Science.gov

Sample records for polymer transfected primary

  1. Combining nebulization-mediated transfection and polymer microarrays for the rapid determination of optimal transfection substrates.

    PubMed

    Unciti-Broceta, Asier; Díaz-Mochón, Juan J; Mizomoto, Hitoshi; Bradley, Mark

    2008-01-01

    In this manuscript, we report how transfection efficiencies vary as a function of the substrate upon which cells adhere using a polymer microarray platform to allow rapid analysis of a large number of substrates. During these studies, traditional transfection protocols were nonsatisfactory, and thus we developed an approach in which an ultrasonic nebulizer was used to dispense lipoplexes onto cell-based microarrays in the absence of liquid. Under these conditions, droplets were directly deposited onto the cells thereby enhancing transfection. This approach was successfully applied to the transfection of various cell lines immobilized on a library of polyacrylates and permitted the identification of highly efficient transfection/polymer combinations, while showing that specific polymer-cell interactions may promote the efficacy of chemical transfection. PMID:18247582

  2. Delivery of episomal vectors into primary cells by means of commercial transfection reagents.

    PubMed

    Han, Na Rae; Lee, Hyun; Baek, Song; Yun, Jung Im; Park, Kyu Hyun; Lee, Seung Tae

    2015-05-29

    Although episomal vectors are commonly transported into cells by electroporation, a number of electroporation-derived problems have led to the search for alternative transfection protocols, such as the use of transfection reagents, which are inexpensive and easy to handle. Polyplex-mediated transport of episomal vectors into the cytoplasm has been conducted successfully in immortalized cell lines, but no report exists of successful transfection of primary cells using this method. Accordingly, we sought to optimize the conditions for polyplex-mediated transfection for effective delivery of episomal vectors into the cytoplasm of primary mouse embryonic fibroblasts. Episomal vectors were complexed with the commercially available transfection reagents Lipofectamine 2000, FuGEND HD and jetPEI. The ratio of transfection reagent to episomal vectors was varied, and the subsequent transfection efficiency and cytotoxicity of the complexes were analyzed using flow cytometry and trypan blue exclusion assay, respectively. No cytotoxicity and the highest transfection yield were observed when the ratio of transfection reagent to episomal vector was 4 (v/wt) in the cases of Lipofectamine 2000 and FuGENE HD, and 2 in the case of jetPEI. Of the three transfection reagents tested, jetPEI showed the highest transfection efficiency without any cytotoxicity. Thus, we confirmed that the transfection reagent jetPEI could be used to effectively deliver episomal vectors into primary cells without electroporation. PMID:25887802

  3. Isolation and Transfection of Primary Culture Bovine Retinal Pericytes.

    PubMed

    Primo, Vincent A; Arboleda-Velasquez, Joseph F

    2016-01-01

    This protocol describes an enzymatic approach for isolating homogeneous cultures of pericytes from retinas of bovine source. In summary, retinas are dissected, washed, digested, filtered, cultured in specific media to select for pericytes, and finally expanded for a low passage culture of about 14 million bovine retinal pericytes (BRP) within 4-6 weeks. This protocol also describes a liposomal-based technique for transfection of BRPs. PMID:27172949

  4. A knot polymer mediated non-viral gene transfection for skin cells.

    PubMed

    Cutlar, Lara; Gao, Yongsheng; Aied, Ahmed; Greiser, Udo; Murauer, Eva Maria; Zhou, Dezhong; Wang, Wenxin

    2016-01-01

    A knot polymer, poly[bis(2-acryloyl)oxyethyl disulphide-co-2-(dimethylamino) ethyl methacrylate] (DSP), was synthesized, optimized and evaluated as a non-viral vector for gene transfection for skin cells, keratinocytes. With recessive dystrophic epidermolysis bullosa keratinocytes (RDEBK-TA4), the DSP exhibited high transfection efficacy with both Gaussia luciferase marker DNA and the full length COL7A1 transcript encoding the therapeutic type VII collagen protein (C7). The effective restoration of C7 in C7 null-RDEB skin cells indicates that DSP is promising for non-viral gene therapy of recessive dystrophic epidermolysis bullosa (RDEB). PMID:26369723

  5. Efficient gene transfection using novel cationic polymers poly(hydroxyalkylene imines).

    PubMed

    Zaliauskiene, Lolita; Bernadisiute, Ula; Vareikis, Ausvydas; Makuska, Ricardas; Volungeviciene, Ieva; Petuskaite, Agne; Riauba, Laurynas; Lagunavicius, Arunas; Zigmantas, Sarunas

    2010-09-15

    A series of novel cationic polymers poly(hydroxyalkylene imines) were synthesized and tested for their ability to transfect cells in vitro and in vivo. Poly(hydroxyalkylene imines), in particular, poly(2-hydroxypropylene imine) (pHP), poly(2-hydroxypropylene imine ethylene imine) (pHPE), and poly(hydroxypropylene imine propylene imine) (pHPP) were synthesized by polycondensation reaction from 1,3-diamino-2-propanol and the appropriate dibromide. Electron microscopic examination demonstrated that the resulting polymers condensed DNA into toroid shape complexes of 100-150 nm in size. Transfection studies showed that all three polymers were able to deliver genetic material into the cell, with pHP being superior to pHPP and pHPE. pHP acted as an efficient gene delivery agent in a variety of different cell lines and outcompeted most of the widely used polymer or lipid based transfection reagents. Intravenous administration of pHP-DNA polyplexes in mice followed by the reporter gene analysis showed that the reagent was suitable for in vivo applications. In summary, the results indicate that pHP is a new efficient reagent for gene delivery in vitro and in vivo. PMID:20695432

  6. Thermoresponsive polymers as gene delivery vectors: cell viability, DNA transport and transfection studies.

    PubMed

    Twaites, Beverley R; de Las Heras Alarcón, Carolina; Lavigne, Matthieu; Saulnier, Annabelle; Pennadam, Sivanand S; Cunliffe, David; Górecki, Dariusz C; Alexander, Cameron

    2005-11-28

    A range of gene delivery vectors containing the thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAm) was evaluated for effects on cell viability, intracellular trafficking and transgene expression in C2C12 mouse muscle cells. Polymers were complexed with plasmid DNA at pH 7.4 and the ability of the resulting particles to transfect cells was assessed via confocal microscopy and protein expression studies in tissue culture. Cell viability assays indicated that these polymers were toxic at high concentrations when not complexed to DNA or at certain polymer:DNA ratios. Poly(ethyleneimine) co-polymers with side-chain grafted PNIPAm were shown to be less toxic than poly(ethyleneimine) alone or PNIPAm-co-(N,N'-dimethylaminoethylmethacrylate) linear co-polymers and the effects were concentration dependent. Confocal micrographs of labeled polymers and DNA indicated rapid cellular entry for all the complexes but expression of Green Fluorescent Protein was achieved only when the branched PEI-PNIPAm co-polymers were used as vectors. The results indicate that design of appropriate co-polymer components and overall polymer architecture can be used to mediate, and perhaps ultimately control, DNA transport and transgene expression. PMID:16214254

  7. Physicochemical properties of polymers: An important system to overcome the cell barriers in gene transfection.

    PubMed

    Namvar, Ali; Bolhassani, Azam; Khairkhah, Niloofardokht; Motevalli, Fatemeh

    2015-07-01

    Delivery of the macromolecules including DNA, miRNA, and antisense oligonucleotides is typically mediated by carriers due to the large size and negative charge. Different physical (e.g., gene gun or electroporation), and chemical (e.g., cationic polymer or lipid) vectors have been already used to improve the efficiency of gene transfer. Polymer-based DNA delivery systems have attracted special interest, in particular via intravenous injection with many intra- and extracellular barriers. The recent progress has shown that stimuli-responsive polymers entitled as multifunctional nucleic acid vehicles can act to target specific cells. These nonviral carriers are classified by the type of stimulus including reduction potential, pH, and temperature. Generally, the physicochemical characterization of DNA-polymer complexes is critical to enhance the transfection potency via protection of DNA from nuclease digestion, endosomal escape, and nuclear localization. The successful clinical applications will depend on an exact insight of barriers in gene delivery and development of carriers overcoming these barriers. Consequently, improvement of novel cationic polymers with low toxicity and effective for biomedical use has attracted a great attention in gene therapy. This article summarizes the main physicochemical and biological properties of polyplexes describing their gene transfection behavior, in vitro and in vivo. In this line, the relative efficiencies of various cationic polymers are compared. PMID:25761628

  8. Dispersing Zwitterions into Comb Polymers for Nonviral Transfection: Experiments and Molecular Simulation.

    PubMed

    Ghobadi, Ahmadreza F; Letteri, Rachel; Parelkar, Sangram S; Zhao, Yue; Chan-Seng, Delphine; Emrick, Todd; Jayaraman, Arthi

    2016-02-01

    Polymer-based gene delivery vehicles benefit from the presence of hydrophilic groups that mitigate the inherent toxicity of polycations and that provide tunable polymer-DNA binding strength and stable complexes (polyplexes). However, hydrophilic groups screen charge, and as such can reduce cell uptake and transfection efficiency. We report the effect of embedding zwitterionic sulfobetaine (SB) groups in cationic comb polymers, using a combination of experiments and molecular simulations. Ring-opening metathesis polymerization (ROMP) produced comb polymers with tetralysine (K4) and SB pendent groups. Dynamic light scattering, zeta potential measurements, and fluorescence-based experiments, together with coarse-grained molecular dynamics simulations, described the effect of SB groups on the size, shape, surface charge, composition, and DNA binding strength of polyplexes formed using these comb polymers. Experiments and simulations showed that increasing SB composition in the comb polymers decreased polymer-DNA binding strength, while simulations indicated that the SB groups distributed throughout the polyplex. This allows polyplexes to maintain a positive surface charge and provide high levels of gene expression in live cells. Notably, comb polymers with nearly 50 mol % SB form polyplexes that exhibit positive surface charge similarly as polyplexes formed from purely cationic comb polymers, indicating the ability to introduce an appreciable amount of SB functionality without screening surface charge. This integrated simulation-experimental study demonstrates the effectiveness of incorporating zwitterions in polyplexes, while guiding the design of new and effective gene delivery vectors. PMID:26741292

  9. Transfection of Primary Hepatocytes with Liver-Enriched Transcription Factors Using Adenoviral Vectors.

    PubMed

    Benet, Marta; Jover, Ramiro; Bort, Roque

    2015-01-01

    Primary cultured hepatocytes are probably the best model to study endogenous metabolic pathways, toxicity, or drug metabolism. Many of these studies require expression of ectopic genes. It would be desirable to use a method of transfection that allows dose-response studies, high efficiency of transfection, and the possibility to express several genes at the same time. Adenoviral vectors fulfill these requirements, becoming a valuable tool for primary hepatocyte transfection. Moreover, they are easy to generate and do not require a high level of biocontainment. In the present chapter, we describe the generation, cloning, amplification, and purification of an adenoviral vector capable of infecting primary cultured hepatocytes. This recombinant adenovirus induces robust expression of the protein of interest in hepatocytes within a wide range of doses. PMID:26272145

  10. Comparative transfection of DNA into primary and transformed mammalian cells from different lineages

    PubMed Central

    2010-01-01

    Background The delivery of DNA into human cells has been the basis of advances in the understanding of gene function and the development of genetic therapies. Numerous chemical and physical approaches have been used to deliver the DNA, but their efficacy has been variable and is highly dependent on the cell type to be transfected. Results Studies were undertaken to evaluate and compare the transfection efficacy of several chemical reagents to that of the electroporation/nucleofection system using both adherent cells (primary and transformed airway epithelial cells and primary fibroblasts as well as embryonic stem cells) and cells in suspension (primary hematopoietic stem/progenitor cells and lymphoblasts). With the exception of HEK 293 cell transfection, nucleofection proved to be less toxic and more efficient at effectively delivering DNA into the cells as determined by cell proliferation and GFP expression, respectively. Lipofectamine and nucleofection of HEK 293 were essentially equivalent in terms of toxicity and efficiency. Transient transfection efficiency in all the cell systems ranged from 40%-90%, with minimal toxicity and no apparent species specificity. Differences in efficiency and toxicity were cell type/system specific. Conclusions In general, the Amaxa electroporation/nucleofection system appears superior to other chemical systems. However, there are cell-type and species specific differences that need to be evaluated empirically to optimize the conditions for transfection efficiency and cell survival. PMID:20144189

  11. High-Efficiency Transfection of Primary Human and Mouse T Lymphocytes Using RNA Electroporation

    PubMed Central

    Zhao, Yangbing; Zheng, Zhili; Cohen, Cyrille J.; Gattinoni, Luca; Palmer, Douglas C.; Restifo, Nicholas P.; Rosenberg, Steven A.; Morgan, Richard A.

    2006-01-01

    The use of nonviral gene transfer methods in primary lymphocytes has been hampered by low gene transfer efficiency and high transfection-related toxicity. In this report, high gene transfection efficiency with low transfection-related toxicity was achieved by electroporation using in vitro-transcribed mRNA. Using these methods, >90% transgene expression with >80% viable cells was observed in stimulated primary human and murine T lymphocytes transfected with GFP or mCD62L. Electroporation of unstimulated human PBMCs or murine splenocytes with GFP RNA yielded 95 and 56% GFP+ cells, respectively. Electroporation of mRNA for NY-ESO-1, MART-1, and p53 antigen-specific TCRs into human T lymphocytes redirected these lymphocytes to recognize melanoma cell lines in an MHC-restricted manner. The onset of gene expression was rapid (within 30 min) and durable (up to 7 days postelectroporation) using both GFP and TCR-mediated recognition of target cells. There was no adverse effect observed on the T lymphocytes subjected to RNA electroporation evaluated by cell growth rate, annexin-V staining of apoptotic cells, BrdU incorporation, tumor antigen-specific recognition or antigen-specific TCR affinity. The results of this study indicate that mRNA electroporation provides a powerful tool to introduce genes into both human and murine primary T lymphocytes. PMID:16140584

  12. Efficient Gene Delivery of Primary Human Cells Using Peptide Linked Polyethylenimine Polymer Hybrid

    PubMed Central

    Dey, Devaveena; Inayathullah, Mohammed; Lee, Andrew S; Limiuex, Melbes; Zhang, Xuexiang; Wu, Yi; Nag, Divya; De Almeida, Patricia Eliza; Han, Leng; Rajadas, Jayakumar; Wu, Joseph C

    2011-01-01

    Polyethylenimine (PEI) based polymers are efficient agents for cell transfection. However, their use has been hampered due to high cell death associated with transfection thereby resulting in low efficiency of gene delivery within the cells. To circumvent the problem of cellular toxicity, metal binding peptides were linked to PEI. Eight peptide-PEI derivatives were synthesized to improve cell survival and transfection efficiency. TAT linked PEI was used as a control polymer. Peptides linked with PEI amines formed nano gels as shown by electron microscopy and atomic force microscopic measurements. Polymers were characterized by spectroscopic methods and their ability to form complexes with plasmids was tested using electrophoretic studies. These modifications improved polymer biocompatibility as well as cell survival markedly when compared to PEI alone. A subset of the modified peptide-polymers also showed significantly higher transfection efficiency in primary human cells with respect to the widely used transfection agent, lipofectamine. Study of the underlying mechanism of the observed phenomena revealed lower levels of ‘reactive oxygen species’ (ROS) in presence of the peptide-polymers when compared to PEI alone. This was further corroborated with global gene expression analysis which showed upregulation of multiple genes and pathways involved in regulating intracellular oxidative stress. PMID:21477858

  13. Parallel high-throughput screening of polymer vectors for nonviral gene delivery: evaluation of structure-property relationships of transfection.

    PubMed

    Rinkenauer, Alexandra C; Vollrath, Antje; Schallon, Anja; Tauhardt, Lutz; Kempe, Kristian; Schubert, Stephanie; Fischer, Dagmar; Schubert, Ulrich S

    2013-09-01

    In recent years, "high-throughput" (HT) has turned into a keyword in polymer research. In this study, we present a novel HT workflow for the investigation of cationic polymers for gene delivery applications. For this purpose, various poly(ethylene imine)s (PEI) were used as representative vectors and investigated via HT-assays in a 96-well plate format, starting from polyplex preparation up to the examination of the transfection process. In detail, automated polyplex preparation, complex size determination, DNA binding affinity, polyplex stability, cytotoxicity, and transfection efficiency were performed in the well plate format. With standard techniques, investigation of the biological properties of polymers is quite time-consuming, so only a limited number of materials and conditions (such as pH, buffer composition, and concentration) can be examined. The approach described here allows many different polymers and parameters to be tested for transfection properties and cytotoxicity, giving faster insights into structure-activity relationships for biological activity. PMID:23886244

  14. High-throughput screening of microscale pitted substrate topographies for enhanced nonviral transfection efficiency in primary human fibroblasts

    PubMed Central

    Adler, Andrew F.; Speidel, Alessondra T.; Christoforou, Nicolas; Kolind, Kristian; Foss, Morten; Leong, Kam W.

