Science.gov

Sample records for polymer reinforced crc

  1. Process for preparing polymer reinforced silica aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Capadona, Lynn A. (Inventor)

    2011-01-01

    Process for preparing polymer-reinforced silica aerogels which comprises a one-pot reaction of at least one alkoxy silane in the presence of effective amounts of a polymer precursor to obtain a silica reaction product, the reaction product is gelled and subsequently subjected to conditions that promotes polymerization of the precursor and then supercritically dried to obtain the polymer-reinforced monolithic silica aerogels.

  2. Slender reinforced concrete columns strengthened with fibre reinforced polymers

    NASA Astrophysics Data System (ADS)

    Gajdošová, K.; Bilčík, J.

    2011-06-01

    The requirement for a long life with relatively low maintenance costs relates to the use of building structures. Even though the structure is correctly designed, constructed and maintained, the need for extensions of its lifetime can appear. The preservation of the original structure with a higher level of resistance or reliability is enabled by strengthening. Conventional materials are replaced by progressive composites - mainly carbon fibre reinforced polymers (CFRP). They are used for strengthening reinforced concrete columns in two ways: added reinforcement in the form of CFRP strips in grooves or CFRP sheet confinement and eventually their combination. This paper presents the effect of the mentioned strengthening methods on slender reinforced concrete columns.

  3. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers. PMID:25647481

  4. Nanotube reinforced thermoplastic polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Shofner, Meisha Lei

    The inherent high strength, thermal conductivity, and electrical conductivity make nanotubes attractive reinforcements for polymer matrix composites. However, the structure that makes them desirable also causes highly anisotropic properties and limited reactivity with other materials. This thesis isolates these problems in two separate studies aimed at improving mechanical properties with single wall nanotube (SWNT) reinforced thermoplastic polymer composites. The two studies demonstrate the effect of solid freeform fabrication (SFF) and chemical functionalization on anisotropy and limited reactivity, respectively. Both studies showed mechanical property improvements. The alignment study demonstrates a maximum increase of 93% in tensile modulus with single wall nanotubes (SWNTs). The chemical functionalization study shows a larger increase in storage modulus for functionalized SWNTs as compared to purified SVWNTs with respective increases of 9% and 44% in storage modulus. Improved interfacial properties are also observed as a decrease in mechanical damping. Maximum property increases in composites are obtained when nanotubes are aligned, requiring additional processing consideration to the anisotropic structure. Melt spinning and extrusion processing effectively align nanotubes, but the end product of these techniques, composite fibers, requires further processing to be incorporated into finished parts. Extrusion-based SFF is a novel technique for processing nanotube reinforced composites because it allows for the direct fabrication of finished parts containing aligned nanotubes. SFF processing produces parts containing preferentially oriented nanotubes with improved mechanical properties when compared to isotropic composites. Functionalization of the nanotube surface disrupts the rope structure to obtain smaller ropes and promote further interfacial bonding. The chemically inert nature of nanotubes resulting from a structure containing few defects and the

  5. Reinforcement and rupture behavior of carbon nanotubes-polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Ye, Haihui; Lam, Hoa; Titchenal, Nick; Gogotsi, Yury; Ko, Frank

    2004-09-01

    High-resolution transmission electron microscopy examination of carbon nanotube-polyacrylonitrile composite fibers synthesized by electrospinning was conducted. Both single-wall carbon nanotubes and multi-wall carbon nanotubes have been used to reinforce the polymer fibers. A two-stage rupture behavior of the composite fibers under tension, including crazing of polymer matrix and pull-out of carbon nanotubes, has been observed. Carbon nanotubes reinforce the polymer fibers by hindering crazing extension, reducing stress concentration, and dissipating energy by pullout. Distribution of nanotubes in the polymer matrix and interfacial adhesion between nanotubes and polymers are two major factors to determine the reinforcement effect of carbon nanotubes in polymer fibers.

  6. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    SciTech Connect

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  7. Investigation of nanoscale reinforcement into textile polymers

    NASA Astrophysics Data System (ADS)

    Khan, Mujibur Rahman

    A dual inclusion strategy for textile polymers has been investigated to increase elastic energy storage capacity of fibers used in high velocity impact applications. Commercial fibers such as Spectra and Dyneema are made from ultra high molecular weight polyethylene (UHMWPE). Dynamic elastic energy of these fibers is still low therefore limiting their wholesale application without a secondary metallic or ceramic component. The idea in this investigation is to develop methodologies so that the elastic energy of polyethylene based fibers can be increased by several folds. This would allow manufacturing of an all-fabric system for high impact applications. The dual inclusion consists of a polymer phase and a nanoscale inorganic phase to polyethylene. The polymer phase was nylon-6 and the inorganic phase was carbon nanotubes (CNTs). Nylon-6 was blended as a minor phase into UHMWPE and was chosen because of its large fracture strain -- almost one order higher than that of UHMWPE. On the other hand, CNTs with their very high strength, modulus, and aspect ratio, contributed to sharing of load and sliding of polymer interfaces as they aligned during extrusion and strain hardening processes. A solution spinning process was developed to produce UHMWPE filaments reinforced with CNTs and nylon-6. The procedure involved dispersing of CNTs into paraffin oil through sonication followed by dissolving polymers into paraffin-CNT solution using a homogenizer. The admixture was fed into a single screw extruder for melt mixing and extrusion through an orifice. The extrudate was rinsed via a hexane bath, stabilized through a heater, and then drawn into a filament winder with controlled stretching. In the next step, the as produced filaments were strain-hardened through repeated loading unloading cycles under tension. Neat and reinforced filaments were characterized through DSC (Differential Scanning Calorimetry), XRD (X-ray Diffraction), Raman Spectroscopy, SEM (Scanning Electron

  8. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    NASA Astrophysics Data System (ADS)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  9. Reinforcement effect of soy protein and carbohydrates in polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The modulus of soft polymer material can be increased by filler reinforcement. A review of using soy protein and carbohydrates as alternative renewable reinforcement material is presented here. Dry soy protein and carbohydrates are rigid and can form strong filler networks through hydrogen-bonding...

  10. Effects of the Reinforcement Morphology on the Fatigue Properties of Hydroxyapatite Reinforced Polymers

    PubMed Central

    Kane, Robert J.; Converse, Gabriel L.; Roeder, Ryan K.

    2008-01-01

    The objective of this study was to examine the effects of the hydroxyapatite (HA) reinforcement morphology and content on the fatigue behavior of HA reinforced high density polyethylene (HDPE). To this end, HDPE was reinforced with 20 and 40 vol% of either HA whiskers or an equiaxed HA powder, and tested in four-point bending fatigue under simulated physiological conditions. The fatigue life, mechanical property degradation and failure surfaces were compared between experimental groups. HDPE reinforced with HA whiskers exhibited a four- to five-fold increase (p < 0.001, T-test) in fatigue life compared to an equiaxed powder for either the 20 and 40 vol% reinforcement level. Composites containing 40 vol% HA exhibited decreased fatigue life compared to those with 20 vol% HA for either reinforcement morphology (p < 0.0001, ANOVA). HA whisker reinforced HDPE exhibited less stiffness loss, permanent deformation (creep) and energy dissipation at a given number of cycles compared to HA powder. Thus, HA whisker reinforced HDPE was more tolerant of fatigue damage due to either microcracking or polymer plasticity. Scanning electron microscopy of failure surfaces and surface microcracks showed evidence of toughening by uncracked ligaments, crack tip plasticity, polymer fibril bridging and HA whisker pullout. The results of this study suggest that the use of HA whiskers, in place of HA powder, is a straightforward means to improve the fatigue life and damage tolerance of HA reinforced polymers for synthetic bone substitutes. PMID:19578474

  11. Technology and Development of Self-Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Alcock, Ben; Peijs, Ton

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first conceived in the 1970s, and are now beginning to appear in a range of commercial products. While high mechanical performance polymer fibres or tapes are an obvious precursor for composite development, various different technologies have been developed to consolidate these into two- or three-dimensional structures. This paper presents a review of the various processing techniques that have been reported in the literature for the manufacture of self-reinforced polymer composites from fibres or tapes of different polymers, and so exploit the fibre or tape performance in a commercial material or product.

  12. Quantitative radiographic analysis of fiber reinforced polymer composites.

    PubMed

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites. PMID:11261603

  13. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    NASA Astrophysics Data System (ADS)

    Martínez-Cruz, E.; Martínez-Barrera, G.; Martínez-López, M.

    2013-06-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  14. Electron beam surface modifications in reinforcing and recycling of polymers

    NASA Astrophysics Data System (ADS)

    Czvikovszky, T.; Hargitai, H.

    1997-08-01

    Thermoplastic polymers can be fiber-reinforced in the recycling step through a reactive modification of the interface between the polymer matrix and fiber. Recollected automobile bumpers made of polypropylene copolymers have been reinforced during the reprocessing with eight different types of high-strength fibers, with waste cord-yarns of the tire industry. A thin layer reactive interface of acrylic oligomers has been applied and activated through low energy (175 keV) electron beam (EB). The upcycling (upgrading recycling) resulted in a series of extrudable and injection-mouldable, fiber-reinforced thermoplastic of enhanced bending strength, increased modulus of elasticity and acceptable impact strength. EB treatment has been compared with conventional methods.

  15. CO2-Laser Cutting Fiber Reinforced Polymers

    NASA Astrophysics Data System (ADS)

    Mueller, R.; Nuss, Rudolf; Geiger, Manfred

    1989-10-01

    Guided by experimental investigations laser cutting of glass fiber reinforced reactive injection moulded (RRIM)-polyurethanes which are used e.g. in car industry for bumpers, spoilers, and further components is described. A Comparison with other cutting techniques as there are water jet cutting, milling, punching, sawing, cutting with conventional knife and with ultrasonic excited knife is given. Parameters which mainly influence cutting results e.g. laser power, cutting speed, gas nature and pressure will be discussed. The problematic nature in characterising micro and macro geometry of laser cut edges of fiber reinforced plastic (FRP) is explained. The topography of cut edges is described and several characteristic values are introduced to specify the obtained working quality. The surface roughness of laser cut edges is measured by both, an optical and a mechanical sensor and their reliabilities are compared.

  16. Flexural retrofitting of reinforced concrete structures using Green Natural Fiber Reinforced Polymer plates

    NASA Astrophysics Data System (ADS)

    Cervantes, Ignacio

    An experimental study will be carried out to determine the suitability of Green Natural Fiber Reinforced Polymer plates (GNFRP) manufactured with hemp fibers, with the purpose of using them as structural materials for the flexural strengthening of reinforced concrete (RC) beams. Four identical RC beams, 96 inches long, are tested for the investigation, three control beams and one test beam. The first three beams are used as references; one unreinforced, one with one layer of Carbon Fiber Reinforced Polymer (CFRP), one with two layers of CFRP, and one with n layers of the proposed, environmental-friendly, GNFRP plates. The goal is to determine the number of GNFRP layers needed to match the strength reached with one layer of CFRP and once matched, assess if the system is less expensive than CFRP strengthening, if this is the case, this strengthening system could be an alternative to the currently used, expensive CFRP systems.

  17. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2001-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  18. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2004-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  19. Development of ductile hybrid fiber reinforced polymer (D-H-FRP) reinforcement for concrete structures

    NASA Astrophysics Data System (ADS)

    Somboonsong, Win

    The corrosion of steel rebars has been the major cause of the reinforced concrete deterioration in transportation structures and port facilities. Currently, the Federal Highway Administration (FHWA) spends annually $31 billion for maintaining and repairing highways and highway bridges. The study reported herein represents the work done in developing a new type of reinforcement called Ductile Hybrid Fiber Reinforced Polymer or D-H-FRP using non-corrosive fiber materials. Unlike the previous FRP reinforcements that fail in a brittle manner, the D-H-FRP bars exhibit the stress-strain curves that are suitable for concrete reinforcement. The D-H-FRP stress-strain curves are linearly elastic with a definite yield point followed by plastic deformation and strain hardening resembling that of mild steel. In addition, the D-H-FRP reinforcement has integrated ribs required for concrete bond. The desirable mechanical properties of D-H-FRP reinforcement are obtained from the integrated design based on the material hybrid and geometric hybrid concepts. Using these concepts, the properties can be tailored to meet the specific design requirements. An analytical model was developed to predict the D-H-FRP stress-strain curves with different combination of fiber materials and geometric configuration. This model was used to optimize the design of D-H-FRP bars. An in-line braiding-pultrusion manufacturing process was developed at Drexel University to produce high quality D-H-FRP reinforcement in diameters that can be used in concrete structures. A series of experiments were carried out to test D-H-FRP reinforcement as well as their individual components in monotonic and cyclic tensile tests. Using the results from the tensile tests and fracture analysis, the stress-strain behavior of the D-H-FRP reinforcement was fully characterized and explained. Two series of concrete beams reinforced with D-H-FRP bars were studied. The D-H-FRP beam test results were then compared with companion

  20. Investigation of rectangular concrete columns reinforced or prestressed with fiber reinforced polymer (FRP) bars or tendons

    NASA Astrophysics Data System (ADS)

    Choo, Ching Chiaw

    Fiber reinforced polymer (FRP) composites have been increasingly used in concrete construction. This research focused on the behavior of concrete columns reinforced with FRP bars, or prestressed with FRP tendons. The methodology was based the ultimate strength approach where stress and strain compatibility conditions and material constitutive laws were applied. Axial strength-moment (P-M) interaction relations of reinforced or prestressed concrete columns with FRP, a linearly-elastic material, were examined. The analytical results identified the possibility of premature compression and/or brittle-tension failure occurring in FRP reinforced and prestressed concrete columns where sudden and explosive type failures were expected. These failures were related to the rupture of FRP rebars or tendons in compression and/or in tension prior to concrete reaching its ultimate strain and strength. The study also concluded that brittle-tension failure was more likely to occur due to the low ultimate tensile strain of FRP bars or tendons as compared to steel. In addition, the failures were more prevalent when long term effects such as creep and shrinkage of concrete, and creep rupture of FRP were considered. Barring FRP failure, concrete columns reinforced with FRP, in some instances, gained significant moment resistance. As expected the strength interaction of slender steel or FRP reinforced concrete columns were dependent more on column length rather than material differences between steel and FRP. Current ACI minimum reinforcement ratio for steel (rhomin) reinforced concrete columns may not be adequate for use in FRP reinforced concrete columns. Design aids were developed in this study to determine the minimum reinforcement ratio (rhof,min) required for rectangular reinforced concrete columns by averting brittle-tension failure to a failure controlled by concrete crushing which in nature was a less catastrophic and more gradual type failure. The proposed method using rhof

  1. Rate dependent constitutive models for fiber reinforced polymer composites

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1990-01-01

    A literature survey was conducted to assess the state-of-the-art in rate dependent constitutive models for continuous fiber reinforced polymer matrix composite (PMC) materials. Several recent models which include formulations for describing plasticity, viscoelasticity, viscoplasticity, and rate-dependent phenomenon such as creep and stress relaxation are outlined and compared. When appropriate, these comparisons include brief descriptions of the mathematical formulations, the test procedures required for generating material constants, and details of available data comparing test results to analytical predictions.

  2. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube shapes, sizes, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/LaRC-SI (with a PmPV interface) composite systems, one with aligned SWNTs and the other with three-dimensionally randomly oriented SWNTs. The Young's modulus and shear modulus have been calculated for the two systems for various nanotube lengths and volume fractions.

  3. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.

  4. Polymer Chain Reinforcement across Narrow Interfaces: Entanglements Versus Chain Friction

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason J.; Fredrickson, Glenn H.; Kramer, Edward J.

    2002-03-01

    It is widely believed that entangled chains that bridge a glassy polymer/polymer interface solely determine its fracture energy (G_c). However, experiments show that while Gc increases with interfacial width (w), Gc vs. w/d_t, where dt is the tube diameter of the melt, is not universal. For some polymer pairs Gc increases dramatically even when w << d_t, while for others Gc does not increase until w >= d_t. We demonstrate that the friction stress for polymer loop pull-out from the interface is given by f_monoρ_merw/2 where f_mono is the static friction coefficient per mer and ρ_mer is the mer number density. Unlike interfaces with short block copolymers, where the friction stress for block pull-out is limited by a maximum areal density of block copolymer, the polymer/polymer friction stress grows linearly with w. For interfaces as narrow as 3 nm, it can be large enough to induce crazing. A model that includes both loop pull-out and chain entanglement shows that modest changes in f_mono can account for the fact that Gc versus w/dt is non-universal. A high areal density of bridging, entangled chains is therefore sufficient, but not necessary, to reinforce polymer interfaces.

  5. Microscopic mechanism of reinforcement and conductivity in polymer nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Chang, Tae-Eun

    Modification of polymers by adding various nano-particles is an important method to obtain effective enhancement of materials properties. Within this class of materials, carbon nanotubes (CNT) are among the most studied materials for polymer reinforcement due to their extraordinary mechanical properties, superior thermal and electronic properties, and high aspect ratio. However, to unlock the potential of CNTs for applications, CNTs must be well dispersed in a polymer matrix and the microscopic mechanism of polymer reinforcement by CNTs must be understood. In this study, single-wall carbon nanotube (SWNT) composites with polypropylene (PP)-SWNT and polystyrene (PS)-SWNT were prepared and analyzed. Microscopic study of the mechanism of reinforcement and conductivity by SWNT included Raman spectroscopy, wide-angle X-ray diffraction (WAXD) and dielectric measurement. For PP-SWNT composites, tensile tests show a three times increase in the Young's modulus with addition of only 1 wt% SWNT, and much diminished increase of modulus with further increase in SWNT concentration. For PS-SWNT composites, well-dispersed SWNT/PS composite has been produced, using initial annealing of SWNT and optimum sonication conditions. The studies on the tangential mode in the Raman spectra and TEM indicated well-dispersed SWNTs in a PS matrix. We show that conductivity appears in composites already at very low concentrations, hinting at the formation of a 'percolative' network even below 0.5% of SWNT. The Raman studies for both composites show good transfer of the applied stress from the polymer matrices to SWNTs. However, no significant improvement of mechanical property is observed for PS-SWNT composites. The reason for only a slight increase of mechanical property remains unknown.

  6. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    NASA Astrophysics Data System (ADS)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  7. Fracture behavior of glass fiber reinforced polymer composite

    SciTech Connect

    Avci, A.; Arikan, H.; Akdemir, A

    2004-03-01

    Chopped strand glass fiber reinforced particle-filled polymer composite beams with varying notch-to-depth ratios and different volume fractions of glass fibers were investigated in Mode I fracture using three-point bending tests. Effects of polyester resin content and glass fiber content on fracture behavior was also studied. Polyester resin contents were used 13.00%%, 14.75%, 16.50%, 18.00% and 19.50%, and glass fiber contents were 1% and 1.5% of the total weight of the polymer composite system. Flexural strength of the polymer composite increases with increase in polyester and fiber content. The critical stress intensity factor was determined by using several methods such as initial notch depth method, compliance method and J-integral method. The values of K{sub IC} obtained from these methods were compared.

  8. Basalt fiber reinforced polymer composites: Processing and properties

    NASA Astrophysics Data System (ADS)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  9. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  10. Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering.

    PubMed

    Lalwani, Gaurav; Henslee, Allan M; Farshid, Behzad; Parmar, Priyanka; Lin, Liangjun; Qin, Yi-Xian; Kasper, F Kurtis; Mikos, Antonios G; Sitharaman, Balaji

    2013-09-01

    In this study, we have investigated the efficacy of inorganic nanotubes as reinforcing agents to improve the mechanical properties of poly(propylene fumarate) (PPF) composites as a function of nanomaterial loading concentration (0.01-0.2 wt.%). Tungsten disulfide nanotubes (WSNTs) were used as reinforcing agents in the experimental group. Single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) were used as positive controls, and crosslinked PPF composites were used as the baseline control. Mechanical testing (compression and three-point bending) shows a significant enhancement (up to 28-190%) in the mechanical properties (compressive modulus, compressive yield strength, flexural modulus and flexural yield strength) of WSNT-reinforced PPF nanocomposites compared to the baseline control. In comparison to the positive controls, significant improvements in the mechanical properties of WSNT nanocomposites were also observed at various concentrations. In general, the inorganic nanotubes (WSNTs) showed mechanical reinforcement better than (up to 127%) or equivalent to that of carbon nanotubes (SWCNTs and MWCNTs). Sol fraction analysis showed significant increases in the crosslinking density of PPF in the presence of WSNTs (0.01-0.2 wt.%). Transmission electron microscopy (TEM) analysis on thin sections of crosslinked nanocomposites showed the presence of WSNTs as individual nanotubes in the PPF matrix, whereas SWCNTs and MWCNTs existed as micron-sized aggregates. The trend in the surface area of nanostructures obtained by Brunauer-Emmett-Teller (BET) surface area analysis was SWCNTs>MWCNTs>WSNTs. The BET surface area analysis, TEM analysis and sol fraction analysis results taken together suggest that chemical composition (inorganic vs. carbon nanomaterials), the presence of functional groups (such as sulfide and oxysulfide) and individual dispersion of the nanomaterials in the polymer matrix (absence of aggregation of the reinforcing agent) are the key parameters

  11. Tungsten Disulfide Nanotubes Reinforced Biodegradable Polymers for Bone Tissue Engineering

    PubMed Central

    Lalwani, Gaurav; Henslee, Allan M.; Farshid, Behzad; Parmar, Priyanka; Lin, Liangjun; Qin, Yi-Xian; Kasper, F. Kurtis; Mikos, Antonios G.; Sitharaman, Balaji

    2013-01-01

    In this study, we have investigated the efficacy of inorganic nanotubes as reinforcing agents to improve the mechanical properties of poly(propylene fumarate) (PPF) composites as a function of nanomaterial loading concentration (0.01-0.2 wt%). Tungsten disulfide nanotubes (WSNTs) were used as reinforcing agents in the experimental groups. Single- and multi- walled carbon nanotubes (SWCNTs and MWCNTs) were used as positive controls, and crosslinked PPF composites were used as baseline control. Mechanical testing (compression and three-point bending) shows a significant enhancement (up to 28-190%) in the mechanical properties (compressive modulus, compressive yield strength, flexural modulus, and flexural yield strength) of WSNT reinforced PPF nanocomposites compared to the baseline control. In comparison to positive controls, at various concentrations, significant improvements in the mechanical properties of WSNT nanocomposites were also observed. In general, the inorganic nanotubes (WSNTs) showed a better (up to 127%) or equivalent mechanical reinforcement compared to carbon nanotubes (SWCNTs and MWCNTs). Sol fraction analysis showed significant increases in the crosslinking density of PPF in the presence of WSNTs (0.01-0.2 wt%). Transmission electron microscopy (TEM) analysis on thin sections of crosslinked nanocomposites showed the presence of WSNTs as individual nanotubes in the PPF matrix, whereas SWCNTs and MWCNTs existed as micron sized aggregates. The trend in the surface area of nanostructures obtained by BET surface area analysis was SWCNTs > MWCNTs > WSNTs. The BET surface area analysis, TEM analysis, and sol fraction analysis results taken together suggest that chemical composition (inorganic vs. carbon nanomaterials), presence of functional groups (such as sulfide and oxysulfide), and individual dispersion of the nanomaterials in the polymer matrix (absence of aggregation of the reinforcing agent) are the key parameters affecting the mechanical

  12. Studies on natural fiber reinforced polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Kapatel, P. M.; Machchhar, A. D.; Kapatel, Y. A.

    2016-05-01

    Natural fiber reinforced composites show increasing importance in day to days applications because of their low cost, lightweight, easy availability, non-toxicity, biodegradability and environment friendly nature. But these fibers are hydrophilic in nature. Thus they have very low reactivity and poor compatibility with polymers. To overcome these limitations chemical modifications of the fibers have been carried out. Therefore, in the present work jute fibers have chemically modified by treating with sodium hydroxide (NaOH) solutions. These treated jute fibers have been used to fabricate jute fiber reinforced epoxy composites. Mechanical properties like tensile strength, flexural strength and impact strength have been found out. Alkali treated composites show better properties compare to untreated composites.

  13. Self Healing Fibre-reinforced Polymer Composites: an Overview

    NASA Astrophysics Data System (ADS)

    Bond, Ian P.; Trask, Richard S.; Williams, Hugo R.; Williams, Gareth J.

    Lightweight, high-strength, high-stiffness fibre-reinforced polymer composite materials are leading contenders as component materials to improve the efficiency and sustainability of many forms of transport. For example, their widespread use is critical to the success of advanced engineering applications, such as the Boeing 787 and Airbus A380. Such materials typically comprise complex architectures of fine fibrous reinforcement e.g. carbon or glass, dispersed within a bulk polymer matrix, e.g. epoxy. This can provide exceptionally strong, stiff, and lightweight materials which are inherently anisotropic, as the fibres are usually arranged at a multitude of predetermined angles within discrete stacked 2D layers. The direction orthogonal to the 2D layers is usually without reinforcement to avoid compromising in-plane performance, which results in a vulnerability to damage in the polymer matrix caused by out-of-plane loading, i.e. impact. Their inability to plastically deform leaves only energy absorption via damage creation. This damage often manifests itself internally within the material as intra-ply matrix cracks and inter-ply delaminations, and can thus be difficult to detect visually. Since relatively minor damage can lead to a significant reduction in strength, stiffness and stability, there has been some reticence by designers for their use in safety critical applications, and the adoption of a `no growth' approach (i.e. damage propagation from a defect constitutes failure) is now the mindset of the composites industry. This has led to excessively heavy components, shackling of innovative design, and a need for frequent inspection during service (Richardson 1996; Abrate 1998).

  14. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement.

    PubMed

    Alge, Daniel L; Chu, Tien-Min Gabriel

    2010-08-01

    This study describes a novel method of calcium phosphate cement reinforcement based on infiltrating a pre-set cement with a reactive polymer and then cross-linking the polymer in situ. This method can be used to reinforce 3D calcium phosphate cement scaffolds, which we demonstrate using poly(ethylene glycol) diacrylate (PEGDA) as a model reinforcing polymer. The compressive strength of a 3D scaffold comprised of orthogonally intersecting beams was increased from 0.31 +/- 0.06 MPa to 1.65 +/- 0.13 MPa using PEGDA 600. In addition, the mechanical properties of reinforced cement were characterized using three PEGDA molecular weights (200, 400, and 600 Da) and three cement powder to liquid (P/L) ratios (0.8, 1.0, and 1.43). Higher molecular weight increased reinforcement efficacy, and P/L controlled cement porosity and determined the extent of polymer incorporation. Although increasing polymer incorporation resulted in a transition from brittle, cement-like behavior to ductile, polymer-like behavior, maximizing polymer incorporation was not advantageous. Polymerization shrinkage produced microcracks in the cement, which reduced the mechanical properties. The most effective reinforcement was achieved with P/L of 1.43 and PEGDA 600. In this group, flexural strength increased from 0.44 +/- 0.12 MPa to 7.04 +/- 0.51 MPa, maximum displacement from 0.05 +/- 0.01 mm to 1.44 +/- 0.17 mm, and work of fracture from 0.64 +/- 0.10 J/m(2) to 677.96 +/- 70.88 J/m(2) compared to non-reinforced controls. These results demonstrate the effectiveness of our novel reinforcement method, as well as its potential for fabricating reinforced 3D calcium phosphate cement scaffolds useful for bone tissue engineering. PMID:20186776

  15. Reinforcement of bacterial cellulose aerogels with biocompatible polymers.

    PubMed

    Pircher, N; Veigel, S; Aigner, N; Nedelec, J M; Rosenau, T; Liebner, F

    2014-10-13

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating the secondary polymer into the BC matrix and to convert the formed composite organogels into aerogels. Uniaxial compression tests revealed a considerable enhancement of the mechanical properties as compared to BC aerogels. Nitrogen sorption experiments at 77K and scanning electron micrographs confirmed the preservation (or even enhancement) of the surface-area-to-volume ratio for most of the samples. The formation of an open-porous, interpenetrating network of the second polymer has been demonstrated by treatment of BC/PMMA hybrid aerogels with EMIM acetate, which exclusively extracted cellulose, leaving behind self-supporting organogels. PMID:25037381

  16. Reinforcement of bacterial cellulose aerogels with biocompatible polymers

    PubMed Central

    Pircher, N.; Veigel, S.; Aigner, N.; Nedelec, J.M.; Rosenau, T.; Liebner, F.

    2014-01-01

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating the secondary polymer into the BC matrix and to convert the formed composite organogels into aerogels. Uniaxial compression tests revealed a considerable enhancement of the mechanical properties as compared to BC aerogels. Nitrogen sorption experiments at 77 K and scanning electron micrographs confirmed the preservation (or even enhancement) of the surface-area-to-volume ratio for most of the samples. The formation of an open-porous, interpenetrating network of the second polymer has been demonstrated by treatment of BC/PMMA hybrid aerogels with EMIM acetate, which exclusively extracted cellulose, leaving behind self-supporting organogels. PMID:25037381

  17. Nondestructive testing of externally reinforced structures for seismic retrofitting using flax fiber reinforced polymer (FFRP) composites

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, C.; Sfarra, S.; Paoletti, D.; Bendada, A.; Maldague, X.

    2013-05-01

    Natural fibers constitute an interesting alternative to synthetic fibers, e.g. glass and carbon, for the production of composites due to their environmental and economic advantages. The strength of natural fiber composites is on average lower compared to their synthetic counterparts. Nevertheless, natural fibers such as flax, among other bast fibers (jute, kenaf, ramie and hemp), are serious candidates for seismic retrofitting applications given that their mechanical properties are more suitable for dynamic loads. Strengthening of structures is performed by impregnating flax fiber reinforced polymers (FFRP) fabrics with epoxy resin and applying them to the component of interest, increasing in this way the load and deformation capacities of the building, while preserving its stiffness and dynamic properties. The reinforced areas are however prompt to debonding if the fabrics are not mounted properly. Nondestructive testing is therefore required to verify that the fabric is uniformly installed and that there are no air gaps or foreign materials that could instigate debonding. In this work, the use of active infrared thermography was investigated for the assessment of (1) a laboratory specimen reinforced with FFRP and containing several artificial defects; and (2) an actual FFRP retrofitted masonry wall in the Faculty of Engineering of the University of L'Aquila (Italy) that was seriously affected by the 2009 earthquake. Thermographic data was processed by advanced signal processing techniques, and post-processed by computing the watershed lines to locate suspected areas. Results coming from the academic specimen were compared to digital speckle photography and holographic interferometry images.

  18. Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ershad Ullah

    In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over

  19. Polymer microcapsules with a fiber-reinforced nanocomposite shell.

    PubMed

    Sagis, Leonard M C; Ruiter, Riëlle de; Miranda, Francisco J Rossier; Ruiter, Jolet de; Schroën, Karin; Aelst, Adriaan C van; Kieft, Henk; Boom, Remko; Linden, Erik van der

    2008-03-01

    Polymer microcapsules can be used as controlled release systems in drugs or in foods. Using layer-by-layer adsorption of common food proteins and polysaccharides, we produced a new type of microcapsule with tunable strength and permeability. The shell consists of alternating layers of pectin and whey protein fibrils, yielding a fiber-reinforced nanocomposite shell. The strength can be tightly controlled by varying the number of layers or the density and length of the fibrils in the protein layers. The mechanical stability of these microcapsules appears to be superior to that of currently available multilayer capsules. The method involves only standard unit operations and has the potential for scaling up to industrial production volumes. PMID:18237217

  20. Durability Studies on Confined Concrete using Fiber Reinforced Polymer

    NASA Astrophysics Data System (ADS)

    Ponmalar, V.; Gettu, R.

    2014-06-01

    In this study, 24 concrete cylinders with a notch at the centre were prepared. Among them six cylinders were wrapped using single and double layers of fiber reinforced polymer; six cylinders were coated with epoxy resin; the remaining cylinders were used as a control. The cylinders were exposed to wet and dry cycling and acid (3 % H2SO4) solution for the period of 120 days. Two different concrete strengths M30 and M50 were considered for the study. It is found that the strength, ductility and failure mode of wrapped cylinders depend on number of layers and the nature of exposure conditions. It was noticed that the damage due to wet and dry cycling and acid attack was severe in control specimen than the epoxy coated and wrapped cylinders.

  1. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  2. Flexural analysis of palm fiber reinforced hybrid polymer matrix composite

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Raghav, Dasarath; Santhosh Kiran, R.; Mahesh, Bhargav; Kumar, Krishna

    2015-07-01

    Uncertainty in availability of fossil fuels in the future and global warming increased the need for more environment friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

  3. Synthesis And Characterization Of Reduced Size Ferrite Reinforced Polymer Composites

    SciTech Connect

    Borah, Subasit; Bhattacharyya, Nidhi S.

    2008-04-24

    Small sized Co{sub 1-x}Ni{sub x}Fe{sub 2}O{sub 4} ferrite particles are synthesized by chemical route. The precursor materials are annealed at 400, 600 and 800 C. The crystallographic structure and phases of the samples are characterized by X-ray diffraction (XRD). The annealed ferrite samples crystallized into cubic spinel structure. Transmission Electron Microscopy (TEM) micrographs show that the average particle size of the samples are <20 nm. Particulate magneto-polymer composite materials are fabricated by reinforcing low density polyethylene (LDPE) matrix with the ferrite samples. The B-H loop study conducted at 10 kHz on the toroid shaped composite samples shows reduction in magnetic losses with decrease in size of the filler sample. Magnetic losses are detrimental for applications of ferrite at high powers. The reduction in magnetic loss shows a possible application of Co-Ni ferrites at high microwave power levels.

  4. Objective Surface Evaluation of Fiber Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Palmer, Stuart; Hall, Wayne

    2013-08-01

    The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.

  5. On Healable Polymers and Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian Eric

    Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in

  6. A self-sensing fiber reinforced polymer composite using mechanophore-based smart polymer

    NASA Astrophysics Data System (ADS)

    Zou, Jin; Liu, Yingtao; Chattopadhyay, Aditi; Dai, Lenore

    2015-04-01

    Polymer matrix composites (PMCs) are ubiquitous in engineering applications due to their superior mechanical properties at low weight. However, they are susceptible to damage due to their low interlaminar mechanical properties and poor heat and charge transport in the transverse direction to the laminate. Moreover, methods to inspect and ensure the reliability of composites are expensive and labor intensive. Recently, mechanophore-based smart polymer has attracted significant attention, especially for self-sensing of matrix damage in PMCs. A cyclobutane-based self-sensing approach using 1,1,1-tris (cinnamoyloxymethyl) ethane (TCE) and poly (vinyl cinnamate) (PVCi) has been studied in this paper. The self-sensing function was investigated at both the polymer level and composite laminate level. Fluorescence emissions were observed on PMC specimens subjected to low cycle fatigue load, indicating the presence of matrix cracks. Results are presented for graphite fiber reinforced composites.

  7. Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation

    NASA Technical Reports Server (NTRS)

    Hess, David M.

    2013-01-01

    The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam

  8. Tensile properties of glass/natural jute fibre-reinforced polymer bars for concrete reinforcement

    NASA Astrophysics Data System (ADS)

    Han, J. W.; Lee, S. K.; Kim, K. W.; Park, C. G.

    2015-12-01

    The tensile performance of glass/natural jute fibre-reinforced polymer (FRP) bar, intended for concrete reinforcement was evaluated as a function of volume fraction of natural jute fibre. Natural jute fibre, mixed at a ratio of 7:3 with vinyl ester, was surface-treated with a silane coupling agent and used to replaced glass fibre in the composite in volume fractions of 0%, 30%, 50%, 70%, and 100%. The tensile load-displacement curve showed nearly linear elastic behaviour up to 50% natural jute fibre, but was partially nonlinear at a proportion of 70%. However, the glass/natural jute FRP bars prepared using 100% natural jute fibre showed linear elastic behaviour. Tensile strength decreased as the natural jute fibre volume fraction increased because the tensile strength of natural jute fibre is much lower than that of glass fibre (about 1:8.65). The degree of reduction was not proportional to the natural jute fibre volume fraction due to the low density of natural jute fibre (1/2 that of glass fibre). Thus, as the mix proportion of natural jute fibre increased, the amount (wt%) and number of fibres used also increased.

  9. A review on the cords & plies reinforcement of elastomeric polymer matrix

    NASA Astrophysics Data System (ADS)

    Mahmood, S. S.; Husin, H.; Mat-Shayuti, M. S.; Hassan, Z.

    2016-06-01

    Steel, polyester, nylon and rayon are the main materials of cords & plies that have been reinforced in the natural rubber to produce quality tyres but there is few research reported on cord and plies reinforcement in silicone rubber. Taking the innovation of tyres as inspiration, this review's first objective is to compile the comprehensive studies about the cords & plies reinforcement in elastomeric polymer matrix. The second objective is to gather information about silicone rubber that has a high potential as a matrix phase for cords and plies reinforcement. All the tests and findings are gathered and compiled in sections namely processing preparation, curing, physical and mechanical properties, and adhesion between cords-polymer.

  10. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement

    NASA Astrophysics Data System (ADS)

    Fan, Jinchen; Shi, Zixing; Zhang, Lu; Wang, Jialiang; Yin, Jie

    2012-10-01

    Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non-covalent functionalization through π-π stacking interactions. Aramid nanofiber-functionalized graphene sheets (ANFGS) were successfully obtained by adding the graphene oxide (GO)/DMSO dispersion into the ANFs/DMSO solution followed by reduction with hydrazine hydrate. The ANFGS, with ANFs absorbed on the surface of the graphene nanosheets, can be easily exfoliated and dispersed in N-methyl-2-pyrrolidone (NMP). Through a combination of these two ultra-strong materials, ANFs and graphene nanosheets (GS), the resultant ANFGS can act as novel nanofillers for polymer reinforcement. We used the ANFGS as an additive for reinforcing the mechanical properties of poly(methyl methacrylate) (PMMA). With a loading of 0.7 wt% of the ANFGS, the tensile strength and Young's modulus of the ANFGS/PMMA composite film approached 63.2 MPa and 3.42 GPa, which are increases of ~84.5% and ~70.6%, respectively. The thermal stabilities of ANFGS/PMMA composite films were improved by the addition of ANFGS. Additionally, the transparencies of the ANFGS/PMMA composite films have a degree of UV-shielding due to the ultraviolet light absorption of the ANFs in the ANFGS.Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non

  11. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement.

    PubMed

    Fan, Jinchen; Shi, Zixing; Zhang, Lu; Wang, Jialiang; Yin, Jie

    2012-11-21

    Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non-covalent functionalization through π-π stacking interactions. Aramid nanofiber-functionalized graphene sheets (ANFGS) were successfully obtained by adding the graphene oxide (GO)/DMSO dispersion into the ANFs/DMSO solution followed by reduction with hydrazine hydrate. The ANFGS, with ANFs absorbed on the surface of the graphene nanosheets, can be easily exfoliated and dispersed in N-methyl-2-pyrrolidone (NMP). Through a combination of these two ultra-strong materials, ANFs and graphene nanosheets (GS), the resultant ANFGS can act as novel nanofillers for polymer reinforcement. We used the ANFGS as an additive for reinforcing the mechanical properties of poly(methyl methacrylate) (PMMA). With a loading of 0.7 wt% of the ANFGS, the tensile strength and Young's modulus of the ANFGS/PMMA composite film approached 63.2 MPa and 3.42 GPa, which are increases of ∼84.5% and ∼70.6%, respectively. The thermal stabilities of ANFGS/PMMA composite films were improved by the addition of ANFGS. Additionally, the transparencies of the ANFGS/PMMA composite films have a degree of UV-shielding due to the ultraviolet light absorption of the ANFs in the ANFGS. PMID:23047662

  12. Nondestructive Evaluation of Advanced Fiber Reinforced Polymer Matrix Composites: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Yolken, H. Thomas; Matzkanin, George A.

    2009-01-01

    Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.

  13. Life Cycle Assessment of Carbon Fiber-Reinforced Polymer Composites

    SciTech Connect

    Das, Sujit

    2011-01-01

    Carbon fiber-reinforced polymer matrix composites is gaining momentum with the pressure to lightweight vehicles, however energy-intensity and cost remain some of the major barriers before this material could be used in large-scale automotive applications. A representative automotive part, i.e., a 30.8 kg steel floor pan having a 17% weight reduction potential with stringent cash performance requirements has been considered for the life cycle energy and emissions analysis based on the latest developments occurring in the precursor type (conventional textile-based PAN vs. renewable-based lignin), part manufacturing (conventional SMC vs. P4) and fiber recycling technologies. Carbon fiber production is estimated to be about 14 times more energy-intensive than conventional steel production, however life cycle primary energy use is estimated to be quite similar to the conventional part, i.e., 18,500 MJ/part, especially when considering the uncertainty in LCI data that exists from using numerous sources in the literature. Lignin P4 technology offers the most life cycle energy and CO2 emissions benefits compared to a conventional stamped steel technology. With a 20% reduction in energy use in the lignin conversion to carbon fiber and free availability of lignin as a by-product of ethanol and wood production, a 30% reduction in life cycle energy use could be obtained. A similar level of life cycle energy savings could also be obtained with a higher part weight reduction potential of 43%.

  14. Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites

    DOE PAGESBeta

    Cheng, Shiwang; Bocharova, Vera; Belianinov, Alex; Xiong, Shaomin; Kisliuk, Alexander; Somnath, Suhas; Holt, Adam P.; Ovchinnikova, Olga S.; Jesse, Stephen; Martin, Halie J.; et al

    2016-05-20

    The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively researched. However, not much is known about the origin of this effect below Tg. In this paper, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretchingmore » of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.« less

  15. Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites

    SciTech Connect

    Cheng, Shiwang; Bocharova, Vera; Belianinov, Alex; Xiong, Shaomin; Kisliuk, Alexander; Somnath, Suhas; Holt, Adam P; Ovchinnikova, Olga S; Jesse, Stephen; Martin, Halie J; Etampawala, Thusitha N; Dadmun, Mark D; Sokolov, Alexei P

    2016-01-01

    The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively studied. However, not much is known about the origin of this effect below Tg. In this Letter, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the glassy Young s modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.

  16. Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites.

    PubMed

    Cheng, Shiwang; Bocharova, Vera; Belianinov, Alex; Xiong, Shaomin; Kisliuk, Alexander; Somnath, Suhas; Holt, Adam P; Ovchinnikova, Olga S; Jesse, Stephen; Martin, Halie; Etampawala, Thusitha; Dadmun, Mark; Sokolov, Alexei P

    2016-06-01

    The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively studied. However, not much is known about the origin of this effect below Tg. In this Letter, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg. PMID:27203453

  17. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer bars

    NASA Astrophysics Data System (ADS)

    Ries, James Mcdaniel

    The Beaver Creek Bridge on US highway 6 is the pilot project for Glass Fiber Reinforced Polymer (GFRP) bridge decks and posttensioned bridge decks in the state of Utah. The bridge was built in 2009, using accelerated bridge construction practices, including the use of precast prestressed girders, as well as precast decking. The westbound bridge decking was composed of 12 precast panels each measuring 41'-5" long, 6'-10" wide, and 9¼" thick, and weighing approximately 33 kips. At the time, these panels were the longest GFRP panels in the United States. The Utah Department of Transportation has decided to evaluate GFRP reinforcing bars as an alternative to steel rebar in this bridge deck. The hope is to increase the lifespan of bridge decks to match the service life of the entire bridge. Due to the nature of the GFRP bars, the panels were lifted at four points using straps instead of imbedded anchors. During the four-point lifting, the panels exhibited small deflections and strains; furthermore, no cracks larger than hairline cracks were found in the panels after lifting. The Beaver Creek Bridge deck is the first precast deck in the state of Utah to be posttensioned in the direction of traffic. Posttensioning bridge decks is expected to become the norm in the state of Utah. The posttensioning resulted in increased continuity between panels. In order to quantify the expected performance of the bridge during its service life, a truck load test was performed. The truck load test was comprised of a static and dynamic test. During the truck load test, the bridge experienced deflections in the panels which were 93% below design values. Girder deflections were also small. The use of GFRP bars has the potential to extend the life of bridge decks exposed to deicing salts from 45 years to 100 years, while only requiring an increased capital cost in the bridge of 8%. Furthermore, the use of GFRP bars in conjunction with accelerated building practices has the potential to

  18. Evaluation of post-fire strength of concrete flexural members reinforced with glass fiber reinforced polymer (GFRP) bars

    NASA Astrophysics Data System (ADS)

    Ellis, Devon S.

    Owing to their corrosion resistance and superior strength to weight ratio, there has been, over the past two decades, increased interest in the use of fiber-reinforced polymer (FRP) reinforcing bars in reinforced concrete structural members. The mechanical behavior of FRP reinforcement differs from that of steel reinforcement. For example, FRP reinforcement exhibit a linear stress-strain behavior until the bar ruptures and the strength, stiffness and bond properties of FRP reinforcement are affected more adversely by elevated temperatures. All structures are subject to the risk of damage by fire and fires continue to be a significant cause of damage to structures. Many structures do not collapse after being exposed to fire. The safety of the structure for any future use is dependent on the ability to accurately estimate the post-fire load capacity of the structure. Assuming that the changes, due to fire exposure, in the mechanical behavior of the GFRP reinforcing bar and concrete, and the bond between the reinforcing bar and the concrete are understood, an analytical procedure for estimating the post-fire strength of GFRP reinforced concrete flexural elements can be developed. This thesis investigates the changes in: a) tensile properties and bond of GFRP bars; and b) the flexural behavior of GFRP reinforced concrete beams flexural after being exposed to elevated temperatures up to 400°C and cooled to ambient temperature. To this end, twelve tensile tests, twelve pullout bond tests and ten four-point beam tests were performed. The data from the tests were used to formulate analytical procedures for evaluating the post-fire strength of GFRP reinforced concrete beams. The procedure produced conservative results when compared with the experimental data. In general, the residual tensile strength and modulus of elasticity of GFRP bars decrease as the exposure temperature increases. The loss in properties is however, smaller than that observed by other researchers when

  19. Design criteria for pultruded fiber-reinforced polymer composite columns

    NASA Astrophysics Data System (ADS)

    Choi, Yeol

    This dissertation investigated the behavior of pultruded fiber-reinforced polymer (FRP) composite columns under extensive time-independent short-term and time-dependent long-term experiments. Based on the experimental results, analytical studies were performed to propose a design approach for pultruded FRP composite columns. In the time-independent short-term tests, a total of 100 tests on wide flange, I-shape and box section columns were selected to develop the empirical column strength equation. All column tests were performed with pinned-pinned end conditions using either a 30 feet reaction frame or a MTS machine depending on the column length. The experimental results from short-term column tests provided valuable realistic information, such as the ultimate column capacity, failure mode, and column strength equation for pultruded FRP composite columns subjected to axial compression. To develop empirical column strength equation, ultimate column capacity at failure may be examined by plotting of the ultimate compressive stress versus effective slenderness ratio, and then nondimensionalize the ultimate compressive stress and slenderness ratio to compare columns having different cross sections. Finally, a set of empirical column strength equations of FRP composite column was developed from the column strength curves using curve-fitting technique. In the time-dependent long-term creep tests, a total of 4 box and 4 wide flange section columns were tested to investigate time-dependent deformation of pultruded FRP composite columns. The cross-section used in the investigation is 4 in. x 4 in. x 1/4 in. (100 mm x 100 mm x 6.4 mm) and length is 4 feet (1.2 m) with box and wide flange sections. Creep tests were carried out at four different loading levels; 20, 30, 40 and 50 percents of the ultimate column strength from the short-term column tests. The axial time-dependent deformation under sustained loading was monitored for time duration up to 2,500 hours. The

  20. Development of wind turbine towers using fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Ungkurapinan, Nibong

    With an ongoing trend in the wind turbine market, the size of wind turbines has been increasing continuously. Larger wind turbines imply an increase in size, weight, and loads acting on the wind turbine tower. This requires towers to be stronger and stiffer, and consequently leads to bigger tower diameters. Because of their size and weight, transportation and erection require heavy equipment that makes the use of such towers prohibitive in remote communities. To tackle this problem, a research program was initiated at the University of Manitoba to develop the technology required for the fabrication of wind turbine towers constructed of fiber reinforced polymers (FRP) for use in remote communities in Canada. The research program was carried out in stages. During the first stage, a feasibility study and an analytical investigation on various shapes of FRP towers were conducted. The concept of a multi-cellular composite tower was examined in great detail and the finite element results showed that such a tower could result in almost 45 percent reduction in weight. In the second stage of this research program, a robotic filament winding machine was designed and constructed in the Composites Laboratory of the University of Manitoba. It was used to fabricate the multi-cell tower specimens for testing. The third stage of the research program involved the experimental investigation, which was carried out in three phases. In the first phase, two single cell specimens were tested to failure under lateral loading. The specimens were 8 ft (2.44 m) long. The second phase involved the testing of two single cells loaded in compression. The third phase of the experimental investigation involved the testing of two eight-cell jointed tower specimens. The specimens were octagonal and tapered, with a diameter of 21.4 in (543 mm) at the base and 17.4 in (441 mm) at the top. They were 16 ft (4.88 m) in height and tested as cantilever under static loading. Local buckling was the dominant

  1. Characterization of the polymer-filler interface in (gamma)-irradiated silica-reinforced polysiloxane composites

    SciTech Connect

    Chien, A T; Balazs, B; LeMay, J

    2000-04-03

    The changes in hydrogen bonding at the interface of silica-reinforced polysiloxane composites due to aging in gamma radiation environments were examined in this study. Solvent swelling was utilized to determine the individual contributions of the matrix polymer and polymer-filler interactions to the overall crosslink density. The results show how the polymer-filler hydrogen bonding dominates the overall crosslink density of the material. Air irradiated samples displayed decreased hydrogen bonding at the polymer-filler interface, while vacuum irradiation revealed the opposite effect.

  2. Surface damage behavior during scratch deformation of mineral reinforced polymer composites

    SciTech Connect

    Misra, R.D.K.; Hadal, R.; Duncan, S.J

    2004-08-16

    The surface damage behavior during scratch deformation of neat and wollastonite reinforced ethylene-propylene and polypropylene polymeric materials with significant differences in ductility was studied using electron microscopy in association with scratch deformation parameters and local crystallinity characteristics obtained from atomic force microscopy. Under identical conditions of scratch tests, the decrease in resistance to scratch damage and stress whitening of polymeric materials followed the sequence: wollastonite-reinforced polypropylene (PP-W) congruent with wollastonite-reinforced ethylene-propylene (EP-W) > neat polypropylene (PP) > neat ethylene-propylene copolymer (EP). The improved resistance to scratch damage of mineral reinforced polymeric materials is attributed to the effective reinforcement by micrometer-sized wollastonite particles that increase the tensile modulus of the polymeric materials and restrict plastic deformation of the polymer matrix. Scratching of neat and wollastonite-containing EP copolymers involved periodic parabolic scratch tracks containing voids, which transformed to distinct zig-zag scratch tracks on reinforcement with micrometric wollastonite particles. The enhanced plastic flow in neat EP is facilitated by high ductility of the material and ability to nucleate voids, while in EP-W the plastic flow is suppressed because of reinforcement effect of wollastonite. On the other hand, zig-zag periodic scratch tracks were observed in both neat PP and PP-W, but the scratch tracks were not clearly discernible on reinforcement of PP with wollastonite. The resistance to scratch deformation is discussed in terms of tensile modulus, elastic recovery, scratch hardness, and reinforcement-matrix interaction.

