flow Induced Transition from Liquid-Crystalline to Polymer Behavior in Side-Chain Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Lapp, A.

    1997-01-01

    We determine the structure and conformation of side-chain liquid-crystalline polymers subjected to shear flow in the vicinity of the smectic phase by neutron scattering on the velocity gradient plane. Below the nematic-smectic transition we observe a typical liquid-crystal behavior; the smectic layers slide, leading to a main-chain elongation parallel to the velocity direction. In contrast, a shear applied above the transition induces a tilted main-chain conformation which is typical for polymer behavior.

  18. Dynamics and rheology of biaxial liquid crystal polymers

    NASA Astrophysics Data System (ADS)

    Sircar, Sarthok K.

    In this thesis we derive a hydrodynamical kinetic theory to study the orientational response of a mesoscopic system of nematic liquid crystals in the presence of an external flow field. Various problems have been attempted in this direction. First, we understand the steady-state behavior of uniaxial LCPs under an imposed elongational flow, electric and magnetic field respectively. We show that (1) the Smoluchowski equation can be cast into a generic form, (2) the external field is parallel to one of the eigenvectors of the second moment tensor, and (3) the steady state probability density function is of the Boltzmann type. In the next problem, we study the mono-domain dynamics of rigid rod and platelet suspensions in a linear flow and a steady magnetic field. The flows with a rotational component is mapped to simple shear with rate parameter subject to a transverse magnetic field with strength parameter and the irrotational flows are reduced into a triaxial extensional flow with two extensional rate parameters. For rotational flows, various in-plane and out-of-plane stable steady attractors emerge. For irrotational flows, the biaxial equilibria is characterized generically in terms of an explicit Boltzmann distribution, providing a natural generalization of the analytical results on pure nematic equilibria. Finally, we present the dynamics of a mesoscopic system of biaxial liquid crystal polymers in the presence of a homogenous shear flow. The Smoluchowski equation is derived in the rotating frame and solved using a specially formulated Wigner-Galerkin approximation in selected regions of the material parameter space and a range of accessible shear rates, to investigate the stable mesoscopic states and robust structures.

  19. Production of crystalline polymers via liquid crystal monomers

    NASA Technical Reports Server (NTRS)

    Labes, M.; Palos, C.

    1969-01-01

    Method produces crystalline polymers through a liquid crystalline phase of monomers. The monomer is polymerized while held in the liquid crystalline phase either thermally, photolytically, catalytically, or by X-ray or gamma ray irradiation, and can be performed in an electric or magnetic field that influences the molecular orientation.

  20. Exploratory development of foams from liquid crystal polymers

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1985-01-01

    Two types of liquid crystal polymer (LCP) compositions were studied and evaluated as structural foam materials. One is a copolymer of 6-hydroxy-2-naphthoic acid, terephthalic acid, and p-acetoxyacetanilide (designed HNA/TA/AAA), and the other is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (designated HBA/HNA). Experimental results showed that the extruded HNA/TA/AA foams have better mechanical quality and appearance than HBA/HNA foams. Heat treatment improved foam tensile strength and break elongation, but reduced their modulus. The injection molding results indicated that nitrogen foaming agents with a low-pressure process gave better void distribution in the injection molded LCP foams than those made by the conventional injection-molding machine and chemical blowing agents. However, in comparing LCP foams with other conventional plastic foams, HBA/HNA foams have better mechanical properties than foamed ABS and PS, but are comparable to PBT and inferior to polycarbonate foams, especially in heat-deflection temperature and impact resistance energy. These deficiencies are due to LCP molecules not having been fully oriented during the Union-Carbide low-pressure foaming process.

  1. Switchable Solar Window Devices Based on Polymer Dispersed Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Ma, Dakang; Munday, Jeremy

    Windows are an interesting target for photovoltaics due to the potential for large area of deployment and because glass is already a ubiquitous component of solar cell devices. Many demonstrations of solar windows in recent years have used photovoltaic devices which are semitransparent in the visible region. Much research has focused on enhancing device absorption in the UV and IR ranges as a means to circumvent the basic tradeoff between efficiency and transparency to visible light. Use of switchable solar window is a less investigated alternative approach; these windows utilize the visible spectrum but can toggle between high transparency and high efficiency as needed. We present a novel switchable solar window device based on Polymer Dispersed Liquid Crystals (PDLC). By applying an electric field to the PDLC layer, the device can be switched from an opaque, light diffusing, efficient photovoltaic cell to a clear, transparent window. In the off state (i.e. scattering state), these devices have the added benefits of increased reflectivity for reduced lighting and cooling costs and haze for privacy. Further, we demonstrate that these windows have the potential for self-powering due to the very low power required to maintain the on, or high transparency, state. Support From: University of Maryland and Maryland Nano-center and its Fablab.

  2. Development of Polymer Cholesteric Liquid Crystal Flake Technology for Electro-Optic Devices and Particle Displays

    SciTech Connect

    Kosc, T.Z.; Marshall, K.L.; Trajkovska-Petkoska, A.; Coon, C.J.; Hasman, K.; Babcock, G.V.; Howe, R.; Leitch, M.; Jacobs, S.J.

    2007-04-05

    Liquid crystals have had a large presence in the display industry for several decades, and they continue to remain at the forefront of development as the industry delves into flexible displays and electronic paper. Among the emerging technologies trying to answer this call are polymer cholesteric liquid crystal (PCLC) flakes.

  3. Dielectric and electro-optical properties of polymer-stabilized liquid crystal system

    NASA Astrophysics Data System (ADS)

    Pande, Mukti; Tripathi, Pankaj Kumar; Misra, Abhishek Kumar; Manohar, Shashwati; Manohar, Rajiv; Singh, Shri

    2016-03-01

    In this work, we report the results of dielectric and electro-optical properties as a function of temperature for both pure liquid crystal matrix and polymer-stabilized liquid crystal (PSLC). The threshold and saturation voltages have been determined from transmission-voltage curves. We have studied the polymer domains formation in PSLC with variation of concentration of polymer in liquid crystal matrix. It is observed that the dielectric anisotropy of PSLC is significantly influenced by the polar order present in the polymer domains environment. A delicate interplay between the orientational order of liquid crystal and polymeric domains determines the molecular orientations of PSLC with respect to the director of the LC system.

  4. The Viscoelastic Properties of Nematic Monodomains Containing Liquid Crystal Polymers.

    NASA Astrophysics Data System (ADS)

    Gu, Dongfeng

    The work presented here investigates the viscoelastic properties of nematic materials containing liquid crystal polymers (LCP). We focus on how the elastic constants and the viscosity coefficients of the mixture systems are influenced by polymer architectures. In dynamic light scattering studies of the relaxation of the director orientation fluctuations for the splay, twist, and bend deformation modes, decrease of the relaxation rates was observed when LCPs were dissolved into low molar mass nematics (LMMN). For the side-chain LCPs, the slowing down in the bend mode is comparable to or larger than those of the splay and twist modes. For main-chain LCPs, the relative changes in the relaxation rates for the twist and splay modes are about one order of magnitude larger than that for the bend mode. The results of light scattering under an electric field show that the decrease in the twist relaxation rate is due to a large increase in the twist viscosity and a minor decrease in the twist elastic constant. These changes were found to increase with decrease of the spacer length, with increase of molecular weight, and with decrease of the backbone flexibility. In Freedericksz transition measurements, the splay and bend elastic constants and the dielectric anisotropies of the nematic mixtures were determined and the values are 5~15% lower than those of the pure solvent. From the analysis of the results of Freedericksz transition and light scattering experiments, a complete set of the elastic constants and viscosity coefficients corresponding to the three director deformation modes were obtained for the LCP mixtures. The changes in the viscosity coefficients due to addition of LCPs were analysed to estimate the anisotropic shapes of the polymer backbone via a hydrodynamic model. The results suggest that an oblate backbone configuration is maintained by the side-chain LCPs and a prolate chain configuration appears for the main-chain LCPs. The rheological behavior of a side

  5. Transient Current Behaviour of Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Yarramaneni, Sridharbabu; Sharma, Anu; Quamara, J. K.

    2011-07-01

    Transient current behaviour of pristine Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid crystal polymer which is a copolymer of poly ethylene terephthalate and poly p-hydroxybenzoic acid referred as PET/x.PHB polymer liquid crystals have been studied at different biasing electric fields ranging from 13 kV/cm to 104.3 kV/cm and at temperatures 120° C and 250° C for molar ratio x =0.8.

  6. Orientational optical nonlinearity induced by comb-shaped polymers in a nematic liquid crystal

    SciTech Connect

    Budagovsky, I. A.; Zolot'ko, A. S. Ochkin, V. N.; Smayev, M. P.; Bobrovsky, A. Yu.; Shibaev, V. P.; Barnik, M. I.

    2008-01-15

    The effect of optical orientation in nematic liquid crystals containing small additions of high-molecular compounds, i.e., comb-shaped polymers with light-absorbing azobenzene side fragments, was studied. The effects of light-induced reorientation of the director of nematic liquid crystals caused by light absorption of polymers and a low-molecular compound with a structure similar to side fragments of the polymers were compared in detail. An explanation was proposed for large values of the orientational nonlinearity induced by polymers.

  7. Piezoelectric properties of polymers containing bent-shape liquid crystal molecules

    NASA Astrophysics Data System (ADS)

    Diorio, N.; Varga, M.; Carif, A.; Puskas, J. E.; Fodor-Csorba, K.; Sprunt, S.; Gleeson, J. T.; Jakli, A.

    2013-03-01

    Recently, bent-core liquid crystal elastomers have shown to exhibit large values of flexoelectricity as many as 3 orders of magnitude larger than liquid crystal elastomers containing rod-shaped molecules. These unusual high responses are attributed to have piezoelectric origin. Motivated by this, in this study, two bent-core liquid crystals were used to make various types of materials; low molecular weight bent-core nematic fluid, side chain bent-core liquid crystal polymer, low molecular liquid crystal dispersed in a polyisobutylene-based thermoplastic elastomer, and side-chain bent-core elastomers. Liquid crystal elastomers combine elasticity and flexibility inherent to rubbers and the optical and electrical properties of liquid crystals, and are promising materials for applications such as electro-optics, flexible electronics and actuator technologies for biomedical applications. Most conventional liquid crystal elastomers have rod-shaped liquid crystal molecules chemically attached to a crosslinked polymer network. Converse piezoelectric responses were measured by a Mirau interferometer and the direct piezoelectric signals were studied by home-made device where the stress is provided by an audio speaker. The results will be analyzed in terms of ferroelectric clusters of the materials in the nematic phase and will be compared with other piezoelectric materials. Supported by Grants NSF-DMR -0964765 and NSF-DMR -0804878.

  8. Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal.

    PubMed

    Cao, Mingxuan; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yan, Chao; Dai, Haitao; Liu, Guang; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm(-2), which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm(-2)). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE. PMID:27196786

  9. Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Cao, Mingxuan; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yan, Chao; Dai, Haitao; Liu, Guang; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm‑2, which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm‑2). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE.

  10. Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications

    NASA Astrophysics Data System (ADS)

    Weng, Libo

    There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions

  11. Dynamic focusing microlens array using liquid crystalline polymer and a liquid crystal

    NASA Astrophysics Data System (ADS)

    Choi, Yoonseuk; Lee, Kwang-Ho; Kim, Hak-Rin; Kim, Jae-Hoon

    2006-09-01

    An active microlens device is demonstrated by using a stacked layer structure of UV curable polymer, liquid crystalline polymer (LCP) and a liquid crystal (LC). The incident linearly polarized light is focused after passing through the combined refractive type microlens array system of UV curable polymer and LCP. Because used LCP shows highly birefringent macroscopic property from the well-ordered molecular structure, the additional polarization state control layer was inserted to modulate the dynamic focusing characteristics of the device. From the additional twisted LC layer's electro-optic response, we obtained good focal switching characteristics of microlens array with a small operation voltage application. This enhanced dynamic focusing characteristic of device was originated from the separate operation of polymer lens structure's beam focusing and twisted LC layer's polarization control ability. The measured focal length was well matched to the calculated one. This proposed LC microlens array is expected to play a critical role in the various real photonic components such as highly reliable optical switch, beam modulator and key device for 3-D imaging system.

  12. The effect of the temperature on the bandgaps based on the chiral liquid crystal polymer

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Shi, Shuhui; Wang, Bainian

    2015-10-01

    Chiral side-chain liquid crystal polymer is synthesized from polysiloxanes and liqud crystal monomer 4-(Undecenoic-1- yloxybenzoyloxy)-4'-benzonitrile and 6-[4-(4- Undecenoic -1-yloxybenzoyloxy)- hydroxyphenyl] cholesteryl hexanedioate. The optical and thermal property of the monomer and polymer are shown by POM and DSC. As the unique optical property of the polymer, the bandgaps are shifted for heating temperature. The reflection bandgaps is shifted from 546nm to 429nm with temperature increase. As a photonic material, the chiral polymer which sensitive responses under the outfield is widely studied for reflection display, smart switchable reflective windows and defect model CLC laser etc.

  13. A Fast Scanning Calorimetric Comparison Study of Crystallization Behavior between Semi-crystalline Polymers and Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Dongshan; Jiang, Jing; Wei, Lai; Huang, Zhijie; Xue, Gi

    2013-03-01

    Mesomorphic state with similar liquid crystal order was found to precede the crystallization in many polymers, so the study of nucleation and crystallization from a liquid crystal can provide reference for the study of polymers. The same procedure to study the nucleation and crystallization of semi-crystalline polymers was used to study 4-cyano-4'-octyloxy biphenyl-carbonitrile (8OCB). Different from metastable semi-crystalline polymers of multi-folded chains, whose melting temperature was basically continuously dependent on the crystallization temperature, melting temperature of 8OCB should have definite values, corresponding to disordering of four different polymorphism modifications at 309.0 K, 319.0 K, 325.0 K, and 327.0K, respectively. But, a lower temperature melting peak below 300K was found when 8OCB was annealed at temperature below 250K. More importantly, the peak temperature shifted positively with the increasing annealing temperature, just the same as that of semi-crystalline polymers. At the moment, we were not sure about the structure of the metamorphism and why small molecular liquid crystal showed similar melting behavior that was thought only inherited to chain like semi-crystalline polymers. This work is financially supported by the 973 Program(2012CB821500) and NSFC (No: 21027006,21274059)

  14. Langmuir Films of Flexible Polymers Transferred to Aqueous/Liquid Crystal Interfaces Induce Uniform Azimuthal Alignment of the Liquid Crystal

    PubMed Central

    Kinsinger, Michael I.; Buck, Maren E.; Meli, Maria-Victoria; Abbott, Nicholas L.; Lynn, David M.

    2009-01-01

    We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous-LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir-Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4’-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4’-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous-5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous-5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous-air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films

  15. The solution structure of liquid-crystal polymers with small liquid-crystal thermoset maleimides and nadimides

    SciTech Connect

    Hjelm, R.P.; Douglas, E.P.; Benicewicz, B.C.

    1995-03-01

    The solution structure of the deuterated liquid-crystal polyamide polymer (LCP) poly(p-phenylene-2-nitroterephthalamide), alone and mixed with small, rodlike, amide, liquid-crystal molecules (LCT) in N-methyl-2-pyrrolidinone (NMP), is studied using small-angle neutron scattering. Measurements were made as a function of LCP concentration using different LCTs mixed at 20 and 40 wt% relative to LCP. Our motivation for studying this system comes from a need to connect solution structure with film morphology in processing these materials for high-performance molecular composites. Our analysis shows that LCP in NMP forms large domain-like structures. The presence of LCT breaks up the LCP domains into smaller structures, some of which are filamentous LCP-LCT aggregates. This result suggests that the simple entropic description of the solution behavior of mixtures of long and short rods is not adequate in describing systems of this type.

  16. Shape-Selectivity with Liquid Crystal and Side-Chain Liquid Crystalline Polymer SAW Sensor Interfaces

    SciTech Connect

    FRYE-MASON,GREGORY CHARLES; OBORNY,MICHAEL C.; PUGH,COLEEN; RICCO,ANTONIO; THOMAS,ROSS C.; ZELLERS,EDWARD T.; ZHANG,GUO-ZHENG

    1999-09-23

    A liquid crystal (LC) and a side-chain liquid crystalline polymer (SCLCP) were tested as surface acoustic wave (SAW) vapor sensor coatings for discriminating between pairs of isomeric organic vapors. Both exhibit room temperature smectic mesophases. Temperature, electric-field, and pretreatment with self-assembled monolayers comprising either a methyl-terminated or carboxylic acid-terminated alkane thiol anchored to a gold layer in the delay path of the sensor were explored as means of affecting the alignment and selectivity of the LC and SCLCP films. Results for the LC were mixed, while those for the SCLCP showed a consistent preference for the more rod-like isomer of each isomer pair examined.

  17. Hysteresis-free and submillisecond-response polymer network liquid crystal.

    PubMed

    Lee, Yun-Han; Gou, Fangwang; Peng, Fenglin; Wu, Shin-Tson

    2016-06-27

    We demonstrate a polymer network liquid crystal (PNLC) with negligible hysteresis while keeping submillisecond response time. By doping about 1% dodecyl acrylate (C12A) into the liquid crystal/monomer precursor, both hysteresis and residual birefringence are almost completely eliminated. The operating voltage and scattering properties remain nearly intact, but the tradeoff is enhanced double relaxation. This hysteresis-free PNLC should find applications in spatial light modulators, laser beam control, and optical communications in infrared region. PMID:27410631

  18. Polymer-Layer-Free Alignment for Fast Switching Nematic Liquid Crystals by Multifunctional Nanostructured Substrate.

    PubMed

    Jung, Woo-Bin; Jeong, Hyeon Su; Jeon, Hwan-Jin; Kim, Yun Ho; Hwang, Jeong Yeon; Kim, Jae-Hoon; Jung, Hee-Tae

    2015-11-01

    A novel polymer-layer-free system for liquid-crystal alignment is demonstrated by various shaped indium tin oxide (ITO) patterns. Liquid crystals are aligned along the ITO line pattern and secondary sputtering lithography can change the shape of the ITO line pattern. Different shapes can control the direction and size of the pretilt angle. This effect eliminates defects and reduces the response time. PMID:26418973

  19. Analog optical phase modulator based on chiral smectic and polymer cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Stockley, Jay E.; Sharp, Gary D.; Serati, Steven A.; Johnson, Kristina M.

    1995-12-01

    A high-speed analog optical phase modulator based on chiral smectic and cholesteric liquid crystals is discussed. The chiral smectic liquid-crystal device functions as a variable-orientation half-wave retarder, whereas the polymer cholesteric liquid-crystal film acts as a polarization-preserving mirror. We use circular Jones calculus to describe optical phase modulation, using a half-wave retarder of variable orientation acting on circularly polarized light. The phase induced by this modulator is achromatic. Analog phase modulation of nearly 360deg is demonstrated with a device switching time of 200 mu s at 25degC .

  20. Development of a Reflective Polymer-Dispersed Liquid Crystal Shear Measurement System

    NASA Astrophysics Data System (ADS)

    DeBenedictis, Gina

    Polymer-dispersed liquid crystals as a shear force measurement system offer many advantages over conventional single-point measurement systems. They are non-intrusive while offering ideal 2-dimensional mapping of shear stresses across a surface. Furthermore, the inclusion of the liquid crystals within a polymer matrix allows for a reversible sensor that is self-adherent to testing surfaces. Previous testing has examined small-scale surface mapping and clear samples through which light may pass. This paper examines the expansion of polymer-dispersed liquid crystals to larger area mapping as well as reflective measurements, with measurements taken in multiple shear force configurations, confirming the validity of the reflective data.

  1. Liquid-Crystal Thermosets, a New Generation of High-Performance Liquid-Crystal Polymers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theo; Weiser, Erik; Hou, Tan; Jensen, Brian; St. Clair, Terry

    2004-01-01

    One of the major challenges for NASA's next-generation reusable-launch-vehicle (RLV) program is the design of a cryogenic lightweight composite fuel tank. Potential matrix resin systems need to exhibit a low coefficient of thermal expansion (CTE), good mechanical strength, and excellent barrier properties at cryogenic temperatures under load. In addition, the resin system needs to be processable by a variety of non-autoclavable techniques, such as vacuum-bag curing, resin-transfer molding (RTM), vacuum-assisted resin-transfer molding (VaRTM), resin-film infusion (RFI), pultrusion, and advanced tow placement (ATP). To meet these requirements, the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center developed a new family of wholly aromatic liquid-crystal oligomers that can be processed and thermally cross-linked while maintaining their liquid-crystal order. All the monomers were polymerized in the presence of a cross-linkable unit by use of an environmentally benign melt-condensation technique. This method does not require hazardous solvents, and the only side product is acetic acid. The final product can be obtained as a powder or granulate and has an infinite shelf life. The obtained oligomers melt into a nematic phase and do not exhibit isotropization temperatures greater than the temperatures of decomposition (Ti > T(sub dec)). Three aromatic formulations were designed and tested and included esters, ester-amides, and ester-imides. One of the major advantages of this invention, named LaRC-LCR or Langley Research Center-Liquid Crystal Resin, is the ability to control a variety of resin characteristics, such as melting temperature, viscosity, and the cross-link density of the final part. Depending on the formulation, oligomers can be prepared with melt viscosities in the range of 10-10,000 poise (100 rad/s), which can easily be melt-processed using a variety of composite-processing techniques. This capability provides NASA with custom

  2. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih

    2012-07-01

    A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 π rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.

  3. Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography.

    PubMed

    Infusino, M; De Luca, A; Barna, V; Caputo, R; Umeton, C

    2012-10-01

    In this work we present the first realization and characterization of two-dimensional periodic and aperiodic POLICRYPS (Polymer Liquid Crystal Polymer Slices) structures, obtained by means of a single-beam holographic technique exploiting a high resolution spatial light modulator (SLM). A first investigation shows that the gratings, operating in the Raman Nath regime, exhibit a morphology and a electro-optical behavior that are typical of the POLICRYPS gratings realized by two-beam interference holography. PMID:23188278

  4. Controlled polymer nanostructure and properties through photopolymerization in lyotropic liquid crystal templates

    NASA Astrophysics Data System (ADS)

    Forney, Bradley Steven

    Incorporating nanotechnology into polymers has tremendous potential to improve the functionality and performance of polymer materials for use in a wide range of biomedical and industrial applications. This research uses lyotropic liquid crystals (LLCs) to control polymer structure on the nanometer scale in order to improve material properties. The overall goal of this research is to establish fundamental methods of synthesizing polymers with controlled nanostructured architectures in order to understand and utilize useful property relationships that result from the organized polymer morphologies. This work aims to establish a fundamental understanding of the reaction conditions needed to control polymer nanostructure and determine the benefits of organized polymer network structures on mechanical and transport properties. The synthesis of nanostructured polymers for improved material performance has utilized LLCs and photopolymerization kinetics to direct polymer structure. Self-assembled LLC phases provide a useful template that may be used as a photopolymerization platform to control polymer morphology on the nanometer size scale. Photopolymerization kinetics were used as a tool to examine the thermodynamics and phase structure evolution that occurs during the polymerization reaction. Additionally, several methods were developed to control polymer morphology and prevent loss of LLC order that can occur during polymerization. LLCs were also used to generate nanocomposite polymers with two distinct polymer networks to impart improvements in material properties. Other useful property relationships including increases in mechanical integrity, greater diffusive transport, and larger water uptake were established in this research. Finally, the LLC templating process was applied to solve performance problems associated with stimuli-sensitive polymer materials. Dramatic improvements in the response rate, dynamic range, and mechanical properties were achieved using LLCs

  5. Heat transport in polymer-dispersed liquid crystals under electric field

    NASA Astrophysics Data System (ADS)

    Hadj Sahraoui, Abdelhak; Delenclos, Sylvain; Longuemart, Stéphane; Dadarlat, Dorin

    2011-08-01

    The concepts of effective thermal conductivity and interfacial thermal contact resistance in composite media are applied to study heat transport in polymer-dispersed liquid crystals (PDLC). In these systems, the thermal properties of liquid crystal inclusions are changed by an imposed electric field. The photopyroelectric (PPE) technique with a cell allowing the application of an electric field to the sample is used to measure the thermal parameters. A model based on effective medium approximation is used to assess the impact of interfaces on the flow of heat through the determination of the Kapitza radius. It was found that the effect of interfaces becomes dominant compared to the volume conduction of the droplet when the liquid crystal (LC) droplet radius becomes smaller than 1 micron. The comparison of the thermal behavior of LC in the droplets with that of bulk liquid crystal allowed to evaluate the effect of confinement on the LC nematic phase.

  6. Phase diagrams of mixtures of a polymer and a cholesteric liquid crystal under an external field

    SciTech Connect

    Matsuyama, Akihiko

    2014-11-14

    We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling between a polymer and a liquid crystal under the external field, we examine twist-untwist phase transitions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can be induced by not only the external field but also concentration and temperature. Depending on the strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic (N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant.

  7. A shear sensitive monomer-polymer liquid crystal system for wind tunnel applications

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, Jag J.; Eftekhari, Abe

    1992-01-01

    Characteristics of a liquid crystal system, comprised of a shear-sensitive cholesteric-monomer liquid crystal thin-film coated on a liquid-crystal polymer substrate, are described. The system provides stable Grandjean texture, a desirable feature for shear-stress measurements using selective reflection from the monomer liquid-crystal helix structure. Impingement of gas or air flow on the monomer liquid-crystal free surface changes the wavelength of the selective reflection for an incident white light from red toward blue with increase in the rate of gas flow. The contrast of the selectively reflected light improves considerably by providing a thin black coating of about 5 microns at the monomer-polymer interface. The coating thickness is such that the steric interactions are still sufficiently strong to maintain Grandjean texture. For a small angle of incidence of a monochromatic light, the measurement of the reflected light intensity normal to the monomer-polymer liquid-crystal interface enables the determination of the wavelength for selective reflection as a function of the gas-flow differential pressure applied in the plane of the interface. The variation of the wavelength with the pressure is linear with a slope of about 2 nm/mmHg. Furthermore, the shear-stress effects are reversible unlike for monomer liquid crystal-metal systems used for flow visualization on wind-tunnel model surfaces. The present system offers a suitable method for direct on-line measurement of shear stress field from measurements of the wavelength for selective reflection for an incident white light.

  8. Complex Nanoscale-Ordered Liquid Crystal Polymer Film for High Transmittance Holographic Polarizer.

    PubMed

    Du, Tao; Fan, Fan; Tam, Alwin Ming Wai; Sun, Jiatong; Chigrinov, Vladimir G; Sing Kwok, Hoi

    2015-11-25

    A special design of a complex-ordered liquid crystal polymer film is developed into a holographic polarizer. The holographic polarizer shows over 90% transmittance, which provides a simple solution to make LEDs polarized. Furthermore, the holographic polarizer exhibits intensity and polarization maintenance properties, which could be further developed for photonics applications. PMID:26457810

  9. Blazed vector gratings fabricated using photosensitive polymer liquid crystals and control of polarization diffraction

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro

    2014-03-01

    The blazed vector grating possessing antisymmetric distributions of the birefringence were fabricated by exposing the line-focused linearly polarized ultraviolet light on the photosensitive polymer liquid crystals. The polarization states of the diffraction beams can be highly and widely controlled by designing the blazed structures, and the diffraction properties were well-explained by Jones calculus.

  10. Effect of liquid crystal concentration on electro-optical properties of polymer dispersed liquid crystal lens for smart electronic glasses with auto-shading and auto-focusing function

    NASA Astrophysics Data System (ADS)

    Kim, Jaeyong; Han, Jeong In

    2014-05-01

    Polymer dispersed liquid crystal lenses were prepared from a mixture of prepolymer (NOA 65) and E7 liquid crystal. The mixture of polymer dispersed liquid crystal was polymerized by ultraviolet (UV) curing in the polymerization induced phase separation process. With liquid crystal concentration, electro-optical properties of polymer dispersed liquid crystal lens devices including transmittance, driving voltage, response times, contrast ratio and slope of the linear region of the transmittance-voltage were measured and optimized for smart electronic glasses. The optimum concentration for polymer dispersed liquid crystal lens was NOA 65 of 40% and E7 liquid crystal concentration of 60%. This is the first report of the use of the polymer dispersed liquid crystal lens for smart electronic glasses with auto-shading and/or auto-focusing functions.

  11. A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer

    NASA Astrophysics Data System (ADS)

    Choi, Yoonseuk; Kim, Hak-Rin; Lee, Kwang-Ho; Lee, Yong-Min; Kim, Jae-Hoon

    2007-11-01

    We propose a focal intensity tunable microlens array by using a birefringent liquid crystalline polymer for lensing action. Due to the difference of effective refractive indices, it acts as a positive or negative microlens with respect to the polarization state. As we control the incident polarization by adding a liquid crystal layer, the focal intensity can be tuned by an applied voltage. Twisted nematic and bistable ferroelectric liquid crystal modes were applied to demonstrate the possibility of various driving features such as a continuously tunable focal intensity or fast switching with memory effect.

  12. Improvement of performance of liquid crystal microlens with polymer surface modification.

    PubMed

    Hwang, Shug-June; Liu, Yi-Xiang; Porter, Glen Andrew

    2014-02-24

    An electrically controllable liquid crystal (LC) microlens with polymer crater, which is simply prepared by droplet evaporation, has been previously proposed as a focusing device possessing excellent characteristics in optical performance, especially for the capability of tunable focal lengths. As the alignment layer on the crater surface cannot be effectively rubbed, non-uniformly symmetrical electric fields in the LC lenses usually induce disclination lines during operation. In this paper, a polymer surface stabilization technique is applied to successfully prevent disclination lines and greatly improve the performance of the LC microlens with the polymer crater. PMID:24663781

  13. Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light.

    PubMed

    Yuan, Yachao; Li, Yan; Chen, Chao Ping; Liu, Shuxin; Rong, Na; Li, Weihuan; Li, Xiao; Zhou, Pengcheng; Lu, Jiangang; Liu, Ruili; Su, Yikai

    2015-07-27

    In this paper, we demonstrate a holographic polymer-stabilized blue-phase liquid crystal grating fabricated using a visible laser. As blue phase is stabilized by the interfered light, polymer-concentration gradient is achieved simultaneously. With the application of a uniform vertical electric field, periodic index distribution is obtained due to polymer-concentration gradient. The grating exhibits several attractive features such as polarization-independency, a broad temperature range, sub-millisecond response, simple fabrication, and low cost, thus holding great potential for photonics applications. PMID:26367659

  14. Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Knoll, Thomas E.; Blizard, Kent; Jayaraj, K.; Rubin, Leslie S.

    1994-01-01

    Dielectric materials based on innovative Liquid Crystal Polymers (LCP's) have been used to fabricate surface mount printed wiring boards (PWB's) with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology has resulted in self reinforcing material with balanced in-plane mechanical properties. In addition, LCP's possess excellent electrical properties, including a low dielectric constant (less than 2.9) and very low moisture absorption (less than 0.02%). LCP-based multilayer boards processed with conventional drilling and plating processes show improved performance over other materials because they eliminate the surface flatness problems of glass or aramid reinforcements. Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. The material is ideally suited for MCM-L and PCMCIA applications fabricated with very thin dielectric layers of the liquid crystal polymer.

  15. Field-induced Bragg diffraction in polymer stabilized cholesteric liquid crystal bubbles

    NASA Astrophysics Data System (ADS)

    Varanytsia, Andrii; Chien, Liang-Chy

    2015-03-01

    Cholesteric liquid crystals (CLC) with a specific confinement conditions are known to form bubble domain (BD) texture. We have developed the CLC BD texture stabilized with a small amount of polymer. CLC bubbles of a BD texture self-assemble into domains with a hexagonal ordering and optically perform as a diffraction grating. By stabilization of the BD texture with a polymer we have improved optical quality of the diffractive CLC layer and have increased its mechanical stability. We discuss details about samples preparation, Bragg diffraction, electro-optical performance and present results of scanning electron microscopy (SEM) morphological study of the polymer network formed in the bulk of the diffractive liquid crystal layer.

  16. Dynamics of photoinduced processes in liquid-crystal polymer films containing azo compounds

    SciTech Connect

    Simonov, A N; Larichev, A V

    1999-07-31

    The photoinduced processes in azo-compound-containing side-chain polymer films with liquid-crystal properties are examined theoretically. A model is proposed whereby it is possible to consider the dynamics of the optical response of a medium taking into account the anisotropic saturation in the angular distribution of the azo-dye isomers as well as the intermolecular interaction. The influence of the liquid-crystal ordering in the polymer is taken into account by introducing a phenomenological mean-field factor. Analytical solutions describing changes in the optical properties of a polymer film during the initial illumination stages are in good agreement with experimental data. (this issue is dedicated to the memory of s a akhmanov)

  17. New method for preparing a liquid crystal polymer that exhibits linearly polarized white fluorescence

    NASA Astrophysics Data System (ADS)

    Zheng, Shi-jun; Kun, Wang; Kobayashi, Takaomi

    2011-03-01

    With the aim of developing a single-chain white-light-emitting polymer, liquid crystal (LC) polymers with a shish-kebab-type moiety on their cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s main chain were synthesized by Gilch polymerization. They were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and polarizing optical microscopy (POM). 1H-NMR indicated that the polymers had a shish-kebab structure, which strongly suppressed the formation of structural defects in the polymers. DSC revealed that the polymers had thermotropic LC properties, indicating that the LC polymers were enantiotropic. XRD showed that the polymers had a mesophase, which implies that they were in a smectic LC phase. A polymer with "kebabs" of 2,5-bis(4'-alkoxyphenyl)benzene was combined with an aligned polyimide film with orientated microgrooves. The polymer main chain was aligned due to the orientation of the "kebabs" of the uniform cross-conjugated structure. It lay between the kebabs and the "shish" of the polymer main chains. The aligned polymer main chain emitted yellow light while and the oriented LC side chains emitted blue light emission. These two emissions resulted in linearly polarized white fluorescence.

  18. Application of liquid crystal polymer films for photolithographic fabrication of 3D structures

    NASA Astrophysics Data System (ADS)

    Fox, Anna E.; Fontecchio, Adam K.

    2008-02-01

    In this paper, we demonstrate a silicon etching application of a holographically formed polymer dispersed liquid crystal (H-PDLC) photomask. H-PDLC is a periodically nanostructured material consisting of stratified layers of polymer and liquid crystal. Due to the natural random alignment of the liquid crystal axes with respect to the polymer layers, an index of refraction mismatch exists and a reflection occurs. Application of bias across the film aligns the liquid crystals and eliminates the index mismatch causing the film to become transparent. H-PDLC films have been shown to sufficiently attenuate the UV exposure dose in the photolithographic process when in the unbiased state, and can be electrically controlled to modulate the amount of UV transmission when electric field is applied. We show etch depth profiles of patterns masked on a silicon substrate using the H-PDLC photomask device compared with etch profiles of similar structures patterned with more conventional ink jet printed photomasks and chrome on quartz glass photomasks. We investigate reactive ion etching technique and potassium hydroxide wet etch technique.

  19. Origin of shear-induced phase transitions in melts of liquid-crystal polymers

    NASA Astrophysics Data System (ADS)

    Noirez, Laurence

    2005-11-01

    Flow induced mechanical properties are often coupled with instabilities, spurt effects, or induced phase transitions. Recent studies have revealed that side-chain liquid crystal polymers exhibit typically shear-induced phases inside the isotropic (nonmesomorphic) liquid state. We present an experimental approach which brings a new understanding for nonlinear flow behaviors. The strategy consists in comparing the critical times issued from the flow behavior of a liquid-crystal polymer to the equilibrium orientational-order relaxation time was characterized. We demonstrate that shear-induced phases do not originate from a flow coupling to conventional orientational order parameter fluctuations. It does not also correspond to a direct coupling with the viscoelastic terminal time, leading to the conclusion that an additional relaxation process takes place with time scales longer than the terminal time. The identification of a low-frequency elastic plateau by viscoelastic measurements corroborates this conclusion.

  20. Holographically formed, acoustically switchable gratings based on polymer-dispersed liquid crystals.

    PubMed

    Liu, Yan Jun; Lu, Mengqian; Ding, Xiaoyun; Leong, Eunice S P; Lin, Sz-Chin Steven; Shi, Jinjie; Teng, Jing Hua; Wang, Lin; Bunning, Timothy J; Huang, Tony Jun

    2013-08-01

    We report holographic polymer-dispersed liquid crystal (H-PDLC) gratings driven by surface acoustic waves (SAWs). Our experiments show that upon applying SAWs, the H-PDLC grating exhibited switchable properties: The diffraction of the H-PDLC grating decreased, whereas the transmission increased. This acoustically switchable behavior is due to the acoustic streaming-induced realignment of liquid crystals as well as absorption-resulted thermal diffusion. Such SAW-driven H-PDLC gratings are potentially useful in many photonic applications, such as optical switches, spatial light modulators, and switchable add/drop filters. PMID:22909448

  1. Shear-induced surface alignment of polymer dispersed liquid crystal microdroplets on the boundary layer

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.

  2. Electro-optic system for online light transmission control of polymer-dispersed liquid crystal windows

    NASA Astrophysics Data System (ADS)

    Sanchez-Pena, Jose M.; Vazquez, Carmen; Perez, I.; Rodriguez, Inmaculada; Oton, Jose M.

    2002-07-01

    Polymer-dispersed liquid crystals (PDLCs) are formed by microdroplets of liquid crystal embedded in a flexible matrix and sandwiched between transparent electrodes. Large area units (several square meters) can be easily prepared. Opaque, transparent, and intermediate light transmission states can be achieved by applying appropriate electric fields. These features allow their use in active windows for illumination, greenhouse regulation, and privacy, both on buildings and vehicles. An electro-optic system based on a microcontrolled driver was implemented for on-line control of PDLC windows. The system may self-regulate daylight or may be used as remote control.

  3. Surface relief gratings on polymer dispersed liquid crystals by polarization holography

    SciTech Connect

    Mazzulla, A.; Pagliusi, P.; Provenzano, C.; Russo, G.; Carbone, G.; Cipparrone, G.

    2004-09-27

    We report the observation of surface relief gratings (SRGs) on polymer dispersed liquid crystal films after polarization holographic recording, demonstrating the formation of SRGs in systems without azo compounds, where photoisomerization and chromophore reorientation processes do not occur. Permanent SRGs, several hundred nanometers deep, are recorded on the surface of a polymeric material containing oriented liquid crystal droplets. The results suggest that SRG growth under uniform intensity irradiation is not exclusively related to the photoisomerization, but is a more general phenomenon which can involve different photoinduced chemical and physical mechanisms sensitive to the light polarization state. These effects contribute to the formation of anisotropic structures during the recording process.

  4. Mechanisms of liquid crystal and biopolymer alignment on highly-oriented polymer thin films

    NASA Astrophysics Data System (ADS)

    Dennis, John Raymond

    1998-12-01

    Molecular order can strongly enhance material properties, or produce materials which perform advanced functions. Many materials, from small crystals to large macromolecules, may be aligned on highly-oriented poly(tetrafluoroethylene) (PTFE) or high-density polyethylene (HDPE) thin films, prepared by a simple shear deposition procedure. Here, processes by which these films produce order are examined, first in a well- characterized liquid crystal, then in two more complex polymer liquid crystals, and finally in an adsorbed motor protein system. Optical second harmonic generation (SHG) was used to study surface molecular order in the liquid crystal 4'-n-octyl-4-cyano-biphenyl (8CB) on PTFE and HDPE films. In nematic 8CB cells with bulk alignment along the polymer orientation axis, the surface monolayers of 8CB were also aligned, and showed C2ν symmetry. In the isotropic phase, the surface monolayer alignment was lost. Monolayers of 8CB evaporated onto either polymer showed little or no alignment. The bulk 8CB alignment appears to be primarily caused by surface ridges through an elastic, bulk- mediated mechanism, unlike the epitaxy-like alignment found on some cloth-rubbed polymer surfaces. For the polymer liquid crystal poly-γ-benzyl- glutamate (PBG), uniform homogeneous surface alignment was observed on PTFE films; this is the first report of PBG surface alignment. However, liquid crystalline samples of microtubules were not aligned. PTFE films show promise for aligning some other polymer liquid crystals via elastic interactions. The motor protein kinesin, adsorbed to PTFE films, transported fluorescently labeled microtubules predominantly in straight lines along the films' orientation axis, not in random directions as observed on glass surfaces. As the kinesin surface density was increased, the degree of alignment peaked and then declined. The results indicate that directed motion occurs because active kinesin preferentially adsorbs to surface sites along linear

  5. Pattern Polymerization-Induced Phase Separation in a Polymer-Dispersed Liquid Crystal System

    NASA Astrophysics Data System (ADS)

    Kyu, Thein

    2002-03-01

    Liquid crystal (LC)/polymer composite films have gained attention increasingly due to their applications in flat panel displays and shutters. Photopolymerization is a preferred method to produce LC/polymer composite films from mixtures of reactive monomers and LCs. On the basis of the combined Flory-Huggins free energy for isotropic mixing and Maier-Saupe free energy for nematic ordering along with the elastic free energy of the network, phase diagrams have been established by solving self-consistently. A theoretical simulation has been modeled by incorporating the kinetics of crosslinking reaction into the time-dependent Ginzburg-Landau (TDGL-model C) equations to elucidate the emergence of nematic domains during photopolymerization induced phase separation in electrically switchable holographic polymer-dispersed liquid crystals (H-PDLC). The simulated morphological patterns in the concentration and orientation order parameter fields show discrete layers of liquid crystal droplets alternating periodically with polymer network-rich layers. Furthermore, we recognized the potential for producing electrically tunable microlens from PDLC systems through pattern-photopolymerization-induced phase separation by means of the interference of two horizontal waves and two vertical waves. Our simulation revealed that the emerged LC microlens are of the order of a few hundred nanometers. These LC microlens are not only uniformed in size, but also form in regular arrays, reminiscence of the compound eyes found in flies, ants, and wasps. Supported by ALCOM, NSF DMR 99-03519, and OBR.

  6. Simulation study of liquid crystal anchoring at a polymer surface

    NASA Astrophysics Data System (ADS)

    Hamaneh, Mehdi

    2005-03-01

    The process of rubbing a polymer substrate to induce planar anchoring has two effects. It aligns the polymer chains and also creates grooves in the surface. We have investigated which one of these effects is more important by conducting a series of simulations of molecules of 5CB in contact with a poly(vinyl alcohol) surface. The polymer surface was constructed from a set of parallel straight chains. It was then distorted to mimic the effect of grooves in a direction perpendicular to the chain direction, thus causing two opposing anchoring effects. It was found that the 5CB molecules ordered preferentially along the chain direction when the depth of the grooves was less than 20 percent of the distance between grooves. For grooves whose walls were more steeply pitched, the nematic ordering aligned with the grooves.

  7. Fringing field-induced monodomain of a polymer-stabilized blue phase liquid crystal

    NASA Astrophysics Data System (ADS)

    Li, Wei-Huan; Hu, De-Chun; Li, Yan; Chen, Chao Ping; Lee, Yung-Jui; Lien, Alan; Lu, Jian-Gang; Su, Yikai

    2015-12-01

    The influence of fringe electric field applied during photopolymerization on the electro-optic properties of polymer-stabilized blue phase liquid crystals (PS-BPLCs) was investigated. It has been found that the thermal stability would not degrade if the electric field was less than a critical value. The contrast ratio of PS-BPLC can be improved significantly because the uniformity of blue phase liquid crystal domain was enhanced by the electric fields, which were applied during photopolymerization. Meanwhile, with the electric filed, the potential energy of the BPLC molecules may lower the anchoring energy of the polymer network resulting in the improvement of electro-optic response properties. With optimized electric field during polymerization, the contrast ratio and the Kerr constant of PS-BPLC can be improved by 4.1 times and 15%, respectively, and the hysteresis can be decreased by 10%, while the response time and residual birefringence have no degradation.

  8. Highly robust crystalsome via directed polymer crystallization at curved liquid/liquid interface

    PubMed Central

    Wang, Wenda; Qi, Hao; Zhou, Tian; Mei, Shan; Han, Lin; Higuchi, Takeshi; Jinnai, Hiroshi; Li, Christopher Y.

    2016-01-01

    Lipids and amphiphilic block copolymers spontaneously self-assemble in water to form a plethora of micelles and vesicles. They are typically fluidic in nature and often mechanically weak for applications such as drug delivery and gene therapeutics. Mechanical properties of polymeric materials could be improved by forming crystalline structures. However, most of the self-assembled micelles and vesicles have curved surfaces and precisely tuning crystallization within a nanoscale curved space is challenging, as the curved geometry is incommensurate with crystals having three-dimensional translational symmetry. Herein, we report using a miniemulsion crystallization method to grow nanosized, polymer single-crystal-like capsules. We coin the name crystalsome to describe this unique structure, because they are formed by polymer lamellar crystals and their structure mimics liposomes and polymersomes. Using poly(L-lactic acid) (PLLA) as the model polymer, we show that curved water/p-xylene interface formed by the miniemulsion process can guide the growth of PLLA single crystals. Crystalsomes with the size ranging from ∼148 nm to over 1 μm have been formed. Atomic force microscopy measurement demonstrate a two to three orders of magnitude increase in bending modulus compared with conventional polymersomes. We envisage that this novel structure could shed light on investigating spherical crystallography and drug delivery. PMID:26837260

  9. Highly robust crystalsome via directed polymer crystallization at curved liquid/liquid interface.

    PubMed

    Wang, Wenda; Qi, Hao; Zhou, Tian; Mei, Shan; Han, Lin; Higuchi, Takeshi; Jinnai, Hiroshi; Li, Christopher Y

    2016-01-01

    Lipids and amphiphilic block copolymers spontaneously self-assemble in water to form a plethora of micelles and vesicles. They are typically fluidic in nature and often mechanically weak for applications such as drug delivery and gene therapeutics. Mechanical properties of polymeric materials could be improved by forming crystalline structures. However, most of the self-assembled micelles and vesicles have curved surfaces and precisely tuning crystallization within a nanoscale curved space is challenging, as the curved geometry is incommensurate with crystals having three-dimensional translational symmetry. Herein, we report using a miniemulsion crystallization method to grow nanosized, polymer single-crystal-like capsules. We coin the name crystalsome to describe this unique structure, because they are formed by polymer lamellar crystals and their structure mimics liposomes and polymersomes. Using poly(L-lactic acid) (PLLA) as the model polymer, we show that curved water/p-xylene interface formed by the miniemulsion process can guide the growth of PLLA single crystals. Crystalsomes with the size ranging from ∼148 nm to over 1 μm have been formed. Atomic force microscopy measurement demonstrate a two to three orders of magnitude increase in bending modulus compared with conventional polymersomes. We envisage that this novel structure could shed light on investigating spherical crystallography and drug delivery. PMID:26837260

  10. Highly robust crystalsome via directed polymer crystallization at curved liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda; Qi, Hao; Zhou, Tian; Mei, Shan; Han, Lin; Higuchi, Takeshi; Jinnai, Hiroshi; Li, Christopher Y.

    2016-02-01

    Lipids and amphiphilic block copolymers spontaneously self-assemble in water to form a plethora of micelles and vesicles. They are typically fluidic in nature and often mechanically weak for applications such as drug delivery and gene therapeutics. Mechanical properties of polymeric materials could be improved by forming crystalline structures. However, most of the self-assembled micelles and vesicles have curved surfaces and precisely tuning crystallization within a nanoscale curved space is challenging, as the curved geometry is incommensurate with crystals having three-dimensional translational symmetry. Herein, we report using a miniemulsion crystallization method to grow nanosized, polymer single-crystal-like capsules. We coin the name crystalsome to describe this unique structure, because they are formed by polymer lamellar crystals and their structure mimics liposomes and polymersomes. Using poly(L-lactic acid) (PLLA) as the model polymer, we show that curved water/p-xylene interface formed by the miniemulsion process can guide the growth of PLLA single crystals. Crystalsomes with the size ranging from ~148 nm to over 1 μm have been formed. Atomic force microscopy measurement demonstrate a two to three orders of magnitude increase in bending modulus compared with conventional polymersomes. We envisage that this novel structure could shed light on investigating spherical crystallography and drug delivery.