    2011-01-01

    Optimization of nonviral gene delivery typically focuses on the design of particulate carriers that are endowed with desirable membrane targeting, internalization, and endosomal escape properties. Topographical control of cell transfectability, however, remains a largely unexplored parameter. Emerging literature has highlighted the influence of cell-topography interactions on modulation of many cell phenotypes, including protein expression and cytoskeletal behaviors implicated in endocytosis. Using high-throughput screening of primary human dermal fibroblasts cultured on a combinatorial library of microscale topographies, we have demonstrated an improvement in nonviral transfection efficiency for cells cultured on dense micropit patterns compared to smooth substrates, as verified with flow cytometry. A 25% increase in GFP+ cells was observed independent of proliferation rate, accompanied by SEM and confocal microscopy characterization to help explain the phenomenon qualitatively. This finding encourages researchers to investigate substrate topography as a new design consideration for the optimization of nonviral transfection systems. PMID:21334062

  15. Myoblast proliferation and syncytial fusion both depend on connexin43 function in transfected skeletal muscle primary cultures

    SciTech Connect

    Gorbe, Aniko; Krenacs, Tibor; Cook, Jeremy E.; Becker, David L. . E-mail: d.becker@ucl.ac.uk

    2007-04-01

    Muscles are formed by fusion of individual postmitotic myoblasts to form multinucleated syncytial myotubes. The process requires a well-coordinated transition from proliferation, through migratory alignment and cycle exit, to breakdown of apposed membranes. Connexin43 protein and cell-cycle inhibitor levels are correlated, and gap junction blockers can delay muscle regeneration, so a coordinating role for gap junctions has been proposed. Here, wild-type and dominant-negative connexin43 variants (wtCx43, dnCx43) were introduced into rat myoblasts in primary culture through pIRES-eGFP constructs that made transfected cells fluoresce. GFP-positive cells and vitally-stained nuclei were counted on successive days to reveal differences in proliferation, and myotubes were counted to reveal differences in fusion. Individual transfected cells were injected with Cascade Blue, which permeates gap junctions, mixed with FITC-dextran, which requires cytoplasmic continuity to enter neighbouring cells. Myoblasts transfected with wtCx43 showed more gap-junctional coupling than GFP-only controls, began fusion sooner as judged by the incidence of cytoplasmic coupling, and formed more myotubes. Myoblasts transfected with dnCx43 remained proliferative for longer than either GFP-only or wtCx43 myoblasts, showed less coupling, and underwent little fusion into myotubes. These results highlight the critical role of gap-junctional coupling in myotube formation.

  16. PACAP receptor pharmacology and agonist bias: analysis in primary neurons and glia from the trigeminal ganglia and transfected cells

    PubMed Central

    Walker, C S; Sundrum, T; Hay, D L

    2014-01-01

    Background and Purpose A major challenge in the development of new medicines targeting GPCRs is the ability to quantify drug action in physiologically relevant models. Primary cell models that closely resemble the clinically relevant in vivo site of drug action are important translational tools in drug development. However, pharmacological studies in these models are generally very limited due to the methodology used. Experimental Approach We used a neuropeptide system to demonstrate the applicability of using highly sensitive signalling assays in primary cells. We quantified the action of pituitary adenylate cyclase-activating peptide (PACAP)-38, PACAP-27 and vasoactive intestinal polypeptide in primary cultures of neurons and glia derived from rat trigeminal ganglia (TG), comparing our observations to transfected cells. Key Results PACAP-responsive receptors in rat trigeminal neurons, glia and transfected PAC1n receptors were pharmacologically distinct. PACAP-38, but not PACAP-27, activated ERK in glia, while both forms stimulated cellular cAMP production. PACAP(6–38) also displayed cell-type-dependent, agonist-specific, antagonism. Conclusions and Implications The complexity of PACAP pharmacology in the TG may help to direct, more effectively, the development of disease treatments targeting the PACAP receptor. We suggest that these methodologies are broadly applicable to other primary cell types of human or animal origin, and that our approach may allow more thorough characterization of ligand properties in physiologically relevant cell types. PMID:24303997

  17. A Simple, Highly Efficient Method for Heterologous Expression in Mammalian Primary Neurons Using Cationic Lipid-mediated mRNA Transfection

    PubMed Central

    Williams, Damian J.; Puhl, Henry L.; Ikeda, Stephen R.

    2010-01-01

    Expression of heterologous proteins in adult mammalian neurons is a valuable technique for the study of neuronal function. The post-mitotic nature of mature neurons prevents effective DNA transfection using simple, cationic lipid-based methods. Adequate heterologous protein expression is often only achievable using complex techniques that, in many cases, are associated with substantial toxicity. Here, a simple method for high efficiency transfection of mammalian primary neurons using in vitro transcribed mRNA and the cationic lipid transfection reagent Lipofectamine™ 2000 is described. Optimal transfection conditions were established in adult mouse dissociated dorsal root ganglion (DRG) neurons using a 96-well based luciferase activity assay. Using these conditions, a transfection efficiency of 25% was achieved in DRG neurons transfected with EGFP mRNA. High transfection efficiencies were also obtained in dissociated rat superior cervical ganglion (SCG) neurons and mouse cortical and hippocampal cultures. Endogenous Ca2+ currents in EGFP mRNA-transfected SCG neurons were not significantly different from untransfected neurons, which suggested that this technique is well suited for heterologous expression in patch clamp recording experiments. Functional expression of a cannabinoid receptor (CB1R), a G protein inwardly rectifying K+ channel (GIRK4) and a dominant-negative G protein α-subunit mutant (GoA G203T) indicate that the levels of heterologous protein expression attainable using mRNA transfection are suitable for most functional protein studies. This study demonstrates that mRNA transfection is a straightforward and effective method for heterologous expression in neurons and is likely to have many applications in neuroscience research. PMID:21267423

  18. A Simple, Highly Efficient Method for Heterologous Expression in Mammalian Primary Neurons Using Cationic Lipid-mediated mRNA Transfection.

    PubMed

    Williams, Damian J; Puhl, Henry L; Ikeda, Stephen R

    2010-01-01

    Expression of heterologous proteins in adult mammalian neurons is a valuable technique for the study of neuronal function. The post-mitotic nature of mature neurons prevents effective DNA transfection using simple, cationic lipid-based methods. Adequate heterologous protein expression is often only achievable using complex techniques that, in many cases, are associated with substantial toxicity. Here, a simple method for high efficiency transfection of mammalian primary neurons using in vitro transcribed mRNA and the cationic lipid transfection reagent Lipofectamine™ 2000 is described. Optimal transfection conditions were established in adult mouse dissociated dorsal root ganglion (DRG) neurons using a 96-well based luciferase activity assay. Using these conditions, a transfection efficiency of 25% was achieved in DRG neurons transfected with EGFP mRNA. High transfection efficiencies were also obtained in dissociated rat superior cervical ganglion (SCG) neurons and mouse cortical and hippocampal cultures. Endogenous Ca(2+) currents in EGFP mRNA-transfected SCG neurons were not significantly different from untransfected neurons, which suggested that this technique is well suited for heterologous expression in patch clamp recording experiments. Functional expression of a cannabinoid receptor (CB1R), a G protein inwardly rectifying K(+) channel (GIRK4) and a dominant-negative G protein α-subunit mutant (G(oA) G203T) indicate that the levels of heterologous protein expression attainable using mRNA transfection are suitable for most functional protein studies. This study demonstrates that mRNA transfection is a straightforward and effective method for heterologous expression in neurons and is likely to have many applications in neuroscience research. PMID:21267423

  19. Biophysical effects in off-resonant gold nanoparticle mediated (GNOME) laser transfection of cell lines, primary- and stem cells using fs laser pulses.

    PubMed

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Heinemann, Dag; Kalies, Stefan; Ngezahayo, Anaclet; Nolte, Ingo; Ripken, Tammo; Junghanß, Christian; Meyer, Heiko; Murua Escobar, Hugo; Heisterkamp, Alexander

    2015-08-01

    Gold nanoparticle mediated (GNOME) laser transfection is a powerful technique to deliver small biologically relevant molecules into cells. However, the transfection of larger and especially negatively charged DNA remains challenging. The efficiency for pDNA was 0.57% using parameter that does not influence the endo- and exogenous DNA. In order to gain a deeper understanding of the actual molecule uptake process, the uptake efficiency was determined using molecules of different sizes. It was evaluated that uncharged dextran molecules (2000 kDa) were delivered with an efficiency of 68%. The intracellular distribution of injected molecules was visualized and larger molecules were primary found in the cytoplasm. Patch clamp measurements suggested a permeabilization time up to 15 minutes. The uptake efficiency depended on the size and charge of the molecule to deliver as well as the cell size. A minor role for transfection plays the cell type since primary stem cells were successfully transfected. The perforation efficiency of semi-adherent and suspension cells is influenced by the cell and molecule size. PMID:25302483

  20. Efficient gene transfection in the neurotypic cells by star-shaped polymer consisting of β-cyclodextrin core and poly(amidoamine) dendron arms.

    PubMed

    Liang, Bing; Deng, Jun Jie; Yuan, Fang; Yang, Ning; Li, Wei; Yin, Jian Rui; Pu, Shu Xiang; Xie, Long Chang; Gao, Cong; Zhang, Li Ming

    2013-04-15

    In order to develop the effective vectors that had high gene transfection capability and low cytotoxicity in the neuronal cells, we tested the star-shaped polymer consisting of β-cyclodextrin core and poly(amidoamine) (PAMAM) dendron arms [β-CD-(D3)7] as the vector to transfect the human neuroblastoma SH-SY5Y cells. The physicochemical properties of the β-CD-(D3)7/plasmid DNA (pDNA) complexes were characterized by using gel electrophoresis, dynamic light scattering, transmission electron microscopy and zeta-potential experiments. Among the human neuroblastoma SH-SY5Y cells, β-CD-(D3)7/pDNA complex demonstrated a lower toxicity compared to those of PAMAM (G=4, with an ethylenediamine core)/pDNA complex. When the N/P ratio was over 20, it was observed that PAMAM had a faster increment in toxicity compared to β-CD-(D3)7. Fluorescent image, confocal microscopy image and flow cytometry showed that β-CD-(D3)7/pDNA complexes had significantly higher transgene activity than that of PAMAM/pDNA complexes. For example, the transfection efficiency was 20% and 7.5% for β-CD-(D3)7/pDNA and PAMAM/pDNA complexes, respectively. These results indicated that β-CD-(D3)7 might be a promising candidate for neurotypic cells gene delivery with the characteristics of good biocompatibility, relatively high gene transfection capability and potential in vivo gene delivery ability. PMID:23544527

  1. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells.

    PubMed

    Bettinger, T; Carlisle, R C; Read, M L; Ogris, M; Seymour, L W

    2001-09-15

    Synthetic vectors were evaluated for their ability to mediate efficient mRNA transfection. Initial results indicated that lipoplexes, but not polyplexes based on polyethylenimine (PEI, 25 and 22 kDa), poly(L-lysine) (PLL, 54 kDa) or dendrimers, mediated efficient translation of mRNA in B16-F10 cells. Significant mRNA transfection was achieved by lipoplex delivery in quiescent (passage 0) human umbilical vein endothelial cells (HUVEC), and by passage 4, 10.7% of HUVEC were transfected compared to 0.84% with DNA. Lack of expression with PEI 25 kDa/mRNA or PLL 54 kDa/mRNA in a cell-free translation assay and following cytoplasmic injection into Rat1 cells indicated that these polyplexes were too stable to release mRNA. In contrast, polyplexes formed using smaller PEI 2 kDa and PLL 3.4 kDa gave 5-fold greater expression in B16-F10 cells compared to DOTAP, but were dependent on chloroquine for transfection activity. Endosomolytic activity was incorporated by conjugating PEI 2 kDa to melittin and resulting PEI 2 kDa-melittin/mRNA polyplexes mediated high transfection levels in HeLa cells (31.1 +/- 4.1%) and HUVEC (58.5 +/- 2.9%) in the absence of chloroquine, that was potentiated to 52.2 +/- 2.7 and 71.6 +/- 1.7%, respectively, in the presence of chloroquine. These results demonstrate that mRNA polyplexes based on peptide-modified low molecular weight polycations can possess versatile properties including endosomolysis that should enable efficient non-viral mRNA transfection of quiescent and post-mitotic cells. PMID:11557821

  2. Graphene based gene transfection

    NASA Astrophysics Data System (ADS)

    Feng, Liangzhu; Zhang, Shuai; Liu, Zhuang

    2011-03-01

    Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI-10k polymer. The positively charged GO-PEI complexes are able to further bind with plasmid DNA (pDNA) for intracellular transfection of the enhanced green fluorescence protein (EGFP) gene in HeLa cells. While EGFP transfection with PEI-1.2k appears to be ineffective, high EGFP expression is observed using the corresponding GO-PEI-1.2k as the transfection agent. On the other hand, GO-PEI-10k shows similar EGFP transfection efficiency but lower toxicity compared with PEI-10k. Our results suggest graphene to be a novel gene delivery nano-vector with low cytotoxicity and high transfection efficiency, promising for future applications in non-viral based gene therapy.Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI

  3. Contribution of polymers to classical primary insulation of distribution system

    SciTech Connect

    Shwehdi, M.H.; Al-Rawi, A.

    1996-12-31

    Insulation composites used on present distribution lines frequently consist of several types of materials such as wood, porcelain, polymers and fiberglass reinforced plastics (FRP) connected in series. A study included the laboratory determination of the critical flashover voltage (CFO) of 17 single component and 90 combinations of two components were conducted. The acquired data were used to develop methods of predicting CFO levels of various multiple series electrical insulations. This paper illustrates the results and analyses of the classical primary insulation (porcelain), and of the modern-day insulation of polymers. It also presents the result of whether polymers may add or supplement insulation strength to the two dielectric combination using statistical methods. The paper also presents advantages and guidelines for the use of polymers to either replace or complement porcelain. This may help optimize the choice of dielectrics on distribution lines.

  4. Enhancing magnetic nanoparticle-based DNA transfection: Intracellular-active cassette features

    NASA Astrophysics Data System (ADS)

    Vernon, Matthew Martin

    Efficient plasmid DNA transfection of embryonic stem cells, mesenchymal stem cells, neural cell lines and the majority of primary cell lines is a current challenge in gene therapy research. Magnetic nanoparticle-based DNA transfection is a gene vectoring technique that is promising because it is capable of outperforming most other non-viral transfection methods in terms of both transfection efficiency and cell viability. The nature of the DNA vector implemented depends on the target cell phenotype, where the particle surface chemistry and DNA binding/unbinding kinetics of the DNA carrier molecule play a critical role in the many steps required for successful gene transfection. Accordingly, Neuromag, an iron oxide/polymer nanoparticle optimized for transfection of neural phenotypes, outperforms many other nanoparticles and lipidbased DNA carriers. Up to now, improvements to nanomagnetic transfection techniques have focused mostly on particle functionalization and transfection parameter optimization (cell confluence, growth media, serum starvation, magnet oscillation parameters, etc.). None of these parameters are capable of assisting the nuclear translocation of delivered plasmid DNA once the particle-DNA complex is released from the endosome and dissociates in the cell's cytoplasm. In this study, incorporation of a DNA targeting sequence (DTS) feature in the transfecting plasmid DNA confers improved nuclear translocation, demonstrating significant improvement in nanomagnetic transfection efficiency in differentiated SH-SY5Y neuroblastoma cells. Other parameters, such as days in vitro, are also found to play a role and represent potential targets for further optimization.

  5. Structural characterization and buffering capacity in relation to the transfection efficiency of biodegradable polyurethane.