  3. Microwave Heating of Functionalized Graphene Nanoribbons in Thermoset Polymers for Wellbore Reinforcement.

    PubMed

    Kim, Nam Dong; Metzger, Andrew; Hejazi, Vahid; Li, Yilun; Kovalchuk, Anton; Lee, Seoung-Ki; Ye, Ruquan; Mann, Jason A; Kittrell, Carter; Shahsavari, Rouzbeh; Tour, James M

    2016-05-25

    Here, we introduce a systematic strategy to prepare composite materials for wellbore reinforcement using graphene nanoribbons (GNRs) in a thermoset polymer irradiated by microwaves. We show that microwave absorption by GNRs functionalized with poly(propylene oxide) (PPO-GNRs) cured the composite by reaching 200 °C under 30 W of microwave power. Nanoscale PPO-GNRs diffuse deep inside porous sandstone and dramatically enhance the mechanics of the entire structure via effective reinforcement. The bulk and the local mechanical properties measured by compression and nanoindentation mechanical tests, respectively, reveal that microwave heating of PPO-GNRs and direct polymeric curing are major reasons for this significant reinforcement effect. PMID:27140722

  4. Influence of cyclic freeze-thaw on the parameters of the electric response to the pulse mechanical excitation of concrete reinforced by glass fibre reinforced polymer bars

    NASA Astrophysics Data System (ADS)

    Fursa, T. V.; Petrov, M. V.; Korzenok, I. N.

    2016-02-01

    Studies of the influence of cyclic freeze-thaw on the parameters of electric response from samples of concrete reinforced by glass fibre reinforced polymer (GFRP) bars were conducted. It is found that an increase in the number of freeze-thaw cycles increases the attenuation coefficient of energy of electric responses and moves the centre of gravity of spectrum to the low-frequency area. The results can be used to develop a method of nondestructive testing of reinforced concrete.

  5. Preparation and characterization of glass fibers - polymers (epoxy) bars (GFRP) reinforced concrete for structural applications

    NASA Astrophysics Data System (ADS)

    Alkjk, Saeed; Jabra, Rafee; Alkhater, Salem

    2016-06-01

    The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP) and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm) tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long) reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  6. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  7. Further weight reduction of applications in long glass reinforced polymers

    NASA Astrophysics Data System (ADS)

    Yanev, A.; Schijve, W.; Martin, C.; Brands, D.

    2014-05-01

    Long glass reinforced materials are broadly used in the automotive industry due to their good mechanical performance, competitive price and options for functional integration in order to reduce weight. With rapidly changing environmental requirements, a demand for further weight reduction is growing constantly. Designs in LGF-PP can bring light weight solutions in combination with system cost improvement. There are quite some possibilities for applying weight reduction technologies nowadays. These technologies have to be evaluated based on weight reduction potential, but also on mechanical performance of the end application, where the latter is often the key to success. Different weight reduction technologies are applied to SABIC®STAMAX{trade mark, serif} material, a long glass fiber reinforced polypropylene (LGF-PP), in order to investigate and define best application performance. These techniques include: chemical foaming, physical foaming and thin wall applications. Results from this research will be presented, giving a guideline for your development.

  8. Electron beam irradiation in natural fibres reinforced polymers (NFRP)

    NASA Astrophysics Data System (ADS)

    Kechaou, B.; Salvia, M.; Fakhfakh, Z.; Juvé, D.; Boufi, S.; Kallel, A.; Tréheux, D.

    2008-11-01

    This study focuses on the electric charge motion in unsatured polyester and epoxy composites reinforced by natural fibres of Alfa type, treated by different coupling agents. The electric charging phenomenon is studied by scanning electron microscopy mirror effect (SEMME) coupled with the induced current method (ICM). Previously, using the same approach, glass fibre reinforced epoxy (GFRE) was studied to correlate mechanical [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Tréheux, Composites Science and Technology 64 (2004) 1467], or tribological [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Tréheux, Dielectric and friction behaviour of unidirectionalglass fibre reinforced epoxy (GFRE), Wear, 265 (2008) 763.] properties and dielectric properties. It was shown that the dielectric properties of the fibre-matrix interfaces play a significant role in the optimization of the composite. This result seems to be the same for natural fibre composites: the fibre-matrix interfaces allow a diffusion of the electric charges which can delocalize the polarization energy and consequently delay the damage of the composite. However, a non-suited sizing can lead to a new trapping of electric charges along these same interfaces with, as a consequence, a localization of the polarisation energy. The optimum composite is obtained for one sizing which helps, at the same time, to have a strong fibre-matrix adhesion and an easy flow of the electric charges along the interface.

  9. Fibre Reinforced Polymers (FRP) as Reinforcement for Concrete According to German Approvals

    NASA Astrophysics Data System (ADS)

    Alex, R.

    2015-11-01

    This article demonstrates the possibility of the application of joint principles to develop test programs for national approval or European Technical Assessments of FRP reinforcement for concrete. The limits of different systems are shown, which until now have been approved in Germany.

  10. Polymer reinforcement using liquid-exfoliated boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Khan, Umar; May, Peter; O'Neill, Arlene; Bell, Alan P.; Boussac, Elodie; Martin, Arnaud; Semple, James; Coleman, Jonathan N.

    2012-12-01

    We have exfoliated hexagonal boron nitride by ultrasonication in solutions of polyvinylalcohol in water. The resultant nanosheets are sterically stabilised by adsorbed polymer chains. Centrifugation-based size-selection was used to give dispersions of nanosheets with aspect ratio (length/thickness) of ~1400. Such dispersions can be used to produce polyvinylalcohol-BN composite films. Helium ion microscopy of fracture surfaces shows the nanosheets to be well dispersed and the composites to fail by pull-out. We find both modulus, Y, and strength, σB, of these composites to increase linearly with volume fraction, Vf, up to Vf ~ 0.1 vol% BN before falling off. The rates of increase are extremely high; dY/dVf = 670 GPa and dσB/dVf = 47 GPa. The former value matches theory based on continuum mechanics while the latter value is consistent with remarkably high polymer-filler interfacial strength. However, because the mechanical properties increase over such a narrow volume fraction range, the maximum values of both modulus and strength are only ~40% higher than the pure polymer. This phenomenon has also been observed for graphene-filled composites and represents a serious hurdle to the production of high performance polymer-nanosheet composites.We have exfoliated hexagonal boron nitride by ultrasonication in solutions of polyvinylalcohol in water. The resultant nanosheets are sterically stabilised by adsorbed polymer chains. Centrifugation-based size-selection was used to give dispersions of nanosheets with aspect ratio (length/thickness) of ~1400. Such dispersions can be used to produce polyvinylalcohol-BN composite films. Helium ion microscopy of fracture surfaces shows the nanosheets to be well dispersed and the composites to fail by pull-out. We find both modulus, Y, and strength, σB, of these composites to increase linearly with volume fraction, Vf, up to Vf ~ 0.1 vol% BN before falling off. The rates of increase are extremely high; dY/dVf = 670 GPa and d

  11. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  12. Shape memory composites based on glass-fibre-reinforced poly(ethylene)-like polymers

    NASA Astrophysics Data System (ADS)

    Cuevas, J. M.; Rubio, R.; Laza, J. M.; Vilas, J. L.; Rodriguez, M.; León, L. M.

    2012-03-01

    The mechanical response of a series of semicrystalline shape memory polymers was considerably enhanced by incorporating short glass fibres without modifying the thermo-responsive actuation based on balanced crystallinity and elasticity. The effect of different fractions of inorganic reinforcement on thermo-mechanical properties was evaluated using different instrument techniques such as differential scanning calorimetry (DSC), thermogravimetry (TGA), dynamic mechanical thermal analysis (DMTA) and three-point flexural tests. Moreover, we studied the inorganic reinforcement influence on the shape memory actuation capabilities by thermo-mechanical bending cycle experiments. As demonstrated, the manufactured polymer composites showed excellent shape memory capacities, similar to neat active polymer matrices, but with outstanding improvements in static and recovering mechanical performance.

  13. Resorbable continuous-fibre reinforced polymers for osteosynthesis.

    PubMed

    Dauner, M; Planck, H; Caramaro, L; Missirlis, Y; Panagiotopoulos, E

    1998-03-01

    Four institutes from three countries in the European Union have collaborated under the BRITE-EURAM framework programme for the development of processing technologies for resorbable osteosynthesis devices. The devices should be continuous-fibre reinforced, and the technology should offer the possibility of orienting the fibres in the main trajectories. Poly-L-lactide and poly-L-DL-lactides have been synthesized for reinforcement fibres and matrix material, respectively. Melt-spun P-L-LA fibres of a strength of 800 MPa have been embedded in an amorphous P-L-DL-LA 70 : 30 matrix by compression moulding. Ethyleneoxide sterilized samples have been tested in vitro and in vivo. A satisfying bending modulus has been reached (6 GPa). Yet with 50% strength retention after ten weeks, fast degradation occurred that could be related to residual monomers. By this fast degradation 70% resorption after one year could be observed in the non-functional animal studies in rabbits. There was only a mild inflammatory reaction, which confirmed the good biocompatibility of the materials even during the resorption period. Further effort has to concentrate on the reduction of initial monomer content. The great advantage of the processing method to orient fibres in the device will be utilized in prototype samples, e.g. an osteosynthesis plate with fixation holes. PMID:15348907

  14. EB treatment of carbon nanotube-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Szebényi, G.; Romhány, G.; Vajna, B.; Czvikovszky, T.

    2012-09-01

    A small amount — less than 0.5% — carbon nanotube reinforcement may improve the mechanical properties of epoxy based composite materials significantly. The basic technical problem on one side is the dispersion of the nanotubes into the viscous matrix resin, namely, the fine powder-like — less than 100 nanometer diameter — nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, which is determining the success of the reinforcement, requires some efficient adhesion promoting treatment. The goal of our research was to give one such treatment capable of industrial size application. A two step curing epoxy/vinylester resin process technology has been developed where the epoxy component has been cured conventionally, while the vinylester has been cured by electron treatment afterwards. The sufficient irradiation dose has been selected according to Raman spectroscopy characterization. Using the developed hybrid resin system hybrid composites containing carbon fibers and multiwalled carbon nanotubes have been prepared. The effect of the electron beam induced curing of the vinylester resin on the mechanical properties of the composites has been characterized by three point bending and interlaminar shear tests, which showed clearly the superiority of the developed resin system. The results of the mechanical tests have been supported by AFM studies of the samples, which showed that the difference in the viscoelastic properties of the matrix constituents decreased significantly by the electron beam treatment.

  15. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various fibers

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  16. Development of a 3D polymer reinforced calcium phosphate cement scaffold for cranial bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Alge, Daniel L.

    The repair of critical-sized cranial bone defects represents an important clinical challenge. The limitations of autografts and alloplastic materials make a bone tissue engineering strategy desirable, but success depends on the development of an appropriate scaffold. Key scaffold properties include biocompatibility, osteoconductivity, sufficient strength to maintain its structure, and resorbability. Furthermore, amenability to rapid prototyping fabrication methods is desirable, as these approaches offer precise control over scaffold architecture and have the potential for customization. While calcium phosphate cements meet many of these criteria due to their composition and their injectability, which can be leveraged for scaffold fabrication via indirect casting, their mechanical properties are a major limitation. Thus, the overall goal of this work was to develop a 3D polymer reinforced calcium phosphate cement scaffold for use in cranial bone tissue engineering. Dicalcium phosphate dihydrate (DCPD) setting cements are of particular interest because of their excellent resorbability. We demonstrated for the first time that DCPD cement can be prepared from monocalcium phosphate monohydrate (MCPM)/hydroxyapatite (HA) mixtures. However, subsequent characterization revealed that MCPM/HA cements rapidly convert to HA during degradation, which is undesirable and led us to choose a more conventional formulation for scaffold fabrication. In addition, we developed a novel method for calcium phosphate cement reinforcement that is based on infiltrating a pre-set cement structure with a polymer, and then crosslinking the polymer in situ. Unlike prior methods of cement reinforcement, this method can be applied to the reinforcement of 3D scaffolds fabricated by indirect casting. Using our novel method, composites of poly(propylene fumarate) (PPF) reinforced DCPD were prepared and demonstrated as excellent candidate scaffold materials, as they had increased strength and ductility

  17. Crystallization processes in poly(ethylene terephthalate) as modified by polymer additives and fiber reinforcement

    SciTech Connect

    Reinsch, V.E.; Rebenfeld, L.

    1993-12-31

    The effect of fiber reinforcement on the crystallization of poly(ethylene terephthalate) (PET) was investigated using differential scanning calorimetry. The objective of the study was to determine how the effects of fiber reinforcement on PET crystallization are modified by the presence of polymer additives. The interaction of fiber effects and nucleating and plasticizing agents was studied. Unidirectional fiber composites were prepared using aramid and glass fibers in PET. The rate of crystallization of PET, as reflected by crystallization half-time, it seem to depend on reinforcing fiber type, crystallization temperature, and presence of nucleant or plasticizer. However, degree of crytallinity of PET is largely unaffected by the presence of additives and reinforcing fibers. Crystallization kinetics are analyzed using a series Avrami model for PET volume crystallized as a function of time. The using a series Arami model for PET volume crystallized as a function of time. The crystalline morphology of fiber reinforced PET was studied using polarized light microscopy. Results concerning nucleation density, chain mobility, and growth morphology are used in explaining differences seen in crystallization kinetics in fiber reinforced systems.

  18. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P < 10−4, and 19.3% to 77.7% at 0.1 mm, P < 10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential. PMID:25553057

  19. Mussel-inspired catecholamine polymers as new sizing agents for fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Lee, Wonoh; Lee, Jea Uk; Byun, Joon-Hyung

    2015-04-01

    Mussel-inspired catecholamine polymers (polydopamine and polynorepinephrine) were coated on the surface of carbon and glass fibers in order to increase the interfacial shear strength between fibers and polymer matrix, and consequently the interlaminar shear strength of fiber-reinforced composites. By utilizing adhesive characteristic of the catecholamine polymer, fiber-reinforced composites can become mechanically stronger than conventional composites. Since the catecholamine polymer is easily constructed on the surface by the simultaneous polymerization of its monomer under a weak basic circumstance, it can be readily coated on micro-fibers by a simple dipping process without any complex chemical treatments. Also, catecholamines can increase the surface free energy of micro-fibers and therefore, can give better wettability to epoxy resin. Therefore, catecholamine polymers can be used as versatile and effective surface modifiers for both carbon and glass fibers. Here, catecholamine-coated carbon and glass fibers exhibited higher interfacial shear strength (37 and 27% increases, respectively) and their plain woven composites showed improved interlaminar shear strength (13 and 9% increases, respectively) compared to non-coated fibers and composites.

  20. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  1. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    NASA Astrophysics Data System (ADS)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  2. Thermal Expansion of Carbon Nanofiber-Reinforced Multiscale Polymer Composites

    NASA Astrophysics Data System (ADS)

    Poveda, Ronald L.; Achar, Sriniket; Gupta, Nikhil

    2012-10-01

    Improved dimensional stability of composites is desired in applications where they are exposed to varying temperature conditions. The current study aims at analyzing the effect of vapor-grown carbon nanofibers (CNFs) on the thermal expansion behavior of epoxy matrix composites and hollow particle-filled composites (syntactic foams). CNFs have a lower coefficient of thermal expansion (CTE) than epoxy resin, which results in composites with increased dimensional stability as the CNF content is increased. The experimental measurements show that with 10 wt.% CNF, the composite has about 11.6% lower CTE than the matrix resin. In CNF-reinforced syntactic foams, the CTE of the composite decreases with increasing wall thickness and volume fraction of hollow particle inclusions. With respect to neat epoxy resin, a maximum decrease of 38.4% is also observed in the CNF/syntactic foams with microballoon inclusions that range from 15 vol.% to 50 vol.% in all composite mixtures. The experimental results for CNF/syntactic foam are in agreement with a modified version of Kerner's model. A combination of hollow microparticles and nanofibers has resulted in the ability to tailor the thermal expansion of the composite over a wide range.

  3. Unzipped multiwalled carbon nanotube oxide/multiwalled carbon nanotube hybrids for polymer reinforcement.

    PubMed

    Fan, Jinchen; Shi, Zixing; Tian, Ming; Wang, Jialiang; Yin, Jie

    2012-11-01

    Multiwalled carbon nanotubes (MWNTs) have been widely used as nanofillers for polymer reinforcement. However, it has been restricted by the limited available interface area of MWNTs in the polymer matrices. Oxidation unzipping of MWNTs is an effective way to solve this problem. The unzipped multiwalled carbon nanotube oxides (UMCNOs) exhibit excellent enhancement effect with low weight fractions, but agglomeration of UMCNOs at a relatively higher loading still hampered the mechanical reinforcement of polymer composites. In this paper, we interestingly found that the dispersion of UMCNOs in polymer matrices can be significantly improved with the combination of pristine MWNTs. The hybrids of MWNTs and UMCNOs (U/Ms) can be easily obtained by adding the pristine MWNTs into the UMCNOs aqueous dispersion, followed by sonication. With a π-stacking interaction, the UMCNOs were attached onto the outwalls of MWNTs. The morphologies and structure of the U/Ms were characterized by several measurements. The mechanical testing of the resultant poly(vinyl alcohol) (PVA)-based composites demonstrated that the U/Ms can be used as ideal reinforcing fillers. Compared to PVA, the yield strength and Young's modulus of U/M-PVA composites with a loading of 0.7 wt % of the U/Ms approached ∼145.8 MPa and 6.9 GPa, respectively, which are increases of ∼107.4% and ∼122.5%, respectively. The results of tensile tests demonstrated that the reinforcement effect of U/Ms is superior to the individual UMCNOs and MWNTs, because of the synergistic interaction of UMCNOs and MWNTs. PMID:23121120

  4. A modified fractional Zener model to describe the behaviour of a carbon fibre reinforced polymer

    NASA Astrophysics Data System (ADS)

    Costa, M. Fernanda P.; Ribeiro, C.

    2013-10-01

    In this work a modified conventional Fractional Zener Model is deduced and applied to estimate the viscoelastic constitutive parameters of a Carbon Fibre Reinforced Polymer. The accuracy of this modified model was studied against conventional Fractional Zener model and Fractional Maxwell model, considering experimental data in the frequency domain. The set of parameters was found by solving a nonlinear constrained least square problem based on the variation of the storage and loss moduli with frequency.

  5. The reflectivity of carbon fiber reinforced polymer short circuit illuminated by guided microwaves

    NASA Astrophysics Data System (ADS)

    Bojovschi, A.; Scott, J.; Ghorbani, K.

    2013-09-01

    An investigation of the interaction between guided electromagnetic waves and carbon fibre reinforced polymer waveguide short circuits is presented. To determine the electromagnetic response of the composite waveguide short circuit, its anisotropic characteristics are considered. The reflection coefficients of the short circuit, at the reference plane, are about 0.98 over the whole 8 GHz to 12 GHz band. The results indicate the viability of carbon fiber based short circuits for lightweight waveguides.

  6. Effect of fiber reinforcements on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1991-01-01

    A number of studies have investigated the thermo-oxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. A compilation of some results from these studies is presented, and this information shows the influence of the reinforcement fibers on the oxidative degradation of various polymer matrix composites. The polyimide PMR-15 was the matrix material that was used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-40R graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. The Celion 6000/PMR-15 bond is very tight but the T-40/PMR-15 bond is less tight. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  7. A new type of smart basalt fiber-reinforced polymer bars as both reinforcements and sensors for civil engineering application

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng

    2010-11-01

    In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete.

  8. Sensing uniaxial tensile damage in fiber-reinforced polymer composites using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Lestari, Wahyu; Pinto, Brian; La Saponara, Valeria; Yasui, Jennifer; Loh, Kenneth J.

    2016-08-01

    This work describes the application of electrical resistance tomography (ERT) in sensing damage in fiber-reinforced polymer composites under uniaxial quasi-static tension. Damage is manifested as numerous matrix cracks which are distributed across the composite volume and which eventually coalesce into intralayer cracks. Hence, tensile damage is distributed throughout the volume, and could be more significant outside the sensor area. In this work, tensile damage of unidirectional glass fiber-reinforced polymer composites (GFRP) and plain weave carbon fiber-reinforced polymer composites (CFRP) is sensed by utilizing a spray-on nanocomposite sensor, which is then instrumented by boundary electrodes. The resistance change distribution within the sensor area is reconstructed from a series of boundary voltage measurements, and ERT is implemented using a maximum a posteriori approach and assumptions on the type of noise in the reconstruction. Results show that this technique has promise in tracking uniaxial damage in composites. The different fiber architectures (unidirectional GFRP, plain weave CFRP) give distinct features in the ERT, which are consistent with the physical behavior of the tested samples.

  9. Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Zhi-qiang; Ou, Jin-ping

    2007-12-01

    It has been proven that carbon-fiber-reinforced polymer (CFRP) sheets or plates are capable of improving the strength of reinforced concrete (RC) structures. However, residual deformation of RC structures in service reduces the effect of CFRP strengthening. SMA can be applied to potentially decrease residual deformation and even close concrete cracks because of its recovery forces imposed on the concrete when heated. Therefore, a method of a RC structure strengthened by CFRP plates in combination with SMA wires is proposed in this paper. The strengthening effect of this method is investigated through experiments and numerical study based on the nonlinear finite element software ABAQUS in simple RC beams. Parametric analysis and assessment of damage by defining a damage index are carried out. The results indicate that recovery forces of SMA wires can decrease deflections and even close cracks in the concrete. The recovery rate of deflection of the beam increases with increasing the ratio of SMA wires. The specimen strengthened with CFRP plates has a relatively large stiffness and smaller damage index value when the residual deformation of the beam is first reduced by activation of the SMA wires. The effectiveness of this strengthening method for RC beams is verified by experimental and numerical results.

  10. Self-diagnosis of structures strengthened with hybrid carbon-fiber-reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Wu, Z. S.; Yang, C. Q.; Harada, T.; Ye, L. P.

    2005-06-01

    The correlation of mechanical and electrical properties of concrete beams strengthened with hybrid carbon-fiber-reinforced polymer (HCFRP) sheets is studied in this paper. Two types of concrete beams, with and without reinforcing bars, are strengthened with externally bonded HCFRP sheets, which have a self-structural health monitoring function due to the electrical conduction and piezoresistivity of carbon fibers. Parameters investigated include the volume fractions and types of carbon fibers. According to the investigation, it is found that the hybridization of uniaxial HCFRP sheets with several different types of carbon fibers is a viable method for enhancing the mechanical properties and obtaining a built-in damage detection function for concrete structures. The changes in electrical resistance during low strain ranges before the rupture of carbon fibers are generally smaller than 1%. Nevertheless, after the gradual ruptures of carbon fibers, the electrical resistance increases remarkably with the strain in a step-wise manner. For the specimens without reinforcing bars, the electrical behaviors are not stable, especially during the low strain ranges. However, the electrical behaviors of the specimens with reinforcing bars are relatively stable, and the whole range of self-sensing function of the HCFRP-strengthened RC structures has realized the conceptual design of the HCFRP sensing models and is confirmed by the experimental investigations. The relationships between the strain/load and the change in electrical resistance show the potential self-monitoring capacity of HCFRP reinforcements used for strengthening concrete structures.

  11. Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika

    2013-01-01

    Reinforcing critical areas in carbon polymer matrix composites (PMCs), also known as fiber reinforced composites (FRCs), is advantageous for structural durability. Since carbon nanotubes (CNTs) have extremely high tensile strength, they can be used as a functional additive to enhance the mechanical properties of FRCs. However, CNTs are not readily dispersible in the polymer matrix, which leads to lower than theoretically predicted improvement in mechanical, thermal, and electrical properties of CNT composites. The inability to align CNTs in a polymer matrix is also a known issue. The feasibility of incorporating aligned CNTs into an FRC was demonstrated using a novel, yet commercially viable nanofiber approach, termed NRMs (nanofiber-reinforcing mats). The NRM concept of reinforcement allows for a convenient and safe means of incorporating CNTs into FRC structural components specifically where they are needed during the fabrication process. NRMs, fabricated through a novel and scalable process, were incorporated into FRC test panels using layup and vacuum bagging techniques, where alternating layers of the NRM and carbon prepreg were used to form the reinforced FRC structure. Control FRC test panel coupons were also fabricated in the same manner, but comprised of only carbon prepreg. The FRC coupons were machined to size and tested for flexural, tensile, and compression properties. This effort demonstrated that FRC structures can be fabricated using the NRM concept, with an increased average load at break during flexural testing versus that of the control. The NASA applications for the developed technologies are for lightweight structures for in-space and launch vehicles. In addition, the developed technologies would find use in NASA aerospace applications such as rockets, aircraft, aircraft/spacecraft propulsion systems, and supporting facilities. The reinforcing aspect of the technology will allow for more efficient joining of fiber composite parts, thus offering

  12. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  13. A testing platform for durability studies of polymers and fiber-reinforced polymer composites under concurrent hygrothermo-mechanical stimuli.

    PubMed

    Gomez, Antonio; Pires, Robert; Yambao, Alyssa; La Saponara, Valeria

    2014-01-01

    The durability of polymers and fiber-reinforced polymer composites under service condition is a critical aspect to be addressed for their robust designs and condition-based maintenance. These materials are adopted in a wide range of engineering applications, from aircraft and ship structures, to bridges, wind turbine blades, biomaterials and biomedical implants. Polymers are viscoelastic materials, and their response may be highly nonlinear and thus make it challenging to predict and monitor their in-service performance. The laboratory-scale testing platform presented herein assists the investigation of the influence of concurrent mechanical loadings and environmental conditions on these materials. The platform was designed to be low-cost and user-friendly. Its chemically resistant materials make the platform adaptable to studies of chemical degradation due to in-service exposure to fluids. An example of experiment was conducted at RT on closed-cell polyurethane foam samples loaded with a weight corresponding to ~50% of their ultimate static and dry load. Results show that the testing apparatus is appropriate for these studies. Results also highlight the larger vulnerability of the polymer under concurrent loading, based on the higher mid-point displacements and lower residual failure loads. Recommendations are made for additional improvements to the testing apparatus. PMID:25548950

  14. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  15. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  16. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed, to be cured, and be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000degC. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200degC, -SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Testing for this included thermal and mechanical testing per ASTM standard tests.

  17. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  18. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  19. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  20. Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers.

    PubMed

    Rangari, Vijaya K; Yousuf, Mohammed; Jeelani, Shaik; Pulikkathara, Merlyn X; Khabashesku, Valery N

    2008-06-18

    Alignment of pristine carbon nanotubes (P-CNTs) and fluorinated carbon nanotubes (F-CNTs) in nylon-6 polymer composite fibers (PCFs) has been achieved using a single-screw extrusion method. CNTs have been used as filler reinforcements to enhance the mechanical and thermal properties of nylon-6 composite fibers. The composites were fabricated by dry mixing nylon-6 polymer powder with the CNTs as the first step, then followed by the melt extrusion process of fiber materials in a single-screw extruder. The extruded fibers were stretched to their maxima and stabilized using a godet set-up. Finally, fibers were wound on a Wayne filament winder machine and tested for their tensile and thermal properties. The tests have shown a remarkable change in mechanical and thermal properties of nylon-6 polymer fibers with the addition of 0.5 wt% F-CNTs and 1.0 wt% of P-CNTs. To draw a comparison between the improvements achieved, the same process has been repeated with neat nylon-6 polymer. As a result, tensile strength has been increased by 230% for PCFs made with 0.5% F-CNTs and 1% P-CNTs as additives. These fibers have been further characterized by DSC, Raman spectroscopy and SEM which confirm the alignment of CNTs and interfacial bonding to nylon-6 polymer matrix. PMID:21825828

  1. Smart fiber-reinforced polymer rods featuring improved ductility and health monitoring capabilities

    NASA Astrophysics Data System (ADS)

    Belarbi, Abdeldjelil; Watkins, Steve E.; Chandrashekhara, K.; Corra, Josh; Konz, Bethany

    2001-06-01

    The strain-measuring capability of fiber optic strain gages in fiber-reinforced polymer (FRP) rebars was investigated for failure-inducing loads. Fiber optic interferometric sensors were embedded in a pultruded carbon fiber core and then another layer of carbon fibers were filament wound around the core to form a shell. Pultrusion and filament winding techniques protect the fiber optic strain gages from the concrete environment while providing a secure bond to the core and additional ductility to the overall FRP rebar. Tests of coupon FRP rebar and of FRP-rebar-reinforced concrete beams show that the fiber optic strain gages can read internal strain through failure and can duplicate data from conventional linear variable differential transformers and electrical resistance strain gages. Also, the shell of the FRP rebar inside the concrete beams failed before the rebar core providing pseudo-ductility.

  2. Evaluation of RC Bridge Piers Retrofitted using Fiber-Reinforced Polymer (FRP)

    SciTech Connect

    Shayanfar, M. A.; Zarrabian, M. S.

    2008-07-08

    For many long years, steel reinforcements have been considered as the only tool for concrete confinements and studied widely, but nowadays application of Fiber Reinforced Polymer (FRP) as an effective alternative is well appreciated. Many bridges have been constructed in the past that are necessary to be retrofitted for resisting against the earthquake motions. The objective of this research is evaluation of nonlinear behavior of RC bridge piers. Eight RC bridge piers have been modeled by ABAQUS software under micromechanical model for homogeneous anisotropic fibers. Also the Bilinear Confinement Model by Nonlinear Transition Zone of Mirmiran has been considered. Then types and angles of fibers and their effects on the final responses were evaluated. Finally, effects of retrofitting are evaluated and some suggestions presented.

  3. Investigation of Polymer Resin/Fiber Compatibility in Natural Fiber Reinforced Composite Automotive Materials

    SciTech Connect

    Fifield, Leonard S.; Huang, Cheng; Simmons, Kevin L.

    2010-01-01

    Natural fibers represent a lower density and potentially lower cost alternative to glass fibers for reinforcement of polymers in automotive composites. The high specific modulus and strength of bast fibers make them an attractive option to replace glass not only in non-structural automotive components, but also in semi-structural and structural components. Significant barriers to insertion of bast fibers in the fiber reinforced automotive composite market include the high moisture uptake of this lignocellulosic material relative to glass and the weak inherent interface between natural fibers and automotive resins. This work seeks to improve the moisture uptake and resin interfacing properties of natural fibers through improved fundamental understanding of fiber physiochemical architecture and development of tailored fiber surface modification strategies.

  4. Space environmental effects on LDEF low Earth orbit exposed graphite reinforced polymer matrix composites

    NASA Technical Reports Server (NTRS)

    George, Pete

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was deployed on April 7, 1984 in low earth orbit (LEO) at an altitude of 482 kilometers. On board experiments experienced the harsh LEO environment including atomic oxygen (AO), ultraviolet radiation (UV), and thermal cycling. During the 5.8 year mission, the LDEF orbit decayed to 340 kilometers where significantly higher AO concentrations exist. LDEF was retrieved on January 12, 1990 from this orbit. One experiment on board LDEF was M0003, Space Effects on Spacecraft Materials. As a subset of M0003 nearly 500 samples of polymer, metal, and glass matrix composites were flown as the Advanced Composites Experiment M0003-10. The Advanced Composites Experiment is a joint effort between government and industry with the Aerospace Corporation serving as the experiment integrator. A portion of the graphite reinforced polymer matrix composites were furnished by the Boeing Defense and Space Group, Seattle, Washington. Test results and discussions for the Boeing portion of M0003-10 are presented. Experiment and specimen location on the LDEF are presented along with a quantitative summary of the pertinent exposure conditions. Matrix materials selected for the test were epoxy, polysulfone, and polyimide. These composite materials were selected due to their suitability for high performance structural capability in spacecraft applications. Graphite reinforced polymer matrix composites offer higher strength to weight ratios along with excellent dimensional stability. The Boeing space exposed and corresponding ground control composite specimens were subjected to post flight mechanical, chemical, and physical testing in order to determine any changes in critical properties and performance characteristics. Among the more significant findings are the erosive effect of atomic oxygen on leading edge exposed specimens and microcracking in non-unidirectionally reinforced flight specimens.

  5. Thermographic inspection of bond defects in Fiber Reinforced Polymer applied to masonry structures

    NASA Astrophysics Data System (ADS)

    Masini, N.; Aiello, M. A.; Capozzoli, L.; Vasanelli, E.

    2012-04-01

    Nowadays, externally bonded Fiber Reinforced Polymers (FRP) are extensively used for strengthening and repairing masonry and reinforced concrete existing structures; they have had a rapid spread in the area of rehabilitation for their many advantages over other conventional repair systems, such as lightweight, excellent corrosion and fatigue resistance, high strength, etc. FRP systems applied to masonry or concrete structures are typically installed using a wet-layup technique.The method is susceptible to cause flaws or defects in the bond between the FRP system and the substrate, which may reduce the effectiveness of the reinforcing systems and the correct transfer of load from the structure to the composite. Thus it is of primary importance to detect the presence of defects and to quantify their extension in order to eventually provide correct repair measurements. The IR thermography has been cited by the several guidelines as a good mean to qualitatively evaluate the presence of installation defects and to monitor the reinforcing system with time.The method is non-destructive and does not require contact with the composite or other means except air to detect the reinforcement. Some works in the literature have been published on this topic. Most of the researches aim at using the IR thermography technique to characterize quantitatively the defects in terms of depth, extension and type in order to have an experimental database on defect typology to evaluate the long term performances of the reinforcing system. Nevertheless, most of the works in the literature concerns with FRP applied to concrete structures without considering the case of masonry structures. In the present research artificial bond defects between FRP and the masonry substrate have been reproduced in laboratory and the IR multi temporal thermography technique has been used to detect them. Thermographic analysis has been carried out on two wall samples having limited dimensions (100 x 70 cm) both

  6. A Lamb waves based statistical approach to structural health monitoring of carbon fibre reinforced polymer composites.

    PubMed

    Carboni, Michele; Gianneo, Andrea; Giglio, Marco

    2015-07-01

    This research investigates a Lamb-wave based structural health monitoring approach matching an out-of-phase actuation of a pair of piezoceramic transducers at low frequency. The target is a typical quasi-isotropic carbon fibre reinforced polymer aeronautical laminate subjected to artificial, via Teflon patches, and natural, via suitable low velocity drop weight impact tests, delaminations. The performance and main influencing factors of such an approach are studied through a Design of Experiment statistical method, considering both Pulse Echo and Pitch Catch configurations of PZT sensors. Results show that some factors and their interactions can effectively influence the detection of a delamination-like damage. PMID:25746761

  7. Determination of Material Parameters for Microbuckling Analysis of Fiber Reinforced Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Romanowicz, M.

    2015-05-01

    This research focuses on studying the effect of the constitutive law adopted for a matrix material on the compressive response of a unidirectional fiber reinforced polymer matrix composite. To investigate this effect, a periodic unit cell model of a unidirectional composite with an initial fiber waviness and inelastic behavior of the matrix was used. The sensitivity of the compressive strength to the hydrostatic pressure, the flow rule and the fiber misalignment angle were presented. The model was verified against an analytical solution and experimental data. Results of this study indicate that a micromechanical model with correctly identified material parameters provides a useful alternative to theoretical models and experimentation.

  8. Functionalization of Natural Graphite for Use as Reinforcement in Polymer Nanocomposites.

    PubMed

    Araujo, Rafael; Marques, Maria F V; Jonas, Renato; Grafova, Iryna; Grafov, Andriy

    2015-08-01

    Graphite is a naturally abundant material that has been used as reinforcing filler to produce polymeric nanocomposites for various applications including automotive, aerospace and electric-electronic. The objective of this study was to develop methodologies of graphite nanosheets preparation and for incorporation into polymer matrices. By means of different chemical and physical treatments, natural graphite was modified and subsequently characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetry (TGA) and the particle size determination. The results obtained clearly show that after the treatments employed, polar chemical groups were inserted on the natural graphite surface. Nanosized graphite particles of high aspect ratio were obtained. PMID:26369221

  9. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix.

    PubMed

    Porras, R; Bavykin, D V; Zekonyte, J; Walsh, F C; Wood, R J

    2016-05-13

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the 'drop-cast' method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young's modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young's modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM. PMID:27039947

  10. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    NASA Astrophysics Data System (ADS)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  11. Characterizing the self-sensing performance of carbon nanotube-enhanced fiber-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Loyola, Bryan R.; La Saponara, Valeria; Loh, Kenneth J.

    2010-04-01

    The increased usage of fiber-reinforced polymers (FRP) in recent decades has created a need to monitor the unique response of these materials to impact and fatigue damage. As most traditional nondestructive evaluation methods are illsuited to detecting damage in FRPs, new methods must be created without compromising the high strength-to-weight aspects of FRPs. This paper describes the characterization of carbon nanotube-polyelectrolyte thin films applied to glass fiber substrates as a means for in situ strain sensing in glass fiber-reinforced polymers (GFRP). The layer-by-layer deposition process employed is capable of depositing individual and small bundles of carbon nanotubes within a polyelectrolyte matrix and directly onto glass fiber matrices. Upon film fabrication, the nanocomposite-coated GFRP specimens are mounted in a load frame for characterizing their electromechanical performance. This preliminary results obtained from this study has shown that these thin films exhibit bilinear piezoresistivity. Time- and frequency-domain techniques are utilized to characterize the nanocomposite strain sensing response. An equivalent circuit is also derived from electrical impedance spectroscopic analysis of thin film specimens.

  12. Numerical Analysis of Slab-Column Connections Strengthened with Carbon Fiber Reinforced Polymers

    NASA Astrophysics Data System (ADS)

    Kheyroddin, A.; Hoseini Vaez, S. R.; Naderpour, H.

    This study presents nonlinear finite element analysis of slab-column connection in order to investigate the effect of using CFRP (Carbon Fiber Reinforced Polymer) sheets on their structural behavior. Verification of study needs to calibrate the un-strengthened analytical models by available experimental data. In this case two groups of models with three layers of Solid 65 elements throughout the depth of the slabs were analyzed. One of them was consisted of the smeared reinforcement throughout the entire slab which indicated a reasonably accurate simulation of the load-deflection curves with a steel volume ratio of 0.028 and also gives a good indication of the cracking behavior of the slabs. In the other group, smeared reinforcement located at bottom layer was used. In both groups the pre-cracking branch of the different curves follows the experimental results very closely. Beyond cracking, the models of last group defined appear stiffer. The punching truncated pyramid of control model is in a very close agreement with the experiment. Slab model by using CFRP plates introducing to program by Solid 46 elements, have been analyzed. Results indicated that final deflection of slab has been increased of 36% while strength of the slab has been increased slightly. Also, strengthening of slab with increasing steel volume ratio in the central zone affects on behavior of the slabs with an increase in both, the final load and deflection.

  13. Effect of fiber reinforcement on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1992-01-01

    A number of studies have investigated the thermooxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. The polyimide PMR-15 was the matrix material used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-4OR graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  14. On Complexities of Impact Simulation of Fiber Reinforced Polymer Composites: A Simplified Modeling Framework

    PubMed Central

    Alemi-Ardakani, M.; Milani, A. S.; Yannacopoulos, S.

    2014-01-01

    Impact modeling of fiber reinforced polymer composites is a complex and challenging task, in particular for practitioners with less experience in advanced coding and user-defined subroutines. Different numerical algorithms have been developed over the past decades for impact modeling of composites, yet a considerable gap often exists between predicted and experimental observations. In this paper, after a review of reported sources of complexities in impact modeling of fiber reinforced polymer composites, two simplified approaches are presented for fast simulation of out-of-plane impact response of these materials considering four main effects: (a) strain rate dependency of the mechanical properties, (b) difference between tensile and flexural bending responses, (c) delamination, and (d) the geometry of fixture (clamping conditions). In the first approach, it is shown that by applying correction factors to the quasistatic material properties, which are often readily available from material datasheets, the role of these four sources in modeling impact response of a given composite may be accounted for. As a result a rough estimation of the dynamic force response of the composite can be attained. To show the application of the approach, a twill woven polypropylene/glass reinforced thermoplastic composite laminate has been tested under 200 J impact energy and was modeled in Abaqus/Explicit via the built-in Hashin damage criteria. X-ray microtomography was used to investigate the presence of delamination inside the impacted sample. Finally, as a second and much simpler modeling approach it is shown that applying only a single correction factor over all material properties at once can still yield a reasonable prediction. Both advantages and limitations of the simplified modeling framework are addressed in the performed case study. PMID:25431787

  15. On complexities of impact simulation of fiber reinforced polymer composites: a simplified modeling framework.

    PubMed

    Alemi-Ardakani, M; Milani, A S; Yannacopoulos, S

    2014-01-01

    Impact modeling of fiber reinforced polymer composites is a complex and challenging task, in particular for practitioners with less experience in advanced coding and user-defined subroutines. Different numerical algorithms have been developed over the past decades for impact modeling of composites, yet a considerable gap often exists between predicted and experimental observations. In this paper, after a review of reported sources of complexities in impact modeling of fiber reinforced polymer composites, two simplified approaches are presented for fast simulation of out-of-plane impact response of these materials considering four main effects: (a) strain rate dependency of the mechanical properties, (b) difference between tensile and flexural bending responses, (c) delamination, and (d) the geometry of fixture (clamping conditions). In the first approach, it is shown that by applying correction factors to the quasistatic material properties, which are often readily available from material datasheets, the role of these four sources in modeling impact response of a given composite may be accounted for. As a result a rough estimation of the dynamic force response of the composite can be attained. To show the application of the approach, a twill woven polypropylene/glass reinforced thermoplastic composite laminate has been tested under 200 J impact energy and was modeled in Abaqus/Explicit via the built-in Hashin damage criteria. X-ray microtomography was used to investigate the presence of delamination inside the impacted sample. Finally, as a second and much simpler modeling approach it is shown that applying only a single correction factor over all material properties at once can still yield a reasonable prediction. Both advantages and limitations of the simplified modeling framework are addressed in the performed case study. PMID:25431787

  16. Correlation between Rheotens measurements and reinforcement of polymer nanocomposites in the injection molding compounder

    NASA Astrophysics Data System (ADS)

    Battisti, Markus G.; Friesenbichler, Walter; Duretek, Ivica; Guttmann, Peter

    2015-04-01

    The evaluation of the effectiveness of reinforcement of polymers and polymer nanocomposites(PNCs), in particular the improvement of Young's modulus, is made by performing standardized tensile tests. Structural and morphological characterizations typically are investigated using expensive techniques like transmission electron microscopy (TEM), X- ray scattering and sometimes also rheological analyses (rotational rheometry). The objective of this study is to generate faster and economically advantageous data to verify the quality of the produced PNC-compound in an on-line measurement system. Subsequently injection molded parts are processed by using the Injection Molding Compounder (PNC-IMC) “by only one plasticizing process”. In comparison to the conventional compounding process, where the compound has to be pelletized and fed into the injection molding machine for the second plasticizing process, injection molding compounding combines these two processing steps. This paper shows first results and problems with the implementation of the Rheotens equipment into the concept of the IMC. Different processing techniques and various processing conditions were compared and the occurring effects were detected both with tensile testing and extensional melt rheology. Both, the increase of the Young's modulus by using layered silicates as nanofillersis compared to the virgin polypropylene and the correlation of the level of melt strength with Rheotens measurements is shown. These results give a good overview on both the possibilities and the limitations of the material pre-tests by the use of extensional rheology in the concept of the IMC for producing PNCs. Further studies to enable a fast and efficient way of estimating the level of reinforcement in PNCs by means of Rheotens measurements will be carried out towards industrial usability. Furthermore the verification of exfoliation and intercalation of the layered silicates in the polymer matrix using small angle X- ray

  17. Corrosion of steel members strengthenened with carbon fiber reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Bumadian, Ibrahim

    Due to many years of service at several cases of exposure at various environments there are many of steel bridges which are in need of rehabilitation. The infrastructure needs upgrading, repair or maintenance, and also strengthening, but by using an alternative as retrofits methods. The alternative retrofit method, which used fiber reinforced polymer (FRP) composite materials which their strength materials comes largely from the fiber such as carbon, glass, and aramid fiber. Of the most important materials used in the rehabilitation of infrastructure is a composite material newly developed in bonded externally carbon fiber and polymer (CFRP) sheets, which has achieved remarkable success in the rehabilitation and upgrading of structural members. This technique has many disadvantages one of them is galvanic corrosion. This study presents the effect of galvanic corrosion on the interfacial strength between carbon fiber reinforced polymer (CFRP) sheets and a steel substrate. A total of 35 double-lap joint specimens and 19 beams specimens are prepared and exposed to an aggressive service environment in conjunction with an electrical potential method accelerating corrosion damage. Six test categories are planned at a typical exposure interval of 12 hours, including five specimens per category for double-lap joint specimens. And six test categories are planned at a typical exposure interval of 12 hours, including three specimens per category for Beam section specimens. In addition one beam section specimen is control. The degree of corrosion is measured. Fourier transform infrared (FTIR) reflectance spectroscopy has been used to monitor and confirm the proposed corrosion mechanisms on the surface of CFRP. In this study we are using FTIR-spectroscopic measurement systems in the mid infrared (MIR) wavelength region (4000 - 400) cm-1 to monitor characteristic spectral features. Upon completion of corrosion processes, all specimens are monotonically loaded until failure

  18. Novel hybrid columns made of ultra-high performance concrete and fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zohrevand, Pedram

    The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column

  19. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook.

    PubMed

    Pimenta, Soraia; Pinho, Silvestre T

    2011-02-01

    Both environmental and economic factors have driven the development of recycling routes for the increasing amount of carbon fibre reinforced polymer (CFRP) waste generated. This paper presents a review of the current status and outlook of CFRP recycling operations, focusing on state-of-the-art fibre reclamation and re-manufacturing processes, and on the commercialisation and potential applications of recycled products. It is shown that several recycling and re-manufacturing processes are reaching a mature stage, with implementations at commercial scales in operation, production of recycled CFRPs having competitive structural performances, and demonstrator components having been manufactured. The major challenges for the sound establishment of a CFRP recycling industry and the development of markets for the recyclates are summarised; the potential for introducing recycled CFRPs in structural components is discussed, and likely promising applications are investigated. PMID:20980138

  20. Segmenting delaminations in carbon fiber reinforced polymer composite CT using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Sammons, Daniel; Winfree, William P.; Burke, Eric; Ji, Shuiwang

    2016-02-01

    Nondestructive evaluation (NDE) utilizes a variety of techniques to inspect various materials for defects without causing changes to the material. X-ray computed tomography (CT) produces large volumes of three dimensional image data. Using the task of identifying delaminations in carbon fiber reinforced polymer (CFRP) composite CT, this work shows that it is possible to automate the analysis of these large volumes of CT data using a machine learning model known as a convolutional neural network (CNN). Further, tests on simulated data sets show that with a robust set of experimental data, it may be possible to go beyond just identification and instead accurately characterize the size and shape of the delaminations with CNNs.

  1. Repeated self-healing of microvascular carbon fibre reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Coope, T. S.; Wass, D. F.; Trask, R. S.; Bond, I. P.

    2014-11-01

    A self-healing, high performance, carbon fibre reinforced polymer (CFRP) composite is demonstrated by embedding a Lewis-acid catalytic curing agent within a laminate, manufactured using out of autoclave (OOA) composite manufacturing methods. Two configurations of healing agent delivery, pre-mixed and autonomous mixing, are investigated via injection of a healing agent through bio-inspired microvascular channels exposed on Mode I fractured crack planes. Healing is effected when an epoxy resin-solvent healing agent mixture reaches the boundary of embedded solid-state scandium(III) triflate (Sc(OTf)3) catalyst, located on the crack plane, to initiate the ring-opening polymerisation (ROP) of epoxides. Tailored self-healing agents confer high healing efficiency values after multiple healing cycles (69-108%) to successfully mitigate against crack propagation within the composite microstructure.

  2. Low-velocity impact damage characterization of carbon fiber reinforced polymer (CFRP) using infrared thermography

    NASA Astrophysics Data System (ADS)

    Li, Yin; Zhang, Wei; Yang, Zheng-wei; Zhang, Jin-yu; Tao, Sheng-jie

    2016-05-01

    Carbon fiber reinforced polymer (CFRP) after low-velocity impact is detected using infrared thermography, and different damages in the impacted composites are analyzed in the thermal maps. The thermal conductivity under pulse stimulation, frictional heating and thermal conductivity under ultrasonic stimulation of CFRP containing low-velocity impact damage are simulated using numerical simulation method. Then, the specimens successively exposed to the low-velocity impact are respectively detected using the pulse infrared thermography and ultrasonic infrared thermography. Through the numerical simulation and experimental investigation, the results obtained show that the combination of the above two detection methods can greatly improve the capability for detecting and evaluating the impact damage in CFRP. Different damages correspond to different infrared thermal images. The delamination damage, matrix cracking and fiber breakage are characterized as the block-shape hot spot, line-shape hot spot,

  3. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    PubMed Central

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-01-01

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations. PMID:27314352

  4. Reinforcement of polyetheretherketone polymer with titanium for improved mechanical properties and in vitro biocompatibility.

    PubMed

    Jung, Hyun-Do; Park, Hui-Sun; Kang, Min-Ho; Li, Yuanlong; Kim, Hyoun-Ee; Koh, Young-Hag; Estrin, Yuri

    2016-01-01

    Blends of ductile Ti metal with polyetheretherketone (PEEK) polymer were studied with regard to their mechanical properties and in vitro biocompatibility. PEEK/Ti composites with various Ti contents, ranging from 0 vol % to 60 vol %, were produced by compression molding at 370°C. In all composites produced, regardless of the initial Ti content, Ti particles were well distributed in the PEEK matrix. Addition of Ti led to a significant increase in mechanical properties of PEEK. Specifically, an increase in Ti content enhanced compressive strength and stiffness, while preserving ductile fracture behavior. In addition, the use of Ti for reinforcement of PEEK provided the composites with improved in vitro biocompatibility in terms of the attachment, proliferation, and differentiation of MC3T3-E1 cells. PMID:25677541

  5. Optimization of microwire/glass-fibre reinforced polymer composites for wind turbine application

    NASA Astrophysics Data System (ADS)

    Qin, F. X.; Peng, H. X.; Chen, Z.; Wang, H.; Zhang, J. W.; Hilton, G.

    2013-11-01

    We here report a comprehensive study of glass-fibre reinforced polymers (GFRP) incorporating ferromagnetic microwires for microwave absorption applications. With wire addition, a remarkable dependence of microwave absorption performance appears on the local properties of wires such as wire geometry and the mesostructure such as inter-wire spacing, as well as the embedded depth of the wires layer. The impact testing further demonstrates that the metallic microwires can to some extent improve the impact performance. Based on both the absorption and impact behavior, we propose an optimized design of the microwire/GFRP composites to achieve simultaneous best possible absorption and impact performance for multifunctional applications in aeronautical structures and wind turbines.

  6. Laser Processing of Carbon Fiber Reinforced Polymer Composite for Optical Fiber Guidelines

    NASA Astrophysics Data System (ADS)

    Lima, M. S. F.; Sakamoto, J. M. S.; Simoes, J. G. A.; Riva, R.

    The replacement of copper wires by optical fibers for control and monitoring of aircraft systems are gaining more and more acceptance due to weight reductions and their intrinsic reliability. The present investigation proposes a new method for producing fiber optical guidelines in carbon fiber reinforced polymer (CFRP) composites using laser texturing and machining. Laser texturing was used to improve the adhesion bonding between the CFRP parts and laser machining is used to create a channel where the optical fiber will be placed and protected. The results show that using only 20 W of a Nd:YAG pulsed laser it is possible to enhance the joint resistance of CFRP composites and also protecting the optical fiber embedded in between two CFRP pieces. Using the proposed technology, the maximum load of a lap joint increased by 85% and the optical fiber remained integral even under severe bending conditions.

  7. Finite element analysis of drilling in carbon fiber reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Phadnis, V. A.; Roy, A.; Silberschmidt, V. V.