  11. Rewritable Optical Storage with a Spiropyran Doped Liquid Crystal Polymer Film.

    PubMed

    Petriashvili, Gia; De Santo, Maria Penelope; Devadze, Lali; Zurabishvili, Tsisana; Sepashvili, Nino; Gary, Ramla; Barberi, Riccardo

    2016-03-01

    Rewritable optical storage has been obtained in a spiropyran doped liquid crystal polymer films. Pictures can be recorded on films upon irradiation with UV light passing through a grayscale mask and they can be rapidly erased using visible light. Films present improved photosensitivity and optical contrast, good resistance to photofatigue, and high spatial resolution. These photochromic films work as a multifunctional, dynamic photosensitive material with a real-time image recording feature. PMID:26864876

  12. Light propagation mechanism switching in a liquid crystal infiltrated microstructured polymer optical fibre

    NASA Astrophysics Data System (ADS)

    Rutkowska, K. A.; Milenko, K.; Chojnowska, O.; Dąbrowski, R.; Woliński, T. R.

    2015-12-01

    In this work studies on propagation properties of a microstructured polymer optical fibre infiltrated with a nematic liquid crystal are presented. Specifically, the influence of an infiltration method on the LC molecular alignment inside fibre air-channels and, thus, on light guidance is discussed. Switching between propagation mechanisms, namely the transition from modified total internal reflection (mTIR) to the photonic bandgap effect obtained by varying external temperature is also demonstrated.

  13. Identification of nonmonotonic behaviors and stick-slip transition in liquid crystal polymers

    NASA Astrophysics Data System (ADS)

    Pujolle-Robic, Caroline; Noirez, Laurence

    2003-12-01

    The recent identification of shear-induced phases in the isotropic melts of liquid crystal polymers shows that these materials are expected to display original nonlinear behaviors. We have investigated the flow behavior of a nematic sidechain polymer above its isotropic-nematic transition temperature. Nonlinear rheology and birefringence measurements indicate the appearance, above a critical shear rate, of the shear-induced isotropic-nematic phase transition. The rheological behavior of this induced phase is characterized by undamped time-periodic shear stress oscillations. These sustained oscillations are interpreted in terms of a stick-slip mechanism alternating high-friction static state and low-friction kinetic state.

  14. Progress in the Development of Polymer Cholesteric Liquid Crystal Flakes for Display Applications

    SciTech Connect

    Kosc, T.Z.; Marshall, K.L.; Trajkovska-Petkoska, A.; Kimball, E.; Jacobs, S.D.

    2004-12-31

    Polymer cholesteric liquid crystal (PCLC) flake technology is being developed as an alternative display technology for flexible, reflective particle displays. The motion of PCLC flakes suspended in a host fluid can be controlled with an electric field, creating means to electrically control for the flakes ability to brightly reflect light that is circularly polarized. The PCLC flake/host fluid dispersion has been successfully micro-encapsulated both in a polymer matrix and in gelatin micro-capsules. Micro-encapsulation will not only expand the applications scope of the technology, but also may aid in addressing some potential problem areas that are inherent to many forms of particle display technology.

  15. Transient self-interaction of light in a liquid-crystal polymer film containing azodye molecules

    SciTech Connect

    Simonov, A N

    1999-07-31

    Transient self-interaction of low-power He - Ne laser radiation (1 < 50 mW cm{sup -2} ) in a liquid-crystal polymer film containing chemically bound azodye molecules was observed experimentally. The self-interaction occurred in the region of a temperature-induced phase transition in the polymer film and was accompanied by the formation of quasi-periodic ring-shaped structures in the distribution of the transmitted light intensity. (this issue is dedicated to the memory of s a akhmanov)

  16. Formation of Polymer Networks for Fast In-Plane Switching of Liquid Crystals at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Byeong-Hun; Song, Dong Han; Kim, Ki-Han; Wok Park, Byung; Choi, Sun-Wook; Park, Sung Il; Kang, Sung Gu; Yoon, Jeong Hwan; Kim, Byeong Koo; Yoon, Tae-Hoon

    2013-09-01

    We formed a polymer structure to enable fast in-plane switching of liquid crystals at low temperatures. The problem of the inevitable slow response at low temperatures was reduced by the formation of in-cell polymer networks in in-plane switching (IPS) cells. The electro-optic characteristics of polymer-networked IPS cells were measured at temperatures ranging from -10 to 20 °C. The turn-on and turn-off times of an IPS cell were reduced by 44.5 and 47.2% at -10 °C by the formation of polymer networks. We believe that the proposed technology can be applied to emerging display devices such as mobile phones and automotive displays that may be used at low temperatures.

  17. Flexible Nerve Stimulation Electrode with Iridium Oxide Sputtered on Liquid Crystal Polymer

    PubMed Central

    Wang, Kevin; Liu, Chung-Chiun; Durand, Dominique M.

    2009-01-01

    Current electrode designs require flexible substrates that absorb little moisture and provide large charge injection capability. Sputtered iridium oxide films have superior charge injection capabilities versus noble metals and can adhere to various substrates. Liquid crystal polymers (LCP) have very little water absorption compared to other flexible substrates. Therefore, the combination of sputtered iridium oxide film on liquid crystal polymer substrate was studied using 50Hz, 100μs duration, 10mA biphasic current waveforms for 700 hours at 67°C in bicarbonate buffer saline. Scanning electron micrograph (SEM) analysis showed no delamination and approximately 1% of electrode material was lost to the bicarbonate buffer. The charge injection limit and the cathodic charge storage capacity within the water window were 4.6 +/− 1.0mC/cm2 and 31.5 +/− 6.6mC/cm2 respectively. Additional electrochemical analysis revealed significant charge imbalance attributed to oxygen reduction within the water window. These results, along with the flexible, chemically inert, biocompatible substrate, indicate that sputtered iridium oxide films on liquid crystal polymer could become the method of choice for flexible substrate nerve electrodes. PMID:19224713

  18. Photorefractivity in polymer-stabilized liquid crystals films.

    SciTech Connect

    Wasielewski, M. R.

    1998-05-08

    We have shown that PSLCs are capable of forming photorefractive gratings that operate in the thick grating regime. Polymer stabilization alters the charge transport and trapping characteristics of LCs, resulting in longer lived gratings, while maintaining the advantages of high orientational birefringence within LCs. Furthermore, very low applied electric fields (800 V/cm) and low optical intensities (100 mW/cm{sup 2}) are required to create large photorefractive effects in these materials. It is expected that optimization of the redox potentials of the chromophores within the PSLCs will continue to improve the performance of these materials.

  19. Enhanced solar cell conversion efficiency using birefringent liquid crystal polymer homeotropic films from reactive mesogens.

    PubMed

    Wu, Gwomei; Hsieh, Li-Hang; Chien, How-Wen

    2013-01-01

    Novel birefringent liquid crystal polymer homeotropic films have been coated on semiconductor solar cells to improve the effective incident sunlight angles. The liquid crystal polymer precursor, based on reactive mesogens, is fluidic and flows like liquid. It would distribute uniformly on the solar cell sample surface by any traditional coating technique. The birefringence for light, due to the liquid crystal retardation properties, manipulated the optical length and the deflection of incident light, thus allowed an increase in the energy conversion efficiency. The expensive sunlight tracking systems could be avoided. The processing parameters can be tuned such as different mesogen concentrations and plate speeds of spin-coating. The results showed that the solar cell conversion efficiency was improved from 14.56% to 14.85% at an incident sunlight angle of 15°. It was further improved from 13.40% to 13.81% when the angle was 30°. The interesting angular dependency on solar cell efficiency enhancement has been evaluated. PMID:24232577

  20. Enhanced Solar Cell Conversion Efficiency Using Birefringent Liquid Crystal Polymer Homeotropic Films from Reactive Mesogens

    PubMed Central

    Wu, Gwomei; Hsieh, Li-Hang; Chien, How-Wen

    2013-01-01

    Novel birefringent liquid crystal polymer homeotropic films have been coated on semiconductor solar cells to improve the effective incident sunlight angles. The liquid crystal polymer precursor, based on reactive mesogens, is fluidic and flows like liquid. It would distribute uniformly on the solar cell sample surface by any traditional coating technique. The birefringence for light, due to the liquid crystal retardation properties, manipulated the optical length and the deflection of incident light, thus allowed an increase in the energy conversion efficiency. The expensive sunlight tracking systems could be avoided. The processing parameters can be tuned such as different mesogen concentrations and plate speeds of spin-coating. The results showed that the solar cell conversion efficiency was improved from 14.56% to 14.85% at an incident sunlight angle of 15°. It was further improved from 13.40% to 13.81% when the angle was 30°. The interesting angular dependency on solar cell efficiency enhancement has been evaluated. PMID:24232577

  1. Investigation of host liquid crystal composition on polymer stabilised blue phase properties

    NASA Astrophysics Data System (ADS)

    Mohd Said, Suhana; Rahman, Md Asiqur; Yamana, Itaru; Kimura, Munehiro

    2014-10-01

    Polymer stabilised blue phase liquid crystals (PSBPLCs) have been investigated for photonics and display applications for the following reasons: optical isotropy in the dark state, ease of fabrication due to the omission of the alignment layer, and sub-millisecond response length. Major barriers to the commercialisation of PSBPLCs are: hysteresis, residual birefringence, and most significantly, high driving voltage. We have chosen to lower the driving voltage through optimization of the mixture (host LC, chiral dopant and monomer). In this paper, investigation of the contribution of the host liquid crystal to the phase stability and electro-optic characteristics of the PSBP will be discussed. The following cases have been investigated: a) A three component host liquid crystal (E8, PE-5CNF (4-Cyano-3-fluorophenyl 4-pentyl benzoate) and CPP-3FF (4-(trans-4-n-propyl cyclohexyl)-3',4'-difluoro-1,1'-biphenyl), LCC Corporation, Japan). For a ratio of E8:PE-CNF:CPP-3FF of 5:3:2, a large BPI window of <50.4°C and low hysteresis was achieved, but the driving voltage was 79V, and b) A single host liquid crystal, 8OCB with chiral dopant CB15. For a ratio for 8OCB:CB15 of 1:1, this mixture demonstrated a significantly lower driving voltage of 65V, but exhibited a smaller BPI window of <27°C. Decrease in the ratio of 8OCB:CB15 also induced the presence of a BPII phase in the mixture. A single host liquid crystal has the advantage of simplicity of composition, and lowered driving voltage. However, the hysteresis and blue phase temperature range needs to be optimised. This investigation concludes upon the suggestion of liquid crystal characteristics which optimises the blue phase temperature range, low hysteresis, switching times and driving voltage.

  2. Electrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same

    SciTech Connect

    Marshall, Kenneth L.; Kosc, Tanya Z.; Jacobs, Stephen D.; Faris, Sadeg M.; Li, Le

    2003-12-16

    Flakes or platelets of polymer liquid crystals (PLC) or other birefringent polymers (BP) suspended in a fluid host medium constitute a system that can function as the active element in an electrically switchable optical device when the suspension is either contained between a pair of rigid substrates bearing transparent conductive coatings or dispersed as microcapsules within the body of a flexible host polymer. Optical properties of these flake materials include large effective optical path length, different polarization states and high angular sensitivity in their selective reflection or birefringence. The flakes or platelets of these devices need only a 3-20.degree. rotation about the normal to the cell surface to achieve switching characteristics obtainable with prior devices using particle rotation or translation.

  3. In situ prepared polymer films as alignment layers for nematic liquid crystals

    SciTech Connect

    Pires, David; Galerne, Yves

    2006-12-15

    By means of UV-visible irradiations and convenient photoinitiators, we realize the cross-linked polymerization of a triacrylate monomer in solution in a nematic liquid crystal (p-pentyl-p{sup '}-cyanobiphenyl) at low concentrations (a few wt %), i.e., under conditions opposite to the synthesis of polymer-dispersed liquid crystals. As atomic force microscope measurements show, when operating close to, but below, the percolation transition, a thin polymer layer is synthesized in situ, directly covering and coating all the substrate. These observations therefore confirm that the properties of anchoring and of alignment memory previously observed in such nematic cells effectively originate from the synthesized polymer film. According to the photoinitiator used, bulk or surface polymerizations dominate and respectively produce continuous or discontinuous films (i.e., with separate clusters). In the former case, polymer aggregates are first synthesized. They then diffuse in the volume until they meet a surface, where they definitely stick if they are large enough. An estimate of the entropy and interaction energy differences between the two states, stuck or free, shows that the aggregates stick on the substrates if their size exceeds the length of about three monomers, i.e., if they contain more than 20-30 monomers. Interestingly, these films may be used to replicate nonuniform alignment patterns that are difficult to realize otherwise. The method may be considered as an imprinting method.

  4. Immobilization of Polymer-Decorated Liquid Crystal Droplets on Chemically Tailored Surfaces

    PubMed Central

    Kinsinger, Michael I.; Buck, Maren E.; Abbott, Nicholas L.; Lynn, David M.

    2010-01-01

    We demonstrate that the assembly of an amphiphilic polyamine on the interfaces of micrometer-sized droplets of a thermotropic liquid crystal (LC) dispersed in aqueous solutions can be used to facilitate the immobilization of LC droplets on chemically functionalized surfaces. Polymer 1 was designed to contain both hydrophobic (alkyl-functionalized) and hydrophilic (primary and tertiary amine-functionalized) side chain functionality. The assembly of this polymer at the interfaces of aqueous dispersions of LC droplets was achieved by spontaneous adsorption of polymer from aqueous solution. Polymer adsorption triggered transitions in the orientational ordering of the LCs, as observed by polarized light and bright-field microscopy. We demonstrate that the presence of polymer 1 on the interfaces of these droplets can be exploited to immobilize LC droplets on planar solid surfaces through covalent bond formation (e.g., for surfaces coated with polymer multilayers containing reactive azlactone functionality) or through electrostatic interactions (e.g., for surfaces coated with multilayers containing hydrolyzed azlactone functionality). Characterization of immobilized LC droplets by polarized, fluorescence, and laser scanning confocal microscopy revealed the general spherical shape of the polymer-coated LC droplets to be maintained after immobilization, and that immobilization led to additional ordering transitions within the droplets that was dependent on the nature of the surfaces with which they were in contact. Polymer 1-functionalized LC droplets were not immobilized on polymer multilayers treated with poly(ethylene imine) (PEI). We demonstrate that the ability to design surfaces that promote or prevent the immobilization of polymer-functionalized LC droplets can exploited to pattern the immobilization of LC droplets on surfaces. The results of this investigation provide the basis of an approach that could be used to tailor the properties of dispersed LC emulsions and

  5. Liquid crystal polymer networks: preparation, properties, and applications of films with patterned molecular alignment.

    PubMed

    Liu, Danqing; Broer, Dirk J

    2014-11-18

    Monolithically ordered liquid crystal polymer networks are formed by the photoinitiated polymerization of multifunctional liquid crystal monomers. This paper describes the relevant principles and methods, the basic structure-property relationships in terms of mesogenic properties of the monomers, and the mechanical and optical properties of the polymers. Strategies are discussed to control the molecular orientation by various means and in all three dimensions. The versatility of the process is demonstrated by two examples of films with a patterned molecular order. It is shown that patterned retarders can be made by a two-step polymerization process which is successfully employed in a transflective display principle. A transflective display is a liquid crystal display that operates in both a reflective mode using ambient light and a transmissive mode with light coming from a backlight system. Furthermore, a method is discussed to create a patterned film in a single polymerization process. This film has alternating planar chiral nematic areas next to perpendicularly oriented (so-called homeotropic) areas. When applied as a coating to a substrate, the film changes its surface texture. During exposure to UV light, it switches from a flat to a corrugated state. PMID:24707811

  6. Multiplexing studies of holographically-formed polymer-dispersed liquid crystals: Morphology, structure, and device applications

    NASA Astrophysics Data System (ADS)

    Fontecchio, Adam Kent

    Holographically-formed Polymer Dispersed Liquid Crystals (H-PDLC) are phase-segregated liquid crystal/polymer composites which enable electrically switchable holographic recordings. They are formed using a holographic exposure apparatus to create an interference pattern, which is recorded through polymerization to produce Bragg-mode gratings. Application of an electric field eliminates the Bragg grating, and the material appears optically transparent. Optical applications are being evaluated for H-PDLC implementation. Therefore, there is an increasing need to understand the fundamental physics of their formation and operation, and to optimize the electro-optical performance. This work describes H-PDLC formation, characterization, and fundamental investigations into the physics of liquid crystals confined in polymer droplet cavities. Systematic materials studies were performed, and Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) are used to examine morphological details of the polymer. The results indicate a difference in phase-separation between materials sets. Examination of droplet cavities reveals a novel rough texture that is used to explain electro-optic performance differences between materials sets. Solid-state Nuclear Magnetic Resonance (NMR) results are presented for H-PDLC samples formed with deuterated liquid crystal. The findings indicate a change in the nematic temperature range in the confined liquid crystal as compared to bulk. The onset of the nematic phase is found to occur gradually, and the phase transition is non-continuous with regard to the order parameter. Using the electro-optic properties of transmission-mode grating, the size, shape, and distribution of droplets is characterized. These attributes are found to vary with temperature when confined to the small droplets of H-PDLC films, and a coupled-wave theory is used to model these findings. New techniques for H-PDLC formation are reported, including multiplexing

  7. A polarization converter array using a twisted-azimuthal liquid crystal in cylindrical polymer cavities.

    PubMed

    Wang, Xiahui; Xu, Miao; Ren, Hongwen; Wang, Qionghua

    2013-07-01

    We report a simple method to prepare an array of polarization converters using a twisted-azimuthal nematic liquid crystal (NLC) in cylindrical polymer cavities. When a NLC is filled in a cylindrical polymer cavity, LC in the cavity presents concentrically circular orientations. By treating LC on one side of the cavity with homogeneous alignment, a twisted-azimuthal texture is formed. Such a LC texture can convert a linear polarization light to either radial or azimuthal polarization light depending on the polarization direction of the incident light. The LC surface on the other side of the cavity is convex, so the light after passing through the cavity can be focused as well. The LC texture can be fixed firmly using polymer network. In comparison with previous polarization converters, our polarization converter has the merits of individually miniature size, array of pattern, and lens character. Our polarization converter array has potential applications in tight focusing, imaging, and material processing. PMID:23842407

  8. Discontinuous anchoring transition and photothermal switching in composites of liquid crystals and conducting polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Rasna, M. V.; Zuhail, K. P.; Manda, R.; Paik, P.; Haase, W.; Dhara, Surajit

    2014-05-01

    We prepared nanocomposites of a nematic liquid crystal and nanofibers of a conducting polymer (polyaniline). All the nanocomposites exhibit a discontinuous surface anchoring transition from planar to homeotropic in the nematic phase on a perfluoropolymer coated surface with a thermal hysteresis (≈5.3∘C). We observe a relatively large bistable conductivity and demonstrate a light driven switching of conductivity and dielectric constant in dye doped nanocomposites in the thermal hysteresis (bistable) region. The experimental results have been explained based on the reorientation of the nanofibers driven by the anchoring transition of the nematic liquid crystal. We show a significant enhancement of the bistable temperature range (≈13∘C) by an appropriate choice of compound in the binary system.

  9. An electrically switchable surface free energy on a liquid crystal and polymer composite film

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chu, Ting-Yu; Tsou, Yu-Shih; Chang, Kai-Han; Chiu, Ya-Ping

    2012-12-01

    An electrically switchable surface free energy on a liquid crystal and polymer composite film (LCPCF) resulting from the orientations of liquid crystal molecules is investigated. By modification of Cassie's model and the measurement based on the Chibowski's film pressure model (E. Chibowski, Adv. Colloid Interface Sci. 103, 149 (2003)), the surface free energy of LCPCF is electrically switchable from 36×10-3J/ m2 to 51×10-3J/ m2 while the average tilt angle of LC molecules changes from 0° to 32° with the applied pulsed voltage. The switchable surface free energy of LCPCF can help us to design biosensors and photonics devices, such as electro-optical switches, blood sensors, and sperm testers.

  10. Photomechanical bending mechanics of polydomain azobenzene liquid crystal polymer network films

    SciTech Connect

    Cheng Liang; Torres, Yanira; Oates, William S.; Lee, Kyung Min; McClung, Amber J.; Baur, Jeffery; White, Timothy J.

    2012-07-01

    Glassy, polydomain azobenzene liquid crystal polymer networks (azo-LCNs) have been synthesized, characterized, and modeled to understand composition dependence on large amplitude, bidirectional bending, and twisting deformation upon irradiation with linearly polarized blue-green (440-514 nm) light. These materials exhibit interesting properties for adaptive structure applications in which the shape of the photoresponsive material can be rapidly reconfigured with light. The basis for the photomechanical output observed in these materials is absorption of actinic light by azobenzene, which upon photoisomerization dictates an internal stress within the local polymer network. The photoinduced evolution of the underlying liquid crystal microstructure is manifested as macroscopic deformation of the glassy polymer film. Accordingly, this work examines the polarization-controlled bidirectional bending of highly concentrated azo-LCN materials and correlates the macroscopic output (observed as bending) to measured blocked stresses upon irradiation with blue-green light of varying polarization. The resulting photomechanical output is highly dependent on the concentration of crosslinked azobenzene mesogens employed in the formulation. Experiments that quantify photomechanical bending and photogenerated stress are compared to a large deformation photomechanical shell model to quantify the effect of polarized light interactions with the material during static and dynamic polarized light induced deformation. The model comparisons illustrate differences in internal photostrain and deformation rates as a function of composition and external mechanical constraints.

  11. Asymmetric tunable Fabry-Perot cavity using switchable polymer stabilized cholesteric liquid crystal optical Bragg mirror

    NASA Astrophysics Data System (ADS)

    Sathaye, Kedar S.; Dupont, Laurent; de Bougrenet de la Tocnaye, Jean-Louis

    2012-03-01

    Optical properties of an asymmetric Fabry-Perot (FP) cavity interferometer made up of a conventional metallic mirror and a polymer stabilized cholesteric liquid crystal (PSCLC) Bragg mirror have been investigated. The first FP cavity design comprises a gold mirror, an isotropic layer made up of the polymer glue, a quarter wave plate to convert the input linearly polarized modes into the circularly polarized modes inside the cavity, and the PSCLC Bragg mirror, all sandwiched between two indium tin oxide glass plates. The second FP cavity has a layer of conducting polymer deposited on the quarter-wave plate to apply the electric field only to the cholesteric stack. To have reflectivity above 95% in visible range we implement 30 layers of cholesteric liquid crystal in a planar Grandjean texture. The device compactness and the mirror parallelism due to the monolithic fabrication of FP are advantageous from the technical point of view. We test the FP tunability by shifting the resonance wavelength through an entire period; by applying electric field and/or by varying the temperature.

  12. Optical fibers based on compositions of polymers and liquid crystals for gas detection

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Tantillo, Anthony

    Optical fibers based on compositions of methacrylic and vinyl polymers mixed with low molar mass liquid crystals were prepared and studied as promising gas sensors. A range of concentrations producing anisotropic fibers that are mostly sensitive to the vapors of organic solvents was determined. The fibers were prepared by stretching gel-like compositions of polymers and liquid crystals. Mechanical properties of the compositions leading to the most stable fibers were studied. It was found that under certain conditions the fibers develop multilayered structure with anisotropic (mostly liquid crystalline) core. These fibers are very sensitive to changing gaseous atmosphere and to the presence of organic solvent vapors. The sensitivity of different types of fibers to a variety of organic solvents vapors was determined. Some fibers were crosslinked by using hydrogen bonding molecules. The behavior of these optical fibers with respect to the influence of organic vapors with and without hydrogen donor/acceptor moieties was also analyzed. It was shown that hydrogen bonding increases the mechanical strength of the fibers but does not affect substantially their sensitivity to gases. Optical calculations and model discussion accompany the presentation of experimental data.

  13. Photosensitivity of reflection notch tuning and broadening in polymer stabilized cholesteric liquid crystals.

    PubMed

    Lee, Kyung Min; Tondiglia, Vincent P; White, Timothy J

    2016-01-28

    The position or bandwidth of the selective reflection of polymer stabilized cholesteric liquid crystals (PSCLCs) prepared from negative dielectric anisotropy ("-Δε") liquid crystalline hosts can be shifted by applying a DC voltage. The underlying mechanism of the tuning or broadening of the reflection of PSCLCs detailed in these recent efforts is ion-facilitated, electromechanical deformation of the structurally chiral, polymer stabilizing network in the presence of a DC bias. Here, we show that these electro-optic responses can also be photosensitive. The photosensitivity is most directly related to the presence of photoinitiator, which is a known ionic contaminant to liquid crystal devices. Measurement of the ion density of a series of control compositions before, during, and after irradiation with UV light confirms that the ion density in compositions that exhibit photosensitivity is increased by irradiation and correlates to not only the concentration of the photoinitiator but also the type. Thus, the magnitude of the electrically tuned or broadened reflection of PSCLC of certain compositions when subjected to DC field is further increased in the presence of UV light. While interesting and potentially useful in applications such as architectural windows, the effect may be deleterious to some device implementations. Accordingly, compositions in which photosensitivity is not observed are identified. PMID:26593860

  14. Twisted liquid crystal pi cell stabilized by polymer-sustained alignment

    SciTech Connect

    Chen, T.-J.; Cheng, Y.-H.; Wu, S.-M.

    2008-12-01

    A uniform {pi}-twist liquid crystal (LC) alignment was stabilized in a pi cell by photopolymerization of a minute amount of monomers without using any chiral material. Controlling UV exposure time can vary the LC pretilt angle to achieve a stabilized {pi}-twist state. This type of {pi}-twisted LC cell made using the polymer-sustained alignment has a pretilt angle estimated to be {approx}20 deg. This cell can quickly transform into a bend state at a low driving voltage and shows excellent brightness and optical contrast, as compared with a conventional pi cell and a chiral-doped cell.

  15. Surface-polymer stabilized liquid crystals with dual-frequency control.

    PubMed

    Minasyan, Amalya; Galstian, Tigran

    2013-08-01

    Dual-frequency control liquid crystal (LC) and thin reactive mesogen (RM) films, cast on internal surfaces of cell substrate, are used to build surface polymer stabilized structures. Electric field of high frequency is used to orient the LC molecules by the negative dielectric torque prior to the photopolymerization of RM films. Electro-optic characterization results show that the contrasts of light scatter modulation and polarization dependence are noticeably improved by the dual-frequency control. However, there is no significant shortening in the full cycle duration of excitation-relaxation-excitation. PMID:23913090

  16. Faraday waves on finite thickness smectic A liquid crystal and polymer gel materials

    SciTech Connect

    Ovando-Vazquez, C.; Rodriguez, O. Vazquez; Hernandez-Contreras, M.

    2008-11-13

    We studied with linear stability theory the Faraday waves on the surface of a smectic A liquid crystal and polymer gel-vapor systems of finite thicknesses. Model smectic A material exhibits alternating subharmonic-harmonic patterns of stability curves in a plot of driving acceleration versus wave number. For the case of highly viscoelastic gel media there are coexisting surface modes of harmonic and subharmonic types that correspond to peaks in the plot of the critical acceleration as a function of wave frequency. Larger frequencies lead to subsequent peaks of coexisting subharmonic waves only.

  17. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  18. Effect of polarization on dielectric behaviour of PET/0.8PHB polymer liquid crystals

    SciTech Connect

    Yarramaneni, Sridharbabu; Sharma, Anu; Quamara, J. K.

    2014-04-24

    Dielectric constant and loss behaviour of pristine and polarized samples of Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) polymer liquid crystals were studied at continuous temperatures ranging from 20 °C to 250 °C, polarized at potentials 500V and 2000V with high precision d.c. power supply. Dielectric constant appears to be almost linearly dependent in the lower temperature region and is independent in the higher temperature region. Dielectric loss becomes approximately ten times lower at higher temperatures.

  19. Effect of polarization on dielectric behaviour of PET/0.8PHB polymer liquid crystals

    NASA Astrophysics Data System (ADS)

    Yarramaneni, Sridharbabu; Sharma, Anu; Quamara, J. K.

    2014-04-01

    Dielectric constant and loss behaviour of pristine and polarized samples of Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) polymer liquid crystals were studied at continuous temperatures ranging from 20 °C to 250 °C, polarized at potentials 500V and 2000V with high precision d.c. power supply. Dielectric constant appears to be almost linearly dependent in the lower temperature region and is independent in the higher temperature region. Dielectric loss becomes approximately ten times lower at higher temperatures.

  20. Low switching voltage ZnO quantum dots doped polymer-dispersed liquid crystal film.

    PubMed

    Hsu, Chuan-Chun; Chen, Yi-Xuan; Li, Hui-Wen; Hsu, Jy-Shan

    2016-04-01

    This paper investigates the effects of ZnO nanoparticles (NPs) on the switching voltages of polymer dispersed liquid crystal (PDLC) films. The threshold and driving electric fields of PDLC film doped with 2.44 wt% ZnO NPs were 0.13 and 0.31 V/μm, respectively, with a contrast ratio of 26. The results of field emission scanning electron microscopy show that the size of the droplets in doped PDLC films increases with the doping concentration. The development of ZnO-doped PDLC films with low driving voltages greatly broadens the applicability of these devices. PMID:27137000

  1. Electrically tunable liquid-crystal wave plate using quadripolar electrode configuration and transparent conductive polymer layers.

    PubMed

    Fraval, Nicolas; Joffre, Pascal; Formont, Stéphane; Chazelas, Jean

    2009-10-01

    We present the realization of an electrically tunable wave plate, which uses a nematic liquid-crystal (LC) phase retarder that allows fast and continuous control of the polarization state. This device is built using a quadripolar electrode design and transparent conductive polymer layers in order to obtain a uniform electric field distribution in the interelectrode area. With this realization, we obtain a high degree of control of the orientation of the electric field and, consequently, of the LC director. Indeed, this modulator outperforms classical bipolar LC cells in both optical path variation (>4 microm) and LC rotation speed (0.4 degrees/micros). PMID:19798369

  2. Polymer stabilized vertical alignment liquid crystal display: effect of monomer structures and their stabilizing characteristics

    NASA Astrophysics Data System (ADS)

    Kwon, You Ri; Choi, Young Eun; Wen, Pushen; Lee, Byeong Hoon; Kim, Jong Chan; Lee, Myong-Hoon; Jeong, Kwang-Un; Lee, Seung Hee

    2016-04-01

    A polymer-stabilized vertical alignment (PS-VA) mode using a new type of photoreactive monomer for polymer stabilization of the liquid crystal (LC) director was developed. Conventional reactive mesogens having a higher molecular weight than those of the host LC tend to aggregate and form large-sized polymer grains when exposed to ultraviolet (UV) light, subsequently deteriorating the quality of the dark state. To address these problems, bis(4-hydroxyphenyl) diacrylates were synthesized with four different linking groups as stabilizing monomers (SMs) which have molecular weights similar to that of the host LC. Their stabilizing characteristics with respect to the molecular size and polarity of SMs were evaluated by examining the electro-optic characteristics of LC cells after UV irradiation. The results showed that the SM containing a small linking group in size between biphenyls with high polarity was favored to achieve excellent polymer stabilization. The SM containing an ether linkage showed excellent electro-optic characteristics with no large-sized polymer grains even in the absence of a photo-initiator. Consequently, we anticipate that SMs, polar and smaller in size, can improve the electro-optic characteristics in PS-VA mode.

  3. Temperature-independent zero-birefringence polymer for liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Shikanai, M. D.; Tagaya, A.; Koike, Y.

    2016-03-01

    A polymer film that shows almost no orientational birefringence even when the polymer main chain is in an oriented state and almost no temperature dependence of orientational birefringence in the temperature range from around -40 to 85 °C was prepared. This temperature range is important because it is where in-car liquid crystal displays (LCDs) are generally used; therefore, it is desirable to have constant orientational birefringence over this range. We suggest a method to compensate for the intrinsic birefringence and temperature coefficient of intrinsic birefringence of individual polymers by copolymerizing monomers of homopolymers that display opposite signs of the two parameters described above. Analysis of four types of polymers, methyl methacrylate (MMA), 2,2,2-trifluoroethyl methacrylate, benzyl methacrylate (BzMA), and phenyl methacrylate (PhMA), reveal that they possess both positive and negative signs of their temperature coefficient of intrinsic birefringence. Using this approach, we prepare P(MMA/PhMA/BzMA) (39:23:38 wt. %), which exhibits almost no intrinsic birefringence and almost no temperature dependence of intrinsic birefringence. The retardation of this polymer film when drawn uniaxially scarcely changed (between 0.3 and 0.8 nm) between 12 and 70 °C, which is small enough not to cause image degradation in LCDs.

  4. Electrically tunable birefringence of a polymer composite with long-range orientational ordering of liquid crystals.

    PubMed

    Choi, Byeongdae; Song, Seongkyu; Jeong, Soon Moon; Chung, Seok-Hwan; Glushchenko, Anatoliy

    2014-07-28

    We report an optical film with electrically tunable birefringence in which the liquid crystals (LCs), mixed with the host polymer, form long-range ordering. The film was prepared through polymerization without phase separation between the LCs and polymers. Driving voltage below 30 V for full switching of birefringence is achieved in a 6 μm-thick film. Electro-optical investigations for the film suggest that the long-range ordering of the LCs mixed in the film caused by polymerization lead to rotations of the LCs as well as optical anisotropy in the film. These films with electrically tunable birefringence could have applications as flexible light modulators and phase retardation films for 2D-3D image switching. PMID:25089422

  5. Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings.

    PubMed

    Ji, Zhichao; Zhang, Xinzheng; Shi, Bin; Li, Wei; Luo, Weiwei; Drevensek-Olenik, Irena; Wu, Qiang; Xu, Jingjun

    2016-01-15

    We report on the liquid crystal (LC) alignment induced by sparse polymer ribbons fabricated by the two-photon polymerization-based direct laser writing method. Each ribbon is fabricated by a single scan of the laser through the photoresist and possesses surface relief gratings on both sides. The relief gratings are caused by the optical interference between the incident and reflected laser beams. With the aid of these relief gratings, LC molecules can be well aligned along the selected direction of the ribbons. LC cells with the Z-shaped and checkerboard-type microstructures are constructed based on the sparse out-of-plane polymeric ribbons. Our results show that with such polymer ribbons a compartmentalized LC alignment in the arbitrary microstructures can be realized. PMID:26766708

  6. Polarization-independent submillisecond phase modulation utilizing polymer/short-pitch cholesteric liquid crystal composite.

    PubMed

    Kobashi, Junji; Kim, Hoekyung; Yoshida, Hiroyuki; Ozaki, Masanori

    2015-11-15

    A broadband, polarization-independent phase modulation spanning the visible range is demonstrated using a polymer/cholesteric liquid crystal composite with optical pitch in the ultraviolet. Polarization insensitivity is achieved as a result of two effects: (1) optical anisotropy of the rod-like molecules is canceled out by the short helical pitch, and (2) stabilization of the Grandjean texture by the polymer network suppresses depolarization. Polarization-independent modulation of the refractive index by approximately 0.045, corresponding to a phase modulation of π at 500 nm, is achieved with submillisecond response times. Our material system opens new avenues for polarization-independent, tunable optical devices, such as narrow bandpass filters, gratings, and adaptive lenses. PMID:26565875

  7. Effect of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Nemati, H.; Yang, D.-K.; Cheng, K.-L.; Liang, C.-C.; Shiu, J.-W.; Tsai, C.-C.; Zola, R. S.

    2012-12-01

    We show that the Helfrich deformation can be used for fast response time, low driving voltage reflective displays by using cholesteric liquid crystals under short voltage pulses (˜10 ms). Rather than turning planar domains into focal conic domains through a nucleation process, as used in bistable modes, the fast voltage pulse only deforms the cholesteric planar layers to form wrinkled layers. Since the deformed state is formed through a homogeneous process, quick response times and low operating voltage can be achieved. We studied the effects of alignment layer and dispersed polymer on the stability of the Helfrich deformed cholesteric layers, and found that homogeneous alignment layer and polymer network can inhibit the nucleation process responsible for breaking the layers.

  8. Thermo-optical effects and fiber optic sensing device based on polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Sirleto, Luigi; Righini, Giancarlo C.; Ciaccheri, Leonardo; Rish, Mahmoud A.; Simoni, Francesco F.

    2001-05-01

    In this paper an experimental study of thermo-optical properties of polymer dispersed liquid crystals (PDLC), prepared by PIPS in bulk and in confined cylindrical geometry, is presented. The transmissivity of PDLC In bulk as a function of temperature proves the existence of temperature optical switching. We have also demonstrated the existence of optical bistability, which could be interesting in develop of logical optical devices as optical memory elements. A bistable al fiber optic sensors based on PDLC is also presented. In this device PDLC permits at the same time the optomechanical interconnection of tow fibers and the modulation of the light crossing the device. As the modulation can be controlled by external temperature, the device has been proved to be suitable for the realization of a heat flow sensor. Without any optimization of the device we have obtained an ON-OFF contrast of 8 dB and a response time comparable with other conventional device using nematic LCs. This sensor is compact, rugged and is cheap, because it does not require a complex fabrication and alignment technology. It presents the typical advantages of both the fiber optic sensor and the liquid crystal technology. We note that its main advantage is a small thermal capacity, which is comparable with electronic device as thermistors, and it represents a significant improvement for the sensor based on liquid crystals. Further theoretical studies are necessary in order to understand in depth it thermo-optical characteristics.

  9. Thermo-Optical Effects and Fiber Optic Sensing Device Based on Polymer Dispersed Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Sirleto, L.; Righini, G. C.; Mahmoud, Aburish; Simoni, F.

    In this article, the thermo-optical properties of polymer dispersed liquid crystals (PDLCs) in confined geometry are experimentally investigated to demonstrate the feasibility of a fiber optic sensing device based on PDLCsE Since an unexpected behavior of PDLCs in confined geometry has been experienced, a systematic study of PDLCs' thermo-optical properties in bulk is presented also to point out principal differences. Finally, bistable all fiber optic temperature sensors, in which a PDLC permits at the same time the opto-mechanical interconnection of two fibers and the modulation of light crossing the device, has been realized and characterized, for the first time. Being the modulation controlled by external temperature, the device has been proven to be suitable for the realization of a heat flow sensor. The sensor presents the typical advantages of both fiber optic sensors and liquid crystal technology. Moreover, due to its small thermal capacity, it should exhibit little influence on thermal equilibrium and, above all, it represents a significant improvement compared to a temperature fiber optic sensor based on liquid crystals (presented in the literature).

  10. Long-term evaluation of a liquid crystal polymer (LCP)-based retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Jeong, Joonsoo; Bae, So Hyun; Seo, Jong-Mo; Chung, Hum; Kim, Sung June

    2016-04-01

    Objective. The aim of this study is to evaluate the long-term reliability of a recently presented liquid crystal polymer (LCP) -based retinal prosthesis in vitro as well as in vivo. Because an all-polymer implant introduces another intrinsic leak type due to gas permeation, for which the traditional helium leak test for metallic packages was not designed to quantify, a new method to investigate its durability is required. Approach. We designed and carried out a series of reliability tests specifically for all-polymer implants by quantitatively investigating moisture ingress through various pathways of the polymer surface, and the polymer-polymer and polymer-metal adhesions. Moisture permeation through the bulk material was estimated by analytic calculation, while water ingress through the adhesively sealed LCP-LCP and LCP-metal interfaces was investigated using the separate parts of an electrode array and a package in an accelerated aging condition. In vivo tests were done in rabbits to examine the long-term biocompatibility and implantation stability by fundus observation and optical coherence tomography (OCT) imaging. Main results. The analytic calculation estimated good barrier properties of the LCP. Samples of the LCP-based electrode array failed after 114 days in 87 °C saline as a result of water penetration through the LCP-metal interface. An eye-conformable LCP package survived for 87 days in an accelerated condition at 87 °C. The in vivo results confirmed that no adverse effects were observed around the retina 2.5 years after the implantation of the device. Significance. These long-term evaluation results show the potential for the chronic use of LCP-based biomedical implants to provide an alternative to traditional metallic packages.

  11. Semiconductor nanorod liquid crystals

    SciTech Connect

    Li, Liang-shi; Walda, Joost; Manna, Liberato; Alivisatos, A. Paul

    2002-01-28

    Rodlike molecules form liquid crystalline phases with orientational order and positional disorder. The great majority of materials in which liquid crystalline phases have been observed are comprised of organic molecules or polymers, even though there has been continuing and growing interest in inorganic liquid crystals. Recent advances in the control of the sizes and shapes of inorganic nanocrystals allow for the formation of a broad class of new inorganic liquid crystals. Here we show the formation of liquid crystalline phases of CdSe semiconductor nanorods. These new liquid crystalline phases may have great importance for both application and fundamental study.

  12. Photorefractivity in nematic liquid crystals doped with a conjugated polymer: Mechanisms for enhanced charge transport

    SciTech Connect

    Wiederrecht, G.P.; Niemczyk, M.P.; Svec, W.A.; Wasielewski, M.R. |

    1999-06-01

    New organic materials that exhibit photorefractive effects are of wide interest for potential optical signal processing applications. The authors report on a photorefractive nematic liquid crystal composite containing the conjugated polymer poly(2,5-bis(2{prime}-ethylhexyloxy)-1,4-phenylenevinylene), BEH-PPV that exhibits a novel fringe spacing dependent inversion of the polarity of the space-charge field due to competition between the ionic diffusion and charge drift transport mechanisms. A eutectic mixture of 35% (wt %) 4{prime}-(n-octyloxy)-4-cyanobiphenyl, 8OCB, and 65% 4{prime}(n-pentyl)-4-cyanobiphenyl, 5CB, was doped with 10{sup {minus}5} M BEH-PPV (200 kD by GPC), as the electron donor. The molecular weight of the BEH-PPV polymer implies that 500 repeat units of the monomer are present with an extended chain length of 0.35 {micro}m. N,N{prime}-Dioctyl-1,4:5,8-naphthalenediimide, NI, 8 {times} 10{sup {minus}3} M, was added as the electron acceptor. The free energy change for the photoinduced electron-transfer reaction, (BEH-PPV) + NI {yields} (BEH-PPV){sup +} + NI{sup {minus}}, is {minus}1.0 eV. Two other liquid-crystal composites were also studied as controls.

  13. Fast-response IR spatial light modulators with a polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Peng, Fenglin; Chen, Haiwei; Tripathi, Suvagata; Twieg, Robert J.; Wu, Shin-Tson

    2015-03-01

    Liquid crystals (LC) have widespread applications for amplitude modulation (e.g. flat panel displays) and phase modulation (e.g. beam steering). For phase modulation, a 2π phase modulo is required. To extend the electro-optic application into infrared region (MWIR and LWIR), several key technical challenges have to be overcome: 1. low absorption loss, 2. high birefringence, 3. low operation voltage, and 4. fast response time. After three decades of extensive development, an increasing number of IR devices adopting LC technology have been demonstrated, such as liquid crystal waveguide, laser beam steering at 1.55μm and 10.6 μm, spatial light modulator in the MWIR (3~5μm) band, dynamic scene projectors for infrared seekers in the LWIR (8~12μm) band. However, several fundamental molecular vibration bands and overtones exist in the MWIR and LWIR regions, which contribute to high absorption coefficient and hinder its widespread application. Therefore, the inherent absorption loss becomes a major concern for IR devices. To suppress IR absorption, several approaches have been investigated: 1) Employing thin cell gap by choosing a high birefringence liquid crystal mixture; 2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination and chlorination; 3) Reducing the overlap vibration bands by using shorter alkyl chain compounds. In this paper, we report some chlorinated LC compounds and mixtures with a low absorption loss in the near infrared and MWIR regions. To achieve fast response time, we have demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms.

  14. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    NASA Astrophysics Data System (ADS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-05-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10-100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  15. Light transmission of polymer-dispersed liquid crystal layer composed of droplets with inhomogeneous surface anchoring

    NASA Astrophysics Data System (ADS)

    Loiko, V. A.; Zyryanov, V. Ya.; Konkolovich, A. V.; Miskevich, A. A.

    2016-01-01

    We have developed a model and realized an algorithm for the calculation of the coefficient of coherent (direct) transmission of light through a layer of liquid crystal (LC) droplets in a polymer matrix. The model is based on the Hulst anomalous diffraction approximation for describing the scattering by an individual particle and the Foldy-Twersky approximation for a coherent field. It allows one to investigate polymer dispersed LC (PDLC) materials with homogeneous and inhomogeneous interphase surface anchoring on the droplet surface. In order to calculate the configuration of the field of the local director in the droplet, the relaxation method of solving the problem of minimization of the free energy volume density has been used. We have verified the model by comparison with experiment under the inverse regime of the ionic modification of the LC-polymer interphase boundary. The model makes it possible to solve problems of optimization of the optical response of PDLC films in relation to their thickness and optical characteristics of the polymer matrix, sizes, polydispersity, concentration, and anisometry parameters of droplets. Based on this model, we have proposed a technique for estimating the size of LC droplets from the data on the dependence of the transmission coefficient on the applied voltage.

  16. Single molecule spectroscopy of conjugated polymer chains in an electric field-aligned liquid crystal.

    PubMed

    Chang, Wei-Shun; Link, Stephan; Yethiraj, Arun; Barbara, Paul F

    2008-01-17

    Using single molecule polarization spectroscopy, we investigated the alignment of a polymer solute with respect to the liquid crystal (LC) director in an LC device while applying an external electric field. The polymer solute is poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (or MEH-PPV), and the LC solvent is 5CB. The electric field induces a change in the LC director orientation from a planar alignment (no electric field) to a perpendicular (homeotropic) alignment with an applied field of 5.5 x 103 V/cm. We find that the polymer chains align with the LC director in both planar and homeotropic alignment when measured in the bulk of the LC solution away from the device interface. Single molecule polarization distributions measured as a function of distance from the LC device interface reveal a continuous change of the MEH-PPV alignment from planar to homeotropic. The observed polarization distributions are modeled using a conventional elastic model that predicts the depth profile of the LC director orientation for the applied electric field. The excellent agreement between experiment and simulations shows that the alignment of MEH-PPV follows the LC director throughout the LC sample. Furthermore, our results suggest that conjugated polymers such as MEH-PPV can be used as sensitive local probes to explore complex (and unknown) structures in anisotropic media. PMID:17975912

  17. Effect of anisotropic lattice deformation on the Kerr coefficient of polymer-stabilized blue-phase liquid crystals.

    PubMed

    Tone, Hiroki; Yoshida, Hiroyuki; Yabu, Shuhei; Ozaki, Masanori; Kikuchi, Hirotsugu

    2014-01-01

    We investigate the effect of anisotropic lattice deformation on the Kerr coefficient of polymer-stabilized blue-phase liquid crystals (PSBP-LCs). PSBPs with orthorhombic and tetragonal symmetry were prepared by polymer-stabilizing a blue-phase liquid crystal under electrostriction. Both orthorhombic and tetragonal PSBPs showed smaller Kerr coefficients than the cubic PSBP, despite an increase in the unit cell volume caused by the elongation of the lattice along the direction of light propagation. Our results indicate that the Kerr coefficient of PSBPs is not determined simply by the volume of the unit lattice but by the lattice size perpendicular to the direction of light propagation. PMID:24580245

  18. Interference color modulation, tunable refractive index, and chiroptical electrochromism in a π-conjugated polymer with cholesteric liquid crystal order

    NASA Astrophysics Data System (ADS)

    Goto, Hiromasa

    2009-06-01

    A π-conjugated polymer film prepared by electrolytic polymerization using a cholesteric liquid crystal (CLC) is demonstrated to have a tunable interference function under electrochemical doping and dedoping. The polymer exhibits a CLC-like periodic structure with a potential-dependent refractive index and optical absorption properties. The interference color of the polymer film can thus be modulated dynamically by appropriate application of a voltage in the ±1 V range. This research involves structural chirality and tunable chiroptical properties, doping-dedoping driven tunable refractive index, electrochromism, and interference color modulation for the present polymer. The phenomena demonstrate the possibility of electrochemical photonics.