    PubMed

    Tseng, S-ja; Tang, Shiue-cheng; Shau, Min-da; Zeng, Yi-fang; Cherng, Jong-yuh; Shih, Mei-fen

    2005-01-01

    Inefficient release of polymer/DNA complexes from endocytic vesicles into the cytoplasm and the cytotoxic nature of cationic polymers are two of the primary causes of poor gene delivery. EG-polyurethane [poly(ethylene glycol)-PU, Poly 1], EGDM-polyurethane [poly(ethylene glycol), 2-(dimethylamino)ethylamine-PU, Poly 2], and MDEADM-polyurethane [N-methyldiethanolamine, 2-(dimethylamino)ethylamine-PU, Poly 3] were designed in this study to overcome these obstacles. The structural characteristics of polyurethanes and physicochemical properties of their formed complexes with DNA were determined to correlate their transfection efficiency. The results revealed that Poly 2 and Poly 3 could bind with plasmid DNA and yield positively charged complexes with a size required for transfection. Poly 3 showed the best in buffering capacity and its formed complexes with DNA could transfect COS-7 cells better than those of Poly 2 and Poly 1. This study reveals that the amine groups in the polymeric structure and the buffer capacity of a polymeric transfectant would affect its potential in DNA delivery. Also the size and binding properties of DNA and polymeric transfectants can be in correlation to the transfection efficiency of resulting DNA/polymer complexes. PMID:16287233

  6. High-throughput transfection and engineering of primary cells and cultured cell lines - an invaluable tool for research as well as drug development.

    PubMed

    Müller-Hartmann, Herbert; Faust, Nicole; Kazinski, Michael; Kretzschmar, Titus

    2007-11-01

    The manipulation of eukaryotic cells by introducing nucleic acids and other substrates using chemical, physical or viral methods is one of the ground-breaking tools in the life sciences. Changes in the molecular equipment of a cell induced by introducing different molecules not only enable the dissection of signal transduction and metabolic pathways, but also allow the exploitation of engineered cells as bio-factories for the production of proteins in the processes of target research and drug development. In addition to the application of engineered cells for modern cell-based assays, medically relevant engineered cells can be used in clinical settings for adoptive immunotherapy or gene therapy. With the advent of methods exploiting RNA interference (RNAi), gene identification and functional validation in eukaryotic cells have clearly become one of the most exciting methods in life sciences during the past few years. To accelerate research and development in these areas, high-quality, high-throughput approaches (i.e., using sample formats of at least 96 wells) for cell engineering are needed with increasing demand. Recent developments, especially in the field of electroporation, now allow the efficient, high-throughput engineering of virtually any cell type, including primary cells, many of which were previously considered difficult or even impossible to transfect. Primary cells freshly isolated from native tissues are gaining more and more interest, as data obtained with these cells are considered to be of higher physiological relevance than data obtained with immortalized cell lines that have been cultured for extensive periods. In this review, the various methods for cell engineering (with focus on higher eukaryotic cells) are summarized and their impact for high-throughput applications in research and drug development is discussed. PMID:23484597

  7. Transfection of normal primary human skeletal myoblasts with p21 and p57 antisense oligonucleotides to improve their proliferation: a first step towards an alternative molecular therapy approach of Duchenne muscular dystrophy.

    PubMed

    Endesfelder, Stefanie; Bucher, Sabine; Kliche, Alexander; Reszka, Regina; Speer, Astrid

    2003-06-01

    Duchenne muscular dystrophy (DMD), caused by the absence of dystrophin, is associated with decreased muscle cell proliferation. An increased p21 mRNA level in DMD patients may be involved in the process. In this context we are interested to improve the proliferation of primary human skeletal muscle cells (SkMC) by a reduction in the cell cycle proteins p21 and p57 using the appropriate antisense oligonucleotides (ASO). Therefore a transfection procedure needs to be optimized in which the oligonucleotide enters the SkMC with a minimal loss of cell vitality and high efficiency. Three different formulations, Effectene, DAC40, and SuperFect, were compared. Proliferation was analyzed comparing cells transfected with p21 and/or p57 ASO vs. cells transfected with scrambled ASO using a bromodeoxyuridine assay. Under optimal conditions (a mixture of 0.25 microg ASO, 5 microl Effectene, 0.8 microl enhancer) SkMC transfected with p21 ASO reveal an average increase in cell proliferation of 32.5+/-11% after 24 h. p57 ASO shows the same effect, but concomitant transfection of p21 and p57 does not enhance it. A cell vitality of 78+/-14% after 24 h was determined by the MTT test. SkMC transfected with DAC40 reveal a maximal increase in proliferation of 38+/-7% after 48 h and show a vitality of 65+/-8%. In contrast to both these formulations, SuperFect was found to be highly toxic for SkMC, with more than 70% dead cells after 24 h. The increase in proliferation, the functional biological effect of p21 ASO, is well correlated with a decrease in p21 detected by western blot analysis of 31.6% for Effectene. Transfection efficiency was measured directly by FACS analysis using FITC-labeled ASO and data showing ASO internalization in 75.8+/-11.2% of the cell population for Effectene and 74.4+/-6.6% cells for DAC40. Taken together transient transfection of p21 or p57 ASO into primary human SkMC using Effectene significantly improves their proliferation compared to transfection with

  8. The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of different microcystin congeners in vitro: A comparison of primary human hepatocytes and OATP-transfected HEK293 cells

    SciTech Connect

    Fischer, A.; Hoeger, S.J.; Stemmer, K.; Feurstein, D.J.; Knobeloch, D.; Nussler, A.; Dietrich, D.R.

    2010-05-15

    Cellular uptake of microcystins (MCs), a family of cyclic cyanobacterial heptapeptide toxins, occurs via specific organic anion transporting polypeptides (OATPs), where MCs inhibit serine/threonine-specific protein phosphatase (PP). Despite comparable PP-inhibitory capacity, MCs differ greatly in their acute toxicity, thus raising the question whether this discrepancy results from MC-specific toxikokinetic rather than toxicodynamic differences. OATP-mediated uptake of MC congeners MCLR, -RR, -LW and -LF was compared in primary human hepatocytes and HEK293 cells stably expressing recombinant human OATP1B1/SLCO1B1 and OATP1B3/SLCO1B3 in the presence/absence of OATP substrates taurocholate (TC) and bromosulfophthalein (BSP) and measuring PP-inhibition and cytotoxicity. Control vector expressing HEK293 were resistant to MC cytotoxicity, while TC and BSP competition experiments reduced MC cytotoxicity in HEK293-OATP transfectants, thus confirming the requirement of OATPs for trans-membrane transport. Despite comparable PP-inhibiting capabilities, MCLW and -LF elicited cytotoxic effects at lower equimolar concentrations than MCLR and MCRR, hence suggesting congener selective transport into HEK293-OATP transfectants and primary human hepatocytes. Primary human hepatocytes appeared one order of magnitude more sensitive to MC congeners than the corresponding HEK293 -OATP transfectants. Although the latter maybe due to a much lower level of PPs in primary human hepatocytes, the presence of OATPs other than 1B1 or 1B3 may have added to an increased uptake of MCs. In view of the high sensitivity of human hepatocytes and currently MCLR-only based risk calculations, the actual risk of human MC-intoxication and ensuing liver damage could be underestimated in freshwater cyanobacterial blooms where MCLW and-LF predominate.

  9. A cationic poly(2-oxazoline) with high in vitro transfection efficiency identified by a library approach.

    PubMed

    Rinkenauer, Alexandra C; Tauhardt, Lutz; Wendler, Felix; Kempe, Kristian; Gottschaldt, Michael; Traeger, Anja; Schubert, Ulrich S

    2015-03-01

    To date, cationic polymers with high transfection efficiencies (TE) often have a high cytotoxicity. By screening an 18-membered library of cationic 2-oxazoline-based polymers, a polymer with similar TE as linear poly(ethylene imine) but no detectable cytotoxicity at the investigated concentrations could be identified. The influence of the polymer side chain hydrophobicity and the type and content of amino groups on the pDNA condensation, the TE, the cytotoxicity, the cellular membrane interaction as well as the size, charge, and stability of the polyplexes was studied. Primary amines and an amine content of at least 40% were required for an efficient TE. While polymers with short side chains were non-toxic up to an amine content of 40%, long hydrophobic side chains induced a high cytotoxicity. PMID:25403084

  10. Single cell optical transfection.

    PubMed

    Stevenson, David J; Gunn-Moore, Frank J; Campbell, Paul; Dholakia, Kishan

    2010-06-01

    The plasma membrane of a eukaryotic cell is impermeable to most hydrophilic substances, yet the insertion of these materials into cells is an extremely important and universal requirement for the cell biologist. To address this need, many transfection techniques have been developed including viral, lipoplex, polyplex, capillary microinjection, gene gun and electroporation. The current discussion explores a procedure called optical injection, where a laser field transiently increases the membrane permeability to allow species to be internalized. If the internalized substance is a nucleic acid, such as DNA, RNA or small interfering RNA (siRNA), then the process is called optical transfection. This contactless, aseptic, single cell transfection method provides a key nanosurgical tool to the microscopist-the intracellular delivery of reagents and single nanoscopic objects. The experimental possibilities enabled by this technology are only beginning to be realized. A review of optical transfection is presented, along with a forecast of future applications of this rapidly developing and exciting technology. PMID:20064901

  11. Ultrasound mediated gene transfection

    NASA Astrophysics Data System (ADS)

    Williamson, Rene G.; Apfel, Robert E.; Brandsma, Janet L.

    2002-05-01

    Gene therapy is a promising modality for the treatment of a variety of human diseases both inherited and acquired, such as cystic fibrosis and cancer. The lack of an effective, safe method for the delivery of foreign genes into the cells, a process known as transfection, limits this effort. Ultrasound mediated gene transfection is an attractive method for gene delivery since it is a noninvasive technique, does not introduce any viral particles into the host and can offer very good temporal and spatial control. Previous investigators have shown that sonication increases transfection efficiency with and without ultrasound contrast agents. The mechanism is believed to be via a cavitation process where collapsing bubble nuclei permeabilize the cell membrane leading to increased DNA transfer. The research is focused on the use of pulsed wave high frequency focused ultrasound to transfect DNA into mammalian cells in vitro and in vivo. A better understanding of the mechanism behind the transfection process is also sought. A summary of some in vitro results to date will be presented, which includes the design of a sonication chamber that allows us to model the in vivo case more accurately.

  12. Primary Polymer Aging Processes Identified from Weapon Headspace Chemicals

    SciTech Connect

    Chambers, D M; Bazan, J M; Ithaca, J G

    2002-03-25

    accelerated by stockpile-relevant aging parameters such as heat, irradiation, material incompatibility and physical force. The primary organic material groups that make up many of the weapon systems are chlorofluoropolymers, polysiloxanes, and polyurethanes (PUR). In the weapon headspace we see the greatest residue from polysiloxanes and PUR and, therefore, are interested in identifying and quantifying the origin responsible for their presence. Although we have produced a number of significant findings concerning the chlorofluoropolymer and polysiloxane materials, this work focuses on the decomposition of PUR.

  13. Enhanced non-vitreous cryopreservation of immortalized and primary cells by ice-growth inhibiting polymers.

    PubMed

    Deller, Robert C; Pessin, Jeffrey E; Vatish, Manu; Mitchell, Daniel A; Gibson, Matthew I

    2016-07-21

    Cell cryopreservation is an essential tool in modern biotechnology and medicine. The ability to freeze, store and distribute materials underpins basic cell biology and enables storage of donor cells needed for transplantation and regenerative medicine. However, many cell types do not survive freezing and the current state-of-the-art involves the addition of significant amounts of organic solvents as cryoprotectants, which themselves can be cytotoxic, or simply interfere with assays. A key cause of cell death in cryopreservation is ice recrystallization (growth), which primarily occurs during thawing. Here it is demonstrated that the addition of ice recrystalization inhibiting polymers to solutions containing low (non vitrifying) concentrations of DMSO enhance cell recovery rates by up to 75%. Cell functionality is also demonstrated using a placental cell line, and enhanced cryopreservation of primary rat hepatocytes is additionally shown. The crucial role of the polymers architecture (chain length) is shown, with shorter polymers being more effective than longer ones. PMID:27152370

  14. Transfection in the third dimension

    PubMed Central

    Dhaliwal, Anandika; Oshita, Victor; Segura, Tatiana

    2013-01-01

    An understanding of parameters that modulate gene transfer in 3-D will assist in the formation of gene delivery systems and scaffolds, which can mediate efficient non-viral delivery for guiding in-vivo tissue regeneration and therapy. We have previously demonstrated the cell area and length, integrin expression, and RhoGTPases mediated signalling to be pivotal parameters that guide gene transfer to mouse mesenchymal stem cells (mMSCs) cultured in 2-D and are modulated by ECM proteins. In this study, we were interested in determining if cationic polymer mediated gene transfer to cells seeded in 3-D would occur through different mechanisms as compared to 2-D. In particular, we examined the endocytosis pathways used to internalize polyplexes, and the role of cytoskeletal dynamics and RhoGTPases on non-viral gene transfer for cells seeded in 2-D and 3-D. Inhibition of clathrin- and caveolae- mediated endocytosis resulted in more drastic decrease in overall transgene expression for cells seeded in 3-D than those in 2-D. In addition, polyplex internalization was only significantly decreased in 3-D when clathrin-mediated endocytosis was inhibited, while caveolae-mediated endocytosis inhibition for cells seeded in 2-D resulted in the strongest polyplex internalization inhibition. Actin and microtubule polymerization affected 2-D and 3-D transfection differently. Microtubule depolymerization enhanced transgene expression in 2-D, but inhibited transgene expression in 3-D. Last, inhibition of RhoGTPases also affected 2-D and 3-D transfection differently. The inhibition of ROCK effector resulted in a decrease of transgene expression and internalization for cells seeded in 3-D, but not 2-D and the inhibition of effector PAK1 resulted in an increase of transgene expression for both 2-D and 3-D. Overall, our study suggests that the process of gene transfer occurs through different mechanisms for cells seeded in 2-D compared to those seeded in 3-D. PMID:23929354

  15. Synthesis of inorganic polymers using fly ash and primary lead slag.

    PubMed

    Onisei, S; Pontikes, Y; Van Gerven, T; Angelopoulos, G N; Velea, T; Predica, V; Moldovan, P

    2012-02-29

    The present work reports on the synthesis and properties of inorganic polymers ("geopolymers") made of 100% fly ash from lignite's combustion, 100% primary lead slag and mixtures of the two. In the inorganic polymers with both fly ash and lead slag the main crystalline phases detected are wüstite, magnetite, sodium zinc silicate, quartz, anorthite, and gehlenite; litharge partially dissolves. FTIR analysis in these samples revealed that the main peaks and bands of end members also exist, along with a new amorphous reaction product. In terms of microstructure, both fly ash and lead slag dissolve and contribute in the binding phase whereas the larger particles act as aggregates. For an increasing lead slag in the composition, the binding phase is changing in chemistry and reaches PbO values higher than 50 wt.% for the 100% lead slag inorganic polymer. Regarding the properties of fly ash and lead slag inorganic polymers, compressive strength is higher than 35 MPa in all cases and water absorption diminishes as the lead slag content increases. A comparison of leaching results before and after polymerisation reveals that pH is an important factor as Pb is immobilised in the binding phase, unlike Zn and As. PMID:22252096

  16. Transfection of Platyhelminthes

    PubMed Central

    Moguel, Bárbara; Bobes, Raúl J.; Carrero, Julio C.; Laclette, Juan P.

    2015-01-01

    Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species. PMID:26090388

  17. Correlation between cationic lipid-based transfection and cell division.

    PubMed

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. PMID:25556666

  18. Mutations within the propeptide, the primary cleavage site or the catalytic site, or deletion of C-terminal sequences, prevents secretion of proPC2 from transfected COS-7 cells.

    PubMed Central

    Taylor, N A; Shennan, K I; Cutler, D F; Docherty, K

    1997-01-01

    PC2 is a neuroendocrine endoprotease involved in the processing of prohormones and proneuropeptides. PC2 is synthesized as a proenzyme which undergoes proteolytic maturation within the cellular secretory apparatus. Cleavage occurs at specific sites to remove the N-terminal propeptide. The aim of the present study was to investigate structural requirements for the transfer of proPC2 through the secretory pathway. A series of mutant proPC2 constructs were transfected into COS-7 cells and the fate of the expressed proteins followed by pulse-chase analysis and immunocytochemistry. Human PC2 was secreted relatively slowly, and appeared in the medium primarily as proPC2 (75 kDa), together with much lower amounts of a processed intermediate (71 kDa) and mature PC2 (68 kDa). Mutations within the primary processing site or the catalytic triad caused the protein to accumulate intracellularly, whereas deletion of part of the propeptide, the P-domain or the C-terminal regions also prevented secretion. Immunocytochemistry showed that wild-type hPC2 was localized mainly in the Golgi, whereas two representative mutants showed a distribution typical of proteins resident in the endoplasmic reticulum. The results suggest that proenzyme processing is not essential for secretion of PC2, but peptides containing mutations that affect the ability of the propeptide (and cleavage sites) to fold within the catalytic pocket are not transferred beyond the early stages of the secretory pathway. C-terminal sequences may be involved in stabilizing such conformations. PMID:9020868

  19. Transfection of isolated rainbow trout, Oncorhynchus mykiss, granulosa cells through chemical transfection and electroporation at 12°C.