    2012-08-01

    Carbon fiber reinforced polymer composite (CFRP) laminates are attractive for many applications in the aerospace industry especially as aircraft structural components due to their superior properties. Usually drilling is an important final machining process for components made of composite laminates. In drilling of CFRP, it is an imperative task to determine the maximum critical thrust forces that trigger inter-laminar and intra-laminar damage modes owing to highly anisotropic fibrous media; and negotiate integrity of composite structures. In this paper, a 3D finite element (FE) model of drilling in CFRP composite laminate is developed, which accurately takes into account the dynamic characteristics involved in the process along with the accurate geometrical considerations. A user defined material model is developed to account for accurate though thickness response of composite laminates. The average critical thrust forces and torques obtained using FE analysis, for a set of machining parameters are found to be in good agreement with the experimental results from literature.

  8. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging.

    PubMed

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-01-01

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations. PMID:27314352

  9. Reinforced poly(propylene oxide): a very soft and extensible dielectric electroactive polymer

    NASA Astrophysics Data System (ADS)

    Goswami, K.; Galantini, F.; Mazurek, P.; Daugaard, A. E.; Gallone, G.; Skov, A. L.

    2013-11-01

    Poly(propylene oxide) (PPO), a novel soft elastomeric material, and its composites were investigated as a new dielectric electroactive polymer (EAP). The PPO networks were obtained from thiol-ene chemistry by photochemical crosslinking of α,ω-diallyl PPO with a tetra-functional thiol. The elastomer was reinforced with hexamethylenedisilazane treated fumed silica to improve the mechanical properties of PPO. The mechanical properties of PPO and composites thereof were investigated by shear rheology and stress-strain measurements. It was found that incorporation of silica particles improved the stability of the otherwise mechanically weak pure PPO network. Dielectric spectroscopy revealed high relative dielectric permittivity of PPO at 103 Hz of 5.6. The relative permittivity was decreased slightly upon addition of fillers, but remained higher than the commonly used acrylic EAP material VHB4910. The electromechanical actuation performance of both PPO and its composites showed properties as good as VHB4910 and a lower viscous loss.

  10. Carbon Fiber Reinforced Polymer (CFRP) Optics Quality Assessment for Lightweight Deployable Optics

    NASA Astrophysics Data System (ADS)

    Andrews, J.; Martinez, T.; Restaino, S.; Santiago, F.; Wilcox, C.; Teare, S.; Romeo, R.; Martin, R.

    2010-09-01

    The Naval Research Laboratory and Composite Mirror Applications (CMA) have been working together for several years on the development of Carbon Fiber Reinforced Polymer (CFRP) optics and telescopes. We have documented the potential advantages of this technology in several other publications, including structural, thermal and weight advantages over traditional steel and glass optical systems. In this paper we present results of a battery of optical tests done on various CFRP replicated mirrors. Our goal is to demonstrate not only the optical quality of such mirrors but also their reproducibility and stability. We show test results on a sample of four mirrors. We performed extensive optical tests and also stability and repeatability tests. These tests are geared towards proving the use of this technology for a variety of optical applications including use in our CFRP telescopes.

  11. Assessment of microcapsule—catalyst particles healing system in high performance fibre reinforced polymer composite

    NASA Astrophysics Data System (ADS)

    Bolimowski, P. A.; Wass, D. F.; Bond, I. P.

    2016-08-01

    Autonomous self-healing in carbon fibre reinforced polymer (CFRP) is demonstrated using epoxy resin filled microcapsules and a solid-state catalyst. Microcapsules filled with oligomeric epoxy resin (20–450 μm) and particles of Sc(OTf)3 are embedded in an interleave region of a unidirectional CFRP laminate and tested under mode I loading. Double cantilever beam (DCB) test specimens containing variable concentrations of microcapsules and catalyst were prepared, tested and compared to those healed by manual injection with corresponding healing resin formulation. The healing efficiency was evaluated by comparing the maximum peak load recorded on load–displacement curves for pristine and healed specimens. A 44% maximum recovery was observed for specimens containing 10 wt% of solid phase catalyst and 11 wt% of epoxy microcapsules. However, a significant (80%) decrease in initial strain energy release rate (G IC) was observed for specimens with the embedded healing chemistries.

  12. Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels.

    PubMed

    Asamene, Kassahun; Hudson, Larry; Sundaresan, Mannur

    2015-05-01

    Influence of attenuation on acoustic emission (AE) signals in Carbon Fiber Reinforced Polymer (CFRP) crossply and quasi-isotropic panels is examined in this paper. Attenuation coefficients of the fundamental antisymmetric (A0) and symmetric (S0) wave modes were determined experimentally along different directions for the two types of CFRP panels. In the frequency range from 100 kHz to 500 kHz, the A0 mode undergoes significantly greater changes due to material related attenuation compared to the S0 mode. Moderate to strong changes in the attenuation levels were noted with propagation directions. Such mode and frequency dependent attenuation introduces major changes in the characteristics of AE signals depending on the position of the AE sensor relative to the source. Results from finite element simulations of a microscopic damage event in the composite laminates are used to illustrate attenuation related changes in modal and frequency components of AE signals. PMID:25682294

  13. First light with a carbon fiber reinforced polymer 0.4 meter telescope

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Jungwirth, Matthew E.; Martinez, Ty; Restaino, Sergio R.; Bagwell, Brett; Romeo, Robert

    2014-03-01

    For the passed several years, the Naval Research Laboratory (NRL) has been investigating the use of Carbon Fiber Reinforced Polymer (CFRP) material in the construction of a telescope assembly including the optical components. The NRL, Sandia National Laboratories (SNL), and Composite Mirror Applications, Inc. (CMA) have jointly assembled a prototype telescope and achieved "first light" images with a CFRP 0.4 m aperture telescope. CFRP offers several advantages over traditional materials such as creating structures that are lightweight and low coefficient of thermal expansion and conductivity. The telescope's primary and secondary mirrors are not made from glass, but CFRP, as well. The entire telescope weighs approximately 10 kg while a typical telescope of this size would weigh quite a bit more. We present the achievement of "first light" with this telescope demonstrating the imaging capabilities of this prototype and the optical surface quality of the mirrors with images taken during a day's quiescent periods.

  14. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites

    NASA Astrophysics Data System (ADS)

    Salama, A.; Li, L.; Mativenga, P.; Sabli, A.

    2016-02-01

    The large differences in physical and thermal properties of the carbon fibre-reinforced polymer (CFRP) composite constituents make laser machining of this material challenging. An extended heat-affected zone (HAZ) often occurs. The availability of ultrashort laser pulse sources such as picosecond lasers makes it possible to improve the laser machining quality of these materials. This paper reports an investigation on the drilling and machining of CFRP composites using a state-of-the-art 400 W picosecond laser system. Small HAZs (<25 µm) were obtained on the entry side of 6-mm-diameter hole drilled on sample of 6 mm thickness, whereas no HAZ was seen below the top surface on the cut surfaces. Multiple ring material removal strategy was used. Furthermore, the effect of laser processing parameters such as laser power, scanning speed and repetition rate on HAZ sizes and ablation depth was investigated.

  15. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  16. Performance of reinforced polymer ablators exposed to a solid rocket motor exhaust. Technical report

    SciTech Connect

    Boyer, C.; Burgess, T.; Bowen, J.; Deloach, K.; Talmy, I.

    1992-10-01

    Summarized in this report is the effort by the Naval Surface Warfare Center Dahlgren Division (NSWCDD) and FMC Corporation (a launcher manufacturer) to identify new high performance ablators suitable for use on Navy guided missile launchers (GML) and ships' structures. The goal is to reduce ablator erosion by 25 to 50 percent compared to that of the existing ablators such as MXBE350 (rubbermodified phenolic containing glass fiber reinforcement). This reduction in erosion would significantly increase the number of new missiles with higher-thrust, longer burn rocket motors that can be launched prior to ablator refurbishment. In fact, there are a number of new Navy missiles being considered for development and introduction into existing GML: e.g., the Antisatellite Missile (ASM) and the Theater High-Altitude Area Defense (THAAD) Missile. The U.S. Navy experimentally evaluated the eight best fiber-reinforced, polymer composites from a possible field of 25 off-the-shelf ablators previously screened by FMC Corporation. They were tested by the Navy in highly aluminized solid rocket motor exhaust plumes to determine their ability to resist erosion and to insulate.... Ablator, Guided Missile Launchers, Erosion, Tactical missiles, Convective heating, Solid rocket motors, Aluminum oxide particles.

  17. Development of multifunctional fiber reinforced polymer composites through ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Patterson, Brendan A.; Hwang, Hyun-Sik; Sodano, Henry A.

    2016-04-01

    Piezoelectric nanowires, in particular zinc oxide (ZnO) nanowires, have been vastly used in the fabrication of electromechanical devices to convert wasted mechanical energy into useful electrical energy. Over recent years, the growth of vertically aligned ZnO nanowires on various structural fibers has led to the development of fiber-based nanostructured energy harvesting devices. However, the development of more realistic energy harvesters that are capable of continuous power generation requires a sufficient mechanical strength to withstand typical structural loading conditions. Yet, a durable, multifunctional material system has not been developed thoroughly enough to generate electrical power without deteriorating the mechanical performance. Here, a hybrid composite energy harvester is fabricated in a hierarchical design that provides both efficient power generating capabilities while enhancing the structural properties of the fiber reinforced polymer composite. Through a simple and low-cost process, a modified aramid fabric with vertically aligned ZnO nanowires grown on the fiber surface is embedded between woven carbon fabrics, which serve as the structural reinforcement as well as the top and the bottom electrodes of the nanowire arrays. The performance of the developed multifunctional composite is characterized through direct vibration excitation and tensile strength examination.

  18. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  19. Flexural properties of denture-base polymer reinforced with glass-fibre polysulphone composite.

    PubMed

    Kemp, P L; de Wet, F A; Botha, S J; Levin, J

    2004-06-01

    The aim of this study was to determine the effect of glass-fibre composite reinforcement on the flexural strength and flexural modulus poly-methyl methacrylate (PMMA). Prefabricated electrical glass-fibre polysulphone composite rods (GF/PSu), 3mm in diameter, were incorporated in cylindrical, heat polymerizing PMMA specimens with diameters of 4, 5 and 6mm respectively (n = 10). These specimens were compared with PMMA control groups of similar dimension. A three point loading test was performed in air after storage of specimens in water at 37 degrees C for 8 weeks. The following variables were measured : Flexural Strength (FS) and Flexural Modulus (FM). The data were analyzed using one way analysis of variance (ANOVA). After testing, the fracture zone was evaluated using a scanning electron microscope (SEM). The glass-fibre reinforcement used in this study significantly enhanced both the FM and FS values of PMMA. This enhancement was, however, progressively reduced in relation to an increase in cross-sectional dimension of the specimens. SEM evaluation revealed delamination and fracture of the glass-fibres in the polymer matrix. PMID:15449438

  20. Stabilizing Surfactant Templated Cylindrical Mesopores in Polymer and Carbon Films through Composite Formation with Silica Reinforcement

    SciTech Connect

    Song, Lingyan; Feng, Dan; Lee, Hae-Jeong; Wang, Chengqing; Wu, Quanyan; Zhao, Dongyuan; Vogt, Bryan D.

    2010-10-22

    A facile approach to maintain the periodic mesostructure of cylindrical pores in polymer-resin and carbon films after thermal template removal is explored through the reactive coassembly of resol (carbon precursor) and tetraethylorthosilicate (silica precursor) with triblock copolymer Pluronic F127. Without silica, a low porosity, disordered film is formed after pyrolysis despite the presence of an ordered mesostructure prior to template removal. However for silica concentration greater than 25 wt %, pyrolysis at 350 C yields a mesoporous silica-polymer film with well-defined pore mesostructure. These films remain well ordered upon carbonization at 800 C. In addition to the mesostructural stability, the addition of silica to the matrix impacts other morphological characteristics. For example, the average pore size and porosity of the films increase from 3.2 to 7.5 nm and 12 to 45%, respectively, as the concentration of silica in the wall matrix increases from 0 to 32 wt %. The improved thermal stability of the ordered mesostructure with the addition of silica to the matrix is attributed to the reinforcement of the mechanical properties leading to resistance to stress induced collapse of the mesostructure during template removal.

  1. Long-term water-aging of whisker-reinforced polymer-matrix composites.

    PubMed

    Xu, H H K

    2003-01-01

    Long-term water exposure may degrade polymer-matrix composites. This study investigated the water-aging of whisker composites. It was hypothesized that whiskers would provide stable and substantial reinforcement, and that whisker type would affect water-aging resistance. Silica-fused Si(3)N(4) and SiC whiskers were incorporated into a resin. The specimens were tested by three-point flexure and nano-indentation vs. water-aging for 1 to 730 days. After 730 days, SiC composite had a strength (mean +/- SD; n = 6) of 185 +/- 33 MPa, similar to 146 +/- 44 MPa for Si(3)N(4) composite (p = 0.064); both were significantly higher than 67 +/- 23 MPa for an inlay/onlay control (p < 0.001). Compared with 1 day, the strength of the SiC composite showed no decrease, while that of the Si(3)N(4) composite decreased. The decrease was due to whisker weakening rather than to resin degradation or interface breakdown. Whisker composites also had higher moduli than the controls. In conclusion, silica-fused whiskers bonded to polymer matrix and resisted long-term water attack, resulting in much stronger composites than the controls after water-aging. PMID:12508045

  2. Light scattering characterization of carbon nanotube dispersions and reinforcement of polymer composites

    NASA Astrophysics Data System (ADS)

    Zhao, Jian

    Dispersion and morphology of carbon nanotubes as well as enhancement for rubber reinforcement are studied. Several approaches including surfactant aids, functionalization and plasma treatment are used to assist dispersion. Several characterization methods are used to assess both the degree of dispersion and the level of reinforcement. Small angle light scattering is carried out as a primary tool to assess structure and dispersion of nanotubes treated through these approaches Stress-strain measurement and dynamic mechanical analysis are performed on elastomeric composites to study polymer reinforcement. These results are divided into five sections. The first section focuses on dispersion of untreated and acid-treated multi-walled carbon nanofibers (MWNF) suspended in water. Light scattering data provide the first insights into the mechanism by which surface treatment promotes dispersion. Both acid-treated and untreated nanofibers exhibit hierarchical morphology consisting of small-scale aggregates (bundles) that agglomerate to form fractal clusters that eventually precipitate. Although the morphology of the aggregates and agglomerates is nearly independent of surface treatment, their time evolution is quite different. Acid oxidation has little effect on bundle morphology. Rather acid treatment inhibits agglomeration of the bundles. The second section focuses on dispersion of the solubilized nanofibers. Light scattering data indicate that PEG-functionalized sample is dispersed at small rod-like bundle (side-by-side aggregate) level. Solubilization is achieved not by disrupting small-scale size-by-side bundles, but mainly by completely inhibiting large-scale agglomeration. The third section focuses on dispersion of plasma-treated carbon nanofibers. Comparison of untreated and plasma-treated nanofibers indicates that plasma treatment facilitates dispersion of nanofibers. The fourth section focuses on dispersion and structure of single-walled carbon nanotubes (SWNTs

  3. Buckling of Carbon Nanotube-Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings

    NASA Technical Reports Server (NTRS)

    Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.

    2005-01-01

    A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration.

  4. Surface modification of fiber reinforced polymer composites and their attachment to bone simulating material.

    PubMed

    Hautamäki, M P; Puska, M; Aho, A J; Kopperud, H M; Vallittu, P K

    2013-05-01

    The purpose of this study was to investigate the effect of fiber orientation of a fiber-reinforced composite (FRC) made of poly-methyl-methacrylate (PMMA) and E-glass to the surface fabrication process by solvent dissolution. Intention of the dissolution process was to expose the fibers and create a macroporous surface onto the FRC to enhance bone bonding of the material. The effect of dissolution and fiber direction to the bone bonding capability of the FRC material was also tested. Three groups of FRC specimens (n = 18/group) were made of PMMA and E-glass fiber reinforcement: (a) group with continuous fibers parallel to the surface of the specimen, (b) continuous fibers oriented perpendicularly to the surface, (c) randomly oriented short (discontinuous) fibers. Fourth specimen group (n = 18) made of plain PMMA served as controls. The specimens were subjected to a solvent treatment by tetrahydrofuran (THF) of either 5, 15 or 30 min of time (n = 6/time point), and the advancement of the dissolution (front) was measured. The solvent treatment also exposed the fibers and created a surface roughness on to the specimens. The solvent treated specimens were embedded into plaster of Paris to simulate bone bonding by mechanical locking and a pull-out test was undertaken to determine the strength of the attachment. All the FRC specimens dissolved as function of time, as the control group showed no marked dissolution during the study period. The specimens with fibers along the direction of long axis of specimen began to dissolve significantly faster than specimens in other groups, but the test specimens with randomly oriented short fibers showed the greatest depth of dissolution after 30 min. The pull-out test showed that the PMMA specimens with fibers were retained better by the plaster of Paris than specimens without fibers. However, direction of the fibers considerably influenced the force of attachment. The fiber reinforcement increases significantly the

  5. Strength analysis and design of adhesive joints between circular elements made of metal and reinforced polymer materials

    NASA Astrophysics Data System (ADS)

    Pelekh, B. L.; Marchuk, M. V.; Kogut, I. S.

    1992-06-01

    The stress-strain state of an adhesive joint between cylindrical components made of a metal (steel) and a cross-reinforced filament-wound composite (glass/polymer or basalt/polymer) was investigated under static axial loading using newly proposed experimental techniques and a refined mathematical model. Analytical expressions are obtained for contact stresses in the adhesive joint. The maximum permissible load and the ultimate shear strength of the joint are determined. The experimental results are found to be in satisfactory agreement with model predictions.

  6. Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites.

    PubMed

    Shi, Zhuqun; Huang, Junchao; Liu, Chuanjun; Ding, Beibei; Kuga, Shigenori; Cai, Jie; Zhang, Lina

    2015-10-21

    With the world's focus on utilization of sustainable natural resources, the conversion of wood and plant fibers into cellulose nanowhiskers/nanofibers is essential for application of cellulose in polymer nanocomposites. Here, we present a novel fabrication method of polymer nanocomposites by in-situ polymerization of monomers in three-dimensionally nanoporous cellulose gels (NCG) prepared from aqueous alkali hydroxide/urea solution. The NCG have interconnected nanofibrillar cellulose network structure, resulting in high mechanical strength and size stability. Polymerization of the monomer gave P(MMA/BMA)/NCG, P(MMA/BA)/NCG nanocomposites with a volume fraction of NCG ranging from 15% to 78%. SEM, TEM, and XRD analyses show that the NCG are finely distributed and preserved well in the nanocomposites after polymerization. DMA analysis demonstrates a significant improvement in tensile storage modulus E' above the glass transition temperature; for instance, at 95 °C, E' is increased by over 4 orders of magnitude from 0.03 MPa of the P(MMA/BMA) up to 350 MPa of nanocomposites containing 15% v/v NCG. This reinforcement effect can be explained by the percolation model. The nanocomposites also show remarkable improvement in solvent resistance (swelling ratio of 1.3-2.2 in chloroform, acetone, and toluene), thermal stability (do not melt or decompose up to 300 °C), and low coefficients of thermal expansion (in-plane CTE of 15 ppm·K(-1)). These nanocomposites will have great promising applications in flexible display, packing, biomedical implants, and many others. PMID:26397710

  7. Hidden defect identification in carbon fibre reinforced polymer plates using magnetic induction tomography

    NASA Astrophysics Data System (ADS)

    Ma, Lu; Soleimani, Manuchehr

    2014-05-01

    Carbon fibre reinforced polymer (CFRP) materials pose new challenges to the non-destructive evaluation (NDE) techniques. This study addresses the issue of large defect identification in CFRP plates using electromagnetic measurements. A dual plane magnetic induction tomography (MIT) technique is proposed as a method for damage localization in composite parts, where two arrays of planar sensors are utilized to measure the changes in induced voltages due to the changes in electrical conductivity properties. This geometry meets the requirements of damage inspection in plate structures and thus makes the imaging process feasible. The electrical voltage measurements are used as input to inversely map the spatial resolution of the samples in the region of interest. The stability and detectability of the dual plane system is examined using small metallic cubes. Both individual and multiple instances of damage embedded in CFRP samples are created as a representation of the possible manufacturing defects. Experimental study shows that the presence of damage can be identified in both cases using the dual plane MIT system. With advanced sensing design, rapid data collection unit and improvement in resolution, MIT could become a rapid NDE technique for the integrity inspection of composite structures.

  8. Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature

    PubMed Central

    Huang, C.-Y.; Trask, R. S.; Bond, I. P.

    2010-01-01

    A study of the influence of embedded circular hollow vascules on structural performance of a fibre-reinforced polymer (FRP) composite laminate is presented. Incorporating such vascules will lead to multi-functional composites by bestowing functions such as self-healing and active thermal management. However, the presence of off-axis vascules leads to localized disruption to the fibre architecture, i.e. resin-rich pockets, which are regarded as internal defects and may cause stress concentrations within the structure. Engineering approaches for creating these simple vascule geometries in conventional FRP laminates are proposed and demonstrated. This study includes development of a manufacturing method for forming vascules, microscopic characterization of their effect on the laminate, finite element (FE) analysis of crack initiation and failure under load, and validation of the FE results via mechanical testing observed using high-speed photography. The failure behaviour predicted by FE modelling is in good agreement with experimental results. The reduction in compressive strength owing to the embedding of circular vascules ranges from 13 to 70 per cent, which correlates with vascule dimension. PMID:20150337

  9. Modeling continuous-fiber reinforced polymer composites for exploration of damage tolerant concepts

    NASA Astrophysics Data System (ADS)

    Matthews, Peter J.

    This work aims to improve the predictive capability for fiber-reinforced polymer matrix composite laminates using the finite element method. A new tool for modeling composite damage was developed which considers important modes of failure. Well-known micromechanical models were implemented to predict material values for material systems of interest to aerospace applications. These generated material values served as input to intralaminar and interlaminar damage models. A three-dimensional in-plane damage material model was implemented and behavior verified. Deficiencies in current state-of-the-art interlaminar capabilities were explored using the virtual crack closure technique and the cohesive zone model. A user-defined cohesive element was implemented to discover the importance of traction-separation material constitutive behavior. A novel method for correlation of traction-separation parameters was created. This new damage modeling tool was used for evaluation of novel material systems to improve damage tolerance. Classical laminate plate theory was used in a full-factorial study of layerwise-hybrid laminates. Filament-wound laminated composite cylindrical shells were subjected to quasi-static loading to validate the finite element computational composite damage model. The new tool for modeling provides sufficient accuracy and generality for use on a wide-range of problems.

  10. High Power Laser Cutting of Fiber Reinforced Thermoplastic Polymers with cw- and Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    Schneider, F.; Wolf, N.; Petring, D.

    Glass fiber and carbon fiber reinforced polymers with thermoplastic matrix enable high volume production with short cycle times. Cutting and trimming operations in these production chains require the use of high average laser power for an efficient cutting speed, but employment of high laser power runs the risk to induce a wide heat affected zone (HAZ). This paper deals with investigations with cw and ns-pulsed CO2-laser radiation in the kilowatt range in single-pass and multiple-pass processes. Using multi-pass processing at high processing speeds of 100 m/min and above a reduced heat affected zone in the range of 100 μm to 200 μm could be achieved by the ns-pulsed radiation. With cw radiation at the same average power of 1 kW however, the HAZ was 300-400 μm. Also employing ns-pulses in the kW-range average power leads to heat accumulation in the material. Small HAZ were obtained with sufficient break times between subsequent passes.

  11. Research on the mechanical properties of a glass fiber reinforced polymer-steel combined truss structure.

    PubMed

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status. PMID:25247203

  12. Argon-oxygen atmospheric pressure plasma treatment on carbon fiber reinforced polymer for improved bonding

    NASA Astrophysics Data System (ADS)

    Chartosias, Marios

    Acceptance of Carbon Fiber Reinforced Polymer (CFRP) structures requires a robust surface preparation method with improved process controls capable of ensuring high bond quality. Surface preparation in a production clean room environment prior to applying adhesive for bonding would minimize risk of contamination and reduce cost. Plasma treatment is a robust surface preparation process capable of being applied in a production clean room environment with process parameters that are easily controlled and documented. Repeatable and consistent processing is enabled through the development of a process parameter window utilizing techniques such as Design of Experiments (DOE) tailored to specific adhesive and substrate bonding applications. Insight from respective plasma treatment Original Equipment Manufacturers (OEMs) and screening tests determined critical process factors from non-factors and set the associated factor levels prior to execution of the DOE. Results from mode I Double Cantilever Beam (DCB) testing per ASTM D 5528 [1] standard and DOE statistical analysis software are used to produce a regression model and determine appropriate optimum settings for each factor.

  13. Prediction of failure in notched carbon-fibre-reinforced-polymer laminates under multi-axial loading.

    PubMed

    Tan, J L Y; Deshpande, V S; Fleck, N A

    2016-07-13

    A damage-based finite-element model is used to predict the fracture behaviour of centre-notched quasi-isotropic carbon-fibre-reinforced-polymer laminates under multi-axial loading. Damage within each ply is associated with fibre tension, fibre compression, matrix tension and matrix compression. Inter-ply delamination is modelled by cohesive interfaces using a traction-separation law. Failure envelopes for a notch and a circular hole are predicted for in-plane multi-axial loading and are in good agreement with the observed failure envelopes from a parallel experimental study. The ply-by-ply (and inter-ply) damage evolution and the critical mechanisms of ultimate failure also agree with the observed damage evolution. It is demonstrated that accurate predictions of notched compressive strength are obtained upon employing the band broadening stress for microbuckling, highlighting the importance of this damage mode in compression. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242302

  14. Crystallization kinetics and thermal resistance of bamboo fiber reinforced biodegradable polymer composites

    NASA Astrophysics Data System (ADS)

    Thumsorn, S.; Srisawat, N.; On, J. Wong; Pivsa-Art, S.; Hamada, H.

    2014-05-01

    Bamboo fiber reinforced biodegradable polymer composites were prepared in this study. Biodegradable poly(butylene succinate) (PBS) was blended with bamboo fiber in a twin screw extruder with varied bamboo content from 20-0wt%. PBS/bamboo fiber composites were fabricated by compression molding process. The effect of bamboo fiber contents on properties of the composites was investigated. Non-isothermal crystallization kinetic study of the composites was investigated based on Avrami equation. The kinetic parameters indicated that bamboo fiber acted as heterogeneous nucleation and enhanced crystallinity of the composites. Bamboo fiber was well dispersed on PBS matrix and good adhered with the matrix. Tensile strength of the composites slightly deceased with adding bamboo fiber. However, tensile modulus and impact strength of the composites increased when increasing bamboo fiber contents. It can be noted that bamboo fiber promoted crystallization and crystallinity of PBS in the composites. Therefore, the composites were better in impact load transferring than neat PBS, which exhibited improving on impact performance of the composites.

  15. Demonstration of a robust curved carbon fiber reinforced polymer deformable mirror with low surface error

    NASA Astrophysics Data System (ADS)

    Coughenour, Blake; Ammons, S. Mark; Hart, Michael; Romeo, Robert; Martin, Robert; Rademacher, Matt; Bailey, Hop

    2010-07-01

    Carbon fiber reinforced polymer (CFRP) composites provide several advantages as a substrate for thin-shell adaptive secondary mirrors, including high stiffness-to-weight ratio and low coefficient of thermal expansion (CTE). We have addressed some of these concerns using a prototype CFRP mirror under actuation. Using 4D and Newton interferometry, we present measurements of surface quality at a range of temperatures. Under actuator relaxation at room temperature, its surface error is low (92 nm RMS) and dominated by edge curvature. This error is reduced further under best actuator correction to 43 nm RMS, placing it into consideration for use in near-IR astronomy. The low surface error internal to the outer ring of actuators - 17 nm RMS at 60°F and 33 nm RMS at 20°F - suggests that larger mirrors will have a similar figure quality under actuator correction on ground-based AO systems. Furthermore, the actuator forces required to correct the figure are small compared to the dynamic range of voice coil actuators (~0.1 N). In addition, surface roughness is characterized to address the effects of high spatial frequency errors.

  16. Research on the Mechanical Properties of a Glass Fiber Reinforced Polymer-Steel Combined Truss Structure

    PubMed Central

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status. PMID:25247203

  17. Active vibration control of a smart pultruded fiber-reinforced polymer I-beam

    NASA Astrophysics Data System (ADS)

    Song, Gangbing; Qiao, Pizhong; Sethi, Vineet; Prasad, A.

    2002-06-01

    Advanced and innovative materials and structures are increasingly used in civil infrastructure applications. By combining the advantages of composites and smart sensors and actuators, active or smart composite structures can be created and be efficiently adopted in practical structural applications. This paper presents results of active vibration control of a pultruded fiber-reinforced polymer (FRP) composites thin-walled I-beams using smart sensors and actuators. The FRP I-beams are made of E-glass fibers and polyester resins. The FRP I-beam is in a cantilevered configuration. PZT (Lead zirconate titanate) type of piezoelectric ceramic patches are used as smart sensors and actuators. These patches are surface-bonded near the cantilevered end of the I-beam. Utilizing results from modal analyses and experimental modal testing, several active vibration control methods, such as position feedback control, strain rate feedback control and lead compensator, are investigated. Experimental results demonstrate that the proposed methods achieve effective vibration control of FRP I-beams. For instance, the modal damping ratio of the strong direction first bending mode increases by more than 1000 percent with a positive position feedback control.

  18. Active vibration control of a smart pultruded fiber-reinforced polymer I-beam

    NASA Astrophysics Data System (ADS)

    Song, G.; Qiao, P.; Sethi, V.; Prasad, A.

    2004-08-01

    Advanced and innovative materials and structures are increasingly used in civil infrastructure applications. By combining the advantages of composites and smart sensors and actuators, active or smart composite structures can be created and be efficiently adopted in practical structural applications. This paper presents results on active vibration control of pultruded fiber-reinforced polymer (FRP) composite thin-walled I-beams using smart sensors and actuators. The FRP I-beams are made of E-glass fibers and polyester resins. The FRP I-beam is in a cantilevered configuration. The PZT (lead zirconate titanate) type of piezoelectric ceramic patches are used as smart sensors and actuators. These patches are surface bonded near the cantilevered end of the I-beam. Utilizing results from modal analyses and experimental modal testing, several active vibration control methods, such as position feedback control, strain rate feedback control and lead compensation, are investigated. Experimental results demonstrate that the proposed methods achieve effective vibration control of FRP I-beams. For instance, the modal damping ratio of the strong direction first bending mode increases by more than 1000% with positive position feedback control.

  19. Finite strain formulation of viscoelastic damage model for simulation of fabric reinforced polymers under dynamic loading

    NASA Astrophysics Data System (ADS)

    Treutenaere, S.; Lauro, F.; Bennani, B.; Matsumoto, T.; Mottola, E.

    2015-09-01

    The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.

  20. Hierarchical analysis of the degradation of fibre-reinforced polymers under the presence of void imperfections.

    PubMed

    Liebig, Wilfried V; Schulte, Karl; Fiedler, Bodo

    2016-07-13

    The subject of this work is the investigation of the influence of voids on the mechanical properties of fibre-reinforced polymers (FRPs) under compression loading. To specify the damage accumulation of FRPs in the presence of voids, the complex three-dimensional structure of the composite including voids was analysed and a reduced mechanical model composite was derived. The hierarchical analysis of the model composite on a micro-scale level implies the description of the stress and strain behaviour of the matrix using the photoelasticity technique and digital image correlation technology. These studies are presented along with an analytical examination of the stability of a single fibre. As a result of the experimental and analytical studies, the stiffness of the matrix and fibre as well as their bonding, the initial fibre orientation and the fibre diameter have the highest impact on the failure initiation. All these facts lead to a premature fibre-matrix debonding with ongoing loss of stability of the fibre and followed by kink-band formation. Additional studies on the meso-scale of transparent glass FRPs including a unique void showed that the experiments carried out on the model composites could be transferred to real composites. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242296

  1. Basic study of monitoring on fibre reinforced polymers: theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Bonfiglioli, B.; Strauss, A.; Pascale, G.; Bergmeister, K.

    2005-06-01

    Recent research activities, technological utilization and commercialization activities in sensors and acquisition systems for monitoring have strongly supported the introduction of these innovations and new concepts in civil structural engineering. The impact of monitoring and assessing the health state of infrastructures, as well as new and old constructions, has become important and it seems to be one of the largest industries in the world. With the aim of monitoring new or repaired structures various monitoring systems have been extensively employed in recent years. In particular, in this paper attention is focused on the procedures usually adopted for monitoring the strengthening systems based on fibre reinforced polymers (FRPs) applied to civil structures. Electrical strain gauges are often used to detect strain variations, but on composite materials the measures can be affected by various factors, such as the characteristics of the resin coating, the type of glue and the gauge length. In this paper the measurement errors on FRP elements are studied, from a theoretical approach developed in previous work on a deterministic basis. This approach is extended to the probabilistic field, with the aim of performing a sensitivity analysis of the basic variables which can cause errors in strain measurements. Additionally, the previous approach is extended to study the effect of the deviation of the direction of the gauges from the longitudinal axis of the FRP sheets. Finally, a comparison with experimental data is performed.

  2. Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures

    NASA Astrophysics Data System (ADS)

    Jiang, Guoliang; Dawood, Mina; Peters, Kara; Rizkalla, Sami

    2008-03-01

    Fiber reinforced polymer (FRP) materials are currently used for strengthening civil engineering infrastructures. The strengthening system is dependant on the bond characteristics of the FRP to the external surface of the structure to be effective in resisting the applied loads. This paper presents an innovative self-monitoring FRP strengthening system. The system consists of two components which can be embedded in FRP materials to monitor the global and local behavior of the strengthened structure respectively. The first component of the system is designed to evaluate the applied load acting on a structure based on elongation of the FRP layer along the entire span of the structure. Success of the global system has been demonstrated using a full-scale prestressed concrete bridge girder which was loaded up to failure. The test results indicate that this type of sensor can be used to accurately determine the load prior to failure within 15 percent of the measured value. The second sensor component consists of fiber Bragg grating sensors. The sensors were used to monitor the behavior of steel double-lap shear splices tested under tensile loading up to failure. The measurements were used to identify abnormal structural behavior such as epoxy cracking and FRP debonding. Test results were also compared to numerical values obtained from a three dimensional shear-lag model which was developed to predict the sensor response.

  3. Intrinsic signatures of polymer based fiber reinforced composite structures: An ultrasonic approach

    SciTech Connect

    Good, M.S.; Hansen, N.H.; Heasler, P.G.; Undem, H.A.; Fuller, J.L.; Skorpik, J.R.

    1993-09-01

    Combination of ultrasound, image comparison, and statistical analysis provide a method for acquiring a subsurface, intrinsic signature from polymer based, fiber-reinforced composites. Although materials properties are carefully controlled, localized fluctuations in the macrostructure and microstructure permit a basis for ultrasound and other NDE methods to read intrinsic signatures from a material. Under ideal conditions where a material signature is stable and has sufficient spatial features as a signature, an error rate on the order of one-out-of-a-million is feasible. A conclusion of an independent functional test performed on the laboratory prototype as it existed in June 1991 is that the system proved effective as a proof-of-concept system. An issue raised by the independent evaluation is that system performance is still at risk of factors relating to signature stability, particularly moisture absorption and material creep. System improvements made to mitigate noise sources identified by the independent evaluation include (1) implementation of a 3.0 {minus} 4.5 {mu}S software gate, (2) use of a RMS amplitude instead of the gated peak amplitude, and (3) optional use of a suction cup holder to facilitate reader alignment and scan consistency.

  4. The strong diamagnetic behaviour of unidirectional carbon fiber reinforced polymer laminates

    NASA Astrophysics Data System (ADS)

    Galehdar, A.; Nicholson, K. J.; Callus, P. J.; Rowe, W. S. T.; John, S.; Wang, C. H.; Ghorbani, K.

    2012-12-01

    Carbon fibers are finite conductors with a weak diamagnetic response in a static magnetic field. When illuminated with a high-frequency alternating electromagnetic wave such that the skin depth is greater than the fiber diameter, carbon-fiber composites are shown to exhibit a strong dynamic diamagnetic response. The magnetic susceptibility (χm) is controlled by the polarization angle (θ), which is the angle between the incident electric field and conductor direction. A closed form solution for this behaviour was derived using Maxwell's equations and an understanding of the induced conductor currents. The equation was verified using simulation and free space "wall" and waveguide measurements on unidirectional IM7/977-3 carbon fiber reinforced polymer laminates. The measured responses ranged from non-magnetic at θ = 90°, χm = 0, up to strongly diamagnetic at θ = 30°, χm = -0.75, over the 8-18 GHz bandwidth. The experimental results are in good agreement with theoretical predictions and computational simulations.

  5. An improved method for testing tension properties of fiber-reinforced polymer rebar

    NASA Astrophysics Data System (ADS)

    Yuan, Guoqing; Ma, Jian; Dong, Guohua

    2010-03-01

    We have conducted a series of tests to measure tensile strength and modulus of elasticity of fiber reinforced polymer (FRP) rebar. In these tests, the ends of each rebar specimen were embedded in steel tube filled with expansive cement, and the rebar was loaded by gripping the tubes with the conventional fixture during the tensile tests. However, most of specimens were failed at the ends where the section changed abruptly. Numerical simulations of the stress field at bar ends in such tests by ANSYS revealed that such unexpected failure modes were caused by the test setup. The changing abruptly of the section induced stress concentration. So the test results would be regarded as invalid. An improved testing method is developed in this paper to avoid this issue. A transition part was added between the free segment of the rebar and the tube, which could eliminate the stress concentration effectively and thus yield more accurate values for the properties of FRP rebar. The validity of the proposed method was demonstrated by both experimental tests and numerical analysis.

  6. An improved method for testing tension properties of fiber-reinforced polymer rebar

    NASA Astrophysics Data System (ADS)

    Yuan, Guoqing; Ma, Jian; Dong, Guohua

    2009-12-01

    We have conducted a series of tests to measure tensile strength and modulus of elasticity of fiber reinforced polymer (FRP) rebar. In these tests, the ends of each rebar specimen were embedded in steel tube filled with expansive cement, and the rebar was loaded by gripping the tubes with the conventional fixture during the tensile tests. However, most of specimens were failed at the ends where the section changed abruptly. Numerical simulations of the stress field at bar ends in such tests by ANSYS revealed that such unexpected failure modes were caused by the test setup. The changing abruptly of the section induced stress concentration. So the test results would be regarded as invalid. An improved testing method is developed in this paper to avoid this issue. A transition part was added between the free segment of the rebar and the tube, which could eliminate the stress concentration effectively and thus yield more accurate values for the properties of FRP rebar. The validity of the proposed method was demonstrated by both experimental tests and numerical analysis.

  7. Fusobacterium and Enterobacteriaceae: Important players for CRC?

    PubMed Central

    Allen-Vercoe, Emma; Jobin, Christian

    2014-01-01

    The gut microbiota plays an essential role in regulating intestinal homeostasis through its capacity to modulate various biological activities ranging from barrier, immunity and metabolic function. Not surprisingly, microbial dysbiosis is associated with numerous intestinal disorders including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). In this piece, we will review recent evidence that gut microbial dysbiosis can influence intestinal disease, including colitis and CRC. We will discuss the biological events implicated in the development of microbial dysbiosis and the emergence of CRC-associated microorganisms, focusing on E.coli and F. nucleatum. Finally, the mechanisms by which E.coli and F. nucleatum exert potentially carcinogenic effects on the host will be reviewed. PMID:24972311

  8. Stiffness and strength of fiber reinforced polymer composite bridge deck systems

    NASA Astrophysics Data System (ADS)

    Zhou, Aixi

    This research investigates two principal characteristics that are of primary importance in Fiber Reinforced Polymer (FRP) bridge deck applications: STIFFNESS and STRENGTH. The research was undertaken by investigating the stiffness and strength characteristics of the multi-cellular FRP bridge deck systems consisting of pultruded FRP shapes. A systematic analysis procedure was developed for the stiffness analysis of multi-cellular FRP deck systems. This procedure uses the Method of Elastic Equivalence to model the cellular deck as an equivalent orthotropic plate. The procedure provides a practical method to predict the equivalent orthotropic plate properties of cellular FRP decks. Analytical solutions for the bending analysis of single span decks were developed using classical laminated plate theory. The analysis procedures can be extended to analyze continuous FRP decks. It can also be further developed using higher order plate theories. Several failure modes of the cellular FRP deck systems were recorded and analyzed through laboratory and field tests and Finite Element Analysis (FEA). Two schemes of loading patches were used in the laboratory test: a steel patch made according to the ASSHTO's bridge testing specifications; and a tire patch made from a real truck tire reinforced with silicon rubber. The tire patch was specially designed to simulate service loading conditions by modifying real contact loading from a tire. Our research shows that the effects of the stiffness and contact conditions of loading patches are significant in the stiffness and strength testing of FRP decks. Due to the localization of load, a simulated tire patch yields larger deflection than the steel patch under the same loading level. The tire patch produces significantly different failure compared to the steel patch: a local bending mode with less damage for the tire patch; and a local punching-shear mode for the steel patch. A deck failure function method is proposed for predicting the

  9. An experimental and theoretical study of the effect of temperature on the mechanical behavior of nanoclay reinforced polymers

    NASA Astrophysics Data System (ADS)

    Bastos, Nuno R. O.

    The goals of this study are to investigate the tensile loading and low velocity impact response of nanoclay reinforced polymers at various temperatures. Three types of polypropylene (PP 3371, Borealis and TP 3868) and epoxy with various nanoclay reinforcement percentages were considered. Tensile tests were conducted on ASTM Type I specimens instrumented with strain gauges using an MTS testing machine equipped with an environmental chamber. Low velocity impact tests were also performed using an Instron-Dynatup 8250 impact test machine equipped with an environmental chamber. Tensile test results were used to determine the effect of nanoclay reinforcement and different resins on the mechanical properties at various temperatures. The tensile tests results indicate that the Young's modulus of the nanocomposite increases with increasing nanoclay reinforcement percentage. The temperature has even a more significant effect. It was observed that as the temperature decreases the material becomes brittle, has higher stiffness and fails at lower strains. High temperatures have the opposite effect, in that, as the temperature increases the material loses stiffness and becomes more ductile. Temperature and nanoclay reinforcement affect the Poisson's ratio also, but this effect is less significant. In general, as the temperature increases the Poisson's ratio also increases. However, an increase in nanoclay reinforcement generally reduces the Poisson's ratio. The mechanical properties of polymer/clay nanocomposites were also calculated using the Mori-Tanaka formulation and the finite element method. Furthermore, the Mori-Tanaka model was modified to include the effect of temperature and voids. In the Mori-Tanaka formulation three types of nanoclay particle distribution was assumed: oriented nanoclay particles parallel to the direction of tensile loading, 2-D randomly distributed particles and 3-D randomly distributed particles. The finite element calculations were performed on a

  10. Properties of glass/carbon fiber reinforced epoxy hybrid polymer composites

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Sevkani, V. R.; Patel, B. R.; Patel, V. B.

    2016-05-01

    Composite Materials are well known for their tailor-made properties. For the fabrication of composites different types of reinforcements are used for different applications. Sometimes for a particular application, one type of reinforcement may not fulfill the requirements. Therefore, more than one type of reinforcements may be used. Thus, the idea of hybrid composites arises. Hybrid composites are made by joining two or more different reinforcements with suitable matrix system. It helps to improve the properties of composite materials. In the present work glass/carbon fiber reinforcement have been used with a matrix triglycidyl ether of tris(m-hydroxy phenyl) phosphate epoxy resin using amine curing agent. Different physical and mechanical properties of the glass, carbon and glass/carbon fiber reinforced polymeric systems have been found out.

  11. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    NASA Astrophysics Data System (ADS)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  12. Fabrication and static characterization of carbon-fiber-reinforced polymers with embedded NiTi shape memory wire actuators

    NASA Astrophysics Data System (ADS)

    de Araújo, C. J.; Rodrigues, L. F. A.; Coutinho Neto, J. F.; Reis, R. P. B.

    2008-12-01

    In this work, unidirectional carbon-fiber-reinforced polymers (CFRP) with embedded NiTi shape memory alloy (SMA) wire actuators were manufactured using a universal testing machine equipped with a thermally controlled chamber. Beam specimens containing cold-worked, annealed and trained NiTi SMA wires distributed along their neutral plane were fabricated. Several tests in a three-point bending mode at different constant temperatures were performed. To verify thermal buckling effects, electrical activation of the specimens was realized in a cantilevered beam mode and the influence of the SMA wire actuators on the tip deflection of the composite is demonstrated.

  13. Inductive wireless sensor-actuator node for structural health monitoring of fiber reinforced polymers by means of Lamb-waves

    NASA Astrophysics Data System (ADS)

    Focke, Oliver; Salas, Mariugenia; Herrmann, Axel S.; Lang, Walter

    2015-03-01

    Wireless excitation of Piezo-Wafer-Active-Sensors (PWAS) was achieved using Low-frequency coils produced via Tailored-Fiber-Placement. Carbon Fiber Reinforced Polymer behaves as conductor and depending on the frequency it shields radio waves; this effect is rising at high-frequency. A high permeability material was placed under the highfrequency antenna and re-tuning was performed to improve the quality of transmission. In this manner sensor responses were successfully transmitted wirelessly by analog amplitude modulation. The signals were evaluated to verify the functionality in presence of defects like delamination or holes. Generated power was confirmed to be enough to excite the actuator.

  14. Characterization of a carbon fiber reinforced polymer repair system for structurally deficient steel piping

    NASA Astrophysics Data System (ADS)

    Wilson, Jeffrey M.

    This Dissertation investigates a carbon fiber reinforced polymer repair system for structurally deficient steel piping. Numerous techniques exist for the repair of high-pressure steel piping. One repair technology that is widely gaining acceptance is composite over-wraps. Thermal analytical evaluations of the epoxy matrix material produced glass transition temperature results, a cure kinetic model, and a workability chart. These results indicate a maximum glass transition temperature of 80°C (176°F) when cured in ambient conditions. Post-curing the epoxy, however, resulted in higher glass-transition temperatures. The accuracy of cure kinetic model presented is temperature dependent; its accuracy improves with increased cure temperatures. Cathodic disbondment evaluations of the composite over-wrap show the epoxy does not breakdown when subjected to a constant voltage of -1.5V and the epoxy does not allow corrosion to form under the wrap from permeation. Combustion analysis of the composite over-wrap system revealed the epoxy is flammable when in direct contact with fire. To prevent combustion, an intumescent coating was developed to be applied on the composite over-wrap. Results indicate that damaged pipes repaired with the carbon fiber composite over-wrap withstand substantially higher static pressures and exhibit better fatigue characteristics than pipes lacking repair. For loss up to 80 percent of the original pipe wall thickness, the composite over-wrap achieved failure pressures above the pipe's specified minimum yield stress during monotonic evaluations and reached the pipe's practical fatigue limit during cyclical pressure testing. Numerous repairs were made to circular, thru-wall defects and monotonic pressure tests revealed containment up to the pipe's specified minimum yield strength for small diameter defects. The energy release rate of the composite over-wrap/steel interface was obtained from these full-scale, leaking pipe evaluations and results

  15. An experimental investigation into the behavior of glassfiber reinforced polymer elements at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Qian, Kenny Zongxi

    This thesis presents a literature review and results of an experimental study about the effects of high temperatures and cyclic loading on the physical and mechanical properties of pultruded glass fiber reinforced polymer (GFRP) square tubes used in civil engineering structural applications. Most laboratory researches have focused mainly on the effect of elevated temperature on the compressive strength of the GFRP square tubes. Limited research has focused on the tensile strength of GFRP coupons under elevated temperatures. Dynamic Mechanical Analyses (DMA) was performed to assess the viscoelastic behavior including the glass transition temperature of GFRP. Sixteen GFRP coupons were tested under elevated temperatures to investigate the tensile strength and the effect of elevated temperatures to the tensile strength of GFRP. The results of an experimental program performed on fifty GFRP square tubes with different designs in 1.83m at normal temperatures were discussed to investigate compression performance. Another experimental program was performed on 20 GFRP square tubes with different designs in 1.22m under elevated temperatures. The experiments results were discussed and showed that the compressive strength of GFRP material was influenced by several factors including the glass transition v temperature and the connection bolts. Failure modes under 25°C and 75°C were crushing and the failure modes with the temperatures above 75°C were not typical crushing due to the glass transition of GFRP. Sixteen GFRP square tubes with length of 0.61m were tested with the same experimental program under elevated temperatures as the control group. Twelve GFRP square tubes with the same size were subjected to cyclic loading under elevated temperatures to investigate the effect of the cyclic loading to the compression properties of GFRP material. According to the experimental results and the discussion, the stiffness was reduced by the cyclic loading. On the contrary, the

  16. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    NASA Astrophysics Data System (ADS)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  17. Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films.

    PubMed

    Mandal, Arup; Chakrabarty, Debabrata

    2015-12-10

    Semi-interpenetrating polymer network (semi-IPN) of poly(vinyl alcohol)/polyacrylamide was reinforced with various doses of nanocellulose. The different composite films thus prepared were characterized with respect to their mechanical, thermal, morphological and barrier properties. The composite film containing 5 wt.% of nanocellulose showed the highest tensile strength. The semi-interpenetrating polymer network of poly(vinyl alcohol)/polyacrylamide; and its various composites with nanocellulose were almost identical in their thermal stability. Each of the composites however exhibited much superior stability with respect to the linear poly(vinyl alcohol) and crosslinked polyacrylamide. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited phase separated morphology where agglomerates of nanocellulose were found to be dispersed in the matrix of the semi-IPN. The moisture vapor transmission rate (MVTR) was the lowest for the film containing 5 wt.% of nanocellulose. PMID:26428121

  18. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    NASA Astrophysics Data System (ADS)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  19. Efficient Load Transfer to Functionalized Carbon Nanotubes as Reinforcement in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Chakoli, Ali Nabipour; Cai, Wei; Jiehe, Sui; Feng, Jiang Tao

    Multiwalled carbon nanotubes (MWCNTs) grafted with poly(L-lactide-e-caprolactone) (PCLA) were synthesized by in situ ring opening polymerization and used as a reinforcement for neat PCLA. The analyzed data revealed that the applied tensile load on the composite was transferred to the functionalized MWCNTs, leading to a strain failure of the MWCNTs rather than an adhesive failure between the MWCNTs and the matrix. In comparison between the functionalized and pristine MWCNTs, as reinforcement materials for PCLA random copolymers (80% L-lactide (LA), 20% e-caprolactone (CL)) (PCLAR80), the functionalized MWCNTs are more effective reinforcement materials than pristine MWCNTs. In comparison with the neat PCLAR80, the increasing in tensile strength (28.03%) and elongation at failure (49.6%) when functionalized MWCNT loading reaches 1.0 wt%, indicate that an effective reinforcement of the MWCNT-OH-g-PCLA.

  20. Microscopic study of surface degradation of glass fiber-reinforced polymer rods embedded in concrete castings subjected to environmental conditioning

    SciTech Connect

    Bank, L.C.; Puterman, M.

    1997-12-31

    The surface degradation of glass fiber-reinforced polymer (GFRP) pultruded rods when embedded in concrete castings and subjected to environmental conditioning is discussed in this paper. Investigation of the degradation of the GFRP rods were performed using optical microscopy and scanning electron microscopy (SEM). Unidirectionally reinforced pultruded rods (6.3- and 12.7-mm diameters) containing E-glass fibers in polyester and vinylester matrices were conditioned at standard laboratory conditions (21 C, 65% relative humidity) or submerged in aqueous solutions (tap water) at 80 C for durations of 14 and 84 days. Observations of the surfaces and cross-sections of the rods by optical microscopy and SEM revealed a variety of degradation phenomena. Embedded hygrothermally conditioned rods were found to have developed surface blisters of different sizes and depths. SEM studies of the surface revealed degradation of the polymer matrix material and exposure and degradation of the fibers close to the surface of the rods. The rods with the vinylester resin matrix showed less extensive degradation than those with the polyester resin matrix; however, the degradation characteristics of the two types of rods appear to be similar.