  19. Tunable liquid crystal lasers

    NASA Astrophysics Data System (ADS)

    Woltman, Scott J.

    Liquid crystal lasers are dye-doped distributed feedback lasing systems. Fabricated by coupling the periodic structure of a liquid crystal medium with a fluorescent dye, the emission from these systems is tunable by controlling the liquid crystal system---be it through electric or thermal field effects, photochemical reactions, mechanical deformations, etc. The laser action arises from an extended interaction time between the radiation field, the laser emission, and the matter field, the periodic liquid crystal medium, at the edge of the photonic band gap. In this thesis, several tunable liquid crystal laser systems are investigated: cholesteric liquid crystals, holographic-polymer dispersed liquid crystals and liquid crystal polarization gratings. The primary focus has been to fabricate systems that are tunable through electrical means, as applications requiring mechanical or thermal changes are often difficult to control. Cholesteric liquid crystal lasers are helical Bragg reflectors, with a band gap for circularly polarized light of equivalent handedness to their helix. These materials were doped with a laser dye and laser emission was observed. The use of an in-plane electric field tends to unwind the helical pitch of the film and in doing so tunable emission was demonstrated for ˜15 nm. Holographic-polymer dispersed liquid crystals (H-PDLCs) are grating structures consisting of alternating layers of polymer and liquid crystal, with different indices of refraction. The application of an electric field index matches these layers and switches off the grating. Thus, laser emission can be switched on and off through the use of an electric field. Spatially tunable H-PDLC lasers were fabricated by creating chirped gratings, formed by divergent beams. The emission was shown to tune ˜5 nm as the pump beam was translated across a 1 inch film. Liquid crystal polarization gratings use photo-patterned alignment layers, through a polarization holography exposure, to

  20. Liquid Crystals

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  1. Study of anchoring behavior of nematic fluids at the interface of polymer-dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Jian

    A liquid crystal (LC) at its boundary surface adopts a preferential alignment, which is referred to as anchoring. The direction of this alignment (i.e., anchoring direction) may be perpendicular, parallel or tilted with respect to the surface. Transitions from one anchoring condition to another may occur when the parameters (e.g., temperature) charactering the surface change, as referred to as anchoring transitions. In the LC-polymer composite systems under our study, the anchoring and temperature-driven anchoring transitions of nematic fluids is very sensitive to the structure of the side chain of poly (alkyl acrylate) matrixes that encapsulate the LC. We have shown that the anchoring transition temperature of these systems can be tuned far below the nematic-to-isotropic transition temperature, by varying either the length, branching structure of the side chains of homopolymers, or the composition of copolymer of two dissimilar monomers. Both sharp and broad anchoring transitions with respect to the temperature range over which a transition occurs were observed. It is postulated that microscopic interactions between the polymer side chains and LC molecules play an important role in determining the anchoring. In particular, the conformation of the polymer side chain is proposed to have important control over the anchoring. Anchoring strength and tilt angle as a function of temperature during the anchoring transitions were also experimentally investigated, which contribute to understanding of the microscopic mechanism for such transitions. Based on the LC-polymer composites with controlled anchoring, a LC display with reverse switching mode and a novel electrically switchable diffraction grating have been demonstrated. The advantages of these devices are ease of manufacturing, low operation voltage, and mechanical stability offered by polymer matrix. Moreover, a detailed study of the director configuration of wall defects found in these composite films was carried

  2. Topological polymer dispersed liquid crystals with bulk nematic defect lines pinned to handlebody surfaces.

    PubMed

    Campbell, Michael G; Tasinkevych, Mykola; Smalyukh, Ivan I

    2014-05-16

    Polymer dispersed liquid crystals are a useful model system for studying the relationship between surface topology and defect structures. They are comprised of a polymer matrix with suspended spherical nematic drops and are topologically constrained to host defects of an elementary hedgehog charge per droplet, such as bulk or surface point defects or closed disclination loops. We control the genus of the closed surfaces confining such micrometer-sized nematic drops with tangential boundary conditions for molecular alignment imposed by the polymer matrix, allowing us to avoid defects or, on the contrary, to generate them in a controlled way. We show, both experimentally and through numerical modeling, that topological constraints in nematic microdrops can be satisfied by hosting topologically stable half-integer bulk defect lines anchored to opposite sides of handlebody surfaces. This enriches the interplay of topologies of closed surfaces and fields with nonpolar symmetry, yielding new unexpected configurations that cannot be realized in vector fields, having potential implications for topologically similar defects in cosmology and other fields. PMID:24877965

  3. Topological Polymer Dispersed Liquid Crystals with Bulk Nematic Defect Lines Pinned to Handlebody Surfaces

    NASA Astrophysics Data System (ADS)

    Campbell, Michael G.; Tasinkevych, Mykola; Smalyukh, Ivan I.

    2014-05-01

    Polymer dispersed liquid crystals are a useful model system for studying the relationship between surface topology and defect structures. They are comprised of a polymer matrix with suspended spherical nematic drops and are topologically constrained to host defects of an elementary hedgehog charge per droplet, such as bulk or surface point defects or closed disclination loops. We control the genus of the closed surfaces confining such micrometer-sized nematic drops with tangential boundary conditions for molecular alignment imposed by the polymer matrix, allowing us to avoid defects or, on the contrary, to generate them in a controlled way. We show, both experimentally and through numerical modeling, that topological constraints in nematic microdrops can be satisfied by hosting topologically stable half-integer bulk defect lines anchored to opposite sides of handlebody surfaces. This enriches the interplay of topologies of closed surfaces and fields with nonpolar symmetry, yielding new unexpected configurations that cannot be realized in vector fields, having potential implications for topologically similar defects in cosmology and other fields.

  4. Toward measuring concentration gradients in polymer-dispersed liquid crystals with secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kjellander, B. K. Charlotte; van IJzendoorn, Leo J.; de Jong, Arthur M.; Broer, Dirk J.; van Gennip, Wouter J. H.; de Voigt, Martien J. A.; Niemantsverdriet, Hans J. W.

    2004-05-01

    Dynamic secondary ion mass spectrometry (SIMS) is usually applied to measure depth profiles in inorganic multi-layer systems. SIMS on organic multi-layer samples is highly complicated due to the complex fragmentation of the sample which results in fingerprint of masses representing the components in the sample. Using multivariate statistics, we succeeded to interpret the SIMS spectra and were able to identify layers with different compositions in artificially produced two-layer samples. The method is demonstrated for samples of a poly(isobornylmethacrylate) coating on a polymer dispersed liquid crystal consisting of the nematic liquid crystal (E7) and poly(isobornylmethacrylate). Quantification of the E7 concentration is complicated by evaporation in the vacuum system. Infrared spectroscopy proved that the loss of E7 from poly(isobornylmethacrylate) can be prevented by capping the sample with poly(vinyl alcohol). Cooling to cryogenic temperatures will be required to suppress further evaporation during SIMS analysis. The SIMS depth resolution of a two-layered sample was determined by discriminant function analysis to be 130 nm at a depth of one micrometer, which allows the application of SIMS for a typical optical grating.

  5. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    PubMed

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows. PMID:26192469

  6. Merged vector gratings recorded in a photocrosslinkable polymer liquid crystal film for polarimetry

    SciTech Connect

    Sasaki, Tomoyuki Wada, Takumi; Noda, Kohei; Ono, Hiroshi; Kawatsuki, Nobuhiro

    2014-01-14

    A merged vector grating, which is holographically fabricated in an anisotropic medium by irradiation with interference light with intensity modulation and polarization modulation, was designed to detect the polarization of light. The merged vector grating is recorded by the interference of two elliptically polarized beams with equal intensities, parallel azimuths, equal ellipticities, and different directions of rotation. We clarified theoretically that the Stokes parameters of the incident light beam are described by the diffraction efficiency of the merged vector grating. Also, to apply this property to formation of a polarimeter without any moving parts or mechanisms, two merged vector gratings with different grating vectors were recorded in a photocrosslinkable polymer liquid crystal film by angle-multiplexed holography. By investigation of the diffraction properties of the gratings obtained, we demonstrated the applicability of the merged vector gratings for use in polarimetry.

  7. Electrorheological fluid effect of polymer coated carbon nanofibers and/or fullerenes in liquid crystals

    NASA Astrophysics Data System (ADS)

    French, Steven S.

    An ER fluid is a 'smart' visco-elastic material, with flow properties influenced by external electric fields, whereby its viscosity increases within the field and returns to its inherent viscosity without the field present. This unique behavior opens many possibilities for new technologies. The optimization of ER fluid performance depends on the chemical and structural compositions of the particles in suspension and the suspension itself. Recent inclusion of nano-particles within ER fluids has shown a relationship to favorable ER trends. Therefore, this research involved nano-laden ER fluid samples of fullerenes (C60) and/or polymer coated carbon nano-fibers as the dispersed phases. These nano-particles were dispersed within either silicone oil, polyethylene oxide/water or three different liquid crystal types.

  8. Fabrication of sisal fibers/epoxy composites with liquid crystals polymer grafted on sisal fibers

    NASA Astrophysics Data System (ADS)

    Luo, Q. Y.; Lu, S. R.; Song, L. F.; Li, Y. Q.

    2016-07-01

    In this word, microcrystalline cellulose fibers (MCFs), extracted from sisal fibers, were treated with function end-group hyperbranched liquid crystals (HLP). This work brought some insights into the successful surface modification in epoxy composite with HLP. The HLP-MCFs/epoxy composites are studied systematically. The HLP - MCFs/epoxy composites were studied by Fourier transform infrared spectroscopy (FT-IR), polarizing microscope (POM), X-ray photoelectron spectroscopy (XPS) and mechanical properties analysis. The results reveal that the reinforcement of EP composites was carried out by adding HLP-MCFs. In particular, with 1.0 wt% filler loading, the flexural strength, tensile strength, impact strength and flexural modulus of the HLP-MCFs/EP composites were increased by 60%, 69%, 130%, and 192%, respectively. It anticipates that our current work exploits more efficient methods to overcome the few nature fiber/polymer (NPC) adhesion in the interface region and provides implications for the engineering applications of the development of NPC.

  9. Photoswitching properties of photonic band gap materials containing azo-polymer liquid crystal

    NASA Astrophysics Data System (ADS)

    Moritsugu, Masaki; Shirota, Tomomi; Kubo, Shoichi; Kim, Sun-nam; Ogata, Tomonari; Nonaka, Takamasa; Sato, Osamu; Kurihara, Seiji

    2008-08-01

    Photochemically tunable photonic band gap materials were prepared by infiltration of liquid crystal polymers having azobenzene groups into voids of SiO2 inverse opal films. Linearly polarized light irradiation resulted in transformation from a random to an anisotropic molecular orientation of azobenzene side chains in the voids of the SiO2 inverse opal film, leading to the reversible and stable shift of the reflection band to longer wavelength more than 15 nm. In order to improve switching properties, we used copolymers with azobenzene monomer and tolane monomer, which indicate higher birefringence, as infiltration materials into the voids. The azo-tolane copolymers were found to show the higher birefringence than azobenzene homopolymers by the linearly polarized light irradiation. Thus, the reflection band of the SiO2 inverse opal film infiltrated with the azo-tolane copolymers was shifted to long wavelength region more than 55 nm by the irradiation of linearly polarized light.

  10. Molecular dynamics in azobenzene liquid crystal polymer films studied by transient grating technique

    NASA Astrophysics Data System (ADS)

    Katayama, Kenji; Fujii, Tomomi; Kuwahara, Shota; Takado, Kiyohide; Ikeda, Tomiki

    2014-10-01

    We studied the effect of the ratio between the monomer and cross-linker molecules in the azobenene included liquid crystal polymer films by using the heterodyne transient grating (HD-TG) technique, which is one of the time-resolved measurement techniques. Depending on the ratio, the magnitude of the refractive index change, its anisotropy, and the lifetime of the cis isomer of azobenzene, generated by a UV pulse irradiation. By increasing the cross-linker ratio, the refractive index change and its anisotropy was reduced, indicating less ability for the motion, while slower lifetime was observed by increasing the monomer ratio, indicating that the film is difficult to return the original shape by a visiblelight irradiation. The obtained dynamics was consistent with the functionality of the films.

  11. Electro-optical properties of low viscosity driven holographic polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Moon, K. R.; Bae, S. Y.; Kim, B. K.

    2015-04-01

    Relative diffraction efficiency (RDE), operating voltage, and response times are most important performance characteristics of holographic polymer dispersed liquid crystals (HPDLC). Two types of triallyl isocyanurate (TI) having different structures were incorporated into the conventional transmission grating of HPDLC. Premix viscosity decreased by 13-18% with up to 3% TI, beyond which it increased. TI eliminated induction period and augmented initial grating formation rate at all contents. Saturation RDE increased over 200% while threshold voltage and rise time decreased to about half and 2/3, respectively up to 3% TI, beyond which the tendencies were reversed. Among the two TIs, low viscosity monomer (TA) showed high RDE, while high miscibility monomer (TE) low characteristic voltages and short response times. It is concluded that grating formation is largely favored by low viscosity, while interface tensions and electro-optical performances by miscibility at similar viscosities.

  12. Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field.

    PubMed

    Lim, Young Jin; Choi, Young Eun; Lee, Jun Hee; Lee, Gi-Dong; Komitov, Lachezar; Lee, Seung Hee

    2014-05-01

    Polymer network in vertical alignment liquid crystal cell driven by in-plane field (VA-IPS) is formed in three dimensions to achieve fast response time and to keep the liquid crystal alignment even when an external pressure is applied to the cell. The network formed by UV irradiation to vertically aligned liquid crystal cell with reactive mesogen does not disturb a dark state while exhibiting very fast decaying response time less than 2ms in all grey scales and almost zero pooling mura. The proposed device has a strong potential to be applicable to field sequential display owing to super-fast response time and flexible display owing to polymer network in bulk which supports a gap between two substrates. PMID:24921764

  13. Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres

    NASA Astrophysics Data System (ADS)

    Manda, R.; Dasari, V.; Sathyanarayana, P.; Rasna, M. V.; Paik, P.; Dhara, Surajit

    2013-09-01

    We report on the preparation and physical characterization of the colloidal suspension of conducting polyaniline (PANI) nanofibres and a nematic liquid crystal (5CB). The ac electrical conductivity anisotropy increases significantly and the rotational viscosity decreases with increasing wt. % of PANI nanofibres, while other physical properties such as birefringence, dielectric anisotropy, splay, and bend elastic constants are changed moderately. The high conductivity anisotropy of liquid crystal nano-composites is very useful for magnetically steered liquid crystal-nanofibre switch.

  14. Water-in-water emulsions stabilized by non-amphiphilic interactions: polymer-dispersed lyotropic liquid crystals.

    PubMed

    Simon, Karen A; Sejwal, Preeti; Gerecht, Ryan B; Luk, Yan-Yeung

    2007-01-30

    Emulsion systems involving surfactants are mainly driven by the separation of the hydrophobic interactions of the aliphatic chains from the hydrophilic interactions of amphiphilic molecules in water. In this study, we report an emulsion system that does not include amphiphilic molecules but molecules with functional groups that are completely solvated in water. These functional groups give rise to molecular interactions including hydrogen bonding, pi stacking, and salt bridging and are segregated into a dispersion of droplets forming a water-in-water emulsion. This water-in-water emulsion consists of dispersing droplets of a water-solvated biocompatible liquid crystal--disodium cromoglycate (DSCG)--in a continuous aqueous solution containing specific classes of water-soluble polymers. Whereas aqueous solutions of polyols support the formation of emulsions of spherical droplets consisting of lyotropic liquid crystal DSCG with long-term stability (for at least 30 days), aqueous solutions of polyamides afford droplets of DSCG in the shape of prolate ellipsoids that are stable for only 2 days. The DSCG liquid crystal in spherical droplets assumes a radial configuration in which the optical axis of the liquid crystal aligns perpendicular to the surface of the droplets but assumes a tangential configuration in prolate ellipsoids in which the optical axis of the liquid crystal aligns parallel to the surface of the droplet. Other classes of water-soluble polymers including polyethers, polycations, and polyanions do not afford a stable emulsion of DSCG droplets. Both the occurrence and the stability of this unique emulsion system can be rationalized on the basis of the functional groups of the polymer. The different configurations of the liquid crystal (DSCG) droplets were also found to correlate with the strength of the hydrogen bonding that can be formed by the functional groups on the polymer. PMID:17241072

  15. Large birefringence and polarization holographic gratings formed in photocross-linkable polymer liquid crystals comprising bistolane mesogenic side groups

    SciTech Connect

    Emoto, Akira; Matsumoto, Taro; Shioda, Tatsutoshi; Ono, Hiroshi; Yamashita, Ayumi; Kawatsuki, Nobuhiro

    2009-10-01

    Polarization gratings with large birefringence are formed in photoreactive polymer liquid crystals with bistolane moiety and terminal cinnamic acid moiety by the use of polarized ultraviolet interference light and subsequent annealing. The polarized ultraviolet light causes the axis-selective photoreaction between the cinnamic acid groups and subsequent annealing induce the reorientation of peripheral molecules without cross-linking along the cross-linked groups. Long bistolane mesogenic moiety exhibits large birefringence in comparison with a biphenyl mesogenic moiety, the value of the induced birefringence in the bistolane mesogenic liquid crystalline (LC) polymer is strongly dependent on both the grating constant and the wavelength of the reconstruction light.

  16. Order parameters of the liquid crystal interface layer at a rubbed polymer surface

    NASA Astrophysics Data System (ADS)

    Xuan, Li; Tohyama, Takeshi; Miyashita, Tetsuya; Uchida, Tatsuo

    2004-08-01

    In this paper, the liquid crystal (LC) order parameters of the interface layers at rubbed polymer surfaces were studied. The LC films in this study were made with either polyvinyl alcohol or polyimide and the test LCs were filled into wedge-shaped cells for various measurements. The real distribution of order parameters from LC bulk to the interface was obtained by measuring the anisotropic infrared absorbance of sample films. It was found that the order parameters start to decrease where the LC layer thickness is smaller than 10nm, and the order parameter of LC monolayer at the rubbed polymer surface is only 1/3-1/2 of that of the LC bulk even in a strong rubbing condition. When the temperature was increased to the transition point, the LC interface layer (excluding the adsorption monolayer) completed the phase transition while the bulk layer remained in LC phase. This was a further evidence that the order parameter of the interface layer is lower than that of the bulk.

  17. Advancements in fabrication process of microelectrode array for a retinal prosthesis using Liquid Crystal Polymer (LCP).

    PubMed

    Jeong, Joonsoo; Shin, Soowon; Lee, Geun Jae; Gwon, Tae Mok; Park, Jeong Hoan; Kim, Sung June

    2013-01-01

    Liquid Crystal Polymer (LCP) has been considered as an alternative biomaterial for implantable biomedical devices primarily for its low moisture absorption rate compared with conventional polymers such as polyimide, parylene and silicone elastomers. A novel retinal prosthetic device based on monolithic encapsulation of LCP is being developed in which entire neural stimulation circuitries are integrated into a thin and eye-conformable structure. Micromachining techniques for fabrication of a LCP retinal electrode array have been previously reported. In this research, however, for being used as a part of the LCP-based retinal implant, we developed advanced fabrication process of LCP retinal electrode through new approaches such as electroplating and laser-machining in order to achieve higher mechanical robustness, long-term reliability and flexibility. Thickened metal tracks could contribute to higher mechanical strength as well as higher long-term reliability when combined with laser-ablation process by allowing high-pressure lamination. Laser-thinning technique could improve the flexibility of LCP electrode. PMID:24110931

  18. Regulating the modulus of a chiral liquid crystal polymer network by light.

    PubMed

    Kumar, Kamlesh; Schenning, Albertus P H J; Broer, Dirk J; Liu, Danqing

    2016-04-01

    We report a novel way to modulate the elastic modulus of azobenzene containing liquid crystal networks (LCNs) by exposure to light. The elastic modulus can cycle between different levels by controlling the illumination conditions. Exposing the polymer network to UV light near the trans absorption band of azobenzene gives a small reduction of the glass transition temperature thereby lowering the modulus. The addition of blue light addressing the cis absorption band surprisingly amplifies this effect. The continuous oscillatory effects of the trans-to-cis isomerization of the azobenzene overrule the overall net cis conversion. The influence on the chain dynamics of the network is demonstrated by dynamic mechanical thermal analysis which shows a large shift of the glass transition temperature and a modulus decrease by more than two orders of magnitude. The initial high modulus and the glassy state are recovered within a minute in the dark by switching off the light sources, despite the observation that azobenzene is still predominantly in its cis state. Based on these new findings, we are able to create a shape memory polymer LCN film at room temperature using light. PMID:26924678

  19. A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing

    NASA Astrophysics Data System (ADS)

    Kottapalli, A. G. P.; Asadnia, M.; Miao, J. M.; Barbastathis, G.; Triantafyllou, M. S.

    2012-11-01

    In order to perform underwater surveillance, autonomous underwater vehicles (AUVs) require flexible, light-weight, reliable and robust sensing systems that are capable of flow sensing and detecting underwater objects. Underwater animals like fish perform a similar task using an efficient and ubiquitous sensory system called a lateral-line constituting of an array of pressure-gradient sensors. We demonstrate here the development of arrays of polymer microelectromechanical systems (MEMS) pressure sensors which are flexible and can be readily mounted on curved surfaces of AUV bodies. An array of ten sensors with a footprint of 60 (L) mm × 25 (W) mm × 0.4 (H) mm is fabricated using liquid crystal polymer (LCP) as the sensing membrane material. The flow sensing and object detection capabilities of the array are illustrated with proof-of-concept experiments conducted in a water tunnel. The sensors demonstrate a pressure sensitivity of 14.3 μV Pa-1. A high resolution of 25 mm s-1 is achieved in water flow sensing. The sensors can passively sense underwater objects by transducing the pressure variations generated underwater by the movement of objects. The experimental results demonstrate the array’s ability to detect the velocity of underwater objects towed past by with high accuracy, and an average error of only 2.5%.

  20. Influence of virtual surfaces on Frank elastic constants in a polymer-stabilized bent-core nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Madhuri, P. Lakshmi; Hiremath, Uma S.; Yelamaggad, C. V.; Madhuri, K. Priya; Prasad, S. Krishna

    2016-04-01

    Effect of a polymer network on the threshold voltage of the Fréedericksz transition, Frank elastic constants, switching speed, and the rotational viscosity are investigated in a polymer-stabilized bent-core nematic liquid crystal with different polymer concentrations. These polymer networks form virtual surfaces with a finite anchoring energy. The studies bring out several differences in comparison to similar studies with a calamitic liquid crystal as the nematic host. For example, on varying the polymer content the threshold voltage decreases initially, but exhibits a drastic increase above a critical concentration. A similar feature—reaching a minimum before rising—is seen for the bend elastic constant, which gets enhanced by an order of magnitude for a polymer content of 2.5 wt %. In contrast, the splay elastic constant has a monotonic variation although the overall enhancement is comparable to that of the bend elastic constant. The behavior changing at a critical concentration is also seen for the switching time and the associated rotational viscosity. The presence of the polymer also induces a shape change in the thermal dependence of the bend elastic constant. We explain the features observed here on the basis of images obtained from the optical and atomic force microscopy.

  1. Quasielastic Light Scattering Measurements of the Anisotropic Mechanical Properties of a Polymer Nematic Liquid Crystal.

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor Gregory

    An experimental investigation of macroscopic mechanical properties of a polymer nematic liquid crystal was conducted on nematic solutions formed from rigid or semiflexible main chain polymers that are fully extended in a solution. The particular system under investigation is a poly-(gamma) -benzyl glutamate (PBG) which belongs to a class of synthetic polypeptides. Quasielastic Rayleigh light scattering on well aligned nematic single crystals of PBG was used to measure the elastic constants and the anisotropic viscosities as a function of concentration. The elastic constants are measured from the intensity of the scattered light which is determined by the amplitude of thermally excited director fluctuations. That amplitude depends on the energy of the fluctuation which is proportional to the appropriate elastic constant. The viscosities associated with the elastic deformation modes are computed from the characteristic relaxation times of the fluctuations by measuring their temporal autocorrelation function. The splay and bend elastic constants were found to be very similar in magnitude; both showed a linear dependence on concentration. The twist elastic constant was much smaller than either splay or bend and showed only a weak concentration dependence. Four out of five independent Leslie viscosities were measured (except the elongational flow viscosity (alpha)(,1)). The viscosities were found to exhibit very large anisotropies. Different types of viscosities showed distinctly different patterns of concentration dependence. (gamma)(,1) and (eta)(,c) were quadratic in concentration, (eta)(,a) was linear in concentration, and (eta)(,b) did not show any strong concentration dependence. The viscosity data indicate that even at a moderate length to diameter ratio studied (L/D - 30), the PBG approaches a behavior predicted for a system composed of infinitely long molecular chains. The concentration dependence data for the elastic constants and the anisotropic viscosities

  2. Pressure dependence of the electro-optic response function in partially exposed polymer dispersed ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Holmes, H. K.

    1993-01-01

    Ferroelectric liquid crystals in a new configuration, termed partially exposed polymer dispersed ferroelectric liquid crystal (PEPDFLC), respond to external pressures and demonstrate pressure-induced electro-optic switching response. When the PEPDFLC thin film is sandwiched between two transparent conducting electrodes, one a glass plate and the other a flexible sheet such as polyvenylidene fluoride, the switching characteristics of the thin film are a function of the pressure applied to the flexible transparent electrode and the bias voltage across the electrodes. Response time measurements reveal a linear dependence of the change in electric field with external pressure.

  3. Effect of UV intensity on the electro-optical properties of polymer dispersed liquid crystal lens for smart electronic glasses

    NASA Astrophysics Data System (ADS)

    Kim, Jaeyong; Han, Jeong In

    2014-05-01

    Polymer dispersed liquid crystal (PDLC) lenses were made from a mixture of prepolymer (NOA 65) and E7 liquid crystal (LC). The mixture of polymer dispersed in LC was polymerized by ultraviolet (UV) irradiation in the polymerization induced phase separation process. With varying UV curing intensity in this process, the electrooptical properties of PDLC lens device such as transmittance, driving voltage, response times, contrast ratio (C/R) and slope of the linear region of the transmittance-voltage were measured and optimized for application to smart electronic glasses with auto-shading and auto-focusing functions. The optimum UV intensity for the PDLC lenses was more than 580 µW/cm2. These results were improved compared to our previously reported data[1] for the application of these PDLC lenses to smart electronic glasses with auto-shading and/or auto-focusing functions.

  4. Optically switchable multi-stopband of non-quarter-wavelength dielectric multilayer using azobenzene polymer liquid crystal

    NASA Astrophysics Data System (ADS)

    Ozaki, Ryotaro; Kadowaki, Kazunori; Hagio, Takashi; Yagi, Ryohei; Kuwahara, Yutaka; Kurihara, Seiji

    2015-09-01

    Non-quarter-wave stacked dielectric multilayers including azobenzene polymer liquid crystal layers are investigated in this study. The azobenzene polymer liquid crystal has a photoinduced reversible refractive index based on photoisomerization. By using the reversible refractive-index change, the reflectance of a stopband can be controlled. In this system, the azobenzene molecules change their conformation when they are irradiated with ultraviolet (UV) or visible light. In general, stacking many layers of different thicknesses can produce broadband or multicolor reflections for a dielectric multilayer. However, in a multilayer having thick azobenzene layers, UV or visible light used for controlling photoisomerization hardly reaches the bottom part of the multilayer because the light is mainly absorbed at its top surface. To solve this problem, the dependence on the thickness ratio of the multilayer is investigated and a non-quarter-wave stacked multilayer having RGB reflections is experimentally demonstrated using thin azobenzene layers.

  5. Thermally stimulated polarization currents of pristine poly (p-hydroxybenzoic acid - co - ethylene terephthalate) polymer liquid crystals

    NASA Astrophysics Data System (ADS)

    Yarramaneni, Sridharbabu; Anu, Sharma; Quamara, J. K.

    2016-05-01

    Thermally stimulated polarization currents (TSPC) of pristine PET/0.8PHB polymer liquid crystals have been studied at various polarizing fields ranging from 38.5 kV/cm to 153.8 kV/cm at continuous temperatures ranging from 20 °C to 250 °C. The charge transport phenomena, responsible mechanisms can be investigated by studying TSP current spectra of these polymer liquid crystals. The TSP current spectra consists of two maxima one at low temperature region and the other at high temperature region and a linear variation in the temperature region from 70°C to 190°C. The relaxation behaviour of this PLC is results from various mechanisms associated with crystalline and amorphous phases.

  6. Electrorheological Behavior of Main Chain Liquid Crystal Polymers in Thermotropic Nematic Solvents

    NASA Astrophysics Data System (ADS)

    Chiang, Yen-Ching; Jamieson, Alex. M.

    1998-03-01

    The increment in Miesowicz viscosity, δ η c on dissolving a main-chain liquid crystal polymer (LCP) in a nematic solvent was measured by cone-and-plate rheometry in the presence of a saturation electric field, applied perpendicular to the flow direction. In addition, the corresponding increment in the Leslie viscosity coefficient, δ α 2 was obtained from the dependence of the apparent viscosity response on the applied field strength, by curve-fitting to the torque balance equation using the 2D Ericksen-Leslie-Parodi theory. For the main-chain LCP TPB10, which has mesogenic groups separated by decamethylene spacers, both δ η c and δ α 2 exhibit, within experimental uncertainty, a linear dependence on the molecular weight. Using a hydrodynamic model of Brochard, this observation suggests that the chain behaves as a free-draining random coil, biased along the director. The temperature dependence of the relative viscosity increments, δ η c / η c ^o and δ α 2 / α 2 ^o, where η c ^o and α 2 ^o are the relevant solvent viscosities, exhibits Arrhenius behavior with an activation energy comparable to that for formation of hairpin turns in the spacer groups.

  7. Optically switchable, polarization-independent holographic polymer dispersed liquid crystal (H-PDLC) gratings

    NASA Astrophysics Data System (ADS)

    Hsiao, V. K. S.; Chang, W.-T.

    2010-09-01

    An optically switchable, polarization-independent holographic polymer dispersed liquid crystal (H-PDLC) transmission grating is demonstrated by adding azobenzene-LC and chiral molecules into the H-PDLC formulation. The optical switchable mechanism is from the trans-cis photoisomerization of the doped azobenzene-LC, which modulates the refractive index of the LC rich area. The dependence of the diffraction efficiency of the H-DPLC grating without chiral molecules on light polarization suggests that the orientation of LC directors within the droplet is ellipsoidal and uniaxial. However, the addition of chiral molecules into the H-PDLC formulation helps the formation of isotropic and non-uniaxial LC directors within the droplets. The polarization properties of the grating are investigated and analyzed by the coupled and modified coupled wave theory with a model of sinusoidal dielectric modulation. The results show that the addition of chiral molecules changes the LC phase from nematic to chiral-nematic, where the grating efficiency, which is modulated by the photoinduced phase transition, is independent of the polarization of incident light. Our findings may help improve optical systems that utilize non-polarized light.

  8. Non-symmetric broadening of the reflection notch in polymer stabilized cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Natarajan, Lalgudi V.; Voss, Jimmy R.; Tondiglia, Vincent P.; Yang, Deng-Ke; White, Timothy J.; Bunning, Timothy J.

    2010-08-01

    Non-symmetric broadening (to the blue side) of a cholesteric reflection notch was observed when a cell containing diacrylate and monoacrylate nematic LC monomers, a chiral dopant, nematic LC and a photoinitiator was exposed to very low intensity (microwatts) of 335 nm UV light. At very low intensity, the polymerization rate is very slow and takes a long time to complete as observed by real-time monitoring experiments. The polymerized scaffold templates the original liquid crystal helical structure. The 335 nm light is highly absorbed by the system which generates an intensity gradient throughout the thickness of the cell. This gradient produces a free radical density gradient in the later stage of the polymerization when diffusion is slowed by the growing polymer network. Since more monomer is consumed at the front half of the cell, a counter diffusion of chiral dopant towards the cell backside is observed. This leads to a local increase in the HTP causing a local blue shift of the notch wavelength. The net result observed in transmission is a broadening of the reflection bandwidth from 70 nm to 200 nm where the broadening occurs only to the blue side of the original notch. By varying the intensity of the UV source on one side of the substrate, the broadening magnitude could be controlled. Simultaneous UV illumination from both sides of the cell reduced the broadening considerably. The broadened notch was switchable at high electrical field (20V/μm).

  9. Varied-line-spacing switchable holographic grating using polymer-dispersed liquid crystal.

    PubMed

    Wang, Kangni; Zheng, Jihong; Lu, Feiyue; Gao, Hui; Palanisamy, Aswin; Zhuang, Songlin

    2016-06-20

    A varied-line-spacing switchable holographic grating is demonstrated through a changeable interference pattern recorded in polymer-dispersed liquid crystal. The pattern is generated by the interference between one plane wave and another cylindrical wave. The line spacing and the period of grating can be controlled by varying the distance between the cylindrical lens and the grating sample and by changing the exposure angle between the two beams. Experimental period measurements and calculations show good agreement with the theoretical results. High diffraction efficiency of more than 80% for the middle period of the grating has been achieved under appropriate exposure time of 120 s and intensity of 19.1  mW/cm2. In addition, the diffraction can be switched on and off by virtue of the external driving voltage of approximately 120 V. The grating also possesses a fast response with a rise time of 300 μs and a fall time of 750 μs. This grating, which can change the period in the grating structure to allow switchable diffraction of transmitted light, shows great potential application for diffractive optics. PMID:27409124

  10. Orientations of Chromonic Liquid Crystals by Imprinted or Rubbed Polymer Films

    NASA Astrophysics Data System (ADS)

    Yi, Youngwoo; McGuire, Aya; Clark, Noel

    2014-03-01

    A variety of novel alignment effects of chromonic liquid crystal phases of sunset yellow (SSY)/water, disodium cromoglycate (DSCG)/water, and their mixtures by thiol-ene polymer films topographically imprinted with linear channels are observed using polarizing optical microscopy. Nematic DSCG and SSY at low concentration and their nematic mixtures orient with the long axes of stacked chromonic aggregates on average parallel to the channels, that is, with the molecular planes normal to the channel axis. On the contrary, nematic SSY in contact with the rubbed polyimide films orients with the long axes on average in-plane perpendicular to the rubbing direction, arguably, due to a tongue-groove interaction between SSY and the stretched PI chains. Furthermore, multi-stable alignments are observed in SSY solutions of sufficiently high concentration, including preferential in-plane orientation of the long axes of the aggregates parallel to, perpendicular to, and 45° rotated from the channels. This work was supported by NSF grant DMR 1207606, NSF MRSEC grant DMR 0820579, and NSF Research Experience for Undergraduate programs.

  11. Effect of cell gap on electro-optical properties of polymer dispersed liquid crystal lens for smart electronic glasses

    NASA Astrophysics Data System (ADS)

    Kim, Jaeyong; Han, Jeong In

    2014-07-01

    Polymer dispersed liquid crystal (PDLC) lenses with a cell gap of 11 μm and 30 μm were made from a uniformly dispersed mixture of 40% prepolymer (NOA 65, Norland optical adhesive 65) and 60% E7 liquid crystal. PDLC's mixture between two ITO coated glasses was polymerized by UV (ultraviolet) curing in the polymerization induced phase separation (PIPS) process. Decline of cell gap is a physical approach to improve the electrooptical properties, while cooling or doping of SiO2 nanoparticles is the microstructural approach to enhance the properties, because the electric field applied to the liquid crystal molecules in LC droplets is inversely proportional to the cell gap. A smaller cell gap significantly and effectively increases the electric field applied to PDLCD devices. The driving voltages and slope for the sample with a cell gap of 11 μm and 30 μm were drastically improved. The driving voltage and the slope of the linear region of PDLC lens with narrow cell gap of 11 μm were drastically enhanced compared to those of the samples with 30 μm cell gap and the cooled and doped samples. These improvements were due to the increase of the applied electric field. However, the response time and contrast ratio were deteriorated. It seems that this deterioration was caused by the sticking or fixing of liquid crystal molecules in LC (liquid crystal) droplets by the intensive electric field applied to the PDLC device.

  12. Non-Monotonic Concentration Effects in the Phase Behavior and Nematic Orders: Mixtures of Side-Chain Liquid Crystalline Polymers and Low-Molecular-Weight Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Zhuang, Bilin; Wang, Zhen-Gang

    2012-02-01

    Mixtures of side-chain liquid crystal polymers (SCLCPs) and low-molecular-weight liquid crystals (LMWLCs) are novel materials with applications such as optical data storage, non-linear optics, solid polymer electrolytes, chromatography and display materials. Recent experiments showed that the nematic-isotropic transition temperature and the nematic orders of each component vary non-monotonically with concentration. Existing theories, which combine the Flory-Huggins theory for isotropic mixing and the Maier-Saupe theory for nematic order, cannot explain such non-monotonicity. Here, we extend the existing theories by, first, incorporating the local steric constraints between the side-chain and the polymer backbone on the SCLCPs, and second, accounting for the crowding effects at high SCLCP concentrations. The new extended theory is able to resolve the discrepancies between the predictions of existing theories and the experimental observations.

  13. Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors

    SciTech Connect

    Mach, P.; Rodriguez, S. J.; Nortrup, R.; Wiltzius, P.; Rogers, J. A.

    2001-06-04

    This letter describes the monolithic integration of rubber-stamped thin-film organic transistors with polymer-dispersed liquid crystals (PDLCs) to create a multipixel, flexible display with plastic substrates. We report the electro-optic switching behavior of the PDLCs as driven by the organic transistors, and we show that our displays operate robustly under flexing and have a contrast comparable to that of newsprint. {copyright} 2001 American Institute of Physics.

  14. Collapse of homeotropic liquid-crystal alignment by increased molecular packing on comb-like polymer surfaces.

    PubMed

    Sohn, Eun-Ho; Kang, Hyo; Kim, Dong-Gyun; Song, Kigook; Lee, Jong-Chan

    2012-06-01

    We report an unusual alignment behavior of liquid crystals (LCs) on well-ordered comb-like poly(oxyethylene) surfaces. The homeotropic LC alignments that are observed on as-coated surfaces of the polymers are transformed to the random planar type after annealing treatment, even though the molecular structure of the polymer surface becomes more ordered and the surface energy decreases. Studies of the surface properties, such as molecular structure, morphology, and wettability, reveal that such an unexpected alteration of the LC alignment originates from the density of the alkyl side chains being enhanced by localized packing. PMID:22511283

  15. Dual electrically and thermally responsive broadband reflectors based on polymer network stabilized chiral nematic liquid crystals: the role of crosslink density.

    PubMed

    Khandelwal, Hitesh; Timmermans, Gilles H; Debije, Michael G; Schenning, Albertus P H J

    2016-08-01

    A broadband reflector based on a polymer stabilized chiral nematic liquid crystal has been fabricated. The reflection bandwidth can be manually controlled by an electric field and autonomously by temperature. PMID:27357239

  16. A High-Retardation Polymer Film for Viewing Liquid Crystal Displays through Polarized Sunglasses without Chromaticity Change in the Image

    NASA Astrophysics Data System (ADS)

    Kobayashi, Daisuke; Tagaya, Akihiro; Koike, Yasuhiro

    2011-04-01

    We describe a high-retardation polymer film (HRPF) that enables liquid crystal displays (LCDs) to be viewed through polarized sunglasses at all rotation angles without any chromaticity changes in the image. We investigated the relationship between retardation and polymer interference color after developing a program that simulates the interference colors of polymers taking into consideration the polymer birefringence dispersion and LCD emission light spectrum. As a result, we confirmed that the retardation value required for our HRPF made of polyethylene terephthalate and applied to an LCD with white LED backlight was not less than 7832 nm. We also confirmed that the image quality was not degraded by attaching the HRPF to the LCD, and chromaticity change in the image observed through HRPF and polarized sunglasses was negligible compared to the LCD image.

  17. Fabrication of twisted nematic structure and vector grating cells by one-step exposure on photocrosslinkable polymer liquid crystals.

    PubMed

    Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2012-03-15

    We present a simple yet efficient method to automatically fabricate the twisted nematic structure by one-step exposure on an empty glass cell coated with photocrosslinkable polymer liquid crystal (PCLC) films. The resultant photoalignment directions of two substrates can be orthogonal to each other by controlling the difference between the exposure energy for upper and lower PCLC films and the twisted nematic (TN) structure can be automatically fabricated. The vector grating liquid crystalline cell with TN structure was also fabricated by means of a developed method, and the diffraction properties were well explained by the theoretical calculation on the basis of Jones calculus. PMID:22446243

  18. Linear and non-linear dielectric properties of a short-pitch ferroelectric liquid crystal stabilized by a polymer network.

    PubMed

    Cherfi, Y; Hemine, J; Douali, R; Beldjoudi, N; Ismaili, M; Leblond, J M; Legrand, C; Daoudi, A

    2010-12-01

    Linear and non-linear dielectric measurements were carried out on a ferroelectric liquid crystal stabilized by an anisotropic polymer network. The polymerization process was achieved at room temperature. It was performed from an achiral monomer in the ferroelectric chiral smectic C phase, exhibiting a very short helical pitch and a large polarization. The linear and non-linear dielectric spectroscopy were also completed by textural morphology as well as structural and ferroelectric characterizations. All these measurements were carried out on a pure ferroelectric liquid crystal material and on composite films containing two polymer concentrations. The increase of the polymer network density leads to a decrease of the dielectric strength determined in the linear and non-linear dielectric spectroscopy. The complementarity between the linear and non-linear dielectric measurements and their confrontation with a theoretical model allowed the simultaneous determination of some physical parameters such as macroscopic polarization, rotational viscosity and twist elastic energy. We also discuss the effect of the polymer network density on the obtained physical parameters. PMID:21107879

  19. Nanotube liquid crystal elastomers: photomechanical response and flexible energy conversion of layered polymer composites

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoming; King, Benjamin C.; Loomis, James; Campo, Eva M.; Hegseth, John; Cohn, Robert W.; Terentjev, Eugene; Panchapakesan, Balaji

    2014-09-01

    Elastomeric composites based on nanotube liquid crystals (LCs) that preserve the internal orientation of nanotubes could lead to anisotropic physical properties and flexible energy conversion. Using a simple vacuum filtration technique of fabricating nanotube LC films and utilizing a transfer process to poly (dimethyl) siloxane wherein the LC arrangement is preserved, here we demonstrate unique and reversible photomechanical response of this layered composite to excitation by near infra-red (NIR) light at ultra-low nanotube mass fractions. On excitation by NIR photons, with application of small or large pre-strains, significant expansion or contraction of the sample occurs, respectively, that is continuously reversible and three orders of magnitude larger than in pristine polymer. Schlieren textures were noted in these LC composites confirming long range macroscopic nematic order of nanotubes within the composites. Order parameters of LC films ranged from Soptical = 0.51-0.58 from dichroic measurements. Film concentrations, elastic modulus and photomechanical stress were all seen to be related to the nematic order parameter. For the same nanotube concentration, the photomechanical stress was almost three times larger for the self-assembled LC nanotube actuator compared to actuator based on randomly oriented carbon nanotubes. Investigation into the kinetics of photomechanical actuation showed variation in stretching exponent β with pre-strains, concentration and orientation of nanotubes. Maximum photomechanical stress of ˜0.5 MPa W-1 and energy conversion of ˜0.0045% was achieved for these layered composites. The combination of properties, namely, optical anisotropy, reversible mechanical response to NIR excitation and flexible energy conversion all in one system accompanied with low cost makes nanotube LC elastomers important for soft photochromic actuation, energy conversion and photo-origami applications.

  20. Motion of polymer cholesteric liquid crystal flakes in an electric field

    NASA Astrophysics Data System (ADS)

    Kosc, Tanya Zoriana

    Polymer cholesteric liquid crystal (PCLC) flakes suspended in a host fluid can be manipulated with an electric field. Controlling a flake's orientation provides the opportunity to change and control the amount of selective reflection from the flake surface. Flake motion results from charge accumulation and an induced dipole moment established due to Maxwell-Wagner polarization. The type of flake behavior, whether random motion or uniform reorientation, depends upon the dielectric properties of the host fluid, which in turn dictate whether a DC or an AC electric field must be applied. PCLC flakes suspended in highly dielectric silicone oil host fluids tend to move randomly in the presence of a DC electric field, and no motion is seen in AC fields. Flakes suspended in a moderately conductive host fluid reorient 90° in the presence of an AC field within a specific frequency range. The flake shape and size are also important parameters that need to be controlled in order to produce uniform motion. Several methods for patterning flakes were investigated and identical square flakes were produced. Square PCLC flakes (80 mum sides) suspended in propylene carbonate reorient in 400 ms when a 40mVrms/mum field at 70 Hz is applied to the test device. Theoretical modeling supported experimental observations well, particularly in identifying the inverse quadratic dependence on the applied electric field and the electric field frequency dependence that is governed by the host fluid conductivity. Future goals and suggested experiments are provided, as well as an explanation and comparison of possible commercial applications for PCLC flakes. This research has resulted in one patent application and a series of invention disclosures that could place this research group and any industrial collaborators in a strong position to pursue commercial applications, particularly in the area of displays, and more specifically, electronic paper.

  1. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  2. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  3. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo

    2015-01-01

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.

  4. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    SciTech Connect

    Xiangjie, Zhao E-mail: zxjdouble@gmail.com; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo

    2015-01-07

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.

  5. Equilibrium and shear-induced conformations of a side-chain liquid crystal polymer

    NASA Astrophysics Data System (ADS)

    Castelletto, V.; Noirez, L.; Vigoureux, P.

    2000-11-01

    These studies delineate the conformations adopted by a side-chain liquid-crystalline polymer subjected to a steady-state shear flow as well as the corresponding me so pha se director orientations. Two distinct director orientations are identified in the nematic phase, giving evidence of a shear-induced transition from a flow-aligning to a non flow-aligning behavior. This transition coincides, at rest, with a subtle change from prolate to oblate polymer main-chain conformation. In the smectic phase, the layers form multilayer cylinders oriented along the velocity axis.

  6. Dielectric properties of liquid-crystal azomethine polymer with a side alkyl-substituted chain, doped with fullerene C60

    NASA Astrophysics Data System (ADS)

    Kovalev, D. S.; Kostromin, S. V.; Musteaţa, V.; Cozan, V.; Bronnikov, S. V.

    2016-04-01

    We studied the actual and imaginary components of the dielectric constant of liquid-crystal azomethine polymer with a side chain, doped with 0.5 wt % of fullerene C60, over a wide range of temperatures and frequencies; measurements were made by means of dielectric spectroscopy. By analyzing the frequency dependence of the dielectric constant, we detected the relaxation processes (α, β1, and β2) in the nanocomposite, corresponding to certain modes of molecular motion and described them by the Arrhenius equations (β1- and β2-processes) and the Vogel-Fulcher-Tamman equation (α-process). An antiplasticization effect is discovered after doping the polymer with fullerene C60, which manifests itself in increasing the glass transition temperature of the nanocomposite compared to this parameter typical of pure polymer.

  7. Control of the anchoring behavior of polymer-dispersed liquid crystals: effect of branching in the side chains of polyacrylates.

    PubMed

    Zhou, Jian; Collard, David M; Park, Jung O; Srinivasarao, Mohan

    2002-08-28

    A temperature-driven anchoring transition in a polymer/nematic fluid composite that is far from the bulk nematic-isotropic transition temperature is reported. A series of poly(methylheptyl acrylates) were studied to probe the subtle effects of the side chain structure of the polymer on control of the anchoring. A polymer-dispersed liquid crystal film made from TL205 and 1-methylheptyl acrylate shows only planar anchoring over the temperature range studied, while the films made from TL205 and each of the other methylheptyl acrylates or n-heptyl acrylate show the homeotropic-to-planar anchoring transition at temperatures between 70 and 78 degrees C. An interfacial model is proposed in which the different conformation of the side chains is suggested as the cause for the dramatic difference in the observed anchoring behavior. PMID:12188649

  8. Tunable liquid crystal lens array by encapsulation with a photo-reactive polymer for short focal length

    NASA Astrophysics Data System (ADS)

    Kim, Se-Um; Lee, Sanghun; Na, Jun-Hee; Lee, Sin-Doo

    2014-02-01

    We demonstrated an electrically tunable liquid crystal (LC) lens array with a short focal length by self-encapsulation with a polymer layer of photo-reactive mesogens (RMs). The underlying concept relies primarily on the encapsulation of the LC with a thin curvilinear polymer layer in contact with air for the reduction of the focal length. The polymer-encapsulated (PE)-LC lens array was produced on a patterned substrate by selective wetting inscription through the phase separation of the LC and the RMs. In the field-off state, the focal length of the PE-LC lens was measured to be about 3 mm which is shorter than a conventional case by a factor of three (about 9 mm). The wettability inscription by ultraviolet light enables to build up any size of the LC lens in array over large-area without using a wet-chemical etching process for flexible optoelectronic and photonic applications.