    PubMed

    Marivin, E; Mourot, B; Loyer, P; Rime, H; Bobe, J; Fostier, A

    2015-09-15

    Over-expression or inhibition of gene expression can be efficiently used to analyse the functions and/or regulation of target genes. Modulation of gene expression can be achieved through transfection of exogenous nucleic acids into target cells. Such techniques require the development of specific protocols to transfect cell cultures with nucleic acids. The aim of this study was to develop a method of transfection suitable for rainbow trout granulosa cells in primary culture. After the isolation of rainbow trout granulosa cells, chemical transfection of cells with a fluorescent morpholino oligonucleotide (MO) was tested using FuGENE HD at 12 °C. Electroporation was also employed to transfect these cells with either a plasmid or MO. Transfection was more efficient using electroporation (with the following settings: 1200 V/40 ms/1p) than chemical transfection, but electroporation by itself was deleterious, resulting in a decrease of the steroidogenic capacity of the cells, measured via estradiol production from its androgenic substrate. The disturbance of cell biology induced by the transfection method per se should be taken into account in data interpretation when investigating the effects of under- or over-expression of candidate genes. PMID:25957917

  20. Acoustic Liquid Handling for Rapid siRNA Transfection Optimization.

    PubMed

    Xiao, Andrew S; Lightcap, Eric S; Bouck, David C

    2015-09-01

    Gene knockdown by small interfering RNA (siRNA) has been used extensively to investigate the function of genes in targeted and genome-wide studies. One of the primary challenges of siRNA studies of any scale is to achieve sufficient gene knockdown to produce the biological changes that lead to measurable phenotypes. Reverse, lipid-based transfection efficiency minimally requires the optimization of the following parameters: cell number, knockdown duration, siRNA oligonucleotide concentration, type/brand of transfection lipid, and transfection lipid concentration. In this study, we describe a methodology to utilize the flexibility and low-volume range of the Echo acoustic liquid handler to rapidly screen a matrix of transfection conditions. The matrix includes six different transfection lipids from three separate vendors across a broad range of concentrations. Our results validate acoustic liquid transfer for the delivery of siRNAs and transfection reagents. Finally, this methodology is applied to rapidly optimize transfection conditions across many tissue culture cell lines derived from various originating tissues. PMID:25924619

  1. Cell Transfection with a β-Cyclodextrin-PEI-Propane-1,2,3-Triol Nanopolymer

    PubMed Central

    Lai, Wing-Fu; Jung, Han-Sung

    2014-01-01

    Successful gene therapy necessitates safe and efficient gene transfer. This article describes the use of a cationic polymer, which was synthesized by cross-linking low molecular weight branched poly(ethylenimine) (PEI) with both β-cyclodextrin and propane-1,2,3-triol, for efficient and safe non-viral gene delivery. Experimentation demonstrated that the polymer had a pH buffering capacity and DNA condensing ability comparable to those of PEI 25 kDa. In B16-F0 cells, the polymer increased the transfection efficiency of naked DNA by 700-fold and yielded better transfection efficiencies than Fugene HD (threefold higher) and PEI 25 kDa (fivefold higher). The high transfection efficiency of the polymer was not affected by the presence of serum during transfection. In addition to B16-F0 cells, the polymer enabled efficient transfection of HepG2 and U87 cells with low cytotoxicity. Our results indicated that our polymer is a safe and efficient transfection reagent that warrants further development for in vitro, in vivo and clinical applications. PMID:24956480

  2. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  3. A General RNA Motif for Cellular Transfection

    PubMed Central

    Magalhães, Maria LB; Byrom, Michelle; Yan, Amy; Kelly, Linsley; Li, Na; Furtado, Raquel; Palliser, Deborah; Ellington, Andrew D; Levy, Matthew

    2012-01-01

    We have developed a selection scheme to generate nucleic acid sequences that recognize and directly internalize into mammalian cells without the aid of conventional delivery methods. To demonstrate the generality of the technology, two independent selections with different starting pools were performed against distinct target cells. Each selection yielded a single highly functional sequence, both of which folded into a common core structure. This internalization signal can be adapted for use as a general purpose reagent for transfection into a wide variety of cell types including primary cells. PMID:22233578

  4. PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells

    PubMed Central

    Inada, Emi; Saitoh, Issei; Watanabe, Satoshi; Aoki, Reiji; Miura, Hiromi; Ohtsuka, Masato; Murakami, Tomoya; Sawami, Tadashi; Yamasaki, Youichi; Sato, Masahiro

    2015-01-01

    The ability of human deciduous tooth dental pulp cells (HDDPCs) to differentiate into odontoblasts that generate mineralized tissue holds immense potential for therapeutic use in the field of tooth regenerative medicine. Realization of this potential depends on efficient and optimized protocols for the genetic manipulation of HDDPCs. In this study, we demonstrate the use of a PiggyBac (PB)-based gene transfer system as a method for introducing nonviral transposon DNA into HDDPCs and HDDPC-derived inducible pluripotent stem cells. The transfection efficiency of the PB-based system was significantly greater than previously reported for electroporation-based transfection of plasmid DNA. Using the neomycin resistance gene as a selection marker, HDDPCs were stably transfected at a rate nearly 40-fold higher than that achieved using conventional methods. Using this system, it was also possible to introduce two constructs simultaneously into a single cell. The resulting stable transfectants, expressing tdTomato and enhanced green fluorescent protein, exhibited both red and green fluorescence. The established cell line did not lose the acquired phenotype over three months of culture. Based on our results, we concluded that PB is superior to currently available methods for introducing plasmid DNA into HDDPCs. There may be significant challenges in the direct clinical application of this method for human dental tissue engineering due to safety risks and ethical concerns. However, the high level of transfection achieved with PB may have significant advantages in basic scientific research for dental tissue engineering applications, such as functional studies of genes and proteins. Furthermore, it is a useful tool for the isolation of genetically engineered HDDPC-derived stem cells for studies in tooth regenerative medicine. PMID:26208039

  5. PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells.

    PubMed

    Inada, Emi; Saitoh, Issei; Watanabe, Satoshi; Aoki, Reiji; Miura, Hiromi; Ohtsuka, Masato; Murakami, Tomoya; Sawami, Tadashi; Yamasaki, Youichi; Sato, Masahiro

    2015-09-01

    The ability of human deciduous tooth dental pulp cells (HDDPCs) to differentiate into odontoblasts that generate mineralized tissue holds immense potential for therapeutic use in the field of tooth regenerative medicine. Realization of this potential depends on efficient and optimized protocols for the genetic manipulation of HDDPCs. In this study, we demonstrate the use of a PiggyBac (PB)-based gene transfer system as a method for introducing nonviral transposon DNA into HDDPCs and HDDPC-derived inducible pluripotent stem cells. The transfection efficiency of the PB-based system was significantly greater than previously reported for electroporation-based transfection of plasmid DNA. Using the neomycin resistance gene as a selection marker, HDDPCs were stably transfected at a rate nearly 40-fold higher than that achieved using conventional methods. Using this system, it was also possible to introduce two constructs simultaneously into a single cell. The resulting stable transfectants, expressing tdTomato and enhanced green fluorescent protein, exhibited both red and green fluorescence. The established cell line did not lose the acquired phenotype over three months of culture. Based on our results, we concluded that PB is superior to currently available methods for introducing plasmid DNA into HDDPCs. There may be significant challenges in the direct clinical application of this method for human dental tissue engineering due to safety risks and ethical concerns. However, the high level of transfection achieved with PB may have significant advantages in basic scientific research for dental tissue engineering applications, such as functional studies of genes and proteins. Furthermore, it is a useful tool for the isolation of genetically engineered HDDPC-derived stem cells for studies in tooth regenerative medicine. PMID:26208039

  6. Integrated Electrowetting Nanoinjector for Single Cell Transfection

    PubMed Central

    Shekaramiz, Elaheh; Varadarajalu, Ganeshkumar; Day, Philip J.; Wickramasinghe, H. Kumar

    2016-01-01

    Single cell transfection techniques are essential to understand the heterogeneity between cells. We have developed an integrated electrowetting nanoinjector (INENI) to transfect single cells. The high transfection efficiency, controlled dosage delivery and ease of INENI fabrication promote the widespread application of the INENI in cell transfection assays. PMID:27374766

  7. Synthesis and Evaluation of Tetramethylguanidinium-Polyethylenimine Polymers as Efficient Gene Delivery Vectors

    PubMed Central

    Mahato, Manohar; Yadav, Santosh; Kumar, Pradeep; Sharma, Ashwani Kumar

    2014-01-01

    Previously, we demonstrated that 6-(N,N,N′,N′-tetramethylguanidinium chloride)-hexanoyl-polyethylenimine (THP) polymers exhibited significantly enhanced transfection efficiency and cell viability. Here, in the present study, we have synthesized a series of N,N,N′,N′-tetramethylguanidinium-polyethylenimine (TP1-TP5) polymers via a single-step reaction involving peripheral primary amines of bPEI and varying amounts of 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU). These polymers were found to interact efficiently with negatively charged pDNA and formed stable complexes in the size range of ~240–450 nm. Acid-base titration profiles revealed improved buffering capacity of TP polymers as compared to bPEI. Transfection and cytotoxicity assays performed with TP/pDNA complexes on HEK293, CHO, and HeLa cells showed significantly higher transfection efficiency and cell viability with one of the complexes, TP2/pDNA complex, exhibited the highest transfection efficiency (~1.4–2.3-fold) outcompeting native bPEI and the commercially available transfection reagent, Lipofectamine 2000. Compared to previously reported THP polymers, the transfection efficiency of TP/pDNA complexes was found to be lower, as examined by flow cytometry. These results highlight the importance of the hydrophobic C-6 linker in THP polymers in forming compact nanostructures with pDNA, which might lead to efficient uptake and internalization of the complexes; however, the projected TP polymers offer an advantage of their rapid and economical one-step synthesis. PMID:24864245

  8. Transient transfection of purified Babesia bovis merozoites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transient transfection of intraerythrocytic Babesia bovis parasites has been previously reported. In this study, we describe the development and optimization of methods for transfection of purified B. bovis merozoites using either nucleofection (Amaxa) or conventional electroporation (Gene Pulser II...

  9. Correlating cell transfectability and motility on materials with different physico-chemical properties.

    PubMed

    Huang, Nien-Chi; Sieber, Martin; Hsu, Shan-Hui

    2015-12-01

    Gene delivery into cells can be facilitated by adding plasmid DNA/transfection reagent complexes in culture medium or pre-adsorbing the complexes on the substrate before cell seeding. Using transfection reagents, however, often causes cytotoxicity. Effective delivery of naked plasmid without any transfection reagent remains a challenge. In this study, we cultured human umbilical cord derived mesenchymal stem cells (hMSCs) on different biomaterial substrates with different physico-chemical properties and examined the transfectability of naked plasmid. Specifically, we synthesized a negatively charged polyurethane (PU) to mimic the hyaluronan-modified chitosan (CS-HA) membranes previously found to promote the transfection of naked plasmid. We observed that the PU membranes were as effective as CS-HA membranes in substrate-mediated delivery of naked plasmid into hMSCs. PU membranes with surface microgrooves further increased the gene delivery efficiency to a similar level as the commercial transfection reagent but without the harmful effect. The gene delivery efficiency was associated with the extent of activation of cellular integrins β1 and α5 on different substrates. Moreover, the delivery efficiency was positively correlated with the cell migration rate on various substrates. The substrate-mediated gene delivery by synthetic polymeric substrates supports that integrin activation and cell behavior (e.g. migration and transfectability) changes can be modulated by synthetic polymer surface with microfeatures. The transfection by PU microgrooves is easy, nontoxic, and as effective as the commercial transfection reagent. PMID:26363377

  10. Multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides.

    PubMed

    Chen, Mingsheng; Hu, Mei; Wang, Dali; Wang, Guojian; Zhu, Xinyuan; Yan, Deyue; Sun, Jian

    2012-06-20

    Multifunctional gene vectors with high transfection, low cytotoxicity, and good antitumor and antibacterial activities were prepared from natural aminoglycosides. Through the Michael-addition polymerization of gentamycin and N,N'-methylenebisacrylamide, cationic hyperbranched glycoconjugated polymers were synthesized, and their physical and chemical properties were analyzed by FTIR, (1)H NMR, (13)C NMR, GPC, ζ-potential, and acid-base titration techniques. The cytotoxicity of these hyperbranched glycoconjugated polycations was low because of the hydrolysis of degradable glycosidic and amide linkages in acid conditions. Owing to the presence of various primary, secondary, and tertiary amines in the polymers, hyperbranched glycoconjugated polymers showed high buffering capacity and strong DNA condensation ability, resulting in the high transfection efficiency. In the meantime, due to the introduction of natural aminoglycosides into the polymeric backbone, the resultant hyperbranched glycoconjugated polymers inhibited the growth of cancer cells and bacteria efficiently. Combining the gene transfection, antitumor, and antibacterial abilities together, the multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides may play an important role in protecting cancer patients from bacterial infections. PMID:22591322

  11. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    PubMed

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. PMID:25645372

  12. Synergistic effect of a biosurfactant and protamine on gene transfection efficiency.

    PubMed

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2013-04-11

    Several barriers need to be overcome to ensure successful gene transfection, including passing of the foreign gene through the plasma membrane, escape of this material from lysosomal degradation, and its translocation into the nucleus. We previously showed that the biosurfactant mannosylerythritol lipid-A (MEL-A) enhanced the efficiency of gene transfection mediated by cationic liposomes by facilitating rapid delivery of foreign genes into target cells through membrane fusion between liposomes and the plasma membrane. Moreover, using MEL-A-containing cationic liposomes, the foreign gene was efficiently delivered into the nucleus because it was released directly into the cytosol and thus escaped lysosomal degradation. Here we investigated the effect of pre-condensation of plasmid DNA by a cationic polymer, protamine, on gene transfection. We found that the efficiency of pre-condensed DNA transfection mediated by MEL-A-containing OH liposomes was >10 times higher than that of non-condensed DNA transfection. In contrast, the efficiency of pre-condensed DNA transfection mediated by OH liposomes was only 1.5 times higher than that of non-condensed DNA transfection. MEL-A did not influence plasmid DNA encapsulation by cationic liposomes, but it greatly accelerated the nuclear delivery of pre-condensed plasmid DNA. Our findings indicate that MEL-A and protamine synergistically accelerate the nuclear delivery of foreign gene and consequently promote gene transfection efficiency. PMID:23422688

  13. Towards gene therapy based on femtosecond optical transfection

    NASA Astrophysics Data System (ADS)

    Antkowiak, M.; Torres-Mapa, M. L.; McGinty, J.; Chahine, M.; Bugeon, L.; Rose, A.; Finn, A.; Moleirinho, S.; Okuse, K.; Dallman, M.; French, P.; Harding, S. E.; Reynolds, P.; Gunn-Moore, F.; Dholakia, K.

    2012-06-01

    Gene therapy poses a great promise in treatment and prevention of a variety of diseases. However, crucial to studying and the development of this therapeutic approach is a reliable and efficient technique of gene and drug delivery into primary cell types. These cells, freshly derived from an organ or tissue, mimic more closely the in vivo state and present more physiologically relevant information compared to cultured cell lines. However, primary cells are known to be difficult to transfect and are typically transfected using viral methods, which are not only questionable in the context of an in vivo application but rely on time consuming vector construction and may also result in cell de-differentiation and loss of functionality. At the same time, well established non-viral methods do not guarantee satisfactory efficiency and viability. Recently, optical laser mediated poration of cell membrane has received interest as a viable gene and drug delivery technique. It has been shown to deliver a variety of biomolecules and genes into cultured mammalian cells; however, its applicability to primary cells remains to be proven. We demonstrate how optical transfection can be an enabling technique in research areas, such as neuropathic pain, neurodegenerative diseases, heart failure and immune or inflammatory-related diseases. Several primary cell types are used in this study, namely cardiomyocytes, dendritic cells, and neurons. We present our recent progress in optimizing this technique's efficiency and post-treatment cell viability for these types of cells and discuss future directions towards in vivo applications.