  1. CrcZ and CrcX regulate carbon utilization in Pseudomonas syringae pathovar tomato strain DC3000

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small non-coding RNAs (ncRNAs) are important components of many regulatory pathways in bacteria and play key roles in regulating factors important for virulence. Carbon catabolite repression control is modulated by small RNAs (crcZ or crcZ and crcY) in Pseudomonas aeruginosa and Pseudomonas putida. ...

  2. The effect of shock wave impingement on thin, woven glass fiber reinforced, polymer composite plates

    NASA Astrophysics Data System (ADS)

    Jahnke, Douglas M.

    High-performance fiber-reinforced polymer (FRP) composites have been increasingly used in many applications over the last 30 years. Their high specific stiffness, specific strength, and energy absorption capacity have made them attractive as replacements for traditional materials. While the dynamic response of homogeneous or monolithic materials has been well documented, the response of FRP composites is still under investigation. Knowledge of the response of FRP composites under this type of loading is essential to evaluating its performance as a structural or protective material. While such information starts to be slowly available, the effects of dynamic thermomechanical extremes such as shock wave loading on the FRP composites is relatively unknown. The challenge then is to develop a consistent laboratory methodology that allows investigations of the interactions between a FRP composite and a shock wave and eventually testing of such materials for performance evaluations under shock loading. Measuring the deformation of test specimens caused by shock wave impingement of different intensities was basic to understanding the gross effects on the FRP composites. In early tests, displacement across the diameter of the test specimen was measured after the end of the test giving a static measurement of the permanent deformation. To allow meaningful comparisons between disparate materials subject to different shock wave intensities a method of weighting and normalizing the was developed. The complexity of setting up and running a shock wave test limited the number tests could be performed, so while the results aren't statically robust, the trends observed are useful in comparing or choosing among different materials. A Time-Resolved Catadioptric Stereo Digital Image Correlation (TRC-SDIC) technique was developed which provide a non-contact, full-field method of measuring deformation over the time span from the impingement of the shock wave including the maximum

  3. Mechanical analysis of carbon fiber reinforced shape memory polymer composite for self-deployable structure in space environment

    NASA Astrophysics Data System (ADS)

    Hong, Seok Bin; Ahn, Yong San; Jang, Joon Hyeok; Kim, Jin-Gyun; Goo, Nam Seo; Yu, Woong-Ryeol

    2016-04-01

    Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Reinforcements as carbon fiber had been used for making shape memory polymer composite (CF-SMPC). This study investigated a possibility of designing self-deployable structures in harsh space condition using CF-SMPCs and analyzed their shape memory behaviors with constitutive equation model.CF-SMPCs were prepared using woven carbon fabrics and a thermoset epoxy based SMP to obtain their basic mechanical properties including actuation in harsh environment. The mechanical and shape memory properties of SMP and CF-SMPCs were characterized using dynamic mechanical analysis (DMA) and universal tensile machine (UTM) with an environmental chamber. The mechanical properties such as flexural strength and tensile strength of SMP and CF-SMPC were measured with simple tensile/bending test and time dependent shape memory behavior was characterized with designed shape memory bending test. For mechanical analysis of CF-SMPCs, a 3D constitutive equation of SMP, which had been developed using multiplicative decomposition of the deformation gradient and shape memory strains, was used with material parameters determined from CF-SMPCs. Carbon fibers in composites reinforced tensile and flexural strength of SMP and acted as strong elastic springs in rheology based equation models. The actuation behavior of SMP matrix and CF-SMPCs was then simulated as 3D shape memory bending cases. Fiber bundle property was imbued with shell model for more precise analysis and it would be used for prediction of deploying behavior in self-deployable hinge structure.

  4. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    PubMed

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case. PMID:12206221

  5. Fundamental Studies of Low Velocity Impact Resistance of Graphite Fiber Reinforced Polymer Matrix Composites. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.

  6. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various continuous fibers

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermooxidative stability of PMR-15 composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers studied include graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight-loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  7. Scalable plasticized polymer electrolytes reinforced with surface-modified sepiolite fillers - A feasibility study in lithium metal polymer batteries

    NASA Astrophysics Data System (ADS)

    Mejía, Alberto; Devaraj, Shanmukaraj; Guzmán, Julio; Lopez del Amo, Juan Miguel; García, Nuria; Rojo, Teófilo; Armand, Michel; Tiemblo, Pilar

    2016-02-01

    Electrochemical properties of (polyethylene oxide) (PEO)/lithium trifluoromethanesulfonate (LiTf)/ethylene carbonate (EC)/sepiolite extruded composite electrolytes were studied. Appreciable electrochemical stability of 4.5 V at 70 °C was observed for polymer composite membranes with D-α-tocopherol-polyethylene glycol 1000 succinate-coated sepiolite fillers. Lithium plating/stripping analysis indicated no evidence of dendrite formation with good interfacial properties which were further confirmed by postmortem analysis of the cells. Solid state NMR studies show the presence of two Li+ population in the membranes. The feasibility of these electrolytes has been shown with LiFePO4 cathode materials. Initial discharge capacity of 142 mAh/g was observed remaining at 110 mAh/g after 25 cycles with a coulombic efficiency of 96%. The upscaling of these polymers can be easily achieved by extrusion technique and the capacity can be improved by varying the cathode architecture.

  8. Reinforcement effect of soy protein/carbohydrate ratio in styrene-butadiene polymer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy protein and carbohydrate at different ratios were blended with latex to form composites. The variation of protein to carbohydrate ratio has a sifnificant effect on the composite properties and the results from dynamic mechanical method showed a substantial reinforcement effect. The composites ...

  9. Dependence of the degree of reinforcement of polymer/carbon nanotubes nanocomposites on the nanofiller dimension

    NASA Astrophysics Data System (ADS)

    Mikitaev, A. K.; Kozlov, G. V.

    2015-05-01

    The dependence of the degree of reinforcement of polymethylmethacrylate/carbon nanotubes on the nanofiller content at ultrasmall concentrations of the latter is investigated. It is shown that the extreme character of this dependence is determined by the structural features of the nanofiller. Functionalization of carbon nanotubes gives a positive effect only below their percolation threshold.

  10. Effect of monomer composition of polymer matrix on flexural properties of glass fibre-reinforced orthodontic archwire.

    PubMed

    Ohtonen, J; Vallittu, P K; Lassila, L V J

    2013-02-01

    To compare force levels obtained from glass fibre-reinforced composite (FRC) archwires. Specifically, FRC wires were compared with polymer matrices having different dimethacrylate monomer compositions. FRC material (E-glass provided by Stick Tech Ltd, Turku, Finland) with continuous unidirectional glass fibres and four different types of dimethacrylate monomer compositions for the resin matrix were tested. Cross-sectionally round FRC archwires fitting into the 0.3 mm slot of a bracket were divided into 16 groups with six specimens in each group. Glass fibres were impregnated by the manufacturer, and they were initially light-cured by hand light-curing unit or additionally post-cured in light-curing oven. The FRC archwire specimens were tested at 37°C according to a three-point bending test in dry and wet conditions using a span length of 10 mm and a crosshead speed of 1.0 mm/minute. The wires were loaded until final failure. The data were statistically analysed using analysis of variance (ANOVA). The dry FRC archwire specimens revealed higher load values than water stored ones, regardless of the polymer matrix. A majority of the FRC archwires showed higher load values after being post-cured. ANOVA revealed that the polymer matrix, curing method, and water storage had a significant effect (P < 0.05) on the flexural behaviour of the FRC archwire. Polymer matrix composition, curing method, and water storage affected the flexural properties and thus, force level and working range which could be obtained from the FRC archwire. PMID:22058110

  11. A Comparison of the Elastic Properties of Graphene- and Fullerene-Reinforced Polymer Composites: The Role of Filler Morphology and Size.

    PubMed

    Lu, Chang-Tsan; Weerasinghe, Asanka; Maroudas, Dimitrios; Ramasubramaniam, Ashwin

    2016-01-01

    Nanoscale carbon-based fillers are known to significantly alter the mechanical and electrical properties of polymers even at relatively low loadings. We report results from extensive molecular-dynamics simulations of mechanical testing of model polymer (high-density polyethylene) nanocomposites reinforced by nanocarbon fillers consisting of graphene flakes and fullerenes. By systematically varying filler concentration, morphology, and size, we identify clear trends in composite stiffness with reinforcement. To within statistical error, spherical fullerenes provide a nearly size-independent level of reinforcement. In contrast, two-dimensional graphene flakes induce a strongly size-dependent response: we find that flakes with radii in the 2-4 nm range provide appreciable enhancement in stiffness, which scales linearly with flake radius. Thus, with flakes approaching typical experimental sizes (~0.1-1 μm), we expect graphene fillers to provide substantial reinforcement, which also is much greater than what could be achieved with fullerene fillers. We identify the atomic-scale features responsible for this size- and morphology-dependent response, notably, ordering and densification of polymer chains at the filler-matrix interface, thereby providing insights into avenues for further control and enhancement of the mechanical properties of polymer nanocomposites. PMID:27546738

  12. A Comparison of the Elastic Properties of Graphene- and Fullerene-Reinforced Polymer Composites: The Role of Filler Morphology and Size

    PubMed Central

    Lu, Chang-Tsan; Weerasinghe, Asanka; Maroudas, Dimitrios; Ramasubramaniam, Ashwin

    2016-01-01

    Nanoscale carbon-based fillers are known to significantly alter the mechanical and electrical properties of polymers even at relatively low loadings. We report results from extensive molecular-dynamics simulations of mechanical testing of model polymer (high-density polyethylene) nanocomposites reinforced by nanocarbon fillers consisting of graphene flakes and fullerenes. By systematically varying filler concentration, morphology, and size, we identify clear trends in composite stiffness with reinforcement. To within statistical error, spherical fullerenes provide a nearly size-independent level of reinforcement. In contrast, two-dimensional graphene flakes induce a strongly size-dependent response: we find that flakes with radii in the 2–4 nm range provide appreciable enhancement in stiffness, which scales linearly with flake radius. Thus, with flakes approaching typical experimental sizes (~0.1–1 μm), we expect graphene fillers to provide substantial reinforcement, which also is much greater than what could be achieved with fullerene fillers. We identify the atomic-scale features responsible for this size- and morphology-dependent response, notably, ordering and densification of polymer chains at the filler–matrix interface, thereby providing insights into avenues for further control and enhancement of the mechanical properties of polymer nanocomposites. PMID:27546738

  13. Finite element analysis of the effect of an interphase on toughening of a particle reinforced polymer composite

    PubMed Central

    Wang, Wenhai; Sadeghipour, Keya; Baran, George

    2008-01-01

    A numerical method was used to study the interaction between a crack and the filler phase in a particle-reinforced polymer composite. The simulation was achieved by implementing a progressive damage-and-failure material model and element-removal technique through finite element analysis, providing a framework for the quantitative prediction of the deformation and fracture response of the composite. The effect of an interphase on composite toughness was also studied. Results show that a thin and high strength interphase results in efficient stress transfer between particle and matrix and causes the crack to deflect and propagate within the matrix. Alternatively, a thick and low strength interphase results in crack propagation within the interphase layer, and crack blunting. Further analysis of the effect of volume fraction and particle-particle interactions on fracture toughness as well as prediction of the fracture toughness can also be achieved within this framework. PMID:19492012

  14. Carbon-fiber-reinforced polymer variable-curvature mirror used for optical zoom imaging: prototype design and experimental demonstration

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Fan, Xuewu; Pang, Zhihai; Ren, Guorui; Wang, Wei; Xie, Yongjie; Ma, Zhen; Du, Yunfei; Su, Yu; Wei, Jingxuan

    2015-02-01

    In recent years, optical zoom imaging without moving elements has received much attention. The key to realizing this technique lies in the design of the variable-curvature mirror (VCM). To obtain enough optical magnification, the VCM should be able to change its radius of curvature over a wide range. In other words, the VCM must be able to provide a large sagittal variation, which requires the mirror material to be robust during curvature variation, require little force to deform, and have high ultimate strength. Carbon-fiber-reinforced polymer (CFRP) satisfies all these requirements and is suitable for fabricating such a VCM. Therefore, in this research, a CFRP prototype VCM has been designed, fabricated, and tested. With a diameter of 100 mm, a thickness of 2 mm, and an initial radius of curvature of 1740 mm, this VCM can provide a maximum 23-μm sagittal variation and a minimum and maximum radius of curvature of 1705 and 1760 mm.

  15. Gas-phase plume from laser-irradiated fiberglass-reinforced polymers via imaging fourier transform spectroscopy.

    PubMed

    Acosta, Roberto I; Gross, Kevin C; Perram, Glen P; Johnson, Shane M; Dao, Ly; Medina, David F; Roybal, Robert; Black, Paul

    2014-01-01

    Emissive plumes from laser-irradiated fiberglass-reinforced polymers (FRP) were investigated using a mid-infrared imaging Fourier transform spectrometer, operating at fast framing rates (50 kHz imagery and 2.5 Hz hyperspectral imagery) with adequate spatial (0.81 mm(2) per pixel) and spectral resolution (2 cm(-1)). Fiberglass-reinforced polymer targets were irradiated with a 1064 nm continuous wave neodymium-doped yttrium aluminum garnet (Nd:YAG) laser for 60 s at 100 W in air. Strong emissions from H(2)O, CO, CO(2), and hydrocarbons were observed between 1800 and 5000 cm(-1). A single-layer radiative transfer model was developed for the spectral region from 2000 to 2400 cm(-1) to estimate spatial maps of temperature and column densities of CO and CO(2) from the hyperspectral imagery. The spectral model was used to compute the absorption cross sections of CO and CO(2) using spectral line parameters from the high-temperature extension of the HITRAN. The analysis of pre-combustion spectra yields effective temperatures rising from ambient to 1200 K and suddenly increasing to 1515 K upon combustion. The peak signal-to-noise ratio for a single spectrum exceeds 60:1, enabling temperature and column density determinations with low statistical error. For example, the spectral analysis for a single pixel within a single frame yields an effective temperature of 1019 ± 6 K, and CO and CO(2) column densities of 1.14 ± 0.05 and 1.11 ± 0.03 × 10(18) molec/cm(2), respectively. Systematic errors associated with the radiative transfer model dominate, yielding effective temperatures with uncertainties of >100 K and column densities to within a factor of 2-3. Hydrocarbon emission at 2800 to 3200 cm(-1) is well correlated with CO column density. PMID:25014838

  16. Experimental and numerical investigation of the dynamic response of highly compliant, polymer-enhanced, graphite-reinforced cementitious composites

    NASA Astrophysics Data System (ADS)

    Ooi, Teng Keong

    This dissertation demonstrates how composite materials, fabricated by placing a low modulus, lightweight polymer-enhanced, cementitious matrix over multiple layers of stiff reinforcement, can be used to create a composite material with relatively high tension and compression properties. This extraordinary combination allows a structure to be highly stressed and deformed to store large amounts of elastic strain energy, thus providing more design flexibility than traditional materials. When the structural response is modified as the service loads are decreased, the energy is released in a controlled fashion to do useful work. Prior research shows that the standard transform section method fails to provide accurate results when the elastic modulus ratio exceeds 20. A modified transformed section is formulated by using the rule of mixture to determine the effective material properties for the composite. Finite element analysis is used to verify the experimental results and a good agreement is obtained. This dissertation investigates the experimental and numerical methods to determine the dynamic response of this new class of highly compliant, Polymer-Enhanced, Graphite Reinforced Cementitious Composite (PEGRCC) materials. Highly compliant, PEGRCC structures are designed based on the strength, stiffness, and the position of the component materials in the composite section. Their ability to store and release energy depends upon a complex interaction between the shape, modal response, and the forcing function initiated to the structure. This dissertation shows that the PEGRCC materials behave like a composite material and the classical mechanics of composite material theory is applicable to PEGRCC laminates. The good agreement between the experimental natural frequencies and mode shapes and the finite element predictions indicate that the standard mechanical impact testing can be adopted to test PEGRCC materials. The accuracy of the finite element dynamic analysis shows

  17. Rigid spine reinforced polymer microelectrode array probe and method of fabrication

    SciTech Connect

    Tabada, Phillipe; Pannu, Satinderpall S

    2014-05-27

    A rigid spine-reinforced microelectrode array probe and fabrication method. The probe includes a flexible elongated probe body with conductive lines enclosed within a polymeric material. The conductive lines connect microelectrodes found near an insertion end of the probe to respective leads at a connector end of the probe. The probe also includes a rigid spine, such as made from titanium, fixedly attached to the probe body to structurally reinforce the probe body and enable the typically flexible probe body to penetrate and be inserted into tissue, such as neural tissue. By attaching or otherwise fabricating the rigid spine to connect to only an insertion section of the probe body, an integrally connected cable section of the probe body may remain flexible.

  18. Mineralization of clay/polymer aerogels: a bioinspired approach to composite reinforcement.

    PubMed

    Johnson, Jack R; Spikowski, Jane; Schiraldi, David A

    2009-06-01

    Clay aerogels, ultra low density materials made via a simple freeze-drying technique, have shown much promise in broad applications because of their low densities, often in the same range as silica aerogels (0.03-0.3 g/cm(3),) but suffering from low mechanical strength. A bioinspired approach to mineralize an active polymer/clay aerogel composite is inspected, showing marked improvement of the mechanical properties with increasing modification. Further property improvement was achieved using a layer-by-layer approach to produce alternate layers of polymer and silica on the surface. PMID:20355926

  19. Modeling the strength and thickness of the interphase in polymer nanocomposite reinforced with spherical nanoparticles by a coupling methodology.

    PubMed

    Zare, Yasser

    2016-03-01

    In this work, the strength (σi) and thickness (t) of interphase in polymer nanocomposites reinforced with spherical nanoparticles are modeled by the developed form of Leidner-Woodhams and Pukanszky models for tensile strength. The "σi" and "t" are expressed as functions of "B" parameter in Pukanszky model and the properties of matrix and nanofiller such as the strength of matrix and the nanoparticles radius and volume fraction. Additionally, the effects of the mentioned parameters on "σi" and "t" are discussed. The calculations show that "B" has dissimilar effects on "σi" and "t" levels. A high level of "B" in Pukanszky model suggests a high level of "σi", while a thin interphase is obtained in this condition. Also, the content of nanoparticles plays different roles in the levels of "σi" and "t" based on the extent of interfacial adhesion between polymer and nanoparticles (B value). The influences of "B" on "t" at different nanofiller contents are described by the possibility of nanoparticles aggregation at various values of "B". PMID:26704592

  20. CRC octane number requirement rating workshop 1992

    SciTech Connect

    Not Available

    1992-10-01

    An octane number requirement rating workshop was conducted. The objective of the workshop was to improve the application of the CRC E-15 Technique for Determination of Octane Number Requirement of Light-Duty Vehicles. The workshop was to improve the skills of those with minimal experience and provide experienced raters a forum for interacting with other raters of similar experience. Investigative procedures and techniques were encouraged to provide data regarding the latest electronic engine controls such as knock sensors and adaptive learning strategies. Eleven 1991 and 1992 model year vehicles were used for track practice and testing. Five of the vehicles were equipped with auxiliary fuel systems to allow operation on the octane number reference fuels. The other six vehicles were equipped with tachometers and vacuum gauges for determination of transmission shift characteristics. Several scan tools were available and were used on most of the GM vehicles to monitor knock sensor activity and spark timing. The test fuels used were full-boiling range unleaded fuels.

  1. A viscoelastic-viscoplastic model for short-fibre reinforced polymers with complex fibre orientations

    NASA Astrophysics Data System (ADS)

    Nciri, M.; Notta-Cuvier, D.; Lauro, F.; Chaari, F.; Zouari, B.; Maalej, Y.

    2015-09-01

    This paper presents an innovative approach for the modelling of viscous behaviour of short-fibre reinforced composites (SFRC) with complex distributions of fibre orientations and for a wide range of strain rates. As an alternative to more complex homogenisation methods, the model is based on an additive decomposition of the state potential for the computation of composite's macroscopic behaviour. Thus, the composite material is seen as the assembly of a matrix medium and several linear elastic fibre media. The division of short fibres into several families means that complex distributions of orientation or random orientation can be easily modelled. The matrix behaviour is strain-rate sensitive, i.e. viscoelastic and/or viscoplastic. Viscoelastic constitutive laws are based on a generalised linear Maxwell model and the modelling of the viscoplasticity is based on an overstress approach. The model is tested for the case of a polypropylene reinforced with short-glass fibres with distributed orientations and subjected to uniaxial tensile tests, in different loading directions and under different strain rates. Results demonstrate the efficiency of the model over a wide range of strain rates.

  2. Milling damage on Carbon Fibre Reinforced Polymer using TiAlN coated End mills

    NASA Astrophysics Data System (ADS)

    Konneh, Mohamed; Izman, Sudin; Rahman Kassim, Abdullah Abdul

    2015-07-01

    This paper reports on the damage caused by milling Carbon Fibre Reinforced Composite (CFRP) with 2-flute 4 mm-diameter solid carbide end mills, coated with titanium aluminium nitride. The machining parameters considered in work are, rotation speed, feed rate and depth of cut. Experiments were designed based on Box-Behnken design and the experiments conducted on a Mikrotool DT-110 CNC micro machine. A laser tachometer was used to ascertain a rotational speed for conducting any machining trial. Optical microscopy examination reveals minimum delamination value of 4.05 mm at the spindle speed of 25,000 rpm, depth of cut of 50μm and feed rate of 3 mm/min and the maximum delamination value of 5.04 mm at the spindle speed of 35000 rpm, depth of cut of 150μm and feed rate of 9 mm/min A mathematical model relating the milling parameters and delamination has been established.

  3. Assessment of solvent capsule-based healing for woven E-glass fibre-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Manfredi, Erica; Cohades, Amaël; Richard, Inès; Michaud, Véronique

    2015-01-01

    Vacuum Assisted Resin Infusion Molding (VARIM) with low vacuum pressure difference was used to manufacture woven glass fibre-reinforced epoxy resin plates, with a fibre volume fraction of approx. 50 vol% and containing ethyl phenylacetate (EPA)-filled capsules for self-healing purposes. Capsules were introduced by functionalising the fabrics through manual dispersion. We investigated the capability of autonomously healing delaminations induced by static loading in Mode I and II. Healing did not take place for composite samples; this was attributed to the presence of bare fibres on the crack plane and to the reduction of EPA diffusion into the matrix in the presence of fibres both of which hinder the swelling mechanism responsible for healing the cracks.

  4. Fundamental analysis of the failure of polymer-based fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Kanninen, M. F.; Rybicki, E. F.; Griffith, W. I.; Broek, D.

    1975-01-01

    A mathematical model predicting the strength of unidirectional fiber reinforced composites containing known flaws and with linear elastic-brittle material behavior was developed. The approach was to imbed a local heterogeneous region surrounding the crack tip into an anisotropic elastic continuum. This (1) permits an explicit analysis of the micromechanical processes involved in the fracture, and (2) remains simple enough to be useful in practical computations. Computations for arbitrary flaw size and orientation under arbitrary applied loads were performed. The mechanical properties were those of graphite epoxy. With the rupture properties arbitrarily varied to test the capabilities of the model to reflect real fracture modes, it was shown that fiber breakage, matrix crazing, crack bridging, matrix-fiber debonding, and axial splitting can all occur during a period of (gradually) increasing load prior to catastrophic failure. The calculations also reveal the sequential nature of the stable crack growth process proceding fracture.

  5. Pyrolysis of reinforced polymer composites: Parameterizing a model for multiple compositions

    NASA Astrophysics Data System (ADS)

    Martin, Geraldine E.

    A single set of material properties was developed to describe the pyrolysis of fiberglass reinforced polyester composites at multiple composition ratios. Milligram-scale testing was performed on the unsaturated polyester (UP) resin using thermogravimetric analysis (TGA) coupled with differential scanning calorimetry (DSC) to establish and characterize an effective semi-global reaction mechanism, of three consecutive first-order reactions. Radiation-driven gasification experiments were conducted on UP resin and the fiberglass composites at compositions ranging from 41 to 54 wt% resin at external heat fluxes from 30 to 70 kW m -2. The back surface temperature was recorded with an infrared camera and used as the target for inverse analysis to determine the thermal conductivity of the systematically isolated constituent species. Manual iterations were performed in a comprehensive pyrolysis model, ThermaKin. The complete set of properties was validated for the ability to reproduce the mass loss rate during gasification testing.

  6. Mechanical Properties of Carbon Nanofiber Reinforced Polymer Composites-Molecular Dynamics Approach

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Chandra, Rakesh; Kumar, Pramod; Kumar, Navin

    2016-06-01

    Molecular dynamics simulation has been used to study the effect of carbon nanofiber (CNF) volume fraction ( V f) and aspect ratio ( l/d) on mechanical properties of CNF-reinforced polypropylene (PP) composites. Materials Studio 5.5 has been used as a tool for finding the modulus and damping in composites. CNF composition in PP was varied by volume from 0% to 16%. The aspect ratio of CNF was varied from l/d = 5 to l/d = 100. Results show that, with only 2% addition by volume of CNF in PP, E 11 increases 748%. Increase in E 22 is much less in comparison to the increase in E 11. With the increase in the CNF aspect ratio ( l/d) up to l/d = 60, the longitudinal loss factor ( η 11) decreases rapidly. The results of this study have been compared with those available in the literature.

  7. Smart-aggregate-based damage detection of fiber-reinforced-polymer-strengthened columns under reversed cyclic loading

    NASA Astrophysics Data System (ADS)

    Howser, Rachel; Moslehy, Yashar; Gu, Haichang; Dhonde, Hemant; Mo, Y. L.; Ayoub, Ashraf; Song, Gangbing

    2011-07-01

    Structural health monitoring is an important aspect of the maintenance of large civil infrastructures, especially for bridge columns in areas of high seismic activity. In this project, recently developed innovative piezoceramic-based sensors were utilized to perform the health monitoring of a shear-critical reinforced concrete (RC) bridge column subjected to reversed cyclic loading. After the column failed, it was wrapped with fiber reinforced polymer (FRP) sheets, commonly used to retrofit seismically damaged structures. The FRP-strengthened column was retested under the same reversed cyclic loading pattern. Innovative piezoceramic-based sensors, called 'smart aggregates', were utilized as transducers for health monitoring purposes. On the basis of the smart aggregates developed, an active-sensing approach and an impact-hammer-based approach were used to evaluate the health status of the RC column during the loading procedure. Wave transmission energy is attenuated by the existence of cracks during the loading procedure, and this attenuation phenomenon alters the curve of the transfer function between the actuator and sensor. To detect the damage occurrence and evaluate the damage severity, transfer function curves were compared with those obtained during the period of healthy status. A transfer-function-based damage index matrix was developed to demonstrate the damage severity at different locations. Experimental results verified the effectiveness of the smart aggregates in health monitoring of the FRP-strengthened column as well as the unstrengthened column. The experimental results show that the proposed smart-aggregate-based approach can successfully detect damage occurrence and evaluate its severity.

  8. Effect of embedded printed circuit board (PCB) sensors on the mechanical behavior of glass fiber-reinforced polymer (GFRP) structures

    NASA Astrophysics Data System (ADS)

    Javdanitehran, M.; Hoffmann, R.; Groh, J.; Vossiek, M.; Ziegmann, G.

    2016-06-01

    The embedding of dielectric chipless sensors for cure monitoring into fiber-reinforced thermosets allows for monitoring and controlling the curing process and consequently higher quality in production. The embedded sensors remain after the processing in the structure. This affects the integrity of the composite structure locally. In order to investigate these effects on the mechanical behavior of the glass fiber-reinforced polymer (GFRP), sensors made on special low loss substrates are integrated into laminates with different lay-ups and thicknesses using vacuum assisted resin transfer molding (VARTM) method. In a parametric study the size of the sensor is varied to observe its influence on the strength and the stiffness of the laminates according to its lay-up and thickness. The size and orientation of the resin rich areas near sensors as well as the distortion in load bearing area as the consequences of the introduction of the sensors are investigated in conjunction with the strength of the structure. An empirical model is proposed by the authors which involves the previously mentioned factors and is used as a rapid tool for the prediction of the changes in bending and tensile strength of simple structures with embedded sensors. The methodology for model’s calibration as well as the validation of the model against the experimental data of different laminates with distinct lay-ups and thicknesses are presented in this work. Mechanical tests under tensile and bending loading indicate that the reduction of the structure’s strength due to sensor integration can be attributed to the size and the orientation of rich resin zones and depends over and above on the size of distorted load bearing area. Depending on the sensor’s elastic modulus the stiffness of the structure may vary through the introduction of a sensor.

  9. Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide).

    PubMed

    Pereda, Mariana; El Kissi, Nadia; Dufresne, Alain

    2014-06-25

    Polysaccharide nanocrystals with a rodlike shape but with different dimensions and specific surface area were prepared from cotton and capim dourado cellulose, and with a plateletlike morphology from waxy maize starch granules. The rheological behavior of aqueous solutions of poly(ethylene oxide) (PEO) with different molecular weights when adding these nanoparticles was investigated evidencing specific interactions between PEO chains and nanocrystals. Because PEO also bears hydrophobic moieties, it was employed as a compatibilizing agent for the melt processing of polymer nanocomposites. The freeze-dried mixtures were used to prepare nanocomposite materials with a low density polyethylene matrix by extrusion. The thermal and mechanical behavior of ensuing nanocomposites was studied. PMID:24840363

  10. Recovery torque modeling of carbon fiber reinforced shape memory polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Shen, He; Xu, Yunjun; Liang, Fei; Gou, Jihua; Mabbott, Bob

    2013-11-01

    Carbon fiber and carbon nanofiber paper (CF&CNFP) can be incorporated into shape memory polymers (SMPs) to increase electrical conductivity and allow high speed electrical actuation with a low power. This paper studies the interactions among the recovery torques of CF&CNFP and SMP and the gravity torque during the shape recovery process. The proposed recovery torque model in a SMP CF&CNFP based structure is validated by experimental data obtained using a recently developed low cost, non-contact measurement testbed.

  11. Study on experimental characterization of carbon fiber reinforced polymer panel using digital image correlation: A sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Kashfuddoja, Mohammad; Prasath, R. G. R.; Ramji, M.

    2014-11-01

    In this work, the experimental characterization of polymer-matrix and polymer based carbon fiber reinforced composite laminate by employing a whole field non-contact digital image correlation (DIC) technique is presented. The properties are evaluated based on full field data obtained from DIC measurements by performing a series of tests as per ASTM standards. The evaluated properties are compared with the results obtained from conventional testing and analytical models and they are found to closely match. Further, sensitivity of DIC parameters on material properties is investigated and their optimum value is identified. It is found that the subset size has more influence on material properties as compared to step size and their predicted optimum value for the case of both matrix and composite material is found consistent with each other. The aspect ratio of region of interest (ROI) chosen for correlation should be the same as that of camera resolution aspect ratio for better correlation. Also, an open cutout panel made of the same composite laminate is taken into consideration to demonstrate the sensitivity of DIC parameters on predicting complex strain field surrounding the hole. It is observed that the strain field surrounding the hole is much more sensitive to step size rather than subset size. Lower step size produced highly pixilated strain field, showing sensitivity of local strain at the expense of computational time in addition with random scattered noisy pattern whereas higher step size mitigates the noisy pattern at the expense of losing the details present in data and even alters the natural trend of strain field leading to erroneous maximum strain locations. The subset size variation mainly presents a smoothing effect, eliminating noise from strain field while maintaining the details in the data without altering their natural trend. However, the increase in subset size significantly reduces the strain data at hole edge due to discontinuity in

  12. Stiffness predictions of carbon nanotube reinforced two and three-phase polymer composites

    NASA Astrophysics Data System (ADS)

    Neer, Eric

    Carbon nanotubes are a relatively new area of research which has gained significant attention in published literature. One reason for this interest is their use in multi-phase composites, specifically where they can enhance traditional polymer matrices. Many authors have attempted to adapt conventional micromechanical analyses reserved for microfibers to the nano scale. A review of these works is presented. In depth analysis is provided on one of these two phase (nanotube and matrix) models, the Anumandla-Gibson model, originally published in 2006. A discussion of its strengths and sensitivities is given, with numerical data to support the conclusions. It is extended to three-phase composites through the use of classical laminated plate theory. A literature survey is conducted to gather published two and three-phase experimental results for comparison. Two phase experimental results agree well with the present model, whereas three phase data was limited, but initial comparisons were promising.

  13. Mechanical properties of neat polymer matrix materials and their unidirectional carbon fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1988-01-01

    The mechanical properties of two neat resin systems for use in carbon fiber epoxy composites were characterized. This included tensile and shear stiffness and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests were conducted on specimens in the dry and moisture-saturated states, at temperatures of 23, 82 and 121 C. The neat resins tested were American Cyanamid 1806 and Union Carbide ERX-4901B(MPDA). Results were compared to previously tested neat resins. Four unidirectional carbon fiber reinforced composites were mechanically characterized. Axial and transverse tension and in-plane shear strengths and stiffness were measured, as well as transverse coefficients of thermal and moisture expansion. Tests were conducted on dry specimens only at 23 and 100 C. The materials tested were AS4/3502, AS6/5245-C, T300/BP907, and C6000/1806 unidirectional composites. Scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental test conditions.

  14. Fundamental analysis of the failure of polymer-based fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Kanninen, M. F.; Rybicki, E. F.; Griffith, W. I.; Broek, D.

    1976-01-01

    A mathematical model is described which will permit predictions of the strength of fiber reinforced composites containing known flaws to be made from the basic properties of their constituents. The approach was to embed a local heterogeneous region (LHR) surrounding the crack tip into an anisotropic elastic continuum. The model should (1) permit an explicit analysis of the micromechanical processes involved in the fracture process, and (2) remain simple enough to be useful in practical computations. Computations for arbitrary flaw size and orientation under arbitrary applied load combinations were performed from unidirectional composites with linear elastic-brittle constituent behavior. The mechanical properties were nominally those of graphite epoxy. With the rupture properties arbitrarily varied to test the capability of the model to reflect real fracture modes in fiber composites, it was shown that fiber breakage, matrix crazing, crack bridging, matrix-fiber debonding, and axial splitting can all occur during a period of (gradually) increasing load prior to catastrophic fracture. The computations reveal qualitatively the sequential nature of the stable crack process that precedes fracture.

  15. The meter-class carbon fiber reinforced polymer mirror and segmented mirror telescope at the Naval Postgraduate School

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher; Fernandez, Bautista; Bagnasco, John; Martinez, Ty; Romeo, Robert; Agrawal, Brij

    2015-03-01

    The Adaptive Optics Center of Excellence for National Security at the Naval Postgraduate School has implemented a technology testing platform and array of facilities for next-generation space-based telescopes and imaging system development. The Segmented Mirror Telescope is a 3-meter, 6 segment telescope with actuators on its mirrors for system optical correction. Currently, investigation is being conducted in the use of lightweight carbon fiber reinforced polymer structures for large monolithic optics. Advantages of this material include lower manufacturing costs, very low weight, and high durability and survivability compared to its glass counterparts. Design and testing has begun on a 1-meter, optical quality CFRP parabolic mirror for the purpose of injecting collimated laser light through the SMT primary and secondary mirrors as well as the following aft optics that include wavefront sensors and deformable mirrors. This paper will present the design, testing, and usage of this CFRP parabolic mirror and the current path moving forward with this ever-evolving technology.

  16. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  17. Carbon fiber reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope

    NASA Astrophysics Data System (ADS)

    Sanjuán, J.; Preston, A.; Korytov, D.; Spector, A.; Freise, A.; Dixon, G.; Livas, J.; Mueller, G.

    2011-12-01

    The laser interferometer space antenna (LISA) is a mission designed to detect low frequency gravitational waves. In order for LISA to succeed in its goal of direct measurement of gravitational waves, many subsystems must work together to measure the distance between proof masses on adjacent spacecraft. One such subsystem, the telescope, plays a critical role as it is the laser transmission and reception link between spacecraft. Not only must the material that makes up the telescope support structure be strong, stiff, and light, but it must have a dimensional stability of better than 1 pm Hz-1/2 at 3 mHz and the distance between the primary and the secondary mirrors must change by less than 2.5 μm over the mission lifetime. Carbon fiber reinforced polymer is the current baseline material; however, it has not been tested to the pico meter level as required by the LISA mission. In this paper, we present dimensional stability results, outgassing effects occurring in the cavity and discuss its feasibility for use as the telescope spacer for the LISA spacecraft.

  18. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

    NASA Astrophysics Data System (ADS)

    Kim, Dave (dea-wook); Hennigan, Daniel John; Beavers, Kevin Daniel

    2010-03-01

    Polymer composite materialsoffer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with a lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic(GFRP) composites is presented. Fabrication techniques used in this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results

  19. Computational modeling of the electromagnetic characteristics of carbon fiber-reinforced polymer composites with different weave structures

    NASA Astrophysics Data System (ADS)

    Hassan, A. M.; Douglas, J. F.; Garboczi, E. J.

    2014-02-01

    Carbon fiber reinforced polymer composites (CFRPC) are of great interest in the aerospace and automotive industries due to their exceptional mechanical properties. Carbon fibers are typically woven and inter-laced perpendicularly in warps and wefts to form a carbon fabric that can be embedded in a binding matrix. The warps and wefts can be interlaced in different patterns called weaving structures. The primary weaving structures are the plain, twill, and satin weaves, which give different mechanical composite properties. The goal of this work is to computationally investigate the dependence of CFRPC microwave and terahertz electromagnetic characteristics on weave structure. These bands are good candidates for the Nondestructive Evaluation (NDE) of CFRPC since their wavelengths are comparable to the main weave features. 3D full wave electromagnetic simulations of several different weave models have been performed using a finite element (FEM) simulator, which is able to accurately model the complex weave structure. The computational experiments demonstrate that the reflection of electromagnetic waves from CFRPC depend sensitively on weave structure. The reflection spectra calculated in this work can be used to identify the optimal frequencies for the NDE of each weave structure.

  20. Impregnation molding of continuous fiber-reinforced ceramic-ceramic composites using preceramic polymers

    NASA Astrophysics Data System (ADS)

    Erdal, Merve

    A ceramic-ceramic composite processing method based on resin transfer molding of particle-filled preceramic polymers was proposed and a numerical investigation of the resin impregnation was performed. The study is intended to provide a better understanding of the particle filtration occurring during impregnation and the nonlinear relations between various processing parameters, so that by a proper process design, the particle filtration and hence microstructure heterogeneity can be minimized. The proposed process is based on the need to counteract the high porosity and cracks forming in the composite as a result of mass loss and densification in the polymer during conversion to ceramic. A formulation of the problem was accomplished through combining anisotropic porous flow theory with particle filtration. Physical models were incorporated for filtration coefficient and domain permeability, to include the effect of resulting nonhomogeneous particle distributions. Compression resin transfer molding was proposed as an alternative to conventional resin transfer molding for processing high fiber volume ceramic composites at lower process pressures. Computational analysis showed that compression resin transfer molding offers the opportunity for homogenization of particle distributions within the composite through manipulation of the flow path by proper design of the impregnation and compression stages. The flow length rather than the flow velocity was observed to be the dominating factor on amount of filtration when the filtration mechanism is governed by geometric effects. Due to the geometrical complexity of the flow configurations and the existence of a moving boundary, the computational technique of boundary-fitted coordinate systems encompassing numerical grid generation was employed for numerical solution. Stability analysis indicated that the filtration solution accuracy is very sensitive to a nondimensional parameter derived from the current formulation. Through

  1. Spatial Gradients in Particle Reinforced Polymers Characterized by X-Ray Attenuation and Laser Confocal Microscopy

    SciTech Connect

    LAGASSE,ROBERT R.; THOMPSON,KYLE R.

    2000-06-12

    The goal of this work is to develop techniques for measuring gradients in particle concentration within filled polymers, such as encapsulant. A high concentration of filler particles is added to such materials to tailor physical properties such as thermal expansion coefficient. Sedimentation and flow-induced migration of particles can produce concentration gradients that are most severe near material boundaries. Therefore, techniques for measuring local particle concentration should be accurate near boundaries. Particle gradients in an alumina-filled epoxy resin are measured with a spatial resolution of 0.2 mm using an x-ray beam attenuation technique, but an artifact related to the finite diameter of the beam reduces accuracy near the specimen's edge. Local particle concentration near an edge can be measured more reliably using microscopy coupled with image analysis. This is illustrated by measuring concentration profiles of glass particles having 40 {micro}m median diameter using images acquired by a confocal laser fluorescence microscope. The mean of the measured profiles of volume fraction agrees to better than 3% with the expected value, and the shape of the profiles agrees qualitatively with simple theory for sedimentation of monodisperse particles. Extending this microscopy technique to smaller, micron-scale filler particles used in encapsulant for microelectronic devices is illustrated by measuring the local concentration of an epoxy resin containing 0.41 volume fraction of silica.

  2. LOW-COST COMPOSITES IN VEHICLE MANUFACTURE - Natural-fiber-reinforced polymer composites in automotive applications.

    SciTech Connect

    Holbery, Jim; Houston, Dan

    2006-11-01

    In the last decade, natural fiber composites have experienced rapid growth in the European automotive market, and this trend appears to be global in scale, provided the cost and performance is justified against competing technologies. However, mass reduction, recyclability, and performance requirements can be met today by competing systems such as injection-molded unreinforced thermoplastics; natural fiber composites will continue to expand their role in automotive applications only if such technical challenges as moisture stability, fiber-polymer interface compatibility, and consistent, repeatable fiber sources are available to supply automotive manufacturers. Efforts underway by Tier I and II automotive suppliers to explore hybrid glass-natural fiber systems, as well as applications that exploit such capabilities as natural fiber sound dampening characteristics, could very well have far-reaching effects. In addition, the current development underway of bio-based resins such as Polyhydroxyalkanoate (PHA) biodegradable polyesters and bio-based polyols could provide fully bio-based composite options to future automotive designers. In short, the development of the natural fiber composite market would make a positive impact on farmers and small business owners on a global scale, reduce US reliance on foreign oil, improve environmental quality through the development of a sustainable resource supply chain, and achieve a better CO2 balance over the vehicle?s lifetime with near-zero net greenhouse gas emissions.

  3. Self-Healing Nanofiber-Reinforced Polymer Composites. 1. Tensile Testing and Recovery of Mechanical Properties.

    PubMed

    Lee, Min Wook; An, Seongpil; Jo, Hong Seok; Yoon, Sam S; Yarin, Alexander L

    2015-09-01

    the composites reinforced by such mats. This is the first work, to the best of our knowledge, where self-healing nanofibers and composites based on them were developed, tested, and revealed restoration of mechanical properties (stiffness) in a 24 h rest period at room temperature. PMID:26284888

  4. Experimental Study of the Flexural and Compression Performance of an Innovative Pultruded Glass-Fiber-Reinforced Polymer-Wood Composite Profile

    PubMed Central

    Qi, Yujun; Xiong, Wei; Liu, Weiqing; Fang, Hai; Lu, Weidong

    2015-01-01

    The plate of a pultruded fiber-reinforced polymer or fiber-reinforced plastic (FRP) profile produced via a pultrusion process is likely to undergo local buckling and cracking along the fiber direction under an external load. In this study, we constructed a pultruded glass-fiber-reinforced polymer-light wood composite (PGWC) profile to explore its mechanical performance. A rectangular cross-sectional PGWC profile was fabricated with a paulownia wood core, alkali-free glass fiber filaments, and unsaturated phthalate resin. Three-point bending and short column axial compression tests were conducted. Then, the stress calculation for the PGWC profile in the bending and axial compression tests was performed using the Timoshenko beam theory and the composite component analysis method to derive the flexural and axial compression rigidity of the profile during the elastic stress stage. The flexural capacity for this type of PGWC profile is 3.3-fold the sum of the flexural capacities of the wood core and the glass-fiber-reinforced polymer (GFRP) shell. The equivalent flexural rigidity is 1.5-fold the summed flexural rigidity of the wood core and GFRP shell. The maximum axial compressive bearing capacity for this type of PGWC profile can reach 1.79-fold the sum of those of the wood core and GFRP shell, and its elastic flexural rigidity is 1.2-fold the sum of their rigidities. These results indicate that in PGWC profiles, GFRP and wood materials have a positive combined effect. This study produced a pultruded composite material product with excellent mechanical performance for application in structures that require a large bearing capacity. PMID:26485431

  5. Experimental Study of the Flexural and Compression Performance of an Innovative Pultruded Glass-Fiber-Reinforced Polymer-Wood Composite Profile.

    PubMed

    Qi, Yujun; Xiong, Wei; Liu, Weiqing; Fang, Hai; Lu, Weidong

    2015-01-01

    The plate of a pultruded fiber-reinforced polymer or fiber-reinforced plastic (FRP) profile produced via a pultrusion process is likely to undergo local buckling and cracking along the fiber direction under an external load. In this study, we constructed a pultruded glass-fiber-reinforced polymer-light wood composite (PGWC) profile to explore its mechanical performance. A rectangular cross-sectional PGWC profile was fabricated with a paulownia wood core, alkali-free glass fiber filaments, and unsaturated phthalate resin. Three-point bending and short column axial compression tests were conducted. Then, the stress calculation for the PGWC profile in the bending and axial compression tests was performed using the Timoshenko beam theory and the composite component analysis method to derive the flexural and axial compression rigidity of the profile during the elastic stress stage. The flexural capacity for this type of PGWC profile is 3.3-fold the sum of the flexural capacities of the wood core and the glass-fiber-reinforced polymer (GFRP) shell. The equivalent flexural rigidity is 1.5-fold the summed flexural rigidity of the wood core and GFRP shell. The maximum axial compressive bearing capacity for this type of PGWC profile can reach 1.79-fold the sum of those of the wood core and GFRP shell, and its elastic flexural rigidity is 1.2-fold the sum of their rigidities. These results indicate that in PGWC profiles, GFRP and wood materials have a positive combined effect. This study produced a pultruded composite material product with excellent mechanical performance for application in structures that require a large bearing capacity. PMID:26485431

  6. Fault isolation through no-overhead link level CRC

    DOEpatents

    Chen, Dong; Coteus, Paul W.; Gara, Alan G.

    2007-04-24

    A fault isolation technique for checking the accuracy of data packets transmitted between nodes of a parallel processor. An independent crc is kept of all data sent from one processor to another, and received from one processor to another. At the end of each checkpoint, the crcs are compared. If they do not match, there was an error. The crcs may be cleared and restarted at each checkpoint. In the preferred embodiment, the basic functionality is to calculate a CRC of all packet data that has been successfully transmitted across a given link. This CRC is done on both ends of the link, thereby allowing an independent check on all data believed to have been correctly transmitted. Preferably, all links have this CRC coverage, and the CRC used in this link level check is different from that used in the packet transfer protocol. This independent check, if successfully passed, virtually eliminates the possibility that any data errors were missed during the previous transfer period.

  7. A distant real-time radar NDE technique for the in-depth inspection of glass fiber reinforced polymer-retrofitted concrete columns

    NASA Astrophysics Data System (ADS)

    Yu, Tzu-Yang; Buyukozturk, Oral

    2008-03-01

    A novel real-time radar NDE technique for the in-depth inspection of glass fiber reinforced polymer (GFRP)-retrofitted concrete columns is proposed. In this technique, continuous wave radar signals are transmitted in the far-field region (distant inspection), and reflected signals are collected by the same signal transmitter. Collected radar signals are processed by tomographic reconstruction methods for real-time image reconstruction. In-depth condition in the near-surface region of GFRP-concrete systems is revealed and evaluated by reconstructed images.

  8. Joint Strength Control at the Fiber/Matrix Interface during the Production of Polymer Composite Materials Reinforced with High Performance Fibers

    NASA Astrophysics Data System (ADS)

    Kudinov, Vladimir V.; Korneeva, Natalia V.

    2010-06-01

    The paper presents the results obtained in the study of the joint strength between polymer matrix and high performance polyethylene fiber. The fiber/matrix joints simulate the unit cell of the fiber-reinforced composite materials. Effect of heat treatment on the composite properties at the interface was estimated by a multifilament wet-pull-out method. It was found that the joint strength may be increased with the help of extra heart treatment. Both the energy to peak load and the energy to failure for CM joints at various stages of loading were determined.

  9. Acoustic emission and acousto-ultrasonic signature analysis of failure mechanisms in carbon fiber reinforced polymer materials

    NASA Astrophysics Data System (ADS)

    Carey, Shawn Allen

    Fiber reinforced polymer composite materials, particularly carbon (CFRPs), are being used for primary structural applications, particularly in the aerospace and naval industries. Advantages of CFRP materials, compared to traditional materials such as steel and aluminum, include: light weight, high strength to weight ratio, corrosion resistance, and long life expectancy. A concern with CFRPs is that despite quality control during fabrication, the material can contain many hidden internal flaws. These flaws in combination with unseen damage due to fatigue and low velocity impact have led to catastrophic failure of structures and components. Therefore a large amount of research has been conducted regarding nondestructive testing (NDT) and structural health monitoring (SHM) of CFRP materials. The principal objective of this research program was to develop methods to characterize failure mechanisms in CFRP materials used by the U.S. Army using acoustic emission (AE) and/or acousto-ultrasonic (AU) data. Failure mechanisms addressed include fiber breakage, matrix cracking, and delamination due to shear between layers. CFRP specimens were fabricated and tested in uniaxial tension to obtain AE and AU data. The specimens were designed with carbon fibers in different orientations to produce the different failure mechanisms. Some specimens were impacted with a blunt indenter prior to testing to simulate low-velocity impact. A signature analysis program was developed to characterize the AE data based on data examination using visual pattern recognition techniques. It was determined that it was important to characterize the AE event , using the location of the event as a parameter, rather than just the AE hit (signal recorded by an AE sensor). A back propagation neural network was also trained based on the results of the signature analysis program. Damage observed on the specimens visually with the aid of a scanning electron microscope agreed with the damage type assigned by the

  10. crcTRP: A Translational Research Platform for Colorectal Cancer

    PubMed Central

    Deng, Ning; Zheng, Ling; Liu, Fang; Wang, Li; Duan, Huilong

    2013-01-01

    Colorectal cancer is a leading cause of cancer mortality in both developed and developing countries. Transforming basic research results into clinical practice is one of the key tasks of translational research, which will greatly improve the diagnosis and treatments of colorectal cancer. In this paper, a translational research platform for colorectal cancer, named crcTRP, is introduced. crcTRP serves the colorectal cancer translational research by providing various types of biomedical information related with colorectal cancer to the community. The information, including clinical data, epidemiology data, individual omics data, and public omics data, was collected through a multisource biomedical information collection solution and then integrated in a clinic-omics database, which was constructed with EAV-ER model for flexibility and efficiency. A preliminary exploration of conducting translational research on crcTRP was implemented and worked out a set of clinic-genomic relations, linking clinical data with genomic data. These relations have also been applied to crcTRP to make it more conductive for cancer translational research. PMID:23431356

  11. CRC Credential Attainment by State Vocational Rehabilitation Counselors

    ERIC Educational Resources Information Center

    Harpster, Anna M.; Byers, Katherine L.; Harris, LaKeisha L.