  9. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  10. Gel-like elasticity in glass-forming side-chain liquid-crystal polymers

    NASA Astrophysics Data System (ADS)

    Pozo, O.; Collin, D.; Finkelmann, H.; Rogez, D.; Martinoty, P.

    2009-09-01

    We study the complex shear modulus G of two side-chain liquid-crystal polymers (SCLCPs), a methoxy-phenylbenzoate substituted polyacrylate (thereafter called PAOCH3 ), and a cyanobiphenyl substituted polyacrylate supplied by Merck (thereafter called LCP105) using a piezoelectric rheometer. Two methods of filling the cell are used: (a) a capillary method, which can be used only at high temperature because of the low value of the viscosity, and (b) the classical one, thereafter called compression method, which consists in placing the sample between the two slides of the cell and to bring them closer. By filling the cell at high temperature either with the compression or the capillary method, we show that the response of both compounds is liquidlike ( G'˜f2 and G″˜f , where f is the frequency) for temperatures higher than a certain temperature T0 and gel-like (G'˜const,G″˜f) below T0 . This change in behavior from the conventional flow response to a gel-like response, when approaching the glass transition, is observed for nonsliding conditions and for very weak-imposed shear strains. It can be explained by a percolation-type mechanism of preglassy elastic clusters, which correspond to long-range and long-lived density fluctuations that are frozen at the time scale of the experiment. The sample response is therefore the sum of two contributions: one is due to the flow response of the polymer melt and the other to the elastic response of the network formed by the preglassy elastic clusters. By filling the cell below T0 with the compression method, both compounds exhibit a gel-type behavior by gently bringing closer the slides of the cell and an anomalous low-frequency behavior characterized by G'=const and G″=const by increasing the pressure used to bring closer the slides of the cell. A compression-assisted aggregation of the preglassy elastic clusters can explain both the increase in the low-frequency elastic plateau when the sample thickness is decreased

  11. Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix.

    PubMed

    Yu, Ji Hoon; Chen, Hung-Shan; Chen, Po-Ju; Song, Ki Hoon; Noh, Seong Cheol; Lee, Jae Myeong; Ren, Hongwen; Lin, Yi-Hsin; Lee, Seung Hee

    2015-06-29

    Electrically tunable focusing microlens arrays based on polarization independent optical phase of nano liquid crystal droplets dispersed in polymer matrix are demonstrated. Such an optical medium is optically isotropic which is so-called an optically isotropic liquid crystals (OILC). We not only discuss the optical theory of OILC, but also demonstrate polarization independent optical phase modulation based on the OILC. The experimental results and analytical discussion show that the optical phase of OILC microlens arrays results from mainly orientational birefringence which is much larger than the electric-field-induced birefringence (or Kerr effect). The response time of OILC microlens arrays is fast~5.3ms and the tunable focal length ranges from 3.4 mm to 3.8 mm. The potential applications are light field imaging systems, 3D integrating imaging systems and devices for augment reality. PMID:26191743

  12. An Alignment Medium for Measuring Residual Dipolar Couplings in Pure DMSO: Liquid Crystals from Graphene Oxide Grafted with Polymer Brushes.

    PubMed

    Zong, Wen; Li, Gao-Wei; Cao, Jiang-Ming; Lei, Xinxiang; Hu, Mao-Lin; Sun, Han; Griesinger, Christian; Tan, Ren Xiang

    2016-03-01

    Residual dipolar couplings (RDCs) have attracted attention in light of their great impact on the structural elucidation of organic molecules. However, the effectiveness of RDC measurements is limited by the shortage of alignment media compatible with widely used organic solvents, such as DMSO. Herein, we present the first liquid crystal (LC) based alignment medium that is compatible with pure DMSO, thus enabling RDC measurements of polar and intermediate polarity molecules. The liquid crystals were obtained by grafting polymer brushes onto graphene oxide (GO) using free radical polymerization. The resulting new medium offers several advantages, such as absence of background signals, narrow line shapes, and tunable alignment. Importantly, this medium is compatible with π-conjugated molecules. Moreover, sonication-induced fragmentation can reduce the size of GO sheets. The resulting anisotropic medium has moderate alignment strength, which is a prerequisite for an accurate RDC measurement. PMID:26890579

  13. Polymer Crystallization under Confinement

    NASA Astrophysics Data System (ADS)

    Floudas, George

    Recent efforts indicated that polymer crystallization under confinement can be substantially different from the bulk. This can have important technological applications for the design of polymeric nanofibers with tunable mechanical strength, processability and optical clarity. However, the question of how, why and when polymers crystallize under confinement is not fully answered. Important studies of polymer crystallization confined to droplets and within the spherical nanodomains of block copolymers emphasized the interplay between heterogeneous and homogeneous nucleation. Herein we report on recent studies1-5 of polymer crystallization under hard confinement provided by model self-ordered AAO nanopores. Important open questions here are on the type of nucleation (homogeneous vs. heterogeneous), the size of critical nucleus, the crystal orientation and the possibility to control the overall crystallinity. Providing answers to these questions is of technological relevance for the understanding of nanocomposites containing semicrystalline polymers. In collaboration with Y. Suzuki, H. Duran, M. Steinhart, H.-J. Butt.

  14. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers.

    PubMed

    White, Timothy J; Broer, Dirk J

    2015-11-01

    Liquid crystals are the basis of a pervasive technology of the modern era. Yet, as the display market becomes commoditized, researchers in industry, government and academia are increasingly examining liquid crystalline materials in a variety of polymeric forms and discovering their fascinating and useful properties. In this Review, we detail the historical development of liquid crystalline polymeric materials, with emphasis on the thermally and photogenerated macroscale mechanical responses--such as bending, twisting and buckling--and on local-feature development (primarily related to topographical control). Within this framework, we elucidate the benefits of liquid crystallinity and contrast them with other stimuli-induced mechanical responses reported for other materials. We end with an outlook of existing challenges and near-term application opportunities. PMID:26490216

  15. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers

    NASA Astrophysics Data System (ADS)

    White, Timothy J.; Broer, Dirk J.

    2015-11-01

    Liquid crystals are the basis of a pervasive technology of the modern era. Yet, as the display market becomes commoditized, researchers in industry, government and academia are increasingly examining liquid crystalline materials in a variety of polymeric forms and discovering their fascinating and useful properties. In this Review, we detail the historical development of liquid crystalline polymeric materials, with emphasis on the thermally and photogenerated macroscale mechanical responses -- such as bending, twisting and buckling -- and on local-feature development (primarily related to topographical control). Within this framework, we elucidate the benefits of liquid crystallinity and contrast them with other stimuli-induced mechanical responses reported for other materials. We end with an outlook of existing challenges and near-term application opportunities.

  16. Near-zero pretilt alignment of liquid crystals using polyimide films doped with UV-curable polymer.

    PubMed

    Oh, Seung-Won; Park, Jun-Hee; Yoon, Tae-Hoon

    2015-01-26

    We propose an alignment method for the near-zero pretilt angle of liquid crystals (LCs) using polyimide films doped with a UV-curable polymer. The near-zero pretilt angle can be obtained by UV curing of reactive mesogen monomers mixed with planar alignment material while a vertical electric field is applied to an LC cell assembled after the rubbing process. We demonstrated that the pretilt angle can be decreased from 2.390° to 0.082° by employing the proposed method. PMID:25835864

  17. Dynamic, infrared bandpass filters prepared from polymer-stabilized cholesteric liquid crystals.

    PubMed

    Worth, Bradley; Lee, Kyung Min; Tondiglia, Vincent P; Myers, Joshua; Mou, Shin; White, Timothy J

    2016-09-01

    We report on the formulation and electrical control of the position and bandwidth of reflective bandpass filters prepared from cholesteric liquid crystal (CLC) in the infrared (3-5 μm). These filters are prepared from alignment cells employing infrared transparent electrodes and substrates. The optical nature of the electrodes is shown to strongly influence the resulting transmission of the bandpass filters outside of the spectral reflection. PMID:27607292

  18. Molecular organization of type IV collagen: polymer liquid crystal-like aspects.

    PubMed

    Gathercole, L J; Barnard, K; Atkins, E D

    1989-12-01

    A new X-ray diffraction pattern from type IV collagen is described, which can be interpreted on the basis of crystalline and liquid crystalline origins of the reflections. Bovine anterior lens capsules extracted with 1 M NaCl and oriented by extension of 60% under constant load gave medium angle X-ray diffraction patterns showing many of the characteristics typical of liquid crystals. Prominent features, apart from those wide angle features attributable to the collagen triple helix, are (1) a four-point pattern of broad reflections at d-spacing 3.9 nm, and layer line spacing near 5 nm. (2) A broad intense equatorial peak centred at 1.24 nm, indicative of liquid-like lateral molecular associations. (3) A set of five sharp, streaked meridional reflections (previously obscured by the broad peak near 5 nm in unextracted capsules). (4) A further six higher angle reflections of a diffuse, arced and broad appearance on the meridian. The sharp streaked meridional reflections emanate from a long-range periodicity of units 8-9 nm in diameter. These features form a self-consistent system if interpreted on the basis of a staggered liquid crystal-like array of collagen molecules, in which case the first five meridionals and remaining broad reflections, sampled on the meridian, can all be indexed as orders of 21 nm. PMID:2489101

  19. A biosensor of high-density lipoprotein of human serum on a liquid crystal and polymer composite film

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chang, Kai-Han; Chu, Wei-Lin; Tsou, Yu-Shih; Wu, Li-Ching; Li, Chien-Feng

    2013-10-01

    A biosensor for the concentration of high-density lipoprotein (HDL) in human serum on a liquid crystal and polymer composite film (LCPCF) is demonstrated. The sensing mechanism is based on a polar-polar interaction between orientation of LC directors and HDL in human serum. The concentration of polar HDL in human serum affects the orientations of LC directors at the interface between LCPCF and the human serum. In addition, the surface free energy of LCPCF changes with the applied voltage due to the electrically tunable orientations of LC directors anchored among the polymer grains of LCPCF. As a result, the droplet motion of human serum on LCPCF under applied voltages can sense the concentration of HDL in human serum.

  20. Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light.

    PubMed

    Hadjichristov, Georgi B; Marinov, Yordan G; Petrov, Alexander G

    2011-06-01

    The light modulating ability of gradient polymer-disposed liquid crystal (PDLC) single layer of large droplets formed by nematic E7 in UV-cured polymer NOA65 is studied. Operating at relatively low voltages, such PDLC film with a of thickness 10-25 μm and droplet size up to 50 μm exhibits a good contrast ratio and is capable of producing a large phase shift for the propagating coherent light. For a linearly polarized He-Ne laser (λ=633 nm), an electrically commanded phase shift as large as π/2 can be obtained by the large-droplet region of the film. The electrically produced phase shift and its spatial profile controlled by the thickness of the gradient PDLC single layers of large nematic droplets can be useful for tunable spatial light modulators and other devices for active control of laser light. PMID:21629309

  1. Platinum-scatterer-based random lasers from dye-doped polymer-dispersed liquid crystals in capillary tubes.

    PubMed

    Wang, Jianlong; Zhang, Yating; Cao, Mingxuan; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Zhang, Heng; Yao, Jianquan

    2016-07-20

    The resonance characteristics of platinum-scatter-based random lasers from dye-doped polymer-dispersed liquid crystals (DDPDLCs) in capillary tubes were researched for the first time, to the best of our knowledge. After adding platinum nanoparticles (Pt NPs) into the liquid crystal mixtures, the emission spectra of DDPDLCs revealed a lower lasing threshold in comparison with those of DDPDLCs without Pt NPs due to light scattering of liquid crystal droplets and the local field enhancement around Pt NPs. Furthermore, the full width at half-maximum (FWHM) and the lasing threshold were determined by the doping density of the Pt NPs. The threshold was decreased by about half from 17.5  μJ/pulse to 8.7  μJ/pulse on the condition that around 1.0 wt. % was the optimum concentration of Pt NPs doped into the DDPDLCs. The FWHM of the peaks sharply decreased to 0.1 nm. Our work provides an extremely simple method to enhance random lasers from DDPDLCs doped with Pt NPs, and it has potential applications in random fiber lasers or laser displays. PMID:27463926

  2. Effect of molecular architecture on the electrorheological behavior of liquid crystal polymers in nematic solvents

    NASA Astrophysics Data System (ADS)

    Chiang, Yen-Ching

    1998-11-01

    The Miesowicz viscosities of dilute nematic solutions of liquid crystal polymers (LCP) in low molar mass nematic solvents have been measured by a cone-and-plate rheometer in the presence of a saturated electric field applied perpendicular to the shear plane. For mixtures with a positive dielectric anisotropy in the presence of the electric field the nematic director is perpendicular to the velocity gradient and the viscosity measured is the Miesowicz viscosity ηc. With the electric field off the nematic director orients parallel to the shear flow direction and the viscosity measured is closed to the Miesowicz viscosity η b. Specifically, we show that main-chain LCPs strongly increase the magnitude of the electrorheological (ER) response, ηc-ηb, a side-on side chain LCP moderately increases the response, and an end- on side-chain LCP weakly increases the response. The diverse behaviors can be interpreted using theoretical arguments which assume that the LCP conformation is an ellipsoid of revolution whose orientation relative to the flow is determined by the balance between the hydrodynamic and electric torques on the fluid. For the main-chain LCP TPB10 in 5OCB, which has mesogenic groups separated by decamethylene spacers, the intrinsic Miesowicz viscosity [ηc] was found to follow a Mark-Houwink-Sakurada relationship [ηc]/propto M/sp/alpha with α~1 and the configurational relaxation time (τR) shows a strong dependence on molecular weight, τR/propto M/sp/beta with β~2. Applying a theoretical description by Brochard, these results suggest that TPB10 behaves hydrodynamically like a free-draining random coil stretched along the director. The temperature dependence of Miesowicz viscosities η c and η b of LCPs dissolved in nematic solvent E48 was also investigated. The variations in δeta c and δeta c with temperature can be described by the Brochard theory in terms of the corresponding variation of the configurational anisotropy (R///R/sb/perp) with

  3. Development of system level integration of compact RF components on multilayer liquid crystal polymer (LCP)

    NASA Astrophysics Data System (ADS)

    Chung, David

    The objective of this research is to optimize compactness for reconfigurable wireless communication systems by integrating Radio Frequency (RF) components on a multilayer Liquid Crystal Polymer (LCP) package while minimizing the size and interconnection of each component. To achieve this goal, various RF/microwave components have been integrated on LCP with the design, fabrication, and testing results to explore the feasibility of the designs for RF applications. The first chapter of this research focuses on the characterization of via interconnects for 3D system designs. As a crucial component for achieving compact multilayer designs, various transition designs are explored from DC to 110 GHz. In particular, High Density Interconnects (HDI) are investigated to achieve low loss performance at mm-wave frequencies. An example of accessing the input and output of a LCP packaged device using via interconnects is included. In addition, a heat sink using via technology is presented for active cooling of heat generating embedded devices. Chapters 3, 4, and 5 demonstrate the results of RF Micro-Electro-Mechanical Systems (MEMS) switches integrated on LCP to create compact reconfigurable devices. RF MEMS switches are essential for designing compact multi-functional devices. A pattern reconfigurable antenna with monolithically integrated RF MEMS switches is presented. In addition, a compact 3D phase shifter using RF MEMS switches for a 2 x 2 phased antenna array is also presented in this work. To create a phased antenna array that is more compatible with Integrated Circuits (IC), Lead Zirconate Titanate (PZT) RF MEMS switches are used to make a low voltage phase shifter. The actuation voltage is under 10 V, which is more easily achievable in a integrated system compared to commonly used electrostatic actuated RF MEMS switches that required at least 30 V. In Chapter 6, an expandable, low cost, and conformal multilayer phased antenna array is presented. Starting with a 4 x 8

  4. Large exponential gain coefficient in polymer assisted asymmetric liquid crystal cells originating from surface effect

    NASA Astrophysics Data System (ADS)

    Fu, Jiayin; Zhang, Jingwen; Xue, Tingyu; Zhao, Hua

    2016-09-01

    As large as 4607 cm-1 gain coefficient in two beam coupling experiment was obtained by introducing PVK:C60 film to ZnSe assisted liquid crystal system. As short as 5.0 ms holographic recording time was reached when probing the grating formation process, showing great potential in real time applications. Systematical two beam coupling and grating probing experiments were performed in studying the mechanism behind the high photorefractive (PR) performance. Unusual energy transfer direction change and gain coefficient fluctuation were observed when the voltage polarity and incidence side were altered in the related two wave coupling experiments.

  5. Pressure sensor using liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  6. Dye-sensitized nanoarrays with discotic liquid crystals as interlayer for high-efficiency inverted polymer solar cells.

    PubMed

    Shi, Yueqin; Tan, Licheng; Chen, Yiwang

    2014-10-22

    The well-aligned and highly uniform one-dimensional ZnO with organic dyes core/shell (ZNs) and ZnO with dyes and liquid crystals core/double-shells nanoarrays (ZNLs) with controllable lengths were fabricated as electron transport layers (ETLs) in inverted polymer solar cells (PSCs). Ditetrabutylammonium cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II) dye (N719) was presented to reduce the surface defects of ZnO nanoarrays (NAs). In addition, the shell modification could decrease the electron injection barrier between ZnO and active layer, thereby facilitating electron injection effectively and forming a direct electron transport channel into the cathode. Due to the orientation of nanoarrays and the self-organization of 3,6,7,10,11-pentakis(hexyloxy)-2-hydroxytriphenylene liquid crystals (LCs) in liquid crystalline mesophase and isotropic phase transition, the components of active layer would be driven rearrange and infiltrate among the interspaces of nanoarrays more orderly. The increased interfacial contact between cathode and active layer would benefit charge generation, transportation and collection. On the basis of these advantages, it was found the N719 shell and N719/LCs double-shells modifications of ZnO NAs could boost the photovoltaic performance of PSCs with the best power conversion efficiency (PCE) of 7.3% and 8.0%, respectively. PMID:25269148

  7. Holographic binary grating liquid crystal cells fabricated by one-step exposure of photocrosslinkable polymer liquid crystalline alignment substrates to a polarization interference ultraviolet beam.

    PubMed

    Kawai, Kotaro; Sasaki, Tomoyuki; Noda, Kohei; Sakamoto, Moritsugu; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2015-07-01

    Holographic binary grating liquid crystal (LC) cells, in which the optical anisotropy was rectangularly modulated even as the grating was fabricated using holographic exposure, were fabricated by one-step polarization holographic exposure of an empty glass cell, the interior of which was coated with a photocrosslinkable polymer LC (PCLC). The present study is of great significance in that three types of holographic binary grating LC cells containing twisted alignments can be fabricated by simultaneous exposure of two PCLC substrates to the UV interference beams, which are sinusoidally modulated. The polarization conversion properties of the diffracted beams are explained well by theoretical analysis based on Jones calculus. PMID:26193145

  8. A miniaturized, eye-conformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP).

    PubMed

    Jeong, Joonsoo; Bae, So Hyun; Min, Kyou Sik; Seo, Jong-Mo; Chung, Hum; Kim, Sung June

    2015-03-01

    A novel retinal prosthetic device was developed using biocompatible liquid crystal polymer (LCP) to address the problems associated with conventional metal- and polymer-based devices: the hermetic metal package is bulky, heavy, and labor-intensive, whereas a thin, flexible, and MEMS-compatible polymer-based system is not durable enough for chronic implantation. Exploiting the advantageous properties of LCP such as a low moisture absorption rate, thermobonding, and thermoforming, we fabricate a small, light-weight, long-term reliable retinal prosthesis that can be conformally attached on the eye-surface. A LCP fabrication process using monolithic integration and conformal deformation was established enabling miniaturization and a batch manufacturing process as well as eliminating the need for feed-through technology. The functionality of the fabricated device was tested through wireless operation in saline solution. Its efficacy and implantation stability were verified through in vivo animal tests by measuring the cortical potential and monitoring implanted dummy devices for more than a year, respectively. PMID:25494496

  9. Novel pigment approaches in optically variable security inks including polarizing cholesteric liquid crystal (CLC) polymers

    NASA Astrophysics Data System (ADS)

    Jiang, Yingqiu; Wilson, Robert; Hochbaum, Aharon; Carter, John

    2002-04-01

    Optical variable pigment technologies for markings and inks have increased in use as overt protection methods for document and product security. These technologies use optical reflective effects including interference technologies that create angular dependent color changes. Novel developments in different inorganic and organic pigments offer potentially new optical performance for both overt and covert security applications. These developments may lead to unique signature pigment formats that can verify origin and authenticity. Cholesteric Liquid Crystal (CLC) pigment approaches utilize both angular dependent color flop and the unique polarization properties to potentially develop markings with both overt and covert detection mechanisms. Continuous improvement in these technologies may lead to new visible and non-visible applications that when integrated with the graphic design will provide novel protection and graphic impact.

  10. Random lasing in a dye doped cholesteric liquid crystal polymer solution

    NASA Astrophysics Data System (ADS)

    He, Benqiao; Liao, Qing; Huang, Yong

    2008-10-01

    Random lasing in rhodamine 6G (R6G) doped ethyl-cryanoethyl cellulose [(E-CE)C]/acrylic acid (AA) cholesteric liquid crystal (LC) solution without scattering particles was studied. The effects of concentration of (E-CE)C/AA solution and the thickness of the sample on the random lasing were investigated. The random laser with coherent feedback occurs in (E-CE)C/AA anisotropic solution, while only amplified spontaneous emission (ASE) is observed in (E-CE)C/AA isotropic solution and AA solvent. The random laser also occurs in the (E-CE)C/poly(acrylic acid) (PAA)/R6G solid film with cholesteric structure through quick polymerization of AA. The experimental results suggest that the cholesteric LC domains play a very important role in this random lasing.

  11. The effect of UV intensities and curing time on polymer dispersed liquid crystal (PDLC) display: A detailed analysis study

    NASA Astrophysics Data System (ADS)

    Ahmad, Farzana; Jamil, Muhammad; Lee, Jin Woo; Kim, Seo Rok; Jeon, Young Jae

    2016-08-01

    In current study polymer dispersed liquid crystal (PDLC) films whose composition based on nematic liquid crystal (LC) E7 and prepolymeric NOA65 were formed via the photo induced phase separation method, in a wide intensity range of the UV light (I = 0.33-1.8 mW/cm2) and curing duration (t = 120-600 sec). The PDLC characteristics were monitored by surface morphology, electro optical studies, as well as by phase separation process through measuring the FTIR absorption of the composite layers. Increase of curing light intensity accelerates the phase separation and drastically influences the final morphology of LC droplets inside PDLCs. Likewise by widening the curing duration the enhancement in phase separation was observed. Increase of light intensity from 0.89 mW/cm2 and duration t = 120-240 sec resulted into transition from large LC domains of irregular shape (due to aggregation of droplets) to fine mono dispersed LC droplets. This morphology caused increase in optical scattering on zero voltage and high driving voltage. However unexpectedly, this response was not directly related with the curing conditions (intensity and time). These findings extend the potential applications of thiol-ene based PDLCs. [Figure not available: see fulltext.

  12. Near-infrared sensitive photorefractive device using polymer dispersed liquid crystal and BSO:Ru hybrid structure.

    PubMed

    Liu, Ren Chung; Marinova, Vera; Lin, Shiuan Huei; Chen, Ming-Syuan; Lin, Yi-Hsin; Hsu, Ken Yuh

    2014-06-01

    A near-infrared sensitive hybrid device, based on a Ru-doped BSO photorefractive substrate and polymer dispersed liquid crystal (PDLC) layer, is reported. It is found that the photoexcited charge carriers generated in the BSO:Ru substrate create an optically induced space charge field, sufficient to penetrate into the PDLC layer and to re-orient the LC molecules inside the droplets. Beam-coupling measurements at the Bragg regime are performed showing prospective amplification values and high spatial resolution. The proposed structure does not require indium tin oxide (ITO) contacts and alignment layers. Such a device allows all the processes to be controlled by light, thus opening further potential for real-time image processing at the near-infrared range. PMID:24876043

  13. Photoinduced changes of surface order in coumarin side-chain polymer films used for liquid crystal photoalignment

    SciTech Connect

    Bergmann, G.; Jackson, P.O.; Hogg, J.H.C.; Stirner, T.; O'Neill, M.; Duffy, W.L.; Kelly, S.M.; Clark, G.F.

    2005-08-08

    Specular x-ray reflectivity probes morphological changes in a crosslinkable coumarin photoalignment polymer film resulting from ultraviolet irradiation. An ordered surface layer with density oscillations compatible with planar side-chain alignment is obtained before irradiation. The ordering is enhanced in the early stages of crosslinking. This is attributed to the photoinduced increase of mobility of the side-chains resulting from the creation of free volume by the crosslinking process. The expansion of the thin film confirms that free volume is created. The surface ordering decreases with prolonged ultraviolet irradiation because of increased material viscosity resulting from a high crosslinked density. The implications of surface ordering on liquid crystal photoalignment are discussed.

  14. Gas flow-field induced director alignment in polymer dispersed liquid crystal microdroplets deposited on a glass substrate

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on glass substrates by the processes of polymerization and solvent evaporation induced phase separation. The electron and the optical polarization microscopies of the films reveal that PDLC microdroplets formed during the process of phase separation near the top surface of the film remain exposed and respond to shear stress due to air or gas flow on the surface. Optical response of the film to an air flow-induced shear stress input on the free surface has been measured. Director orientation in the droplets changes with the applied shear stress leading to time varying transmitted light intensity. Director dynamics of the droplet for an applied step shear stress has been discussed from free energy considerations. Results on the measurement of light transmission as a function of the gas flow parameter unambiguously demonstrate the potential of these systems for use as boundary layer and gas flow sensors.

  15. Current trends in studies on reverse-mode polymer dispersed liquid-crystal films — A review

    NASA Astrophysics Data System (ADS)

    Ahmad, Farzana; Jamil, M.; Jeon, Y. J.

    2014-07-01

    Reverse-mode polymer dispersed liquid crystals (PDLCs) comprise an important new class of materials for optical device applications. Generally reverse-mode PDLCs are transparent and opaque in the absence and presence of an external field, respectively. Display devices based on reverse-mode PDLC technology are useful for large-area displays; because their fabrication for manufacturing shutters is considered to be easier and faster, they are also employed for automotive technology and smart windows. These devices can be operated at a low voltage, which conserves energy in intelligent-device applications. This work presents a comprehensive review of past research regarding reverse-mode PDLCs and includes the advantageous features, applications, and various fabrication methods of reverse-mode PDLCs and photo-chromic reverse-mode PDLCs. In addition, some new features of this technology that have recently been reported and future investigations by a variety of research groups are presented.

  16. Doped Multilayer Polymer Cholesteric-Liquid-Crystal (PCLC) Flakes: A Novel Electro-Optical Medium for Highly Reflective Color Flexible Displays

    SciTech Connect

    Marshall, K.L.; Hasman, K.; Leitch, M.; Cox, G.; Kosc, T.Z.; Trajkovska-Petkoska, A.; Jacobs, S.D.

    2008-03-17

    Polymer cholesteric-liquid-crystal (PCLC) flake/fluid-host suspensions are a novel particle display technology for full-color reflective display applications on rigid or flexible substrates. These “polarizing pigments” require no polarizers or color filters, switch rapidly at very low voltages, and produce highly saturated colors with a reflection efficiency approaching 80%.

  17. Polymer Cholesteric-Liquid-Crystal (PCLC) Flake/Fluid Host Electro-Optical Suspensions and Their Applications in Color Flexible Reflective Displays

    SciTech Connect

    Marshall, K.L.; Trajkovska-Petkoska, A.; Hasman, K.; Leitch, M.; Cox, G.; Kosc, T.Z.; Jacobs, S.D.

    2008-03-13

    Polymer cholesteric-liquid-crystal (PCLC) flake/fluid-host suspensions are a novel particle display technology for full-color reflective display applications on rigid or flexible substrates. These “polarizing pigments” require no polarizers or color filters, switch rapidly at very low voltages, and produce highly saturated colors with a reflection efficiency approaching 80%.

  18. Polymer Cholesteric Liquid Crystal (PCLC) Flake/Fluid Host Suspensions: A Novel Electro-Optical Medium for Reflective Color Display Applications

    SciTech Connect

    Marshall, K.L.; Trajkovska-Petkoska, A.; Kosc, T.Z.; Jacobs, S.D.

    2006-04-17

    Polymer cholesteric liquid crystal (PCLC) flake/fluid host suspensions are a new and promising particle display technology for both full-color flexible display applications and electronic paper. Devices containing these "polarizing pigments" switch rapidly at very low voltages and produce highly saturated, circularly polarized reflectance colors without requiring polarizers or color filters.

  19. Erasable thin-film optical diode based on a photoresponsive liquid crystal polymer.

    PubMed

    Zhang, Xinping; Zhang, Jian; Sun, Yujian; Yang, Huai; Yu, Haifeng

    2014-04-01

    We report a thin-film optical diode written into thin films of a liquid-crystalline polymer (LCP), which is based on the photoinduced LC-to-isotropic phase transition of LCPs. The interference pattern between a collimated and a focused UV laser beam is imprinted as chirped volume-phase gratings in photoresponsive LCP films and no further processing steps like development or liftoff are required for the fabrication. The resultant thin-film device not only possesses the fundamental functions of an optical lens for laser beam focusing, but also shows diode effects with the focusing/defocusing function dependent on the direction of light incidence and orientation of the device. Furthermore, this photonic thin-film lens exhibits a spatially tunable spectroscopic response, revealing a unique physics of secondary excitations of resonance modes of the single-layer LCP waveguide grating structures. This reveals the mechanisms for the focusing/defocusing of laser beams by chirped grating structures. Erasability and reconstructibility of the photoresponsive LCPs guarantee rewritability of the thin-film diode lens. PMID:24584886

  20. Liquid Crystals in Tribology

    PubMed Central

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-01-01

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered. PMID:19865534

  1. Shape-responsive actuator from a single layer of a liquid-crystal polymer.

    PubMed

    Kamal, Tahseen; Park, Soo-young

    2014-10-22

    Actuation of various shape changes, including bending, helical twisting, and reversible hinging, has been achieved from a single-layer sheet of poly(1,4-di(4-(3-acryloyloxypropyloxy)benzoyloxy)-2-methylbenzene) [poly(RM257)]. This actuator was developed through photopolymerization of a reactive liquid-crystal (LC) monomer (RM257) mixed with 4-pentyl-4'-cyanobiphenyl (5CB, nematic LC at room temperature) in a planar polyimide-coated LC cell. The UV beam perpendicular to one side of the LC cell produced an asymmetric phase separation between the poly(RM257) network and 5CB that resulted in an asymmetric porous structure along the thickness direction when the 5CB was extracted, in which the UV-exposed surface was pore-free and compact while the opposite surface was highly porous. As a result of this structure, the dry and curled poly(RM257) film exhibits actuation behavior when placed in acetone because of a difference in swelling between the two morphologically different sides, the film UV-exposed and nonexposed sides. The actuation of a three-dimensional tetrahedron (pyramidal) structure is also demonstrated for the first time by using a simple photopatterning technique to selectively control its asymmetric morphology at specific locations. PMID:25243321

  2. Power generating reflective-type liquid crystal displays using a reflective polariser and a polymer solar cell

    PubMed Central

    Ho Huh, Yoon; Park, Byoungchoo

    2015-01-01

    We herein report the results of a study of a power generating reflective-type liquid crystal display (LCD), composed of a 90° twisted nematic (TN) LC cell attached to the top of a light-absorbing polymer solar cell (PSC), i.e., a Solar-LCD. The PSC consisted of a polymer bulk-heterojunction photovoltaic (PV) layer of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] and [6,6]-phenyl C71 butyric acid methyl ester (PCDTBT:PCBM70), and showed a high power conversion efficiency of about 5%. In order to improve the visibility of the Solar-LCD, between the TN-LC and the PV cells we inserted a reflective polariser of a giant birefringent optical (GBO) film. The reflectivity from the Solar-LCD was observed to be considerably increased by more than 13–15% under illumination by visible light. The Solar-LCD also exhibited a significantly improved contrast ratio of more than 17–19. We believe there is a clear case for using such Solar-LCDs in new power-generating reflective-type displays; taken as a whole these results also demonstrate the possibility of their application in a number of energy-harvesting opto-electrical display devices. PMID:26101099

  3. The Effect of Dissolved Side-Group Polymers on Pattern Dynamics in Nematic Liquid Crystals in a Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Pashkovsky, E. E.; Stille, W.; Strobl, G.; Talebi, D.

    1997-05-01

    Patterns formed by inversion walls in nematic layers exposed to a rotating magnetic field were studied. Dilute solutions of a mesogenic side group polymethacrylate in a low molecular weight liquid crystal (5CB) were used in comparison with the pure solvent. As found in a previous work, in this system the intensity of backflow (fluid flow induced by director rotation) can be controlled by the polymer concentration due to a specific increase of shear viscosity coefficients. In the synchronous regime of director rotation no significant effects of backflow on the dynamics of the walls are observed. Dynamic solitons known from the synchronous regime were also found at asynchronous rotation, when soliton lattices are formed by continuous nucleation. Here comparison with theory for given values of the lattice period shows soliton currents significantly reduced by backflow. Two of the three additional pattern forming states exclusively found at asynchronous rotation were completely suppressed in solutions with sufficient polymer concentration. The third of these states is affected by backflow in the growth rate of its patterns. Numerical calculations were performed to explain behavior of the patterns in the asynchronous state. For pure 5CB a quantitative comparison with the experiment was possible.

  4. Effects of multi-context information recorded at different regions in holographic polymer-dispersed liquid crystal on optical reconfiguration

    NASA Astrophysics Data System (ADS)

    Ogiwara, Akifumi; Watanabe, Minoru

    2016-08-01

    A holographic polymer-dispersed liquid crystal (HPDLC) memory to record multi-context information for an optically reconfigurable gate array is formed by constructing a laser illumination system to implement successive laser exposures at different small regions in a glass cell filled with LC composites. The context pattern arrangements for circuit information are designed in a 3 × 3 in.2 photomask by electron beam lithography, and they are recorded as laser interference patterns at nine regions separated in an HPDLC sample by a laser interferometer composed of movable pinhole and photomask plates placed on motorized stages. The multi-context information reconstructed from the different regions in the HPDLC is written to a photodiode array in a gate-array VLSI by switching only the position of laser irradiation using the displacement of the pinhole plate under the control of a personal computer (PC). The effects of multi-context information recorded at different regions in the HPDLC on optical reconfiguration are discussed in terms of the optical system composed of ORGA VLSI and HPDLC memory. The internal structures in the HPDLC memory formed by multi-context recording are investigated by scanning electron microscopy (SEM) observation, and the configurations composed of LC and polymer phases are revealed at various regions in the HPDLC memory.

  5. Power generating reflective-type liquid crystal displays using a reflective polariser and a polymer solar cell.

    PubMed

    Ho Huh, Yoon; Park, Byoungchoo

    2015-01-01

    We herein report the results of a study of a power generating reflective-type liquid crystal display (LCD), composed of a 90° twisted nematic (TN) LC cell attached to the top of a light-absorbing polymer solar cell (PSC), i.e., a Solar-LCD. The PSC consisted of a polymer bulk-heterojunction photovoltaic (PV) layer of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] and [6,6]-phenyl C71 butyric acid methyl ester (PCDTBT:PCBM70), and showed a high power conversion efficiency of about 5%. In order to improve the visibility of the Solar-LCD, between the TN-LC and the PV cells we inserted a reflective polariser of a giant birefringent optical (GBO) film. The reflectivity from the Solar-LCD was observed to be considerably increased by more than 13-15% under illumination by visible light. The Solar-LCD also exhibited a significantly improved contrast ratio of more than 17-19. We believe there is a clear case for using such Solar-LCDs in new power-generating reflective-type displays; taken as a whole these results also demonstrate the possibility of their application in a number of energy-harvesting opto-electrical display devices. PMID:26101099

  6. Digital mirror devices and liquid crystal displays in maskless lithography for fabrication of polymer-based holographic structures

    NASA Astrophysics Data System (ADS)

    Rahlves, Maik; Kelb, Christian; Rezem, Maher; Schlangen, Sebastian; Boroz, Kristian; Gödeke, Dina; Ihme, Maximilian; Roth, Bernhard

    2015-10-01

    Polymer-based holographic and diffractive optical elements have gained increasing interest due to their potential to be used in a broad range of applications, such as illumination technology, micro-optics, and holography. We present a production process to fabricate polymer-based diffractive optical elements and holograms. The process is based on maskless lithography, which is used to fabricate optical elements in photoresist. We discuss several lab-level lithography setups based on digital mirror devices and liquid crystal devices with respect to illumination efficiency, resolution, and contrast. The entire optical setup is designed with emphasis on low-cost components, which can be easily implemented in an optical research lab. In a first step, a copy of the microstructures is replicated into optical polymeric materials by means of a soft stamp hot embossing process. The soft stamp is made from polydimethylsiloxan, which is coated onto the microstructure in the photoresist. The hot embossing process is carried out by a self-made and low-cost hot embossing machine. We present confocal topography measurements to quantify the replication accuracy of the process and demonstrate diffractive optical elements and holographic structures, which were fabricated using the process presented.

  7. Fast response liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Wu, Yung-Hsun

    Liquid crystal (LC) has been widely used for displays, spatial light modulators, variable optical attenuators (VOAs) and other tunable photonic devices. The response time of these devices is mainly determined by the employed liquid crystal material. The response time of a LC device depends on the visco-elastic coefficient (gamma1/K11), LC cell gap (d), and applied voltage. Hence, low visco-elastic coefficient LC materials and thinner cell gap are favorable for reducing the response time. However, low visco-elastic coefficient LCs are usually associated with a low birefringence because of shorter molecular conjugation. For display applications, such as LCD TVs, low birefringence (Deltan<0.1) LCs are commonly used. However, for optical communications at 1550 nm, low birefringence requires to a thick cell gap which, in turn, increases the response time. How to obtain fast response for the LC devices is a fundamentally important and technically challenging task. In this dissertation, we investigate several methods to improve liquid crystal response time, for examples, using dual-frequency liquid crystals, polymer stabilized liquid crystals, and sheared polymer network liquid crystals. We discover a new class of material, denoted as sheared polymer network liquid crystal (SPNLC) which exhibits a submillisecond response time. Moreover, this response time is insensitive to the LC cell gap. This is the first LC device exhibiting such an interesting property. Chapters 1 and 2 describe the motivation and background of this dissertation. From chapter 3 to chapter 6, dual-frequency liquid crystals and polymer network methods are demonstrated as examples for the variable optical attenuators. Variable optical attenuator (VOA) is a key component in optical communications. Especially, the sheared PNLC VOA shows the best result; its dynamic range reaches 43 dB while the response time is in the submillisecond range at 1550 nm wavelength, which is 50 times faster than the commercial

  8. Liquid crystal polyester thermosets

    SciTech Connect

    Benicewicz, B.C.; Hoyt, A.E.

    1990-01-01

    The present invention relates to the field of curable liquid crystal polyester monomers and to thermoset liquid crystalline polyester compositions prepared therefrom. It is an object of this invention to provide curable liquid crystalline polyester materials. Another object of this invention is to provide a process of preparing curable liquid crystal polyester monomers. Yet another object of this invention is to provide liquid crystalline blends of polyester materials. It is a further object of this invention to provide thermoset liquid crystalline polyester compositions. It is a still further object of this invention to provide thermoset liquid crystalline polyester compositions having a high heat resistance. 1 fig.

  9. Liquid crystal polyester thermosets

    SciTech Connect

    Benicewicz, B.C.; Hoyt, A.E.

    1990-12-31

    The present invention relates to the field of curable liquid crystal polyester monomers and to thermoset liquid crystalline polyester compositions prepared therefrom. It is an object of this invention to provide curable liquid crystalline polyester materials. Another object of this invention is to provide a process of preparing curable liquid crystal polyester monomers. Yet another object of this invention is to provide liquid crystalline blends of polyester materials. It is a further object of this invention to provide thermoset liquid crystalline polyester compositions. It is a still further object of this invention to provide thermoset liquid crystalline polyester compositions having a high heat resistance. 1 fig.

  10. Liquid Crystal Optofluidics

    SciTech Connect

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  11. Ordered structures in proton conducting membranes from supramolecular liquid crystal polymers.

    PubMed

    Every, Hayley A; Mendes, Eduardo; Picken, Stephen J

    2006-11-30

    Highly sulfonated forms of poly(p-phenylene terephthalamide) (PPTA) have been prepared in three different molecular configurations; sulfonated diamine form (S-PPTA), sulfonated terephthalic acid form (S-invert-PPTA), and the bi-sulfonated form (S2-PPTA). All three polymers are water soluble to a certain degree and films were cast from solution for S-PPTA and S-invert-PPTA. S-PPTA films absorb less water than S-invert-PPTA (under controlled humidity conditions) and consequently, the conductivity for this polymer is also slightly lower. Although the conductivities are comparable to Nafion (of the order of 10(-2) to 10(-1) Scm(-1)), proton mobility is more restricted. X-ray diffraction showed that the rigid molecules are aligned in opposite directions for the two polymer films, being homeotropic in S-PPTA films and planar for S-invert-PPTA. SEM analysis demonstrated layering in the same direction as the alignment of the polymer chains. The variation in the polymer alignment is most likely the result of the differences in the solution properties and the film forming process. It is possible, however, that this alignment could be exploited to enhance proton transport and thus these films are of interest for fuel cell membranes. PMID:17125333

  12. Quantitative Assessment of Coumarin-Containing Polymer Film's Capability for Photoalignment of Liquid Crystals

    SciTech Connect

    Kim, C.; Wallace, J.U.; Trajkovska, A.; Ou, J.J.; Chen, S.H.

    2007-12-12

    The photoalignment of a nematic fluid, E-7, and a glassy-nematic oligofluorene, F(MB)5, was investigated on films of Polymers 1 and 2 in the parallel regime. Polarized absorption spectroscopy and computational chemistry were employed to characterize coumarin monomer's and dimer's molar extinction coefficients and to locate absorption dipoles as parallel to their long molecular axes. Moreover, their orientational order parameters, S_m and S_d, were experimentally determined as functions of the extent of dimerization. Higher S_d and Y_d, coumarin dimer's mole fraction, were achieved in films of Polymer 1 than in Polymer 2 because of the greater coumarin mobility of the former. The ability of a coumarin-containing photoalignment film to orient a spin-cast F(MB)5 film was found to improve with increasing Y_d S_d to an extent comparable to that of a rubbed polyimide film. Because of the relatively short lengths of its constituent molecules, E-7 was oriented equally well on both polymer films regardless of the Y_d S_d values.

  13. Supramolecular liquid-crystal gels formed by polyfluorene-based π-conjugated polymer for switchable anisotropic scattering device.

    PubMed

    Chen, Jun-Wei; Huang, Chiu-Chang; Chao, Chih-Yu

    2014-05-14

    To overcome the problem of high driving voltage and low contrast ratio in the switchable scattering device of conventional liquid-crystal (LC) physical gel, a new type of supramolecular LC physical gel has been developed and fabricated through the fibrous self-assembly of the polyfluorene-based π-conjugated polymer, poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT), in nematic LC mixture E7. It was found that the rubbed interface between the LC molecules and polyimide layer can induce the LC physical gels to demonstrate fantastic light scattering characteristic. The gels with oriented self-assembled supramolecular structures exhibiting significant anisotropic light scattering in the main-chain direction of the F8BT molecules under an extremely low driving voltage (ca. 2.7 V) are reported for the first time. In addition, the contrast ratio can be reached exceeding 1000. In contrast to conventional LC physical gels, the large reduction of driving voltages of the supramolecular gel provides great possibility for application in various electro-optical devices such as tunable polarizers, transflective displays, and polarized light modulators. PMID:24724859

  14. Photoalignment control: self-focusing effect in hybrid- and homeotropic-aligned dye-doped polymer-stabilized liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, J.; Shishido, A.

    2015-09-01

    Nonlinear optics has drawn much attention for its great potential in applications, such as frequency conversion, multiple-photon absorption, self-focusing, and so on. However, such optical nonlinearities are generally observed at very high light intensities. In this study, we designed hybrid-aligned dye-doped polymer-stabilized liquid crystals (PSLC), in which the molecular director orientation gradually changes from homeotropic at one surface to homogeneous at the other. In such film, the threshold intensity required to form self-focusing effect was markedly reduced by a factor of 8.5 compared to that in a conventional homeotropic cell, which enabled the generation of the self-focusing effect using a handheld 1-mW laser pointer. In addition, we investigated the structural effect of dye molecules: azo-dye methyl red (MR, photoisomerizable)-doped PSLC was prepared and its NLO response was evaluated. It turned out that such MR-based LC system was not effective for self-focusing effect compared to oligothiophene-doped systems.

  15. Near infrared Kerr effect and description of field-induced phase transitions in polymer-stabilized blue phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Atorf, B.; Rasouli, H.; Nordendorf, G.; Wilkes, D.; Kitzerow, H.

    2016-02-01

    Studies of the influence of an electric field E on the effective refractive index of a polymer-stabilized blue phase in the near infrared spectral range reveal a considerable field-induced birefringence. At moderate voltages, the birefringence increases linearly with the square of the field strength as expected for the electro-optic Kerr effect, with an effective Kerr constant of K ≈ 6.3 - 6.9 × 10-10 m V-2. However, for E > ≈7.3 V/μm, the slope of the field-induced birefringence versus E2 increases abruptly, before saturation is reached at E > ≈8.5 V/μm. Based on previous observations on blue phases in the visible wavelength range, the discontinuous change can be attributed to a field-induced phase transition. A modification of the extended Kerr model introduced by Wu and coworkers is suggested to take this additional effect into account. In addition to the promising properties of blue phases for improved liquid crystal displays, the observed field-induced birefringence in the infrared region opens interesting perspectives for telecommunication and other non-display applications.

  16. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    PubMed

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight. PMID:26592303

  17. Modeling the Effects of Microencapsulation on the Electro-Optic Behavior of Polymer Cholesteric Liquid Crystal Flakes

    SciTech Connect

    Cox, G.P.; Marshall, K.L.; Lambropoulos, J.C.; Leitch, M.; Fromen, C.; Jacobs, S.D.

    2010-01-10

    A method for modeling the effect of microencapsulation on the electro-optical behavior of polymer cholesteric liquid crystal (PCLC) flakes suspended in a host fluid is introduced. Several microencapsulation configurations in an applied ac electric field are investigated using COMSOL MULTIPHYSICS software in combination with an analytical model. The field acting on the flakes is significantly altered as various encapsulant materials and boundary conditions are explored. The modeling predicts that test cells with multiple materials in the electric field path can have a wide range of electro-optic responses in ac electric fields. Both theoretical predictions and experimental evidence show that for PCLC flake reorientation to occur due to Maxwell–Wagner polarization, a reasonably strong electric field must be present along with at least moderately dissimilar PCLC flake and host fluid material dielectric constants and conductivities. For materials with low dielectric constants, electrophoretic behavior is observed under dc drive conditions at high field strengths for all evaluated microencapsulation configurations. This modeling method is shown to be a useful predictive tool for developing switchable particle devices that use microencapsulated dielectric particles in a host fluid medium.