  14. TRANSFECTION OF INSECT CELL LINES USING POLYETHYLENIMINE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect cell lines have been widely used in recombinant baculovirus expression systems and transient gene expression studies. Critical to these applications have been the transfection of foreign DNA. This has been widely done using labor intensive and cytotoxic liposome-based transfection reagents....

  15. Application of nanostructured biochips for efficient cell transfection microarrays

    NASA Astrophysics Data System (ADS)

    Akkamsetty, Yamini; Hook, Andrew L.; Thissen, Helmut; Hayes, Jason P.; Voelcker, Nicolas H.

    2007-01-01

    Microarrays, high-throughput devices for genomic analysis, can be further improved by developing materials that are able to manipulate the interfacial behaviour of biomolecules. This is achieved both spatially and temporally by smart materials possessing both switchable and patterned surface properties. A system had been developed to spatially manipulate both DNA and cell growth based upon the surface modification of highly doped silicon by plasma polymerisation and polyethylene grafting followed by masked laser ablation for formation of a pattered surface with both bioactive and non-fouling regions. This platform has been successfully applied to transfected cell microarray applications with the parallel expression of genes by utilising its ability to direct and limit both DNA and cell attachment to specific sites. One of the greatest advantages of this system is its application to reverse transfection, whereupon by utilising the switchable adsorption and desorption of DNA using a voltage bias, the efficiency of cell transfection can be enhanced. However, it was shown that application of a voltage also reduces the viability of neuroblastoma cells grown on a plasma polymer surface, but not human embryonic kidney cells. This suggests that the application of a voltage may not only result in the desorption of bound DNA but may also affect attached cells. The characterisation of a DNA microarray by contact printing has also been investigated.

  16. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Liu, Hongmei; Li, Lei; Cheng, Yiyun

    2014-01-01

    Polymers have shown great promise in the design of high efficient and low cytotoxic gene vectors. Here we synthesize fluorinated dendrimers for use as gene vectors. Fluorinated dendrimers achieve excellent gene transfection efficacy in several cell lines (higher than 90% in HEK293 and HeLa cells) at extremely low N/P ratios. These polymers show superior efficacy and biocompatibility compared with several commercial transfection reagents such as Lipofectamine 2000 and SuperFect. Fluorination enhances the cellular uptake of the dendrimer/DNA polyplexes and facilitates their endosomal escape. In addition, the fluorinated dendrimer shows excellent serum resistance and exhibits high gene transfection efficacy even in medium containing 50% FBS. The results suggest that fluorinated dendrimers are a new class of highly efficient gene vectors and fluorination is a promising strategy to design gene vectors without involving sophisticated syntheses.

  17. Optimization of Gene Transfection in Murine Myeloma Cell Lines using Different Transfection Reagents

    PubMed Central

    Shabani, Mahdi; Hemmati, Sheyda; Hadavi, Reza; Amirghofran, Zahra; Jeddi-Tehrani, Mahmood; Rabbani, Hodjatallah; Shokri, Fazel

    2010-01-01

    Purification and isolation of cellular target proteins for monoclonal antibody (MAb) production is a difficult and time-consuming process. Immunization of mice with murine cell lines stably transfected with genes coding for xenogenic target molecules is an alternative method for mouse immunization and MAb production. Here we present data on transfection efficiency of some commercial reagents used for transfection of murine myeloma cell lines. Little is known about transfectability of murine myeloma cell lines by different transfection reagents. Mouse myeloma cell lines (SP2/0, NS0, NS1, Ag8, and P3U1) were transfected with pEGFP-N1 vector using Lipofectamine 2000, jetPEI and LyoVec commercial transfection reagents in different combinations. The transfection permissible HEK293-FT cell line was used as a control in transfection procedure. Transfected cells, expressing the Enhanced Green Fluorescent Protein (EGFP), were analyzed by flow cytometry 48 hrs post transfection. Our results showed transfection efficiency of 71%, 57% and 22% for HEK293-FT, 5.5%, 3.4% and 1% for SP2/0, 55.7%, 21.1% and 9.3% for NS0, 8.2%, 6% and 5.5% for NS1, 22%, 49.2% and 5.5% for Ag8 and 6.3%, 21.5% and 4.6% for P3U1 cell lines after transfection with Lipofectamine 2000, jetPEI and LyoVec reagents, respectively. Our data indicate that NS0 and Ag8 are efficiently transfected by Lipofectamine 2000 and jetPEI reagents. Finally, we propose Ag8 and NS0 cell lines as suitable host cells for efficient expression of target genes which can be used for mouse immunization and MAb production. PMID:23408356

  18. Optimization of Gene Transfection in Murine Myeloma Cell Lines using Different Transfection Reagents.

    PubMed

    Shabani, Mahdi; Hemmati, Sheyda; Hadavi, Reza; Amirghofran, Zahra; Jeddi-Tehrani, Mahmood; Rabbani, Hodjatallah; Shokri, Fazel

    2010-07-01

    Purification and isolation of cellular target proteins for monoclonal antibody (MAb) production is a difficult and time-consuming process. Immunization of mice with murine cell lines stably transfected with genes coding for xenogenic target molecules is an alternative method for mouse immunization and MAb production. Here we present data on transfection efficiency of some commercial reagents used for transfection of murine myeloma cell lines. Little is known about transfectability of murine myeloma cell lines by different transfection reagents. Mouse myeloma cell lines (SP2/0, NS0, NS1, Ag8, and P3U1) were transfected with pEGFP-N1 vector using Lipofectamine 2000, jetPEI and LyoVec commercial transfection reagents in different combinations. The transfection permissible HEK293-FT cell line was used as a control in transfection procedure. Transfected cells, expressing the Enhanced Green Fluorescent Protein (EGFP), were analyzed by flow cytometry 48 hrs post transfection. Our results showed transfection efficiency of 71%, 57% and 22% for HEK293-FT, 5.5%, 3.4% and 1% for SP2/0, 55.7%, 21.1% and 9.3% for NS0, 8.2%, 6% and 5.5% for NS1, 22%, 49.2% and 5.5% for Ag8 and 6.3%, 21.5% and 4.6% for P3U1 cell lines after transfection with Lipofectamine 2000, jetPEI and LyoVec reagents, respectively. Our data indicate that NS0 and Ag8 are efficiently transfected by Lipofectamine 2000 and jetPEI reagents. Finally, we propose Ag8 and NS0 cell lines as suitable host cells for efficient expression of target genes which can be used for mouse immunization and MAb production. PMID:23408356

  19. Mechanistic investigations and molecular medicine applications of gold nanoparticle mediated (GNOME) laser transfection

    NASA Astrophysics Data System (ADS)

    Schomaker, M.; Heinemann, D.; Kalies, S.; Willenbrock, S.; Murua Escobar, H.; Buch, A.; Sodeik, B.; Ripken, T.; Meyer, H.

    2014-03-01

    Alternative high throughput transfection methods are required to understand the molecular network of the cell, which is linked to the evaluation of target genes as therapeutic agents. Besides diagnostic purposes, the transfection of primary- and stem cells is of high interest for therapeutic use. Here, the cell release of trans- or exogene proteins is used to develop immune cancer therapies. The basic requirement to accomplish manipulation of cells is an efficient and gentle transfection method. Therefore, we developed an automatized cell manipulation platform providing high throughput by using GNOME laser transfection. Herein, the interaction of moderately focused laser pulses with gold nanoparticles in close vicinity to the cell membrane mediate transient membrane permeabilization. The exact nature of the involved permeabilization effects depends on the applied particles and laser parameters. Hereinafter, we describe investigations considering the parameter regime, the permeabilization mechanism and the safety profile of GNOME laser transfection. The experimental and calculated results imply a combined permeabilization mechanism consisting of both photochemical and photothermal effects. Furthermore, paramount spatial control achieved either by laser illumination with micrometer precision or targeted gold nanoparticle binding to the cells was demonstrated, allowing selective cell manipulation and destruction. Additionally, the possibility to manipulate difficult to transfect primary cells (neurons) is shown. These results give insights in the basic mechanisms involved in GNOME laser transfection and serve as a strong basis to deliver different molecules for therapeutic (e.g. proteins) and diagnostic (siRNA) use.

  20. Characterization of CH3SO3H-doped PMMA/PVP blend-based proton-conducting polymer electrolytes and its application in primary battery

    NASA Astrophysics Data System (ADS)

    Ambika, C.; Hirankumar, G.

    2016-02-01

    Various compositions of solid blend polymer electrolytes based on poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) complexed with methanesulfonic acid (MSA) as proton donor were prepared by solution casting technique. The complex nature of polymer blend with MSA was confirmed by Fourier transform infrared spectroscopy. Good thermal stability of PMMA/PVP blend polymer electrolyte was identified by thermogravimetric analysis. The surface morphology of the prepared electrolytes was studied through optical microscopy. Ion transport number was determined in the range of 0.93-0.97 for proton-conducting blend polymer electrolytes. The maximum conductivity value was calculated as 2.51 × 10-5 S/cm at 303 K for 14.04 mol% MSA-doped polymer electrolytes. Dielectric studies were also carried out. The electrochemical stability window of blend polymer electrolyte was found to be 1.82 V. Primary proton battery was fabricated with Zn + ZnSO4·7H2O/solid polymer electrolytes/MnO2. The discharge characteristics were studied at constant current drain of 5, 20 and 50 μA. The energy and power density were calculated as 0.27 W h kg-1 and 269.23 mW kg-1 for 20 μA of discharge, respectively.

  1. Improvement of Cellular Uptake and Transfection Ability of pDNA Using α-Cyclodextrin-Polyamidoamine Conjugates as Gene Delivery System.

    PubMed

    Qin, Linghao; Cao, Duanwen; Huang, Huan; Ji, Gangjian; Feng, Min; Chen, Jianhai; Pan, Shirong

    2016-02-01

    Polyamidoamine (PAMAM) dendrimers are a class of unique nanomaterials which attracted attention because of their extraordinary properties, such as highly branched structure and types of terminal primary groups. In addition, development in PAMAM chemical modification has broadened its biological application especially for drug and gene delivery. In this study, PAMAMs are covalently conjugated onto α-Cyclodextrin (α-CD) via amide bonds obtaining the starburst cationic polymers (CD-PG2). The chemical structure and composition of CD-PG2 was characterized by IH NMR. Physicochemical and biological properties of CD-PG2/pDNA polyplex were evaluated by agarose gel retardation, stability test against DNasecñ, MTT assay, DLS measurement, CLSM observation, LDH leakage test, cellular uptake route analysis and in-vitro cell transfection. Results showed that CD-PG2 can efficiently condense pDNA into nanoscale particles with a narrow size distribution, and protect pDNA form DNase I degradation. Compared with free PEI-25K and commercial product Lipofectamine2000, CD-PG2 shows excellent gene transfection efficiency without serum interference as well as relatively low cytotoxicity. Cellular uptake of CD-PG2/pDNA polyplex is mainly through CME and CvME route and further investigations demonstrate that α-CD can regulate CvME pathway to improve polyplex transfection behavior. In conclusion, CD-PG2 can be considered as a versatile tool for gene delivery, especially for gene transfer in-vivo. PMID:27305760

  2. Investigating the effects of block versus statistical glycopolycations containing primary and tertiary amines for plasmid DNA delivery.

    PubMed

    Sprouse, Dustin; Reineke, Theresa M

    2014-07-14

    Polymer composition and morphology can affect the way polymers interact with biomolecules, cell membranes, and intracellular components. Herein, diblock, triblock, and statistical polymers that varied in charge center type (primary and/or tertiary amines) were synthesized to elucidate the role of polymer composition on plasmid DNA complexation, delivery, and cellular toxicity of the resultant polyplexes. The polymers were synthesized via RAFT polymerization and were composed of a carbohydrate moiety, 2-deoxy-2-methacrylamido glucopyranose (MAG), a primary amine group, N-(2-aminoethyl) methacrylamide (AEMA), and/or a tertiary amine moiety, N,N-(2-dimethylamino)ethyl methacrylamide (DMAEMA). The lengths of both the carbohydrate and cationic blocks were kept constant while the primary amine to tertiary amine ratio was varied within the polymers. The polymers were characterized via nuclear magnetic resonance (NMR) and size exclusion chromatography (SEC), and the polyplex formulations with pDNA were characterized in various media using dynamic light scattering (DLS). Polyplexes formed with the block copolymers were found to be more colloidally stable than statistical copolymers with similar composition, which rapidly aggregated to micrometer sized particles. Also, polymers composed of a higher primary amine content were more colloidally stable than polymers consisting of the tertiary amine charge centers. Plasmid DNA internalization, transgene expression, and toxicity were examined with each polymer. As the amount of tertiary amine in the triblock copolymers increased, both gene expression and toxicity were found to increase. Moreover, it was found that increasing the content of tertiary amines imparted higher membrane disruption/destabilization. While both block and statistical copolymers had high transfection efficiencies, some of the statistical systems exhibited both higher transfection and toxicity than the analogous block polymers, potentially due to the lack of a

  3. Investigating the Effects of Block versus Statistical Glycopolycations Containing Primary and Tertiary Amines for Plasmid DNA Delivery

    PubMed Central

    2015-01-01

    Polymer composition and morphology can affect the way polymers interact with biomolecules, cell membranes, and intracellular components. Herein, diblock, triblock, and statistical polymers that varied in charge center type (primary and/or tertiary amines) were synthesized to elucidate the role of polymer composition on plasmid DNA complexation, delivery, and cellular toxicity of the resultant polyplexes. The polymers were synthesized via RAFT polymerization and were composed of a carbohydrate moiety, 2-deoxy-2-methacrylamido glucopyranose (MAG), a primary amine group, N-(2-aminoethyl) methacrylamide (AEMA), and/or a tertiary amine moiety, N,N-(2-dimethylamino)ethyl methacrylamide (DMAEMA). The lengths of both the carbohydrate and cationic blocks were kept constant while the primary amine to tertiary amine ratio was varied within the polymers. The polymers were characterized via nuclear magnetic resonance (NMR) and size exclusion chromatography (SEC), and the polyplex formulations with pDNA were characterized in various media using dynamic light scattering (DLS). Polyplexes formed with the block copolymers were found to be more colloidally stable than statistical copolymers with similar composition, which rapidly aggregated to micrometer sized particles. Also, polymers composed of a higher primary amine content were more colloidally stable than polymers consisting of the tertiary amine charge centers. Plasmid DNA internalization, transgene expression, and toxicity were examined with each polymer. As the amount of tertiary amine in the triblock copolymers increased, both gene expression and toxicity were found to increase. Moreover, it was found that increasing the content of tertiary amines imparted higher membrane disruption/destabilization. While both block and statistical copolymers had high transfection efficiencies, some of the statistical systems exhibited both higher transfection and toxicity than the analogous block polymers, potentially due to the lack of a

  4. Improved biolistic transfection of hair cells.

    PubMed

    Zhao, Hongyu; Avenarius, Matthew R; Gillespie, Peter G

    2012-01-01

    Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C) and PMCA2 (ATP2B2; plasma-membrane Ca(2+)-ATPase isoform 2) to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells. PMID:23049715

  5. Improved Biolistic Transfection of Hair Cells

    PubMed Central

    Gillespie, Peter G.

    2012-01-01

    Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C) and PMCA2 (ATP2B2; plasma-membrane Ca2+-ATPase isoform 2) to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells. PMID:23049715

  6. Ballistic transfection of mammalian cells in vivo

    SciTech Connect

    Kolesnikov, V.A.; Zelenin, A.V.; Zelenina, I.A.

    1995-11-01

    The method of ballistic transfection initially proposed for genetic transformation of plants was used for animal cells in vitro and in situ. The method consists in bombarding the transfected cells with microparticles of heavy metals carrying foreign DNA. Penetrating the cell nucleus, the microparticles transport the introduced gene. Successful genetic transformation of the cultured mouse cells and fish embryos was realized, and this allowed the study of mammalian cells in situ. The performed studies allowed us to demonstrate expression of the reporter genes of chloramphenicol acetyltransferase, galactosidase, and neomycin phosphotransferase in the mouse liver, mammary gland and kidney explants, in the liver and cross-striated muscle of mouse and rat in situ, and in developing mouse embryos at the stages of two-cell embryo, morula, and blastocyst. All these genes were introduced by ballistic transfection. In the liver and cross-striated muscle the transgene activity was detected within two to three months after transfection. Thus, the ballistic introduction of the foreign genes in the cells in situ was demonstrated, and this opens possibilities for the use of this method in gene therapy. Methodical aspects of the bombarding and transfection are considered in detail, and the published data on transfection and genetic transformation of mammalian cells are discussed. 41 refs., 13 figs., 1 tab.