    2011-01-01

    This study examines 137 state vocational rehabilitation (VR) counselors' perceptions of the value of having the Certified Rehabilitation Counselor (CRC) credential. While almost 53% of this sample included persons who were certified, the majority who were not indicated that the two major reasons for not currently having this designation were: (a)…

  12. Cheap, Gram-Scale Fabrication of BN Nanosheets via Substitution Reaction of Graphite Powders and Their Use for Mechanical Reinforcement of Polymers

    PubMed Central

    Liu, Fei; Mo, Xiaoshu; Gan, Haibo; Guo, Tongyi; Wang, Xuebin; Chen, Bin; Chen, Jun; Deng, Shaozhi; Xu, Ningsheng; Sekiguchi, Takashi; Golberg, Dmitri; Bando, Yoshio

    2014-01-01

    As one of the most important two-dimensional (2D) materials, BN nanosheets attracted intensive interest in the past decade. Although there are many methods suitable for the preparation of BN sheets, finding a cheap and nontoxic way for their mass and high-quality production is still a challenge. Here we provide a highly effective and cheap way to synthesize gram-scale-level well-structured BN nanosheets from many common graphite products as source materials. Single-crystalline multi-layered BN sheets have a mean lateral size of several hundred nanometers and a thickness ranging from 5 nm to 40 nm. Cathodoluminescence (CL) analysis shows that the structures exhibit a near band-edge emission and a broad emission band from 300 nm to 500 nm. Utilization of nanosheets for the reinforcement of polymers revealed that the Young's modulus of BN/PMMA composite had increased to 1.56 GPa when the BN's fraction was only 2 wt.%, thus demonstrating a 20% gain compared to a blank PMMA film. It suggests that the BN nanosheet is an ideal mechanical reinforcing material for polymers. In addition, this easy and nontoxic substitution method may provide a universal route towards high yields of other 2D materials. PMID:24572725

  13. Selection of polymer binders and fabrication of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Haggerty, John S.; Lightfoot, A.; Sigalovsky, J.

    1993-01-01

    The topics discussed include the following: effects of solvent and polymer exposures on nitriding kinetics of high purity Si powders and on resulting phase distributions; effects of solvent and polymer exposures on Si Surface Chemistry; effects of solvent and polymeric exposures on nitriding kinetics; and fabrication of flexural test samples.

  14. Bending and Shear Behavior of Pultruded Glass Fiber Reinforced Polymer Composite Beams With Closed and Open Sections

    NASA Astrophysics Data System (ADS)

    Estep, Daniel Douglas

    Several advantages, such as high strength-to-weight ratio, high stiffness, superior corrosion resistance, and high fatigue and impact resistance, among others, make FRPs an attractive alternative to conventional construction materials for use in developing new structures as well as rehabilitating in-service infrastructure. As the number of infrastructure applications using FRPs grows, the need for the development of a uniform Load and Resistance Factor Design (LRFD) approach, including design procedures and examples, has become paramount. Step-by-step design procedures and easy-to-use design formulas are necessary to assure the quality and safety of FRP structural systems by reducing the possibility of design and construction errors. Since 2008, the American Society of Civil Engineers (ASCE), in coordination with the American Composites Manufacturers Association (ACMA), has overseen the development of the Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) Structures using probability-based limit states design. The fifth chapter of the pre-standard focuses on the design of members in flexure and shear under different failure modes, where the current failure load prediction models proposed within have been shown to be highly inaccurate based on experimental data and evaluation performed by researchers at the West Virginia University Constructed Facilities Center. A new prediction model for determining the critical flexural load capacity of pultruded GFRP square and rectangular box beams is presented within. This model shows that the type of failure can be related to threshold values of the beam span-to-depth ratio (L/h) and total flange width-to-thickness ratio (bf /t), resulting in three governing modes of failure: local buckling failure in the compression flange (4 ≤ L/h < 6), combined strain failure at the web-flange junction (6 ≤ L/h ≤ 10), and bending failure in the tension flange (10 < L/h ≤ 42

  15. Effect of Cr/C Ratio on Microstructure and Corrosion Performance of Cr3C2-NiCr Composite Fabricated by Laser Processing

    NASA Astrophysics Data System (ADS)

    Lou, Deyuan; Liu, Dun; He, Chunlin; Bennett, Peter; Chen, Lie; Yang, Qibiao; Fearon, Eamonn; Dearden, Geoff

    2016-01-01

    The present study focuses on the effect of different Cr/C ratios on the microstructure, microhardness, and corrosion resistance of Ni-based laser clad hardfacings, reinforced by in situ synthesized chromium carbide particles. Cr3C2-NiCr composites have been laser processed with graphite/Cr/Ni powder blends with varying Cr/C ratios. Following phase analysis (x-ray diffraction) and microstructure investigation (scanning electron microscopy; energy dispersive x-ray analysis; transmission electron microscopy), the solidification of laser melt pool is discussed, and the corrosion resistances are examined. Several different zones (planar, dendritic, eutectic and re-melt zone) were formed in these samples, and the thicknesses and shapes of these zones vary with the change of Cr/C ratio. The sizes and types of carbides and the content of reserved graphite in the composites change as the Cr/C ratio varies. With the content of carbides (especially Cr3C2) grows, the microhardness is improved. The corrosive resistance of the composites to 0.2M H2SO4 aqueous solution decreases as the Cr/C ratio reduces owing to not only the decreasing Cr content in the NiCr matrix but also the galvanic corrosion formed within the carbide and graphite containing Ni matrix.

  16. First principles investigation of chromium carbide, CrC

    NASA Astrophysics Data System (ADS)

    Kalemos, Apostolos; Dunning, Thom H.; Mavridis, Aristides

    2005-07-01

    We have investigated the electronic structure of 14 states of the experimentally unknown diatomic molecule chromium carbide, CrC, using standard multireference configuration interaction methods and high quality basis sets. We report potential curves, binding energies, and a number of spectroscopic parameters. The ground state of CrC, XΣ-3, displays triple-bond character with a binding energy of De=89kcal /mol and an internuclear separation of re=1.63Å. The first excited state (1Σ-5) lies 9.2kcal/mol higher. All the states studied are fairly ionic, featuring an electron transfer of 0.3-0.5e- from the metal atom to the carbon atom.

  17. First principles investigation of chromium carbide, CrC.

    PubMed

    Kalemos, Apostolos; Dunning, Thom H; Mavridis, Aristides

    2005-07-01

    We have investigated the electronic structure of 14 states of the experimentally unknown diatomic molecule chromium carbide, CrC, using standard multireference configuration interaction methods and high quality basis sets. We report potential curves, binding energies, and a number of spectroscopic parameters. The ground state of CrC, X 3Sigma-, displays triple-bond character with a binding energy of D(e)=89 kcal/mol and an internuclear separation of r(e)=1.63 A. The first excited state (1 5Sigma-) lies 9.2 kcal/mol higher. All the states studied are fairly ionic, featuring an electron transfer of 0.3-0.5e- from the metal atom to the carbon atom. PMID:16035830

  18. 12 CFR 617.7305 - What is a CRC and who are the members?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... applicant or borrower. The CRC has the ultimate decision-making authority on the loan or application under... adverse credit decision being reviewed may not serve on the CRC when it reviews that loan....

  19. 12 CFR 617.7305 - What is a CRC and who are the members?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... applicant or borrower. The CRC has the ultimate decision-making authority on the loan or application under... adverse credit decision being reviewed may not serve on the CRC when it reviews that loan....

  20. 12 CFR 617.7305 - What is a CRC and who are the members?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... applicant or borrower. The CRC has the ultimate decision-making authority on the loan or application under... adverse credit decision being reviewed may not serve on the CRC when it reviews that loan....

  1. 12 CFR 617.7305 - What is a CRC and who are the members?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... applicant or borrower. The CRC has the ultimate decision-making authority on the loan or application under... adverse credit decision being reviewed may not serve on the CRC when it reviews that loan....

  2. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  3. Time dependence of mesoscopic strain distribution for triaxial woven carbon-fiber-reinforced polymer under creep loading measured by digital image correlation

    NASA Astrophysics Data System (ADS)

    Koyanagi, Jun; Nagayama, Hideo; Yoneyama, Satoru; Aoki, Takahira

    2016-06-01

    This paper presents the time dependence of the mesoscopic strain of a triaxial woven carbon-fiber-reinforced polymer under creep loading measured using digital image correlation (DIC). Two types of DIC techniques were employed for the measurement: conventional subset DIC and mesh DIC. Static tensile and creep tests were carried out, and the time dependence of the mesoscopic strain distribution was investigated by applying these techniques. The ultimate failure of this material is dominated by inter-bundle decohesion caused by relative rigid rotation and relating shear stress. Therefore, these were focused on in the present study. During the creep tests, the fiber directional strain, shear strain, and rotation were monitored using the DIC, and the mechanism for the increase in the specimen's macro-strain over time was investigated based on the results obtained by the DIC measurement.

  4. The glass transition temperature of polyurethane shape memory polymer reinforced with treated/non-treated attapulgite (playgorskite) clay in dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Pan, G. H.; Huang, W. M.; Ng, Z. C.; Liu, N.; Phee, S. J.

    2008-08-01

    Attapulgite (playgorskite), a kind of nanosized fibrous clay mineral, may provide a simple and cheap alternative to improve the stiffness and actuation stress of shape memory polymers (SMPs). As a first step, in this paper, we investigate the glass transition temperature of a polyurethane SMP reinforced with treated/non-treated attapulgite in wet and dry conditions. In addition to confirming the strong influence of moisture, the results reveal that non-treated clay significantly reduces the glass transition temperature (Tg) of the composites, while the influence of treated clay on Tg is limited. However, for composites mixed with non-treated clay, after drying, the well pre-wetted samples have a much higher Tg than that of the dry ones. A partial detachment mechanism is proposed to explain this interesting phenomenon.

  5. Time dependence of mesoscopic strain distribution for triaxial woven carbon-fiber-reinforced polymer under creep loading measured by digital image correlation

    NASA Astrophysics Data System (ADS)

    Koyanagi, Jun; Nagayama, Hideo; Yoneyama, Satoru; Aoki, Takahira

    2016-01-01

    This paper presents the time dependence of the mesoscopic strain of a triaxial woven carbon-fiber-reinforced polymer under creep loading measured using digital image correlation (DIC). Two types of DIC techniques were employed for the measurement: conventional subset DIC and mesh DIC. Static tensile and creep tests were carried out, and the time dependence of the mesoscopic strain distribution was investigated by applying these techniques. The ultimate failure of this material is dominated by inter-bundle decohesion caused by relative rigid rotation and relating shear stress. Therefore, these were focused on in the present study. During the creep tests, the fiber directional strain, shear strain, and rotation were monitored using the DIC, and the mechanism for the increase in the specimen's macro-strain over time was investigated based on the results obtained by the DIC measurement.

  6. Nondestructive evaluation of ±45° flat-braided carbon-fiber-reinforced polymers with carbon nanofibers using HTS-SQUID gradiometer

    NASA Astrophysics Data System (ADS)

    Hatsukade, Y.; Shinyama, Y.; Yoshida, K.; Takai, Y.; Aly-Hassan, M. S.; Nakai, A.; Hamada, H.; Adachi, S.; Tanabe, K.; Tanaka, S.

    2013-01-01

    Step-by-step tensile tests were applied to flat-braided carbon-fiber-reinforced polymers with and without added dispersions of carbon nanofibers (CNFs) and with and without sample sides cut off to study their mechanical properties and destructive mechanisms by means of in situ observation and stress-strain measurements. An ex situ nondestructive evaluation technique, using a high-temperature superconductor superconducting quantum interference device gradiometer, was also applied to the samples to study their electrical properties; the relationships between the mechanical and electrical properties by visualizing current maps in the samples during ac current injection was also studied. Clear differences were observed in the mechanical and electrical properties and the destructive mechanisms between the samples with and without CNFs and with and without cut off sides. These differences were mainly attributed to the addition of CNFs, which enhanced the mechanical and electrical connections between the carbon fiber bundles.

  7. Electrical conductivity, dielectric response and space charge dynamics of an electroactive polymer with and without nanofiller reinforcement

    NASA Astrophysics Data System (ADS)

    Kochetov, R.; Tsekmes, I. A.; Morshuis, P. H. F.

    2015-07-01

    Electroactive polymers have gained considerable attention over the last 20 years for exhibiting a large displacement in response to electrical stimulation. The promising fields of application include wave energy converters, muscle-like actuators, sensors, robotics, and biomimetics. For an electrical engineer, electroactive polymers can be seen as a dielectric elastomer film or a compliant capacitor with a highly deformable elastomeric medium. If the elastomer is pre-stretched and pre-charged, a reduction of the tensile force lets the elastomer revert to its original form and increases the electrical potential. The light weight of electroactive polymers, low cost, high intrinsic breakdown strength, cyclical way of operation, reliable performance, and high efficiency can be exploited to utilize the elastomeric material as a transducer. The energy storage for a linear dielectric polymer is determined by its relative permittivity and the applied electric field. The latter is limited by the dielectric breakdown strength of the material. Therefore, to generate a high energy density of a flexible capacitor, the film must be used at the voltage level close to the material’s breakdown or inorganic particles with high dielectric permittivity which can be introduced into the polymer matrix. In the present study, silicone-titania elastomer nanocomposites were produced and the influence of nanoparticles on the macroscopic dielectric properties of the neat elastomer including space charge dynamics, complex permittivity, and electrical conductivity, were investigated.

  8. Comparative study on submillimeter flaws in stitched T-joint carbon fiber reinforced polymer by infrared thermography, microcomputed tomography, ultrasonic c-scan and microscopic inspection

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Hassler, Ulf; Genest, Marc; Fernandes, Henrique; Robitaille, Francois; Ibarra-Castanedo, Clemente; Joncas, Simon; Maldague, Xavier

    2015-10-01

    Stitching is used to reduce dry-core (incomplete infusion of T-joint core) and reinforce T-joint structure. However, it may cause new types of flaws, especially submillimeter flaws. Microscopic inspection, ultrasonic c-scan, pulsed thermography, vibrothermography, and laser spot thermography are used to investigate the internal flaws in a stitched T-joint carbon fiber-reinforced polymer (CFRP) matrix composites. Then, a new microlaser line thermography is proposed. Microcomputed tomography (microCT) is used to validate the infrared results. A comparison between microlaser line thermography and microCT is performed. It was concluded that microlaser line thermography can detect the internal submillimeter defects. However, the depth and size of the defects can affect the detection results. The microporosities with a diameter of less than 54 μm are not detected in the microlaser line thermography results. Microlaser line thermography can detect the microporosity (a diameter of 0.162 mm) from a depth of 90 μm. However, it cannot detect the internal microporosity (a diameter of 0.216 mm) from a depth of 0.18 mm. The potential causes are given. Finally, a comparative study is conducted.

  9. Investigation of electrical and impact properties of carbon fiber reinforced polymer matrix composites with carbon nanotube buckypaper layers

    NASA Astrophysics Data System (ADS)

    Hill, Christopher Brandon

    Carbon fiber reinforced composite materials have become commonplace in many industries including aerospace, automotive, and sporting goods. Previous research has determined a coupling relationship between the mechanical and electrical properties of these materials where the application of electrical current has been shown to improve their mechanical strengths. The next generations of these composites have started to be produced with the addition of nanocarbon buckypaper layers which provide even greater strength and electrical conductivity potentials. The focus of this current research was to characterize these new composites and compare their electro-mechanical coupling capabilities to those composites which do not contain any nonocarbons.

  10. Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments

    SciTech Connect

    Ren, W.; Brinkman, C.R.

    1998-12-31

    Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

  11. CRC customer versus rater octane number requirement program (1990)

    SciTech Connect

    Not Available

    1993-10-01

    A CRC cooperative program was conducted to determine the difference in octane requirements between technical raters and 'customers' (the general driving public). The tests were conducted in two phases, with the second being a repeat of the first to verify the results obtained. The trained raters used the CRC E-15 procedure to determine the octane requirement of the vehicles while the customers' perception and objection to knock were determined through the use of a questionnaire. The customers' responses (perception and objection level) were based upon audible knock, acceleration performance, and after-run on a series of full-boiling-range customer/rater unleaded (FBRCU) reference-fuels. Data were analyzed from 168 1988-1991 model-year vehicles, with 126 of these tested in Phase II. The results showed that the customers, objections and perceptions were overwhelmingly based on knock, rather than acceleration performance or after-run. Two general methods, a population comparison and a delta analysis, were used to estimate the difference between customer and rater octane requirements. In the first method, the data were analyzed by comparing satisfaction curves for the technical and customer octane requirements (population comparison).

  12. Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (PG) montmorillonite with poly(acrylic acid).

    PubMed

    Fareed, Muhammad A; Stamboulis, Artemis

    2014-01-01

    Montmorillonite nanoclays (PGV and PGN) were dispersed in poly(acrylic acid) (PAA) for utilization as reinforcing filler in glass ionomer cements (GICs). Chemical and physical interaction of PAA and nanoclay (PGV and PGN) was studied. PAA–PGV and PAA–PGN solutions were prepared in different weight percent loadings of PGV and PGN nanoclay (0.5-8.0 wt%) via exfoliation-adsorption method. Characterization was carried out by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR) spectroscopy. XRD results of PAA–PGN demonstrated that the interlayer space expanded from 12.83 to 16.03 Å indicating intercalation whereas the absence of the peak at d(001) in PAA–PGV indicated exfoliation. XPS scans of PGV and PGN nanoclays depicted the main peak of O 1s photoelectron due to Si–O–M (M = Mg, Al, Fe) whereas, Si–O–Al linkages were identified by Si 2p or Si 2s and Al 2p or Al 2s peaks. The disappearance of the Na peak confirmed that PAA molecules exchanged sodium ions present on surface of silicate layers and significantly reduced the electrostatic van-der-Waals forces between silicate plates resulting in intercalation or exfoliation. FTIR spectra of PAA–nanoclay suspensions demonstrated the presence of a new peak at 1,019 cm(-1) associated with Si–O– stretching vibrations which increased with increasing nanoclays concentration. Information concerning the dispersion of nanoclay in PAA aqueous solutions, chemical reaction and increase interlayer space in montmorillonite nanoclay is particularly useful regarding dispersion and reinforcement of nanoclay in PAA. PMID:24077996

  13. CRC-113 gene expression signature for predicting prognosis in patients with colorectal cancer

    PubMed Central

    Nguyen, Dinh Truong; Kim, Jin-Hwan; Jo, Yong Hwa; Shahid, Muhammad; Akter, Salima; Aryal, Saurav Nath; Yoo, Ji Youn; Ahn, Yong-Joo; Cho, Kyoung Min; Lee, Ju-Seog; Choe, Wonchae; Kang, Insug; Ha, Joohun; Kim, Sung Soo

    2015-01-01

    Colorectal cancer (CRC) is the third leading cause of global cancer mortality. Recent studies have proposed several gene signatures to predict CRC prognosis, but none of those have proven reliable for predicting prognosis in clinical practice yet due to poor reproducibility and molecular heterogeneity. Here, we have established a prognostic signature of 113 probe sets (CRC-113) that include potential biomarkers and reflect the biological and clinical characteristics. Robustness and accuracy were significantly validated in external data sets from 19 centers in five countries. In multivariate analysis, CRC-113 gene signature showed a stronger prognostic value for survival and disease recurrence in CRC patients than current clinicopathological risk factors and molecular alterations. We also demonstrated that the CRC-113 gene signature reflected both genetic and epigenetic molecular heterogeneity in CRC patients. Furthermore, incorporation of the CRC-113 gene signature into a clinical context and molecular markers further refined the selection of the CRC patients who might benefit from postoperative chemotherapy. Conclusively, CRC-113 gene signature provides new possibilities for improving prognostic models and personalized therapeutic strategies. PMID:26397224

  14. Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Liao, Shu-Hang; Hung, Chih-Hung; Ma, Chen-Chi M.; Yen, Chuan-Yu; Lin, Yu-Feng; Weng, Cheng-Chih

    Novel multiwalled carbon nanotubes (MWNTs) were prepared using poly(oxypropylene)-backboned diamines of molecular weights M w 400 and 2000 to disperse acid-treated MWNTs, improving the performance of composite bipolar plates in polymer electrolyte membrane fuel cells. A lightweight polymer composite bipolar plate that contained vinyl ester resin, graphite powder and MWNTs was fabricated using a bulk molding compound (BMC) process. Results demonstrate that the qualitative dispersion of MWNTs crucially determined the resultant bulk electrical conductivity, the mechanical properties and the physical properties of bipolar plates. The flexural strength of the composite bipolar plate with 1 phr of MWNTs was approximately 48% higher than that of the original composite bipolar plate. The coefficient of thermal expansion of the composite bipolar plate was reduced from 37.00 to 20.40 μm m -1 °C -1 by adding 1 phr of MWNTs, suggesting that the composite bipolar plate has excellent thermal stability. The porosity of the composite bipolar plate was also evaluated. Additionally, the bulk electrical conductivity of the composite bipolar plate with different MWNTs types and contents exceeds 100 S cm -1. The results of the polarization curves confirm that the addition of MWNTs leads to a significant improvement on the single cell performance.

  15. Microtensile bond strength of fiber-reinforced composite with semi-interpenetrating polymer matrix to dentin using various bonding systems.

    PubMed

    Tezvergil-Mutluay, Arzu; Lassila, Lippo V J; Vallittu, Pekka K

    2008-11-01

    This study investigated the microtensile bond strength (microTBS) of fiber-reinforced composite (FRC) to dentin using various adhesive systems. Forty eight (n = 8/group) human molars were flattened to expose dentin. A layer of preimpregnated unidirectional FRC (everStick) was applied on the dentin surface after treatment with either a single-step self-etching adhesive, two-step self-etching system, or a conventional three-step adhesive system. For the control, particulate filler composite (PFC) (Filtek Z250) layering without FRC was used. After 24-hour water storage at 37 degrees C, the specimens were sectioned, further water-stored at 37 degrees C for 30 days and then tested. Data were analyzed using ANOVA and Tukey's test, and reliability was analyzed with Weibull distribution. microTBS values differed significantly according to the adhesive material used (p < 0.05). Single-step self-etching adhesive showed the lowest bond reliability and microTBS values with both FRC and PFC, whereas conventional three-step and two-step self-etching systems showed higher bond reliability and microTBS with both materials. PMID:19241691

  16. Preparation and characterization of water-soluble carbon nanotube reinforced Nafion membranes and so-based ionic polymer metal composite actuators

    NASA Astrophysics Data System (ADS)

    Ru, Jie; Wang, Yanjie; Chang, Longfei; Chen, Hualing; Li, Dichen

    2016-09-01

    In this paper, we developed a new kind of ionic polymer metal composite (IPMC) actuator by doping water-soluble sulfonated multi-walled carbon nanotube (sMWCNT) into Nafion matrix to overcome some major drawbacks of traditional IPMCs, such as relatively low bending deformation and carring capacity at low driving voltages. Firstly, sMWCNT was synthesized via diazotization coupling reaction, and then doped into Nafion matrix by casting method. Subsequently, the electrochemical and electromechanical properties of sMWCNT-reinforced Nafion membranes and the corresponding IPMCs were investigated. Finally, the effects of sMWCNT on the performances of IPMCs were evaluated and analyzed systematacially. The results showed that sMWCNT was homogeneously dispersed in Nafion matrix without any entangled structure or obvious agglomeration. The main factors for superior actuation performances, like water-uptake ratio, proton conductivity and elastic modulus, increased significantly. Compared to the pure Nafion IPMC and MWCNT/Nafion IPMC, much superior electrochemical and electromechanical performances were achieved in the sMWCNT/Nafion IPMC, which were attributed to the numerous insertion sites, high surface conductivity and excellent mechanical strength as well as the homogeneous dispersity of the incorporated sMWCNT. Herein, a trace amount of sMWCNT can improve the performances of IPMCs significantly for realistic applications.

  17. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development

    PubMed Central

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-01-01

    Background and Aims CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. Methods CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. Key Results CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. Conclusions The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far

  18. X-ray photoelectron spectroscopic studies of graphitic materials and interfacial interactions in carbon-fiber-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Viswanathan, Hema L.

    This dissertation involves the X-ray photoelectron spectroscopic (XPS) study of the chemistry associated with carbon fiber-reinforced composites fabricated using PAN-based carbon fibers and a thermoplastic polyimide resin. The mechanical properties of the ultimate composite are significantly affected by the nature of the fiber/matrix interface. Interfacial interaction can be promoted by the electrochemical modification of the fiber surface. The determination of carbon fiber microstructure was conducted through angle-resolved valence band photoemission studies of highly ordered graphite. The change in orientation of the basal planes and reactive edge sites with take-off angle provided a method for the determination of surface microstructure. The electronic structure of solid-state graphite was described using a band structure model and the results obtained were compared with the multiple scattered wave X a calculations. PAN-based fibers were electrochemically oxidized and studied using monochromatic X-radiation. The extremely narrow natural linewidth of the monochromatized Al K a radiation allowed previously unresolved features to be seen. In addition, sample decomposition due to radiative heat from the X-ray source is eliminated. Fibers that were pretreated by the manufacturer were subjected to further electrochemical oxidation. The fibers behaved in an erratic and non-reproducible manner. The surface treatment was removed by heating the fibers in vacuum, followed by XPS analysis and electrochemical oxidation. The fiber/matrix interface was simulated by coating a very thin layer of the polyimide resin on the surface of the fiber followed by XPS analysis. The validity of a proposed structure for the resin was confirmed by comparison with ab initio calculations conducted on the resin repeat unit. A high level of fiber/matrix interaction was observed for electrochemically oxidized fibers. The possibility of solvent interaction with the fiber surface was eliminated by

  19. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    PubMed Central

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo. PMID:24707488

  20. 29 CFR 37.88 - Who may contact CRC about a complaint?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false Who may contact CRC about a complaint? 37.88 Section 37.88... about a complaint? Both the complainant and the respondent, or their authorized representatives, may contact CRC for information about the complaint. The Director will determine what information, if...

  1. The life times of polymer composites in construction

    NASA Astrophysics Data System (ADS)

    Meier, Urs

    2016-05-01

    This paper discusses examples that prove the long-term reliability of Fiber Reinforced Polymers (FRP) under extreme loading conditions and outdoor weathering. Results of polymer/steel-composite anchorage systems, Glass Fiber Reinforced Polymer (GFRP) plates and shells, GFRP box girders, Carbon Fiber Reinforced Polymer (CFRP) post-tensioning tendons and CFRP stays are going to be presented.

  2. Potential role of TRIM3 as a novel tumour suppressor in colorectal cancer (CRC) development.

    PubMed

    Piao, Mei-Yu; Cao, Hai-Long; He, Na-Na; Xu, Meng-Que; Dong, Wen-Xiao; Wang, Wei-Qiang; Wang, Bang-Mao; Zhou, Bing

    2016-05-01

    Objective Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in the United States. Recent cancer genome-sequencing efforts and complementary functional studies have led to the identification of a collection of candidate 'driver' genes involved in CRC tumorigenesis. Tripartite motif (TRIM3) is recently identified as a tumour suppressor in glioblastoma but this tumour-suppressive function has not been investigated in CRC. Material and methods In this study, we investigated the potential role of TRIM3 as a tumour suppressor in CRC development by manipulating the expression of TRIM3 in two authentic CRC cell lines, HCT116 and DLD1, followed by various functional assays, including cell proliferation, colony formation, scratch wound healing, soft agar, and invasion assays. Xenograft experiment was performed to examine in vivo tumour-suppressive properties of TRIM3. Results Small-interfering RNA (siRNA) mediated knockdown of TRIM3 conferred growth advantage in CRC cells. In contrast, overexpression of TRIM3 affected cell survival, cell migration, anchorage independent growth and invasive potential in CRC cells. In addition, TRIM3 was found to be down-regulated in human colon cancer tissues compared with matched normal colon tissues. Overexpression of TRIM3 significantly inhibited tumour growth in vivo using xenograft mouse models. Mechanistic investigation revealed that TRIM3 can regulate p53 protein level through its stabilisation. Conclusions TRIM3 functions as a tumour suppressor in CRC progression. This tumour-suppressive function is exerted partially through regulation of p53 protein. Therefore, this protein may represent a novel therapeutic target for prevention or intervention of CRC. PMID:26691157

  3. Detection of Colorectal Cancer (CRC) by Urinary Volatile Organic Compound Analysis

    PubMed Central

    Arasaradnam, Ramesh P.; McFarlane, Michael J.; Ryan-Fisher, Courtenay; Westenbrink, Erik; Hodges, Paula; Thomas, Matthew G.; Chambers, Samantha; O'Connell, Nicola; Bailey, Catherine; Harmston, Christopher; Nwokolo, Chuka U.; Bardhan, Karna D.; Covington, James A.

    2014-01-01

    Colorectal cancer (CRC) is a leading cause of cancer related death in Europe and the USA. There is no universally accepted effective non-invasive screening test for CRC. Guaiac based faecal occult blood (gFOB) testing has largely been superseded by Faecal Immunochemical testing (FIT), but sensitivity still remains poor. The uptake of population based FOBt testing in the UK is also low at around 50%. The detection of volatile organic compounds (VOCs) signature(s) for many cancer subtypes is receiving increasing interest using a variety of gas phase analytical instruments. One such example is FAIMS (Field Asymmetric Ion Mobility Spectrometer). FAIMS is able to identify Inflammatory Bowel disease (IBD) patients by analysing shifts in VOCs patterns in both urine and faeces. This study extends this concept to determine whether CRC patients can be identified through non-invasive analysis of urine, using FAIMS. 133 patients were recruited; 83 CRC patients and 50 healthy controls. Urine was collected at the time of CRC diagnosis and headspace analysis undertaken using a FAIMS instrument (Owlstone, Lonestar, UK). Data was processed using Fisher Discriminant Analysis (FDA) after feature extraction from the raw data. FAIMS analyses demonstrated that the VOC profiles of CRC patients were tightly clustered and could be distinguished from healthy controls. Sensitivity and specificity for CRC detection with FAIMS were 88% and 60% respectively. This study suggests that VOC signatures emanating from urine can be detected in patients with CRC using ion mobility spectroscopy technology (FAIMS) with potential as a novel screening tool. PMID:25268885

  4. 12 CFR 617.7305 - What is a CRC and who are the members?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false What is a CRC and who are the members? 617.7305 Section 617.7305 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Actions on Applications; Review of Credit Decisions § 617.7305 What is a CRC and who are the members? The board of directors of each qualified...

  5. Mapping of Genetic Abnormalities of Primary Tumours from Metastatic CRC by High-Resolution SNP Arrays

    PubMed Central

    Sayagués, José María; Fontanillo, Celia; Abad, María del Mar; González-González, María; Sarasquete, María Eugenia; del Carmen Chillon, Maria; Garcia, Eva; Bengoechea, Oscar; Fonseca, Emilio; Gonzalez-Diaz, Marcos; De Las Rivas, Javier

    2010-01-01

    Background For years, the genetics of metastatic colorectal cancer (CRC) have been studied using a variety of techniques. However, most of the approaches employed so far have a relatively limited resolution which hampers detailed characterization of the common recurrent chromosomal breakpoints as well as the identification of small regions carrying genetic changes and the genes involved in them. Methodology/Principal Findings Here we applied 500K SNP arrays to map the most common chromosomal lesions present at diagnosis in a series of 23 primary tumours from sporadic CRC patients who had developed liver metastasis. Overall our results confirm that the genetic profile of metastatic CRC is defined by imbalanced gains of chromosomes 7, 8q, 11q, 13q, 20q and X together with losses of the 1p, 8p, 17p and 18q chromosome regions. In addition, SNP-array studies allowed the identification of small (<1.3 Mb) and extensive/large (>1.5 Mb) altered DNA sequences, many of which contain cancer genes known to be involved in CRC and the metastatic process. Detailed characterization of the breakpoint regions for the altered chromosomes showed four recurrent breakpoints at chromosomes 1p12, 8p12, 17p11.2 and 20p12.1; interestingly, the most frequently observed recurrent chromosomal breakpoint was localized at 17p11.2 and systematically targeted the FAM27L gene, whose role in CRC deserves further investigations. Conclusions/Significance In summary, in the present study we provide a detailed map of the genetic abnormalities of primary tumours from metastatic CRC patients, which confirm and extend on previous observations as regards the identification of genes potentially involved in development of CRC and the metastatic process. PMID:21060790

  6. Increasing the Thermal Conductivity and Thermal Diffusivity of Asbestos-Reinforced Laminates Through Modification of their Polymer Matrix with Carbon Nanomaterials

    NASA Astrophysics Data System (ADS)

    Danilova-Tret'yak, S. M.; Evseeva, L. E.; Tanaeva, S. A.

    2014-11-01

    Experimental investigations of the thermophysical properties of traditional and modified asbestos-reinforced laminates depending on the type of their carbon nanofiller have been carried out in the range of temperatures from -150 to 150°C. It has been shown that the largest (nearly twofold) increase in the thermal-conductivity and thermal-diffusivity coefficients of the indicated materials is observed when they are modified with a small-scale fraction of a nanofiller (carbon nanotubes). The specific heats of the modified and traditional asbestos-reinforced laminates turned out to be identical, in practice, within the measurement error.

  7. Barriers to CRC Screening among Latino Adults in Pennsylvania: ACCN Results

    ERIC Educational Resources Information Center

    Garcia-Dominic, Oralia; Lengerich, Eugene J.; Wray, Linda A.; Parrott, Roxanne; Aumiller, Betsy; Kluhsman, Brenda; Renderos, Carlos; Dignan, Mark

    2012-01-01

    Objectives: To describe knowledge of and barriers to colorectal cancer (CRC) screening by sex and geography among Latino adults in Pennsylvania. Methods: Eighty-two Latinos greater than 50 years old engaged in one of 8 focus groups. Focus groups consisted of 4 components. Focus group data were audiotaped, transcribed, and grouped into thematic…

  8. The CRC 20 Years: An Overview of Some of the Major Achievements and Remaining Challenges

    ERIC Educational Resources Information Center

    Doek, Jaap E.

    2009-01-01

    On 20 November 1989, the General Assembly of the United Nations adopted the Convention on the Rights of the Child (CRC). It entered into force on 2 September 1990 and has by now been ratified by 193 States, making the most universally ratified human rights treaty. This overview will present and discuss the impact of this treaty both at the…

  9. 12 CFR 617.7310 - What is the review process of the CRC?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 617.7310 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Actions on Applications; Review of Credit Decisions § 617.7310 What is the review process of the CRC? (a) How... borrower may submit any documents or other evidence to support the information contained in the loan...

  10. 12 CFR 617.7310 - What is the review process of the CRC?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 617.7310 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Actions on Applications; Review of Credit Decisions § 617.7310 What is the review process of the CRC? (a) How... borrower may submit any documents or other evidence to support the information contained in the loan...

  11. 12 CFR 617.7310 - What is the review process of the CRC?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 617.7310 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Actions on Applications; Review of Credit Decisions § 617.7310 What is the review process of the CRC? (a) How... borrower may submit any documents or other evidence to support the information contained in the loan...

  12. 12 CFR 617.7310 - What is the review process of the CRC?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 617.7310 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Actions on Applications; Review of Credit Decisions § 617.7310 What is the review process of the CRC? (a) How... borrower may submit any documents or other evidence to support the information contained in the loan...

  13. 12 CFR 617.7310 - What is the review process of the CRC?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 617.7310 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Actions on Applications; Review of Credit Decisions § 617.7310 What is the review process of the CRC? (a) How... borrower may submit any documents or other evidence to support the information contained in the loan...

  14. Self Reported Awareness of Child Maltreatment among School Professionals in Saudi Arabia: Impact of CRC Ratification

    ERIC Educational Resources Information Center

    AlBuhairan, Fadia S.; Inam, Sarah S.; AlEissa, Majid A.; Noor, Ismail K.; Almuneef, Maha A.

    2011-01-01

    Objectives: The Convention on the Rights of the Child (CRC) was ratified by Saudi Arabia 15 years ago; yet addressing the issue of child maltreatment only began in more recent years. School professionals play a significant role in children's lives, as they spend a great deal of time with them and are hence essential to protecting and identifying…

  15. Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients

    PubMed Central

    van Wezel, Tom; Jagmohan-Changur, Shantie C.; Ruano, Dina; van der Klift, Heleen M.; van den Akker, Brendy E. W. M.; Laros, Jeroen F. J.; van Galen, Michiel; Wagner, Anja; Letteboer, Tom G. W.; Gómez-García, Encarna B.; Tops, Carli M. J.; Vasen, Hans F.; Devilee, Peter; Hes, Frederik J.; Morreau, Hans; Wijnen, Juul T.

    2016-01-01

    Background and Aims Lynch Syndrome (LS) is caused by pathogenic germline variants in one of the mismatch repair (MMR) genes. However, up to 60% of MMR-deficient colorectal cancer cases are categorized as suspected Lynch Syndrome (sLS) because no pathogenic MMR germline variant can be identified, which leads to difficulties in clinical management. We therefore analyzed the genomic regions of 15 CRC susceptibility genes in leukocyte DNA of 34 unrelated sLS patients and 11 patients with MLH1 hypermethylated tumors with a clear family history. Methods Using targeted next-generation sequencing, we analyzed the entire non-repetitive genomic sequence, including intronic and regulatory sequences, of 15 CRC susceptibility genes. In addition, tumor DNA from 28 sLS patients was analyzed for somatic MMR variants. Results Of 1979 germline variants found in the leukocyte DNA of 34 sLS patients, one was a pathogenic variant (MLH1 c.1667+1delG). Leukocyte DNA of 11 patients with MLH1 hypermethylated tumors was negative for pathogenic germline variants in the tested CRC susceptibility genes and for germline MLH1 hypermethylation. Somatic DNA analysis of 28 sLS tumors identified eight (29%) cases with two pathogenic somatic variants, one with a VUS predicted to pathogenic and LOH, and nine cases (32%) with one pathogenic somatic variant (n = 8) or one VUS predicted to be pathogenic (n = 1). Conclusions This is the first study in sLS patients to include the entire genomic sequence of CRC susceptibility genes. An underlying somatic or germline MMR gene defect was identified in ten of 34 sLS patients (29%). In the remaining sLS patients, the underlying genetic defect explaining the MMRdeficiency in their tumors might be found outside the genomic regions harboring the MMR and other known CRC susceptibility genes. PMID:27300758

  16. Black Students Entering CRC Colleges: Their Characteristics and Their First-Year Academic Performance. Research Memorandum 69-1.

    ERIC Educational Resources Information Center

    Wilson, Kenneth M.

    The College Research Center (CRC), a cooperative educational-research agency, investigated the progress of black students enrolled in liberal arts colleges (traditionally for women only). The study focused on (1) selected characteristics of Negro freshmen entering Member CRC Colleges, and (2) the correlational validity of standard admissions…

  17. Ki-67 Expression in CRC Lymph Node Metastasis Does Not Predict Survival

    PubMed Central

    Martins, Sandra F.; Amorim, Ricardo; Mota, Sílvia Coelho; Costa, Luís; Pardal, Fernando; Rodrigues, Mesquita; Longatto-Filho, Adhemar

    2015-01-01

    Colorectal cancer is one of the most common malignancies and a leading cause of cancer death worldwide. Molecular markers may improve clinicopathologic staging and provide a basis to guide novel therapeutic strategies which target specific tumour-associated molecules according to individual tumour biology; however, so far, no ideal molecular marker has been found to predict disease progression. We tested Ki-67 proliferation marker in primary and lymph node metastasis of CRC. We observed a statistical significant difference between the positive rates of neoplastic cells positively stained by Ki-67 in both sites, with remarkable increased number of Ki-67 positive cells in primary tumor cells compared to cancer cells that invaded lymph nodes. We can speculate that the metastatic CRC in lymph node can be more resistant to the drugs that target cellular division. PMID:26448927

  18. Ultrathin Nanosheets of Organic-Modified β-Ni(OH)2 with Excellent Thermal Stability: Fabrication and Its Reinforcement Application in Polymers.

    PubMed

    Jiang, Saihua; Gui, Zhou; Chen, Guohua; Liang, Dong; Alam, Jahangir

    2015-07-15

    β-Nickel hydroxide (β-Ni(OH)2), which combines two-dimensional (2D) structure and the catalytic property of nickel-containing compounds, has shown great potential for the application in polymer nanocomposites. However, conventional β-Ni(OH)2 exhibits large thickness, poor thermal stability, and irreversible aggregation in polymer matrices, which limits its application. Here, we use a novel phosphorus-containing organosilane to modify the β-Ni(OH)2 nanosheet, obtaining a new β-Ni(OH)2 ultrathin nanosheet with excellent thermal stability. When compared to pristine β-Ni(OH)2, the organic-modified β-Ni(OH)2 (M-Ni(OH)2) maintains nanosheet-like structure, and also presents a small thickness of around 4.6 nm and an increased maximum degradation temperature by 41 °C. Owing to surface organic-modification, the interfacial property of M-Ni(OH)2 nanosheets is enhanced, which results in the exfoliation and good distribution of the nanosheets in a PMMA matrix. The addition of M-Ni(OH)2 significantly improves the mechanical performance, thermal stability, and flame retardancy of PMMA/M-Ni(OH)2 nanocomposites, including increased storage modulus by 38.6%, onset thermal degradation temperature by 42 °C, half thermal degradation temperature by 65 °C, and decreased peak heat release rate (PHRR) by 25.3%. Moreover, it is found that M-Ni(OH)2 alone can catalyze the formation of carbon nanotubes (CNTs) during the PMMA/M-Ni(OH)2 nanocomposite combustion, which is a very helpful factor for the flame retardancy enhancement and has not been reported before. This work not only provides a new 2D ultrathin nanomaterial with good thermal stability for polymer nanocomposites, but also will trigger more scientific interest in the development and application of new types of 2D ultrathin nanomaterials. PMID:26090685

  19. CRC Clinical Trials Management System (CTMS): An Integrated Information Management Solution for Collaborative Clinical Research

    PubMed Central

    Payne, Philip R.O.; Greaves, Andrew W.; Kipps, Thomas J.

    2003-01-01

    The Chronic Lymphocytic Leukemia (CLL) Research Consortium (CRC) consists of 9 geographically distributed sites conducting a program of research including both basic science and clinical components. To enable the CRC’s clinical research efforts, a system providing for real-time collaboration was required. CTMS provides such functionality, and demonstrates that the use of novel data modeling, web-application platforms, and management strategies provides for the deployment of an extensible, cost effective solution in such an environment. PMID:14728471

  20. Improving time-lapse seismic repeatability: CO2CRC Otway site permanent geophone array field trials

    NASA Astrophysics Data System (ADS)

    Pevzner, Roman; Dupuis, Christian; Shulakova, Valeriya; Urosevic, Milovan; Lumley, David

    2013-04-01

    The proposed Stage 2C of the CO2CRC Otway project involves injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into saline acquifer (Paaratte formation) at the depth of ~1.5 km. The seismic time-lapse signal will depend largely on the formation properties and the injection scenario, but is likely to be relatively weak. In order to improve time-lapse seismic monitoring capabilities by decreasing the noise level, a buried receiver arrays can be used. A small-scale trial of such an array was conducted at Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1 to 12 m depth. In order to assess the gain in the signal-to-noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms increasing the noise level. We found that noise level for buried geophones is on average 20 dB lower compared to the surface ones. Furthermore, the combination of active and passive experiments has allowed us to perform a detailed classification of various noise sources. Acknowledgement The authors acknowledge the funding provided by the Australian government through its CRC program to support this CO2CRC research project. We also acknowledge the CO2CRC's corporate sponsors and the financial assistance provided through Australian National Low Emissions Coal Research and Development (ANLEC R&D). ANLEC R&D is supported by Australian Coal Association Low Emissions Technology Limited and the Australian Government through the Clean Energy Initiative.

  1. U.S. ratification of the CRC and reducing child poverty: can we get there from here?

    PubMed

    Aber, J Lawrence; Hammond, Andrew S; Thompson, Scott M

    2010-01-01

    If the United States finally ratifies the United Nations Convention of the Rights of the Child (CRC), will it improve the country's to effectively combat child poverty and thereby improve child well-being? This article addresses this and related questions in two ways. First, the authors examine how ratification of the CRC has influenced the efforts of other wealthy Anglophone countries to reduce child poverty. Second, they draw on lessons learned from these other countries' efforts to generate predictions about America's postratification future. The authors conclude that, while the CRC is a compelling, practical tool, a communications strategy and business plan are necessary complements to achieve desired results. PMID:21361163

  2. Development of the experimental procedure to examine the response of carbon fiber-reinforced polymer composites subjected to a high-intensity pulsed electric field and low-velocity impact.

    PubMed

    Hart, Robert J; Zhupanska, Olesya I

    2016-01-01

    A new fully automated experimental setup has been developed to study the response of carbon fiber reinforced polymer (CFRP) composites subjected to a high-intensity pulsed electric field and low-velocity impact. The experimental setup allows for real-time measurements of the pulsed electric current, voltage, impact load, and displacements on the CFRP composite specimens. The setup includes a new custom-built current pulse generator that utilizes a bank of capacitor modules capable of producing a 20 ms current pulse with an amplitude of up to 2500 A. The setup enabled application of the pulsed current and impact load and successfully achieved coordination between the peak of the current pulse and the peak of the impact load. A series of electrical, impact, and coordinated electrical-impact characterization tests were performed on 32-ply IM7/977-3 unidirectional CFRP composites to assess their ability to withstand application of a pulsed electric current and determine the effects of the pulsed current on the impact response. Experimental results revealed that the electrical resistance of CFRP composites decreased with an increase in the electric current magnitude. It was also found that the electrified CFRP specimens withstood higher average impact loads compared to the non-electrified specimens. PMID:26827355

  3. Development of the experimental procedure to examine the response of carbon fiber-reinforced polymer composites subjected to a high-intensity pulsed electric field and low-velocity impact

    NASA Astrophysics Data System (ADS)

    Hart, Robert J.; Zhupanska, Olesya I.

    2016-01-01

    A new fully automated experimental setup has been developed to study the response of carbon fiber reinforced polymer (CFRP) composites subjected to a high-intensity pulsed electric field and low-velocity impact. The experimental setup allows for real-time measurements of the pulsed electric current, voltage, impact load, and displacements on the CFRP composite specimens. The setup includes a new custom-built current pulse generator that utilizes a bank of capacitor modules capable of producing a 20 ms current pulse with an amplitude of up to 2500 A. The setup enabled application of the pulsed current and impact load and successfully achieved coordination between the peak of the current pulse and the peak of the impact load. A series of electrical, impact, and coordinated electrical-impact characterization tests were performed on 32-ply IM7/977-3 unidirectional CFRP composites to assess their ability to withstand application of a pulsed electric current and determine the effects of the pulsed current on the impact response. Experimental results revealed that the electrical resistance of CFRP composites decreased with an increase in the electric current magnitude. It was also found that the electrified CFRP specimens withstood higher average impact loads compared to the non-electrified specimens.

  4. The New UN CRC General Comment 13: "The Right of the Child to Freedom from All Forms of Violence"--Changing How the World Conceptualizes Child Protection

    ERIC Educational Resources Information Center

    Svevo-Cianci, Kimberly A.; Herczog, Maria; Krappmann, Lothar; Cook, Philip

    2011-01-01

    The UN Committee on the Rights of the Child established CRC General Comment 13 (April 2011) to address today's unabating high rates of violence against children globally despite CRC advances. GC13 provides clear interpretations and stronger detail to supplement the legal language of CRC Article 19, intended to establish protection of children from…

  5. Microstructural characterization of fiber-reinforced composites

    SciTech Connect

    Summerscales, J.

    1998-12-31

    In the past 50 years, great progress has been made in developing artificial fiber-reinforced composite materials, generally using filaments with microscopic diameters. An array of reinforcement forms can be used in commercial applications--with the microstructure being a critical factor in realizing the required properties in a material. This book comprehensively examines the application of advanced microstructural characterization techniques to fiber-reinforced composites. Its contents include: (1) flexible textile composite microstructure; (2) 3-D confocal microscopy of glass fiber-reinforced composites; (3) geometric modeling of yarn and fiber assemblies; (4) characterization of yarn shape in woven fabric composites; (5) quantitative microstructural analysis for continuous fiber composites; (6) electron microscopy of polymer composites; (7) micromechanics of reinforcement using laser raman spectroscopy; and (8) acoustic microscopy of ceramic fiber composites.

  6. Estimation of seismically detectable portion of a gas plume: CO2CRC Otway project case study

    NASA Astrophysics Data System (ADS)

    Pevzner, Roman; Caspari, Eva; Bona, Andrej; Galvin, Robert; Gurevich, Boris

    2013-04-01

    CO2CRC Otway project comprises of several experiments involving CO2/CH4 or pure CO2 gas injection into different geological formations at the Otway test site (Victoria, Australia). During the first stage of the project, which was finished in 2010, more than 64,000 t of gas were injected into the depleted gas reservoir at ~2 km depth. At the moment, preparations for the next stage of the project aiming to examine capabilities of seismic monitoring of small scale injection (up to 15,000 t) into saline formation are ongoing. Time-lapse seismic is one of the most typical methods for CO2 geosequestration monitoring. Significant experience was gained during the first stage of the project through acquisition and analysis of the 4D surface seismic and numerous time-lapse VSP surveys. In order to justify the second stage of the project and optimise parameters of the experiment, several modelling studies were conducted. In order to predict seismic signal we populate realistic geological model with elastic properties, model their changes using fluid substitution technique applied to the fluid flow simulation results and compute synthetic seismic baseline and monitor volumes. To assess detectability of the time-lapse signal caused by the injection, we assume that the time-lapse noise level will be equivalent to the level of difference between the last two Otway 3D surveys acquired in 2009 and 2010 using conventional surface technique (15,000 lbs vibroseis sources and single geophones as the receivers). In order to quantify the uncertainties in plume imaging/visualisation due to the time-lapse noise realisation we propose to use multiple noise realisations with the same F-Kx-Ky amplitude spectra as the field noise for each synthetic signal volume. Having signal detection criterion defined in the terms of signal/time- lapse noise level on a single trace we estimate visible portion of the plume as a function of this criterion. This approach also gives an opportunity to attempt to

  7. Analytic Challenges Arising from the STOP CRC Trial: Pragmatic Solutions for Pragmatic Problems

    PubMed Central

    Vollmer, William M.; Green, Beverly B.; Coronado, Gloria D.

    2015-01-01

    Context: Pragmatic trials lack the relatively tight quality control of traditional efficacy studies and hence may pose added analytic challenges owing to the practical realities faced in carrying them out. Case Description: STOP CRC is a cluster randomized trial testing the effectiveness of automated, electronic medical record (EMR)-driven strategies to raise colorectal cancer (CRC) screening rates in safety net clinics. Screen-eligible participants were accrued during year 1 and followed for 12 months (measurement window) to assess completion of a fecal screening test. Control clinics implemented the intervention in year 2. Implementation Challenges/Analytic Issues: Due to limitations on how we could build the intervention tools, the overlap of the year 1 measurement windows with year 2 intervention rollout posed a potential for contamination of the primary outcome for control participants. In addition, a variety of factors led to a lack of synchronization of the measurement windows with actual intervention delivery. In both cases, the net impact of these factors would be to diminish the estimated impact of the intervention. Proposed Solutions: We dealt with the overlap issue by delaying the start of intervention rollout to control clinics in year 2 by 6 months and by truncating the measurement windows for intervention and control participants at this point. In addition we formulated three sensitivity analyses to help address the issue of asynchronization. Conclusion: This case study might help other investigators facing similar challenges think about such issues and the pros and cons of various strategies for dealing with them. PMID:26793738

  8. Polymer Matrix Composites: A Perspective for a Special Issue of Polymer Reviews

    SciTech Connect

    Kessler, Michael R.

    2012-09-04

    Polymer matrix composites, with their high specific strength and stiffness, are used in a wide range of applications from large wind turbine blades to microelectronics. This perspective article provides a brief primer on polymer matrix composites, discusses some of their advantages and limitations, and describes a number of emerging trends in the field. In addition, it introduces four review articles on the topics of recent developments in carbon fibers, natural fiber reinforced composites, evaluation of the interface between the fiber reinforcement and polymer matrix, and carbon nanotube reinforced polymers.

  9. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  10. Transverse Reinforcement in Reinforced Concrete Columns

    NASA Astrophysics Data System (ADS)

    Gramblička, Štefan; Veróny, Peter

    2013-11-01

    In the article we are dealing with the influence of transverse reinforcement to the resistance of a cross-section of the reinforced concrete columns and also with the effective detailing of the column reinforcement. We are verifying the correctness of design guides for detailing of transverse reinforcement. We are also taking into account the diameter of stirrups and its influence over transverse deformation of column.