  18. Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive

    SciTech Connect

    Suzuki, Atsushi; Zushi, Masahito; Suzuki, Hisato; Ogahara, Shinichi; Akiyama, Tsuyoshi; Oku, Takeo

    2014-02-20

    Bulk heterojunction organic solar cell based on liquid crystal semiconducting polymers of poly[9,9-dioctylfluorene-co-bithiophene] (F8T2) as p-type semiconductors and fullerenes (C{sub 60}) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as electron donor and acceptor has been fabricated and characterized for improving photovoltaic and optical properties. The photovoltaic performance including current voltage curves in the dark and illumination of the F8T2/C{sub 60} conventional and inverted bulk heterojunction solar cells were investigated. Relationship between the photovoltaic properties and morphological behavior was focused on tuning for optimization of photo-voltaic performance under annealing condition near glass transition temperature. Additive-effect of diiodooctane (DIO) and poly(3-hexylthiophene-2,5-diyl) (P3HT) on the photovoltaic performance and optical properties was investigated. Mechanism of the photovoltaic properties of the conventional and inverted solar cells will be discussed by the experimental results.

  19. P- V- T properties of a polymer liquid crystal subjected to pre-drawing at several temperatures

    NASA Astrophysics Data System (ADS)

    Broza, Georg; Castaño, Victor M.; Martinez-Barrera, Gonzalo; Menard, Kevin P.; Simões, Carla

    2005-03-01

    We have studied the copolymer of poly(ethylene terephthalate) (PET) with 0.6 mole fraction of p-hydroxybenzoic acid (PHB). It is a longitudinal polymer liquid crystal (PLC). A number of otherwise identical samples were subjected to drawing to achieve in turn 20%, 40%, 60%, 80% and 100% increase in length. The drawing was performed isothermally at 60, 100 and 140 °C. Pressure-volume-temperature (P-V-T) results have been obtained for pressures up to 200 J cm -3 and temperatures up to 150 °C or so. Parameters of the Hartmann equation of state have been evaluated. Drawing first results in an increase in specific (and also free) volume, then in a decrease caused by increased orientation of the PLC, and finally in an apparent increase caused by the appearance of voids. The tensile modulus E has been determined for all pre-drawn samples. It reflects the volumetric changes a rebours: the initial increase in specific volume results in lower E values, orientation in E increase, and void formation in a second decrease.

  20. Three-Dimensional Microstructure of a Polymer-Dispersed Liquid Crystal Observed by Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Pierron, Jean; Tournier-Lasserve, Valérie; Sopena, Pierre; Boudet, Alain; Sixou, Pierre; Mitov, Michel

    1995-11-01

    A film consisting of an amorphous photo-crosslinkable polymer matrix and a dispersion of microinclusions of a cholesteric polymer was investigated by transmission electron microscopy (TEM). The polymerization procedure of the blend provides a composite with many small nodules of spherical or ellipsoidal shapes, with sizes between 0.4 and 6 μm. The cholesteric stratification is well evidenced in transmission electron microscopy by dark lines due to diffraction contrast. The 3D organization was reconstructed by the observation of successive ultramicrotomed sections. Six types of nodules were distinguished according to the number of defects (foci or disclination lines), among which only three had already been observed and theoretically calculated. The confined geometry inherent in the size of the nodules, close to the cholesteric pitch, is responsible of these unexpected structures. In these conditions, the surface forces are in tight competition with the cholesteric elastic forces.

  1. Enhancement of third-harmonic generation in a polymer-dispersed liquid-crystal grating

    NASA Astrophysics Data System (ADS)

    Markowicz, Przemyslaw P.; Hsiao, Vincent K. S.; Tiryaki, Hanifi; Cartwright, Alexander N.; Prasad, Paras N.; Dolgaleva, Ksenia; Lepeshkin, Nick N.; Boyd, Robert W.

    2005-08-01

    We report the observation of significant enhancement of one-step third-harmonic generation in a one-dimensional photonic crystal pumped by a near-infrared laser beam tuned to the low-frequency edge of the first photonic band gap. The third-harmonic phase matching can be controlled by changing the angle of incidence of the fundamental radiation, allowing tunability of the third-harmonic wavelength. The observed phenomenon was modeled theoretically using the transfer-matrix method. The enhancement is attributed to the combined action of phase-matching between the pump and harmonic waves and pump-field localization within the photonic crystal.

  2. Holographic polymer networks formed in liquid crystal phase modulators via a He-Ne laser to achieve ultra-fast optical response.

    PubMed

    Chien, Chun-Yu; Hsu, Che-Ju; Chen, Yu-Wen; Tseng, Sheng-Hao; Sheu, Chia-Rong

    2016-04-01

    The holographic polymer network formed in liquid crystal (LC) phase modulators via a He-Ne laser in this study demonstrates ultra-fast optically response and low light scattering. These advantages are mainly caused by the small LC domains and uniform polymer network when processing LC cells via holographic exposure to a He-Ne laser. The use of this method to fabricate LC cells as phase modulators results in a decay time of 49 μs under 2π phase modulation at room temperature. The predicted fast optical response can be achieved when operating devices at high temperatures. PMID:27137042

  3. Dissolving Polymers in Ionic Liquids.

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Harner, John

    2009-03-01

    Dissolution and phase behavior of polymers in ionic liquids have been assessed by solution characterization techniques such as intrinsic viscosity and light scattering (static and dynamic). Elevated viscosity proved the greatest obstacle. As yet, whether principles standard to conventional polymer solutions apply to ionic liquid solutions is uncertain, especially for polymers such as polyelectrolytes and hydrophilic block copolymers that may specifically interact with ionic liquid anions or cations. For flexible polyelectrolytes (polymers releasing counterions into high dielectric solvents), characterization in ionic liquids suggests behaviors more typical of neutral polymer. Coil sizes and conformations are approximately the same as in aqueous buffer. Further, several globular proteins dissolve in a hydrophilic ionic liquid with conformations analogous to those in buffer. General principles of solubility, however, remain unclear, making predictions of which polymer dissolves in which ionic liquid difficult; several otherwise intractable polymers (e.g., cellulose, polyvinyl alcohol) dissolve and can be efficiently functionalized in ionic liquids.

  4. Liquid crystalline polymers

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The remarkable mechanical properties and thermal stability of fibers fabricated from liquid crystalline polymers (LCPs) have led to the use of these materials in structural applications where weight savings are critical. Advances in processing of LCPs could permit the incorporation of these polymers into other than uniaxial designs and extend their utility into new areas such as nonlinear optical devices. However, the unique feature of LCPs (intrinsic orientation order) is itself problematic, and current understanding of processing with control of orientation falls short of allowing manipulation of macroscopic orientation (except for the case of uniaxial fibers). The current and desirable characteristics of LCPs are reviewed and specific problems are identified along with issues that must be addressed so that advances in the use of these unique polymers can be expedited.

  5. Loop polymer brushes from polymer single crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Li, Christopher

    2014-03-01

    Loop polymer brushes represent a category of polymer brushes with both chain ends being tethered to a surface or interface with sufficiently high density. Due to this morphological difference, loop brushes exhibit distinct properties compared with traditional polymer brushes with single chain end being tethered. In our study, α, ω-functionalized polycaprolactone (PCL) single crystals were prepared as templates for polymer brush synthesis. By carefully controlling crystallization condition and immobilization, looped polymer brushes were successfully prepared. Comprehensive studies on the morphology and physical properties of these polymer brushes were carried out using Atomic Force Microscopy and FTIR. Advantages of using this method include exclusive loop morphology, high grafting density, controlled tethering sites and tunable loop size.

  6. Effect of SiO2 nanoparticle doping on electro-optical properties of polymer dispersed liquid crystal lens for smart electronic glasses

    NASA Astrophysics Data System (ADS)

    Kim, Eunju; Liu, Yang; Hong, Sung-Jei; Han, Jeong In

    2015-03-01

    In this paper, SiO2 nanoparticle doped polymer dispersed liquid crystal (PDLC) lenses were made from a mixture of prepolymer, E7 liquid crystal and SiO2 nanoparticles by the polymerization induced phase separation (PIPS) process for smart electronic glasses with auto-shading and auto-focusing functions. Electro-optical properties of doped and undoped samples including transmittance, driving voltage, contrast ratio and slope of the linear region of the transmittance-voltage were measured, compared and analyzed. Driving voltage of SiO2 nanoparticle doped PDLC lenses moderately improved. But the slope of linear region, response time and contrast ratio deteriorated, especially the latter two. It can be assumed that these doping effects were due to the mechanistic change from liquid-gel separation to liquid-liquid separation by the fast heterogeneous nucleation rate caused by the increased nucleation at the surface of SiO2 nanoparticles. The marked deteriorations of falling response time and contrast ratio were due to well defined liquid crystal molecules in LC droplets, which induced slow and imperfect random rearrangement of LC molecules at the off state.

  7. Electro-optical behavior of polymer cholesteric liquid crystal flake/fluid suspensions in a microencapsulation matrix

    NASA Astrophysics Data System (ADS)

    Marshall, Kenneth L.; Kimball, Erin; McNamara, Shari; Kosc, Tanya Z.; Trajkovska-Petkoska, Anka; Jacobs, Stephen D.

    2004-10-01

    When flakes of polymer cholesteric liquid crystals (PCLC's) are dispersed in a fluid host and subjected to an applied electric field, their bright, polarization-selective reflection color is extinguished as they undergo field-induced rotation. Maxwell-Wagner (interfacial) polarization is the underlying physical mechanism for flake motion and results from the large difference in dielectric properties of the flake and fluid hosts. Flake reorientation times can be as short as 300 ms to 400 ms at exceedingly low driving fields (10 to 100 mVrms/μm) and are dependent on flake size and shape, fluid host dielectric constant and viscosity, and drive-filed frequency and magnitude. These attributes make this new materials system of special interest in electro-optical and photonics applications, where reflective-mode operation, polarization selectivity, and low power consumption are of critical importance (e.g., reflective displays). Until very recently, the electro-optical reorientation of PCLC flakes has been studied only in sandwich-type cells using glass substrates. In this work, we report on the dc field-induced reorientation behavior of PCLC flakes contained in confined spherical or near-spherical fluid-filled cavities formed by microencapsulation of the flake/fluid host dispersion in a water-borne flexible binder. This PCLC flake-fluid host/binder emulsion is coated onto either rigid or flexible condutive-coated substrates and then overcaoted (uniformly or patterned) using a conductive emulsion or paint that is either absorbing (black) or reflecting (silver). In addition to providing a unique environment to study flake motion, this device geometry also extends the application scope of the technology to conformal, electrically switchable coatings for large planar areas and flexible media for information display applications (e.g., electronic paper).

  8. Excitability in liquid crystal.

    PubMed

    Coullet, P.; Frisch, T.; Gilli, J. M.; Rica, S.

    1994-09-01

    The spiral waves observed in a liquid crystal submitted to a vertical electric field and a horizontal rotating magnetic field are explained in the framework of a purely mechanical description of the liquid crystal. The originality of the experiment described in this paper is the presence of the vertical electric field which allows us to analyze the spiral waves in the framework of a weakly nonlinear theory. PMID:12780124

  9. Photoalignment of a Nematic Liquid Crystal Fluid and Glassy-Nematic Oligofluorenes on Coumarin-Containing Polymer Films

    SciTech Connect

    Trajkovska, A.; Kim, C.; Marshall, K.L.; Mourey, T.H.; Chen, S.H.

    2007-03-19

    The orientations of both a nematic liquid crystal fluid and a series of monodisperse glassy-nematic oligofluorenes were investigated on photoalignment films comprising a polymethacrylate backbone with 7-benzoyloxycoumarin pendants. Both classes of liquid crystalline material were found to undergo a transition from a parallel to a perpindicular orientation with reference to the polarization axis of UV-irradiation at a sufficiently high extent of dimerization.

  10. Rheo-Optical Studies on a Polymer Liquid Crystal Under the Influence of Flow or Magnetic Fields.

    NASA Astrophysics Data System (ADS)

    Srinivasarao, Mohan

    1990-01-01

    The response of a lyotropic liquid crystal to an external perturbing field (flow or magnetic field) has been studied. Solutions of rodlike poly(1,4-phenylene -2,6-benzobisthiazole) (PBT) in methane sulfonic acid (MSA) have been used. The study is primarily limited to the anisotropic phase. Two molecular weights were used, both forming a liquid-crystalline phase above 3% by weight of the polymer in solution. Flow birefringence measurements were attempted to characterize flow-induced orientation in the nematic phase. However, a stable, uniform, steady-state flow condition was not reached. The transmitted intensities of polarized light, both with and without an analyzer, fluctuate rapidly, indicating that a stable, uniform flow did not obtain in torsional shear flow. By contrast, a constant stress was measured above 100 units of strain. During the course of this study, we were successful in obtaining monodomain nematic solutions. Monodomains were used to study the response of the material to external fields (flow or magnetic field). Experiments were done in the twist geometry in an effort to obtain the twist elastic constant for the solutions. We found that an instability is created on the application of a magnetic field, producing a phase grating. The instability has been characterized by light microscopy, fluorescence polarization and conoscopy. Theoretical description of this instability is unavailable as yet. We have demonstrated that the instability involves a three -dimensional flow pattern which gives rise to a reorientation of the director in three dimensions. Monodomains were used to study the flow properties of PBT solutions. Microscopic observations were made on textures created during flow. Conoscopy was used to study the director distortion at the onset of shear flows. We have established that alpha_2/ alpha_3 is less than zero, giving rise to unstable flow conditions. Situations with flow parallel and perpendicular to the director were examined. We have

  11. Predicting Polymer/Liquide Interactions

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1985-01-01

    Calculations of liquid absorption by rubber vulcanizates agree with experimental results. Equation allows calculation of swelling of rubber vulcanizates by liquids, based on knowledge of chemical structure of polymer and solvent. Calculated values agree favorably with experimental data.

  12. Temperature and orientation dependence of surface relief gratings based on dye-doped polymer film with the interface of nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Huang, Shuan-Yu; Huang, Bing-Yau; Hung, Wen-Chi; Yu, Kai-Yu; Cheng, Wen-Shou; Kuo, Chie-Tong

    2011-02-01

    The formation of surface relief grating on dye-doped polymer film with the interface of nematic liquid crystals has been investigated by means of the holographic technique. The first-order diffraction efficiency of surface relief grating depends on the temperature and the orientation of molecular director in the interface of nematic liquid crystals. The diffraction efficiency is roughly independent of thermal fluctuations of molecular director in the most part of nematic temperature range and apparently drops near the transition temperature. The morphology of surface relief grating demonstrates that the surface modulation is larger for molecular director parallel to the groove direction. The experimental result also shows that the first-order diffraction efficiency is dependent on the surface modulation of surface relief grating.

  13. Chem I Supplement: Liquid Crystals--The Chameleon Chemicals.

    ERIC Educational Resources Information Center

    Brown, Glenn H.

    1983-01-01

    Presents information relevant to everyday life so as to stimulate student interest in the properties of the two basic types of liquid crystals: thermotropic and lyotropic. Describes the applications of liquid crystals to electronics, biomedicine, and polymer science and appraises the future of liquid crystal research. (JM)

  14. Mesogen-jacketed liquid crystalline polymers.

    PubMed

    Chen, Xiao-Fang; Shen, Zhihao; Wan, Xin-Hua; Fan, Xing-He; Chen, Er-Qiang; Ma, Yuguo; Zhou, Qi-Feng

    2010-08-01

    This critical review covers the recent progress in the research of mesogen-jacketed liquid crystalline polymers (MJLCPs), special side-on side-chain liquid crystalline polymers with very short spacers or without spacers. MJLCPs can self-organize into supramolecular columnar phases with the polymer chains aligned parallel to one another or smectic phases with the backbones embedded in the smectic layers. The semi-rigid rod-like MJLCP with a tunable rod shape in both length and diameter provides an excellent building block in designing novel rod-coil liquid crystalline block copolymers which can self-assemble into hierarchical supramolecular nanostructures depending on the competition between liquid crystal formation and microphase separation (229 references). PMID:20559597

  15. Electric and magnetic field-assisted orientational transitions in the ensembles of domains in a nematic liquid crystal on the polymer surface.

    PubMed

    Parshin, Alexander M; Gunyakov, Vladimir A; Zyryanov, Victor Y; Shabanov, Vasily F

    2014-01-01

    Using electro- and magneto-optical techniques, we investigated orientational transitions in the ensembles of domains in a nematic liquid crystal on the polycarbonate film surface under the conditions of competing surface forces that favor radial and uniform planar alignment of nematic molecules. Having analyzed field dependences of the intensity of light passed through a sample, we established the threshold character of the orientational effects, plotted the calculated intensity versus magnetic coherence length, and compared the latter with the equilibrium length that characterizes the balance of forces on the polymer surface. PMID:25279586

  16. Electric and Magnetic Field-Assisted Orientational Transitions in the Ensembles of Domains in a Nematic Liquid Crystal on the Polymer Surface

    PubMed Central

    Parshin, Alexander M.; Gunyakov, Vladimir A.; Zyryanov, Victor Y.; Shabanov, Vasily F.

    2014-01-01

    Using electro- and magneto-optical techniques, we investigated orientational transitions in the ensembles of domains in a nematic liquid crystal on the polycarbonate film surface under the conditions of competing surface forces that favor radial and uniform planar alignment of nematic molecules. Having analyzed field dependences of the intensity of light passed through a sample, we established the threshold character of the orientational effects, plotted the calculated intensity versus magnetic coherence length, and compared the latter with the equilibrium length that characterizes the balance of forces on the polymer surface. PMID:25279586

  17. Application of Commercially Available Liquid Crystal Polymer Films for the Improvement of Color and Viewing Angle Performance of Twisted Nematic Devices

    NASA Astrophysics Data System (ADS)

    Tatiana A. Sergan,; Marina D. Lavrentovich,; Jack R. Kelly,; Tadayuki Kameyama,

    2010-06-01

    In our work we analyzed the optical performance of liquid crystal polymer films by Nippon Mitsubishi Oil and by Fuji Film. We applied the films for twisted nematic (TN) display compensation and found several non-traditional display configurations. One display configuration employs flipped Nippon Mitsubishi Oil films mounted on polarizers, the second one, a combination of both types of films on one TN side and two crossed uniaxial films on the other. The compensated devices demonstrate greatly improved optical characteristics that surpass all those previously known, utilize the commercially available films, and are experimentally verified.

  18. A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Tsou, Yu-Shih; Chang, Kai-Han; Lin, Yi-Hsin

    2013-06-01

    We demonstrate a droplet manipulation on a liquid crystal and polymer composite film (LCPCF) as a concentrator and a sun tracker for a concentrating photovoltaic (CPV) system with a steady output electric power. The CPV system adopts a liquid lens on LCPCF whose curvature is not only tunable but position is also bistably switchable based on liquid crystal orientations on LCPCF. The change of curvature of the liquid lens results in a tunable concentration ratio which helps to increase photocurrent at a low illumination and prevent the effect of the series resistance at a high illumination. Moreover, the change of the position of the liquid lens helps to track sun owing to sun movement. Therefore, the output power of such a system is steady no matter the sunlight condition and the angle of incident light. The operating principles and experiments are investigated. The concept in this paper can be extended to design optical components for obtaining steady output power of the solar cell at indoor or outdoor use and also tracking sunlight.

  19. Advancements of vertically aligned liquid crystal displays.

    PubMed

    Kumar, Pankaj; Jaggi, Chinky; Sharma, Vandna; Raina, Kuldeep Kumar

    2016-02-01

    This review describes the recent advancements in the field of the vertical aligned (VA) liquid crystal displays. The process and formation of different vertical alignment modes such as conventional VA, patterned VA, multi-domain VA, and polymer stabilised VA etc are widely discussed. Vertical alignment of liquid crystal due to nano particle dispersion in LC host, bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces, azo dye etc., are also highlighted and discussed. Overall, the article highlights the advances in the research of vertical aligned liquid crystal in terms of their scientific and technological aspects. PMID:26800482

  20. Smart electro-optical iris diaphragm based on liquid crystal film coating with photoconductive polymer of poly(N-vinylcarbazole).

    PubMed

    Fuh, Andy Ying-Guey; Chen, Ko Nan; Wu, Shing-Trong

    2016-08-01

    This study develops a light shutter whose transmittance can be tuned electro-optically. The liquid crystal (LC) film applies the photoconductive material of poly(N-vinylcarbazole) (PVK) based on twisted nematic (TN) liquid crystals (LCs). The hole-transport layer of PVK could reduce the built-in electric field of the LC film under the exposure of UV light. The driving voltage is considerably decreased with the aid of UV light exposure. The repeating optical switching is performed under sunlight illumination with an external bias of electric field ∼5  V. Further, it could be operated under a parallel/cross-polarizer to change the light beam/ring as an iris and used to automatically block the UV light to protect an optical integrated system. PMID:27505385

  1. Thermoelectricity in liquid crystals

    NASA Astrophysics Data System (ADS)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  2. Bent core liquid crystal elastomers

    SciTech Connect

    Verduzco, R.; DiMasi, E.; Luchette, P.; Ho Hong, S.; Harden, J.; Palffy-Muhoray, P.; Kilbey II, S.M.; Sprunt, S.; Gleeson, G.T. Jakli, A.

    2010-07-28

    Liquid crystal (LC) elastomers with bent-core side-groups incorporate the properties of bent-core liquid crystals in a flexible and self-supporting polymer network. Bent-core liquid crystal elastomers (BCEs) with uniform alignment were prepared by attaching a reactive bent-core LC to poly(hydrogenmethylsiloxane) and crosslinking with a divinyl crosslinker. Phase behavior studies indicate a nematic phase over a wide temperature range that approaches room temperature, and thermoelastic measurements show that these BCEs can reversibly change their length by more than a factor of two upon heating and cooling. Small-angle X-ray scattering studies reveal multiple, broad low-angle peaks consistent with short-range smectic C order of the bent-core side groups. A comparison of these patterns with predictions of a Landau model for short-range smectic C order shows that the length scale for smectic ordering in BCEs is similar to that seen in pure bent-core LCs. The combination of rubber elasticity and smectic ordering of the bent-core side groups suggests that BCEs may be promising materials for sensing, actuating, and other advanced applications.

  3. Spatial and electrical switching of defect modes in a photonic bandgap device with a polymer-dispersed liquid crystal defect layer.

    PubMed

    Wu, Po-Chang; Yeh, En-Rong; Zyryanov, Victor Ya; Lee, Wei

    2014-08-25

    This paper investigates the spectral properties of a one-dimensional photonic crystal (PC) containing an inhomogeneous polymer- dispersed liquid crystal (PDLC) as a defect layer. Experimental results indicate that the voltage-induced reorientation of LC molecules between the light-scattering and transparent states in the PDLC enables the electrical tuning of the transmittance of defect-mode peaks in the spectrum of the PC/PDLC cell. Specifically, owing to the unique configuration of the spatial distribution of LC droplet sizes in the defect layer, a concept concerning the spatial switching in the wavelength of defect modes is proposed. As a result, the PC/PDLC hybrid cell is suggested as a potential element for realizing an electrically tunable and spatially switchable photonic bandgap device, which is polarizer-free and requires no alignment layers in the fabrication process. PMID:25321237

  4. Tunable liquid crystal photonic devices

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing

    2005-07-01

    Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In

  5. Hierarchical thin film architectures for enhanced sensor performance: liquid crystal-mediated electrochemical synthesis of nanostructured imprinted polymer films for the selective recognition of bupivacaine.

    PubMed

    Suriyanarayanan, Subramanian; Nawaz, Hazrat; Ndizeye, Natacha; Nicholls, Ian A

    2014-06-01

    Nanostructured bupivacaine-selective molecularly imprinted 3-aminophenylboronic acid-p-phenylenediamine co-polymer (MIP) films have been prepared on gold-coated quartz (Au/quartz) resonators by electrochemical synthesis under cyclic voltammetric conditions in a liquid crystalline (LC) medium (triton X-100/water). Films prepared in water and in the absence of template were used for control studies. Infrared spectroscopic studies demonstrated comparable chemical compositions for LC and control polymer films. SEM studies revealed that the topologies of the molecularly imprinted polymer films prepared in the LC medium (LC-MIP) exhibit discernible 40 nm thick nano-fiber structures, quite unlike the polymers prepared in the absence of the LC-phase. The sensitivity of the LC-MIP in a quartz crystal microbalance (QCM) sensor platform was 67.6 ± 4.9 Hz/mM under flow injection analysis (FIA) conditions, which was ≈250% higher than for the sensor prepared using the aqueous medium. Detection was possible at 100 nM (30 ng/mL), and discrimination of bupivacaine from closely related structural analogs was readily achieved as reflected in the corresponding stability constants of the MIP-analyte complexes. The facile fabrication and significant enhancement in sensor sensitivity together highlight the potential of this LC-based imprinting strategy for fabrication of polymeric materials with hierarchical architectures, in particular for use in surface-dependent application areas, e.g., biomaterials or sensing. PMID:25587412

  6. Hierarchical Thin Film Architectures for Enhanced Sensor Performance: Liquid Crystal-Mediated Electrochemical Synthesis of Nanostructured Imprinted Polymer Films for the Selective Recognition of Bupivacaine

    PubMed Central

    Suriyanarayanan, Subramanian; Nawaz, Hazrat; Ndizeye, Natacha; Nicholls, Ian A.

    2014-01-01

    Nanostructured bupivacaine-selective molecularly imprinted 3-aminophenylboronic acid-p-phenylenediamine co-polymer (MIP) films have been prepared on gold-coated quartz (Au/quartz) resonators by electrochemical synthesis under cyclic voltammetric conditions in a liquid crystalline (LC) medium (triton X-100/water). Films prepared in water and in the absence of template were used for control studies. Infrared spectroscopic studies demonstrated comparable chemical compositions for LC and control polymer films. SEM studies revealed that the topologies of the molecularly imprinted polymer films prepared in the LC medium (LC-MIP) exhibit discernible 40 nm thick nano-fiber structures, quite unlike the polymers prepared in the absence of the LC-phase. The sensitivity of the LC-MIP in a quartz crystal microbalance (QCM) sensor platform was 67.6 ± 4.9 Hz/mM under flow injection analysis (FIA) conditions, which was ≈250% higher than for the sensor prepared using the aqueous medium. Detection was possible at 100 nM (30 ng/mL), and discrimination of bupivacaine from closely related structural analogs was readily achieved as reflected in the corresponding stability constants of the MIP-analyte complexes. The facile fabrication and significant enhancement in sensor sensitivity together highlight the potential of this LC-based imprinting strategy for fabrication of polymeric materials with hierarchical architectures, in particular for use in surface-dependent application areas, e.g., biomaterials or sensing. PMID:25587412

  7. Syntheses and crystal structures of benzene-sulfonate and -carboxylate copper polymers and their application in the oxidation of cyclohexane in ionic liquid under mild conditions.

    PubMed

    Hazra, Susanta; Ribeiro, Ana P C; Guedes da Silva, M Fátima C; Nieto de Castro, Carlos A; Pombeiro, Armando J L

    2016-09-21

    The syntheses, crystal structures and catalytic activities of the polymers derived from 2-(2-pyridylmethyleneamino)benzenesulfonic acid (HL), viz. [CuL(H2tma)]n (1) and [{Cu2L2(H2pma)}·(8H2O)]n (2) [H3tma = benzene-1,3,5-tricarboxylic (trimesic) acid and H4pma = benzene-1,2,4,5-tetracarboxylic (pyromellitic) acid], are presented. Despite the comparable combinations and compositions of ligands (sulfonate and carboxylate) in these two polymers the bridging moiety in 1 is sulfonate while in 2 it is carboxylate. Complexes 1 and 2 act as catalysts in the peroxidative oxidation of cyclohexane under mild conditions using either the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] or acetonitrile as the solvent. The ionic liquid medium leads to increases in the yields and in the turnover numbers, achieved in shorter reaction times in comparison with those when using the conventional acetonitrile solvent. A simple recycling of the catalysts in the ionic liquid medium is achieved without loss of activity and selectivity. PMID:27529408

  8. Liquid crystal orientation control in photonic liquid crystal fibers

    NASA Astrophysics Data System (ADS)

    Chychlowski, M. S.; Nowinowski-Kruszelnicki, E.; Woliński, T. R.

    2011-05-01

    Similarly to liquid crystal displays technology in photonic liquid crystal fibers (PLCFs) a molecular orientation control is a crucial issue that influences proper operation of PLCF-based devices. The paper presents two distinct configurations: planar and radial escaped orientation of the LC molecules inside capillaries as well as methods of their application to photonic liquid crystal fibers. Possibilities of LC orientation control influence both: attenuation and transmitting spectra of the PLCF The orienting method is based on creation of an additional orienting layer on the inner surface of the capillary or air hole of the photonic liquid crystal fiber. Aligning materials used in the experiment are commercially available polyimides SE1211 and SE130 which induce liquid crystal homeotropic and planar anchoring conditions. The orienting layer increase an order parameter of the liquid crystal improving propagation properties and stability of photonic liquid crystal fiber-based devices.

  9. Microscopic kinetic model for polymer crystal growth

    NASA Astrophysics Data System (ADS)

    Hu, Wenbing

    2011-03-01

    Linear crystal growth rates characterize the net result of competition between growth and melting at the liquid-solid interfaces. The rate equation for polymer crystal growth can be derived with a barrier term for crystal growth and with a driving force term of excess lamellar thickness, provided that growth and melting share the same rate-determining steps at the growth front. Such an ansatz can be verified by the kinetic symmetry between growth and melting around the melting point of lamellar crystals, as made in our recent dynamic Monte Carlo simulations. The profile of the growth/melting front appears as wedge-shaped, with the free energy barrier for intramolecular secondary crystal nucleation at its top, and with the driving force gained via instant thickening at its bottom. Such a scenario explains unique phenomena on polymer crystal growth, such as chain folding, regime transitions, molecular segregation of polydisperse polymers, self-poisoning with integer-number chain-folding of short chains, and colligative growth rates of binary mixtures of two chain lengths. Financial support from NNSFC No. 20825415 and NBRPC No. 2011CB606100 is acknowledged.

  10. Nematic liquid crystal bridges

    NASA Astrophysics Data System (ADS)

    Doss, Susannah; Ellis, Perry; Vallamkondu, Jayalakshmi; Danemiller, Edward; Vernon, Mark; Fernandez-Nieves, Alberto

    We study the effects of confining a nematic liquid crystal between two parallel glass plates with homeotropic boundary conditions for the director at all bounding surfaces. We find that the free surface of the nematic bridge is a surface of constant mean curvature. In addition, by changing the distance between the plates and the contact angle with the glass plates, we transition between loops and hedgehogs that can be either radial or hyperbolic.

  11. Living liquid crystals.

    PubMed

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D; Aranson, Igor S

    2014-01-28

    Collective motion of self-propelled organisms or synthetic particles, often termed "active fluid," has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter--living liquid crystals (LLCs)--that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  12. Living liquid crystals

    PubMed Central

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2014-01-01

    Collective motion of self-propelled organisms or synthetic particles, often termed “active fluid,” has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter––living liquid crystals (LLCs)––that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  13. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

  14. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

  15. Effects of Dilution, Polarization Ratio, and Energy Transfer on Photoalignment of Liquid Crystals Using Coumarin-Containing Polymer Films

    SciTech Connect

    Kim, C.; Wallace, J.U.; Chen, S.H.; Merkel, P.B.

    2008-05-27

    Orientation of a nematic liquid crystal, E-7, was investigated using coumarin-containing polymethacrylates to elucidate the roles played by the dilution of coumarin and the polarization ratio of irradiation. Dilution of coumarin by inert moieties had adverse effects on a nematic cell’s number density of disclinations and its orientational order parameter in the parallel but not the perpendicular regime. In addition, both dilution of coumarin and a decreasing polarization ratio resulted in a lower extent of coumarin dimerization at crossover, Xc. The significantly reduced Xc in a homopolymer comprising triphenylamine and coumarin was attributed to the dilution of coumarin and the diminished polarization ratio caused by competing absorption with simultaneous triplet energy transfer from triphenylamine to coumarin moieties.

  16. Polarized XANES studies on the rubbed polyimide for liquid crystal alignment; new applicability to the tribology of the polymer systems

    NASA Astrophysics Data System (ADS)

    Ouchi, Y.; Mori, I.; Sei, M.; Ito, E.; Araki, T.; Ishii, H.; Seki, K.; Kondo, K.

    1995-02-01

    The surface structure of rubbed polyimides, which is responsible for the homogeneous alignment of liquid crystal molecules, was examined with use of polarized XANES spectroscopy. Our first experiment was conducted on the odd-even effect of BPDA- Cn (bipenyl-3,3‧,4,4‧-tetracarboxylic dianhydride/ n-alkyl diamine) type polyimide; BPDA- Cn type polyimide with even number alkylene chain induces a large LC pretilt angle and the one with odd number alkylene chain does almost 0 degree LC pretilt angle. XANES spectra have successfully revealed the surface-structure difference between odd- and even-number BPDA polyimides, one is trans-cisoid type and the other is trans-transoid type, respectively.

  17. Topographic-pattern-induced homeotropic alignment of liquid crystals.

    PubMed

    Yi, Youngwoo; Lombardo, Giuseppe; Ashby, Neil; Barberi, Riccardo; Maclennan, Joseph E; Clark, Noel A

    2009-04-01

    Polymer films nanoimprinted with checkerboard patterns of square wells align calamitic (rodlike) liquid crystals vertically, horizontally, or tilted depending on the depth/width ratio of the wells. The liquid crystal prefers planar orientation on polymer films that are smooth but when the films are topographically patterned, the increasing elastic energy density as the wells become narrower eventually overcomes the surface anchoring of the polymer and the liquid crystal director field makes a transition from planar to homeotropic. Similar effects have been demonstrated in both nematics and smectics, and the behavior is confirmed by theory and computer simulation. PMID:19518244

  18. Generation of Pretilt Angle for Nematic Liquid Crystal Using the Photodimerization Method on Various New Photo-Crosslinkable Polyimide Based Polymers

    NASA Astrophysics Data System (ADS)

    Hwang, Jeoung-Yeon; Seo, Dae-Shik; Son, Jong-Ho; Suh, Dong Hack

    2001-07-01

    We synthesized the various new photo-crosslinkable polyimide based polymers and generation of pretilt angle for a nematic liquid crystal (NLC) using a photodimerization method on the photopolymers was studied. A good thermal stability of the photopolymers was measured by thermogravimatric analysis (TGA) measurement until 450°C. The NLC pretilt angle generated was about 2.5°-3.0° by polarized UV exposure on the photopolymers containing a biphenyl (BP), decyl (De), and cholesteryl(chol), chalcone(Chal) group, respectively. However, low pretilt angle of the NLC was measured by polarized UV exposure on the photopolymers containing the fluorine and chalcone group. The NLC pretilt angle generated is attributed to the biphenyl and alkyl moieties, and the photo-dimerized chalcone group of the photopolymer.

  19. Intense pulsed light induced crystallization of a liquid-crystalline polymer semiconductor for efficient production of flexible thin-film transistors.

    PubMed

    Yang, Hee Yeon; Park, Han-Wool; Kim, Soo Jin; Hong, Jae-Min; Kim, Tae Whan; Kim, Do Hwan; Lim, Jung Ah

    2016-02-14

    Here we demonstrated the split-second crystallization of a liquid-crystalline conjugated polymer semiconductor induced by irradiation with intense pulsed white light (IPWL) for the efficient improvement of electrical properties of flexible thin film transistors. A few seconds of IPWL irradiation of poly(didodecylquaterthiophene-alt-didodecylbithiazole) (PQTBTz-C12) thin films generated heat energy through the photo-thermal effect, leading to the crystallization of PQTBTz-C12 and formation of nodule-like nanostructures. The IPWL-induced crystallization of PQTBTz-C12 resulted in a threefold improvement in the field-effect mobility of thin film transistors compared to as-prepared devices. The conformational change of the PQTBTz-C12 chains was found to be strongly related to the irradiation fluence. As a proof-of-concept, the IPWL treatment was successfully applied to the PQTBTz-C12 layer in flexible transistors based on plastic substrates. The performance of these flexible devices was significantly improved after only 0.6 s of IPWL treatment, without deformation of the plastic substrate. PMID:26795202

  20. Diffraction properties of highly birefringent liquid-crystal composite gratings.

    PubMed

    Butler, J J; Malcuit, M S

    2000-03-15

    We have fabricated electrically switchable holographic gratings, using Polaroid Corporation's DMP-128 photopolymer filled with the nematic liquid crystal E7. It is shown that a coupled-wave theory that includes the effects of the birefringence of the liquid crystal must be used to explain the diffraction properties of these anisotropic volume gratings. Furthermore, a detailed comparison of theory and experiment provides information about the alignment of the liquid crystal within the polymer host. PMID:18059899

  1. Dynamic Theory of Polydomain Liquid Crystal Elastomers.

    PubMed

    Duzgun, Ayhan; Selinger, Jonathan V

    2015-10-30

    When liquid crystal elastomers are prepared without any alignment, disordered polydomain structures emerge as the materials are cooled into the nematic phase. These polydomain structures are often attributed to quenched disorder in the cross-linked polymer network. As an alternative explanation, we develop a theory for the dynamics of the isotropic-nematic transition in liquid crystal elastomers, and show that the dynamics can induce a polydomain structure with a characteristic length scale, through a mechanism analogous to the Cahn-Hilliard equation for phase separation. PMID:26565497

  2. Wetting of cholesteric liquid crystals.

    PubMed

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal. PMID:26920516

  3. Morphological appearances and photo-controllable coloration of dye-doped cholesteric liquid crystal/polymer coaxial microfibers fabricated by coaxial electrospinning technique.

    PubMed

    Lin, Jia-De; Chen, Che-Pei; Chen, Lin-Jer; Chuang, Yu-Chou; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-02-01

    This study systematically investigates the morphological appearance of azo-chiral dye-doped cholesteric liquid crystal (DDCLC)/polymer coaxial microfibers obtained through the coaxial electrospinning technique and examines, for the first time, their photocontrollable reflection characteristics. Experimental results show that the quasi-continuous electrospun microfibers can be successfully fabricated at a high polymer concentration of 17.5 wt% and an optimum ratio of 2 for the feeding rates of sheath to core materials at 25 °C and a high humidity of 50% ± 2% in the spinning chamber. Furthermore, the optical controllability of the reflective features for the electrospun fibers is studied in detail by changing the concentration of the azo-chiral dopant in the core material, the UV irradiation intensity, and the core diameter of the fibers. Relevant mechanisms are addressed to explain the optical-control behaviors of the DDCLC coaxial fibers. Considering the results, optically controllable DDCLC coaxial microfibers present potential applications in UV microsensors and wearable smart textiles or swabs. PMID:26906876

  4. Polymer stabilization of the smectic C-alpha* liquid crystal phase—Over tenfold thermal stabilization by confining networks of photo-polymerized reactive mesogens

    SciTech Connect

    Labeeb, A.; Gleeson, H. F.; Hegmann, T.

    2015-12-07

    The smectic C*-alpha (SmC{sub α}*) phase is one of the sub-phases of ferroelectric liquid crystals that has drawn much interest due to its electro-optical properties and ultrafast switching. Generally observed above the ferroelectric SmC* phase in temperature, the SmC{sub α}* commonly shows only very narrow phase temperature range of a few degree Celsius. To broaden the SmC{sub α}* phase, polymer stabilization was investigated for thermal phase stabilization. Two different reactive monomers were tested in three mixtures, and all three broadened the temperature range of the SmC{sub α}* phase from 3 °C to 39 °C. The current reversal method was used to determine the phase existence versus temperature. Moreover, the texture and network structure was studied by polarized optical microscopy and scanning electron microscopy, with the latter revealing the confinement of the smectic layer structure within the porous polymer network.

  5. Nonlinear optical studies of liquid crystal alignment on a rubbed polyvinyl alcohol surface

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Hong, Seok-Cheol; Zhuang, Xiaowei; Goto, Tomohisa; Shen, Y. R.

    2000-10-01

    Sum-frequency vibrational spectroscopy and second-harmonic generation have been used to measure the orientational distributions of the polymer chains and adsorbed 8CB liquid crystal molecules on a rubbed polyvinyl alcohol surface. Results show that the polymer chains at the surface appear to be well aligned by rubbing, and the adsorbed liquid crystal molecules are aligned, in turn, by the surface polymer chains. Strong correlation exists between the orientational distributions of the polymer chains and the liquid crystal molecules, indicating that the surface-induced bulk alignment of a liquid crystal film by rubbed polymer surfaces is via an orientational epitaxylike mechanism.

  6. Transient Response Characteristics of Polymer Stabilized Bend Alignment State of Nematic Liquid Crystal in Pi-Cell

    NASA Astrophysics Data System (ADS)

    Asakawa, Youichi; Takahashi, Taiju; Saito, Susumu

    2007-12-01

    It is shown that the transient response characteristics of the polymer stabilized bend (PSB) cell are deteriorated by the polymer stabilization treatment. The increase in rotational viscosity γ1 due to polymer stabilization is experimentally confirmed by the transient displacement current method proposed previously by Imai et al. [Jpn. J. Appl. Phys. 33 (1994) L119] It is shown that the deterioration of the transient characteristics of the PSB cell is caused by the increase in rotational viscosity and the decrease in flow velocity due to the changes in Leslie viscosities resulting from the polymer stabilization treatment.

  7. Voxelated liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Ware, Taylor H.; McConney, Michael E.; Wie, Jeong Jae; Tondiglia, Vincent P.; White, Timothy J.

    2015-02-01

    Dynamic control of shape can bring multifunctionality to devices. Soft materials capable of programmable shape change require localized control of the magnitude and directionality of a mechanical response. We report the preparation of soft, ordered materials referred to as liquid crystal elastomers. The direction of molecular order, known as the director, is written within local volume elements (voxels) as small as 0.0005 cubic millimeters. Locally, the director controls the inherent mechanical response (55% strain) within the material. In monoliths with spatially patterned director, thermal or chemical stimuli transform flat sheets into three-dimensional objects through controlled bending and stretching. The programmable mechanical response of these materials could yield monolithic multifunctional devices or serve as reconfigurable substrates for flexible devices in aerospace, medicine, or consumer goods.

  8. Liquid crystal filled diffraction gratings

    NASA Astrophysics Data System (ADS)

    Jepsen, Mary Lou

    1997-12-01

    Liquid crystal technology is becoming increasingly important for flat displays in electronics, computers and TV. Most liquid crystal displays currently made have as their basic unit, two flat surfaces each coated with a transparent, conductive layer, between which a thin layer of liquid crystals is sandwiched. The work detailed in this dissertation is based on a modification of the basic liquid crystal unit and studies the properties of structures which consist of certain anisotropic liquid crystals confined between a flat substrate and a corrugated one, each substrate being transparent and having a thin trans-parent conductive coating. Without an applied electric field, the refractive indices of the liquid crystal and corrugated substrate do not match, and thus strong diffraction occurs. When an electric field is applied to the device, the liquid crystals are re-oriented so that the refractive indices now match, and the device behaves as a uniform slab of homogeneous material producing no diffraction. Rigorous coupled wave analysis was developed to design the ideal devices and analyze the performance of our experimental ones. 99% diffraction efficiencies in single wavelength polarized illumination are shown to be possible with this class of devices. The best device we fabricated showed a 62% distraction efficiency, as our fabrication process roughened the top surface of the device so that (≃30%) of the incident light was lost to scatter. Several new fabrication processes are proposed to eliminate this scatter problem, and that details of fabrication processes thus far attempted are outlined.

  9. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1989-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  10. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  11. Magnetoactive Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Winkler, Moritz; Kaiser, Andreas; Krause, Simon; Finkelmann, Heino; Schmidt, Annette

    2008-03-01

    Liquid crystal elastomers (LCEs) offer an interesting spectrum of properties, including temperature induced, fully reversible shape changes connected with considerable development of pulling force, and synthetic diversity. In order to take advantage of LCEs for an extended number of viable devices, it is desirable to trigger such shape changes with electromagnetic fields rather than temperature changes. Magnetoactive LCEs are accessible by the incorporation of superparamagnetic Fe3O4 nanoparticles into oriented nematic side-chain LCEs and offer a contactless activation pathway to activate the nematic-to-isotrope transition by local magnetic heating in external fields due to relaxational processes. In magnetomechanical measurements at 300 kHz and 43 kA.m-1, a sample contraction of up to 30 % is observed under field influence, that is fully released when the field is switched off. The load evolved reaches 60 kPa and more. The materials' ability to respond to a contactless electromagnetic stimulus with a well-defined contraction can be of use for various actuator applications.

  12. Liquid crystals for holographic optical data storage.

    PubMed

    Matharu, Avtar S; Jeeva, Shehzad; Ramanujam, P S

    2007-12-01

    A tutorial review is presented to inform and inspire the reader to develop and integrate strong scientific links between liquid crystals and holographic data storage, from a materials scientist's viewpoint. The principle of holographic data storage as a means of providing a solution to the information storage demands of the 21st century is detailed. Holography is a small subset of the much larger field of optical data storage and similarly, the diversity of materials used for optical data storage is enormous. The theory of polarisation holography which produces holograms of constant intensity, is discussed. Polymeric liquid crystals play an important role in the development of materials for holographic storage and photoresponsive materials based on azobenzene are targeted for discussion due to their ease of photo-reversion between trans- and cis-states. Although the final polymer may not be liquid crystalline, irradiation can induce ordered domains. The mesogens act in a co-operative manner, enhancing refractive indices and birefringences. Surface relief gratings are discussed as a consequence of holographic storage. Cholesteric polymers comprising azobenzene are briefly highlighted. Irradiation causing cis-trans-isomerisation can be used to control helix pitch. A brief mention of liquid crystals is also made since these materials may be of future interest since they are optically transparent and amenable to photo-induced anisotropy. PMID:17982514

  13. Colloidal cholesteric liquid crystal in spherical confinement.

    PubMed

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S; Lavrentovich, Oleg D; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  14. Colloidal cholesteric liquid crystal in spherical confinement

    PubMed Central

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  15. Transparent conductive ZnInSnO-Ag-ZnInSnO multilayer films for polymer dispersed liquid-crystal based smart windows

    NASA Astrophysics Data System (ADS)

    Kim, Eun Mi; Choi, In-Seok; Oh, Jeong-Pyo; Kim, Young-Baek; Lee, Jong-Ho; Choi, Yong-Sung; Cho, Jung-Dae; Kim, Yang-Bae; Heo, Gi-Seok

    2014-09-01

    Multilayer transparent films with electrical resistances lower than those in conventionally used transparent conductive electrodes were prepared at room temperature on glass substrates in an RF/DC magnetron sputtering system. The multilayer structure of the films consisted of three layers, ZnInSnO (ZITO)-Ag-ZITO. The optical and electrical properties of the multilayer structures were investigated with respect to the thickness of each ZITO-Ag-ZITO layer. Transparent conductive films with a sheet resistance of 9.4 Ω/square and an average transmittance of 92% at 550 nm were obtained at the following thicknesses of the glass substrate: ZITO (100 nm)-Ag (8 nm)-ZITO (42 nm). The surface roughness (RRMS) of the obtained ZITO-Ag-ZITO multilayer films was below 0.8 nm. Overall, the properties of the ZITO-Ag-ZITO multilayer films were comparable or superior to those of other multilayers such as InSnO (ITO)-Ag-ITO and InZnO (IZO)-Ag-IZO. The deposited ZITO single layer and ZITO-Ag-ZITO multilayer films were used in the fabrication of polymer-dispersed liquid-crystal (PDLC)-based smart windows. The ZITO-Ag-ZITO multilayer-based smart windows exhibited a lower operating voltage (16 V) and a higher cutoff rate of infrared light than ITO or ZITO-based smart windows 20-26 V. However, they showed a lower PDLC-ON transmittance than ITO-based smart windows.

  16. Performance enhancement using a non-uniform vertical electric field and polymer networks for in-plane switching of multi-pretilt, vertically aligned liquid crystal devices.