  7. Emulsion-Based RIR-MAPLE Deposition of Conjugated Polymers: Primary Solvent Effect and Its Implications on Organic Solar Cell Performance.

    PubMed

    Ge, Wangyao; Li, Nan K; McCormick, Ryan D; Lichtenberg, Eli; Yingling, Yaroslava G; Stiff-Roberts, Adrienne D

    2016-08-01

    Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been demonstrated as an alternative technique to deposit conjugated polymer films for photovoltaic applications; yet, a fundamental understanding of how the emulsion target characteristics translate into film properties and solar cell performance is unclear. Such understanding is crucial to enable the rational improvement of organic solar cell (OSC) efficiency and to realize the expected advantages of emulsion-based RIR-MAPLE for OSC fabrication. In this paper, the effect of the primary solvent used in the emulsion target is studied, both experimentally and theoretically, and it is found to determine the conjugated polymer cluster size in the emulsion as well as surface roughness and internal morphology of resulting polymer films. By using a primary solvent with low solubility-in-water and low vapor pressure, the surface roughness of deposited P3HT and PCPDTBT polymer films was reduced to 10 nm, and the efficiency of P3HT:PC61BM OSCs was increased to 3.2% (∼100 times higher compared to the first MAPLE OSC demonstration [ Caricato , A. P. ; Appl. Phys. Lett. 2012 , 100 , 073306 ]). This work unveils the mechanism of polymer film formation using emulsion-based RIR-MAPLE and provides insight and direction to determine the best ways to take advantage of the emulsion target approach to control film properties for different applications. PMID:27414167

  8. Sustained delivery of proangiogenic microRNA-132 by nanoparticle transfection improves endothelial cell transplantation

    PubMed Central

    Devalliere, Julie; Chang, William G.; Andrejecsk, Jillian W.; Abrahimi, Parwiz; Cheng, Christopher J.; Jane-wit, Dan; Saltzman, W. Mark; Pober, Jordan S.

    2014-01-01

    Transplantation of endothelial cells (ECs) for therapeutic vascularization or tissue engineering is a promising method for increasing tissue perfusion. Here, we report on a new approach for enhanced EC transplantation using targeted nanoparticle transfection to deliver proangiogenic microRNA-132 (miR-132) to cultured ECs before their transplantation, thereby sensitizing cells to the effects of endogenous growth factors. We synthesized biodegradable PLGA polymer nanoparticles (NPs) that were loaded with miR-132 and coated with cyclic RGD (cRGD) peptides that target integrin αvβ3 expressed on cultured human umbilical vein ECs (HUVECs), increasing NP uptake through clathrin-coated pits. Unlike previously reported NPs for miR delivery, these NPs slowly release RNA for several weeks. The endocytosed NPs remain in clathrin-coated vesicles from which they mediate intracellular delivery of siRNA or miRNA. Transfection of HUVECs with miR-132 enhances growth factor-induced proliferation and migration in 2D culture, producing a 1.8- and 5-fold increase, respectively. However, while the effects of conventional transfection were short-lived, NP transfection produced protein knockdown and biological effects that were significantly longer in duration (≥6 d). Transfection of HUVECs with miR-132 NP resulted in a 2-fold increase in the number of microvessels per square millimeter compared to lipid after transplantation into immunodeficient mice and led to a higher number of mural cell-invested vessels than control transfection. These data suggest that sustained delivery of miR-132 encapsulated in a targeted biodegradable polymer NP is a safe and efficient strategy to improve EC transplantation and vascularization.—Devalliere, J., Chang, W. G., Andrejecsk, J. W., Abrahimi, P., Cheng, C. J., Jane-wit, D., Saltzman, W. M., Pober, J. S. Sustained delivery of proangiogenic microRNA-132 by nanoparticle transfection improves endothelial cell transplantation. PMID:24221087

  9. DNA Targeting Sequence Improves Magnetic Nanoparticle-Based Plasmid DNA Transfection Efficiency in Model Neurons

    PubMed Central

    Vernon, Matthew M.; Dean, David A.; Dobson, Jon

    2015-01-01

    Efficient non-viral plasmid DNA transfection of most stem cells, progenitor cells and primary cell lines currently presents an obstacle for many applications within gene therapy research. From a standpoint of efficiency and cell viability, magnetic nanoparticle-based DNA transfection is a promising gene vectoring technique because it has demonstrated rapid and improved transfection outcomes when compared to alternative non-viral methods. Recently, our research group introduced oscillating magnet arrays that resulted in further improvements to this novel plasmid DNA (pDNA) vectoring technology. Continued improvements to nanomagnetic transfection techniques have focused primarily on magnetic nanoparticle (MNP) functionalization and transfection parameter optimization: cell confluence, growth media, serum starvation, magnet oscillation parameters, etc. Noting that none of these parameters can assist in the nuclear translocation of delivered pDNA following MNP-pDNA complex dissociation in the cell’s cytoplasm, inclusion of a cassette feature for pDNA nuclear translocation is theoretically justified. In this study incorporation of a DNA targeting sequence (DTS) feature in the transfecting plasmid improved transfection efficiency in model neurons, presumably from increased nuclear translocation. This observation became most apparent when comparing the response of the dividing SH-SY5Y precursor cell to the non-dividing and differentiated SH-SY5Y neuroblastoma cells. PMID:26287182

  10. Nanoparticles of compacted DNA transfect postmitotic cells.

    PubMed

    Liu, Ge; Li, DeShan; Pasumarthy, Murali K; Kowalczyk, Tomasz H; Gedeon, Christopher R; Hyatt, Susannah L; Payne, Jennifer M; Miller, Timothy J; Brunovskis, Peter; Fink, Tamara L; Muhammad, Osman; Moen, Robert C; Hanson, Richard W; Cooper, Mark J

    2003-08-29

    Charge-neutral DNA nanoparticles have been developed in which single molecules of DNA are compacted to their minimal possible size. We speculated that the small size of these DNA nanoparticles may facilitate gene transfer in postmitotic cells, permitting nuclear uptake across the 25-nm nuclear membrane pore. To determine whether DNA nanoparticles can transfect nondividing cells, growth-arrested neuroblastoma and hepatoma cells were transfected with DNA/liposome mixtures encoding luciferase. In both models, growth-arrested cells were robustly transfected by compacted DNA (6,900-360-fold more than naked DNA). To evaluate mechanisms responsible for enhanced transfection, HuH-7 cells were microinjected with naked or compacted plasmids encoding enhanced green fluorescent protein. Cytoplasmic microinjection of DNA nanoparticles generated a approximately 10-fold improvement in transgene expression as compared with naked DNA; this enhancement was reversed by the nuclear pore inhibitor, wheat germ agglutinin. To determine the upper size limit for gene transfer, DNA nanoparticles of various sizes were microinjected into the cytoplasm. A marked decrease in transgene expression was observed as the minor ellipsoidal diameter approached 25 nm. In summary, suitably sized DNA nanoparticles productively transfect growth arrested cells by traversing the nuclear membrane pore. PMID:12807905

  11. Optimizacion of Babesia bovis transfection methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tick borne Babesia parasites remain an important limitation for development of cattle industries worldwide. A stable transfection of Babesia bovis will be useful for functional analysis of the recently sequenced B. bovis genome and to design improved methods to control Babesia infections. In thi...

  12. Rapid, in vivo, evaluation of antiangiogenic and antineoplastic gene products by nonviral transfection of tumor cells.

    PubMed

    Weiss, Jonathan M; Shivakumar, Rama; Feller, Stephanie; Li, Lin-Hong; Hanson, Art; Fogler, William E; Fratantoni, Joseph C; Liu, Linda N

    2004-05-01

    Using a nonviral, electroporation-based gene transfection approach, we demonstrate the efficient and consistent transfection of two poorly immunogenic tumor cell lines: B16F10 melanoma and renal carcinoma (RENCA). Three genes, IL-12, angiostatin (AS), and an endostatin:angiostatin fusion protein (ES:AS) were subcloned into a DNA plasmid containing EBNA1-OriP, which was then transfected into B16F10 and RENCA cells. Significant levels of protein were secreted into the culture supernatants of transfected cells in vitro. Transfected tumor cells were injected subcutaneously into mice. All the three transgenes were capable of significantly delaying and reducing the formation of primary B16F10 and RENCA tumors, as well as B16F10 lung metastases. By day 11 post-injection, all control mice that received either mock-transfected or empty vector DNA-transfected B16F10 tumor cells had developed large primary tumors. In contrast, mice that received IL-12-transfected B16F10 cells did not develop appreciable tumors until day 17, and these were significantly smaller than controls. Similar results were observed for the RENCA model, in which only one of the IL-12 mice had developed tumors out to day 31. Expression of AS or ES:AS also significantly delayed and reduced primary tumors. Overall, ES:AS was more effective than AS alone. Furthermore, 25% of the AS mice and 33% of the ES:AS mice remained tumor-free at day 17, by which point all control mice had significant tumors. Mouse survival rates also correlated with the extent of tumor burden. Importantly, no lung metastases were detected in the lungs of mice that had received either AS or ES:AS-transfected B16F10 tumor cells and significantly fewer metastases were found in the IL-12 group. The consistency of our transfection results highlight the feasibility of directly electroporating tumor cells as a means to screen, identify, and validate in vivo potentially novel antiangiogenic and/or antineoplastic genes. PMID:15031722

  13. Enhancement of reverse transfection efficiency by combining stimulated DNA surface desorption and electroporation

    NASA Astrophysics Data System (ADS)

    Creasey, Rhiannon; Hook, Andrew; Thissen, Helmut; Voelcker, Nicolas H.

    2007-12-01

    Transfection cell microarrays (TCMs) are a high-throughput, miniaturised cell-culture system utilising reverse transfection, in which cells are seeded onto a DNA array resulting in localised regions of transfected cells. TCMs are useful for the analysis of gene expression, and can be used to identify genes involved in many cellular processes. This is of significant interest in fields such as tissue engineering, diagnostic screening, and drug testing [1, 2]. Low transfection efficiency has so far limited the application and utility of this technique. Recently, the transfection efficiency of TCMs was improved by an application of a high voltage for a short period of time to the DNA array resulting in the electroporation of cells attached to the surface [3, 4]. Furthermore, application of a low voltage for a longer period of time to the DNA array was shown to improve the transfection efficiency by stimulating the desorption of attached DNA, increasing the concentration of DNA available for cellular uptake [5]. In the present study, the optimisation of the uptake of adsorbed DNA vectors by adherent cells, utilising a voltage bias without compromising cell viability was investigated. This was achieved by depositing negatively charged DNA plasmids onto a positively charged allylamine plasma polymer (ALAPP) layer deposited on highly doped p-type silicon wafers either using a pipettor or a microarray contact printer. Surface-dependant human embryonic kidney (HEK 293 line) cells were cultured onto the DNA vector loaded ALAPP spots and the plasmid transfection events were detected by fluorescence microscopy. Cell viability assays, including fluorescein diacetate (FDA) / Hoechst DNA labelling, were carried out to determine the number of live adherent cells before and after application of a voltage. A protocol was developed to screen for voltage biases and exposure times in order to optimise transfection efficiency and cell viability. Cross-contamination between the microarray

  14. Comparison of small interfering RNA (siRNA) delivery into bovine monocyte-derived macrophages by transfection and electroporation

    PubMed Central

    Jensen, Kirsty; Anderson, Jennifer A.; Glass, Elizabeth J.

    2014-01-01

    The manipulation of the RNA interference pathway using small interfering RNA (siRNA) has become the most frequently used gene silencing method. However, siRNA delivery into primary cells, especially primary macrophages, is often considered challenging. Here we report the investigation of the suitability of two methodologies: transient transfection and electroporation, to deliver siRNA targeted against the putative immunomodulatory gene Mediterranean fever (MEFV) into primary bovine monocyte-derived macrophages (bMDM). Eleven commercial transfection reagents were investigated with variable results with respect to siRNA uptake, target gene knock-down, cell toxicity and type I interferon (IFN) response induction. Three transfection reagents: Lipofectamine 2000, Lipofectamine RNAiMAX and DharmaFECT 3, were found to consistently give the best results. However, all the transfection reagents tested induced an IFN response in the absence of siRNA, which could be minimized by reducing the transfection reagent incubation period. In addition, optimized siRNA delivery into bMDM by electroporation achieved comparable levels of target gene knock-down as transient transfection, without a detectable IFN response, but with higher levels of cell toxicity. The optimized transient transfection and electroporation methodologies may provide a starting point for optimizing siRNA delivery into macrophages derived from other species or other cells considered difficult to investigate with siRNA. PMID:24598124

  15. Transient transfection of polarized epithelial monolayers with CFTR and reporter genes using efficacious lipids.

    PubMed

    Tucker, Torry A; Varga, Karoly; Bebok, Zsuzsa; Zsembery, Akos; McCarty, Nael A; Collawn, James F; Schwiebert, Erik M; Schwiebert, Lisa M

    2003-03-01

    Transient transfection of epithelial cells with lipid reagents has been limited because of toxicity and lack of efficacy. In this study, we show that more recently developed lipids transfect nonpolarized human airway epithelial cells with high efficacy and efficiency and little or no toxicity. Because of this success, we hypothesized that these lipids may also allow transient transfection of polarized epithelial monolayers. A panel of reagents was tested for transfer of the reporter gene luciferase (LUC) into polarized monolayers of non-cystic fibrosis (non-CF) and CF human bronchial epithelial cells, MDCK epithelial cell monolayers, and, ultimately, primary non-CF and CF airway epithelial cells. Lipid reagents, which were most successful in initial LUC assays, were also tested for transfer of vectors bearing the reporter gene green fluorescent protein (GFP) and for successful transfection and expression of an epithelial-specific protein, the cystic fibrosis transmembrane conductance regulator (CFTR). Electrophysiological, biochemical, and immunological assays were performed to show successful complementation of an epithelial monolayer with transiently expressed CFTR. We also present findings that help facilitate monolayer formation by these airway epithelial cell lines. Together, these data show that polarized monolayers are transfected transiently with more recently developed lipids, specifically LipofectAMINE PLUS and LipofectAMINE 2000. Transient transfection of epithelial monolayers provides a powerful system in which to express the cDNA of any epithelium-specific protein transiently in a native polarized epithelium to study protein function. PMID:12421695

  16. Novel mechanism of gene transfection by low-energy shock wave

    PubMed Central

    Hoon Ha, Chang; Cheol Lee, Seok; Kim, Sunghyen; Chung, Jihwa; Bae, Hasuk; Kwon, Kihwan

    2015-01-01

    Extracorporeal shock wave (SW) therapy has been studied in the transfection of naked nucleic acids into various cell lines through the process of sonoporation, a process that affects the permeation of cell membranes, which can be an effect of cavitation. In this study, siRNAs were efficiently transfected into primary cultured cells and mouse tumor tissue via SW treatment. Furthermore SW-induced siRNA transfection was not mediated by SW-induced sonoporation, but by microparticles (MPs) secreted from the cells. Interestingly, the transfection effect of the siRNAs was transferable through the secreted MPs from human umbilical vein endothelial cell (HUVEC) culture medium after treatment with SW, into HUVECs in another culture plate without SW treatment. In this study, we suggest for the first time a mechanism of gene transfection induced by low-energy SW through secreted MPs, and show that it is an efficient physical gene transfection method in vitro and represents a safe therapeutic strategy for site-specific gene delivery in vivo. PMID:26243452

  17. Charge Density and Molecular Weight of Polyphosphoramidate Gene Carrier Are Key Parameters Influencing Its DNA Compaction Ability and Transfection Efficiency