  11. Aflibercept, a New Way to Target Angiogenesis in the Second Line Treatment of Metastatic Colorectal Cancer (mCRC).

    PubMed

    Scartozzi, Mario; Vincent, Loic; Chiron, Marielle; Cascinu, Stefano

    2016-08-01

    Colorectal cancer (CRC) is a leading tumour worldwide, and the median survival of metastatic patients with the latest therapeutic options today reaches 30 months. Therefore, it is important to plan a therapeutic strategy, able to optimize the use of the available drugs (fluoropyrimides, oxaliplatin, irinotecan and target biologic therapy), with the objective of maximizing the long-term efficacy, reducing toxicities and assuring better quality of life for the patients with mCRC. Among the most recently available drugs for the treatment of mCRC, aflibercept, a new antiangiogenetic agent, should be considered a promising therapeutical option for the second line setting. In this review, the mechanism of action and preclinical evidence, as well as pharmacological and clinical aspects of aflibercept will be analysed. In particular, this drug has a peculiar and unique mechanism of action, inhibiting VEGF-A, -B and PlGF pathways, which may help to overcome tumour escape mechanisms to bevacizumab treatment. From a clinical point of view, the addition of aflibercept to FOLFIRI regimen was able to significantly improve all the clinical outcome with respect to the chemotherapy alone in second line treatment of mCRC patients, regardless of age, RAS status, and prior use of bevacizumab. Finally, the safety profile of aflibercept is well known and manageable in most of the patients. Aflibercept can be considered a novel standard of care in the second line setting and an important therapeutic option for mCRC patients. PMID:27412031

  12. An overview of long fiber reinforced thermoplastics

    SciTech Connect

    Bockstedt, R.J.; Skarlupka, R.J.

    1995-12-01

    Long fiber reinforced thermoplastics (LFRTP) are a class of injection molding materials that extend the physical property envelope of thermoplastics polymers. These materials are manufactured by pulling continuous fiber tows through a thermoplastic polymer melt in a specialized processing die. The strands are subsequently cooled and chopped into pellets of equal length. LFRTP materials are available in virtually every common thermoplastic resin with glass, aramid, stainless steel, or carbon fiber reinforcement at levels up to 60% by weight. Unlike short fiber reinforced thermoplastics manufactured by conventional screw compounding processes, LFRTP exhibit simultaneous improvements in both flexural modulus and impact resistance. Improvements in load transfer, creep resistance at elevated temperatures, and dimensional stability can also be attributed to the long fiber network formed in the molded part. This unique combination of properties makes LFRTP the material of choice for replacement of metal structural assemblies in many automotive, industrial, consumer and recreational applications.

  13. Polarization Property Measurement of the Long Undulator Radiation Using Cr/C Multilayer Polarization Elements

    NASA Astrophysics Data System (ADS)

    Niibe, Masahito; Mukai, Mikihito; Kimura, Hiroaki; Shoji, Yoshihiko

    2004-05-01

    A rotating analyzer ellipsometry (RAE) system was developed with Cr/C multilayers that function as polarization elements for photon energy range of 110 - 280 eV. Polarization properties of a planar undulator change axisymmetrically in off-axial manner, and the second harmonic is more remarkable for the change. By using the RAE system, the polarization property of the second harmonic radiation from the NewSUBARU long undulator at the energy of 180 eV was examined. The degree of linear polarization of the on-axis radiation was over 0.996. The spatial distribution of the polarization azimuth was measured and was in fair agreement with the theoretical calculation. A peculiar behavior of the polarization property near the radiation peak of the second harmonic was observed by changing the height of the undulator gap.

  14. Uncaria tomentosa for Reducing Side Effects Caused by Chemotherapy in CRC Patients: Clinical Trial.

    PubMed

    Farias, I L G; Araújo, M C S; Farias, J G; Rossato, L V; Elsenbach, L I; Dalmora, S L; Flores, N M P; Durigon, M; Cruz, I B M; Morsch, V M; Schetinger, M R C

    2012-01-01

    To evaluate the effectiveness of Uncaria tomentosa in minimizing the side effects of chemotherapy and improving the antioxidant status of colorectal cancer (CRC) patients, a randomized clinical trial was conducted. Patients (43) undergoing adjuvant/palliative chemotherapy with 5-Fluorouracil/leucovorin + oxaliplatin (FOLFOX4) were split into two groups: the UT group received chemotherapy plus 300 mg of Uncaria tomentosa daily and the C group received only FOLFOX4 and served as a control. Blood samples were collected before each of the 6 cycles of chemotherapy, and hemograms, oxidative stress, enzymes antioxidants, immunologic parameters, and adverse events were analyzed. The use of 300 mg of Uncaria tomentosa daily during 6 cycles of FOLFOX4 did not change the analyzed parameters, and no toxic effects were observed. PMID:21869902

  15. Polarization Property Measurement of the Long Undulator Radiation Using Cr/C Multilayer Polarization Elements

    SciTech Connect

    Niibe, Masahito; Mukai, Mikihito; Shoji, Yoshihiko; Kimura, Hiroaki

    2004-05-12

    A rotating analyzer ellipsometry (RAE) system was developed with Cr/C multilayers that function as polarization elements for photon energy range of 110 - 280 eV. Polarization properties of a planar undulator change axisymmetrically in off-axial manner, and the second harmonic is more remarkable for the change. By using the RAE system, the polarization property of the second harmonic radiation from the NewSUBARU long undulator at the energy of 180 eV was examined. The degree of linear polarization of the on-axis radiation was over 0.996. The spatial distribution of the polarization azimuth was measured and was in fair agreement with the theoretical calculation. A peculiar behavior of the polarization property near the radiation peak of the second harmonic was observed by changing the height of the undulator gap.

  16. Uncaria tomentosa for Reducing Side Effects Caused by Chemotherapy in CRC Patients: Clinical Trial

    PubMed Central

    Farias, I. L. G.; Araújo, M. C. S.; Farias, J. G.; Rossato, L. V.; Elsenbach, L. I.; Dalmora, S. L.; Flores, N. M. P.; Durigon, M.; Cruz, I. B. M.; Morsch, V. M.; Schetinger, M. R. C.

    2012-01-01

    To evaluate the effectiveness of Uncaria tomentosa in minimizing the side effects of chemotherapy and improving the antioxidant status of colorectal cancer (CRC) patients, a randomized clinical trial was conducted. Patients (43) undergoing adjuvant/palliative chemotherapy with 5-Fluorouracil/leucovorin + oxaliplatin (FOLFOX4) were split into two groups: the UT group received chemotherapy plus 300 mg of Uncaria tomentosa daily and the C group received only FOLFOX4 and served as a control. Blood samples were collected before each of the 6 cycles of chemotherapy, and hemograms, oxidative stress, enzymes antioxidants, immunologic parameters, and adverse events were analyzed. The use of 300 mg of Uncaria tomentosa daily during 6 cycles of FOLFOX4 did not change the analyzed parameters, and no toxic effects were observed. PMID:21869902

  17. High-temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1990-01-01

    Polymers research at the NASA Lewis Research Center has produced high-temperature, easily processable resin systems, such as PMR-15. In addition, the Polymers Branch has investigated ways to improve the mechanical properties of polymers and the microcracking resistance of polymer matrix composites in response to industry need for new and improved aeropropulsion materials. Current and future research in the Polymers Branch is aimed at advancing the upper use temperature of polymer matrix composites to 700 F and beyond by developing new resins, by examining the use of fiber reinforcements other than graphite, and by developing coatings for polymer matrix composites to increase their oxidation resistance.

  18. Backbone and stereospecific (13)C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc.

    PubMed

    Sharma, Rakhi; Sahu, Bhubanananda; Ray, Malay K; Deshmukh, Mandar V

    2015-04-01

    Carbon catabolite repression (CCR) allows bacteria to selectively assimilate a preferred compound among a mixture of several potential carbon sources, thus boosting growth and economizing the cost of adaptability to variable nutrients in the environment. The RNA-binding catabolite repression control (Crc) protein acts as a global post-transcriptional regulator of CCR in Pseudomonas species. Crc triggers repression by inhibiting the expression of genes involved in transport and catabolism of non-preferred substrates, thus indirectly favoring assimilation of preferred one. We report here a nearly complete backbone and stereospecific (13)C methyl side-chain chemical shift assignments of Ile (δ1), Leu and Val of Crc (~ 31 kDa) from Pseudomonas syringae Lz4W. PMID:24496608

  19. CRC pilot program to investigate the effect on driveability of intake valve deposits and variations in fuel volatility

    SciTech Connect

    Not Available

    1993-06-01

    During the Coordinating Research Council's (CRC) program to select an engine to replace the BMW 318i as the industry standard intake valve deposit test engine, an opportunity was identified to compare the driveability performance of the engines evaluated with and without intake valve deposits. A pilot program was thus conducted by the CRC Volatility Group at Southwest Research Institute during late 1 991 and early 1 992 to investigate the relationship between intake valve deposits and cold-start and warmup driveability. Eight vehicles were tested using three fuels with varying T50 levels. Duplicate ratings were made using both the BMW Driveability Test Procedure and a modification of the CRC Cold-Start and Warmup Driveability Procedure. None of the three candidate engines were as good as the BMW 318i reference engine in discriminating valve deposit effects on driveability. Rater differences obscured other possible effects.

  20. Aberrant gene methylation in non-neoplastic mucosa as a predictive marker of ulcerative colitis-associated CRC

    PubMed Central

    Castagliuolo, Ignazio; Erroi, Francesca; Kotsafti, Andromachi; Basato, Silvia; Brun, Paola; D'Incà, Renata; Rugge, Massimo

    2016-01-01

    Background Promoter hypermethylation plays a major role in cancer through transcriptional silencing of critical genes. The aim of our study is to evaluate the methylation status of these genes in the colonic mucosa without dysplasia or adenocarcinoma at the different steps of sporadic and UC-related carcinogenesis and to investigate the possible role of genomic methylation as a marker of CRC. Results The expression of Dnmts 1 and 3A was significantly increased in UC-related carcinogenesis compared to non inflammatory colorectal carcinogenesis. In non-neoplastic colonic mucosa, the number of methylated genes resulted significantly higher in patients with CRC and in those with UC-related CRC compared to the HC and UC patients and patients with dysplastic lesion of the colon. The number of methylated genes in non-neoplastic colonic mucosa predicted the presence of CRC with good accuracy either in non inflammatory and inflammatory related CRC. Methods Colonic mucosal samples were collected from healthy subjects (HC) (n = 30) and from patients with ulcerative colitis (UC) (n = 29), UC and dysplasia (n = 14), UC and cancer (n = 10), dysplastic adenoma (n = 14), and colon adenocarcinoma (n = 10). DNA methyltransferases-1, -3a, -3b, mRNA expression were quantified by real time qRT-PCR. The methylation status of CDH13, APC, MLH1, MGMT1 and RUNX3 gene promoters was assessed by methylation-specific PCR. Conclusions Methylation status of APC, CDH13, MGMT, MLH1 and RUNX3 in the non-neoplastic mucosa may be used as a marker of CRC: these preliminary results could allow for the adjustment of a patient's surveillance interval and to select UC patients who should undergo intensive surveillance. PMID:26862732

  1. Multilayered Glass Fibre-reinforced Composites In Rotational Moulding

    NASA Astrophysics Data System (ADS)

    Chang, W. C.; Harkin-Jones, E.; Kearns, M.; McCourt, M.

    2011-05-01

    The potential of multiple layer fibre-reinforced mouldings is of growing interest to the rotational moulding industry because of their cost/performance ratio. The particular problem that arises when using reinforcements in this process relate to the fact that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this study, short glass fibres were incorporated and distributed into a polymer matrix to produce fibre-reinforced polymer composites using the rotational moulding process and characterised in terms of morphology and mechanical properties.

  2. Polymers for engineering applications

    SciTech Connect

    Seymour, R.B.

    1987-01-01

    This book provides an introduction to the world of engineering plastics. It discusses the polymers, their properties strengths and limitations. There are 11 chapters, organized so that each chapter builds on the knowledge of the previous material. Coverage includes important polymer concepts, such as molecular structure, bonding, morphology and molecular weight, and polymer properties, such as thermal expansion, thermal transition, electrical properties and viscoelasticity. Details are provided on methods of processing fabrication and on specific families of polymers. The general-purpose polymers are discussed, such as natural and synthetic rubbers, rayon, acrylic and alkyd coatings, polyethylene, polystyrene and polyvinyl chloride (PVC). There's information on high-performance polymers - fibers, elastomers, and coatings. A thorough explanation of the characteristics and qualities of nylons, polyesters, polyimides, neoprene, silicones, polyurethanes and other polymers is given in the same section. Functional polymers with special properties, such as photoconductivity, electric conductivity, piezoelectricity, light sensitivity, and ion exchange; and polymers that are superior to general-purpose plastics, such as ABS, filled polypropylene, and glass-reinforced plastics, are also covered.

  3. Protecting Children from Violence and Maltreatment: A Qualitative Comparative Analysis Assessing the Implementation of U.N. CRC Article 19

    ERIC Educational Resources Information Center

    Svevo-Cianci, Kimberly A.; Hart, Stuart N.; Rubinson, Claude

    2010-01-01

    Objectives: (1) To identify which United Nations Convention on the Rights of the Child (CRC) recommended child protection (CP) measures, such as policy, reporting systems, and services for child abuse and neglect (CAN) victims, individually or in combination, were most important in establishing a basic level of child protection in 42 countries;…

  4. Morphological, mechanical properties and biodegradability of biocomposite thermoplastic starch and polycaprolactone reinforced with sisal fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incorporation of fibers as reinforcements in polymer composites has increased due to their renewability, low cost and biodegradability. In this study, sisal fibers were added to a polymer matrix of thermoplastic starch and polycaprolactone, both biodegradable polymers. Sisal fibers (5% and 10%) ...

  5. Polymer/Silicate Nanocomposites Developed for Improved Thermal Stability and Barrier Properties

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G.

    2001-01-01

    The nanoscale reinforcement of polymers is becoming an attractive means of improving the properties and stability of polymers. Polymer-silicate nanocomposites are a relatively new class of materials with phase dimensions typically on the order of a few nanometers. Because of their nanometer-size features, nanocomposites possess unique properties typically not shared by more conventional composites. Polymer-layered silicate nanocomposites can attain a certain degree of stiffness, strength, and barrier properties with far less ceramic content than comparable glass- or mineral-reinforced polymers. Reinforcement of existing and new polyimides by this method offers an opportunity to greatly improve existing polymer properties without altering current synthetic or processing procedures.

  6. Identification of Gene Expression Changes from Colitis to CRC in the Mouse CAC Model

    PubMed Central

    Li, Xin; Gao, Yuyan; Yang, Ming; Zhao, Qi; Wang, Guangyu; Yang, Yan mei; Yang, Yue; Liu, Hui; Zhang, Yanqiao

    2014-01-01

    A connection between colorectal carcinogenesis and inflammation is well known, but the underlying molecular mechanisms have not been elucidated. Chemically induced colitis-associated cancer (CAC) is an outstanding mouse model for studying the link between inflammation and cancer. Additionally, the CAC model is used for examining novel diagnostic, prognostic, and predictive markers for use in clinical practice. Here, a CAC model was established in less than 100 days using azoxymethane (AOM) with dextran sulfate sodium salt (DSS) in BALB/c mice. We examined the mRNA expression profiles of three groups: control untreated mice (K), DSS-induced chronic colitis mice (D), and AOM/DSS-induced CAC (AD) mice. We identified 6301 differentially expressed genes (DEGs) among the three groups, including 93 persistently upregulated genes and 139 persistently downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the most persistent DEGs were significantly enriched in metabolic or inflammatory components in the tumor microenvironment. Furthermore, several associated DEGs were identified as potential DEGs by protein-protein interaction (PPI) network analysis. We selected 14 key genes from the DEGs and potential DEGs for further quantitative real-time PCR (qPCR) verification. Six persistently upregulated, 3 persistently downregulated DEGs, and the other 3 genes showed results consistent with the microarray data. We demonstrated the regulation of 12 key genes specifically involved in Wnt signaling, cytokine and cytokine receptor interactions, homeostasis, and tumor-associated metabolism during colitis-associated CRC. Our results suggest that a close relationship between metabolic and inflammatory mediators of the tumor microenvironment is present in CAC. PMID:24743346

  7. Reinforcing Silk Scaffolds with Silk Particles

    PubMed Central

    Rajkhowa, Rangam; Gil, Eun Seok; Kluge, Jonathan; Numata, Keiji; Wang, Lijing; Kaplan, David L.

    2014-01-01

    Silk fibroin is a useful protein polymer for biomaterials and tissue engineering. In this work, porogen leached scaffolds prepared from aqueous and HFIP silk solutions were reinforced through the addition of silk particles. This led to about 40 times increase in the specific compressive modulus and the yield strength of HFIP-based scaffolds. This increase in mechanical properties resulted from the high interfacial cohesion between the silk matrix and the reinforcing silk particles, due to partial solubility of the silk particles in HFIP. The porosity of scaffolds was reduced from ≈90% (control) to ≈75% for the HFIP systems containing 200% particle reinforcement, while maintaining pore interconnectivity. The presence of the particles slowed the enzymatic degradation of silk scaffolds. PMID:20166230

  8. Carbon Nanomaterials as Reinforcements for Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanomaterials including fellerenes, nanotubes (CNT) and nanofibers have been proposed for many applications. One of applications is to use the carbon nanomaterials as reinforcements for composites, especially for polymer matrices. Carbon nanotubes is a good reinforcement for lightweight composite applications due to its low mass density and high Young's modulus. Two obscures need to overcome for carbon nanotubes as reinforcements in composites, which are large quantity production and functioning the nanotubes. This presentation will discuss the carbon nanotube growth by chemical vapor deposition. In order to reduce the cost of producing carbon nanotubes as well as preventing the sliding problems, carbon nanotubes were also synthesized on carbon fibers. The synthesis process and characterization results of nanotubes and nanotubes/fibers will be discussed in the presentation.

  9. CRC DEPLETION CALCULATIONS FOR THE RODDED ASSEMBLIES IN BATCHES 1, 2, 3, AND 1X OF CRYSTAL RIVER UNIT 3

    SciTech Connect

    Kenneth D. Wright

    1997-09-03

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain rodded fuel assemblies from batches 1, 2, 3, and 1X of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A rodded assembly is one that contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) for some period of time during its irradiation history. The objective of this analysis is to provide SAS2H calculated isotopic compositions of depleted fuel and depleted burnable poison for each fuel assembly to be used in subsequent CRC reactivity calculations containing the fuel assemblies.

  10. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 4 AND 5 OF CRYSTAL RIVER UNIT 3

    SciTech Connect

    Kenneth D. Wright

    1997-07-30

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 4 and 5 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

  11. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 1, 2, AND 3 OF CRYSTAL RIVER UNIT 3

    SciTech Connect

    Kenneth D. Wright

    1997-07-29

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 1, 2, and 3 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

  12. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 8 AND 9 CRYSTAL RIVER UNIT 3

    SciTech Connect

    Michael L. Wilson

    2001-02-08

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 8 and 9 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

  13. Expression Profiling of the Maize Flavonoid Pathway Genes Controlled by Estradiol-Inducible Transcription Factors CRC and P

    PubMed Central

    Bruce, Wesley; Folkerts, Otto; Garnaat, Carl; Crasta, Oswald; Roth, Brad; Bowen, Ben

    2000-01-01

    To determine the scope of gene expression controlled by the maize transcription factors C1/R and P, which are responsible for activating flavonoid synthesis, we used GeneCalling, an open-ended, gel-based, mRNA-profiling technology, to analyze cell suspension lines of the maize inbred Black Mexican Sweet (BMS) that harbored estradiol-inducible versions of these factors. BMS cells were transformed with a continually expressed estrogen receptor/maize C1 activator domain fusion gene (ER–C1) and either a fusion of C1 and R (CRC), P, or luciferase genes regulated by a promoter containing four repeats of an estrogen receptor binding site. Increasing amounts of luciferase activity, anthocyanins, and flavan-4-ols were detected in the respective cell lines after the addition of estradiol. The expression of both known and novel genes was detected simultaneously in these BMS lines by profiling the mRNA isolated from replicate samples at 0, 6, and 24 hr after estradiol treatment. Numerous cDNA fragments were identified that showed a twofold or greater difference in abundance at 6 and 24 hr than at 0 hr. The cDNA fragments from the known flavonoid genes, except chalcone isomerase (chi1), were induced in the CRC-expressing line after hormone induction, whereas only the chalcone synthase (c2) and flavanone/dihydroflavonol reductase (a1) genes were induced in the P-expressing line, as was expected. Many novel cDNA fragments were also induced or repressed by lines expressing CRC alone, P alone, or both transcription factors in unique temporal patterns. The temporal differences and the evidence of repression indicate a more diverse set of regulatory controls by CRC or P than originally expected. GeneCalling analysis was successful in detecting members of complex metabolic pathways and uncovering novel genes that were either coincidentally regulated or directly involved in such pathways. PMID:10634908

  14. Process of Making Boron-Fiber Reinforced Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    2002-01-01

    The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.

  15. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  16. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  17. Electronic structure of vanadium and chromium carbide cations, VC+ and CrC+. Ground and low-lying states

    NASA Astrophysics Data System (ADS)

    Kerkines, Ioannis S. K.; Mavridis, Aristides

    2004-01-01

    The ground and low-lying states of the monopositive vanadium and chromium carbides, VC+ and CrC+ have been studied by multireference methods and quantitative basis sets. Potential energy curves for 17 (VC+) and 19 (CrC+) states have been fully calculated. A variety of binding modes is revealed in the low-lying spectrum of the two molecular cations, often accompanied with an electronic charge transfer from the metal cation towards carbon. Two states compete for the ground state identity in both systems. One state comprises two π and ½σ bonds (similarly to ScC+ and TiC+), while the other state forms a genuine triple bond. After a rather intricate analysis including core electron effects, scalar relativity and curve shifts, the formal ground states of VC+ and CrC+ are found to be of 3Δ and 2Δ symmetry, with estimated energy differences from the competing 1Σ+ and 4Σ- states of 1-3 and 3-7 kcal/mol, respectively. At the highest level of theory including core/valence correlation and one-electron relativistic effects, the calculated ground-state binding energies are in satisfactory agreement with available experimental values.

  18. Practical opportunities to improve early detection and prevention of colorectal cancer (CRC) in members of high-risk families.

    PubMed

    Patel, S G; Lowery, J T; Gatof, D; Ahnen, D J

    2015-03-01

    Colorectal cancer (CRC) incidence and mortality are steadily declining and CRC screening rates are increasing in the United States. Although this a very good news, several definable groups still have very low screening rates including younger (under age 50) members of high-risk CRC families. This opinion piece describes five strategies that could be incorporated into routine practice to improve identification and guideline-based screening in members of high-risk families. Routine incorporation of a simple family history screening tool and outreach to high-risk family members could substantially improve guideline-based screening in this population. Identification of CRCs and advanced adenomas in the endoscopy suite defines another group of high-risk families for similar outreach. Lynch syndrome families can be identified by testing CRCs and selected adenomas for microsatellite instability or loss of DNA repair protein expression. Finally, selective addition of aspirin to surveillance endoscopy can decrease the risk of new adenomas and CRCs. The rationale for these strategies as well as mechanisms for their implementation and evaluation in clinical practice is described. PMID:25698379

  19. Habituation of reinforcer effectiveness.

    PubMed

    Lloyd, David R; Medina, Douglas J; Hawk, Larry W; Fosco, Whitney D; Richards, Jerry B

    2014-01-01

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect "accelerated-HRE." Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior. PMID:24409128

  20. Carbon fiber reinforced thermoplastic composites for future automotive applications

    NASA Astrophysics Data System (ADS)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  1. Processing and characterization of smart composite reinforcement

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Fitzgerald, Stephen B.; MacDonald, Douglas O.; Georgiades, Anastasis V.

    1998-07-01

    The issues of processing and characterization of pultruded smart composite reinforcements with the embedded fiber optic sensors are discussed. These fiber reinforced polymer reinforcements incorporate the optical fiber sensors to provide a strain monitoring of structures. The required modification of the pultrusion processing technology to allow for the incorporation of fiber optic sensors is developed. Fabry Perot and Bragg Grating optical strain sensors were chosen due to their small size and excellent sensitivity. The small diameter of the sensor and optical fiber allow them to be embedded without adversely affecting the strength of the composite. Two types of reinforcement with vinylester resin were used to produce the experimental 9.5 mm diameter rods. The reinforcements were carbon and E-glass fibers. In order to fully characterize the pultrusion process, it was decided to subject the strain sensors separately to each of the variables pertinent to the pultrusion process. Thus, sensors were used to monitor strain caused by compaction pressure in the die, compaction pressure plus standard temperature profile, and finally compaction pressure plus temperature plus resin cure (complete pultrusion process). A strain profile was recorded for each experiment as the sensor travelled through the pultrusion die, and for the cool-down period after the sensor had exited the die.

  2. Wear of short carbon-fiber-reinforced PAI and PPS

    SciTech Connect

    Behrens, W.W.; Jerina, K.L.; Hahn, H.T.

    1988-07-01

    Wear of short carbon-fiber-reinforced polyamide-imide and polyphenylene sulfide is described. Comparative data from thrust washer wear tests for both polymers are presented. Fiber orientation is shown to have a significant effect on wear rates. The wear mechanisms in both polymers are illustrated with optical and scanning electron micrographs. Wear is shown to be a nonlinear function of time and stress for both PPS and PAI. 15 references, 14 figures.

  3. Reinforced plastics durability

    SciTech Connect

    Pritchard, G.

    1999-01-01

    Written especially for first-time users of reinforced plastics. The book offers substantial introductory information with key concepts. Chapters examine the long-term threats to the integrity of reinforced plastics: outdoor weathering, solvent/water attack, high temperatures, and repetitive stress.

  4. Composite Intersection Reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2013-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  5. Composite intersection reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2010-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  6. Polymer-based waveguide devices for WDM applications

    NASA Astrophysics Data System (ADS)

    Viens, Jean-Francois; Callender, Claire L.; Noad, Julian P.; Eldada, Louay A.; Norwood, Robert A.

    1999-10-01

    This paper summarizes the work currently in progress at CRC Canada on wavelength multiplexing components based on polymer waveguide devices for operation at 1550 nm. Planar arrayed waveguide gratings (AWGs) of various bandwidths were designed, fabricated and tested using acrylate polymer materials developed by Allied Signal Inc. Eight channel polymer demultiplexers fabricated by standard lithography show on-chip losses of 8 dB and a crosstalk of -25 dB between channels spaced 1.6 nm part. Owing to the thermo- optic properties of these polymers, the spectral response of the device scan be tuned by more than 7 nm without changes in optical crosstalk or on-chip loss. Very compact AWGs made with Allied Signal polymers are being designed and tested to address the need for cost effective, high bandwidth optical components in the telecom and datacom industries.

  7. Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, nanofibers of poly (vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on m...

  8. An Assessment of Self-Healing Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.

    2012-01-01

    Several reviews and books have been written concerning self-healing polymers over the last few years. These have focused primarily on the types of self-healing materials being studied, with minor emphasis given to composite properties. The purpose of this review is to assess the self-healing ability of these materials when utilized in fiber reinforced composites

  9. Reinforced concrete offshore platform

    SciTech Connect

    Martyshenko, J.P.; Martyshenko, S.J.; Kotelnikov, J.S.; Kutukhtin, E.G.; Petrosian, M.S.; Ilyasova, N.I.; Volkov, J.S.; Vardanian, A.M.

    1987-10-20

    A reinforced concrete offshore platform is described comprising a honeycomb foundation (A), a supporting structure (B) and an above-surface section (C) carrying appropriate equipment. The honeycomb foundation (A) and the supporting structure (B) are made of prefabricated reinforced concrete elements which are polyhedral hollow prisms arranged with gaps between the external sides thereof and joined by a system of prestressed vertical diaphragm walls and horizontal diaphragm walls formed by pre-tensioning reinforcing bars placed in the gaps between the faces of the prisms and casting in-situ the gaps later on.

  10. Millimeter-wave spectroscopy of CrC (X(3)Σ(-)) and CrCCH (X̃ (6)Σ(+)): Examining the chromium-carbon bond.

    PubMed

    Min, J; Ziurys, L M

    2016-05-14

    Pure rotational spectroscopy of the CrC (X(3)Σ(-)) and CrCCH (X̃ (6)Σ(+)) radicals has been conducted using millimeter/sub-millimeter direct absorption methods in the frequency range 225-585 GHz. These species were created in an AC discharge of Cr(CO)6 and either methane or acetylene, diluted in argon. Spectra of the CrCCD were also recorded for the first time using deuterated acetylene as the carbon precursor. Seven rotational transitions of CrC were measured, each consisting of three widely spaced, fine structure components, arising from spin-spin and spin-rotation interactions. Eleven rotational transitions were recorded for CrCCH and five for CrCCD; each transition in these cases was composed of a distinct fine structure sextet. These measurements confirm the respective (3)Σ(-) and (6)Σ(+) ground electronic states of these radicals, as indicated from optical studies. The data were analyzed using a Hund's case (b) Hamiltonian, and rotational, spin-spin, and spin-rotation constants have been accurately determined for all three species. The spectroscopic parameters for CrC were significantly revised from previous optical work, while those for CrCCH are in excellent agreement; completely new constants were established for CrCCD. The chromium-carbon bond length for CrC was calculated to be 1.631 Å, while that in CrCCH was found to be rCr-C = 1.993 Å - significantly longer. This result suggests that a single Cr-C bond is present in CrCCH, preserving the acetylenic structure of the ligand, while a triple bond exists in CrC. Analysis of the spin constants suggests that CrC has a nearby excited (1)Σ(+) state lying ∼16 900 cm(-1) higher in energy, and CrCCH has a (6)Π excited state with E ∼ 4800 cm(-1). PMID:27179485

  11. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  12. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

  13. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

  14. Fibre-reinforced materials.

    PubMed

    Brown, D

    2000-11-01

    This paper considers the role of fibres in the reinforcement of composite materials, and the significance of the form the fibre takes and the material from which it is made. The current dental applications of fibre reinforcement, including dental cements and splints, fibres made into structures for use in composites, denture bases and the contemporary use of fibres in fixed partial dentures, are reviewed. Their role in biomedical implants is surveyed and their future forecast. PMID:11218597

  15. Reinforcement learning in scheduling

    NASA Technical Reports Server (NTRS)

    Dietterich, Tom G.; Ok, Dokyeong; Zhang, Wei; Tadepalli, Prasad

    1994-01-01

    The goal of this research is to apply reinforcement learning methods to real-world problems like scheduling. In this preliminary paper, we show that learning to solve scheduling problems such as the Space Shuttle Payload Processing and the Automatic Guided Vehicle (AGV) scheduling can be usefully studied in the reinforcement learning framework. We discuss some of the special challenges posed by the scheduling domain to these methods and propose some possible solutions we plan to implement.

  16. The substitutability of reinforcers

    PubMed Central

    Green, Leonard; Freed, Debra E.

    1993-01-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  17. The substitutability of reinforcers.

    PubMed

    Green, Leonard; Freed, Debra E

    1993-07-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  18. 3D stereolithography printing of graphene oxide reinforced complex architectures.

    PubMed

    Lin, Dong; Jin, Shengyu; Zhang, Feng; Wang, Chao; Wang, Yiqian; Zhou, Chi; Cheng, Gary J

    2015-10-30

    Properties of polymer based nanocomposites reply on distribution, concentration, geometry and property of nanofillers in polymer matrix. Increasing the concentration of carbon based nanomaterials, such as CNTs, in polymer matrix often results in stronger but more brittle material. Here, we demonstrated the first three-dimensional (3D) printed graphene oxide complex structures by stereolithography with good combination of strength and ductility. With only 0.2% GOs, the tensile strength is increased by 62.2% and elongation increased by 12.8%. Transmission electron microscope results show that the GOs were randomly aligned in the cross section of polymer. We investigated the strengthening mechanism of the 3D printed structure in terms of tensile strength and Young's modulus. It is found that an increase in ductility of the 3D printed nanocomposites is related to increase in crystallinity of GOs reinforced polymer. Compression test of 3D GOs structure reveals the metal-like failure model of GOs nanocomposites. PMID:26443263

  19. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  20. Monitoring CO2 injection with a buried geophone array: Stage 2C of CO2CRC Otway Project

    NASA Astrophysics Data System (ADS)

    Urosevic, M.; Gurevich, B.; Pevzner, R.; Tertyshnikov, K.; Shulakova, V.; Glubokovskikh, S.; Popik, D.; Kepic, A.; Robertson, M.; Freifeld, B. M.; Daley, T. M.; Singh, R.

    2015-12-01

    The Stage 2 of the CO2CRC project involves injection of a small quantity of CO2, 15 Kt, into the Paaratte formation, a saline aquifer located at a depth of around 1500 m in the Otway basin, Victoria, Australia. The project aims to investigate the limits of time lapse seismic methodologies in order to devise an optimal monitoring program. That includes time lapse signal and noise prediction, time lapse data acquisition design and finally data analysis. The strength of the time lapse (TL) seismic is governed by the magnitudes of both the time lapse signal and time lapse noise. They are in turn both dependent on numerous factors which need to be addressed through modelling studies and data acquisition technologies. Geological information is used to build a detailed 3D static model for the dynamic reservoir simulations and analysis of CO2 plume distribution for small quantities of CO2 injected into the deepest Paaratte member. Various lithological scenarios and variations in permeability distribution are tested until arriving at the "most likely" solution. The final model is used initially for 1D and subsequently for the full 3D time lapse modelling. These time lapse modelling results, combined with field tests and noise analysis, show clearly that small quantities of CO2 injected into a relatively thin (~20 m in thickness) saline aquifer would benefit from utilizing a permanent 3D seismic array to achieve desired repeatability, that is reduction in time lapse seismic noise. Buried receiver array was designed and deployed at the CO2CRC Otway during January and February. The array comprises 908 high-sensitivity geophones deployed at 4 m depth below the surface. Baseline 3D was acquired in March 2015. Some 3003 shots were acquired by a crew of 7 people over 9 days. Benchmark tests show a significant improvement in data quality compared to surface geophones. With this approach there are no cables or other seismic infrastructure on the surface. This significantly reduces

  1. Systematic comparison of model polymer nanocomposite mechanics.

    PubMed

    Xiao, Senbo; Peter, Christine; Kremer, Kurt

    2016-01-01

    Polymer nanocomposites render a range of outstanding materials from natural products such as silk, sea shells and bones, to synthesized nanoclay or carbon nanotube reinforced polymer systems. In contrast to the fast expanding interest in this type of material, the fundamental mechanisms of their mixing, phase behavior and reinforcement, especially for higher nanoparticle content as relevant for bio-inorganic composites, are still not fully understood. Although polymer nanocomposites exhibit diverse morphologies, qualitatively their mechanical properties are believed to be governed by a few parameters, namely their internal polymer network topology, nanoparticle volume fraction, particle surface properties and so on. Relating material mechanics to such elementary parameters is the purpose of this work. By taking a coarse-grained molecular modeling approach, we study an range of different polymer nanocomposites. We vary polymer nanoparticle connectivity, surface geometry and volume fraction to systematically study rheological/mechanical properties. Our models cover different materials, and reproduce key characteristics of real nanocomposites, such as phase separation, mechanical reinforcement. The results shed light on establishing elementary structure, property and function relationship of polymer nanocomposites. PMID:27623170

  2. Nanotube Reinforcement of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Saltysiak, Bethany

    2002-01-01

    Over the past five years there has been much excitement about the development of nanotubes and nanofibers and the potential that these materials may offer in enhancing electrical and mechanical properties of systems. The purpose of this paper is to present research into improving the mechanical performance of polymers by using nanofibers as a reinforcement to make high performance composite materials. This paper will present theoretical predictions of the composite modulus and then present the actual performance of the composite. Fabrication details will be given along with photos of the microstructure. The matrix material is polymethylmethacrylate (PMMA) and the nanofibers are vapor-grown carbon nanofibers produced by Pyrograph Products, Inc.

  3. Nanotube Reinforcement of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Saltysiak, Bethany

    2003-01-01

    Over the past five years there has been much excitement about the development of nanotubes and nanofibers and the potential that these materials may offer in enhancing electrical and mechanical properties of systems. The purpose of this paper is to present research into improving the mechanical performance of polymers by using nanofibers as a reinforcement to make high performance composite materials. This paper will present theoretical predictions of the composite modulus and then present the actual performance of the composite. Fabrication details will be given along with photos of the microstructure. The matrix material is polymethylmethacrylate (PMMA) and the nanofibers are vapor-grown carbon nanofibers produced by Pyrograph Products, Inc.

  4. Every reinforcer counts: reinforcer magnitude and local preference.

    PubMed Central

    Davison, Michael; Baum, William M

    2003-01-01

    Six pigeons were trained on concurrent variable-interval schedules. Sessions consisted of seven components, each lasting 10 reinforcers, with the conditions of reinforcement differing between components. The component sequence was randomly selected without replacement. In Experiment 1, the concurrent-schedule reinforcer ratios in components were all equal to 1.0, but across components reinforcer-magnitude ratios varied from 1:7 through 7:1. Three different overall reinforcer rates were arranged across conditions. In Experiment 2, the reinforcer-rate ratios varied across components from 27:1 to 1:27, and the reinforcer-magnitude ratios for each alternative were changed across conditions from 1:7 to 7:1. The results of Experiment 1 replicated the results for changing reinforcer-rate ratios across components reported by Davison and Baum (2000, 2002): Sensitivity to reinforcer-magnitude ratios increased with increasing numbers of reinforcers in components. Sensitivity to magnitude ratio, however, fell short of sensitivity to reinforcer-rate ratio. The degree of carryover from component to component depended on the reinforcer rate. Larger reinforcers produced larger and longer postreinforcer preference pulses than did smaller reinforcers. Similar results were found in Experiment 2, except that sensitivity to reinforcer magnitude was considerably higher and was greater for magnitudes that differed more from one another. Visit durations following reinforcers measured either as number of responses emitted or time spent responding before a changeover were longer following larger than following smaller reinforcers, and were longer following sequences of same reinforcers than following other sequences. The results add to the growing body of research that informs model building at local levels. PMID:13677611

  5. A novel error detection due to joint CRC aided denoise-and-forward network coding for two-way relay channels.

    PubMed

    Cheng, Yulun; Yang, Longxiang

    2014-01-01

    In wireless two-way (TW) relay channels, denoise-and-forward (DNF) network coding (NC) is a promising technique to achieve spectral efficiency. However, unsuccessful detection at relay severely deteriorates the diversity gain, as well as end-to-end pairwise error probability (PEP). To handle this issue, a novel joint cyclic redundancy code (CRC) check method (JCRC) is proposed in this paper by exploiting the property of two NC combined CRC codewords. Firstly, the detection probability bounds of the proposed method are derived to prove its efficiency in evaluating the reliability of NC signals. On the basis of that, three JCRC aided TW DNF NC schemes are proposed, and the corresponding PEP performances are also derived. Numerical results reveal that JCRC aided TW DNF NC has similar PEP comparing with the separate CRC one, while the complexity is reduced to half. Besides, it demonstrates that the proposed schemes outperform the conventional one with log-likelihood ratio threshold. PMID:25247205

  6. Millimeter-wave spectroscopy of CrC (X3Σ-) and CrCCH (X ˜ 6Σ+): Examining the chromium-carbon bond

    NASA Astrophysics Data System (ADS)

    Min, J.; Ziurys, L. M.

    2016-05-01

    Pure rotational spectroscopy of the CrC (X3Σ-) and CrCCH (X ˜ 6Σ+) radicals has been conducted using millimeter/sub-millimeter direct absorption methods in the frequency range 225-585 GHz. These species were created in an AC discharge of Cr(CO)6 and either methane or acetylene, diluted in argon. Spectra of the CrCCD were also recorded for the first time using deuterated acetylene as the carbon precursor. Seven rotational transitions of CrC were measured, each consisting of three widely spaced, fine structure components, arising from spin-spin and spin-rotation interactions. Eleven rotational transitions were recorded for CrCCH and five for CrCCD; each transition in these cases was composed of a distinct fine structure sextet. These measurements confirm the respective 3Σ- and 6Σ+ ground electronic states of these radicals, as indicated from optical studies. The data were analyzed using a Hund's case (b) Hamiltonian, and rotational, spin-spin, and spin-rotation constants have been accurately determined for all three species. The spectroscopic parameters for CrC were significantly revised from previous optical work, while those for CrCCH are in excellent agreement; completely new constants were established for CrCCD. The chromium-carbon bond length for CrC was calculated to be 1.631 Å, while that in CrCCH was found to be rCr—C = 1.993 Å — significantly longer. This result suggests that a single Cr—C bond is present in CrCCH, preserving the acetylenic structure of the ligand, while a triple bond exists in CrC. Analysis of the spin constants suggests that CrC has a nearby excited 1Σ+ state lying ˜16 900 cm-1 higher in energy, and CrCCH has a 6Π excited state with E ˜ 4800 cm-1.

  7. Fiber-reinforced glass

    SciTech Connect

    Beier, W.; Markman, S.

    1997-12-01

    Fiber-reinforced glass composites are glass or glass ceramic matrices reinforced with long fibers of carbon or silicon carbide. These composites are lighter than steel but just as strong as many steel grades, and can resist higher temperatures. They also have outstanding resistance to impact, thermal shock, and wear, and can be formulated to control thermal and electrical conductivity. With proper tooling, operations such as drilling, grinding, and turning can be completed in half the time required for non-reinforced glass. Currently, fiber-reinforced glass components are primarily used for handling hot glass or molten aluminum during manufacturing operations. But FRG is also under test as an engineering material in a variety of markets, including the aerospace, automotive, and semiconductor industries. Toward this end, research is being carried out to increase the size of components that can be delivered on a production basis, to develop economical methods of achieving complex near-net shapes, and to reduce the cycle time for production of specific shapes. This article focuses on the properties and applications of fiber-reinforced glass composites.

  8. Polymer precursors for ceramic composites

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1986-01-01

    The fiber composite approach to reinforced ceramics provides the possibility of achieving ceramics with high fracture toughness relative to monolithics. Fabrication of ceramic composites, however, demands low processing temperatures to avoid fiber degradation. Formation of complex shapes further requires small diameter fibers as well as techniques for infiltrating the matrix between fibers. Polymers offer low temperature processability, control of rheology not available with ceramic powders, and should serve as precursors to matrix fibers. In recent years, a number of polysilanes and polysilezanes were investigated as potential presursors. A review of candidate polymers is presented, including recent studies of silsesquioxanes.

  9. "Green" High-Temperature Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  10. A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer.

    PubMed

    Puskas, Judit E; Foreman-Orlowski, Elizabeth A; Lim, Goy Teck; Porosky, Sara E; Evancho-Chapman, Michelle M; Schmidt, Steven P; El Fray, Mirosława; Piatek, Marta; Prowans, Piotr; Lovejoy, Krystal

    2010-03-01

    This paper presents the synthesis and characterization of a polyisobutylene (PIB)-based nanostructured carbon-reinforced thermoplastic elastomer. This thermoplastic elastomer is based on a self-assembling block copolymer having a branched PIB core carrying -OH functional groups at each branch point, flanked by blocks of poly(isobutylene-co-para-methylstyrene). The block copolymer has thermolabile physical crosslinks and can be processed as a plastic, yet retains its rubbery properties at room temperature. The carbon-reinforced thermoplastic elastomer had more than twice the tensile strength of the neat polymer, exceeding the strength of medical grade silicone rubber, while remaining significantly softer. The carbon-reinforced thermoplastic elastomer displayed a high T(g) of 126 degrees C, rendering the material steam-sterilizable. The carbon also acted as a free radical trap, increasing the onset temperature of thermal decomposition in the neat polymer from 256.6 degrees C to 327.7 degrees C. The carbon-reinforced thermoplastic elastomer had the lowest water contact angle at 82 degrees and surface nano-topography. After 180 days of implantation into rabbit soft tissues, the carbon-reinforced thermoplastic elastomer had the thinnest tissue capsule around the microdumbbell specimens, with no eosinophiles present. The material also showed excellent integration into bones. PMID:20034664

  11. Evaluating The Influence of Postsession Reinforcement on Choice of Reinforcers

    PubMed Central

    Kodak, Tiffany; Lerman, Dorothea C; Call, Nathan

    2007-01-01

    Factors that influence reinforcer choice have been examined in a number of applied studies (e.g., Neef, Mace, Shea, & Shade, 1992; Shore, Iwata, DeLeon, Kahng, & Smith, 1997; Tustin, 1994). However, no applied studies have evaluated the effects of postsession reinforcement on choice between concurrently available reinforcers, even though basic findings indicate that this is an important factor to consider (Hursh, 1978; Zeiler, 1999). In this bridge investigation, we evaluated the influence of postsession reinforcement on choice of two food items when task responding was reinforced on progressive-ratio schedules. Participants were 3 children who had been diagnosed with developmental disabilities. Results indicated that response allocation shifted from one food item to the other food item under thinner schedules of reinforcement when no postsession reinforcement was provided. These findings suggest that the efficacy of instructional programs or treatments for problem behavior may be improved by restricting reinforcers outside treatment sessions. PMID:17970264

  12. History of reinforced plastics

    SciTech Connect

    Milewski, J.V.; Rosato, D.V.

    1981-01-01

    This history of reinforced plastics is told by combining the individual histories of each reinforcement and the way in which they added to and changed the direction and rate of growth of the industry. The early history is based on all resins, fillers, and fibers found in nature. Then came the Baekeland revolution with the first synthetic resin which lasted about 25 years, at which time synthetic fiber glass and polyester resin dramatically changed the industry. Now, for the 1980s, the high modulus fibers developed 10 to 20 years ago are reshaping the industry. 32 figures.

  13. Elastomer Reinforced with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  14. Evaluating the Influence of Postsession Reinforcement on Choice of Reinforcers

    ERIC Educational Resources Information Center

    Kodak, Tiffany; Lerman, Dorothea C.; Call, Nathan

    2007-01-01

    Factors that influence reinforcer choice have been examined in a number of applied studies (e.g., Neef, Mace, Shea, & Shade, 1992; Shore, Iwata, DeLeon, Kahng, & Smith, 1997; Tustin, 1994). However, no applied studies have evaluated the effects of postsession reinforcement on choice between concurrently available reinforcers, even though basic…

  15. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    ERIC Educational Resources Information Center

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  16. Joint shear strength of FRP reinforced concrete beam-column joints

    NASA Astrophysics Data System (ADS)

    Saravanan, Jagadeesan; Kumaran, Ganapathy

    2011-03-01

    An assessment of the joint shear strength of exterior concrete beam-column joints reinforced internally with Glass Fibre Reinforced Polymer (GFRP) reinforcements under monotonically increasing load on beams keeping constant load on columns is carried out in this study. Totally eighteen numbers of specimens are cast and tested for different parametric conditions like beam longitudinal reinforcement ratio, concrete strength, column reinforcement ratio, joint aspect ratio and influence of the joint stirrups at the joint. Also finite element analysis is performed to simulate the behaviour of the beam-column joints under various parametric conditions. Based on this study, a modified design equation is proposed for assessing the joint shear strength of the GFRP reinforced beam-column specimens based on the experimental results and the review of the prevailing design equations.

  17. Graphene/Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Macosko, Chris

    2010-03-01

    Graphite has attracted large attention as a reinforcement for polymers due to its ability to modify electrical conductivity, mechanical and gas barrier properties of host polymers and its potentially lower cost than carbon nanotubes. If graphite can be exfoliated into atomically thin graphene sheets, it is possible to achieve the highest property enhancements at the lowest loading. However, small spacing and strong van der Waals forces between graphene layers make exfoliation of graphite via conventional composite manufacturing strategies challenging. Recently, two different approaches to obtain exfoliated graphite prior to blending were reported: thermal treatment (Schniepp et al., JACS 2006) and chemical modification (Stankovich et al., J Mat Chem 2006). Both start from graphite oxide. We will describe and evaluate these exfoliation approaches and the methods used to produce graphene reinforced thermoplastics, particularly polyester, polycarbonate and polyurethane nanocomposites. Three different dispersion methods - melt blending, solution mixing and in-situ polymerization -- are compared. Characterization of dispersion quality is illustrated with TEM, rheology and in electrical conductivity, tensile modulus and gas barrier property improvement.

  18. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  19. Oscillations following periodic reinforcement.

    PubMed

    Monteiro, Tiago; Machado, Armando

    2009-06-01

    Three experiments examined behavior in extinction following periodic reinforcement. During the first phase of Experiment 1, four groups of pigeons were exposed to fixed interval (FI 16s or FI 48s) or variable interval (VI 16s or VI 48s) reinforcement schedules. Next, during the second phase, each session started with reinforcement trials and ended with an extinction segment. Experiment 2 was similar except that the extinction segment was considerably longer. Experiment 3 replaced the FI schedules with a peak procedure, with FI trials interspersed with non-food peak interval (PI) trials that were four times longer. One group of pigeons was exposed to FI 20s PI 80s trials, and another to FI 40s PI 160s trials. Results showed that, during the extinction segment, most pigeons trained with FI schedules, but not with VI schedules, displayed pause-peck oscillations with a period close to, but slightly greater than the FI parameter. These oscillations did not start immediately after the onset of extinction. Comparing the oscillations from Experiments 1 and 2 suggested that the alternation of reconditioning and re-extinction increases the reliability and earlier onset of the oscillations. In Experiment 3 the pigeons exhibited well-defined pause-peck cycles since the onset of extinction. These cycles had periods close to twice the value of the FI and lasted for long intervals of time. We discuss some hypotheses concerning the processes underlying behavioral oscillations following periodic reinforcement. PMID:18992793

  20. Reinforcing Saccadic Amplitude Variability

    ERIC Educational Resources Information Center

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  1. The new UN CRC General Comment 13: "The right of the child to freedom from all forms of violence"--changing how the world conceptualizes child protection.

    PubMed

    Svevo-Cianci, Kimberly A; Herczog, Maria; Krappmann, Lothar; Cook, Philip

    2011-12-01

    The UN Committee on the Rights of the Child established CRC General Comment 13 (April 2011) to address today's unabating high rates of violence against children globally despite CRC advances. GC13 provides clear interpretations and stronger detail to supplement the legal language of CRC Article 19, intended to establish protection of children from all forms of violence. Through GC13, the Committee seeks to strengthen policy and practice implementation for all children, including every nation's most vulnerable, by clearly establishing measurable indicators: structure, process and outcomes to children-through improved technical information, expertise and assistance. Based on knowledge and experience gained over the 22 years since the CRC was adopted, GC13 advances best practice approaches and technical resources for States Parties and professionals on preventing violence against children, and on strengthening protection programs, systems, services, research, monitoring, evaluation and reporting. This article addresses child rights and protection issues which have been raised during this period, as well as during the consultation and resulting dialogues, such as the rights of children in early/forced marriage, and the role of the State Party as responsible caregiver when parents or families are not capable of providing protection. PMID:22054698

  2. Quasicrystalline particulate reinforced aluminum composite

    SciTech Connect

    Anderson, I.E.; Biner, S.B.; Sordelet, D.J.; Unal, O.

    1997-07-01

    Particulate reinforced aluminum and aluminum alloy composites are rapidly emerging as new commercial materials for aerospace, automotive, electronic packaging and other high performance applications. However, their low processing ductility and difficulty in recyclability have been the key concern. In this study, two composite systems having the same aluminum alloy matrix, one reinforced with quasicrystals and the other reinforced with the conventional SiC reinforcements were produced with identical processing routes. Their processing characteristics and tensile mechanical properties were compared.