    PubMed

    Lin, G J; Chen, T J; Tsai, Y W; Lin, Y T; Wu, J J; Yang, Y J

    2014-11-01

    A simple and reproducible alignment method for fabricating vertically aligned (VA) liquid crystal (LC) cells with a multi-pretilt structure is developed. A non-uniform vertical electric field is employed in the LC/monomer mixed cells during the photocuring process, and two pretilt domains with a functional small pretilt angle (∼1.6°) in the stabilized VA LC/polymer cells are achieved. The enhanced electro-optical performance of the cell driven by an in-plane switching field is demonstrated. Compared to the pure cell, the 2 wt.% pretilt angle cell shows 36%, 64%, and 76% improvement in the optical switch, the gray-level rise time, and the gray-level fall time responses, respectively, which are obtained at a low driving voltage (≤12  V). When applied to LC devices, the proposed method not only effectively benefits the LC molecular alignment, but it also significantly boosts the electro-optical performance. PMID:25361320

  17. Nano-polymer-dispersed liquid crystal as phase modulator for a tunable vertical-cavity surface-emitting laser at 1.55 mum.

    PubMed

    Levallois, C; Caillaud, B; de Bougrenet de la Tocnaye, J-L; Dupont, L; Lecorre, A; Folliot, H; Dehaese, O; Loualiche, S

    2006-11-20

    We demonstrate what we believe is the first nonmechanical tunable vertical-cavity surface-emitting laser operating in the C band. This was achieved as a result of the combination of an InGaAs quantum well structure with a 6lambda thickness tunable index nano-polymer-dispersed liquid-crystal material. Experimental results exhibited a potential tunable range close to 10 nm, in the preliminary version, and excellent single mode locking due to the side-mode suppression ratio (more than 20 dB) over the whole spectral range. Another decisive advantage, compared to mechanical solutions, was the tuning response time of a few tens of microseconds (>30 micros) to scan the full spectral range (10 nm), making this device appropriate for some access network functions, as well as being robust and low cost. The voltage values are the main limitation to wavelength range extension. We present a first version of the device optically pumped. The next version will be electrically pumped as required for the access network applications targeted here. PMID:17086259

  18. Adaptive Liquid Crystal Windows

    SciTech Connect

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  19. Thermotropic liquid crystals from biomacromolecules

    PubMed Central

    Liu, Kai; Chen, Dong; Marcozzi, Alessio; Zheng, Lifei; Su, Juanjuan; Pesce, Diego; Zajaczkowski, Wojciech; Kolbe, Anke; Pisula, Wojciech; Müllen, Klaus; Clark, Noel A.; Herrmann, Andreas

    2014-01-01

    Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components. PMID:25512508

  20. Polymers at liquid-liquid interfaces: Photophysics and photoredox chemistry

    SciTech Connect

    Webber, S.E.

    1990-11-01

    Research continued on polymers at liquid-liquid interfaces. This quarter, work concentrated on: preparation of poly(styrene-alt-maleic acid-co-chromophore) polymers; studies of vinylnapthalene-maleic acid polymers as emulsifying agents for water-octane; and assembly of optical fiber reticon-based transient absorption system. 3 refs., 1 fig. (CBS)

  1. Structure-property evolution during polymer crystallization

    NASA Astrophysics Data System (ADS)

    Arora, Deepak

    The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based

  2. Continuous preparation of polymer coated drug crystals by solid hollow fiber membrane-based cooling crystallization.

    PubMed

    Chen, Dengyue; Singh, Dhananjay; Sirkar, Kamalesh K; Pfeffer, Robert

    2016-02-29

    A facile way to continuously coat drug crystals with a polymer is needed in controlled drug release. Conventional polymer coating methods have disadvantages: high energy consumption, low productivity, batch processing. A novel method for continuous polymer coating of drug crystals based on solid hollow fiber cooling crystallization (SHFCC) is introduced here. The drug acting as the host particle and the polymer for coating are Griseofulvin (GF) and Eudragit RL100, respectively. The polymer's cloud point temperature in its acetone solution was determined by UV spectrophotometry. An acetone solution of the polymer containing the drug in solution as well as undissolved drug crystals in suspension were pumped through the tube side of the SHFCC device; a cold liquid was circulated in the shell side to rapidly cool down the feed solution-suspension in the hollow-fiber lumen. The polymer precipitated from the solution and coated the suspended crystals due to rapid temperature reduction and heterogeneous nucleation; crystals formed from the solution were also coated by the polymer. Characterizations by scanning electron microscopy, thermogravimetric analysis, laser diffraction spectroscopy, X-ray diffraction, Raman spectroscopy, and dissolution tests show that a uniformly coated, free-flowing drug/product can be obtained under appropriate operating conditions without losing the drug's pharmaceutical properties and controlled release characteristics. PMID:26772536

  3. Deformations in chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Reddy, Kathryn; Bateman, Daniel; Iljin, Andrey

    2014-03-01

    Deformations and their relaxation in chiral liquid crystals are studied experimentally and theoretically in planar geometry for liquid crystalline mixtures of varying viscosities. It is shown by both methods that shear deformation in liquid crystals results in the inclination and extension of cholesteric helix in samples with high viscosity. Stretching deformation results in shrinking cholesteric helix. This leads to a possibility of detecting deformations on a nanometer scale by observing changes in selective reflection spectra. Theoretical model takes into account elastic strain of physical network formed by the entanglements between components of liquid crystalline mixture, viscosity of the matrix and elasticity of the liquid crystalline subsystem. This allows to model mechanical response of the matrix with different viscosities to stretching and shear of various amplitudes. It is shown that relaxation of the cholesteric helix takes much shorter time than mechanical relaxation of the mixtures. The model perfectly agrees with experimental data. The model is compared with theoretical model describing behavior of elastomers.

  4. Hydrodynamic theories for mixtures of polymers and rodlike liquid crystalline polymers.

    PubMed

    Forest, M Gregory; Wang, Qi

    2005-10-01

    We develop a hydrodynamic theory for flows of incompressible blends of flexible polymers and rodlike nematic polymers (RNPs) or rodlike nematic liquid crystal polymers (RNLCPs) extending the thermodynamical theory of Muratov and E [J. Chem. Phys. 116, 4723 (2002)] for phase separation kinetics of the blend. We model the flexible polymer molecules in the polymer matrix as Rouse chains and assume the translational diffusion of the molecules is predominantly through the volume fraction of the flexible polymer and the molecules of rodlike nematic liquid crystal polymers. We then (i) derive the translational flux for the rodlike nematic liquid crystal polymers to ensure the incompressibility constraint; (ii) derive the elastic stress tensor, accounting for the contribution from both the rodlike nematic polymer and the flexible polymer matrix, as well as the extra elastic body force due to the nonlocal intermolecular potential for long range molecular interaction; (iii) show that the theory obeys positive entropy production and thereby satisfies the second law of thermodynamics. By applying the gradient expansion technique on the number density function of RNLCPs, we present an approximate, weakly nonlocal theory in differential form in which the intermolecular potential is given by gradients of the number density function of the RNLCP and the volume fraction of the flexible polymer. In the approximate theory, the elastic stress is augmented by an extra stress tensor due to the spatial convection of the macroscopic material point and long range interaction, whose divergence yields the analogous extra elastic body force with respect to the nonlocal intermolecular potential. Finally, we compare the model in steady simple shear with the Doi theory for bulk monodomains of rodlike nematic polymers. PMID:16383413

  5. Liquid crystal nanodroplets in solution

    NASA Astrophysics Data System (ADS)

    Brown, W. Michael; Petersen, Matt K.; Plimpton, Steven J.; Grest, Gary S.

    2009-01-01

    The aggregation of liquid crystal nanodroplets from a homogeneous solution is studied by molecular dynamics simulations. The liquid crystal particles are modeled as elongated ellipsoidal Gay-Berne particles while the solvent is modeled as spherical Lennard-Jones particles. Extending previous studies of Berardi et al. [J. Chem. Phys. 126, 044905 (2007)], we find that liquid crystal nanodroplets are not stable and that after sufficiently long times the nanodroplets always aggregate into a single large droplet. Results describing the droplet shape and orientation for different temperatures and shear rates are presented. The implementation of the Gay-Berne potential for biaxial ellipsoidal particles in a parallel molecular dynamics code is also briefly discussed.

  6. Liquid crystal nanodroplets in solution.

    PubMed

    Brown, W Michael; Petersen, Matt K; Plimpton, Steven J; Grest, Gary S

    2009-01-28

    The aggregation of liquid crystal nanodroplets from a homogeneous solution is studied by molecular dynamics simulations. The liquid crystal particles are modeled as elongated ellipsoidal Gay-Berne particles while the solvent is modeled as spherical Lennard-Jones particles. Extending previous studies of Berardi et al. [J. Chem. Phys. 126, 044905 (2007)], we find that liquid crystal nanodroplets are not stable and that after sufficiently long times the nanodroplets always aggregate into a single large droplet. Results describing the droplet shape and orientation for different temperatures and shear rates are presented. The implementation of the Gay-Berne potential for biaxial ellipsoidal particles in a parallel molecular dynamics code is also briefly discussed. PMID:19191407

  7. Ionic conductivity of imidazole-functionalized liquid crystal mesogens

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Anthamatten, Mitchell

    2012-02-01

    Imidazole has been investigated as a novel anhydrous proton conducting functional group that could enable higher temperature operation (> 120 ^oC) of polymer electrolyte fuel cells. Its amphoteric behavior can support Grotthuss-like proton transport; however molecular mobility and a high concentration of imidazole groups are needed to achieve high ionic conductivity. Our hypothesis is that liquid crystal ordering, particularly in layered smectic phase, can facilitate formation of 2D proton transport and promote proton conductivity. We have designed and synthesized two imidazole-terminated liquid crystal mesogens, and the ionic conductivities in the liquid crystalline and isotropic states have been measured. Here we report on synthesis and characterization of diacylhydrazine liquid crystals bearing imidazole terminal groups. The proton conductivity of products is compared to pure liquid imidazole and to liquid crystal mesogens without imidazole groups.

  8. Liquid crystal assisted optical fibres.

    PubMed

    Wahle, M; Kitzerow, H-S

    2014-01-13

    Microstructured fibres which consist of a circular step index core and a liquid crystal inclusion running parallel to this core are investigated. The attenuation and electro-optic effects of light coupled into the core are measured. Coupled mode theory is used to study the interaction of core modes with the liquid crystal inclusion. The experimental and theoretical results show that these fibres can exhibit attenuation below 0.16 dB cm(-1) in off-resonant wavelength regions and still have significant electro-optic effects which can lead to a polarisation extinction of 6 dB cm(-1). PMID:24514987

  9. A liquid crystal adaptive lens

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Cleverly, D.

    1981-01-01

    Creation of an electronically controlled liquid crystal lens for use as a focusing mechanism in a multi-element lens system or as an adaptive optical element is analyzed. Varying the index of refraction is shown to be equivalent to the shaping of a solid refracting material. Basic characteristics of liquid crystals, essential for the creation of a lens, are reviewed. The required variation of index of refraction is provided by choosing appropriate electrode voltages. The configuration required for any incoming polarization is given and its theoretical performance in terms of modulation transfer function derived.

  10. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions. PMID:27088310

  11. Two timescales in polymer solidification: processing vs polymer crystallization

    NASA Astrophysics Data System (ADS)

    Piccarolo, Stefano; Poulose, Anesh M.; Carbone, Domenico

    2010-06-01

    In this work we compare the influence of a plasticizer on the density drop, and therefore on the disappearance of any long range order crystalline phases, observed after fast controlled quenching of PET and PBT. The plasticizer enhances significantly the maximum cooling rate at which PET still shows long range order crystalline phases while barely modifies the situation for PBT. The results are discussed on the basis of an interpretation of polymer crystallization strongly determined by the topology of the polymer, a view unconventional with respect to most of the well established interpretations of polymer crystallization all based on data obtained in a time scale much longer with respect to solidification in processing.

  12. Liquid film/polymer interfaces

    SciTech Connect

    Allara, David L.

    2003-06-12

    The objectives were: (1) Through experimental studies, advance the fundamental understanding of the principles that govern adsorption and wetting phenomena at polymer and organic surfaces. (2) Establish a firm scientific basis for improving the design of coatings for metal fin cooling surfaces used to control the wetting of water condensate for optimum energy efficiency. Several important findings were: (1) water adsorbed at hydrophobic surfaces has a liquid-like structure, in contrast to the generally held view of an ordered structure; (2) Correlations of large amounts of contact angle wetting data of grafted alkyl chain compounds showed a distinct link between the contact angle and the conformational ordering of the chains; (3) water adsorption at long chain alkysiloxane films showed a strong pH dependence on the film stability, which can be attributed to interfacial chemical effects on the siloxane network.

  13. Copper sulfate: Liquid or crystals?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two separate experiments were conducted to evaluate copper toxicity to channel catfish and free-swimming Ichthyophthirius multifiliis or Ich (the stage of Ich that can be treated); the compounds we used were CuSO4 crystals and a non-chelated liquid CuSO4 product. In 96 hr tests conducted in aquaria...

  14. Liquid-Crystal Optical Correlator

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1989-01-01

    Optical correlator uses commercially-available liquid-crystal television (LCTV) screen as spatial light modulator. Correlations with this device done at video frame rates, making such operations as bar-code recognition possible at reasonable cost. With further development, such correlator useful in automation, robotic vision, and optical image processing.

  15. Experiments with Cholesteric Liquid Crystals

    ERIC Educational Resources Information Center

    Fergason, James L.

    1970-01-01

    Describes laboratory experiments designed to demonstrate (1) the properties of cholesteric liquid crystals, (2) thermal mapping, (3) thermal diffusivity, (4) adiabatic expansion of rubber, and (5) measurement of radiated energy by a point source. Contains all of the information on materials and apparatus needed to perform the experiments.…

  16. Large-amplitude motion in polymer crystals and mesophases

    SciTech Connect

    Wunderlich, B. |

    1994-12-31

    Large-amplitude motion of macromolecules involves mainly rotation about bonds (conformational motion). In the liquid phases, the large- amplitude motion is coupled with disorder and accounts for the flow and viscoelastic behavior. Perfectly ordered crystals, in contrast, permit only little large-amplitude motion. The mesophases are intermediate in order and mobility. In crystals, large-amplitude motion leads initially to gauche defects and kinks (conformational defects), and ultimately may produce conformationally disordered crystals (conis crystals). Molecular dynamics simulations of crystals with up to 30,000 atoms have been carried out and show the mechanism of defect formation, permit the study of the distribution of defects, and the visualization of hexagonal crystals. Distinction between main-chain liquid-crystalline macromolecules and condis crystals, the two mesophases of polymers, can be done on basis of analysis of phase separation (partial crystallinity), present in condis crystals and not in liquid crystals. Solid state NMR is the tool of choice for detecting mobile and rigid phases. In highly drawn fibers one can find four different states of order and mobility. Besides the (defect) crystalline phase and the isotropic amorphous phase, an intermediate oriented phase and a rigid amorphous phase exists.

  17. Liquid crystal polyester thermosets

    DOEpatents

    Benicewicz, Brian C.; Hoyt, Andrea E.

    1992-01-01

    The present invention provides (1) curable liquid crystalline polyester monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted naimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sup.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro lower alkyl, e.g., methyl, ethyl, or propyl, alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--O-- and --O--C(O)--, (2) thermoset liquid crystalline polyester compositions comprised of heat-cured segments derived from monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 as described above, (3) curable blends of at least two of the polyester monomers and (4) processes of preparing the curable liquid crystalline polyester monomers.

  18. Liquid Crystals: The Phase of the Future.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate; And Others

    1992-01-01

    Liquid crystal displays are currently utilized to convey information via graphic displays. Presents experiments and explanations that employ the concept of liquid crystals to learn concepts related to the various states of matter, electric and magnetic forces, refraction of light, and optics. Discusses applications of liquid crystal technology.…

  19. Macroscopic chirality of a liquid crystal from nonchiral molecules

    NASA Astrophysics Data System (ADS)

    Jákli, A.; Nair, G. G.; Lee, C. K.; Sun, R.; Chien, L. C.

    2001-06-01

    The transfer of chirality from nonchiral polymer networks to the racemic B2 phase of nonchiral banana-shaped molecules is demonstrated. This corresponds to the transfer of chirality from an achiral material to another achiral material. There are two levels of chirality transfers. (a) On a microscopic level the presence of a polymer network (chiral or nonchiral) favors a chiral state over a thermodynamically stable racemic state due to the inversion symmetry breaking at the polymer-liquid crystal interfaces. (b) A macroscopically chiral (enantimerically enriched) sample can be produced if the polymer network has a helical structure, and/or contains chemically chiral groups. The chirality transfer can be locally suppressed by exposing the liquid crystal to a strong electric field treatment.

  20. Evaluation of photoinduced change in refractive index of a polymer film doped with an azobenzene liquid crystal by means of a prism-coupling method

    SciTech Connect

    Kurihara, Hideo; Shishido, Atsushi; Ikeda, Tomiki

    2005-10-15

    The photoinduced change in refractive index of poly(methyl methacrylate) films doped with an azobenzene liquid crystal was measured by the prism-coupling method. Upon irradiation of the film with a high-pressure mercury lamp at 366 nm, the coupling angles shifted and then recovered to the initial position by turning off the light. The change in refractive index was found to be 2x10{sup -3}, which is attributed to the reversible photoisomerization of the azobenzene moieties.

  1. Liquid crystal light valve structures

    NASA Technical Reports Server (NTRS)

    Koda, N. J. (Inventor)

    1985-01-01

    An improved photosensor film and liquid crystal light valves embodying said film is provided. The photosensor film and liquid crystal light valve is characterized by a significant lower image retention time while maintaining acceptable photosensitivity. The photosensor film is produced by sputter depositing CdS onto an ITO substrate in an atmosphere of argon/H2S gas while maintaining the substrate at a temperature in the range of about 130 C to about 200 C and while introducing nitrogen gas into the system to the extent of not more than about 1% of plasma mixture. Following sputter deposition of the CdS, the film is annealed in an inert gas at temperatures ranging from about 300 C to about 425 C.

  2. Controlled Synthesis of Polymer Brushes via Polymer Single Crystal Templates

    NASA Astrophysics Data System (ADS)

    Zhou, Tian

    A novel synthetic method of polymer brushes using polymer single crystals (PSCs) as solid-state templates is introduced in this study. PSC has a quasi-2D lamellae structure with polymer chains fold back-and-forth perpendicular to the lamellae surfaces. During crystallization, the chain ends are excluded from the unit cell onto the lamellae surfaces, which makes the material extremely versatile in its functionality. Such structure holds the unique capability to harvest nanoparticles, or being immobilized onto macroscopic flat surfaces. After dissolving PSCs in good solvent, polymer brushes are chemically tethered on either nanoparticles or flat macroscopic surfaces. Because the chain-folding structure can be conveniently tailored by changing the molecular weight of polymer and the crystallization temperature, the thickness, grafting density and morphology of resulted polymer brushes can be precisely controlled. As a model system, poly(?-caprolactone) with thiol or alkoxysilane terminal groups was used, and polymer brushes were successfully prepared on both nanoparticles and glass/Au flat surfaces. The structure-property relationships of the as-prepared polymer brushes were studied in detail using multiple characterization techniques. First of all, when functionalizing nanoparticles, by engineering the chain-folding structure of the PSCs, interesting complex nanostructures can be formed by nanoparticles including Janus nanoparticles and nanoparticle dimers. These unique structures render hybrid nanoparticles very interesting responsive behavior which have been studied in detail in this dissertation. When grafted onto a flat surface on the other hand, not only the molecular weight and grafting density can be precisely controlled, the tethering points of a single polymer chain can also be conveniently tailored, resulting polymer brushes with either tail or loop structures. Such difference in brush structure can significantly alter the properties of functional surface

  3. Substrate-induced gliding in a nematic liquid crystal layer

    NASA Astrophysics Data System (ADS)

    Mema, E.; Kondic, L.; Cummings, L. J.

    2015-12-01

    We consider the interaction between nematic liquid crystals (NLCs) and polymer substrates. Such substrates can interact with NLCs, exhibiting a phenomenon known as director gliding: the preferred orientation of the NLC molecules at the interface changes on time scales that are slow relative to the elastic relaxation time scale of the NLC. We present two models for gliding, inspired by experiments that investigate the interaction between the NLC and a polymer substrate. These models, though simple, lead to nontrivial results, including loss of bistability under gliding. Perhaps surprisingly, we find that externally imposed switching between the steady states of a bistable system may reverse the effect of gliding, preventing loss of bistability if switching is sufficiently frequent. Our findings may be of relevance to a variety of technological applications involving liquid crystal devices, and particularly to a new generation of flexible liquid crystal displays that implement polymeric substrates.

  4. Substrate-induced gliding in a nematic liquid crystal layer.

    PubMed

    Mema, E; Kondic, L; Cummings, L J

    2015-12-01

    We consider the interaction between nematic liquid crystals (NLCs) and polymer substrates. Such substrates can interact with NLCs, exhibiting a phenomenon known as director gliding: the preferred orientation of the NLC molecules at the interface changes on time scales that are slow relative to the elastic relaxation time scale of the NLC. We present two models for gliding, inspired by experiments that investigate the interaction between the NLC and a polymer substrate. These models, though simple, lead to nontrivial results, including loss of bistability under gliding. Perhaps surprisingly, we find that externally imposed switching between the steady states of a bistable system may reverse the effect of gliding, preventing loss of bistability if switching is sufficiently frequent. Our findings may be of relevance to a variety of technological applications involving liquid crystal devices, and particularly to a new generation of flexible liquid crystal displays that implement polymeric substrates. PMID:26764717

  5. Polymer-cholesteric liquid-crystalline composites with a broad light reflection band

    NASA Astrophysics Data System (ADS)

    Mitov, Michel

    2016-05-01

    Cholesteric liquid crystals selectively reflect the light. The reflection bandgap is typically limited to 100 nm in the visible spectrum and, at the best, 50% of the unpolarized incident light is reflected. Solutions are found in biopolymers and polymer-liquid crystal composite materials to go beyond these limits.

  6. Optical trapping in liquid crystals

    NASA Astrophysics Data System (ADS)

    Simoni, F.; Lucchetti, L.; Criante, L.; Bracalente, F.; Aieta, F.

    2010-08-01

    Optical trapping and manipulation of micrometric silica particles dispersed in a nematic liquid crystal is reported. Several kind of samples are considered: homeotropic and planar undoped cells and homeotropic and planar cells doped by a small amount of the azo-dye Methyl-Red. The incident light intensity is over the threshold for optical reorientation of the molecular director. The refractive index of the dispersed particles is lower than the ones of the liquid crystal therefore the usual conditions for laser trapping and manipulation are not fulfilled. Nevertheless optical trapping is possible and is closely related to the optical nonlinearity of the hosting liquid crystal1. Trapping in doped and undoped cells are compared and it is shown that in the first case intensity lower by more than one order of magnitude is required as compared to the one needed in undoped samples. The effect is faster and the structural forces are of longer range. The formation of bubble-gum like defects in doped samples under certain experimental conditions is also reported and discussed.

  7. Swimming bacteria in liquid crystal

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  8. Cholesteric liquid crystal photonic crystal lasers and photonic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Ying

    This dissertation discusses cholesteric liquid crystals (CLCs) and polymers based photonic devices including one-dimensional (1D) photonic crystal lasers and broadband circular polarizers. CLCs showing unique self-organized chiral structures have been widely used in bistable displays, flexible displays, and reflectors. However, the photonic band gap they exhibit opens a new way for generating laser light at the photonic band edge (PBE) or inside the band gap. When doped with an emissive laser dye, cholesteric liquid crystals provide distributed feedback so that mirrorless lasing is hence possible. Due to the limited surface anchoring, the thickness of gain medium and feedback length is tens of micrometers. Therefore lasing efficiency is quite limited and laser beam is highly divergent. To meet the challenges, we demonstrated several new methods to enhance the laser emission while reducing the beam divergence from a cholesteric liquid crystal laser. Enhanced laser emission is demonstrated by incorporating a single external CLC reflector as a polarization conserved reflector. Because the distributed feedback from the active layer is polarization selective, a CLC reflector preserves the original polarization of the reflected light and a further stimulated amplification ensues. As a result of virtually doubled feedback length, the output is dramatically enhanced in the same circular polarization state. Meanwhile, the laser beam divergence is dramatically reduced due to the increased cavity length from micrometer to millimeter scale. Enhanced laser emission is also demonstrated by the in-cell metallic reflector because the active layer is pumped twice. Unlike a CLC reflector, the output from a mirror-reflected CLC laser is linearly polarized as a result of coherent superposition of two orthogonal circular polarization states. The output linear polarization direction can be well controlled and fine tuned by varying the operating temperature and cell gap. Enhanced laser

  9. Thermally switchable flexible liquid crystal devices in prepolymer-doped cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Fuh, A. Y.-G.; Li, J.-H.; Cheng, K.-T.

    2010-10-01

    This work describes an approach for fabricating thermally switchable flexible liquid crystal devices in prepolymer-doped cholesteric liquid crystals (CLCs). The roughness of the UV-cured polymer film eliminates the stability of planar CLCs, allowing the textures in the UV-cured regions to be changed from planar to focal conic. Impurities associated with doping with prepolymers cause the clearing temperature of LCs in the UV-cured regions to differ from that in the uncured regions as the prepolymers are polymerized. Therefore, the textures in these two regions can be switched by controlling the temperature. Thermally switchable flexible LC devices, such as optically addressed smart cards, light valves, and others, can be realized using this approach.

  10. Spontaneous Crystallization in Athermal Polymer Packings

    PubMed Central

    Karayiannis, Nikos Ch.; Foteinopoulou, Katerina; Laso, Manuel

    2013-01-01

    We review recent results from extensive simulations of the crystallization of athermal polymer packings. It is shown that above a certain packing density, and for sufficiently long simulations, all random assemblies of freely-jointed chains of tangent hard spheres of uniform size show a spontaneous transition into a crystalline phase. These polymer crystals adopt predominantly random hexagonal close packed morphologies. An analysis of the local environment around monomers based on the shape and size of the Voronoi polyhedra clearly shows that Voronoi cells become more spherical and more symmetric as the system transits to the ordered state. The change in the local environment leads to an increase in the monomer translational contribution to the entropy of the system, which acts as the driving force for the phase transition. A comparison of the crystallization of hard-sphere polymers and monomers highlights similarities and differences resulting from the constraints imposed by chain connectivity. PMID:23263666

  11. Phase behavior and local structure of liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Fynewever, Herb

    In this work we use a combination of theory and computer simulation to study the phase behavior of liquid crystalline polymers and the local structure of polymer melts. We review experimental and simulation evidence which shows that long and stiff molecules form orientationally ordered phases at packing fractions intermediate between the liquid and the solid. With the aid of a two-molecule simulation, we are able to apply Onsager's theory [Ann. N. Y. Acad. Sci. 51, 627 (1949)] for liquid crystal formation to flexible molecules without any additional approximations. Our results have a quantitative advantage over other theories in comparison with computer simulation data such as for the liquid-liquid crystal phase diagram. We also study the local structure of polymer melts using a two-molecule simulation to apply the density functional theories of Donley, Curro, and McCoy [J. Chem. Phys. 101 , 3205 (1994)1; and Yethiraj and Woodward [J. Chem. Phys 102 , 5499 (1995)]. The accuracy of these methods rivals that of integral equation theories in their predictions of local order. Further, the two-molecule simulation facilitates a more direct calculation of the equation of state via the monitoring of orientational correlations.

  12. Growth kinetics and morphology of polymer crystals

    NASA Astrophysics Data System (ADS)

    Toda, Akihiko

    2007-03-01

    Originating from the nature of chain folding, polymer single crystals are quite unique in the growth kinetics and morphology. The developments of the understanding in the past 50 years are discussed and the unsolved important issues will be suggested. Polymer single crystals are thin lamellae with the thickness in the order of 10nm determined by the period of chain folding, which keeps a constant value for the isothermal crystallization. The growth of polymer single crystals is modeled by the kinetics of creation and annihilation of growth steps on a rectangular substrate with the pre-determined thickness. The growth face is therefore regarded as a one-dimensional substrate and the kinks and anti-kinks on the substrate correspond to the growth steps propagating in the opposite directions. The kinetic equations of those kinks proposed by Seto and Frank well describe the transition of growth regime as a crossover from single nucleation to multi-nucleation on the basis of the standard model of chain-folded polymer crystallization with surface nucleation proposed by Lauritzen and Hoffman. However, the analysis of the growth kinetics and morphology of single crystals having curved growth front suggests an unusual behavior of the step propagation velocity. The anomaly can be accounted for by a self-poisoning of the growth step interrupted by polymer chains with folding shorter than required. An entropic barrier of pinning proposed by Sadler and Gilmer is a possible candidate of the self-poisoning and is in accordance with recent computer simulation results suggesting the kinetics on a rugged free energy landscape having a resemblance to protein folding. Therefore, the quantitative evaluation of the kinetic barriers of surface nucleation and pinning has been an important issue. In addition, examination of the kinetics of melting will have valuable information because melting of a crystal must be free from nucleation but can still be limited by the entropic barrier.

  13. Crystallization analysis for fiber/polymer composites

    NASA Astrophysics Data System (ADS)

    Raimo, Maria

    2016-05-01

    The peculiar nucleation behavior of low thermal conductivity polymer matrixes and the particular morphologies around fibers found in several composites, invalidate some assumptions invoked in the general description of the solidification kinetics of polycrystalline substances. The model of solidification universally adopted for polycrystalline substances, originally developed for metals, needs to be adapted also to account for large differences between polymers and fibers in thermoplastic composites. The extension of the classical phase transitions theory to fiber/polymer composites, in view of their specific thermal properties, allows to achieve reliable information on crystallization behavior and microstructure inside composites.

  14. Substrate induced gliding for a nematic liquid crystal layer

    NASA Astrophysics Data System (ADS)

    Mema, Ensela; Cummings, Linda; Kondic, Lou

    2015-03-01

    The interaction between nematic liquid crystals (NLC) and polymer substrates is of current industrial interest, due to a desire to manufacture a new generation of flexible Liquid Crystal Displays (LCDs) for use in portable electronic devices. Polymer substrates present challenges because they can interact with the NLC, exhibiting a phenomenon known as gliding: the preferred orientation of the NLC molecules at the interface changes over timescales of minutes to hours. We present two models for gliding, inspired by the physics and chemistry of the interaction between the NLC and polymer substrate. These models, though simple, lead to non-trivial results, including loss of bistability, a finding that may have implications for display devices. Supported by NSF Grant No. DMS-1211713.

  15. Protein crystallization facilitated by molecularly imprinted polymers

    PubMed Central

    Saridakis, Emmanuel; Khurshid, Sahir; Govada, Lata; Phan, Quan; Hawkins, Daniel; Crichlow, Gregg V.; Lolis, Elias; Reddy, Subrayal M.; Chayen, Naomi E.

    2011-01-01

    We present a previously undescribed initiative and its application, namely the design of molecularly imprinted polymers (MIPs) for producing protein crystals that are essential for determining high-resolution 3D structures of proteins. MIPs, also referred to as “smart materials,” are made to contain cavities capable of rebinding protein; thus the fingerprint of the protein created on the polymer allows it to serve as an ideal template for crystal formation. We have shown that six different MIPs induced crystallization of nine proteins, yielding crystals in conditions that do not give crystals otherwise. The incorporation of MIPs in screening experiments gave rise to crystalline hits in 8–10% of the trials for three target proteins. These hits would have been missed using other known nucleants. MIPs also facilitated the formation of large single crystals at metastable conditions for seven proteins. Moreover, the presence of MIPs has led to faster formation of crystals in all cases where crystals would appear eventually and to major improvement in diffraction in some cases. The MIPs were effective for their cognate proteins and also for other proteins, with size compatibility being a likely criterion for efficacy. Atomic force microscopy (AFM) measurements demonstrated specific affinity between the MIP cavities and a protein-functionalized AFM tip, corroborating our hypothesis that due to the recognition of proteins by the cavities, MIPs can act as nucleation-inducing substrates (nucleants) by harnessing the proteins themselves as templates. PMID:21690356

  16. Computer simulations of liquid crystals

    NASA Astrophysics Data System (ADS)

    Smondyrev, Alexander M.

    Liquid crystal physics is an exciting interdisciplinary field of research with important practical applications. Their complexity and the presence of strong translational and orientational fluctuations require a computational approach, especially in the studies of nonequlibrium phenomena. In this dissertation we present the results of computer simulation studies of liquid crystals using the molecular dynamics technique. We employed the Gay-Berne phenomenological model of liquid crystals to describe the interaction between the molecules. Both equilibrium and non-equilibrium phenomena were studied. In the first case we studied the flow properties of the liquid crystal system in equilibrium as well as the dynamics of the director. We measured the viscosities of the Gay-Berne model in the nematic and isotropic phases. The temperature-dependence of the rotational and shear viscosities, including the nonmonotonic behavior of one shear viscosity, are in good agreement with experimental data. The bulk viscosities are significantly larger than the shear viscosities, again in agreement with experiment. The director motion was found to be ballistic at short times and diffusive at longer times. The second class of problems we focused on is the properties of the system which was rapidly quenched to very low temperatures from the nematic phase. We find a glass transition to a metastable phase with nematic order and frozen translational and orientational degrees of freedom. For fast quench rates the local structure is nematic-like, while for slower quench rates smectic order is present as well. Finally, we considered a system in the isotropic phase which is then cooled to temperatures below the isotropic-nematic transition temperature. We expect topological defects to play a central role in the subsequent equilibration of the system. To identify and study these defects we require a simulation of a system with several thousand particles. We present the results of large

  17. Ferroelectric Liquid Crystals In Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Holmes, Harlan K.

    1994-01-01

    The process of simultaneous optical visualization and quantitative measurement of aerodynamic boundary layer parameters requires new concepts, materials and utilization methods. Measurement of shear stress in terms of the transmitted or the reflected light intensity from an aligned ferroelectric liquid crystal (FLC) thin (approx. 1 micron) film deposited on a glass substrate has been the first step in this direction. In this paper, recent progress in utilization of FLC thin films for skin friction measurement and for studying the state of the boundary layer in a wind tunnel environment is reviewed. The switching characteristics of FLCs have been used to measure pressure from the newly devised system of partially exposed polymer dispersed ferroelectric liquid crystals (PEPDFLCs). In this configuration, a PEPDFLC thin film (approx. 10-25 microns) is sandwiched between two transparent conducting electrodes, one a rigid surface and the other a flexible sheet such as polyvinylidene fluoride or mylar. The switching characteristics of the film are a function of the pressure applied to the flexible transparent electrode and a predetermined bias voltage across the two electrodes. The results, considering the dielectrics of composite media, are discussed.

  18. Two dimensional liquid crystal devices and their computer simulations

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    The main focus of the dissertation is design and optimization two dimensional liquid crystal devices, which means the liquid crystal director configurations vary in two dimensions. Several optimized and designed devices are discussed in the dissertation. They include long-term bistable twisted nematic liquid crystal display (BTN LCD), which is very low power consumption LCD and suitable for E-book application; wavelength tunable liquid crystal Fabry-Perot etalon filter, which is one of the key components in fiber optic telecommunications; high speed refractive index variable devices, which can be used in infrared beam steering and telecommunications; high density polymer wall diffractive liquid crystal on silicon (PWD-LCoS) light valve, which is a promising candidate for larger screen projection display and also can be used in other display applications. Two dimensional liquid crystal director simulation program (relaxation method) and two dimensional optical propagation simulation program (finite-difference time-domain, FDTD method) are developed. The algorithms of these programs are provided. It has been proved that they are the very efficient tools that used in design and optimization the devices described above.

  19. Stretchable liquid-crystal blue-phase gels

    NASA Astrophysics Data System (ADS)

    Castles, F.; Morris, S. M.; Hung, J. M. C.; Qasim, M. M.; Wright, A. D.; Nosheen, S.; Choi, S. S.; Outram, B. I.; Elston, S. J.; Burgess, C.; Hill, L.; Wilkinson, T. D.; Coles, H. J.

    2014-08-01

    Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.

  20. Modeling of Crystallizing Polymer Melts in Electrospinning

    SciTech Connect

    Zhmayev, Eduard; Joo, Yong Lak

    2008-07-07

    In electrospinning, applied electric field elongates a charged fluid jet to produce nanofibers. While most polymer melts result in highly-aligned amorphous structures, some fast-crystallizing polymers such as Nylon can produce semi-crystalline fibers, and by controlling this crystallinity the mechanical properties of electrospun fibers can be tailored. Short inflight residence times, high extensional forces, and radially-uniform stress distributions in electrospinning result in the dominance of flow induced crystallization (FIC) and a nearly 1D microstructure. We present our FIC model based on Kolmogoroff's equation, Hoffman-Lauritzen theory, and key modifications from molecular scale insights to account for flow effects. The model behavior is compared to the conventional Ziabicki FIC model using Nylon-6,6 as the model polymer.

  1. Cooperative liquid-crystal alignment generated by overlaid topography

    NASA Astrophysics Data System (ADS)

    Yi, Youngwoo; Maclennan, Joseph E.; Clark, Noel A.

    2011-05-01

    Nematic and smectic liquid crystals were introduced into μm-scale gaps between plates coated with polymer films nanoimprinted with parallel arrays of rectangular channels. Overlaying the channels on the two plates close enough at a slight angle produces a mosaic of alternating planar and homeotropic alignments and hybrid alignment, showing that complex liquid-crystal orientation patterns can be achieved by combining two simple topographic patterns. These alignment patterns are attributed to spatial variation of surface roughness and 3D topographic structure created by a sufficient proximity of the two patterns.

  2. Cooperative liquid-crystal alignment generated by overlaid topography.

    PubMed

    Yi, Youngwoo; Maclennan, Joseph E; Clark, Noel A

    2011-05-01

    Nematic and smectic liquid crystals were introduced into μm-scale gaps between plates coated with polymer films nanoimprinted with parallel arrays of rectangular channels. Overlaying the channels on the two plates close enough at a slight angle produces a mosaic of alternating planar and homeotropic alignments and hybrid alignment, showing that complex liquid-crystal orientation patterns can be achieved by combining two simple topographic patterns. These alignment patterns are attributed to spatial variation of surface roughness and 3D topographic structure created by a sufficient proximity of the two patterns. PMID:21728557

  3. Low voltage blue phase liquid crystal for spatial light modulators.

    PubMed

    Peng, Fenglin; Lee, Yun-Han; Luo, Zhenyue; Wu, Shin-Tson

    2015-11-01

    We demonstrated a low-voltage polymer-stabilized blue phase liquid crystal (BPLC) for phase-only modulation with a liquid-crystal-on-silicon (LCoS). A new device configuration was developed, which allows the incident laser beam to traverse the BPLC layer four times before exiting the LCoS. As a result, the 2π phase change voltage is reduced to below 24 V in the visible region. The response time remains relatively fast (∼3  ms). The proposed device configuration enables widespread applications of BPLC spatial light modulators. PMID:26512528

  4. Nanoscopic Manipulation and Imaging of Liquid Crystals

    SciTech Connect

    Rosenblatt, Charles S.

    2014-02-04

    This is the final project report. The project’s goals centered on nanoscopic imaging and control of liquid crystals and surfaces. We developed and refined techniques to control liquid crystal orientation at surfaces with resolution as small as 25 nm, we developed an optical imaging technique that we call Optical Nanotomography that allows us to obtain images inside liquid crystal films with resolution of 60 x 60 x 1 nm, and we opened new thrust areas related to chirality and to liquid crystal/colloid composites.

  5. Multifunctional Glassy Liquid Crystal for Photonics

    SciTech Connect

    Chen,S.H.

    2004-11-05

    As an emerging class of photonic materials, morphologically stable glassy liquid crystals, were developed following a versatile molecular design approach. Glassy cholesteric liquid crystals with elevated phase-transition temperatures and capability for selective-wavelength reflection and circular polarization were synthesized via determinstic synthesis strategies. Potential applications of glassy cholesteric liquid crystals include high-performance polarizers, optical notch filters and reflectors, and circularly polarized photoluminescence. A glassy nematic liquid crystal comprising a dithienylethene core was also synthesized for the demonstration of nondestructive rewritable optical memory and photonic switching in the sollid state.

  6. The surface properties of polymer liquids

    SciTech Connect

    Dee, G.T.; Sauer, B.B.

    1995-12-01

    A corresponding states principle is demonstrated for polymer and oligomer liquids. Scaling the measured surface tension with the thermodynamic properties obtained from pressure, volume, and temperature data, one obtains a universal curve. A strict adherence to the corresponding states principle is observed within each oligomer to polymer homologous series. This allows model`s based on equation of state theories to predict the surface tension to within 1% accuracy for such a homologous series. The existence of a strict corresponding states principle implies that for the polymers studied by us, the dominant contribution to the surface tension comes from the cohesive and entropic properties of the bulk liquids. The implications of the corresponding states principle to the prediction of the surface and interfacial tension in polymer melts is outlined.

  7. What makes polymer crystallization depend on time

    NASA Astrophysics Data System (ADS)

    Piccarolo, Stefano

    2015-12-01

    Here we report a series of objections to the mechanism of polymer crystallization by secondary nucleation plausible for very mild cooling conditions, i.e. when solidification time is long enough or when the molecular weight, M, is not too large, conditions not preventing segregation at the growth front to take place. With a manichean approach, if otherwise time is controlling, e.g. in polymer processing, or M is large, segregation is precluded and accumulation of topological defects takes place in the amorphous phase preventing sequential growth of crystalline domains. A non crystalline phase forms very much departed from equilibrium, constrained by the crystalline domains and frozen to an extent dependent on the morphology developed. Consequences are discussed, themselves a proof that segregation simplifies topology when crystallization conditions are mild. A situation responsible for the often reported memory effects as well as for mechanical and rheological properties. Results collected from our own experimental evidence by the originally developed Continuous Cooling Transformation are discussed within this framework and related to the broad, albeit often overlooked, literature on subjects intimately connected to crystallization and therefore spanning different fields of polymer science. We focus our attention on two recent results opening the way to this new perspective on polymer crystallization: the onset of the nodular morphology in iPP also in the presence of the stable a-monoclinic phase and the extended crystallization behaviour of polyester blends once local mobility is enhanced. Observing that demixing at the growth front controls crystallization under processing conditions we speculate that the high cooling rate solidification experiment is but a peculiar transient rheological measurement. Implications of this view are far reaching as the crucial role of the melt before solidification is evident.

  8. Liquid-Crystal Point-Diffraction Interferometer

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    1996-01-01

    Liquid-crystal point-diffraction interferometer (LCPDI) invented to combine flexible control of liquid-crystal phase-shifts with robustness of point-diffraction interferometers. Produces interferograms indicative of shapes of wavefronts of laser beams having passed through or reflected from objects of interest. Interferograms combined in computers to produce phase maps describing wavefronts.

  9. Demonstrations with a Liquid Crystal Shutter

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    The experiments presented show the response of a liquid crystal shutter to applied electric voltages and the delay of the operations. Both properties are important for liquid crystal displays of computers and television sets. Two characteristics of the shutter are determined: (i) the optical transmittance versus applied voltage of various…

  10. Liquid Crystals in Education--The Basics

    ERIC Educational Resources Information Center

    Cepic, Mojca

    2012-01-01

    The introduction of teaching about liquid crystals is discussed from several points of view: the rationale why to teach them, the basics about liquid crystals or what the teacher should teach about them, the fundamental pre-knowledge of students required, the set of experiments accompanying the teaching and the brief report on the already…

  11. Chemical and biological sensing using liquid crystals

    PubMed Central

    Carlton, Rebecca J.; Hunter, Jacob T.; Miller, Daniel S.; Abbasi, Reza; Mushenheim, Peter C.; Tan, Lie Na; Abbott, Nicholas L.

    2014-01-01

    The liquid crystalline state of matter arises from orientation-dependent, non-covalent interaction between molecules within condensed phases. Because the balance of intermolecular forces that underlies formation of liquid crystals is delicate, this state of matter can, in general, be easily perturbed by external stimuli (such as an electric field in a display). In this review, we present an overview of recent efforts that have focused on exploiting the responsiveness of liquid crystals as the basis of chemical and biological sensors. In this application of liquid crystals, the challenge is to design liquid crystalline systems that undergo changes in organization when perturbed by targeted chemical and biological species of interest. The approaches described below revolve around the design of interfaces that selectively bind targeted species, thus leading to surface-driven changes in the organization of the liquid crystals. Because liquid crystals possess anisotropic optical and dielectric properties, a range of different methods can be used to read out the changes in organization of liquid crystals that are caused by targeted chemical and biological species. This review focuses on principles for liquid crystal-based sensors that provide an optical output. PMID:24795857

  12. Liquid Crystal Cells Based on Photovoltaic Substrates

    NASA Astrophysics Data System (ADS)

    Lucchetti, L.; Kushnir, K.; Zaltron, A.; Simoni, F.

    2016-02-01

    Liquid crystal cells with LiNbO3:Fe crystals as substrates, are described. The photovoltaic field generated by the substrates is able to reorient the liquid crystal director thus giving rise to a phase shift on the light propagating through the cell, as in liquid crystal light valves. The process does not require the application of an external electric field, thus being potentially useful for applications requiring a high degree of compactness. An efficient optical switch with a high transmission contrast, based on the described optically-induced electric field, is also proposed.

  13. Liquid crystal device and method thereof

    SciTech Connect

    Shiyanovskii, Sergij V; Gu, Mingxia; Lavrentovich, Oleg D

    2012-10-23

    The invention provides a liquid crystal device and method thereof. Subsequent to applying a first electrical voltage on a liquid crystal to induce a reorientation of the liquid crystal, a second electrical voltage with proper polarity is applied on the liquid crystal to assist the relaxation of the reorientation that was induced by the first electrical voltage. The "switch-off" phase of the liquid crystal can therefore be accelerated or temporally shortened, and the device can exhibit better performance such as fast response to on/off signals. The invention can be widely used LCD, LC shutter, LC lens, spatial light modulator, telecommunication device, tunable filter, beam steering device, and electrically driven LC device, among others.

  14. Phototropic liquid crystals comprising one component

    NASA Astrophysics Data System (ADS)

    Sobolewska, Anna; Zawada, Joanna; Bartkiewicz, Stanislaw; Galewski, Zbigniew

    2013-09-01

    Phototropic liquid crystals (PtLC), in which the phase transition can be controlled by the light, are a new class of liquid crystal materials possessing number of potential applications, especially in photonic devices. So far a significant majority of PtLC materials has been realized by the doping a classical liquid crystal with a photochromic dye. Here we report PtLCs comprising a single compound. Liquid-crystalline and photochromic properties have been accomplished in alkylo-alkoxy derivatives of azobenzene. Such compounds show a rich polymorphism which can be controlled by the light. The phenomenon of the photochemical phase transition has been investigated by means of holographic grating recording.

  15. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    PubMed Central

    Parshin, Alexander M.; Gunyakov, Vladimir A.; Zyryanov, Victor Y.; Shabanov, Vasily F.

    2013-01-01

    Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface. PMID:23965955

  16. Domain structures in nematic liquid crystals on a polycarbonate surface.

    PubMed

    Parshin, Alexander M; Gunyakov, Vladimir A; Zyryanov, Victor Y; Shabanov, Vasily F

    2013-01-01

    Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface. PMID:23965955

  17. Liquid-crystal materials find a new order in biomedical applications

    NASA Astrophysics Data System (ADS)

    Woltman, Scott J.; Jay, Gregory D.; Crawford, Gregory P.

    2007-12-01

    With the maturation of the information display field, liquid-crystal materials research is undergoing a modern-day renaissance. Devices and configurations based on liquid-crystal materials are being developed for spectroscopy, imaging and microscopy, leading to new techniques for optically probing biological systems. Biosensors fabricated with liquid-crystal materials can allow label-free observations of biological phenomena. Liquid-crystal polymers are starting to be used in biomimicking colour-producing structures, lenses and muscle-like actuators. New areas of application in the realms of biology and medicine are stimulating innovation in basic and applied research into these materials.