    PubMed Central

    Ren, Yong; Jiang, Xuan; Pan, Deng; Mao, Hai-Quan

    2011-01-01

    A series of polyphosphoramidates (PPA) with different molecular weights (MWs) and charge densities were synthesized and examined for their DNA compaction ability and transfection efficiency. A strong correlation was observed between the transfection efficiency of PPA/DNA nanoparticles and the MW and net positive charge density of the PPA gene carriers in three different cell lines (HeLa, HEK293 and HepG2 cells). An increase in MW and/or net positive charge density of PPA carrier yielded higher DNA compaction capacity, smaller nanoparticles with higher surface charges and higher complex stability against challenges by salt and polyanions. These favorable physicochemical properties of nanoparticles led to enhanced transfection efficiency. PPA/DNA nanoparticles with the highest complex stability showed comparable transfection efficiency as PEI/DNA nanoparticles likely by compensating the low buffering capacity with higher cellular uptake and affording higher level of protection to DNA in endolysosomal compartment. The differences in transfection efficiency were not attributed by any difference in cytotoxicity among the carriers, as all nanoparticles showed minimal level of cytotoxicity under the transfection conditions. Using PPA as a model system, we demonstrated the structural dependence of transfection efficiency of polymer gene carrier. These results offer more insights into nanoparticle engineering for non-viral gene delivery. PMID:21067136

  18. Efficient Transfection by Using PDMAEMA-Modified SiNWAs as a Platform for Ca(2+)-Dependent Gene Delivery.

    PubMed

    Pan, Jingjing; Yuan, Yuqi; Wang, Hongwei; Liu, Feng; Xiong, Xinhong; Chen, Hong; Yuan, Lin

    2016-06-22

    The major bottleneck for gene delivery lies in the lack of safe and efficient gene vectors and delivery systems. In order to develop a much safer and efficient transfection system, a novel strategy of combining traditional Ca(2+)-dependent transfection with cationic polymer poly(N,N-dimethylamino)ethyl methacrylate (PDMAEMA) modified silicon nanowire arrays (SiNWAs) was proposed in this work. Detailed studies were carried out on the effects of the PDMAEMA polymerization time, the Ca(2+) concentration, and the incubation time of Ca(2+)@DNA complex with PDMAEMA-modified SiNWAs (SN-PDM) on the gene transfection in the cells. The results demonstrated that the transfection efficiency of SN-PDM assisted traditional Ca(2+)-dependent transfection was significantly enhanced compared to those without any surface assistance, and SN-PDM with polymerization time 24 h exhibited the highest efficiency. Moreover, the optimal transfection efficiency was found at the system of a complex containing Ca(2+) (100 mM) and plasmid DNA (pDNA) incubated on SN-PDM for 20 min. Compared with unmodified SiNWAs, SN-PDM has little cytotoxicity and can improve cell attachment. All of these results demonstrated that SN-PDM could significantly enhance Ca(2+)-dependent transfection; this process depends on the amino groups' density of PDMAEMA on the surface, the Ca(2+) concentration, and the available Ca(2+)@DNA complex. Our study provides a potential novel and excellent means of gene delivery for therapeutic applications. PMID:27249181

  19. A nanoparticle formulation that selectively transfects metastatic tumors in mice

    PubMed Central

    Yang, Jian; Hendricks, William; Liu, Guosheng; McCaffery, J. Michael; Kinzler, Kenneth W.; Huso, David L.; Vogelstein, Bert; Zhou, Shibin

    2013-01-01

    Nanoparticle gene therapy holds great promise for the treatment of malignant disease in light of the large number of potent, tumor-specific therapeutic payloads potentially available for delivery. To be effective, gene therapy vehicles must be able to deliver their therapeutic payloads to metastatic lesions after systemic administration. Here we describe nanoparticles comprised of a core of high molecular weight linear polyethylenimine (LPEI) complexed with DNA and surrounded by a shell of polyethyleneglycol-modified (PEGylated) low molecular weight LPEI. Compared with a state-of-the-art commercially available in vivo gene delivery formulation, i.v. delivery of the core/PEGylated shell (CPS) nanoparticles provided more than a 16,000-fold increase in the ratio of tumor to nontumor transfection. The vast majority of examined liver and lung metastases derived from a colorectal cancer cell line showed transgene expression after i.v. CPS injection in an animal model of metastasis. Histological examination of tissues from transfected mice revealed that the CPS nanoparticles selectively transfected neoplastic cells rather than stromal cells within primary and metastatic tumors. However, only a small fraction of neoplastic cells (<1%) expressed the transgene, and the extent of delivery varied with the tumor cell line, tumor site, and host mouse strain used. Our results demonstrate that these CPS nanoparticles offer substantial advantages over previously described formulations for in vivo nanoparticle gene therapeutics. At the same time, they illustrate that major increases in the effectiveness of such approaches are needed for utility in patients with metastatic cancer. PMID:23959886

  20. Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency.

    PubMed

    Sork, Helena; Nordin, Joel Z; Turunen, Janne J; Wiklander, Oscar Pb; Bestas, Burcu; Zaghloul, Eman M; Margus, Helerin; Padari, Kärt; Duru, Adil D; Corso, Giulia; Bost, Jeremy; Vader, Pieter; Pooga, Margus; Smith, Ci Edvard; Wood, Matthew Ja; Schiffelers, Raymond M; Hällbrink, Mattias; Andaloussi, Samir El

    2016-01-01

    The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents. PMID:27111416

  1. Transfection of an immunoglobulin kappa gene into mature human B lymphocytes

    SciTech Connect

    Bich-Thuy, L.T.; Queen, C.

    1988-01-01

    The authors show in this report that the transcription induced by interleukin-2 or pokeweed mitogens of the kappa MOPC 41 immunoglobulin light-chain gene transfected into primary human or murine B lymphocytes initiates from a previously unobserved start site about 26 base pairs upstream of the start site used in myeloma cell lines.

  2. Comparative study of the effects of treatment with diethyleneiminebenzoquinone and its polymer complex with polyvinylpyrrolidone on the primary response of mice to sheep red blood cells.

    PubMed

    Kostadinov, D A; Popov, D V

    1978-05-01

    The primary response of BALB/c mice to sheep red blood cells was used to study comparatively the time-dependent effects of a 5-day course of treatment with equivalent doses (0.8 mg/kg of body weight every day) of the cytotoxic agent diethyleneiminebenzoquinone (DEiBq) and its polymer complex with polyvinylpyrrolidone (DEiBqPVP). The experimental results show that in contrast to treatment with DEiBq, the ability of treated mice to establish a specific immune response was not markedly impaired during the treatment with DEiBqPVP. The possible significance of these results is considered with reference to the use of the synthetic polymer PVP as a carrier of cytotoxic groups in experimental cancer chemotherapy. PMID:556384

  3. Toward Contactless Biology: Acoustophoretic DNA Transfection

    NASA Astrophysics Data System (ADS)

    Vasileiou, Thomas; Foresti, Daniele; Bayram, Adem; Poulikakos, Dimos; Ferrari, Aldo

    2016-02-01

    Acoustophoresis revolutionized the field of container-less manipulation of liquids and solids by enabling mixing procedures which avoid contamination and loss of reagents due to the contact with the support. While its applications to chemistry and engineering are straightforward, additional developments are needed to obtain reliable biological protocols in a contactless environment. Here, we provide a first, fundamental step towards biological reactions in air by demonstrating the acoustophoretic DNA transfection of mammalian cells. We developed an original acoustophoretic design capable of levitating, moving and mixing biological suspensions of living mammalians cells and of DNA plasmids. The precise and sequential delivery of the mixed solutions into tissue culture plates is actuated by a novel mechanism based on the controlled actuation of the acoustophoretic force. The viability of the contactless procedure is tested using a cellular model sensitive to small perturbation of neuronal differentiation pathways. Additionally, the efficiency of the transfection procedure is compared to standard, container-based methods for both single and double DNA transfection and for different cell types including adherent growing HeLa cancer cells, and low adhesion neuron-like PC12 cells. In all, this work provides a proof of principle which paves the way to the development of high-throughput acoustophoretic biological reactors.

  4. Toward Contactless Biology: Acoustophoretic DNA Transfection

    PubMed Central

    Vasileiou, Thomas; Foresti, Daniele; Bayram, Adem; Poulikakos, Dimos; Ferrari, Aldo

    2016-01-01

    Acoustophoresis revolutionized the field of container-less manipulation of liquids and solids by enabling mixing procedures which avoid contamination and loss of reagents due to the contact with the support. While its applications to chemistry and engineering are straightforward, additional developments are needed to obtain reliable biological protocols in a contactless environment. Here, we provide a first, fundamental step towards biological reactions in air by demonstrating the acoustophoretic DNA transfection of mammalian cells. We developed an original acoustophoretic design capable of levitating, moving and mixing biological suspensions of living mammalians cells and of DNA plasmids. The precise and sequential delivery of the mixed solutions into tissue culture plates is actuated by a novel mechanism based on the controlled actuation of the acoustophoretic force. The viability of the contactless procedure is tested using a cellular model sensitive to small perturbation of neuronal differentiation pathways. Additionally, the efficiency of the transfection procedure is compared to standard, container-based methods for both single and double DNA transfection and for different cell types including adherent growing HeLa cancer cells, and low adhesion neuron-like PC12 cells. In all, this work provides a proof of principle which paves the way to the development of high-throughput acoustophoretic biological reactors. PMID:26828312

  5. Bioreducible polyether-based pDNA ternary polyplexes: Balancing particle stability and transfection efficiency

    PubMed Central

    Lai, Tsz Chung; Kataoka, Kazunori; Kwon, Glen S.

    2016-01-01

    Polyplex particles formed with plasmid DNA (pDNA) and Pluronic P85-block-poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (P85-b-P[Asp(DET)]) demonstrated highly effective transfection ability compared to PEG-based block cationomer, PEG-b-P[Asp(DET)]. Ternary polyplexes comprising PEG-b-P[Asp(DET)], poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-P[Asp(DET)] (P(EPE)-b-P[Asp(DET)]) used as an analog of P85-b-P[Asp(DET)], and pDNA were prepared in this work aiming at maintaining adequate transfection efficiency while solving the stability issues of the P85-b-P[Asp(DET)] polyplexes. Furthermore, a bioreducible P(EPE)-SS-P[Asp(DET)] possessing a redox potential-sensitive disulfide linkage between the P(EPE) polymer and the cationic block was used as a substitute for P(EPE)-b-P[Asp(DET)] during ternary complex formation to investigate whether the trans-fection ability of the ternary polyplex system could be enhanced by triggered release of P(EPE) polymers from the polyplexes. The ternary complexes showed significant improvement in terms of stability against salt-induced aggregation compared to binary complexes, although the gene delivery ability dropped with the amount of PEG-b-P[Asp(DET)] used for complexation. By manipulating the difference in redox potential between the extracellular and intracellular environments, the reducible ternary complexes achieved higher transfection compared to the non-reducible polyplexes; moreover, the reducible poly-plexes exhibited comparable stability to the non-reducible ones. These results suggest that reducible ternary complexes could provide satisfactory transfection efficiency without comprising the colloidal stability of the particles. PMID:22000077

  6. Shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  7. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

    SciTech Connect

    Daniela Rodica Radu

    2005-12-19

    surface of MSN and utilize them to complex cationic DNA. The p-EGFP-CI gene-coated MSN nanocomposite was able to transfect cancer cell lines, such as human HeLa and CHO cancer cell lines. The gene carrier ability of MSNs was further proved by transfecting primary cells and cotransfecting of two different genes in cancer cell lines. In sum, MSN are versatile partners in several types of applications.

  8. Infection, transfection, and co-transfection of baculoviruses by microprojectile bombardment of larvae.

    PubMed

    Obregón-Barboza, Verónica; Del Rincón-Castro, Ma Cristina; Cabrera-Ponce, José L; Ibarra, Jorge E

    2007-03-01

    The use of baculoviruses as expression vectors for heterologous proteins has been practically limited to the use of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). In this work, infection, transfection and co-transfection events with the baculoviruses AcMNPV and Trichoplusia ni granulovirus (TnGV) were accomplished by bombardment of T. ni first-instar larvae with microprojectiles coated with virions, viral DNA, and viral DNA and a transfer vector, respectively. A series of shooting conditions were tested until positive results were obtained. The use of 1.6 microm gold particles at 900 psi shooting pressure, 400 Torr vacuum, 7 cm distance to target, on sets of 20 first-instar larvae held in a 16 mm diameter container, proved to be the best shooting conditions. Typical infection symptoms were shown by larvae when shot with viruses or viral DNA from AcMNPV or TnGV. Co-transfected recombinant AcMNPV and TnGV were identified by the formation of occlusion bodies and GFP, respectively, in bombarded larvae. This technique opens a wide range of possibilities, not only to use an extensive number of baculoviruses as expression vectors for heterologous proteins, but also be used to infect, transfect or co-transfect a wide variety of viruses into animal cells. PMID:17184851

  9. The effect of fluorination on the transfection efficacy of surface-engineered dendrimers.

    PubMed

    Wang, Mingming; Cheng, Yiyun

    2014-08-01

    Dendrimers have shown great promise in the design of high efficient and low cytotoxic gene vectors. In this study, we synthesized a list of fluorobenzoic acid-modified dendrimers by a facile synthetic route and explored their potential applications as non-viral gene vectors. Fluorination on the aromatic rings significantly improves the transfection efficacy of benzoic acid-modified dendrimers. The transfection efficacy increases with increasing number of fluorine atoms on the aromatic rings of the conjugated benzoic acid. The most efficient conjugate shows superior efficacy to polymer-based commercial reagents such as SuperFect and PolyFect, and comparable efficacy to lipid-based commercial reagents such as Lipofectamine 2000. In addition, the fluorobenzoic acid-modified dendrimers show low cytotoxicity on the transfected cells. The improved transfection efficacy of fluorobenzoic acid-modified dendrimers is due to enhanced cellular uptake and/or easier DNA unpacking behavior compared to non-modified dendrimers. These results provide a new fluorination strategy to generate a library of highly efficient and non-cytotoxic polymeric gene vectors. PMID:24818889

  10. Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study

    PubMed Central

    Oliveira, Ana V.; Silva, Andreia P.; Bitoque, Diogo B.; Silva, Gabriela A.; Rosa da Costa, Ana M.

    2013-01-01

    OBJECTIVE: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. MATERIALS AND METHODS: Chitosan and thiolated chitosan nanoparticles (NPs) were prepared in order to obtain a NH3+:PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. RESULTS: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. CONCLUSION: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery. PMID:23833516

  11. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.

    PubMed

    Long, Xingwen; Zhang, Zhihui; Han, Shangcong; Tang, Minjie; Zhou, Junhui; Zhang, Jianhua; Xue, Zhenyi; Li, Yan; Zhang, Rongxin; Deng, Liandong; Dong, Anjie

    2015-04-15

    Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity. PMID:25801088

  12. Polyurethane dispersion containing quaternized ammonium groups: An efficient nanosize gene delivery carrier for A549 cancer cell line transfection.

    PubMed

    Yousefpour Marzbali, Mahsa; Yari Khosroushahi, Ahmad; Movassaghpour, AliAkbar; Yeganeh, Hamid

    2016-01-25

    A novel polyurethane containing cationic ammonium groups (QPU) was synthesized and used as vector for gene therapy and cancer gene targeting. The synthesized QPU was characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy methods. An agarose gel retardation electrophoresis assay was conducted to verify the complete complex formation between QPU and pDNA. The particles size and zeta potential of neat polymers, plasmid DNA, polymers/DNA polyplexes were determined by the dynamic light scattering technique. The polyplexes cytotoxicity was determined using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and its transfection efficiency was examined qualitatively by fluorescent microscopy and quantitatively by flow cytometery methods. The gel retardation assay, particle size and zeta potential measurements were confirmed that the synthesized cationic polymer could condense DNA efficiently in the physiologic condition. QPU polyplexes showed a significantly lower cytotoxicity compared to Polyfect polyplexes in the examined human cancerous (A549) or normal cells (KDR). Based on our findings, the transfection efficiency by QPU was 2.2 fold higher than Polyfect in the A549 cells whereas in the KDR cells, the cell transfection by Polyfect was 18.1 fold higher than QPU. Due to low cytotoxicity for normal cells and high transfection efficiency in cancer cells, the potential applicability of designed QPU as a non-viral gene carrier for targeting of cancer gene therapy was confirmed. PMID:26658031

  13. Zeta potential of transfection complexes formed in serum-free medium can predict in vitro gene transfer efficiency of transfection reagent.