  3. CO2CRC's Otway Residual Saturation and Dissolution Test: Using Reactive Ester Tracers to Determine Residual CO2 Saturation

    NASA Astrophysics Data System (ADS)

    Myers, M.; Stalker, L.; LaForce, T.; Pejcic, B.; Dyt, C.; Ho, K.; Ennis-King, J.

    2013-12-01

    Residual trapping, that is CO2 held in the rock pore space due to capillarity, is an important storage mechanism in geo-sequestration of over the short to medium term (up to 1000 years). As such residual CO2 saturation is a critical reservoir parameter for assessing the storage capacity and security of carbon capture and storage (CCS). As a component of the CO2CRC's Residual Gas Saturation and Dissolution Test at the CO2CRC Otway Project site in Victoria (Australia), we have recently tested a suite of reactive esters (triacetin, tripropionin and propylene glycol diacetate) in a single well chemical tracer test to determine residual CO2 saturation. The goal of this project was to assess and validate a suite of possible tests that could be implemented to determine residual CO2 saturation. For this test, the chemical tracers were injected with a saturated CO2/water mixture into the formation (that is already at residual CO2 saturation) where they were allowed to 'soak' for approximately 10 days allowing for the partial hydrolysis of the esters to their corresponding carboxylic acids and alcohols. Water containing the tracers was then produced from the well resulting in over 600 tracer samples over a period of 12 hours. A selection of these samples were analysed for tracer content and to establish tracer breakthrough curves. To understand the behaviour of these chemical tracers in the downhole environment containing residually trapped supercritical CO2 and formation water, it is necessary to determine the supercritical CO2/water partition coefficients. We have previously determined these in the laboratory (Myers et al., 2012) and they are used here to model the tracer behaviour and provide an estimate of the residual CO2 saturation. Two different computational simulators were used to analyse the tracer breakthrough profiles. The first is based on simple chromatographic retardation and has been used extensively in single well chemical tracer tests to determine residual

  4. Matching and Conditioned Reinforcement Rate

    ERIC Educational Resources Information Center

    Shahan, Timothy A.; Podlesnik, Christopher A.; Jimenez-Gomez, Corina

    2006-01-01

    Attempts to examine the effects of variations in relative conditioned reinforcement rate on choice have been confounded by changes in rates of primary reinforcement or changes in the value of the conditioned reinforcer. To avoid these problems, this experiment used concurrent observing responses to examine sensitivity of choice to relative…

  5. Autoshaping Chicks with Heat Reinforcement: The Role of Stimulus-Reinforcer and Response-Reinforcer Relations

    ERIC Educational Resources Information Center

    Wasserman, Edward A.; And Others

    1975-01-01

    The present series of experiments attempted to analyze more fully the contributions of stimulus-reinforcer and response-reinforcer relations to autoshaping within a single conditioning situation. (Author)

  6. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC).

    PubMed

    Hammoudi, Abeer; Song, Fei; Reed, Karen R; Jenkins, Rosalind E; Meniel, Valerie S; Watson, Alastair J M; Pritchard, D Mark; Clarke, Alan R; Jenkins, John R

    2013-10-25

    Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC. PMID:23998936

  7. Germline polymorphisms in genes involved in the IGF1-pathway predict efficacy of cetuximab in wild-type KRAS mCRC patients

    PubMed Central

    Winder, Thomas; Zhang, Wu; Yang, Dongyun; Ning, Yan; Bohanes, Pierre; Gerger, Armin; Wilson, Peter M.; Pohl, Alexandra; Mauro, David J.; Langer, Christiane; Rowinsky, Eric K.; Lenz, Heinz-Josef

    2010-01-01

    Purpose The insulin-like growth factor 1 (IGF1) signalling pathway is an important growth-regulatory pathway, which plays a crucial role in colorectal cancer (CRC) proliferation, differentiation, migration, angiogenesis, and apoptosis. Previous studies showed that hyperactivation of the IGF1-Receptor (IGF1R) may result in resistance to anti-EGFR targeted treatment. We tested whether germline variations within the IGF1-pathway are associated with clinical outcome in wild-type KRAS (wt KRAS) drug-refractory metastatic CRC (mCRC) patients who were treated with cetuximab monotherapy (IMC-0144). Experimental Design Formalin-fixed paraffin-embedded (FFPE) tissue samples of 130 drug-refractory mCRC patients enrolled in IMC-0144, a phase II clinical trial of cetuximab monotherapy, were analyzed. gDNA was extracted from dissected FFPE tumor tissue and KRAS mutation status and six potentially functional IGF1 and IGF1R polymorphisms were analyzed using direct DNA-sequencing or PCR-RFLP. Tumor response analysis was based on recursive partitioning and survival analyses were based on univariate and multivariate hazard regression models. Results In univariate and multivariate analyses five IGF-pathway SNPs were significantly associated with progression-free-survival (PFS) and/or overall survival (OS). In multivariate combined risk allele analysis the additive model for PFS and OS was significantly associated with the number of risk alleles in wt KRAS patients (p=0.001 and p=0.02, respectively). In addition, wt KRAS patients harbouring IGF1 rs2946834 A/A genotype had a 50 % ORR compared to 0% for A/G genotype. Conclusions These results indicate that IGF1-pathway polymorphisms are potential predictive/prognostic molecular markers for cetuximab efficacy in wt KRAS mCRC patients. Prospective biomarker embedded clinical trials are warranted to validate our findings. PMID:20935157

  8. Light weight polymer matrix composite material

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)

    1988-01-01

    A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750 F in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.

  9. Light weight polymer matrix composite material

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)

    1991-01-01

    A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750.degree. F. in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.

  10. Insitu grafting silica nanoparticles reinforced nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Han, Chun-Rui; Duan, Jiu-Fang; Xu, Feng; Sun, Run-Cang

    2013-10-01

    Highly flexible nanocomposite hydrogels were prepared by using silica nanoparticles (SNPs) as fillers and multi-functional cross-links to graft hydrophilic poly(acrylic acid) (PAA) by free radical polymerization from an aqueous solution. The SNPs were collected by neighboring polymer chains and dispersed uniformly within a PAA matrix. The mechanical properties of the nanocomposite hydrogels were tailored by the concentration of SNPs according to the percolation model. It was proposed that covalent bonds of adsorbed chains on the filler surface resulted in the formation of a shell of an immobilized glassy layer and trapped entanglements, where the glassy polymer layer greatly enhanced the elastic modulus and the release of trapped entanglements at deformation contributed to the viscoelastic properties.Highly flexible nanocomposite hydrogels were prepared by using silica nanoparticles (SNPs) as fillers and multi-functional cross-links to graft hydrophilic poly(acrylic acid) (PAA) by free radical polymerization from an aqueous solution. The SNPs were collected by neighboring polymer chains and dispersed uniformly within a PAA matrix. The mechanical properties of the nanocomposite hydrogels were tailored by the concentration of SNPs according to the percolation model. It was proposed that covalent bonds of adsorbed chains on the filler surface resulted in the formation of a shell of an immobilized glassy layer and trapped entanglements, where the glassy polymer layer greatly enhanced the elastic modulus and the release of trapped entanglements at deformation contributed to the viscoelastic properties. Electronic supplementary information (ESI) available: FTIR spectra of SNP after silane treatment, dynamic oscillatory shear measurements as a function of frequency, constrained polymer chain analysis by a change in the peak height in loss factor spectra, molecular weight of grafted chains at different stages of gelation, prediction of the SNP reinforcing mechanism in the

  11. Application of PET2OGS to CO2 storage in a saline aquifer of the CO2CRC Otway project

    NASA Astrophysics Data System (ADS)

    Park, Chan-Hee; Shinn, Young Jae

    2014-05-01

    PET2OGS, a set of algorithms that integrate the static model (Petrel) with the dynamic model (OpenGeoSys), is applied to model CO2 storage in a saline aquifer. The Otway Basin is the first demonstration site of the deep geological storage of carbon dioxide as part of carbon capture and storage (CCS) technology in Australia. During Stage 2 of the CO2CRC Otway project, CO2 was injected into a saline aquifer along the injection interval of 1435 - 1450 m in a well. Upon conversion and adaption of the geological model into the dynamic model, the simulation of CO2 injection at 159 tone/day for 5 months is carried out for a hypothetical scenario. CO2 storage in each facies are analyzed for storage capacities. The discrete nature of CO2 plume behaviors known in multiphase flow in heterogeneous media is observed in the numerical simulation of CO2 storage. Sensitivity analysis of the storage capacity with respect to facies, porosity, and permeability is provided.

  12. MODELING FUNCTIONALLY GRADED INTERPHASE REGIONS IN CARBON NANOTUBE REINFORCED COMPOSITES

    NASA Technical Reports Server (NTRS)

    Seidel, G. D.; Lagoudas, D. C.; Frankland, S. J. V.; Gates, T. S.

    2006-01-01

    A combination of micromechanics methods and molecular dynamics simulations are used to obtain the effective properties of the carbon nanotube reinforced composites with functionally graded interphase regions. The multilayer composite cylinders method accounts for the effects of non-perfect load transfer in carbon nanotube reinforced polymer matrix composites using a piecewise functionally graded interphase. The functional form of the properties in the interphase region, as well as the interphase thickness, is derived from molecular dynamics simulations of carbon nanotubes in a polymer matrix. Results indicate that the functional form of the interphase can have a significant effect on all the effective elastic constants except for the effective axial modulus for which no noticeable effects are evident.

  13. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  14. Dynamic tensile strength of glass fiber reinforced pultruded composites

    SciTech Connect

    Dutta, P.K.; Kumar, M.M.; Hui, D.

    1994-12-31

    This paper discusses the stress-strain behavior, fracture strength, influence of low temperature, and energy absorption in the diametral tensile splitting fracturing of a Glass Fiber Reinforced Polymer Composite. Experiments were conducted at low-temperature in a thermal chamber installed on a servo-hydraulic universal testing machine. The tensile strength was determined by diametral compression of disc samples at 24, {minus}5 and {minus}40 C.

  15. Reinforcement Learning Trees

    PubMed Central

    Zhu, Ruoqing; Zeng, Donglin; Kosorok, Michael R.

    2015-01-01

    In this paper, we introduce a new type of tree-based method, reinforcement learning trees (RLT), which exhibits significantly improved performance over traditional methods such as random forests (Breiman, 2001) under high-dimensional settings. The innovations are three-fold. First, the new method implements reinforcement learning at each selection of a splitting variable during the tree construction processes. By splitting on the variable that brings the greatest future improvement in later splits, rather than choosing the one with largest marginal effect from the immediate split, the constructed tree utilizes the available samples in a more efficient way. Moreover, such an approach enables linear combination cuts at little extra computational cost. Second, we propose a variable muting procedure that progressively eliminates noise variables during the construction of each individual tree. The muting procedure also takes advantage of reinforcement learning and prevents noise variables from being considered in the search for splitting rules, so that towards terminal nodes, where the sample size is small, the splitting rules are still constructed from only strong variables. Last, we investigate asymptotic properties of the proposed method under basic assumptions and discuss rationale in general settings. PMID:26903687

  16. Tribology of polymer composites

    SciTech Connect

    Friedrich, K.

    1993-12-31

    Polymer composites are more and more used as structural components which are very often subjected to friction and wear loadings under use. This overview describes the following cases: (1) short fiber/thermoplastic matrix composites and their friction and wear properties as a function of both microstructural composition and external testing conditions. Special attention is focused on the effects of different polymer matrices, fiber reinforcements, and additional internal lubricants on the coefficient of friction and the specific wear rate of these materials when sliding against hard steel counterparts. Further effects on these tribological properties due to changes in testing temperature, sliding speed and contact pressure are outlined; (2) results of sliding wear experiments with continuous glass, carbon or aramid fiber/polymer matrix composites against steel counterparts. They were used to develop a hypothetical model composite with optimum wear resistance. This was achieved for hybrids with carbon fibers parallel and aramid fibers normal to the sliding direction of the counterpart; and (3) the friction and wear performance of thin layer composites strengthened with steel backeners to sustain very high pressure loadings during sliding wear.

  17. CRC handbook of radiobiology

    SciTech Connect

    Prasad, K.N.

    1984-01-01

    The author presents Development of Radiobiology. A Review. Basic Cell Biology. Physics of Radiation Biology. Cellular Radiation Damage. Modifications of Cellular Radiation Damage. Repair of Radiation Damage. Molecular Radiation Biology. Radiation Syndromes and their Modifications. Radiation Damage of Skin and Mucous Membrane. Radiation Damage of Nervous Tissue. Radiation Damage of Reproductive Organs. Radiation Damage of Other Organ Systems. Radiation Immunology. Background, Medical and Commercial Sources. Radiation Injuries to Human Fetuses. Radiation-Induced Genetic Damage. Radiation Carcinogenesis: Tissue Culture Model. Radiation Carcinogenesis: Animal Model. Radiation Carcinogenesis: Human Model. Radiation Carcinogenesis: Secondary Neoplasms. After Therapy of Tumors. Other Late Effects: Aging, Cataract, Aplastic Anemia. Maximum Permissible Dose (MPD). Radiation Response of Human Tumor. Radioisotopes in Biology and Medicine.

  18. Fire Retardancy of Natural Fibre Reinforced Sheet Moulding Compound

    NASA Astrophysics Data System (ADS)

    Hapuarachchi, T. D.; Ren, G.; Fan, M.; Hogg, P. J.; Peijs, T.

    2007-07-01

    Due to environmental awareness and economical considerations, natural fibre reinforced polymer composites seem to present a viable alternative to synthetic fibre reinforced polymer composites such as glass fibres. This is a feasibility study to asses the potential application of natural fibre reinforced sheet moulding compound materials (NF-SMC) for the use in building applications, with particular emphases to their reaction to fire. The reinforcing fibres in this study were industrial hemp fibres. The cone calorimeter which asses the fire hazard of materials by Heat Release Rate (HRR) was used, radiant heat fluxes of 25 and 50 kW/m2 were utilised to simulate an ignition source and fully developed room fire conditions respectively. The results acquired here demonstrate that the NF-SMC can compete with current building materials in terms of their fire behaviour. The peak heat release value for the fire retardant (FR) NF-SMC was 176 kW/m2 conversely for a non-FR NF-SMC was 361 kW/m2.

  19. Laser transmission welding of long glass fiber reinforced thermoplastics

    NASA Astrophysics Data System (ADS)

    van der Straeten, Kira; Engelmann, Christoph; Olowinsky, Alexander; Gillner, Arnold

    2015-03-01

    Joining fiber reinforced polymers is an important topic for lightweight construction. Since classical laser transmission welding techniques for polymers have been studied and established in industry for many years joint-strengths within the range of the base material can be achieved. Until now these processes are only used for unfilled and short glass fiber-reinforced thermoplastics using laser absorbing and laser transparent matrices. This knowledge is now transferred to joining long glass fiber reinforced PA6 with high fiber contents without any adhesive additives. As the polymer matrix and glass fibers increase the scattering of the laser beam inside the material, their optical properties, changing with material thickness and fiber content, influence the welding process and require high power lasers. In this article the influence of these material properties (fiber content, material thickness) and the welding parameters like joining speed, laser power and clamping pressure are researched and discussed in detail. The process is also investigated regarding its limitations. Additionally the gap bridging ability of the process is shown in relation to material properties and joining speed.

  20. Reversible Thermal-Stiffening in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Senses, Erkan; Akcora, Pinar

    2015-03-01

    Silica nanoparticles adsorbed with a high glass-transition temperature polymer, PMMA (Tg: 130 °C) are shown to uniformly disperse in a low-Tg polymer matrix, PEO (Tg: -60 °C). These nanocomposites exhibit an unusual reversible liquid-to-solid transition at temperatures above Tg's of both polymers. Mechanical adaptivity of PEO nanocomposites to temperatures underlies the existence of dynamically asymmetric bound layers on particles, and more importantly their impact on mechanical behavior, which sets these materials apart from conventional polymer composites that soften upon heating. Moreover, the growth rate of elastic moduli at temperatures above Tg of PMMA presents an Arrhenius-type relaxation with activation energy well-matching with the α- β merging region of PMMA. These results suggest that the mobility of the surface-bound polymer is essential for reinforcement contrary to commonly accepted glassy-layer hypothesis.

  1. Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  2. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings. PMID:27299693

  3. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  4. In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)

    2013-01-01

    A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.

  5. Reinforcement in opinion dynamics

    NASA Astrophysics Data System (ADS)

    Volovik, Daniel

    I consider the evolution and acceptance of a new opinion in a population of unaware agents by using physics-based models of contagion spread. These models rely upon agent-based dynamics, in which an agent changes opinion by interactions with neighbors according to specific interactions. Most of these models have the feature that only a single input is required to change the opinion of an agent --- an agent has no commitment to its current opinion and accepts a new idea at the slightest provocation. These single-input models fail to account for people's confidence in their own beliefs. Thus I study the concept of social reinforcement --- that an agent adopts a new opinion only after multiple reinforcing prompts. Building on single-input models, I introduce two models of opinion spreading that incorporate a social reinforcement mechanism. (a) In the irreversible innovation and in the transient fad spreading models, a development is initially known only to a small portion of the population and subsequently spreads. An individual requires M > 1 interactions with an adopter before adopting the development. The ultimate extent of a transient fad depends critically on the characteristic time the fad keeps the attention of an adopting agent. (b) In the confident voter model, a voter can be in one of two opinion states and can additionally have two levels of commitment to an opinion: confident and vacillating. Upon interacting with an agent of a different opinion, a confident voter becomes less committed, or vacillating, but does not change opinion. However, a vacillating agent changes opinion by interacting with an agent of a different opinion. In two dimensions, the distribution of consensus times is characterized by two distinct times one that scales linearly with N and another that appears to scale as N 3/2. The longer time arises from configurations that fall into long-lived states that consist of multiple single-opinion stripes before consensus is reached.

  6. All-round joining method with carbon fiber reinforced interface

    NASA Astrophysics Data System (ADS)

    Miwa, Noriyoshi; Tanaka, Kazunori; Kamiya, Yoshiko; Nishi, Yoshitake

    2008-08-01

    Carbon fiber reinforced polymer (CFRP) has been recently applied to not only wing, but also fan blades of turbo fan engines. To prevent impact force, leading edge of titanium was often mounted on the CFRP fan blades with adhesive force. In order to enhance the joining strength, a joining method with carbon fiber reinforced interface has been developed. By using nickel-coated carbon fibers, a joining sample with carbon fiber-reinforced interface between CFRP and CFRM has been successfully developed. The joining sample with nickel-coated carbon fiber interface exhibits the high tensile strength, which was about 10 times higher than that with conventional adhesion. On the other hand, Al-welding methods to steel, Cu and Ti with carbon fiber reinforced interface have been successfully developed to lighten the parts of machines of racing car and airplane. Carbon fibers in felt are covered with metals to protect the interfacial reaction. The first step of the welding method is that the Al coated felt is contacted and wrapped with molten aluminum solidified under gravity pressure, whereas the second step is that the felt with double layer of Ni and Al is contacted and wrapped with molten steel (Cu or Ti) solidified under gravity pressure. Tensile strength of Al-Fe (Cu or Ti) welded sample with carbon fiber reinforced interface is higher than those of Al-Fe (Cu or Ti) welded sample.

  7. Selective Reinforcement to Enhance the Structural Performance of Metallic Compression Panels

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    2004-01-01

    An experimental and analytical investigation of the influence of selective reinforcement on metallic panels with cutouts was conducted. Selective reinforcement was shown to be a weight effective concept for increasing structural performance of panels with cutouts designed to carry loads into the post-buckled regime. For instance, a selectively reinforced aluminum panel under shear load exhibited a 68 percent increase in specific-buckling load as compared to a geometrically comparable unreinforced aluminum panel. In comparison, a quasi-isotropic carbon-fiber-reinforced-polymer composite panel only produced a 45 percent higher specific-buckling load than the same unreinforced aluminum panel. Selective reinforcement offers the potential to tailor structural response through local strengthening and stiffening the structure for a broad range of structural application.

  8. Fiber reinforced superalloys

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Signorelli, Robert A.; Caulfield, Thomas; Tien, John K.

    1987-01-01

    Improved performance of heat engines is largely dependent upon maximum cycle temperatures. Tungsten fiber reinforced superalloys (TFRS) are the first of a family of high temperature composites that offer the potential for significantly raising hot component operating temperatures and thus leading to improved heat engine performance. This status review of TFRS research emphasizes the promising property data developed to date, the status of TFRS composite airfoil fabrication technology, and the areas requiring more attention to assure their applicability to hot section components of aircraft gas turbine engines.

  9. The beta-ketoadipate pathway of Acinetobacter baylyi undergoes carbon catabolite repression, cross-regulation and vertical regulation, and is affected by Crc.

    PubMed

    Bleichrodt, Fenja S; Fischer, Rita; Gerischer, Ulrike C

    2010-05-01

    The degradation of many structurally diverse aromatic compounds in Acinetobacter baylyi is accomplished by the beta-ketoadipate pathway. In addition to specific induction of expression by certain aromatic compounds, this pathway is regulated by complex mechanisms at multiple levels, which are the topic of this study. Multiple operons feeding into the beta-ketoadipate pathway are controlled by carbon catabolite repression (CCR) caused by succinate plus acetate. The pathways under study enable the catabolism of benzoate (ben), catechol (catA), cis,cis-muconate (catB,C,I,J,F,D), vanillate (van), hydroxycinnamates (hca), dicarboxylates (dca), salicylate (sal), anthranilate (ant) and benzyl esters (are). For analysis of CCR at the transcriptional level a luciferase reporter gene cassette was introduced into the operons. The Crc (catabolite repression control) protein is involved in repression of all operons (except for catA), as demonstrated by the analysis of respective crc strains. In addition, cross-regulation was demonstrated for the vanA,B, hca and dca operons. The presence of protocatechuate caused transcriptional repression of the vanA,B- and hca-encoded funnelling pathways (vertical regulation). Thus the results presented extend the understanding both of CCR and of the effects of Crc for all aromatic degradative pathways of A. baylyi and increase the number of operons known to be controlled by two additional mechanisms, cross-regulation and vertical regulation. PMID:20110298

  10. Temporal discrimination and delayed reinforcement.

    PubMed

    Buriticá, Jonathan; Vilchez, Zirahuén; Santos, Cristiano Valerio Dos

    2016-09-01

    We attempted to determine the effect of reinforcement delay on time discrimination in an interval bisection task. Three groups of rats were exposed to immediate, delayed reinforcement and longer signals with immediate reinforcement in acquisition and test. Results show differences in the amount of training necessary to reach the acquisition criteria, the Weber fraction and the range or overall stimulus control. The results suggest an increased difficulty to discriminate the difference among durations rather than an increase in estimated time as main effect of delayed reinforcement. PMID:27431922

  11. Polymer Informatics

    NASA Astrophysics Data System (ADS)

    Adams, Nico

    Polymers are arguably the most important set of materials in common use. The increasing adoption of both combinatorial as well as high-throughput approaches, coupled with an increasing amount of interdisciplinarity, has wrought tremendous change in the field of polymer science. Yet the informatics tools required to support and further enhance these changes are almost completely absent. In the first part of the chapter, a critical analysis of the challenges facing modern polymer informatics is provided. It is argued, that most of the problems facing the field today are rooted in the current scholarly communication process and the way in which chemists and polymer scientists handle and publish data. Furthermore, the chapter reviews existing modes of representing and communicating polymer information and discusses the impact, which the emergence of semantic technologies will have on the way in which scientific and polymer data is published and transmitted. In the second part, a review of the use of informatics tools for the prediction of polymer properties and in silico design of polymers is offered.

  12. Polymers & People

    ERIC Educational Resources Information Center

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  13. Recycling of Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  14. Fibre reinforced composites in aircraft construction

    NASA Astrophysics Data System (ADS)

    Soutis, C.

    2005-02-01

    Fibrous composites have found applications in aircraft from the first flight of the Wright Brothers’ Flyer 1, in North Carolina on December 17, 1903, to the plethora of uses now enjoyed by them on both military and civil aircrafts, in addition to more exotic applications on unmanned aerial vehicles (UAVs), space launchers and satellites. Their growing use has risen from their high specific strength and stiffness, when compared to the more conventional materials, and the ability to shape and tailor their structure to produce more aerodynamically efficient structural configurations. In this paper, a review of recent advances using composites in modern aircraft construction is presented and it is argued that fibre reinforced polymers, especially carbon fibre reinforced plastics (CFRP) can and will in the future contribute more than 50% of the structural mass of an aircraft. However, affordability is the key to survival in aerospace manufacturing, whether civil or military, and therefore effort should be devoted to analysis and computational simulation of the manufacturing and assembly process as well as the simulation of the performance of the structure, since they are intimately connected.

  15. BEHAVIORAL MECHANISMS UNDERLYING NICOTINE REINFORCEMENT

    PubMed Central

    Rupprecht, Laura E.; Smith, Tracy T.; Schassburger, Rachel L.; Buffalari, Deanne M.; Sved, Alan F.; Donny, Eric C.

    2015-01-01

    Cigarette smoking is the leading cause of preventable deaths worldwide and nicotine, the primary psychoactive constituent in tobacco, drives sustained use. The behavioral actions of nicotine are complex and extend well beyond the actions of the drug as a primary reinforcer. Stimuli that are consistently paired with nicotine can, through associative learning, take on reinforcing properties as conditioned stimuli. These conditioned stimuli can then impact the rate and probability of behavior and even function as conditioning reinforcers that maintain behavior in the absence of nicotine. Nicotine can also act as a conditioned stimulus, predicting the delivery of other reinforcers, which may allow nicotine to acquire value as a conditioned reinforcer. These associative effects, establishing non-nicotine stimuli as conditioned stimuli with discriminative stimulus and conditioned reinforcing properties as well as establishing nicotine as a conditioned stimulus, are predicted by basic conditioning principles. However, nicotine can also act non-associatively. Nicotine directly enhances the reinforcing efficacy of other reinforcing stimuli in the environment, an effect that does not require a temporal or predictive relationship between nicotine and either the stimulus or the behavior. Hence, the reinforcing actions of nicotine stem both from the primary reinforcing actions of the drug (and the subsequent associative learning effects) as well as the reinforcement enhancement action of nicotine which is non-associative in nature. Gaining a better understanding of how nicotine impacts behavior will allow for maximally effective tobacco control efforts aimed at reducing the harm associated with tobacco use by reducing and/or treating its addictiveness. PMID:25638333

  16. Survival improvements associated with access to biological agents: Results from the South Australian (SA) metastatic colorectal cancer (mCRC) registry.

    PubMed

    Tomita, Yoko; Karapetis, Christos S; Ullah, Shahid; Townsend, Amanda R; Roder, David; Beeke, Carol; Roy, Amitesh C; Padbury, Rob; Price, Timothy J

    2016-01-01

    Background Randomized controlled trials evaluating biological therapy have shown improvements in survival from metastatic colorectal cancer (mCRC). Subjects in the trials represent a selected proportion of mCRC patients. We have the potential to assess the impact of biological therapy on mCRC outcomes, particularly the effect of bevacizumab, from a population-based clinical registry by comparing two time cohorts with differences in therapy accessibility. Material and methods A retrospective cohort study was performed by analyzing the South Australian (SA) mCRC registry data based on diagnosis in two time periods: 1 February 2006-31 May 2009 (Cohort A) versus 1 June 2009-30 June 2014 (Cohort B). The demarcation for these cohorts was chosen to reflect the change in accessibility of bevacizumab from July 2009. Results Between February 2006 and June 2014, 3308 patients were identified through the SA mCRC registry: 1464 (44%) in Cohort A and 1844 (56%) in Cohort B. 61 and 59% patients in Cohort A and B, respectively received systemic therapy (p = 0.26). Major differences in clinical characteristics were: biological therapy use 18 versus 33% (p < 0.001) and clinical trial enrolment 12 versus 7% (p < 0.001). Uptake of bevacizumab was: first-line 9 versus 42% and second-line 6 versus 16%. Median overall survival (mOS) for the entire group was: 13.1 versus 17.1 months (HR 0.80; 95% CI 0.74-0.87). Evaluation restricted to patients receiving systemic therapy was 20.5 versus 25.2 months (HR 0.80; 95% CI 0.72-0.89). Multivariate analysis indicated that biological therapy and Cohort B were associated with improved mOS. Conclusion The expected rise in bevacizumab administration was observed in Cohort B. Its use in first-line therapy remained relatively low even after the reimbursement, potentially reflecting real world practice where comorbidities, primary in-situ and age may contraindicate its use. mOS improvement over time was attributed to increased access to

  17. Accidental potassium dichromate poisoning. Toxicokinetics of chromium by ICP-MS-CRC in biological fluids and in hair.

    PubMed

    Goullé, J P; Saussereau, E; Grosjean, J; Doche, C; Mahieu, L; Thouret, J M; Guerbet, M; Lacroix, C

    2012-04-10

    Intoxications by chromium (Cr) compounds are very life threatening and often lethal. After oral ingestion of 2 or 3g of hexavalent Cr (Cr(VI)), gastrointestinal injury, but also hepatic and renal failure, often occurs which each leads to a fatal outcome in most patients. Cellular toxicity is associated with mitochondrial and lysosomal injury by biologically Cr(VI) reactive intermediates and reactive oxygen species. After Cr(VI) has been absorbed, there is not much that can be done except to control the main complications as the treatment is only symptomatic. The biotransformation of Cr(VI) to Cr(III) reduces the toxicity because the trivalent form does not cross cellular membranes as rapidly. In fact, more than 80% of Cr(VI) is cleared in urine as Cr(III). We report the case of a 58-year-old male patient who was admitted to hospital after accidental oral ingestion of a 30 g/L potassium dichromate (the estimated amount of ingested Cr is about 3g). ICP-MS equipped with a collision/reaction cell (CRC) and validated methods were used to monitor plasma (P), red blood cells (RBCs), urine (U) and hair chromium. For urine the results were expressed per gram of creatinine. After 7 days in the intensive care unit, the patient was discharged without renal or liver failure. P, RBC and U were monitored during 49 days. During this period Cr decreased respectively from 2088 μg/L to 5 μg/L, 631 μg/L to 129 μg/L and 3512 μg/g to 10 μg/g. The half-life was much shorter in P than in RBC as the poison was more quickly cleared from the P than from the RBC, suggesting a cellular trapping of the metal. Hair was collected 2 months after the intoxication. We report a very rare case of survival after accidental Cr poisoning which has an extremely poor prognosis and usually leads to rapid death. For the first time, this toxicokinetic study highlights a sequestration of chromium in the RBC and probably in all the cells. PMID:22024652

  18. High-resolution fault detection at the CO2CRC Otway Project site using shear-wave reflection seismics

    NASA Astrophysics Data System (ADS)

    Beilecke, Thies; Krawczyk, Charlotte M.; Ziesch, Jennifer; Tanner, David C.

    2015-04-01

    In the framework of the project PROTECT (PRedition Of deformation To Ensure Carbon Traps) shear (SH) wave reflection data were processed and interpreted that had been collected at the CO2CRC Otway Project Site, Australia in November 2013. The aim was to supplement the existing 3-D exploration seismic data set in the uppermost 400 m targeting the upward continuation of interpreted faults at larger depth, and the detection of possible small-scale faults. Using LIAG's equipment for SH-wave seismic acquisition (hydraulic vibrator MHV4S with source point spacing of 4 m, and SH-geophones mounted on a 240-m-long land streamer with 1 m spacing), three profiles were acquired. Data processing comprised geometry setup, elevation statics, surface-wave noise suppression via fk-filtering, velocity determination after DMO-correction, pre-stack time migration, and 1-D depth conversion. Fundamental steps of data pre-processing turned out to be spectral balancing and fk-filtering. Surprisingly, the application of refraction statics partly improved the data quality on one of three profiles drastically, even though the survey had been carried out on road pavement. However, this probably can be attributed to the relatively high refractor velocity of more than 700 m/s in the survey area. The interpretation of profiles PROTECT 1 and PROTECT 2 shows that the deep fault zones do in fact reach the surface. In the case of PROTECT 1, a reverse fault structure is evidenced, that can be linked to the expected normal fault structure at ca. 400 m depth. This reverse fault seems to correlate with a step in surface topography. In the case of PROTECT 2 the expected near-surface extrapolation of the interpreted deep normal fault could be imaged. PROTECT 3 reveals an unexpected fault zone above 400 m depth, which does not seem to be linked to greater depth. Pre-stack time migration and subsequent depth conversion yielded the best images so far, with a vertical resolution of ca. 5 m in the upper part

  19. Mechanical properties of heterophase polymer blends of cryogenically fractured soy flour composite filler and poly(styrene-butadiene)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reinforcement effect of cryogenically fractured soy Flour composite filler in soft polymer was investigated in this study. Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dis...

  20. Classroom Application of Structured Reinforcement.

    ERIC Educational Resources Information Center

    Bemis, Katherine A.; Schroeder, Glenn B.

    Results of pilot and field tests suggest that teachers should be encouraged to use the classroom management technique of structured reinforcement. In the 1967-68 pilot test 18 teachers (eight experimental and 10 control) systematically varied several parameters of reinforcement in classroom situations to determine their effects on the attainment…

  1. Stochastic Reinforcement Benefits Skill Acquisition

    ERIC Educational Resources Information Center

    Dayan, Eran; Averbeck, Bruno B.; Richmond, Barry J.; Cohen, Leonardo G.

    2014-01-01

    Learning complex skills is driven by reinforcement, which facilitates both online within-session gains and retention of the acquired skills. Yet, in ecologically relevant situations, skills are often acquired when mapping between actions and rewarding outcomes is unknown to the learning agent, resulting in reinforcement schedules of a stochastic…

  2. Conditioned Reinforcement and Response Strength

    ERIC Educational Resources Information Center

    Shahan, Timothy A.

    2010-01-01

    Stimuli associated with primary reinforcers appear themselves to acquire the capacity to strengthen behavior. This paper reviews research on the strengthening effects of conditioned reinforcers within the context of contemporary quantitative choice theories and behavioral momentum theory. Based partially on the finding that variations in…

  3. Delayed Reinforcement of Operant Behavior

    ERIC Educational Resources Information Center

    Lattal, Kennon A.

    2010-01-01

    The experimental analysis of delay of reinforcement is considered from the perspective of three questions that seem basic not only to understanding delay of reinforcement but also, by implication, the contributions of temporal relations between events to operant behavior. The first question is whether effects of the temporal relation between…

  4. Teacher Preferences for Various Positive Reinforcements.

    ERIC Educational Resources Information Center

    Derevensky, Jeffrey L.; Rose, Malcolm I.

    1978-01-01

    Investigated the relationship between applied behavioral training and reinforcement preferences of classroom teachers. Data obtained from the Positive Reinforcement Observation Schedule, a paired comparison task, indicated minimal differential reinforcement preferences for classroom teachers with no training, limited training, or extensive…

  5. Negative effects of positive reinforcement

    PubMed Central

    Perone, Michael

    2003-01-01

    Procedures classified as positive reinforcement are generally regarded as more desirable than those classified as aversive—those that involve negative reinforcement or punishment. This is a crude test of the desirability of a procedure to change or maintain behavior. The problems can be identified on the basis of theory, experimental analysis, and consideration of practical cases. Theoretically, the distinction between positive and negative reinforcement has proven difficult (some would say the distinction is untenable). When the distinction is made purely in operational terms, experiments reveal that positive reinforcement has aversive functions. On a practical level, positive reinforcement can lead to deleterious effects, and it is implicated in a range of personal and societal problems. These issues challenge us to identify other criteria for judging behavioral procedures. ImagesFigure 1Figure 2 PMID:22478391

  6. Nanographene reinforced carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Bansal, Dhruv

    Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (≤ 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic

  7. Whisker reinforced glass ceramic

    SciTech Connect

    Hirschfeld, D.A.; Brown, J.J. Jr.

    1996-06-03

    The process for making an in-situ whisker reinforced glass-ceramic that is up to 1.5 times as strong as conventional glass-ceramics was developed at Virginia Tech and patented in 1993. This technology has been identified as having commercial potential for use in high temperature heat exchanger applications for the electric power generation field by the National Center for Appropriate Technology (NCAT). This technology was licensed by MATVA, Inc., a small Virginia business, for further development. In particular, the goal of this project was to develop a property database and conduct initial testing of heat exchanger prototypes to demonstrate its potential application. This final report describes how the glass precursor was formed, physical properties of the glass-ceramic, techniques for making heat exchanger prototypes.

  8. Organometallic Polymers.

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  9. Polymer flooding

    SciTech Connect

    Littmann, W.

    1988-01-01

    This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10-15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. An indispensable book for reservoir engineers, production engineers and lab. technicians within the petroleum industry.

  10. Polymers All Around You!

    ERIC Educational Resources Information Center

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  11. Smart pultruded composite reinforcements incorporating fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Fitzgerald, Stephen B.; MacDonald, Douglas O.; Georgiades, Anastasis V.

    1998-03-01

    The issues of processing, evaluation, experimental testing, and modeling of smart fiber reinforced polymer (FRP) composite materials are discussed. The specific application in view is the use of smart composite reinforcements for a monitoring of innovative bridges and structures. The pultrusion technology for the fabrication of fiber reinforced polymer composites with embedded fiber optic senors (Fabry Perot and Bragg Grating) is developed. The optical sensor/composite material interaction is studied. The tensile and shear properties of the pultruded carbon/vinylester and glass/vinylester rods with and without optical fibers are determined. The microstructural analysis of the smart pultruded FRP is carried out. The interfaces between the resin matrix and the acrylate and polyimide coated optical fibers are examined and interpreted in terms of the coatings's ability to resist high temperature and its compatibility with resin matrix. The strain monitoring during the pultrusion of composite parts using the embedded fiber optic sensors was performed. The strain readings from the sensors and the extensometer were compared in mechanical tensile tests.

  12. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Friedrich, Klaus; Almajid, Abdulhakim A.

    2013-04-01

    Composite materials, in most cases fiber reinforced polymers, are nowadays used in many applications in which light weight and high specific modulus and strength are critical issues. The constituents of these materials and their special advantages relative to traditional materials are described in this paper. Further details are outlined regarding the present markets of polymer composites in Europe, and their special application in the automotive industry. In particular, the manufacturing of parts from thermoplastic as well as thermosetting, short and continuous fiber reinforced composites is emphasized.

  13. Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun

    2010-01-01

    Aerogels that consist, variously, of neat silica/polymer alloys and silica/polymer alloy matrices reinforced with fibers have been developed as materials for flexible thermal-insulation blankets. In comparison with prior aerogel blankets, these aerogel blankets are more durable and less dusty. These blankets are also better able to resist and recover from compression . an important advantage in that maintenance of thickness is essential to maintenance of high thermal-insulation performance. These blankets are especially suitable as core materials for vacuum- insulated panels and vacuum-insulated boxes of advanced, nearly seamless design. (Inasmuch as heat leakage at seams is much greater than heat leakage elsewhere through such structures, advanced designs for high insulation performance should provide for minimization of the sizes and numbers of seams.) A silica/polymer aerogel of the present type could be characterized, somewhat more precisely, as consisting of multiply bonded, linear polymer reinforcements within a silica aerogel matrix. Thus far, several different polymethacrylates (PMAs) have been incorporated into aerogel networks to increase resistance to crushing and to improve other mechanical properties while minimally affecting thermal conductivity and density. The polymethacrylate phases are strongly linked into the silica aerogel networks in these materials. Unlike in other organic/inorganic blended aerogels, the inorganic and organic phases are chemically bonded to each other, by both covalent and hydrogen bonds. In the process for making a silica/polymer alloy aerogel, the covalent bonds are introduced by prepolymerization of the methacrylate monomer with trimethoxysilylpropylmethacrylate, which serves as a phase cross-linker in that it contains both organic and inorganic monomer functional groups and hence acts as a connector between the organic and inorganic phases. Hydrogen bonds are formed between the silanol groups of the inorganic phase and the

  14. Electrically conductive polymer concrete overlays

    NASA Astrophysics Data System (ADS)

    Fontana, J. J.; Webster, R. P.

    1984-08-01

    The use of cathodic protection to prevent the corrosion of reinforcing steel in concrete structures has been well established. Application of a durable, skid-resistant electrically conductive polymer concrete overlay would advance the use of cathodic protection for the highway industry. Laboratory studies indicate that electrically conductive polymer concrete overlays using conductive fillers, such as calcined coke breeze, in conjunction with polyester or vinyl ester resins have resistivities of 1 to 10 ohm-cm. Both multiple-layer and premixed mortar-type overlays were made. Shear bond strengths of the conductive overlays to concrete substrates vary from 600 to 1300 psi, with the premixed overlays having bond strengths 50 to 100% higher than the multiple-layer overlays.

  15. Electrospun nanofibers of poly(vinyl alcohol)reinforced with cellulose nanofibrils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, nanofibers of poly(vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on mor...

  16. Natural-fiber-reinforced polymer composites in automotive applications

    NASA Astrophysics Data System (ADS)

    Holbery, James; Houston, Dan

    2006-11-01

    In the past decade, natural-fiber composites with thermoplastic and thermoset matrices have been embraced by European car manufacturers and suppliers for door panels, seat backs, headliners, package trays, dashboards, and interior parts. Natural fibers such as kenaf, hemp, flax, jute, and sisal offer such benefits as reductions in weight, cost, and CO2, less reliance on foreign oil sources, and recyclability. However, several major technical considerations must be addressed before the engineering, scientific, and commercial communities gain the confidence to enable wide-scale acceptance, particularly in exterior parts where a Class A surface finish is required. Challenges include the homogenization of the fiber's properties and a full understanding of the degree of polymerization and crystallization, adhesion between the fiber and matrix, moisture repellence, and flame-retardant properties, to name but a few.

  17. An Overview of Okra Fibre Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Srinivasababu, Nadendla

    2015-05-01

    Increasing attention towards “sustainable environment” invited the development of new materials to satisfy the needs of the public with less/no damage on surroundings. In this regard a specific attempt is made by the author to do review and understand the performance of the variable vegetable fibres of okra which is botanically called ‘Abelmoschus Esculentus’ and their composites under various conditions of load. Further the results exist in the literature are also reviewed for the purpose of comparison.

  18. Carbon Nanotube Reinforced Polymers for Radiation Shielding Applications

    NASA Technical Reports Server (NTRS)

    Thibeault, S. (Technical Monitor); Vaidyanathan, Ranji

    2004-01-01

    This viewgraph presentation provides information on the use of Extrusion Freeform Fabrication (EEF) for the fabrication of carbon nanotubes. The presentation addresses TGA analysis, Raman spectroscopy, radiation tests, and mechanical properties of the carbon nanotubes.

  19. Preparation of corrosion-resistant and conductive trivalent Cr-C coatings on 304 stainless steel for use as bipolar plates in proton exchange membrane fuel cells by electrodeposition

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Cheng; Sheu, Hung-Hua; Lu, Chen-En; Hou, Kung-Hsu; Ger, Ming-Der

    2015-10-01

    In this study, Cr-C-coated bipolar plates are produced by electroplating on the SS304 plates with a machined flow channel. The resulting plates were tested using potentiodynamic and potentiostatic measurements in simulated PEMFC environments, which show that the bipolar plate coated with Cr-C exhibited good anticorrosion performance. The corrosive current density of the Cr-C coating formed for a plating time of 10 min for 10 h exhibits a low stable value of 1.51 × 10-10 A/cm2 during the potentiostatic test in a 0.5 M H2SO4 + 2 ppm HF solution at 70 °C with an air purge, indicating that the Cr-C coating plated for 10 min is stable in a cathode environment. The interfacial contact resistance (ICR) of the bipolar plate with the Cr-C coating clearly improved, presenting an ICR of 19.52 mΩ cm2 at a pressure of 138 N/cm2. The results from scanning electron microscopy (SEM) and ICR before and after the corrosion tests indicate that the bipolar plate with the Cr-C coating is electrochemically stable. In this study, the maximum power density (212.41 mW/cm2) is obtained at a cell temperature of 80 °C and a gas flow rate of 300 standard cubic centimeters per minute (sccm) when Cr-C coated SS304 bipolar plates were used.

  20. PERFORMANCE OF RC AND FRC WALL PANELS REINFORCED WITH MILD STEEL AND GFRP COMPOSITES IN BLAST EVENTS

    SciTech Connect

    Timothy Garfield; William D. Richins; Thomas K. Larson; Chris P. Pantelides; James E. Blakeley

    2011-06-01

    The structural integrity of reinforced concrete structures in blast events is important for critical facilities. This paper presents experimental data generated for calibrating detailed finite element models that predict the performance of reinforced concrete wall panels with a wide range of construction details under blast loading. The test specimens were 1.2 m square wall panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consists of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bar reinforcement (Type A); FRC panels without additional reinforcement (Type B); FRC panels with steel bar reinforcement (Type C); NWC panels with glass fiber reinforced polymer (GFRP) bar reinforcement (Type D); and NWC panels reinforced with steel bar reinforcement and external bidirectional GFRP overlays on both faces (Type E). An additional three Type C panels were used as control specimens (CON). Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. The panels were instrumented with strain gauges, and accelerometers; in addition, pressure sensors and high speed videos were employed during the blast events. Panel types C and E had the best performance, whereas panel type B did not perform well. Preliminary dynamic simulations show crack patterns similar to the experimental results.

  1. Micromechanics for particulate reinforced composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Goldberg, Robert K.; Mital, Subodh K.

    1996-01-01

    A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values.

  2. Fiber-reinforced syntactic foams

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jen

    Long fibers are generally preferred for reinforcing foams for performance reasons. However, uniform dispersion is difficult to achieve because they must be mixed with liquid resin prior to foam expansion. New approaches aiming to overcome such problem have been developed at USC's Composites Center. Fiber-reinforced syntactic foams with long fibers (over 6 mm in length) manufactured at USC's Composites Center have achieved promising mechanical properties and demonstrated lower density relative to conventional composite foams. Fiber-reinforced syntactic foams were synthesized from thermosetting polymeric microspheres (amino and phenolic microspheres), as well as thermoplastic PVC heat expandable microspheres (HEMs). Carbon and/or aramid fibers were used to reinforce the syntactic foams. Basic mechanical properties, including shear, tensile, and compression, were measured in syntactic foams and fiber-reinforced syntactic foams. Microstructure and crack propagation behavior were investigated by scanning electron microscope and light microscopy. Failure mechanisms and reinforcing mechanisms of fiber-reinforced syntactic foams were also analyzed. As expected, additions of fiber reinforcements to foams enhanced both tensile and shear properties. However, only limited enhancement in compression properties was observed, and fiber reinforcement was of limited benefit in this regard. Therefore, a hybrid foam design was explored and evaluated in an attempt to enhance compression properties. HEMs were blended with glass microspheres to produce hybrid foams, and hybrid foams were subsequently reinforced with continuous aramid fibers to produce fiber-reinforced hybrid foams. Mechanical properties of these foams were evaluated. Findings indicated that the production of hybrid foams was an effective way to enhance the compressive properties of syntactic foams, while the addition of fiber reinforcements enhanced the shear and tensile performance of syntactic foams. Another approach

  3. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    NASA Astrophysics Data System (ADS)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  4. HLA-G 3’UTR Polymorphisms Impact the Prognosis of Stage II-III CRC Patients in Fluoropyrimidine-Based Treatment

    PubMed Central

    Garziera, Marica; Bidoli, Ettore; Cecchin, Erika; Mini, Enrico; Nobili, Stefania; Lonardi, Sara; Buonadonna, Angela; Errante, Domenico; Pella, Nicoletta; D’Andrea, Mario; De Marchi, Francesco; De Paoli, Antonino; Zanusso, Chiara; De Mattia, Elena; Tassi, Renato; Toffoli, Giuseppe

    2015-01-01

    An important hallmark of CRC is the evasion of immune surveillance. HLA-G is a negative regulator of host’s immune response. Overexpression of HLA-G protein in primary tumour CRC tissues has already been associated to worse prognosis; however a definition of the role of immunogenetic host background is still lacking. Germline polymorphisms in the 3’UTR region of HLA-G influence the magnitude of the protein by modulating HLA-G mRNA stability. Soluble HLA-G has been associated to 3’UTR +2960 Ins/Ins and +3035 C/T (lower levels) and +3187 G/G (high levels) genotypes. HLA-G 3’UTR SNPs have never been explored in CRC outcome. The purpose of this study was to investigate if common HLA-G 3’UTR polymorphisms have an impact on DFS and OS of 253 stage II-III CRC patients, after primary surgery and ADJ-CT based on FL. The 3’UTR was sequenced and SNPs were analyzed for their association with survival by Kaplan-Meier and multivariate Cox models; results underwent internal validation using a resampling method (bootstrap analysis). In a multivariate analysis, we estimated an association with improved DFS in Ins allele (Ins/Del +Ins/Ins) carriers (HR 0.60, 95% CI 0.38–0.93, P = 0.023) and in patients with +3035 C/T genotype (HR 0.51, 95% CI 0.26–0.99, P = 0.045). The +3187 G/G mutated carriers (G/G vs A/A+A/G) were associated to a worst prognosis in both DFS (HR 2.46, 95% CI 1.19–5.05, P = 0.015) and OS (HR 2.71, 95% CI 1.16–6.63, P = 0.022). Our study shows a prognostic and independent role of 3 HLA-G 3’UTR SNPs, +2960 14-bp INDEL, +3035 C>T, and +3187 A>G. PMID:26633805

  5. Mullite fiber reinforced reaction bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Saleh, T.; Sayir, A.; Lightfoot, A.; Haggerty, J.

    1996-01-01

    Fracture toughnesses of brittle ceramic materials have been improved by introducing reinforcements and carefully tailored interface layers. Silicon carbide and Si3N4 have been emphasized as matrices of structural composites intended for high temperature service because they combine excellent mechanical, chemical, thermal and physical properties. Both matrices have been successfully toughened with SiC fibers, whiskers and particles for ceramic matrix composite (CMC) parts made by sintering, hot pressing or reaction forming processes. These SiC reinforced CMCs have exhibited significantly improved toughnesses at low and intermediate temperature levels, as well as retention of properties at high temperatures for selected exposures; however, they are vulnerable to attack from elevated temperature dry and wet oxidizing atmospheres after the matrix has cracked. Property degradation results from oxidation of interface layers and/or reinforcements. The problem is particularly acute for small diameter (-20 tim) polymer derived SiC fibers used for weavable toes. This research explored opportunities for reinforcing Si3N4 matrices with fibers having improved environmental stability; the findings should also be applicable to SiC matrix CMCs.

  6. Rheological behaviour of nanocellulose reinforced unsaturated polyester nanocomposites.

    PubMed

    Chirayil, Cintil Jose; Mathew, Lovely; Hassan, P A; Mozetic, Miran; Thomas, Sabu

    2014-08-01

    Nanocellulose (NC) reinforced unsaturated polyester (UPR) composites were prepared by mechanical mixing process. Effect of isora nanocellulose on the properties of polyester composites has been studied in detail. Rheological properties of unsaturated polyester resin suspensions containing various amounts (0.5, 1 and 3wt%) of nanocellulose were investigated by oscillatory rheometer with parallel plate geometry. Analysis of curing revealed that the time required for gelation in NC filled UPR is lower than neat resin, which describe the catalytic action of NC on cure reaction. NC reinforced polyester suspensions showed shear thinning behaviour initially and at higher shear rates they showed Newtonian behaviour. Tensile and impact properties showed superior behaviour revealing improved interfacial bonding between nanofiller and the polymer matrix. With respect to the neat polyester the percentage increase in tensile strength of 0.5wt% NC reinforced composite is 57%. Optical and atomic force microscopic studies confirmed that the dispersion state of NC within the polyester matrix was adequate. Maximum glass transition temperature is obtained for 0.5wt% NC reinforced composite, which showed an increase of 10°C than neat resin. PMID:24877644

  7. Bioinspired Composites with Spatial and Orientational Control of Reinforcement

    NASA Astrophysics Data System (ADS)

    Demiroers, Ahmet; Studart, Andre; Complex Materials Team

    Living organisms combine soft and hard components to fabricate composite materials with out-standing mechanical properties. The optimum design and assembly of the anisotropic components reinforce the material in specific directions against multidirectional external loads. Although nature does it quite readily, it is still a challenge for material scientists to control the orientation and position of the colloidal components in a matrix. Here, we use external electric and magnetic fields to achieve positional and orientational control over colloid-polymer composites to fabricate mechanically robust materials to capture some of the essential features of natural systems. We first investigated the assembly of spherical micron-sized colloids using dielectrophoresis, as these particles provided an easily accessible and instructive length scale for performing initial experiments. We used dielectrophoresis for spatial control of reinforcing anisotropic components and magnetic fields to provide control over the orientation of these reinforcing constituents. The obtained composites with different orientational and spatial reinforcement showed enhanced mechanical properties, such as wear resistance, which exhibits similarities to tooth enamel. SNSF Ambizione Grant PZ00P2_148040.