  18. Defects and order in liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa

    This thesis investigates the partial destruction of ordering in liquid crystalline systems due to the influence of defects and thermal fluctuations. The systems under consideration are hexagonal columnar crystals with crystalline order perpendicular to the columns, and two-dimensional smectics with order perpendicular to the layers. We first study the possibility of reentrant melting of a hexagonal columnar crystal of flexible charged polymers at high enough densities. The Lindemann criterion is employed in determining the melting point. Lattice fluctuations are calculated in the Debye model, and an analogy with the Abrikosov vortex lattice in superconductors is exploited in estimating both the elastic constants of the hexagonal lattice, and the appropriate Lindemann constant. We also discuss the unusual functional integral describing the statistical mechanics of a single polymer in an Einstein cage model using the path-integral formulation. A crossover as a function of an external field along the column axis is discussed as well. Next, we study defects in a columnar crystal in the form of vacancy/interstitial loops or strings of vacancies and interstitials bounded by column "heads" and "tails". These defect strings are oriented by the columnar lattice and can change size and shape by movement of the ends and forming kinks along the length. Hence an analysis in terms of directed living polymers is appropriate to study their size and shape distribution, volume fraction, etc. If the entropy of transverse fluctuations overcomes the string line tension in the crystalline phase, a string proliferation transition occurs, leading to a "supersolid" phase with infinitely long vacancy or interstitial strings. We estimate the wandering entropy and examine the behaviour in the transition regime. We also calculate numerically the line tension of various species of vacancies and interstitials in a triangular lattice for power-law potentials as well as for a modified Bessel

  19. Guided-wave liquid-crystal photonics.

    PubMed

    Zografopoulos, D C; Asquini, R; Kriezis, E E; d'Alessandro, A; Beccherelli, R

    2012-10-01

    In this paper we review the state of the art in the field of liquid-crystal tunable guided-wave photonic devices, a unique type of fill-once, molecular-level actuated, optofluidic systems. These have recently attracted significant research interest as potential candidates for low-cost, highly functional photonic elements. We cover a full range of structures, which span from micromachined liquid-crystal on silicon devices to periodic structures and liquid-crystal infiltrated photonic crystal fibers, with focus on key-applications for photonics. Various approaches on the control of the LC molecular orientation are assessed, including electro-, thermo- and all-optical switching. Special attention is paid to practical issues regarding liquid-crystal infiltration, molecular alignment and actuation, low-power operation, as well as their integrability in chip-scale or fiber-based devices. PMID:22842818

  20. Temperature sensing with thermochromic liquid crystals

    NASA Astrophysics Data System (ADS)

    Smith, C. R.; Sabatino, D. R.; Praisner, T. J.

    A review of the most recent developments in the application of thermochromic liquid crystals to fluid flow temperature measurement is presented. The experimental aspects including application, illumination, recording, and calibration of liquid crystals on solid surfaces, as well as in fluid suspensions, are discussed. Because of the anisotropic optical properties of liquid crystals, on-axis lighting/viewing arrangements, combined with in-situ calibration techniques, generally provide the most accurate temperature assessments. However, where on-axis viewing is not possible, calibration techniques can be employed, which reduce the uncertainty associated with off-axis viewing and lighting arrangements. It has been determined that the use of hue definitions that display a linear trend across the color spectrum yield the most accurate correlation with temperature. The uncertainty of both wide-band and narrow-band thermochromic liquid crystal calibration techniques can be increased due to hysteresis effects, which occur when the temperature of the liquid crystals exceeds their maximum activation temperature. Although liquid crystals are commonly used to provide time-mean temperature measurements, techniques are available which allow the monitoring of temporal changes. Selected examples illustrating the use of thermochromic liquid crystals are shown, and a survey of reported temperature measurement uncertainties is presented.

  1. A swing driven by liquid crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng

    Angular momentum in liquid crystals exists as flow, director reorientation, etc. However, it is hard to observe and measure angular momentum in liquid crystals by a direct mechanical approach. Torsion pendulum is a general tool to measure angular momentum by torque balance. Our torsion pendulum can harvest the angular momentum in liquid crystals to make it observable. The oscillation of the pendulum keeps increasing by constructively adding a small angular momentum of liquid crystals each period at the resonant frequency of the pendulum. Its similar to a swing driven by a force at its resonant frequency. For the torsion pendulum, a cage made of two aluminum discs, in which a liquid crystal cell is placed, is suspended between two thin tungsten wires. A gold mirror, which is a part of the optical lever system, is attached on one tungsten wire. As first demonstration, we fabricate a circular hybrid liquid crystal cell, which can induce concentric backflows to generate angular momentum. The alignment on the planar substrate is concentric and tangential. Due to the coupling between director rotation and flow, the induced backflow goes around the cell when we add electrical pulses between top and bottom substrates. The oscillation is observed by a position sensitive detector and analyzed on the basis of Eriksen-Leslie theory. With vacuum condition and synchronous driving system, the oscillation signal is improved. We demonstrate that this torsion pendulum can sensitively detect the angular momentum in liquid crystals.

  2. Two distinct crystallization processes in supercooled liquid

    NASA Astrophysics Data System (ADS)

    Tane, Masakazu; Kimizuka, Hajime; Ichitsubo, Tetsu

    2016-05-01

    Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al2O3 model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al2O3 exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquid does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport.

  3. Two distinct crystallization processes in supercooled liquid.

    PubMed

    Tane, Masakazu; Kimizuka, Hajime; Ichitsubo, Tetsu

    2016-05-21

    Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al2O3 model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al2O3 exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquid does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport. PMID:27208956

  4. Liquid Crystal Research Shows Deformation By Drying

    NASA Technical Reports Server (NTRS)

    2003-01-01

    These images, from David Weitz's liquid crystal research, show ordered uniform sized droplets (upper left) before they are dried from their solution. After the droplets are dried (upper right), they are viewed with crossed polarizers that show the deformation caused by drying, a process that orients the bipolar structure of the liquid crystal within the droplets. When an electric field is applied to the dried droplets (lower left), and then increased (lower right), the liquid crystal within the droplets switches its alignment, thereby reducing the amount of light that can be scattered by the droplets when a beam is shone through them.

  5. Tactoids of chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Palacio-Betancur, Viviana; Villada-Gil, Stiven; Zhou, Ye; Armas-Pérez, Julio C.; de Pablo, Juan José; Hernández-Ortiz, Juan Pablo

    The phase diagram of chiral liquid crystals confined in ellipsoids is obtained, by following a theoretically informed Monte Carlo relaxation of the tensor alignment field Q. The free energy of the system is described by a functional in the framework of the Landau-de Gennes formalism. This study also includes the effect of anchoring strength, curvature, and chirality of the system. In the low chirality region of the phase diagram we found the twist bipolar (BS) phase and some cholesteric phases such as the radial spherical structure (RSS), twist cylinder (TC) and double twist cylinder (DTC) whose axis of rotation is not necessarily aligned with the major axis of the geometry. For high chirality scenarios, the disclination lines are twisted or bent near the surface preventing the formation of symmetric networks of defects, although an hexagonal pattern is formed on the surface which might serve as open sites for collocation of colloids. By analyzing the free energies of isochoric systems, prolate geometries tend to be more favorable for high chirality and low anchoring conditions. Universidad Nacional de Colombia Ph.D. grant and COLCIENCIAS under the Contract No. 110-165-843-748. CONACYT for Postdoctoral Fellowships Nos. 186166 and 203840.

  6. Instability of liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    An, Ning; Li, Meie; Zhou, Jinxiong

    2016-01-01

    Nematic liquid crystal elastomers (LCEs) contract in the director direction but expand in other directions, perpendicular to the director, when heated. If the expansion of an LCE is constrained, compressive stress builds up in the LCE, and it wrinkles or buckles to release the stored elastic energy. Although the instability of soft materials is ubiquitous, the mechanism and programmable modulation of LCE instability has not yet been fully explored. We describe a finite element method (FEM) scheme to model the inhomogeneous deformation and instability of LCEs. A constrained LCE beam working as a valve for microfluidic flow, and a piece of LCE laminated with a nanoscale poly(styrene) (PS) film are analyzed in detail. The former uses the buckling of the LCE beam to occlude the microfluidic channel, while the latter utilizes wrinkling or buckling to measure the mechanical properties of hard film or to realize self-folding. Through rigorous instability analysis, we predict the critical conditions for the onset of instability, the wavelength and amplitude evolution of instability, and the instability patterns. The FEM results are found to correlate well with analytical results and reported experiments. These efforts shed light on the understanding and exploitation of the instabilities of LCEs.

  7. Intramolecular Crystal Nucleation Favored by Polymer Crystallization: Monte Carlo Simulation Evidence.

    PubMed

    Zhang, Rong; Zha, Liyun; Hu, Wenbing

    2016-07-14

    We performed dynamic Monte Carlo simulations of half-half binary blends of symmetric (double and mutual) crystallizable polymers. We separately enhanced the driving forces for polymer-uniform and polymer-staggered crystals. Under parallel enhancements, polymer-uniform crystals exhibit faster nucleation and growth, with more chain folding and less lamellar thickening, than those in polymer-staggered crystals. We attributed the results to intramolecular crystal nucleation, ruined by enhanced polymer-staggered crystallization. Our observations provide direct molecular-level evidence to support the fact that intramolecular crystal nucleation is favored by polymer crystallization in quiescent solutions and melt, which yields chain folding for the characteristic β-sheet or lamellar morphology of macromolecular crystals. PMID:27300471

  8. Hierarchical Organization in Liquid Crystal-in-Liquid Crystal Emulsions

    PubMed Central

    Mushenheim, Peter C.

    2014-01-01

    We report the formation and characterization of hierarchical ordering in systems comprised of micrometer-sized droplets of thermotropic nematic liquid crystals (LCs) dispersed in continuous nematic phases of a lyotropic chromonic LC (disodium cromoglycate (DSCG)). Significantly, we find the orientations of the two LC phases to be coupled, with nematic droplets of 4′-pentyl-4-cyanobiphenyl (5CB) exhibiting a bipolar configuration with an axis of symmetry aligned orthogonal to the far-field director of the DSCG phase. We determine that this coupling of orientations does not result from either anisometric LC droplet shape or interfacial ionic phenomena but rather is consistent with the influence of van der Waals interactions that arise from the anisotropic polarizabilities of nematic 5CB (Δn = + 0.18) and DSCG (Δn = − 0.02) phases. We also find that it is possible to rotate and uniformly align the nematic droplets by using a weak magnetic field (B ∼ 0.3 T). An analysis of the dynamics of relaxation of the orientations of the 5CB droplets following removal of the magnetic field reveals the DSCG and 5CB droplets to be coupled by energies of ∼104kT, consistent with a simple theoretical estimate of the influence of anisotropic van der Waals interactions. We also observed the nematic 5CB droplets to form dimers and larger assemblies mediated by the elasticity of the nematic DSCG. Overall, these results reveal that LC-in-LC emulsions define a new class of hierarchically ordered soft matter in which both thermotropic and lyotropic LCs are coupled in their ordering. PMID:25278032

  9. Hierarchical organization in liquid crystal-in-liquid crystal emulsions.

    PubMed

    Mushenheim, Peter C; Abbott, Nicholas L

    2014-11-21

    We report the formation and characterization of hierarchical ordering in systems comprised of micrometer-sized droplets of thermotropic nematic liquid crystals (LCs) dispersed in continuous nematic phases of a lyotropic chromonic LC (disodium cromoglycate (DSCG)). Significantly, we find the orientations of the two LC phases to be coupled, with nematic droplets of 4'-pentyl-4-cyanobiphenyl (5CB) exhibiting a bipolar configuration with an axis of symmetry aligned orthogonal to the far-field director of the DSCG phase. We determine that this coupling of orientations does not result from either anisometric LC droplet shape or interfacial ionic phenomena but rather is consistent with the influence of van der Waals interactions that arise from the anisotropic polarizabilities of nematic 5CB (Δn = +0.18) and DSCG (Δn = -0.02) phases. We also find that it is possible to rotate and uniformly align the nematic droplets by using a weak magnetic field (B ∼ 0.3 T). An analysis of the dynamics of relaxation of the orientations of the 5CB droplets following removal of the magnetic field reveals the DSCG and 5CB droplets to be coupled by energies of ∼10(4) kT, consistent with a simple theoretical estimate of the influence of anisotropic van der Waals interactions. We also observed the nematic 5CB droplets to form dimers and larger assemblies mediated by the elasticity of the nematic DSCG. Overall, these results reveal that LC-in-LC emulsions define a new class of hierarchically ordered soft matter in which both thermotropic and lyotropic LCs are coupled in their ordering. PMID:25278032

  10. Multicomponent Thermodynamics of Strain-Induced Polymer Crystallization.

    PubMed

    Zha, Liyun; Wu, Yixian; Hu, Wenbing

    2016-07-14

    We developed a linear combination of two Flory's melting-point theories, one for stretched and the other for solution polymers, to predict the melting point of stretched solution polymers. The dependences of the melting strains on varying temperatures, polymer volume fractions, and solvent qualities were verified by the onset strains of crystallization in our dynamic Monte Carlo simulations of stretched solution polymers under a constant strain rate. In addition, owing to phase separation before crystallization in a poor solvent, calibration of polymer concentration to the polymer-rich phase appears necessary for the verification. Our results set up a preliminary thermodynamic background for the investigation of the multicomponent effect on strain-induced crystallization of polymers in rubbers and gels as well as on shear-induced crystallization of polymers in solutions and blends. PMID:27337066

  11. Electron correlation in organic crystals and polymers

    SciTech Connect

    Ukrainskii, I.I.; Shramko, O.V.

    1996-12-31

    Theoretical studies of the electronic structure of molecules and crystals are connected usually with the search of extremes in the space of variational parameters explicitly introduced to many electron wave functions. Again, there are exist variational degrees of freedom connected with the form of the wave function - more complicated functions involve more parameters. So, the restrictions of the approach for wave functions can lead to the restriction of problem under consideration. Thus the problem of bond-length calculations in conducting polymers like polyacetylenes can not be solved correctly with one-determinant functions. We must use more general functions. e.g.. geminals approach. The similar situation that occurs in studies of electron properties of new conducting and superconducting materials based on molecular electron donor-acceptor pairs (organic conducting salts TTF-TCNQ, HTS cuprates. fullerides, polymer materials) is discussed.

  12. Rapid leak detection with liquid crystals

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.; Ruppe, E. P.

    1978-01-01

    Small leaks in vacuum lines are detected by applying liquid-crystal coating, warming suspected area, and observing color change due to differential cooling by leak jet. Technique is used on inside or outside walls of vacuum-jacketed lines.

  13. Liquid crystal television spatial light modulators

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

  14. Liquid crystal on subwavelength metal gratings

    SciTech Connect

    Palto, S. P.; Barnik, M. I.; Artemov, V. V.; Shtykov, N. M.; Geivandov, A. R.; Yudin, S. G.; Gorkunov, M. V.

    2015-06-14

    Optical and electrooptical properties of a system consisting of subwavelength metal gratings and nematic liquid crystal layer are studied. Aluminium gratings that also act as interdigitated electrodes are produced by focused ion beam lithography. It is found that a liquid crystal layer strongly influences both the resonance and light polarization properties characteristic of the gratings. Enhanced transmittance is observed not only for the TM-polarized light in the near infrared spectral range but also for the TE-polarized light in the visible range. Although the electrodes are separated by nanosized slits, and the electric field is strongly localized near the surface, a pronounced electrooptical effect is registered. The effect is explained in terms of local reorientation of liquid crystal molecules at the grating surface and propagation of the orientational deformation from the surface into the bulk of the liquid crystal layer.

  15. Thermal Conductivity and Liquid Crystal Thermometers.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1993-01-01

    Describes using stock liquid crystal postcards as inexpensive classroom thermometers. Also suggests using these postcards as a good visual temperature indicator for classroom demonstrations such as temperature gradients. One such activity is provided. (MVL)

  16. Multidimensional optics and dynamics of liquid crystals

    NASA Astrophysics Data System (ADS)

    Tang, Shouping

    2007-12-01

    In this dissertation, we present an alternative description of multidimensional optics in liquid crystals and uniaxial media, and a systematical investigation on the dynamic properties of twist nematic devices and ECB devices including flow. We also present our investigation on the backflow and dynamic properties of nematic liquid crystals in modulated electric fields. Based on the understanding to backflow and dynamics of liquid crystals, the dynamics of colloidal particles dispersed in nematic liquid crystals and the flow-induced dynamic optical crosstalk between pixels in nematic liquid crystal devices are also studied. The alternative description of multidimensional optics combines the geometrical optics approximation (GOA) with the beam propagation method (BPM). The general treatment of this approach is developed both theoretically and numerically. The investigation on the dynamic properties of twist nematic devices and ECB devices with consideration of backflow is done experimentally, theoretically and numerically. The calculation results are compared with the experimental results, and the optical responses due to backflow are discussed in detail. The investigation on the backflow and dynamic properties of a nematic liquid crystal in modulated electric fields includes director, flow and the shift of liquid crystal fluid. Especially, an important phenomenon, reverseswitching, is shown in this investigation. The dynamics of colloidal particles dispersed in a nematic cela is studied experimentally and by computer simulation. The polarity of director distortions determines the direction of lift force, and the backflow is responsible for the horizontal translational motion. The optical crosstalk between pixels demonstrates the significance of switching-induce flow in pixilated devices. The electrical switching of a pixel in a twisted nematic device can induce an optical response in neighboring pixels. These phenomena are studied in detail, both experimentally and

  17. Stability of amorphous pharmaceutical solids: crystal growth mechanisms and effect of polymer additives.

    PubMed

    Sun, Ye; Zhu, Lei; Wu, Tian; Cai, Ting; Gunn, Erica M; Yu, Lian

    2012-09-01

    We review recent progress toward understanding and enhancing the stability of amorphous pharmaceutical solids against crystallization. As organic liquids are cooled to become glasses, fast modes of crystal growth can emerge. One such growth mode, the glass-to-crystal or GC mode, occurs in the bulk, and another exists at the free surface, both leading to crystal growth much faster than predicted by theories that assume diffusion defines the kinetic barrier of crystallization. These phenomena have received different explanations, and we propose that GC growth is a solid-state transformation enabled by local mobility in glasses and that fast surface crystal growth is facilitated by surface molecular mobility. In the second part, we review recent findings concerning the effect of polymer additives on crystallization in organic glasses. Low-concentration polymer additives can strongly inhibit crystal growth in the bulk of organic glasses, while having weaker effect on surface crystal growth. Ultra-thin polymer coatings can inhibit surface crystallization. Recent work has shown the importance of molecular weight for crystallization inhibitors of organic glasses, besides "direct intermolecular interactions" such as hydrogen bonding. Relative to polyvinylpyrrolidone, the VP dimer is far less effective in inhibiting crystal growth in amorphous nifedipine. Further work is suggested for better understanding of crystallization of amorphous organic solids and the prediction of their stability. PMID:22434258

  18. Optical vortex arrays from smectic liquid crystals.

    PubMed

    Son, Baeksik; Kim, Sejeong; Kim, Yun Ho; Käläntär, K; Kim, Hwi-Min; Jeong, Hyeon-Su; Choi, Siyoung Q; Shin, Jonghwa; Jung, Hee-Tae; Lee, Yong-Hee

    2014-02-24

    We demonstrate large-area, closely-packed optical vortex arrays using self-assembled defects in smectic liquid crystals. Self-assembled smectic liquid crystals in a three-dimensional torus structure are called focal conic domains. Each FCD, having a micro-scale feature size, produces an optical vortex with consistent topological charge of 2. The spiral profile in the interferometry confirms the formation of an optical vortex, which is predicted by Jones matrix calculations. PMID:24663788

  19. Liquid crystal polyester-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  20. Disassembly and characterization of liquid crystal screens.

    PubMed

    Juchneski, Nichele C F; Scherer, Janine; Grochau, Inês H; Veit, Hugo M

    2013-06-01

    The technology used in the manufacturing of televisions and monitors has been changing in recent years. Monitors with liquid crystal displays (LCD) emerged in the market with the aim of replacing cathode ray tube monitors. As a result, the disposal of this type of product, which is already very high, will increase. Thus, without accurate knowledge of the components and materials present in an LCD monitor, the recycling of materials, such as mercury, thermoplastic polymers, glasses, metals and precious metals amongst others, is not only performed, but allows contamination of soil, water and air with the liberation of toxic compounds present in this type of waste when disposed of improperly. Therefore, the objective of this study was to disassemble and characterize the materials in this type of waste, identify the composition, amount and form to enable, in further work, the development of recycling routes. After various tests and analyses, it was observed that an LCD display can be recycled, provided that precautions are taken. Levels of lead, fluoride and copper are above those permitted by the Brazilian law, characterizing this residue as having a high pollution potential. The materials present in printed circuit boards (base and precious metals)-thermoplastics, such as polyethylene terephthalate, acrylic, acrylonitrile butadiene styrene and polycarbonate and metals, such as steel and aluminum, and a layer of indium (in the internal face of the glass)-are components that make a point in terms of their potential for recycling. PMID:23615511

  1. Liquid crystals under the spotlight: light based measurements of electrical and flow properties of liquid crystals

    NASA Astrophysics Data System (ADS)

    Bennett, Thomas P.; Proctor, Matthew B.; Kaczmarek, Malgosia; D'Alessandro, Giampaolo

    2015-09-01

    Optical light modulation in photorefractive liquid crystal cells depends strongly on the relative voltage drop across the photoconductive and liquid crystal layers. This quantity can be estimated using the Voltage Transfer Function, a generalization of the standard cross polarized intensity measurements. Another advantage of this new measurement technique is that we can use it to estimate dynamical parameters of the liquid crystal and of the device, either through simple black-box models or using a full Ericksen-Leslie theory. In this latter case we can obtain estimates of some of the viscosities of the liquid crystal.

  2. Molecular Models of Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Rajshekhar

    Liquid crystal elastomers combine the elastic properties of conventional rubbers with the optical properties of liquid crystals. This dual nature gives rise to unusual physical properties, including the stress induced transition from a polydomain state, consisting of multiple nematic regions with independent orientations, to a monodomain state consisting of a single nematic region with a uniform director. We propose several molecular-scale coarse-grained models of liquid crystal elastomers with varying degrees of resolution. The models employ the Gay-Berne soft potential, and exhibit the chain connectivity of a diamond network. Simulation results show that these models are able to capture the polydomain state exhibited by liquid crystal elastomers in the absence of any external stress. When subjected to uniaxial stress, our models exhibit a polydomain to monodomain transition. We explain that the polydomain state occurs through the aggregation of liquid crystal molecules assisted by crosslinking sites, and conclude that the transition mechanism to the monodomain state is based on the reorientation of nematic domains along the direction of applied stress. Our modeling efforts are primarily focused on three models. The first two models consider the effects of rigid and flexible crosslinkers in liquid crystal elastomers with a diamond topology for chain connectivity. The third model deviates from the diamond network topology and adopts a random network topology.

  3. Biosensing using smectic and cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Popov, Piotr; Mann, Elizabeth; Jakli, Antal

    2015-03-01

    Liquid-crystal-based biosensors utilize liquid crystal alignment's high sensitivity to the presence of lipids and proteins self-assembled at the liquid crystal/aqueous solution interface. The optical response of the bulk liquid crystal to the interface offers inexpensive, easy optical detection of such biologically relevant molecules. Present technique uses nematic liquid crystal phase state that typically has a planar-to-homeotropic response only. Here we show that smectic and cholesteric phase states of liquid crystals can be used as new sensing modes that can provide additional information or improve the characteristics of a potential biosensor device. Smectic-A phase extends the detection range both toward the lower and higher concentration. Cholesteric phase (nematic with a chiral dopant) may be sensitive to the chirality of biological surface-active molecules such as phospholipids. Additionally, the ``finger-print'' texture of a cholesteric phase may show the differences between biomolecule homologues, thus providing a promising way of distinguishing between subtle differences of hydrocarbon chain or head-group size and structure.

  4. Novel confinement of liquid crystals in Janus droplets

    NASA Astrophysics Data System (ADS)

    Wei, Wei-Shao; Jeong, Joonwoo; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

    2015-03-01

    In this work we create and investigate Janus droplets composed of liquid crystal (LC) and polymer. The Janus droplets are formed when homogeneous droplets of LC-polymer-solvent phase separate into LC and polymer regions during solvent evaporation through aqueous continuous phase. This scheme enables us to realize unique confinement geometries for LCs such as spherical caps and bowls, which are difficult to be achieved via other systems. The morphologies and surface anchoring conditions can be controlled by changing the size of droplets, the volume ratio between LC and polymer, and the type/concentration of surfactants in aqueous background phase. We explore a variety of defects in these novel confined geometries including dislocations and focal conic defects of smectic LCs. Nematic and cholesteric LCs are also explored. Models that balance the energetics of bulk elasticity and surface anchoring determine the director configurations of confined liquid crystals (LCs). This work is funded by NSF Grant DMR-1205463, NSF MRSEC Grant DMR-1120901, and NASA Grant NNX08AO0G.

  5. Liquid-liquid equilibrium of aqueous two-polymer systems

    SciTech Connect

    Kang, C.H.

    1988-01-01

    The authors consider the thermodynamic description of the liquid-liquid phase behavior of dextran/polyethylene glycol/water systems which are suitable for the purification or isolation of biological materials. In this effort, they have used the Flory-Huggins and UNIQUAC models and developed a new numerical procedure to estimate the interaction parameters of the models. To test the predictive ability of the models for the phase behavior of the systems, the interaction parameters between each polymer and water were obtained from binary osmotic pressure data so that only the interaction parameters between the unlike polymers were estimated by fitting the ternary LLE data. Both of the models with the parameters obtained in this way gave reasonable predictions of the phase boundaries; the two-parameter UNIQUAC model appeared to be superior to the three-parameter Flory-Huggins model. The phase boundaries of polydisperse aqueous two-phase polymer systems were determined with pseudocomponents chosen based on the Gaussian quadrature methods, and the effects of polymer polydispersivity on the phase boundary were investigated. The predictive versions of Flory-Huggins and the UNIQUAC models were used for the thermodynamic description of these systems together with the assumption of continuous distributions for the molecular weight of the polydisperse species.

  6. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters)....

  7. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters)....

  8. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters)....

  9. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters)....

  10. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters)....

  11. Semiconductor liquid crystal composition and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Li, Liang-shi

    2005-04-26

    Semiconductor liquid crystal compositions and methods for making such compositions are disclosed. One embodiment of the invention is directed to a liquid crystal composition including a solvent and semiconductor particles in the solvent. The solvent and the semiconductor particles are in an effective amount in the liquid crystal composition to form a liquid crystal phase.

  12. Handbook of Liquid Crystal Research (edited by Peter J. Collings and Jay S. Patel)

    NASA Astrophysics Data System (ADS)

    Dadmun, Mark

    1998-10-01

    Oxford University Press: New York, 1997. 600 pp. ISBN 0-19-508442-X. $195. Are you interested in liquid crystals? Do you want to know more about their chemistry and physics? Have you ever wondered how the liquid crystalline display (LCD) on your digital watch or calculator works? How does that simple black and white display relate to the more complex twisted nematic active matrix liquid crystal displays (TN-AMLCD) that are found in laptop computers and other portable displays? What is the difference between twisted nematics and supertwisted nematics? What is a polymer-stabilized liquid crystal and what kinds of displays can be made from them? How do small-molecule liquid crystals relate to polymeric liquid crystals? How do they get all those colors from the display on a laptop computer? What kind of electronics are needed to accomplish that feat?

  13. Electro-osmosis in nematic liquid crystals.

    PubMed

    Tovkach, O M; Calderer, M Carme; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J

    2016-07-01

    We derive a mathematical model of a nematic electrolyte based on a variational formulation of nematodynamics. We verify the model by comparing its predictions to the results of the experiments on the substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments, a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring conditions exhibits electro-osmotic flows along the "guiding rails" imposed by the spatially varying director. Extending our previous work, we consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the full set of nematic viscosities. PMID:27575193

  14. Electro-osmosis in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Tovkach, O. M.; Calderer, M. Carme; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J.

    2016-07-01

    We derive a mathematical model of a nematic electrolyte based on a variational formulation of nematodynamics. We verify the model by comparing its predictions to the results of the experiments on the substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments, a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring conditions exhibits electro-osmotic flows along the "guiding rails" imposed by the spatially varying director. Extending our previous work, we consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the full set of nematic viscosities.

  15. Phase behavior of ionic liquid crystals

    NASA Astrophysics Data System (ADS)

    Kondrat, S.; Bier, M.; Harnau, L.

    2010-05-01

    Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken into account in terms of the Gay-Berne pair potential. Rich phase diagrams involving vapor, isotropic and nematic liquid, as well as smectic phases are found. The dependence of the phase behavior on various parameters such as the length of the particles and the location of charges on the particles is studied.

  16. Liquid nitrogen dewar for protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  17. Liquid crystal quantitative temperature measurement technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wu, Zongshan

    2001-10-01

    Quantitative temperature measurement using wide band thermochromic liquid crystals is an “area” thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light color with variation of temperature and applies an image capturing and processing system to calibrate the characteristic curve of liquid crystal’s color-temperature. Afterwards, the technique uses this curve to measure the distribution of temperature on experimental model. In this paper, firstly, each part of quantitative temperature measurement system using liquid crystal is illustrated and discussed. Then the technique is employed in a long duration hypersonic wind tunnel, and the quantitative result of the heat transfer coefficient along laminar plate is obtained. Additionally, some qualitative results are also given. In the end, comparing the experimental results with reference enthalpy theoretical results, a conclusion of thermal measurement accuracy is drawn.

  18. Key Developments in Ionic Liquid Crystals

    PubMed Central

    Alvarez Fernandez, Alexandra; Kouwer, Paul H. J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material? PMID:27196890

  19. Dissolution enhancement of celecoxib via polymer-induced crystallization

    NASA Astrophysics Data System (ADS)

    Lee, Hyeseung; Lee, Jonghwi

    2013-07-01

    Pharmaceutical research and development critically rely on crystallization engineering principles since they influence the bioavailability, stability and processability of drug formulations. Although the polymer-induced crystallization has been intensively investigated in the area of inorganic materials, drug molecules have seldom been its subject. Celecoxib, which critically needed the improvement of bioavailability and processability, benefited from polymer-induced crystallization. Polyvinylpyrrolidone (PVP) and Pluronic successfully reduced the aspect ratio of celecoxib crystals to 1.5, which would improve processability. Among the polymers used, PVP distinctly improved the in vitro drug release behavior, which is consistent with the significant melting point depression and the polymorphic change in celecoxib crystallized with PVP. The strong hydrogen bonding between celecoxib and PVP is suspected as the origin of the improved crystal morphology and in vitro drug release. This polymer-induced crystallization can create new opportunities of convenient pharmaceutical particle engineering allowing reliable improvements in bioavailability and processability.

  20. Molecular Dynamics Simulations of Spinodal-Assisted Polymer Crystallization

    SciTech Connect

    Gee, R H; Lacevic, N M; Fried, L

    2005-07-08

    Large scale molecular dynamics simulations of bulk melts of polar (poly(vinylidene fluoride) (pVDF)) polymers are utilized to study chain conformation and ordering prior to crystallization under cooling. While the late stages of polymer crystallization have been studied in great detail, recent theoretical and experimental evidence indicates that there are important phenomena occurring in the early stages of polymer crystallization that are not understood to the same degree. When the polymer melt is quenched from a temperature above the melting temperature to the crystallization temperature, crystallization does not occur instantaneously. This initial interval without crystalline order is characterized as an induction period. It has been thought of as a nucleation period in the classical theories of polymer crystallization, but recent experiments, computer simulations, and theoretical work suggest that the initial period in polymer crystallization is assisted by a spinodal decomposition type mechanism. In this study we have achieved physically realistic length scales to study early stages of polymer ordering, and show that spinodal-assisted ordering prior to crystallization is operative in polar polymers suggesting general applicability of this process.

  1. Frozen Topology: Entanglements Control Nucleation and Crystallization in Polymers

    NASA Astrophysics Data System (ADS)

    Luo, Chuanfu; Sommer, Jens-Uwe

    2014-05-01

    Polymer chains form lamellar structures during crystallization which display a memory of thermal history. Using molecular dynamics simulations and primitive path analysis, we show a direct dependence of both density and crystalline stem length on the local entanglement length. The slow relaxation of the entanglement state after a change of external conditions can directly explain the role of thermal history for polymer crystallization, in particular memory effects. The analysis of the local entanglement state can be used to predict the occurrence of nucleation events. Our results present a fresh insight of the nonequilibrium properties of polymer crystals which might be identified as "frozen topology" of polymer melts.

  2. Liquid-core, liquid-cladding photonic crystal fibers.

    PubMed

    De Matos, Christiano J; Cordeiro, Cristiano M B; Dos Santos, Eliane M; Ong, Jackson S; Bozolan, Alexandre; Brito Cruz, Carlos H

    2007-09-01

    We experimentally demonstrate a simple and novel technique to simultaneously insert a liquid into the core of a hollow-core photonic crystal fiber (PCF) and a different liquid into its cladding. The result is a liquid-core, liquid-cladding waveguide in which the two liquids can be selected to yield specific guidance characteristics. As an example, we tuned the core-cladding index difference by proper choice of the inserted liquids to obtain control over the number of guided modes. Single-mode guidance was achieved for a particular choice of liquids. We also experimentally and theoretically investigated the nature of light confinement and observed the transition from photonic bandgap to total internal reflection guidance both with the core-cladding index contrast and with the PCF length. PMID:19547475

  3. Orientational dynamics of nematic liquid crystals under shear flow

    NASA Astrophysics Data System (ADS)

    Rienäcker, G.; Hess, S.

    The orientational dynamics of low molecular weight and polymeric nematic liquid crystals in a flow field is investigated, based on a nonlinear relaxation equation for the second rank alignment tensor. Various approximations are discussed: Assuming uniaxial alignment with a constant order parameter, the results of the Ericksen-Leslie theory are recovered. The detailed analysis to be presented here for plane Couette flow concerns (i) uniaxial alignment with a variable degree of order and (ii) the tensorial analysis involving the three symmetry-adapted components of the five components of the alignment tensor. The transitions between tumbling, wagging and aligning behavior observed in polymeric liquid crystals and described by the Doi theory of rod-like nematic polymers are recovered. Consequences for the rheological behavior are indicated.

  4. Study of the properties of liquid crystals modified by nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalashnikov, S. V.; Romanov, N. A.; Nomoev, A. V.

    2016-03-01

    The dielectric anisotropy and the response time of polymer-dispersed liquid-crystal films mixed with various nanoparticles were measured. The different types of nanoparticles used included metallic, dielectric, and biphasic core-shell or Janus type nanoparticles. Two methods were used for the determination of the dielectric anisotropy: a bridge method and a current-voltage method. The dipole moments of the nanoparticles were measured by the method of diluted solutions (Debye method). It was shown that the dielectric anisotropy plays a crucial role in the electro-optical properties of modified liquid crystals which in turn depend on the dipole moment and thus on the physical nature of the introduced nanoparticles.

  5. The Study of Hypersonic Heat Transfer by Liquid Crystals Thermography

    NASA Astrophysics Data System (ADS)

    Kovrizhina, V. N.; Kharitonov, A. M.; Petrov, A. P.; Schpack, S. I.; Zharkova, G. M.; Zvegintsev, V. I.

    2009-01-01

    The results of experimental application of the Liquid Crystal Thermography in short-duration facility AT-303 of ITAM Novosibirsk (Russia) are presented. Experiments were carried out at free stream Mach number M∞ ≍ 10.9, unit Reynolds number Re1≍2.9*106M-1, run duration 350 MC and temperature factor Tw/To ≍ 0.2 on a semi-spherically blunted cone. Polymer dispersed liquid crystals (PDLC), developed at ITAM, have been used as thermosensitive coating. Transient technique and color pattern video acquisition was realized at different framing rates. It was obtained that high temperature sensitivity of PDLC allows visualize the fine features of the temperature field on the model surface. The heat flux in comparison with semi- empirical estimation are presented and discussed too.

  6. Versatile alignment layer method for new types of liquid crystal photonic devices

    SciTech Connect

    Finnemeyer, V.; Bryant, D.; Lu, L.; Bos, P.; Reich, R.; Clark, H.; Berry, S.; Bozler, C.; Yaroshchuk, O.

    2015-07-21

    Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research on such alignment layers has shown that they have limited stability, particularly against subsequent light exposure. As such, we further describe a method of utilizing a pre-polymer, infused into the microcavity along with the liquid crystal, to provide photostability. We demonstrate that the polymer layer, formed under ultraviolet irradiation of liquid crystal cells, has been effectively localized to a thin region near the substrate surface and provides a significant improvement in the photostability of the liquid crystal alignment. This versatile alignment layer method, capable of being utilized in devices from the described microcavities to displays, offers significant promise for new photonics applications.

  7. Reversible switching of liquid crystal micro-particles in a nematic liquid crystal.

    PubMed

    Imamura, Koki; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-01-21

    Liquid crystal micro-particles are functional materials possessing optical and dielectric anisotropies originating from the arrangement of rod-like molecules within the particles. Although they can be switched by an electric field, particles dispersed in isotropic hosts usually cannot return to their original state, because there is no restoration force acting on the particles. Here, we describe reversible switching of liquid crystal micro-particles by dispersing them in a nematic liquid crystal host. We fabricate square micro-particles with unidirectional molecular alignment and investigate their static and dynamic electro-optic properties by applying an in-plane electric field. The behavior of the micro-particles is well-described by the theoretical model we construct, making this study potentially useful for the development of liquid crystal-liquid crystal particle composites with engineered properties. PMID:26514389

  8. Novel ferroelectric liquid crystals consisting glassy liquid crystal as chiral dopants

    NASA Astrophysics Data System (ADS)

    Chen, Huang-Ming Philip; Tsai, Yun-Yen; Lin, Chi-Wen; Shieh, Han-Ping David

    2006-08-01

    A series of ferroelectric liquid crystals consisting new glassy liquid crystals (GLCs) as chiral dopants were prepared and evaluated for their potentials in fast switching ability less than 1 ms. The properties of pure ferroelectric glassy liquid crystals (FGLCs) and mixtures were reported in this paper. In particular, the novel FGLC possessing wide chiral smectic C mesophase over 100 °C is able to suppress smectic A phase of host. The mixture containing 2.0 % GLC-1 performs greater alignment ability and higher contrast ratio than R2301 (Clariant, Japan) in a 2 μm pre-made cell (EHC, Japan). These results indicate that novel FLC mixtures consisting glassy liquid crystals present a promising liquid crystal materials for fast switching field sequential color displays.

  9. Hybrid Alignment Induced by Asymmetric Photopolymerization of Liquid Crystal-Reactive Mesogen Composition between Two Plastic Substrates

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Sun; Lee, Ji-Hoon

    2011-05-01

    A hybrid aligned liquid crystal layer was prepared between plastic substrates by the asymmetric photopolymerization of the reactive mesogen. The planar alignment of liquid crystal molecules was induced on the top substrate facing the UV light by the predominant photopolymerization at this substrate, whereas a homeotropic orientation was induced on the bottom substrate. The extinction ratio of the hybrid aligned samples vs the polymer concentration and the thickness of the liquid crystal layer was examined.

  10. Cloning polymer single crystals through self-seeding

    NASA Astrophysics Data System (ADS)

    Xu, Jianjun; Ma, Yu; Hu, Wenbing; Rehahn, Matthias; Reiter, Günter

    2009-04-01

    In general, when a crystal is molten, all molecules forget about their mutual correlations and long-range order is lost. Thus, a regrown crystal does not inherit any features from an initially present crystal. Such is true for materials exhibiting a well-defined melting point. However, polymer crystallites have a wide range of melting temperatures, enabling paradoxical phenomena such as the coexistence of melting and crystallization. Here, we report a self-seeding technique that enables the generation of arrays of orientation-correlated polymer crystals of uniform size and shape (`clones') with their orientation inherited from an initial single crystal. Moreover, the number density and locations of these cloned crystals can to some extent be predetermined through the thermal history of the starting crystal. We attribute this unique behaviour of polymers to the coexistence of variable fold lengths in metastable crystalline lamellae, typical for ordering of complex chain-like molecules.

  11. A Finsler Geometry Modeling of the Liquid Crystal Elastomer

    NASA Astrophysics Data System (ADS)

    Koibuchi, Hiroshi; Shobukhov, Andrey

    2015-09-01

    Liquid crystal elastomer (LCE) is a rubbery material composed of polymer chains and liquid crystals (LC). LCE is well known to undergo a shape transformation from the isotropic to the anisotropic phase. This shape transformation is caused by the nematic transition of the LC included in the LCE. However, the mechanism of this transformation is unknown because the interaction of LC with the bulk polymers is too complex. In this presentation, we extend the two-dimensional Finsler geometry model for membranes to a three-dimensional model for LCE. The Finsler geometry model for LCE is a coarse grained one: the Guassian bond potential S1 is obtained by extending the one for membranes, which is originally obtained by a simple extension of the Guassian bond potential for the linear chain polymer model. The continuous Hamiltonian, which contains S1 and the curvature energy S2, is discretized using a three-dimensional rigid sphere composed of tetrahedrons. We study the shape transformation as a phase transition between the isotropic and anisotropic phases and report the results of the transition order, obtained by the Monte Carlo simulations.

  12. Giant soft-memory in liquid crystal-nanocomposites

    NASA Astrophysics Data System (ADS)

    Kempaiah, Ravindra; Liu, Yijing; Nie, Zhihong; Basu, Rajratan

    Here, we report a novel way of introducing giant, non-volatile soft-memory in a nanocomposite comprising of amphiphilic polymer functionalized barium titanate (BaTiO3) nanoparticles and isotropic phase of 5CB liquid crystal. Doping of pure ferroelectric NPs in isotropic phase of 5CB creates nanoscopic domains of highly ordered regions as 5CB molecules arrange themselves around the NPs and we call these regions, pseudonematic domains.Here, mesogens can electromechanically rotate the BaTiO3 NPs within the domain, along the direction of applied electric field. These domains are spatially and thermodynamically locked-in and retain their directional orientation and net polarization even after the applied electric field is switched off. We call this net remnant polarization or hysteresis, `soft memory'. When NPs are functionalized with amphiphilic block copolymers, self-assembly of mesogens occurs at the interface of polymer tethers and nanoparticles via combination of non-covalent coupling and π- π stacking interaction and this results in multi-fold enhancement in the volume of pseudonematic domains and subsequent increase in the soft memory. This work provides new insight into understanding the interaction of nanoparticles, polymers and liquid crystal and potentially lead to the creation of nanoelectrocmehanical (NEMS) storage device using functionalized nanoparticles.

  13. Stabilizing blue phase liquid crystals with linearly polarized UV light

    NASA Astrophysics Data System (ADS)

    Xu, Daming; Yuan, Jiamin; Schadt, Martin; Yan, Jing; Wu, Shin-Tson

    2015-03-01

    Polymer-stabilized blue-phase liquid crystal (PS-BPLC) has become an increasingly important technology trend for information display and photonic applications. BPLC exhibits several attractive features, such as reasonably wide temperature range, submillisecond gray-to-gray response time, no need for alignment layer, optically isotropic voltageoff state, and large cell gap tolerance when an in-plane switching (IPS) cell is employed. However, some bottlenecks such as high operation voltage, relatively low transmittance, and noticeable hysteresis and prolonged response time at high field region for IPS mode, still remain to be overcome before widespread application of BPLC can be realized. To reduce operation voltage, both new BPLC materials and new device structures have been investigated. In this paper, we demonstrate the stabilization a photopolymer-embedded blue phase liquid crystal precursor using a linearly polarized UV light for first time. When the UV polarization axis is perpendicular to the stripe electrodes of an IPS cell, anisotropic polymer networks are formed through the linear photo-polymerization process and the electrostriction effect is suppressed. As a result, the measured hysteresis is dramatically reduced from 6.95% to 0.36% and the response time shortened by ~2X compared to unpolarized UV exposure. To induce larger anisotropy in polymer networks for mitigating the electrostriction effect, high-intensity linearly polarized UV exposure is preferred. It is foreseeable this method will guide future BPLC device and material development as well as manufacturing process. The dawn of BPLCD is near.

  14. Anisotropic colloidal micromuscles from liquid crystal elastomers.

    PubMed

    Marshall, Jean E; Gallagher, Sarah; Terentjev, Eugene M; Smoukov, Stoyan K

    2014-01-01

    Monodomain liquid crystal elastomers (LCEs) are new materials uniquely suitable for artificial muscles, as they undergo large reversible uniaxial shape changes, with strains of 20-500% and stresses of 10-100 kPa, falling exactly into the dynamic range of a muscle. LCEs exhibit little to no fatigue over thousands of actuation cycles. Their practical use has been limited, however, owing to the difficulty of synthesizing components, achieving consistent alignment during cross-linking across the whole material and often a high nematic-isotropic phase transition temperature. The most widely studied method for LC alignment involves mechanical stretching of the material during one of two cross-linking steps, which makes fabrication difficult to control and lends itself mainly to samples that can be easily grasped (with sizes of the order of mm). In this article, we describe a method of adapting the LCE synthesis to microscale objects, achieving monodomain alignment with a single cross-linking step, and lowering the cycling temperature. LCE precursor droplets are embedded in and then stretched in a polymer matrix at high temperature. Confinement of the uniaxially stretched droplets maintains the alignment achieved during stretching and allows us to eliminate one of the cross-linking steps and the variability associated with it. Adding a comonomer during the polymerization leads to lowering of the nematic-to-isotropic transition temperature (58 °C), significantly expanding the range of potential applications for these micromuscles. We demonstrate reversible thermal switching of the micromuscles in line with the largest strain changes observed for side-chain LCEs and a differential scanning calorimetry characterization of the material phase transitions. The method demonstrates the parallel fabrication of many microscale actuators and is amenable to further scale-up and manufacturing. PMID:24295079

  15. Jamming and crystallization in athermal polymer packings

    NASA Astrophysics Data System (ADS)

    Karayiannis, Nikos Ch.; Foteinopoulou, Katerina; Laso, Manuel

    2013-11-01

    Dense packings of chains of hard spheres possess characteristic features that do not have a counterpart in corresponding packings of monomeric spheres especially near the maximally random jammed (MRJ) state. From the modelling perspective the additional requirement that spheres keep their connectivity while maximizing the occupied volume fraction imposes severe constraints on generation algorithms of dense chain configurations. The extremely sluggish dynamics imposed by the uncrossability of chains precludes the use of deterministic or stochastic dynamics to generate all but dilute polymer packings. As a viable alternative, especially tailored chain-connectivity-altering Monte Carlo (MC) algorithms have been developed that bypass this kinetic hindrance and have actually been able to produce packings of hard-sphere chains in a volume fraction range spanning from infinite dilution up to the MRJ state. Such very dense athermal polymer packings share a number of structural features with packings of monomeric hard spheres, but also display unique characteristics due to the constraints imposed by connectivity. We give an overview of the most relevant results of our recent modeling work on packings of freely-jointed chains of tangent hard spheres about the MRJ state, local structure, chain dimensions and their scaling with density, topological constraints in the form of entanglements and knots, contact network at jamming, and entropically driven crystallization.

  16. Orientation of nematic liquid crystal in open glass microstructures

    NASA Astrophysics Data System (ADS)

    Azarinia, H.; Beeckman, J.; Neyts, K.; Schacht, E.; Gironès, J.; James, R.; Fernandez, F. A.

    2009-09-01

    Liquid crystal materials can have bulk reorientation due to surface interaction and are therefore of interest for biosensing applications. We present a setup, with holes etched in a substrate, filled with liquid crystal and covered by a sample fluid. The influence of the depth of the microcavities and the type of liquid on the liquid crystal orientation is investigated by experiments and simulations.