  8. Hydrogel-based reinforcement of 3D bioprinted constructs.

    PubMed

    Melchels, Ferry P W; Blokzijl, Maarten M; Levato, Riccardo; Peiffer, Quentin C; Ruijter, Mylène de; Hennink, Wim E; Vermonden, Tina; Malda, Jos

    2016-01-01

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support with a bioink to provide a cytocompatible environment. In comparison with thermoplastics such as [Formula: see text]-polycaprolactone, the hydrogel-based reinforcing gel platform enables printing at cell-friendly temperatures, targets the bioprinting of softer tissues and allows for improved control over degradation kinetics. We prepared amphiphilic macromonomers based on poloxamer that form hydrolysable, covalently cross-linked polymer networks. Dissolved at a concentration of 28.6%w/w in water, it functions as reinforcing gel, while a 5%w/w gelatin-methacryloyl based gel is utilized as bioink. This strategy allows for the creation of complex structures, where the bioink provides a cytocompatible environment for encapsulated cells. Cell viability of equine chondrocytes encapsulated within printed constructs remained largely unaffected by the printing process. The versatility of the system is further demonstrated by the ability to tune the stiffness of printed constructs between 138 and 263 kPa, as well as to tailor the degradation kinetics of the reinforcing gel from several weeks up to more than a year. PMID:27431861

  9. Network dynamics in nanofilled polymers

    PubMed Central

    Baeza, Guilhem P.; Dessi, Claudia; Costanzo, Salvatore; Zhao, Dan; Gong, Shushan; Alegria, Angel; Colby, Ralph H.; Rubinstein, Michael; Vlassopoulos, Dimitris; Kumar, Sanat K.

    2016-01-01

    It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams–Landel–Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ∼31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which ‘tie' NPs together into a network. PMID:27109062

  10. Network dynamics in nanofilled polymers.

    PubMed

    Baeza, Guilhem P; Dessi, Claudia; Costanzo, Salvatore; Zhao, Dan; Gong, Shushan; Alegria, Angel; Colby, Ralph H; Rubinstein, Michael; Vlassopoulos, Dimitris; Kumar, Sanat K

    2016-01-01

    It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams-Landel-Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ∼31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which 'tie' NPs together into a network. PMID:27109062

  11. Network dynamics in nanofilled polymers

    NASA Astrophysics Data System (ADS)

    Baeza, Guilhem P.; Dessi, Claudia; Costanzo, Salvatore; Zhao, Dan; Gong, Shushan; Alegria, Angel; Colby, Ralph H.; Rubinstein, Michael; Vlassopoulos, Dimitris; Kumar, Sanat K.

    2016-04-01

    It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams-Landel-Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ~31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which `tie' NPs together into a network.

  12. Function transformation without reinforcement.

    PubMed

    Tonneau, Franćois; Arreola, Fara; Martínez, Alma Gabriela

    2006-05-01

    In studies of function transformation, participants initially are taught to match stimuli in the presence of a contextual cue, X; the stimuli to be matched bear some formal relation to each other, for example, a relation of opposition or difference. In a second phase, the participants are taught to match arbitrary stimuli (say, A and B) in the presence of X. In a final test, A often displays behavioral functions that differ from those of B, and can be predicted from the nature of the relation associated with X in the initial training phase. Here we report function-transformation effects in the absence of selection responses and of their reinforcers. In three experiments with college students, exposure to relations of difference or identity modified the responses given to later stimuli. In Experiment 1, responses to a test stimulus A varied depending on preexposure to pairs of colors that were distinct from A but exemplified relations of difference or identity. In Experiment 2, a stimulus A acquired distinct functions, depending on its previous pairing with a contextual cue X that had itself been paired with identity or difference among colors. Experiment 3 confirmed the results of Experiment 2 with a modified design. Our data are consistent with the notion that relations of identity or difference can serve as stimuli for Pavlovian processes, and, in compound with other cues, produce apparent function-transformation effects. PMID:16776058

  13. Function Transformation without Reinforcement

    PubMed Central

    Tonneau, François; Arreola, Fara; Martínez, Alma Gabriela

    2006-01-01

    In studies of function transformation, participants initially are taught to match stimuli in the presence of a contextual cue, X; the stimuli to be matched bear some formal relation to each other, for example, a relation of opposition or difference. In a second phase, the participants are taught to match arbitrary stimuli (say, A and B) in the presence of X. In a final test, A often displays behavioral functions that differ from those of B, and can be predicted from the nature of the relation associated with X in the initial training phase. Here we report function-transformation effects in the absence of selection responses and of their reinforcers. In three experiments with college students, exposure to relations of difference or identity modified the responses given to later stimuli. In Experiment 1, responses to a test stimulus A varied depending on preexposure to pairs of colors that were distinct from A but exemplified relations of difference or identity. In Experiment 2, a stimulus A acquired distinct functions, depending on its previous pairing with a contextual cue X that had itself been paired with identity or difference among colors. Experiment 3 confirmed the results of Experiment 2 with a modified design. Our data are consistent with the notion that relations of identity or difference can serve as stimuli for Pavlovian processes, and, in compound with other cues, produce apparent function-transformation effects. PMID:16776058

  14. Ceramic fiber reinforced filter

    DOEpatents

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  15. Unified micromechanics of damping for unidirectional fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.

    1989-01-01

    An integrated micromechanics methodology for the prediction of damping capacity in fiber-reinforced polymer matrix unidirectional composites has been developed. Explicit micromechanics equations based on hysteretic damping are presented relating the on-axis damping capacities to the fiber and matrix properties and volume fraction. The damping capacities of unidirectional composites subjected to off-axis loading are synthesized from thermal effect on the damping performance of unidirectional composites due to temperature and moisture variations is also modeled. The damping contributions from interfacial friction between broken fibers and matrix are incorporated. Finally, the temperature rise in continuously vibrating composite plies is estimated. Application examples illustrate the significance of various parameters on the damping performance of unidirectional and off-axis fiber reinforced composites.

  16. Blast impact behaviour of concrete with different fibre reinforcement

    NASA Astrophysics Data System (ADS)

    Drdlová, Martina; Čechmánek, René; Řídký, Radek

    2015-09-01

    The paper summarizes the results of the development of special concrete intended for the explosion resistance applications, with the emphasis on minimal secondary fragments formation at the explosion. The fine-grained concrete matrix has been reinforced by various types of short dispersed fibers (metallic, mineral and polymer) of different sizes and by their combination and the effect of the fibre reinforcement on the physico-mechanical properties and blast resistance was observed. The concrete prism specimens have been subjected to the determination of mechanical parameters (compressive and flexural strength at quasi-static load). The blast tests were conducted on the slab specimens prepared from selected mixtures. The material characteristics and explosion test data have been used for numerical investigation, which defined the optimal wall composition and dimensions of the concrete element which should resist the explosion defined by type, size, weight and placement of the blast. In the next step the test elements resistance was verified by real explosion test.

  17. Assessment of historical masonry pillars reinforced by CFRP strips

    NASA Astrophysics Data System (ADS)

    Fedele, Roberto; Rosati, Giampaolo; Biolzi, Luigi; Cattaneo, Sara

    2014-10-01

    In this methodological study, the ultimate response of masonry pillars strengthened by externally bonded Carbon Fiber Reinforced Polymer (CFRP) was investigated. Historical bricks were derived from a XVII century rural building, whilst a high strength mortar was utilized for the joints. The conventional experimental information, concerning the overall reaction force and relative displacements provided by "point" sensors (LVDTs and clip gauge), were herein enriched with no-contact, full-field kinematic measurements provided by 2D Digital Image Correlation (2D DIC). Experimental information were critically compared with prediction provided by an advanced three-dimensional models, based on nonlinear finite elements under the simplifying assumption of perfect adhesion between the reinforcement and the support.

  18. Microwave dielectrometry measurements of glass reinforced polyester resins

    SciTech Connect

    Schlegel, J.L.; Wagner, J.W.; Green, R.E. Jr.

    1999-10-01

    This study describes measurements of dielectric constant as a function of glass reinforcement concentration in polyester resins to use as a control parameter for online process monitoring. Microwave interferometers were constructed in the X and V bands at 9.35 and 60 GHz in both homodyne and heterodyne configurations to measure the phase difference associated with the material. This phase difference is then used to calculate the real part of the dielectric constant from the index of refraction at a microwave frequency. The homodyne X and V band measurements yielded a linear between phase difference and glass concentration. Heterodyne V band measurements produced a nonlinear relationship. Further investigation into the microscopic interactions between the reinforcement particle and the polymer resin is necessary to determine how different concentrations affect the bulk macroscopic material properties.

  19. Production and properties of micro-cellulose reinforced thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Kmetty, Á.; Karger-Kocsis, J.; Czigány, T.

    2015-02-01

    Thermoplastic starch (TPS)/micro-fibrillated cellulose (MFC) composites were prepared from maize starch with different amount of distilled water, glycerol and cellulose reinforcement. The components were homogenized by kneader and twin roll technique. The produced TPS and TPS-based polymer composites were qualified by static and dynamic mechanical tests and their morphology was analysed by microscopic techniques. The results showed that the amount of water and the order of the production steps control the properties of both the TPS and its MFC reinforced version. With increasing content of MFC the stiffness and strength of the TPS matrix increased, as expected. Microscopic inspection revealed that the TPS has a homogenous structure and the MFC is well dispersed therein when suitable preparation conditions were selected.

  20. Mechanical Performance of Rotomoulded Wollastonite-Reinforced Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaowen; Easteal, Allan J.; Bhattacharyya, Debes

    This paper describes the development of a new processing technology for rotational moulding of wollastonite microfibre (WE) reinforced polyethylene (PE). Manufacturing wollastonite-polyethylene composites involved blending, compounding by extrusion, and granulating prior to rotational moulding. The properties of the resulting composites were characterised by tensile and impact strength measurements. The results show that tensile strength increases monotonically with the addition of wollastonite fibres, but impact strength is decreased. In addition, the processability is also decreased after adding more than 12 vol% WE because of increased viscosity. The effects of a coupling agent, maleated polyethylene (MAPE), on the mechanical performance and processability were also investigated. SEM analysis reveals good adhesion between the fibre reinforcements and polyethylene matrix at the fracture surface with the addition of MAPE. It is proposed that fillers with small particles with high aspect ratio (such as wollastonite) provide a large interfacial area between the filler and the polymer matrix, and may influence the mobility of the molecular chains.

  1. Mesoscale simulations of particle reinforced epoxy-based composites

    NASA Astrophysics Data System (ADS)

    White, Bradley W.; Springer, Harry Keo; Jordan, Jennifer L.; Spowart, Jonathan E.; Thadhani, Naresh

    2012-03-01

    Polymer matrix composites reinforced with metal powders have complex microstructures that vary greatly from differences in particle size, morphology, loading fractions, etc. The effects of the underlying microstructure on the mechanical and wave propagation behavior of these composites during dynamic loading conditions are not well understood. To better understand these effects, epoxy (Epon826/DEA) reinforced with different particle sizes of Al and loading fractions of Al and Ni were prepared by casting. Microstructures from the composites were then used in 2D plane strain mesoscale simulations. The effect of varying velocity loading conditions on the wave velocity was then examined to determine the Us-Up and particle deformation response as a function of composite configuration.

  2. Response deprivation, reinforcement, and economics

    PubMed Central

    Allison, James

    1993-01-01

    Reinforcement of an instrumental response results not from a special kind of response consequence known as a reinforcer, but from a special kind of schedule known as a response-deprivation schedule. Under the requirements of a response-deprivation schedule, the baseline rate of the instrumental response permits less than the baseline rate of the contingent response. Because reinforcement occurs only if the schedule deprives the organism of the contingent response, reinforcement cannot result from any intrinsic property of the contingent response or any property relative to the instrumental response. Two typical effects of response-deprivation schedules—facilitation of the instrumental response and suppression of the contingent response—are discussed in terms of economic concepts and models of instrumental performance. It is suggested that response deprivation makes the contingent response function as an economic good, the instrumental response as currency. PMID:16812695

  3. Reinforcing Behavior of "Naive" Trainers

    ERIC Educational Resources Information Center

    Lanzetta, John T.; Hannah, T. E.

    1969-01-01

    Presents an experiment showing that naive trainers tend to allow factors such as task difficulty and competence of the trainee to affect the kind of reinforcement administered. Bibliography, tables, and graphs. (JB)

  4. 21 CFR 178.3850 - Reinforced wax.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Reinforced wax. 178.3850 Section 178.3850 Food and... Reinforced wax. Reinforced wax may be safely used as an article or component of articles intended for use in... this section. (a) Reinforced wax consists of petroleum wax to which have been added certain...

  5. 21 CFR 178.3850 - Reinforced wax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Reinforced wax. 178.3850 Section 178.3850 Food and... and Production Aids § 178.3850 Reinforced wax. Reinforced wax may be safely used as an article or... holding food subject to the provisions of this section. (a) Reinforced wax consists of petroleum wax...

  6. 21 CFR 178.3850 - Reinforced wax.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Reinforced wax. 178.3850 Section 178.3850 Food and... and Production Aids § 178.3850 Reinforced wax. Reinforced wax may be safely used as an article or... holding food subject to the provisions of this section. (a) Reinforced wax consists of petroleum wax...

  7. 21 CFR 178.3850 - Reinforced wax.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Reinforced wax. 178.3850 Section 178.3850 Food and... and Production Aids § 178.3850 Reinforced wax. Reinforced wax may be safely used as an article or... holding food subject to the provisions of this section. (a) Reinforced wax consists of petroleum wax...

  8. 21 CFR 178.3850 - Reinforced wax.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Reinforced wax. 178.3850 Section 178.3850 Food and... and Production Aids § 178.3850 Reinforced wax. Reinforced wax may be safely used as an article or... holding food subject to the provisions of this section. (a) Reinforced wax consists of petroleum wax...

  9. Matching and Conditioned Reinforcement Rate

    PubMed Central

    Shahan, Timothy A; Podlesnik, Christopher A; Jimenez-Gomez, Corina

    2006-01-01

    Attempts to examine the effects of variations in relative conditioned reinforcement rate on choice have been confounded by changes in rates of primary reinforcement or changes in the value of the conditioned reinforcer. To avoid these problems, this experiment used concurrent observing responses to examine sensitivity of choice to relative conditioned reinforcement rate. In the absence of observing responses, unsignaled periods of food delivery on a variable-interval 90-s schedule alternated with extinction on a center key (i.e., a mixed schedule was in effect). Two concurrently available observing responses produced 15-s access to a stimulus differentially associated with the schedule of food delivery (S+). The relative rate of S+ deliveries arranged by independent variable-interval schedules for the two observing responses varied across conditions. The relation between the ratio of observing responses and the ratio of S+ deliveries was well described by the generalized matching law, despite the absence of changes in the rate of food delivery. In addition, the value of the S+ deliveries likely remained constant across conditions because the ratio of S+ to mixed schedule food deliveries remained constant. Assuming that S+ deliveries serve as conditioned reinforcers, these findings are consistent with the functional similarity between primary and conditioned reinforcers suggested by general choice theories based on the concatenated matching law (e.g., contextual choice and hyperbolic value-added models). These findings are inconsistent with delay reduction theory, which has no terms for the effects of rate of conditioned reinforcement in the absence of changes in rate of primary reinforcement. PMID:16673824

  10. Reinforced ceramics employing discontinuous phases

    SciTech Connect

    Becher, P.F.

    1990-01-01

    The fracture toughness of ceramics can be improved by the incorporation of a variety of discontinuous reinforcing phases and microstructures. Observations of crack paths in these systems indicate that these reinforcing phases bridge the crack tip wake region. Recent developments in micromechanics toughening models applicable to such systems are discussed and compared with experimental observations. Because material parameters and microstructural characteristics are considered, the crack bridging models provide a means to optimize the toughening effects. 18 refs., 2 figs.

  11. Antimocrobial Polymer

    DOEpatents

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  12. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  13. Polymer inflation

    NASA Astrophysics Data System (ADS)

    Hassan, Syed Moeez; Husain, Viqar; Seahra, Sanjeev S.

    2015-03-01

    We consider the semiclassical dynamics of a free massive scalar field in a homogeneous and isotropic cosmological spacetime. The scalar field is quantized using the polymer quantization method assuming that it is described by a Gaussian coherent state. For quadratic potentials, the semiclassical equations of motion yield a universe that has an early "polymer inflation" phase which is generic and almost exactly de Sitter, followed by an epoch of slow-roll inflation. We compute polymer corrections to the slow-roll formalism, and discuss the probability of inflation in this model using a physical Hamiltonian arising from time gauge fixing. We also show how in this model, it is possible to obtain a significant amount of slow-roll inflation from sub-Planckian initial data, hence circumventing some of the criticisms of standard scenarios. These results show the extent to which a quantum gravity motivated quantization method affects early universe dynamics.

  14. Methods for producing reinforced carbon nanotubes

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  15. PPP1R12A Copy Number Is Associated with Clinical Outcomes of Stage III CRC Receiving Oxaliplatin-Based Chemotherapy

    PubMed Central

    Zhang, Chenbo; Li, Ajian; Li, Huaguang; Peng, Kangsheng; Wei, Qing; Lin, Moubin; Liu, Zhanju; Yin, Lu; Li, Jianwen

    2015-01-01

    Aim. To investigate the correlation between PPP1R12A gene copy number and clinical outcomes of oxaliplatin-based regimen in stage III colorectal cancer (CRC). Methods. A total of 139 paraffin-embedded tissue samples of stage III CRC patients who received oxaliplatin-based treatment after radical surgery were recruited. Genomic DNA was extracted and purified from paraffin-embedded sections. Quantitative PCR methods were used to detect the relative copy number (RCN) of PPP1R12A. Results. Statistical analysis demonstrated that low PPP1R12A RCN was associated with poor RFS (HR = 2.186, 95% CI: 1.293–3.696; P = 0.003) and OS (HR = 2.782, 95% CI: 1.531–5.052; P < 0.001). Additionally, when patients were stratified according to subgroups of stage III and tumor location, poor RFS and OS were also observed in the low PPP1R12A RCN group with significance (RFS: IIIB HR = 2.870, P < 0.001; colon HR = 1.910, P = 0.037; OS: IIIB HR = 3.527, P < 0.001; IIIC HR = 2.662, P = 0.049; rectum HR = 4.229, P = 0.002). Conclusion. Our findings suggest the copy number of PPP1R12A can independently predict recurrence and overall survival of stage III colorectal cancer patients receiving oxaliplatin-based chemotherapy. PMID:26113782

  16. Genomic markers of panitumumab resistance including ERBB2/HER2 in a phase II study of KRAS wild-type (wt) metastatic colorectal cancer (mCRC)

    PubMed Central

    Barry, Garrett S.; Cheang, Maggie C.; Chang, Hector Li; Kennecke, Hagen F.

    2016-01-01

    A prospective study was conducted to identify biomarkers associated with resistance to panitumumab monotherapy in patients with metastatic colorectal cancer (mCRC). Patients with previously treated, codon 12/13 KRAS wt, mCRC were prospectively administered panitumumab 6 mg/kg IV q2weeks. Of 34 panitumumab-treated patients, 11 (32%) had progressive disease at 8 weeks and were classified as non-responders. A Nanostring nCounter-based assay identified a 5-gene expression signature (ERBB2, MLPH, IRX3, MYRF, and KLK6) associated with panitumumab resistance (P = 0.001). Immunohistochemistry and in situ hybridization determined that the HER2 (ERBB2) protein was overexpressed in 4/11 non-responding and 0/21 responding cases (P = 0.035). Two non-responding tumors had ERBB2 gene amplification only, and one demonstrated both ERBB2 amplification and mutation. A non-codon 12/13 KRAS mutation occurred in one panitumumab-resistant patient and was mutually exclusive with ERBB2/HER2 abnormalities. This study identifies a 5-gene signature associated with non-response to single agent panitumumab, including a subgroup of non-responders with evidence of aberrant ERBB2/HER2 signaling. KRAS wt tumors resistant to EGFRi may be identified by gene signature analysis, and the HER2 pathway plays an important role in resistance to therapy. PMID:26980732

  17. On the role of CFRP reinforcement for wood beams stiffness

    NASA Astrophysics Data System (ADS)

    Ianasi, A. C.

    2015-11-01

    In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of composite materials as a reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. Study consolidation of composites revealed that they are made by bonding fibrous material impregnated with resin on the surface of various elements, to restore or increase the load carrying capacity (bending, cutting, compression or torque) without significant damage of their rigidity. Fibers used in building applications can be fiberglass, aramid or carbon. Items that can be strengthened are concrete, brick, wood, steel and stone, and in terms of structural beams, walls, columns and floors. This paper describes an experimental study which was designed to evaluate the effect of composite material on the stiffness of the wood beams. It proposes a summary of the fundamental principles of analysis of composite materials and the design and use. The type of reinforcement used on the beams is the carbon fiber reinforced polymer (CFRP) sheet and plates and also an epoxy resin for bonding all the elements. Structural epoxy resins remain the primary choice of adhesive to form the bond to fiber-reinforced plastics and are the generally accepted adhesives in bonded CFRP-wood connections. The advantages of using epoxy resin in comparison to common wood-laminating adhesives are their gap-filling qualities and the low clamping pressures that are required to form the bond between carbon fiber plates or sheets and the wood beams. Mechanical tests performed on the reinforced wood beams showed that CFRP materials may produce flexural displacement and lifting increases of the beams. Observations of the experimental load-displacement relationships showed that bending strength increased for wood beams reinforced with CFRP composite plates

  18. Processing and properties of hydroxyapaptite whisker reinforced polyaryletherketones for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Converse, Gabriel Leverne

    The overall objective of this study was to produce hydroxyapatite (HA) whisker reinforced polyaryletherketone (PAEK) biocomposites and scaffolds with tailored mechanical properties similar to those of bone tissue. The effects of the reaction temperature and carboxylic acid on the morphology and composition of HA whiskers synthesized by chelate decomposition were first studied using a controlled heating rate under static conditions. Reaction temperature affected both whisker composition and morphology, while the carboxylic acid used as the chelating agent affected whisker morphology. Polyetheretherketone (PEEK) was reinforced with up to 50 vol% HA whisker reinforcement using a novel powder processing and compression molding technique. Composites with 40-50 vol% HA whisker reinforcement exhibited elastic moduli similar to that of human cortical bone in the longitudinal direction. Composites with 10 and 20 vol% HA whisker reinforcement exhibited tensile strengths similar to that of human cortical bone in the longitudinal direction. HA whisker reinforced polyetherketoneketone (PEKK) scaffolds were successfully processed with 75-90% porosity and 20-40 vol% HA whisker reinforcement. The compression molding/particle leaching technique used in this study facilitated the incorporation of high levels of bioactive HA whisker reinforcements into the polymer matrix. Micro-CT indicated interconnected porosity in the size range required for bone ingrowth. The mechanical properties of HA whisker reinforced PEKK scaffolds were investigated in uniaxial compression. Scaffolds processed at 375°C with 75% porosity and 20 vol% HA whisker reinforcement exhibited an apparent modulus of 141 MPa and an apparent yield strength of 2.3 MPa. These values fall within the ranges reported for the modulus and strength of trabecular bone.

  19. Microbiologically influenced degradation of fiber-reinforced polymeric composites

    SciTech Connect

    Wagner, P.A.; Ray, R.I.; Little, B.J. ); Tucker, W.C. )

    1994-04-01

    Two fiber-reinforced polymer composites were examined for susceptibility to microbiologically influenced degradation. Composites, resins, and fibers were exposed to sulfur/iron-oxidizing, calcareous-depositing, ammonium-producing, hydrogen-producing, and sulfate-reducing bacteria (SRB) in batch culture. Surfaces were uniformly colonized by all physiological types of bacteria. Epoxy and vinyl ester neat resins, carbon fibers, and epoxy composites were not adversely affected by microbiological species. SRB degraded the organic surfactant on glass fibers and preferentially colonized fiber-vinyl ester interfaces. Hydrogen-producing bacteria appeared to disrupt bonding between fibers and vinyl ester resin and to penetrate the resin at the interface.

  20. Microbiologically influenced degradation of fiber reinforced polymeric composites

    SciTech Connect

    Wagner, P.A.; Ray, R.I.; Little, B.J.; Tucker, W.C.

    1994-12-31

    Two fiber reinforced polymer composites were examined for susceptibility to microbiologically influenced degradation. Composites, resins, and fibers were exposed to sulfur/iron-oxidizing, calcareous-depositing, ammonium-producing, hydrogen-producing and sulfate-reducing bacteria (SRB) in batch culture. Surfaces were uniformly colonized by all physiological types of bacteria. Epoxy and vinyl ester neat resins, carbon fibers, and epoxy composites were not adversely affected by microbial species. SRB degraded the organic surfactant on glass fibers and preferentially colonized fiber-vinyl ester interfaces. Hydrogen-producing bacteria appeared to disrupt bonding between fibers and vinyl ester resin and to penetrate the resin at the interface.

  1. Composition and method for making polyimide resin-reinforced fabric

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P. (Inventor)

    1981-01-01

    A composition for making polyimide resin reinforced fibers or fabric is discussed. The composition includes a polyfunctional ester, a polyfunctional amine, and an end capping agent. The composition is impregnated into fibers or fabric and heated to form prepreg material. The tack retention characteristics of this prepreg material are improved by incorporating into the composition a liquid olefinic material compatible with the other ingredients of the composition. The prepreg material is heated at a higher temperature to effect formation of the polyimide resin and the monomeric additive is incorporated in the polyimide polymer structure.

  2. Properties of fiber reinforced plastics about static and dynamic loadings

    NASA Astrophysics Data System (ADS)

    Kudinov, Vladimir V.; Korneeva, Natalia V.

    2016-05-01

    A method for investigation of impact toughness of anisotropic polymer composite materials (reinforced plastics) with the help of CM model sample in the configuration of microplastic (micro plastic) and impact pendulum-type testing machine under static and dynamic loadings has been developed. The method is called "Break by Impact" (Impact Break IB). The estimation of impact resistance CFRP by this method showed that an increase in loading velocity ~104 times the largest changes occurs in impact toughness and deformation ability of a material.

  3. INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1

    NASA Technical Reports Server (NTRS)

    2003-01-01

    INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 3

  4. INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1

    NASA Technical Reports Server (NTRS)

    2003-01-01

    INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 1

  5. Polymer solutions

    SciTech Connect

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  6. Polymer Science.

    ERIC Educational Resources Information Center

    Frank, Curtis W.

    1979-01-01

    Described is a series of four graduate level courses in polymer science, offered or currently in preparation, at Stanford University. Course descriptions and a list of required and recommended texts are included. Detailed course outlines for two of the courses are presented. (BT)

  7. Functional polymers

    SciTech Connect

    Wegner, G.

    2000-01-01

    Improving the existing polymer materials and the designing of model polymers need fundamental insights into the structure and dynamics over a large range of length and time scales. Consequently, a host of quite different methods needs to be applied to gain insights into the molecular and supramolecular structures and interactions that determine the performance of these materials. Supramolecular structures derived from shape persistent (stiff) macromolecules are used as examples to demonstrate the correlation between chemical structure, order phenomena and performance in applications concerning advanced or developing technologies: organic light emitting diodes (OLEDs) and separator membranes in lithium based batteries and fuel cells. Polymers are also important as additives in the manufacture and the processing of other materials. The design of block copolymers to control the nucleation and growth of inorganic particles precipitating from aqueous solutions (mineralization) is discussed as well as the use of block copolymers to optimize the processing of ceramic pieces and objects. Finally, the modification of surfaces by polymers including aspects of biocompatibility is discussed. Some remarks concerning the importance of recent developments and advances in synthesis of macromolecular materials are also given.

  8. One-step fabrication of free-standing flexible membranes reinforced with self-assembled arrays of carbon nanotubes

    SciTech Connect

    Grilli, S.; Coppola, S.; Vespini, V.; Pagliarulo, V.; Ferraro, P.; Nasti, G.; Carfagna, C.

    2014-10-13

    Here, we report on a single step approach for fabricating free-standing polymer membranes reinforced with arrayed self-assembled carbon nanotubes (CNTs). The CNTs are self-assembled spontaneously by electrode-free DC dielectrophoresis based on surface charge templates. The electrical charge template is generated through the pyroelectric effect onto periodically poled lithium niobate ferroelectric crystals. A thermal stimulus enables simultaneously the self-assembly of the CNTs and the cross-linking of the host polymer. Examples of thin polydimethylsiloxane membranes reinforced with CNT patterns are shown.

  9. One-step fabrication of free-standing flexible membranes reinforced with self-assembled arrays of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Grilli, S.; Coppola, S.; Vespini, V.; Pagliarulo, V.; Nasti, G.; Carfagna, C.; Ferraro, P.

    2014-10-01

    Here, we report on a single step approach for fabricating free-standing polymer membranes reinforced with arrayed self-assembled carbon nanotubes (CNTs). The CNTs are self-assembled spontaneously by electrode-free DC dielectrophoresis based on surface charge templates. The electrical charge template is generated through the pyroelectric effect onto periodically poled lithium niobate ferroelectric crystals. A thermal stimulus enables simultaneously the self-assembly of the CNTs and the cross-linking of the host polymer. Examples of thin polydimethylsiloxane membranes reinforced with CNT patterns are shown.

  10. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  11. Effect of Reinforcement Architecture on Fracture of Selectively Reinforced Metallic Compact Tension Specimens

    NASA Technical Reports Server (NTRS)

    Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.

    2006-01-01

    A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the non-reinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.

  12. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    NASA Astrophysics Data System (ADS)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  13. Biobased and biodegradable polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  14. Simulated space environmental effects on some experimental high performance polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1993-01-01

    High performance polymers for potential space applications were evaluated under simulated space environmental conditions. Experimental resins from blends of acetylene terminated materials, poly(arylene ether)s and low color polyimides were exposed to high energy electron and ultraviolet radiation in an attempt to simulate space environmental effects. Thin films, neat resin moldings, and carbon fiber reinforced composites were exposed, and the effect on certain polymer properties were determined. Recent research involving the effects of various radiation exposures on the physical, optical, and mechanical properties of several experimental polymer systems is reviewed.

  15. Peridynamic modeling and simulation of polymer-nanotube composites

    NASA Astrophysics Data System (ADS)

    Henke, Steven F.

    In this document, we develop and demonstrate a framework for simulating the mechanics of polymer materials that are reinforced by carbon nanotubes. Our model utilizes peridynamic theory to describe the mechanical response of the polymer and polymer-nanotube interfaces. We benefit from the continuum formulation used in peridynamics because (1) it allows the polymer material to be coarse-grained to the scale of the reinforcing nanofibers, and (2) failure via nanotube pull-out and matrix tearing are possible based on energetic considerations alone (i.e. without special treatment). To reduce the degrees of freedom that must be simulated, the reinforcement effect of the nanotubes is represented by a mesoscale bead-spring model. This approach permits the arbitrary placement of reinforcement ``strands'' in the problem domain and motivates the need for irregular quadrature point distributions, which have not yet been explored in the peridynamic setting. We address this matter in detail and report on aspects of mesh sensitivity that we uncovered in peridynamic simulations. Using a manufactured solution, we study the effects of quadrature point placement on the accuracy of the solution scheme in one and two dimensions. We demonstrate that square grids and the generator points of a centroidal Voronoi tessellation (CVT) support solutions of similar accuracy, but CVT grids have desirable characteristics that may justify the additional computational cost required for their construction. Impact simulations provide evidence that CVT grids support fracture patterns that resemble those obtained on higher resolution cubic Cartesian grids with a reduced computational burden. With the efficacy of irregular meshing schemes established, we exercise our model by dynamically stretching a cylindrical specimen composed of the polymer-nanotube composite. We vary the number of reinforcements, alignment of the filler, and the properties of the polymer-nanotube interface. Our results suggest

  16. Hybrid Approach to Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Boulebtateche, Brahim; Fezari, Mourad; Boughazi, Mohamed

    2008-06-01

    Reinforcement Learning (RL) is a general framework in which an autonomous agent tries to learn an optimal policy of actions from direct interaction with the surrounding environment (RL). However, one difficulty for the application of RL control is its slow convergence, especially in environments with continuous state space. In this paper, a modified structure of RL is proposed to speed up reinforcement learning control. In this approach, supervision technique is combined with the standard Q-learning, a model-free algorithm of reinforcement learning. The a priori information is provided to the RL by an optimal LQ-controller, used to indicate preferred actions at intermittent times. It is shown that the convergence speed of the supervised RL agent is greatly improved compared to the conventional Q-Learning algorithm. Simulation work and results on the cart-pole balancing problem are given to illustrate the efficiency of the proposed method.

  17. Polymer research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Johnston, N. J.

    1982-01-01

    Polymer synthesis programs involve the development of Novel thermoplastics, pseudothermoplastics, and thermosets. These systems are prepared to elucidate structure-property relationships involving thermal capabilities, toughness, processability and environmental stability. Easily processable polyimides, solvent-resistant polysulfones and polyphenylquinoxalines, and tougher high and intermediate temperature polymers were developed. Characterization efforts included high pressure liquid chromatography methodology, the development of toughness tests for fiber reinforced composites, a study of electrical properties of metal ion filled polyimides, and a study of the mutagenicity of aromatic diamines. Also the mechanism of cure/degradation of experimental polymers was studied by rheology, mechanical behavior, separation techniques and spectroscopy. The degradative crosslinking of alkyl-containing polyimides, the separation and identification of crosslinked phenylquinoxalines, the rheological behavior of hot-melt polyimides, and the elucidation of the cure of norbornene endcapped imides were also studied.

  18. Advanced Polymer

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In the mid-1980's, Langley developed a polyimide sulfone, combining desirable properties of two classes of polymers. Composites and other products made from polyimide sulfone can be used with solvents and corrosive fluids, are light weight, low cost and can be easily fabricated for a wide range of industrial uses. High Technology Systems, Inc. obtained a license for the polymer and was awarded a Small Business Innovation Research (SBIR) contract for development in a powder form. Although its principal use is as a matrix resin for composites, the material can also be used as a high temperature structural adhesive for aircraft structures and as a coating for protection from heat and radiation for electronic components.

  19. Phthalocyanine polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1985-01-01

    A method of forming 4,4',4'',4''' -tetraamino phthalocyanines involves reducing 4,4',4'',4''' -tetranitro phthalocyanines, polymerizing the metal tetraamino phthalocyanines with a tetracarboxylic dianhydride (preferably aromatic) or copolymerizing with a tetracarboxylic dianhydride and a diamine (preferably also aromatic) to produce amic acids which are then dehydrocyclized to imides. Thermally and oxidatively stable polymers result which form tough, flexible films, varnishes, adhesives, and fibers.

  20. Microwave NDE for Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Melapudi, Vikram R.; Rothwell, Edward J.; Udpa, Lalita; Udpa, Satish S.

    2006-03-01

    Nondestructive assessment of the integrity of civil structures is of paramount importance for ensuring safety. In concrete imaging, radiography, ground penetrating radar and infrared thermography are some of the widely used techniques for health monitoring. Other emerging technologies that are gaining impetus for detecting and locating flaws in steel reinforcement bar include radioactive computed tomography, microwave holography, microwave and acoustic tomography. Of all the emerging techniques, microwave NDT is a promising imaging modality largely due to their ability to penetrate thick concrete structures, contrast between steel rebar and concrete and their non-radioactive nature. This paper investigates the feasibility of a far field microwave NDE technique for reinforced concrete structures.

  1. The analysis of thermoplastic characteristics of special polymer sulfur composite

    NASA Astrophysics Data System (ADS)

    Książek, Mariusz

    2016-07-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  2. Periodic Polymers

    NASA Astrophysics Data System (ADS)

    Thomas, Edwin

    2013-03-01

    Periodic polymers can be made by self assembly, directed self assembly and by photolithography. Such materials provide a versatile platform for 1, 2 and 3D periodic nano-micro scale composites with either dielectric or impedance contrast or both, and these can serve for example, as photonic and or phononic crystals for electromagnetic and elastic waves as well as mechanical frames/trusses. Compared to electromagnetic waves, elastic waves are both less complex (longitudinal modes in fluids) and more complex (longitudinal, transverse in-plane and transverse out-of-plane modes in solids). Engineering of the dispersion relation between wave frequency w and wave vector, k enables the opening of band gaps in the density of modes and detailed shaping of w(k). Band gaps can be opened by Bragg scattering, anti-crossing of bands and discrete shape resonances. Current interest is in our group focuses using design - modeling, fabrication and measurement of polymer-based periodic materials for applications as tunable optics and control of phonon flow. Several examples will be described including the design of structures for multispectral band gaps for elastic waves to alter the phonon density of states, the creation of block polymer and bicontinuous metal-carbon nanoframes for structures that are robust against ballistic projectiles and quasi-crystalline solid/fluid structures that can steer shock waves.

  3. Use of fiber-reinforced composites to improve the durability of bridge elements

    NASA Astrophysics Data System (ADS)

    Garon, Ronald; Balaguru, P. N.; Cao, Yong; Lee, K. Wayne

    2000-04-01

    Fiber composites made of carbon fibers and organic polymers are being used to strengthen plain, reinforced, and prestressed concrete structures. The composites are becoming more popular as compared to traditional strengthening with steel plates and jackets because they do not corrode and also have a very high strength to weight ratio. Organic polymers have been used as protective coatings for more than thirty years. The impermeable membrane of the polymer seals the concrete surface of the structures preventing the ingress of salts. Their main drawback is their inability to release vapor pressure buildup that causes damage in the concrete and delamination of the bonded fiber reinforced plastic. As a result of this and other weaknesses in the organic polymers, a new generation of breathable coating materials is being developed. These compositions range from epoxy modified portland cement coatings to completely inorganic silicate systems. The durability of five of the most promising compositions was evaluated under freeze-thaw, wet-dry, and scaling conditions. The silicate matrix was also used to bond carbon tows and fabrics to unreinforced concrete members. These beams were tested after exposure to wet-dry and scaling conditions. The results indicate that the inorganic matrix can be effectively used for repairs. The carbon tows can be used to replace the existing corroded reinforcing bars. The possibility of embedding optical fibers with the carbon fibers to monitor the field performance is being studied.

  4. Supramolecular Polymer Nanocomposites - Improvement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Hinricher, Jesse; Neikirk, Colin; Priestley, Rodney

    2015-03-01

    Supramolecular polymers differ from traditional polymers in that their repeat units are connected by hydrogen bonds that can reversibly break and form under various stimuli. They can be more easily recycled than conventional materials, and their highly temperature dependent viscosities result in reduced energy consumption and processing costs. Furthermore, judicious selection of supramolecular polymer architecture and functionality allows the design of advanced materials including shape memory and self-healing materials. Supramolecular polymers have yet to see widespread use because they can't support much weight due to their inherent mechanical weakness. In order to address this issue, the mechanical strength of supramolecular polymer nanocomposites based on ureidopyrmidinone (UPy) telechelic poly(caprolactone) doped with surface activated silica nanoparticles was investigated by tensile testing and dynamic mechanical analysis. The effects of varying amounts and types of nanofiller surface functionality were investigated to glean insight into the contributions of filler-filler and filler-matrix interactions to mechanical reinforcement in supramolecular polymer nanocomposites. MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja)

  5. Reinforcer Accumulation in a Token-Reinforcement Context with Pigeons

    ERIC Educational Resources Information Center

    Yankelevitz, Rachelle L.; Bullock, Christopher E.; Hackenberg, Timothy D.

    2008-01-01

    Four pigeons were exposed to a token-reinforcement procedure with stimulus lights serving as tokens. Responses on one key (the token-production key) produced tokens that could be exchanged for food during an exchange period. Exchange periods could be produced by satisfying a ratio requirement on a second key (the exchange-production key). The…

  6. CRC (Coordinating Research Council) hot-start and driveaway driveability program at high and intermediate temperatures using gasoline-alcohol blends

    SciTech Connect

    Not Available

    1988-08-01

    A cooperative CRC test program was conducted at Failure Analysis Associates Test Track in Phoenix, Arizona, from September 4 through October 4, 1985. The program investigated the hot-start driveability of thirteen 1985 model vehicles with eight hydrocarbon-alcohol blends and two hydrocarbon-only gasolines at nominal ambient temperatures of 90 and 70 F. The driveability procedure was modified to emphasize conditions that may cause fuel foaming. Carburetted, throttle-body-injected (TBI), port-fuel-injected (PFI), and port-fuel-injected turbocharged fuel systems were represented in the vehicle fleet. Ambient temperature effects were highly significant for carburetted and throttle-body-injected vehicle fuel-metering systems and for the total fleet. Carburetted vehicles were more sensitive to fuel properties and ambient conditions than fuel-injected vehicles.

  7. Autonomic healing of polymer composites

    NASA Astrophysics Data System (ADS)

    Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S.

    2001-02-01

    Structural polymers are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. Cracking leads to mechanical degradation of fibre-reinforced polymer composites; in microelectronic polymeric components it can also lead to electrical failure. Microcracking induced by thermal and mechanical fatigue is also a long-standing problem in polymer adhesives. Regardless of the application, once cracks have formed within polymeric materials, the integrity of the structure is significantly compromised. Experiments exploring the concept of self-repair have been previously reported, but the only successful crack-healing methods that have been reported so far require some form of manual intervention. Here we report a structural polymeric material with the ability to autonomically heal cracks. The material incorporates a microencapsulated healing agent that is released upon crack intrusion. Polymerization of the healing agent is then triggered by contact with an embedded catalyst, bonding the crack faces. Our fracture experiments yield as much as 75% recovery in toughness, and we expect that our approach will be applicable to other brittle materials systems (including ceramics and glasses).

  8. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    SciTech Connect

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  9. SUPER HARD SURFACED POLYMERS

    SciTech Connect

    Mansur, Louis K; Bhattacharya, R; Blau, Peter Julian; Clemons, Art; Eberle, Cliff; Evans, H B; Janke, Christopher James; Jolly, Brian C; Lee, E H; Leonard, Keith J; Trejo, Rosa M; Rivard, John D

    2010-01-01

    High energy ion beam surface treatments were applied to a selected group of polymers. Of the six materials in the present study, four were thermoplastics (polycarbonate, polyethylene, polyethylene terephthalate, and polystyrene) and two were thermosets (epoxy and polyimide). The particular epoxy evaluated in this work is one of the resins used in formulating fiber reinforced composites for military helicopter blades. Measures of mechanical properties of the near surface regions were obtained by nanoindentation hardness and pin on disk wear. Attempts were also made to measure erosion resistance by particle impact. All materials were hardness tested. Pristine materials were very soft, having values in the range of approximately 0.1 to 0.5 GPa. Ion beam treatment increased hardness by up to 50 times compared to untreated materials. For reference, all materials were hardened to values higher than those typical of stainless steels. Wear tests were carried out on three of the materials, PET, PI and epoxy. On the ion beam treated epoxy no wear could be detected, whereas the untreated material showed significant wear.

  10. Carbon nanotube reinforced polyacrylonitrile and poly(etherketone) fibers

    NASA Astrophysics Data System (ADS)

    Jain, Rahul

    The graphitic nature, continuous structure, and high mechanical properties of carbon nanotubes (CNTs) make them good candidate for reinforcing polymer fiber. The different types of CNTs including single-wall carbon nanotubes (SWNTs), few-wall carbon nanotubes (FWNTs), and multi-wall carbon nanotubes (MWNTs), and carbon nanofibers (CNFs) differ in terms of their diameter and number of graphitic walls. The desire has been to increase the concentration of CNTs as much as possible to make next generation multi-functional materials. The work in this thesis is mainly focused on MWNT and CNF reinforced polyacrylonitrile (PAN) composite fibers, and SWNT, FWNT, and MWNT reinforced poly(etherketone) (PEK) composite fibers. To the best of our knowledge, this is the first study to report the spinning of 20% MWNT or 30% CNF reinforced polymer fiber spun using conventional fiber spinning. Also, this is the first study to report the PEK/CNT composite fibers. The fibers were characterized for their thermal, tensile, mechanical, and dynamic mechanical properties. The fiber structure and morphology was studied using WAXD and SEM. The effect of two-stage heat drawing, sonication time for CNF dispersion, fiber drying temperature, and molecular weight of PAN was also studied. Other challenges associated with processing high concentrations of solutions for making composite fibers have been identified and reported. The effect of CNT diameter and concentration on fiber spinnability and electrical conductivity of composite fiber have also been studied. This work suggests that CNT diameter controls the maximum possible concentration of CNTs in a composite fiber. The results show that by properly choosing the type of CNT, length of CNTs, dispersion of CNTs, fiber spinning method, fiber draw ratio, and type of polymer, one can get electrically conducting fibers with wide range of conductivities for different applications. The PEK based control and composite fibers possess high thermal

  11. Mechanical strength of boron nitride nanotube-polymer interfaces

    SciTech Connect

    Chen, Xiaoming; Ke, Changhong E-mail: cke@binghamton.edu; Zhang, Liuyang; Wang, Xianqiao E-mail: cke@binghamton.edu; Park, Cheol; Fay, Catharine C.

    2015-12-21

    We investigate the mechanical strength of boron nitride nanotube (BNNT) polymer interfaces by using in situ electron microscopy nanomechanical single-tube pull-out techniques. The nanomechanical measurements show that the shear strengths of BNNT-epoxy and BNNT-poly(methyl methacrylate) interfaces reach 323 and 219 MPa, respectively. Molecular dynamics simulations reveal that the superior load transfer capacity of BNNT-polymer interfaces is ascribed to both the strong van der Waals interactions and Coulomb interactions on BNNT-polymer interfaces. The findings of the extraordinary mechanical strength of BNNT-polymer interfaces suggest that BNNTs are excellent reinforcing nanofiller materials for light-weight and high-strength polymer nanocomposites.

  12. A toolbox of oligopeptide-modified polymers for tailored elastomers.

    PubMed

    Croisier, Emmanuel; Liang, Su; Schweizer, Thomas; Balog, Sandor; Mionić, Marijana; Snellings, Ruben; Cugnoni, Joël; Michaud, Véronique; Frauenrath, Holger

    2014-01-01

    Biomaterials are constructed from limited sets of building blocks but exhibit extraordinary and versatile properties, because hierarchical structure formation lets them employ identical supramolecular motifs for different purposes. Here we exert a similar degree of structural control in synthetic supramolecular elastomers and thus tailor them for a broad range of thermomechanical properties. We show that oligopeptide-terminated polymers selectively self-assemble into small aggregates or nanofibrils, depending on the length of the oligopeptides. This process is self-sorting if differently long oligopeptides are combined so that different nanostructures coexist in bulk mixtures. Blends of polymers with oligopeptides matching in length furnish reinforced elastomers that exhibit shear moduli one order of magnitude higher than the parent polymers. By contrast, novel interpenetrating supramolecular networks that display excellent vibration damping properties are obtained from blends comprising non-matching oligopeptides or unmodified polymers. Hence, blends of oligopeptide-modified polymers constitute a toolbox for tailored elastomers with versatile properties. PMID:25198134

  13. Reinforcement of silica aerogels using silane-end-capped polyurethanes.

    PubMed

    Duan, Yannan; Jana, Sadhan C; Lama, Bimala; Espe, Matthew P

    2013-05-21

    Proper selection of silane precursors and polymer reinforcements yields more durable and stronger silica aerogels. This paper focuses on the use of silane-end-capped urethane prepolymer and chain-extended polyurethane for reinforcement of silica aerogels. The silane end groups were expected to participate in silica network formation and uniquely determine the amounts of urethanes incorporated into the aerogel network as reinforcement. The aerogels were prepared by one-step sol-gel process from mixed silane precursors tetraethoxysilane, aminopropyltriethoxysilane (APTES), and APTES-end-capped polyurethanes. The morphology and mechanical and surface properties of the resultant aerogels were investigated in addition to elucidation of chemical structures by solid-state (13)C and (29)Si nuclear magnetic resonance. Modification by 10 wt % APTES-end-capped chain-extended polyurethane yielded a 5-fold increase in compressive modulus and 60% increase in density. APTES-end-capped chain-extended polyurethane was found to be more effective in enhancement of mechanical properties and reduction of polarity. PMID:23611433

  14. Interfacial stresses in shape memory alloy-reinforced composites

    NASA Astrophysics Data System (ADS)

    Hiremath, S. R.; Prajapati, Maulik; Rakesh, S.; Roy Mahapatra, D.

    2014-03-01

    Debonding of Shape Memory Alloy (SMA) wires in SMA reinforced polymer matrix composites is a complex phenomenon compared to other fabric fiber debonding in similar matrix composites. This paper focuses on experimental study and analytical correlation of stress required for debonding of thermal SMA actuator wire reinforced composites. Fiber pull-out tests are carried out on thermal SMA actuator at parent state to understand the effect of stress induced detwinned martensites. An ASTM standard is followed as benchmark method for fiber pull-out test. Debonding stress is derived with the help of non-local shear-lag theory applied to elasto-plastic interface. Furthermore, experimental investigations are carried out to study the effect of Laser shot peening on SMA surface to improve the interfacial strength. Variation in debonding stress due to length of SMA wire reinforced in epoxy are investigated for non-peened and peened SMA wires. Experimental results of interfacial strength variation due to various L/d ratio for non-peened and peened SMA actuator wires in epoxy matrix are discussed.

  15. Polymer Electronics: Power from Polymers

    SciTech Connect

    Venkataraman, D.; Russell, Thomas P.

    2012-06-19

    We review polymer-based electronics and photovoltaics to provide the reader with a sense of how the field has developed, where we stand at present, and what possibilities are looming in the future. Expertise in areas ranging from synthesis to morphology to device design was sought to achieve this end. While these reviews cannot be exhaustive, they do provide a snapshot of the field at present and give some sense of where the key impediments are.

  16. Reinforcement learning in supply chains.

    PubMed

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice. PMID:19885962

  17. Fiber-Reinforced Composite Foam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two-phase method for making fiber-reinforced compositions was developed to achieve uniform fiber dispersion in a composite matrix. The first phase involved mixing together water, fibers, and a portion of a fiber dispersant to form a viscous composition. The high viscosity imparted by the dispersa...

  18. Fiber reinforced PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1978-01-01

    Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.

  19. Brucite nanoplate reinforced starch bionanocomposites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper the mechanical reinforcement in a series of bionanocomposites films based on starch and nano-sized brucite, Mg(OH)2, was investigated. Brucite nanoplates with an aspect ratio of 9.25 were synthesized by wet precipitation and incorporated into starch matrices at different concentrations...

  20. Method for reinforcing tubing joints

    NASA Technical Reports Server (NTRS)

    Kinzler, J.; Lee, W. S.

    1968-01-01

    Joint repair technique uses a longitudinally split aluminum shield over the joint ferrule and immediately adjacent tubing to reseal or reinforce leaking or weak joints in small tubing. Epoxy resin coating on inside surfaces of the two shield halves provides a tightly sealed bond between shield and tubing.