  17. Switchable tackiness and wettability of a liquid crystalline polymer

    PubMed

    de Crevoisier G; Fabre; Corpart; Leibler

    1999-08-20

    The spreading velocity of liquids on the surface of a liquid crystalline polymer can be tremendously affected by a slight temperature change. Indeed, a bulk transition between a highly ordered smectic and an isotropic phase induces a sharp change from a rigid to a soft behavior, with consequent effects on the tack properties of the liquid crystalline polymer and on the dewetting dynamics of a liquid on its surface. PMID:10455047

  18. Liquid-crystal fiber-optic switch.

    PubMed

    Soref, R A

    1979-05-01

    An adjustable access coupler for multimode fiber-optic networks has been constructed, based on the voltage-tunable total-internal-reflection effect in nematic liquid crystals. Fibers are coupled via graded-index rod lenses at normal incidence to flint-glass prisms in contact with a 6-microm liquid-crystal layer. The achromatic four-port switch has a 1.6-dB optical insertion loss, a tap ratio controllable from -4.6 to -48 dB, a directionality of 44 dB, and an operating voltage of 5 to 20 V rms. PMID:19687832

  19. Topology and bistability in liquid crystal devices

    SciTech Connect

    Majumdar, A.; Newton, C. J. P.; Robbins, J. M.; Zyskin, M.

    2007-05-15

    We study nematic liquid crystal configurations in a prototype bistable device--the post aligned bistable nematic (PABN) cell. Working within the Oseen-Frank continuum model, we describe the liquid crystal configuration by a unit-vector field n, in a model version of the PABN cell. First, we identify four distinct topologies in this geometry. We explicitly construct trial configurations with these topologies which are used as initial conditions for a numerical solver, based on the finite-element method. The morphologies and energetics of the corresponding numerical solutions qualitatively agree with experimental observations and suggest a topological mechanism for bistability in the PABN cell geometry.

  20. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process

    NASA Astrophysics Data System (ADS)

    Gower, Laurie B.; Odom, Damian J.

    2000-03-01

    A polypeptide additive has been used to transform the solution crystallization of calcium carbonate to a solidification process of a liquid-phase mineral precursor. In situ observations reveal that polyaspartate induces liquid-liquid phase separation of droplets of a mineral precursor. The droplets deposit on the substrate and coalesce to form a coating, which then solidifies into calcitic tablets and films. Transition bars form during the amorphous to crystalline transition, leading to sectorization of calcite tablets, and the defect textures and crystal morphologies are atypical of solution grown crystals. The formation of nonequilibrium crystal morphologies using an acidic polypeptide may have implications in the field of biomineralization, and the environmentally friendly aspects of this polymer-induced liquid-precursor (PILP) process may offer new techniques for aqueous-based processing of ceramic films, coatings, and particulates.

  1. Stretchable liquid-crystal blue-phase gels.

    PubMed

    Castles, F; Morris, S M; Hung, J M C; Qasim, M M; Wright, A D; Nosheen, S; Choi, S S; Outram, B I; Elston, S J; Burgess, C; Hill, L; Wilkinson, T D; Coles, H J

    2014-08-01

    Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices. PMID:24880732

  2. Optical solitons in liquid crystals

    SciTech Connect

    Yung, Y.S.; Lam, L.; Los Alamos National Lab., NM )

    1989-01-01

    In this paper, we will discuss theoretically the possible existence of optical solitons in the isotropic liquid and in the nematic phase. For the same compound, when heated, the nematic phase will go through a first order transition at temperature T{sub c} to the isotropic liquid phase. As temperature increases from below T{sub c}, the orientation order parameter, Q, decreases, drops to zero abruptly at T{sub c} and remains zero for T > T{sub c}. 10 refs., 1 fig.

  3. Single Molecule Studies on Dynamics in Liquid Crystals

    PubMed Central

    Täuber, Daniela; von Borczyskowski, Christian

    2013-01-01

    Single molecule (SM) methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC). Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC. PMID:24077123

  4. Crystals, liquid crystals and superfluid helium on curved surfaces

    NASA Astrophysics Data System (ADS)

    Vitelli, Vincenzo

    In this thesis we study the ground state of ordered phases grown as thin layers on substrates with smooth spatially varying Gaussian curvature. The Gaussian curvature acts as a source for a one body potential of purely geometrical origin that controls the equilibrium distribution of the defects in liquid crystal layers, thin films of He4 and two dimensional crystals on a frozen curved surface. For superfluids, all defects are repelled (attracted) by regions of positive (negative) Gaussian curvature. For liquid crystals, charges between 0 and 4pi are attracted by regions of positive curvature while all other charges are repelled. As the thickness of the liquid crystal film increases, transitions between two and three dimensional defect structures are triggered in the ground state of the system. Thin spherical shells of nematic molecules with planar anchoring possess four short 12 disclination lines but, as the thickness increases, a three dimensional escaped configuration composed of two pairs of half-hedgehogs becomes energetically favorable. Finally, we examine the static and dynamical properties that distinguish two dimensional crystals constrained to lie on a curved substrate from their flat space counterparts. A generic mechanism of dislocation unbinding in the presence of varying Gaussian curvature is presented. We explore how the geometric potential affects the energetics and dynamics of dislocations and point defects such as vacancies and interstitials.

  5. Angular velocity response of nanoparticles dispersed in liquid crystal

    NASA Astrophysics Data System (ADS)

    Huang, Pin-Chun; Shih, Wen-Pin

    2013-06-01

    A hybrid material of nanoparticles dispersed in liquid crystal changed capacitance after spinning beyond threshold angular velocity. Once the centrifugal force of nanoparticles overcomes the attractive force between liquid crystals, the nanoparticles begin to move. The order of highly viscous liquid crystals is disturbed by the nanoparticles' penetrative movement, and the dielectric constant of the liquid crystal cell changes as a result. We found that the angular velocity response of nanoparticles dispersed in liquid crystal with higher working temperature and nanoparticles' density provided higher sensitivity. The obtained results are important for the continuous improvement of liquid-crystal-based inertial sensors or nano-viscometers.

  6. Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells

    NASA Astrophysics Data System (ADS)

    Pagliusi, P.; Cipparrone, G.

    2002-11-01

    We report a study of the crucial role of liquid-crystal-polymer interface on photoinduced transport and redistribution of charges in pure nematic liquid-crystal cells that exhibit a photorefractivelike effect. A stationary photocurrent that is 30% of the dark current has been measured for very low power illumination (few mW) and low applied dc electric field (about 0.1 V/mum). The experimental results indicate a clear dependence of the effect on the light wavelength. The absence of photocurrent in cells with only one component, liquid-crystal, or polymer, suggests that both are not intrinsically photoconductive, rules out light-induced charge injection by the electrodes, and indicates the polymer-liquid-crystal interface as the photoactive element in the effect. The photocurrent dynamics indicate the presence of various mechanisms. We suppose that the effect is due to photoinduced carriers injection through the liquid-crystal-polymer interface and recombination process with the counterions present on the opposite side. Different hypotheses are made and discussed.

  7. How different is water crystallization from polymer crystallization under confinement?

    NASA Astrophysics Data System (ADS)

    Floudas, George; Suzuki, Yasuhito; Duran, Hatice; Steinhart, Martin; Butt, Hans-Juergen

    2015-03-01

    The freezing mechanism of water under confinement can be fundamentally different from the bulk. Despite fundamental importance, the lack of well-defined confining media precluded a systematic investigation. Herein we employ self-ordered nanoporous aluminum oxide (AAO) which contains arrays of discrete, parallel and cylindrical nanopores with uniform pore length and diameter to study the effect of confinement on water crystallization. By varying different parameters such as pore size, temperature and cooling rate, the respective conditions under which the hexagonal form (Ih) and the less common form of cubic ice (Ic) could be studied. We found a transition from heterogeneous nucleation of Ih to homogeneous nucleation of predominantly Ic with decreasing pore diameter. Furthermore, the monotropic Ic --> Ih transition commonly observed upon heating is suppressed inside pores having diameters <= 35 nm. These findings lead to the phase diagram of water under confinement. It contains a predominant cubic form, a form known to exist only in the upper atmosphere.There are many similarities between the freezing of water and the crystallization of polymers under confinement.

  8. Atomistic Simulation of Polymer Crystallization at Realistic Length Scales

    SciTech Connect

    Gee, R H; Fried, L E

    2005-01-28

    Understanding the dynamics of polymer crystallization during the induction period prior to crystal growth is a key goal in polymer physics. Here we present the first study of primary crystallization of polymer melts via molecular dynamics simulations at physically realistic (about 46 nm) length scales. Our results show that the crystallization mechanism involves a spinodal decomposition microphase separation caused by an increase in the average length of rigid trans segments along the polymer backbone during the induction period. Further, the characteristic length of the growing dense domains during the induction period is longer than predicted by classical nucleation theory. These results indicate a new 'coexistence period' in the crystallization, where nucleation and growth mechanisms coexist with a phase separation mechanism. Our results provide an atomistic verification of the fringed micelle model.

  9. The electro-optical and electrochromic properties of electrolyte-liquid crystal dispersions

    NASA Astrophysics Data System (ADS)

    Cupelli, Daniela; De Filpo, Giovanni; Chidichimo, Giuseppe; Nicoletta, Fiore Pasquale

    2006-07-01

    Liquid crystals are known to exhibit a reversible color change by applying a direct current electric field, if a small amount of quaternary ammonium salts is dissolved into them. Applications of such an electrochromic liquid crystal cell have been proposed as interesting laser-addressed writing and image storage devices. Liquid crystal dispersions are composite materials formed by liquid crystal droplets embedded in either a polymer or a monomer matrix. Thin films of liquid crystal dispersions can be turned from an opaque to a transparent state by application of a suitable alternating current electric field. Herein, we report our investigations on electrolyte-liquid crystal dispersions, which show independent electro-optical and electrochromic properties characterized by fast bleaching times. This cell involves the reorientation of liquid crystal molecules, trapped in droplets, for the electro-optical changes from the opaque to transparent state and the formation of complexes at the cathode, between the positive ions of electrolyte and liquid crystal dispersed in the matrix, for the electrochromic changes from the bleached to colored state. The device is able to change its electro-optical transmittance within few milliseconds and its color within few seconds.

  10. Investigations into complex liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Jennifer

    Liquid crystal phases exhibit physical characteristics that lie between those of liquid and crystal phases. The many liquid crystal sub-phases are defined based on the degree of positional and orientational ordering the molecules have and the materials that make up these liquid crystal phases. This thesis presents a study of the molecular packing and physical properties of complex liquid crystal phases using dopants to better examine the stability and packing mechanisms of these phases. It also looks at the dispersion of quantum dots in liquid crystal materials, examining the electro-optical properties of the mixtures. The main goal of this thesis is to examine the effects of dopants on the properties of liquid crystal phases using optical microscopy, differential scanning calorimetry, electro-optical measurements, and X-ray scattering. For those mixtures with quantum dots fluorescence microscopy and photoluminescence measurements were also conducted. Rod-like liquid crystals are commonly used in display applications when the material is in a nematic liquid crystal phase, which is the least ordered phase exhibiting no positional ordering. The more complicated chiral smectic liquid crystal phases, which have a one dimensional layer structure, show potential for faster and tri-stable switching. A chiral rod-like liquid crystal material is doped with both chiral and achiral rod-like liquid crystals to examine the stability of one of the chiral smectic sub-phase, the SmC* FI1 phase. This phase consists of tilted molecules rotating about the cone defined by the tilt angle with a periodicity of three layers and an overall helical structure. The SmC*FI1 phase is stabilized by the competition between antiferroelectric and ferroelectric interactions, and small amounts of the achiral dopant broadens the range of this phase by almost 5°C. Higher dopant concentrations of the achiral material result in the destabilization of not just the SmC*FI1 phase but all tilted sub

  11. Helmet-Mounted Liquid-Crystal Display

    NASA Technical Reports Server (NTRS)

    Smith, Steve; Plough, Alan; Clarke, Robert; Mclean, William; Fournier, Joseph; Marmolejo, Jose A.

    1991-01-01

    Helmet-mounted binocular display provides text and images for almost any wearer; does not require fitting for most users. Accommodates users from smallest interpupillary distance to largest. Two liquid-crystal display units mounted in helmet. Images generated seen from any position head can assume inside helmet. Eyes directed to position for best viewing.

  12. Inexpensive Electrooptic Experiments on Liquid Crystal Displays.

    ERIC Educational Resources Information Center

    Ciferno, Thomas M.; And Others

    1995-01-01

    Describes the construction and use of an electrooptic apparatus that can be incorporated into the classroom to test liquid crystal displays (LCDs) and introduce students to experiments of an applied physics nature with very practical implications. Presents experiments that give students hands-on experience with technologies of current interest to…

  13. Infrared diagnosis using liquid crystal detectors

    NASA Technical Reports Server (NTRS)

    Hugenschmidt, M.; Vollrath, K.

    1986-01-01

    The possible uses of pulsed carbon dioxide lasers for analysis of plasmas and flows need appropriate infrared image converters. Emphasis was placed on liquid crystal detectors and their operational modes. Performance characterstics and selection criteria, such as high sensitivity, short reaction time, and high spatial resolution are discussed.

  14. Annihilation of defects in liquid crystals

    NASA Astrophysics Data System (ADS)

    Svetec, M.; Ambrožič, M.; Kralj, S.

    The annihilation of defect is studied theoretically in liquid crystals (LCs). We consider the annihilation of point disclinations in nematic and line edge dislocations in smectic A LC phase, respectively. We stress qualitative similarities in these processes. The whole annihilation regime is taken into account, consisting of the pre-collision, collision, and post-collision stage.

  15. Randomized Grain Boundary Liquid Crystal Phase

    NASA Astrophysics Data System (ADS)

    Chen, D.; Wang, H.; Li, M.; Glaser, M.; Maclennan, J.; Clark, N.

    2012-02-01

    The formation of macroscopic, chiral domains, in the B4 and dark conglomerate phases, for example, is a feature of bent-core liquid crystals resulting from the interplay of chirality, molecular bend and molecular tilt. We report a new, chiral phase observed in a hockey stick-like liquid crystal molecule. This phase appears below a smectic A phase and cools to a crystal phase. TEM images of the free surface of the chiral phase show hundreds of randomly oriented smectic blocks several hundred nanometers in size, similar to those seen in the twist grain boundary (TGB) phase. However, in contrast to the TGB phase, these blocks are randomly oriented. The characteristic defects in this phase are revealed by freeze-fracture TEM images. We will show how these defects mediate the randomized orientation and discuss the intrinsic mechanism driving the formation of this phase. This work is supported by NSF MRSEC Grant DMR0820579 and NSF Grant DMR0606528.

  16. Liquid crystal Janus emulsion droplets: preparation, tumbling, and swimming.

    PubMed

    Jeong, Joonwoo; Gross, Adam; Wei, Wei-Shao; Tu, Fuquan; Lee, Daeyeon; Collings, Peter J; Yodh, A G

    2015-09-14

    This study introduces liquid crystal (LC) Janus droplets. We describe a process for the preparation of these droplets, which consist of nematic LC and polymer compartments. The process employs solvent-induced phase separation in emulsion droplets generated by microfluidics. The droplet morphology was systematically investigated and demonstrated to be sensitive to the surfactant concentration in the background phase, the compartment volume ratio, and the possible coalescence of multiple Janus droplets. Interestingly, the combination of a polymer and an anisotropic LC introduces new functionalities into Janus droplets, and these properties lead to unusual dynamical behaviors. The different densities and solubilities of the two compartments produce gravity-induced alignment, tumbling, and directional self-propelled motion of Janus droplets. LC Janus droplets with remarkable optical properties and dynamical behaviors thus offer new avenues for applications of Janus colloids and active soft matter. PMID:26171829

  17. Electric heating effects in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Shiyanovskii, S. V.; Lavrentovich, O. D.

    2006-07-01

    Electric heating effects in the nematic liquid crystal change the liquid crystal physical properties and dynamics. We propose a model to quantitatively describe the heating effects caused by dielectric dispersion and ionic conductivity in the nematic liquid crystals upon the application of an ac electric field. The temperature increase of the liquid crystal cell is related to the properties of the liquid crystal such as the imaginary part of the dielectric permittivity, thermal properties of the bounding plates, and the surrounding medium as well as frequency and amplitude of the electric field. To study the temperature dynamics experimentally, we use a small thermocouple inserted directly into the nematic bulk; we assure that the thermocouple does not alter the thermal behavior of the system by comparing the results to those obtained by a noncontact birefringent probing technique recently proposed by Wen and Wu [Appl. Phys. Lett. 86, 231104 (2005)]. We determine how the temperature dynamics and the stationary value of the temperature increase depend on the parameters of the materials and the applied field. We used different surrounding media, from extremely good heat conductors such as aluminum cooling device to extremely poor conductor, Styrofoam; these two provide two limiting cases as compared to typical conditions of nematic cell exploitation in a laboratory or in commercial devices. The experiments confirm the theoretical predictions, namely, that the temperature rise is controlled not only by the heat transfer coefficient of the surrounding medium (as in the previous model) but also by the thickness and the thermal conductivity coefficient of the bounding plates enclosing the nematic layer. The temperature increase strongly depends on the director orientation and can change nonmonotonously with the frequency of the applied field.

  18. Blue phase liquid crystalline polymers and its application in manned spacecraft

    NASA Astrophysics Data System (ADS)

    Zhang, Dongpu; Xu, Fang; Li, Wangling; Guo, Weiguo

    2014-11-01

    As novel Liquid Crystal Display (LCD) materials, blue phase liquid crystalline polymers have attracted considerable attention and interests, mainly because of their unique properties, including wide angle of view, fast response times and selective reflection of light. Blue phases are mesophases usually exhibited by highly chiral materials and commonly occur in a narrow temperature range below the isotropic phase.They are optically active and non-birefringent, while exhibit Bragg diffraction of light in the visible wavelength. So they can improve and enhance the performances of liquid crystal display in manned spacecraft. The development and recent advances are reviewed with a brief introduction of the history of the blue phase studies. Some special properties are analyzed especially the frustration in the double twist molecular alignment. The application prospect of blue phase liquid crystalline polymers in manned spacecraft are discussed. Because of high resolution, high response speed, low power, low weight and small footprint, blue phase liquid crystal displays can meet the technique requirements on displays in our future manned spacecrafts, especially space station. Blue phase liquid crystalline polymers have more superior performances on viewing angle. Thus, blue phase LCD is a better choice to improve the viewing angle in manned spacecrafts.

  19. Modifying optical Bragg reflections from an antiferroelectric liquid crystal with photopolymer networks.

    PubMed

    Singh, Upindranath; Bradshaw, Shane

    2013-04-01

    By using an achiral monomer and a photoinitiator, we introduced polymer networks into the Sm-C* phase of an antiferroelectric liquid crystal that forms ferro-, ferri-, and antiferroelectric phases. We then investigated the temperature dependence of Bragg wavelengths selectively reflected from these samples and found that the reflection bands shift to shorter wavelengths with increasing polymer concentration. The intermediate and the Sm-C*(A) phases dominate over the Sm-C* phase for polymer concentration ≥4% by weight and the Sm-C* phase disappears completely for a 6% polymer sample. PMID:23679436

  20. A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment.

    PubMed

    Gwag, Jin Seog; Oh-E, Masahito; Kim, Kwang-Ryul; Cho, Sung-Hak; Yoneya, Makoto; Yokoyama, Hiroshi; Satou, Hiroyuki; Itami, Setsuo

    2008-10-01

    In order to homeotropically align liquid crystals (LCs) at the nanosized surface grooves processed by nanoimprint lithography technology (NIL), we propose to design a hybrid-type homeotropic polymer material consisting of two distinct moieties with largely different thermo-mechanical properties and surface activity. Surface contact angle measurements and sum-frequency vibrational spectroscopy allow us to conclude that the polymer film is a functionally separated composite suitable for the homeotropic LC alignment processed by NIL. As one of the potential applications using the hybrid-type homeotropic polymer, we demonstrate that the nanoimprinted grooves at the polymer surface can achieve a zenithal nematic LC bistability. PMID:21832590

  1. Liquid Crystals: Graphene Oxide Liquid Crystals: Discovery, Evolution and Applications (Adv. Mater. 16/2016).

    PubMed

    Narayan, Rekha; Kim, Ji Eun; Kim, Ju Young; Lee, Kyung Eun; Kim, Sang Ouk

    2016-04-01

    Graphene-oxide liquid crystals (GOLCs) have recently been discovered as a novel 2D material with remarkable properties. On page 3045, S. O. Kim and co-workers review the discovery of different GOLC mesophases and recent progress on fundamental studies and applications. The image displays the nematic schlieren texture (in the background) formed by flowing domains of graphene-oxide liquid crystals and their potential applications in energy storage, optoelectronics and wet-spun fibers. PMID:27105812

  2. Polymer crystallization in thin films: morphology and physical properties

    NASA Astrophysics Data System (ADS)

    Kelly, Giovanni; Albert, Julie

    Polymer crystallization has been studied both computationally and experimentally for decades, elucidating many of the mysteries surrounding crystallization kinetics and thermodynamics. However, many unanswered questions remain pertaining to the relationships between crystallization phenomena and material properties needed for specific applications that range from drug delivery and tissue engineering to optical devices and mechanically robust membranes. One of the especially interesting facets of polymer crystallization is the behavior observed when these long chain molecules are spatially confined in thin and ultrathin films. Confined geometry leads to chain configurations, and therefore thermal, mechanical, and optical properties, sometimes far removed from reported bulk values. This project aims to study the phenomena exhibited by linear semi-crystalline polymers in thin films as well as the way in which blending with homopolymers, block copolymers, and novel polymer chain architectures affect morphology, biodegradation, optical, thermal, and mechanical properties.

  3. Microparticles as a new analytical method to study liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Zhang, Ke

    The research described in this dissertation was conducted in a special manner: analyzing the properties of liquid crystals from the observation of microparticle behaviors. The sizes of the particles are ideal as they are large enough to be visible by microscopy (visible, IR and Raman) and are small enough to sense the motion of surrounding liquid crystal molecules. The shape and surface properties of the particles determine their interactions with the surrounding liquid crystal molecules, including surface anchoring, defects generation and etc. The behavior of individual microparticle is the result of orientational and translational motions of neighboring liquid crystal molecules and is closely related to the external field (eg. temperature gradient or electric field) acting on the liquid crystal host. Based on this strategy, a series of experiments were designed to study microparticle behaviors in a moving NI interface with/without patterned electric field. As a result, particle drag, attraction and pumping effects were observed for the first time. The analysis of these effects lead to the discovery that the moving NI interface has a meniscus shape and nonuniform director distribution. The minimum of free energy defines the preferable position of the particle is at the vertex of the curved interface, which is the origin of interesting particle drag and attraction effects. When a patterned electric field is applied, the NI interface is greatly deformed and strong hydrodynamic flows are generated. The polymer microparticles follow the hydrodynamic flow around the deformed NI interface and are pumped into the nematic phase. While these fascinating microparticle behaviors led us to explore the nature of liquid crystals, they also can be transferred to novel methods to fabricate and modulate guest phase structures in liquid crystals. It was found that varying interface velocities, electric field geometry and amplitude, and particle nature allow us to delicately control

  4. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  5. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  6. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  7. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  8. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  9. Liquid crystal assemblies in biologically inspired systems

    PubMed Central

    Safinya, Cyrus R.; Deek, Joanna; Beck, Roy; Jones, Jayna B.; Leal, Cecilia; Ewert, Kai K.; Li, Youli

    2013-01-01

    In this paper, which is part of a collection in honor of Noel Clark's remarkable career on liquid crystal and soft matter research, we present examples of biologically inspired systems, which form liquid crystal (LC) phases with their LC nature impacting biological function in cells or being important in biomedical applications. One area focuses on understanding network and bundle formation of cytoskeletal polyampholytes (filamentous-actin, microtubules, and neurofilaments). Here, we describe studies on neurofilaments (NFs), the intermediate filaments of neurons, which form open network nematic liquid crystal hydrogels in axons. Synchrotron small-angle-x-ray scattering studies of NF-protein dilution experiments and NF hydrogels subjected to osmotic stress show that neurofilament networks are stabilized by competing long-range repulsion and attractions mediated by the neurofilament's polyampholytic sidearms. The attractions are present both at very large interfilament spacings, in the weak sidearm-interpenetrating regime, and at smaller interfilament spacings, in the strong sidearm-interpenetrating regime. A second series of experiments will describe the structure and properties of cationic liposomes (CLs) complexed with nucleic acids (NAs). CL-NA complexes form liquid crystalline phases, which interact in a structure-dependent manner with cellular membranes enabling the design of complexes for efficient delivery of nucleic acid (DNA, RNA) in therapeutic applications. PMID:24558293

  10. Reflective and transflective liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Zhou, Fushan

    Recently transflective liquid crystal displays (LCD) received a lot of attention. A transflective display has a transmissive mode and a reflective mode. It combines the high contrast, high brightness of the transmissive mode with energy-saving of reflective mode and has good performance in various illumination conditions. However, state-of-the-art transflective displays have problems such as different electro-optical properties, difficulty in compatibility and optimization of both modes, low efficiency of light utilization, and complexity in structure. This dissertation focuses on finding new designs of transflective displays that address those problems. One way to do this is to study film compensation of LCD. We first studied film compensation of bistable twisted nematic (BTN) LCD. Starting form the reduced (3x3) Mueller matrices, we derived and simplified the conditions that film compensated BTN can be optimized. Based on these relations, electro-optical properties of some particular configurations, and designs of transflective BTN with high brightness and contrast were given. To confirm and get a better understanding of the results, we use the Poincare sphere to analyze film compensated BTN. The key to this approach is the existence of "fixed points". Compared with the matrix approach, this approach is more simple, elegant, and efficient. We then generalized the Poincare sphere approach to a universal approach of LCD. We applied the universal approach to film compensation of ECB and IPS, and the design of achromatic birefringent filters. We also give two more new designs of transflective displays. In the first design, a dichroic mirror is used to split the visible spectrum into two parts used in transmissive and reflective modes, respectively. Both modes can be optimized. It has a simple structure and good light utilization. A design for a full-color transflective display with good performance is also given. In the second design, each pixel is divided into two

  11. Zeolite-like liquid crystals

    PubMed Central

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  12. Zeolite-like liquid crystals

    NASA Astrophysics Data System (ADS)

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-10-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.

  13. Zeolite-like liquid crystals.

    PubMed

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  14. Photoalignment of liquid crystals and development of novel glassy liquid crystals

    NASA Astrophysics Data System (ADS)

    Kim, Chunki

    This thesis consists of two parts: (i) photoalignment of liquid crystals, including a nematic fluid, a glassy-namtic pentafluorene, and a cholesteric glassy liquid crystal; and (ii) development of cholesteric glassy liquid crystals comprising a hybrid chiral-nematic mesogen and of photochromic glassy liquid crystals with dithienylethene cores. Photoalignment behaviors were interpreted in terms of the kinetics of axis-selective photodimerization, the rotational mobility of pendant coumarin monomers, and the coumarin monomer's and dimer's absorption dipoles located by computational chemistry. Coumarin-containing polymethacrylate films were employed to elucidate the roles played by coumarin monomer's and dimer's orientational order, their relative abundance, and the energetics of their interactions with overlying liquid crystals. Under favorable conditions, photoalignment was shown to be comparable to rubbing polymimide film in the ability to orient liquid crystals. A hole-conducting copolymer film comprising triphenylamine and coumarin was used to unravel how the dilution of coumarin monomers, polarization ratio of UV-irradiation to induce dimerization of coumarin, and triplet energy transfer from triphenylamine to coumarin moieties affect the quality of photoalignment and its cross-over behavior. Cholesteric glassy liquid crystals are comprised of a helical stack of quasi-nematic layers frozen in the solid state capable of selective wavelength reflection with simultaneous circular polarization. Potentially applications of this material class include robust non-absorbing circular polarizers, optical notch filters and reflectors, and polarized light-emitters and lasers. To facilitate material synthesis over prior arts, hybrid chiral-nematic mesogens were chemically bonded to benzene via enantiomeric 2-methylpropylene spacers, exhibiting a broad cholesteric fluid temperature range. Phase transition temperatures, glass-forming ability, morphological stability against

  15. Narrowband multispectral liquid crystal tunable filter.

    PubMed

    Abuleil, Marwan; Abdulhalim, Ibrahim

    2016-05-01

    Multispectral tunable filters with high performance are desirable components in various biomedical and industrial applications. In this Letter, we present a new narrowband multispectral tunable filter with high throughput over a wide dynamic range. It is composed from a wideband large dynamic range liquid crystal tunable filter combined with a multiple narrowbands spectral filter made of two stacks of photonic crystals and cavity layer in between. The filter tunes between nine spectral bands covering the range 450-1000 nm with bandwidth <10  nm and throughput >80%. PMID:27128048

  16. Liquid crystal alignment in cylindrical microcapillaries

    NASA Astrophysics Data System (ADS)

    Chychłowski, M.; Yaroshchuk, O.; Kravchuk, R.; Woliński, T.

    2011-09-01

    A variety of alignment configurations of liquid crystals (LCs) inside the glassy cylindrical capillaries is realized by using alignment materials providing different anchoring. The radial configuration with central disclination line is obtained for homeotropic boundary conditions. In turn, the axial, transversal and tilted alignment structures are realized by using materials for planar anchoring. The uniformity and controlling of the latter structures were provided by photoalignment method. This approach can be further used to control LC alignment in the photonic crystal fibers recognized as advanced elements for different optical devices.

  17. Liquid crystal alignment in cylindrical microcapillaries

    NASA Astrophysics Data System (ADS)

    Chychłowski, M.; Yaroshchuk, O.; Kravchuk, R.; Woliński, T.

    2012-03-01

    A variety of alignment configurations of liquid crystals (LCs) inside the glassy cylindrical capillaries is realized by using alignment materials providing different anchoring. The radial configuration with central disclination line is obtained for homeotropic boundary conditions. In turn, the axial, transversal and tilted alignment structures are realized by using materials for planar anchoring. The uniformity and controlling of the latter structures were provided by photoalignment method. This approach can be further used to control LC alignment in the photonic crystal fibers recognized as advanced elements for different optical devices.

  18. Surface-assisted unidirectional orientation of ZnO nanorods hybridized with nematic liquid crystals.

    PubMed

    Kubo, Shoichi; Taguchi, Rei; Hadano, Shingo; Narita, Mamiko; Watanabe, Osamu; Iyoda, Tomokazu; Nakagawa, Masaru

    2014-01-22

    Inorganic semiconductor nanorods are regarded as the primary components of optical and electrical nanoscale devices. In this paper, we demonstrate the unidirectional alignment of monolayered and dispersed ZnO nanorods on a rubbed polyimide alignment layer, which was achieved by a conventional liquid crystal alignment technique. The outermost surfaces of the ZnO nanorods (average diameter 7 nm; length 50 nm) were modified by polymerization initiator moieties, and nematic liquid crystalline (LC) methacrylate polymers were grown by atom transfer radical polymerization. By regulating the densities of the polymerization initiator moieties, we successfully hybridized LC-polymer-grafted ZnO nanorods and small nematic LC molecules. The LC-polymer-modified ZnO nanorods were hierarchically aligned on the substrate via cooperative molecular interactions among the liquid crystal mesogens, which induced molecular orientation on the rubbed polyimide alignment layer. PMID:24299205

  19. Silylene-diethynyl-arylene polymers having liquid crystalline properties

    DOEpatents

    Barton, T.J.; Yiwei Ding.

    1993-09-07

    The present invention provides linear organosilicon polymers including diethynyl-(substituted)arylene units, and a process for their preparation. These novel polymers possess useful properties including electrical conductivity, liquid crystallinity, and/or photoluminescence. These polymers possess good solubility in organic solvents. A preferred example is produced according to the following reaction scheme. ##STR1## These polymers can be solvent-cast to yield excellent films and can also be pulled into fibers from concentrated solutions. All possess substantial crystallinity as revealed by DSC analysis and observation through a polarizing microscope, and possess liquid crystalline properties.

  20. Errors in thermochromic liquid crystal thermometry

    NASA Astrophysics Data System (ADS)

    Wiberg, Roland; Lior, Noam

    2004-09-01

    This article experimentally investigates and assesses the errors that may be incurred in the hue-based thermochromic liquid crystal thermochromic liquid crystal (TLC) method, and their causes. The errors include response time, hysteresis, aging, surrounding illumination disturbance, direct illumination and viewing angle, amount of light into the camera, TLC thickness, digital resolution of the image conversion system, and measurement noise. Some of the main conclusions are that: (1) The 3×8 bits digital representation of the red green and blue TLC color values produces a temperature measurement error of typically 1% of the TLC effective temperature range, (2) an eight-fold variation of the light intensity into the camera produced variations, which were not discernable from the digital resolution error, (3) this temperature depends on the TLC film thickness, and (4) thicker films are less susceptible to aging and thickness nonuniformities.

  1. Angular effects on thermochromic liquid crystal thermography

    NASA Astrophysics Data System (ADS)

    Kodzwa, Paul M.; Eaton, John K.

    2007-12-01

    This paper directly discusses the effects of lighting and viewing angles on liquid crystal thermography. This is because although thermochromic liquid crystals (TLCs) are a widely-used and accepted tool in heat transfer research, little effort has been directed to analytically describing these effects. Such insight is invaluable for the development of effective mitigation strategies. Using analytical relationships that describe the perceived color shift, a systematic manner of improving the performance of a TLC system is presented. This is particularly relevant for applications where significant variations in lighting and/or viewing angles are expected (such as a highly curved surface). This discussion includes an examination of the importance of the definition of the hue angle used to calibrate the color of a TLC-painted surface. The theoretical basis of the validated high-accuracy calibration approach reported by Kodzwa et al. (Exp Fluids s00348-007-0310-6, 2007) is presented.

  2. Phototunable reflection notches of cholesteric liquid crystals

    SciTech Connect

    Hrozhyk, Uladzimir A.; Serak, Svetlana V.; Tabiryan, Nelson V.; Bunning, Timothy J.

    2008-09-15

    The reflection notch of cholesteric liquid crystals (CLCs) formed from highly photosenstive azobenzene nematic liquid crystals doped with light-insensitive, large helical twisting power chiral dopants is shown to be widely phototunable by green laser beams. The nonlinear transmission properties of these materials were studied. We have shown that the relative shift in Bragg wavelength is independent of the chiral dopant concentration and develop a predictive theory of such behavior. The theory describes the dynamics of phototuning as well. Reflection shifts greater than 150 nm were driven with low power, cw of 532 nm in these photosensitive CLCs, previously attainable only through UV pre-exposure. A nonlinear feedback mechanism was demonstrated for CLCs of left, right, and both handedness upon laser-induced blueshifting of the reflection notch from a red wavelength using a green cw laser.

  3. Modal liquid crystal array of optical elements.

    PubMed

    Algorri, J F; Love, G D; Urruchi, V

    2013-10-21

    In this study, a novel liquid crystal array based on modal control principle is proposed and demonstrated. The advanced device comprises a six striped electrode structure that forms a configurable 2D matrix of optical elements. A simulation program based on the Frank-Oseen equations and modal control theory has been developed to predict the device electrooptic response, that is, voltage distribution, interference pattern and unwrapped phase. A low-power electronics circuit, that generates complex waveforms, has been built for driving the device. A combined variation of the waveform amplitude and phase has provided a high tuning versatility to the device. Thus, the simulations have demonstrated the generation of a liquid crystal prism array with tunable slope. The proposed device has also been configured as an axicon array. Test measurements have allowed us to demonstrate that electrooptic responses, simulated and empirical, are fairly in agreement. PMID:24150324

  4. Macroscopic dynamics of polar nematic liquid crystals.

    PubMed

    Brand, Helmut R; Pleiner, Harald; Ziebert, Falko

    2006-08-01

    We present the macroscopic equations for polar nematic liquid crystals. We consider the case where one has both, the usual nematic director, n[over ] , characterizing quadrupolar order as well as the macroscopic polarization, P , representing polar order, but where their directions coincide and are rigidly coupled. In this case one has to choose P as the independent macroscopic variable. Such equations are expected to be relevant in connection with nematic phases with unusual properties found recently in compounds composed of banana-shaped molecules. Among the effects predicted, which are absent in conventional nematic liquid crystals showing only quadrupolar order, are pyro-electricity and its analogs for density and for concentration in mixtures as well as a flow alignment behavior, which is more complex than in usual low molecular weight nematics. We also discuss the formation of defect structures expected in such systems. PMID:17025458

  5. Photoinduced molecular reorientation of absorbing liquid crystals

    NASA Astrophysics Data System (ADS)

    Marrucci, L.; Paparo, D.

    1997-08-01

    The phenomenon of photoinduced molecular reorientation of absorbing nematic liquid crystals is analyzed in a macroscopic general framework and with a specific molecular model. The photoinduced torque responsible for the reorientation is shown to describe a transfer of angular momentum from the molecule center-of-mass degrees of freedom to the rotational ones, mediated by molecular friction. As a consequence, a photoinduced stress tensor is predicted to develop together with the torque in the illuminated fluid. A molecular expression of the photoinduced torque is derived with a rigorous procedure, valid both for a pure material and for a dye-liquid-crystal mixture. This torque expression corrects those reported in previous works on the same subject. The photoinduced torque is evaluated analytically in a simple approximate limit.

  6. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    ERIC Educational Resources Information Center

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  7. Optical modeling of liquid crystal biosensors

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Kun; Rey, Alejandro D.

    2006-11-01

    Optical simulations of a liquid crystal biosensor device are performed using an integrated optical/textural model based on the equations of nematodynamics and two optical methods: the Berreman optical matrix method [J. Opt. Soc. Am. 62, 502 (1972)] and the discretization of the Maxwell equations based on the finite difference time domain (FDTD) method. Testing the two optical methods with liquid crystal films of different degrees of orientational heterogeneities demonstrates that only the FDTD method is suitable to model this device. Basic substrate-induced texturing process due to protein adsorption gives rise to an orientation correlation function that is nearly linear with the transmitted light intensity, providing a basis to calibrate the device. The sensitivity of transmitted light to film thickness, protein surface coverage, and wavelength is established. A crossover incident light wavelength close to λco≈500nm is found, such that when λ >λco thinner films are more sensitive to the amount of protein surface coverage, while for λ <λco the reverse holds. In addition it is found that for all wavelengths the sensitivity increases with the amount of protein coverage. The integrated device model based on FDTD optical simulations in conjunction with the Landau-de Gennes nematodynamics model provides a rational basis for further progress in liquid crystal biosensor devices.

  8. Liquid crystal phase shifters for space applications

    NASA Astrophysics Data System (ADS)

    Woehrle, Christopher D.

    Space communication satellites have historically relied heavily on high gain gimbal dish antennas for performing communications. Reflector dish antennas lack flexibility in anti-jamming capabilities, and they tend to have a high risk associated to them given the need for mechanical mechanisms to beam steer. In recent years, a great amount of investment has been made into phased array antenna technologies. Phased arrays offer increased signal flexibility at reduced financial cost and in system risk. The problem with traditional phased arrays is the significant program cost and overall complexity added to the satellite by integrating antenna elements that require many dedicated components to properly perform adaptive beam steering. Several unique methods have been proposed to address the issues that plague traditional phase shifters slated for space applications. Proposed approaches range from complex mechanical switches (MEMS) and ferroelectric devices to more robust molecular changes. Nematic liquid crystals offer adaptive beam steering capabilities that traditional phased arrays have; however, with the added benefit of reduced system cost, complexity, and increased resilience to space environmental factors. The objective of the work presented is to investigate the feasibility of using nematic liquid crystals as a means of phase shifting individual phased array elements slated for space applications. Significant attention is paid to the survivability and performance of liquid crystal and associated materials in the space environment. Performance regarding thermal extremes and interactions with charged particles are the primary factors addressed.

  9. Structures of cyano-biphenyl liquid crystals

    NASA Technical Reports Server (NTRS)

    Chu, Yuan-Chao; Tsang, Tung; Rahimzadeh, E.; Yin, L.

    1989-01-01

    The structures of p-alkyl- p'-cyano- bicyclohexanes, C(n)H(2n+1) (C6H10)(C6H10) CN (n-CCH), and p-alkyl- p'-cyano- biphenyls, C(n)H(2n+1) (C6H4)(C6H4) CN (n-CBP), were studied. It is convenient to use an x ray image intensification device to search for symmetric x ray diffraction patterns. Despite the similarities in molecular structures of these compounds, very different crystal structures were found. For the smectic phase of 2CCH, the structure is close to rhombohedral with threefold symmetry. In contrast, the structure is close to hexagonal close-packed with two molecules per unit cell for 4CCH. Since intermolecular forces may be quite weak for these liquid crystals systems, it appears that crystal structures change considerably when the alkyl chain length is slightly altered. Different structures were also found in the crystalline phase of n-CBP for n = 6 to 9. For n = 7 to 9, the structures are close to monclinic. The structures are reminiscent of the smectic-A liquid crystal structures with the linear molecules slightly tilted away from the c-axis. In contrast, the structure is quite different for n = 6 with the molecules nearly perpendicular to the c-axis.

  10. Graphene liquid crystal retarded percolation for new high-k materials.

    PubMed

    Yuan, Jinkai; Luna, Alan; Neri, Wilfrid; Zakri, Cécile; Schilling, Tanja; Colin, Annie; Poulin, Philippe

    2015-01-01

    Graphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The competition of percolation and liquid crystal transition provides a new route towards high-k materials. Indeed, near-percolated liquid-crystalline graphene-based composites display unprecedented dielectric properties with a dielectric constant improved by 260-fold increase as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4. This performance is shown to depend on the structure of monodomains of graphene liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with percolation transition and thus alters the dielectric constant are discussed. PMID:26567720

  11. Graphene liquid crystal retarded percolation for new high-k materials

    NASA Astrophysics Data System (ADS)

    Yuan, Jinkai; Luna, Alan; Neri, Wilfrid; Zakri, Cécile; Schilling, Tanja; Colin, Annie; Poulin, Philippe

    2015-11-01

    Graphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The competition of percolation and liquid crystal transition provides a new route towards high-k materials. Indeed, near-percolated liquid-crystalline graphene-based composites display unprecedented dielectric properties with a dielectric constant improved by 260-fold increase as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4. This performance is shown to depend on the structure of monodomains of graphene liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with percolation transition and thus alters the dielectric constant are discussed.

  12. Graphene liquid crystal retarded percolation for new high-k materials

    PubMed Central

    Yuan, Jinkai; Luna, Alan; Neri, Wilfrid; Zakri, Cécile; Schilling, Tanja; Colin, Annie; Poulin, Philippe

    2015-01-01

    Graphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The competition of percolation and liquid crystal transition provides a new route towards high-k materials. Indeed, near-percolated liquid-crystalline graphene-based composites display unprecedented dielectric properties with a dielectric constant improved by 260-fold increase as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4. This performance is shown to depend on the structure of monodomains of graphene liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with percolation transition and thus alters the dielectric constant are discussed. PMID:26567720

  13. Protein crystallization on liquid surfaces: Forced versus natural crystallization

    NASA Astrophysics Data System (ADS)

    Hirsa, A.

    2005-11-01

    Two-dimensional crystallization of proteins has recently been reported where streptavidin protein dissolved in the bulk liquid anchors to binding sites on a biotinylated lipid monolayer initially spread on the liquid surface. Thermodynamic aspects investigated include the effects of subphase buffer and pH, dilution of bulk protein and monolayer. Here, we investigate three possible avenues where flow can influence protein crystallization: i) change the initial state of monolayer, ii) advect dissolved protein to the interface, iii) apply direct hydrodynamic force on the crystals at the interface. The flow system consists of a stationary open cylinder driven by constant rotation of the floor, in the axisymmetric flow regime with inertia. Direct imaging of the interface illuminated by forward scattering of a laser was utilized to avoid labeling proteins for conventional fluorescence microscopy. These images provide greater detail than Brewster angle microscopy. Scientific motivation is to use flow to probe protein structure, and the application is to make designer protein thin-films, e.g. for biosensors.

  14. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    NASA Astrophysics Data System (ADS)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-11-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  15. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  16. Ionic liquids as novel solvents for ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew D.; Leo, Donald J.

    2004-07-01

    The use of ionic liquids as solvents for ionic polymer (specifically, Nafion) transducers is demonstrated. Ionic liquids are attractive for this application because of their high inherent stability. Ionic liquids are salts that exist as liquids at room temperature and have no measureable vapor pressure. Therefore, the use of ionic liquids as solvents for ionic polymer transducers can eliminate the traditional problem of water evaporation in these devices. Another benefit of the use of ionic liquids in this way is the reduction or elimination of the characteristic back-relaxation common in water-solvated ionic polymer actuators. The results demonstrate that the viscosity of the ionic liquid and the degree to which the ionic liquid swells the membrane are the important physical parameters to consider. Five ionic liquids were studied, based on substituted pyrrolidinium, phosphonium, or imidazolium cations and fluoroanions. Of these five ionic liquids, transduction is demonstrated in three of them and the best results are obtained with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. This substance has an electrochemical stability window of 4.1 V, a melting point of -10 °C, and a viscosity of 35-45 cP [19]. Results demonstrate that platinum-plated Nafion transducers solvated with this ionic liquid exhibit sensing and actuation responses and that these transducers are stable in air. Endurance testing of this sample reveals a decrease in the free strain of only 25 % after 250,000 actuation cycles in air.

  17. Molecular Dynamics Simulations of Homogeneous Crystallization in Polymer Melt

    NASA Astrophysics Data System (ADS)

    Kong, Bin

    2015-03-01

    Molecular mechanisms of homogeneous nucleation and crystal growth from the melt of polyethylene-like polymer were investigated by molecular dynamics simulations. The crystallinity was determined by using the site order parameter method (SOP), which described local order degree around an atom. Snapshots of the simulations showed evolution of the nucleation and the crystal growth through SOP images clearly. The isothermal crystallization kinetics was determined at different temperatures. The rate of crystallization, Kc, and the Avrami exponents, n, were determined as a function of temperature. The forming of nucleis was traced to reveal that the nucleis were formed with more ordered cores and less ordered shells. A detailed statistical analysis of the MD snapshots and trajectories suggested conformations of the polymer chains changed smoothly from random coil to chain folded lamella in the crystallization processes.

  18. Invited review liquid crystal models of biological materials and silk spinning.

    PubMed

    Rey, Alejandro D; Herrera-Valencia, Edtson E

    2012-06-01

    A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. PMID:21994072

  19. Liquid crystal-ZnO nanoparticle photovoltaics: Role of nanoparticles in ordering the liquid crystal

    SciTech Connect

    Martinez-Miranda, L. J.; Traister, Kaitlin M.; Melendez-Rodriguez, Iriselies; Salamanca-Riba, Lourdes

    2010-11-29

    We investigate the role that order plays in the transfer of charges in the ZnO nano-particle-octylcyanobiphenyl (8CB) liquid crystal system, considered for photovoltaic applications. We have changed the concentration of ZnO nanoparticles in 8CB from 1.18 to 40 wt %. Our results show an improvement in the alignment of the liquid crystal with increasing weight percentage of ZnO nanoparticles, up to a concentration of 30 wt %. In addition, the current generated by the system increases by three orders of magnitude.

  20. Liquid crystal nanocomposites produced by mixtures of hydrogen bonded achiral liquid crystals and functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Keskinova, E.; Naradikian, H.; Rafailov, P. M.; Dettlaff-Weglikowska, U.; Spassov, T.

    2014-12-01

    The liquid crystalline (LC) nature of alkyloxybenzoic acids is preserved after adding of any mesogenic or non-mesogenic compound through hydrogen bonding. However, this noncovalent interaction provokes a sizable effect on the physical properties as, e. g. melting point and mesomorphic states. In the present work we investigate nanocomposites, prepared by mixture of the eighth homologue of p-n-alkyloxybenzoic acids (8OBA) with single-walled carbon nanotubes (SWCNT) with the purpose to modify the optical properties of the liquid crystal. We exercise optical control on the LC system by inserting SWCNT specially functionalized by carboxylic groups. Since the liquid crystalline state combines order and mobility at the molecular (nanoscale) level, molecular modification can lead to different macroscopical nanocomposite symmetry. The thermal properties of the functionalized nanocomposite are confirmed by DSC analyses. The mechanism of the interaction between surface-treated nanoparticles (functionalized nanotubes) and the liquid crystal 8OBA bent- dimer molecules is briefly discussed.