    PubMed

    Son, K K; Tkach, D; Patel, D H

    2000-09-29

    We have tested the zeta potential (zeta, the surface charge density) of transfection complexes formed in serum-free medium as a rapid and reliable technique for screening transfection efficiency of a new reagent or formulation. The complexes of CAT plasmid DNA (1 microgram) and DC-chol/DOPE liposomes (3-20 nmol) were largely negatively charged (zeta=-15 to -21 mV), which became neutral or positive as 0.5 microgram or a higher amount of poly-L-lysine (PLL, MW 29300 or MW 204000) was added (-3.16+/-3.47 to +6.04+/-2.23 mV). However, the complexes of CAT plasmid DNA (1 microgram) and PLL MW 29300 (0.5 microgram or higher) were neutral or positively charged (-3.22+/-2.3 to +6.55+/-0.64 mV), which remained the same as 6.6 nmol of the liposomes was added. The complexes formed between two positively charged compounds, PLL MW 29300 (0.5 microgram) and the liposomes (3-20 nmol), were as closely positively charged as DNA/PLL or DNA/liposomes/PLL complexes (+3.31+/-0.41 to 7.16+/-1.0 mV). These results indicate that PLL determined the overall charge of the DNA/liposome/PLL ternary complexes. The complexes formed with histone (0.75 microgram or higher) were also positively charged, whose transfection activity was as high as PLL MW 29300. However, the complexes formed with protamine or PLL MW 2400 remained negatively charged. These observations are in good agreement with the transfection activity of the formulation containing each polycationic polymer. The presence of PLL MW 29300 did not change the hydrodynamic diameter of DNA/liposome/PLL complexes (d(H)=275-312 nm). The complexes made of different sizes of PLL (MW 2400 and 204000) also did not significantly change their size. This suggests that DNA condensation may not be critical. Therefore, zeta of the transfection complex can predict the transfection efficiency of a new formulation or reagent. PMID:11018646

  14. Expression of transfected mutant beta-actin genes: transitions toward the stable tumorigenic state.

    PubMed Central

    Leavitt, J; Ng, S Y; Varma, M; Latter, G; Burbeck, S; Gunning, P; Kedes, L

    1987-01-01

    Mutant human beta-actin genes were introduced into normal human (KD) fibroblasts and the derivative cell line HuT-12, which is immortalized but nontumorigenic, to test their ability to promote conversion to the tumorigenic state. Transfected substrains of HuT-12 fibroblasts that expressed abundant levels of mutant beta-actin (Gly-244----Asp-244) produced subcutaneous tumors in athymic mice after long latent periods (1.5 to 3 months). However, transfected substrains of KD fibroblasts retained their normal finite life span in culture and consequently were incapable of producing tumors. Substrains of HuT-12 cells transfected with the wild-type beta-actin gene and some transfected strains that expressed low or undetectable levels of mutant beta-actin did not produce tumors. Cell lines derived from transfectant cell tumors always exhibited elevated synthesis of the mutant beta-actin, ranging from 145 to 476% of the level expressed by the transfected cells that were inoculated to form the tumor. In general, primary transfectant cells that expressed the highest levels of mutant beta-actin were more tumorigenic than strains that expressed lower levels. The tumor-derived strains were stable in tumorigenicity and produced tumors with shortened latent periods of only 2 to 4 weeks. These findings imply that the primary transfectant strains develop subpopulations of cells that are selected to form tumors because of their elevated rate of exogenous mutant beta-actin synthesis. Actin synthesis and accumulation of gamma-actin mRNA from the endogenous beta- and gamma-actin genes were diminished in tumor-derived strains, apparently to compensate for elevated mutant beta-actin synthesis and maintain the normal cellular concentration of actin. Synthesis of the transformation-sensitive tropomyosin isoforms was decreased along with mutant beta-actin expression. Such modulations in tropomyosin synthesis are characteristically seen in transformation of avian, rodent, and human fibroblasts

  15. A spermine conjugated stearic acid-g-chitosan oligosaccharide polymer with different types of amino groups for efficient p53 gene therapy.

    PubMed

    Meng, Tingting; Wu, Jie; Yi, Hanxi; Liu, Jingwen; Lu, Binbin; Yuan, Ming; Huang, Xuan; Yuan, Hong; Hu, Fuqiang

    2016-09-01

    The effect of various amino groups on gene vector is different. In order to combine their effect in one vector and finally promote the transfection efficiency, a biogenic tetra-amine spermine was introduced to modify the stearic acid-grafted chitosan oligosaccharide (CSOSA) polymer to build a new gene delivery system. The spermine linked CSOSA (SP-CSOSA) polymer consists two types of amino groups with 73.3%, 19.3% of all nitrogen atoms for primary and secondary amine groups, respectively. The SP modified CSOSA showed strong DNA condensation capability and obviously enhanced proton binding ability especially at about pH 5.0, which significantly promoted the escape of SP-CSOSA/pDNA complexes from endo-lysosoms. Moreover, the transfection efficiency at the N/P ratio of 10 could compete with that of Lipofectamine 2000 and PEI 25K, but with lower cytotoxicities. The therapeutic wild type p53 gene transfected by the SP-CSOSA polymer restored the function of aberrant p53 gene and induced obvious cell apoptosis and G1 phase arrest. We concluded that the new vector SP-CSOSA polymer proved to be a potential delivery system for gene therapy. PMID:27289311

  16. A comparison of the efficacy of organic and mixed-organic polymers with polyaluminium chloride in chemically assisted primary sedimentation (CAPS).

    PubMed

    De Feo, G; Galasso, M; Landi, R; Donnarumma, A; De Gisi, S

    2013-01-01

    CAPS is the acronym for chemically assisted primary sedimentation, which consists of adding chemicals to raw urban wastewater to increase the efficacy of coagulation, flocculation and sedimentation. The principal benefits of CAPS are: upgrading of urban wastewater treatment plants; increasing efficacy of primary sedimentation; and the major production of energy from the anaerobic digestion of primary sludge. Metal coagulants are usually used because they are both effective and cheap, but they can cause damage to the biological processes of anaerobic digestion. Generally, biodegradable compounds do not have these drawbacks, but they are comparatively more expensive. Both metal coagulants and biodegradable compounds have preferential and penalizing properties in terms of CAPS application. The problem can be solved by means of a multi-criteria analysis. For this purpose, a series of tests was performed in order to compare the efficacy of several organic and mixed-organic polymers with that of polyaluminium chloride (PACl) under specific conditions. The multi-criteria analysis was carried out coupling the simple additive weighting method with the paired comparison technique as a tool to evaluate the criteria priorities. Five criteria with the following priorities were used: chemical oxygen demand (COD) removal > turbidity, SV60 > coagulant dose, and coagulant cost. The PACl was the best alternative in 70% of the cases. The CAPS process using PACl made it possible to obtain an average COD removal of 68% compared with 38% obtained, on average, with natural sedimentation and 61% obtained, on average, with the best PACl alternatives (cationic polyacrylamide, natural cationic polymer, dicyandiamide resin). PMID:24191462

  17. The gene transfection efficiency of a folate-PEI600-cyclodextrin nanopolymer.

    PubMed

    Yao, Hong; Ng, Samuel S; Tucker, Wesley O; Tsang, Yuk-Kai-Tiu; Man, Kwan; Wang, Xiao-Mei; Chow, Billy K C; Kung, Hsiang-Fu; Tang, Gu-Ping; Lin, Marie C

    2009-10-01

    The success of gene therapy relies on a safe and effective gene delivery system. In this communication, we describe the use of folate grafted PEI(600)-CyD (H(1)) as an effective polyplex-forming plasmid delivery agent with low toxicity. The structures of the polymer and polyplex were characterized, and the in vitro transfection efficiency, cytotoxicity, and in vivo transfection of H(1) were examined. We found that folate molecules were successfully grafted to PEI(600)-CyD. At N/P ratios between 5 and 30, the resulting H(1)/DNA polyplexes had diameters less than 120 nm and zeta potentials less than 10 mV. In various tumor cell lines examined (U138, U87, B16, and Lovo), the in vitro transfection efficiency of H(1) was more than 50%, which could be improved by the presence of fetal bovine serum or albumin. The cytotoxicity of H(1) was significantly less than high molecular weight PEI-25 kDa. Importantly, in vivo optical imaging showed that the efficiency of H(1)-mediated transfection (50 microg luciferase plasmid (pLuc), N/P ratio=20/1) was comparable to that of adenovirus-mediated luciferase transduction (1 x 10(9) pfu) in melanoma-bearing mice, and it did not induce any toxicity in the tumor tissue. These results clearly show that H(1) is a safe and effective polyplex-forming agent for both in vitro and in vivo transfection of plasmid DNA and its application warrants further investigation. PMID:19615741

  18. Gene transfection by echo contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    Tachibana, Katsuro

    2002-11-01

    In vitro and in vivo experiments have demonstrated that various echo contrast agent microbubbles can be intentionally ruptured by diagnostic and therapeutic ultrasound. Violent microstreaming are produced during microbubble collapse. Researchers have hypothesized that these microjets or microstreaming could be applied to promote diffusion of drugs into various tissues and lesions. The most exciting application of this method is probably delivery of genes into cells. As various genes are currently under investigation for the purpose of treating diseases, ultrasound and microbubbles may be used as a modality to promote better outcome for gene therapy. Recent studies have shown that different gases contained within the bubbles greatly influence the degree of gene transfection. Also, the outer layer of the microbubbles can be custom-made for binding to target tissue. Recent advance on this topic will be discussed.

  19. Jumping the nuclear envelop barrier: Improving polyplex-mediated gene transfection efficiency by a selective CDK1 inhibitor RO-3306.

    PubMed

    Zhou, Xuefei; Liu, Xiangrui; Zhao, Bingxiang; Liu, Xin; Zhu, Dingcheng; Qiu, Nasha; Zhou, Quan; Piao, Ying; Zhou, Zhuxian; Tang, Jianbin; Shen, Youqing

    2016-07-28

    Successful transfection of plasmid DNA (pDNA) requires intranuclear internalization of pDNA effectively and the nuclear envelope appears to be one of the critical intracellular barriers for polymer mediated pDNA delivery. Polyethylenimine (PEI), as the classic cationic polymer, compact the negatively charged pDNA tightly and make up stable polyplexes. The polyplexes are too large to enter the nuclear through nuclear pores and it is believed that the nuclear envelope breakdown in mitosis could facilitate the nuclear entry of polyplexes. To jump the nuclear envelope barrier, we used a selective and reversible CDK1 inhibitor RO-3306 to control the G2/M transition of the cell cycle and increased the proportion of mitotic cells which have disappeared nuclear envelope during transfection. Herein, we show that RO-3306 remarkably increases the transfection efficiency of PEI polyplexes through enhanced nuclear localization of PEI and pDNA. However, RO-3306 is less effective to the charge-reversal polymer poly[(2-acryloyl)ethyl(p-boronic acid benzyl)diethylammonium bromide] (B-PDEAEA) which responses to cellular stimuli and releases free pDNA in cytoplasm. Our findings not only offer new opportunities for improving non-viral based gene delivery but also provide theoretical support for the rational design of novel functional polymers for gene delivery. We also report current data showing that RO-3306 synergizes TRAIL gene induced apoptosis in cancer cells. PMID:27212103

  20. Plasma-mediated transfection of RPE

    NASA Astrophysics Data System (ADS)

    Palanker, D.; Chalberg, T.; Vankov, A.; Huie, P.; Molnar, F. E.; Butterwick, A.; Calos, M.; Marmor, M.; Blumenkranz, M. S.

    2006-02-01

    A major obstacle in applying gene therapy to clinical practice is the lack of efficient and safe gene delivery techniques. Viral delivery has encountered a number of serious problems including immunological reactions and malignancy. Non-viral delivery methods (liposomes, sonoporation and electroporation) have either low efficiency in-vivo or produce severe collateral damage to ocular tissues. We discovered that tensile stress greatly increases the susceptibility of cellular membranes to electroporation. For synchronous application of electric field and mechanical stress, both are generated by the electric discharge itself. A pressure wave is produced by rapid vaporization of the medium. To prevent termination of electric current by the vapor cavity it is ionized thus restoring its electric conductivity. For in-vivo experiments with rabbits a plasmid DNA was injected into the subretinal space, and RPE was treated trans-sclerally with an array of microelectodes placed outside the eye. Application of 250-300V and 100-200 μs biphasic pulses via a microelectrode array resulted in efficient transfection of RPE without visible damage to the retina. Gene expression was quantified and monitored using bioluminescence (luciferase) and fluorescence (GFP) imaging. Transfection efficiency of RPE with this new technique exceeded that of standard electroporation by a factor 10,000. Safe and effective non-viral DNA delivery to the mammalian retina may help to materialize the enormous potential of the ocular gene therapy. Future experiments will focus on continued characterization of the safety and efficacy of this method and evaluation of long-term transgene expression in the presence of phiC31 integrase.

  1. Transfection of microRNA Mimics Should Be Used with Caution.

    PubMed

    Jin, Hyun Yong; Gonzalez-Martin, Alicia; Miletic, Ana V; Lai, Maoyi; Knight, Sarah; Sabouri-Ghomi, Mohsen; Head, Steven R; Macauley, Matthew S; Rickert, Robert C; Xiao, Changchun

    2015-01-01

    Transient transfection of chemically synthesized microRNA (miRNA) mimics is being used extensively to study the functions and mechanisms of endogenous miRNAs. However, it remains unclear whether transfected miRNAs behave similarly to endogenous miRNAs. Here we show that transient transfection of miRNA mimics into HeLa cells by a commonly used method led to the accumulation of high molecular weight RNA species and a few hundred fold increase in mature miRNA levels. In contrast, expression of the same miRNAs through lentiviral infection or plasmid transfection of HeLa cells, transgenic expression in primary lymphocytes, and endogenous overexpression in lymphoma and leukemia cell lines did not lead to the appearance of high molecular weight RNA species. The increase of mature miRNA levels in these cells was below 10-fold, which was sufficient to suppress target gene expression and to drive lymphoma development in mice. Moreover, transient transfection of miRNA mimics at high concentrations caused non-specific alterations in gene expression, while at low concentrations achieved expression levels comparable to other methods but failed to efficiently suppress target gene expression. Small RNA deep sequencing analysis revealed that the guide strands of miRNA mimics were frequently mutated, while unnatural passenger strands of some miRNA mimics accumulated to high levels. The high molecular weight RNA species were a heterogeneous mixture of several classes of RNA species generated by concatemerization, 5'- and 3'-end tailing of miRNA mimics. We speculate that the supraphysiological levels of mature miRNAs and these artifactual RNA species led to non-specific changes in gene expression. Our results have important implications for the design and interpretation of experiments primarily employing transient transfection of miRNA mimics. PMID:26697058

  2. Transfection of microRNA Mimics Should Be Used with Caution

    PubMed Central

    Jin, Hyun Yong; Gonzalez-Martin, Alicia; Miletic, Ana V.; Lai, Maoyi; Knight, Sarah; Sabouri-Ghomi, Mohsen; Head, Steven R.; Macauley, Matthew S.; Rickert, Robert C.; Xiao, Changchun

    2015-01-01

    Transient transfection of chemically synthesized microRNA (miRNA) mimics is being used extensively to study the functions and mechanisms of endogenous miRNAs. However, it remains unclear whether transfected miRNAs behave similarly to endogenous miRNAs. Here we show that transient transfection of miRNA mimics into HeLa cells by a commonly used method led to the accumulation of high molecular weight RNA species and a few hundred fold increase in mature miRNA levels. In contrast, expression of the same miRNAs through lentiviral infection or plasmid transfection of HeLa cells, transgenic expression in primary lymphocytes, and endogenous overexpression in lymphoma and leukemia cell lines did not lead to the appearance of high molecular weight RNA species. The increase of mature miRNA levels in these cells was below 10-fold, which was sufficient to suppress target gene expression and to drive lymphoma development in mice. Moreover, transient transfection of miRNA mimics at high concentrations caused non-specific alterations in gene expression, while at low concentrations achieved expression levels comparable to other methods but failed to efficiently suppress target gene expression. Small RNA deep sequencing analysis revealed that the guide strands of miRNA mimics were frequently mutated, while unnatural passenger strands of some miRNA mimics accumulated to high levels. The high molecular weight RNA species were a heterogeneous mixture of several classes of RNA species generated by concatemerization, 5′- and 3′-end tailing of miRNA mimics. We speculate that the supraphysiological levels of mature miRNAs and these artifactual RNA species led to non-specific changes in gene expression. Our results have important implications for the design and interpretation of experiments primarily employing transient transfection of miRNA mimics. PMID:26697058

  3. Single cell transfection using plasmid decorated AFM probes

    SciTech Connect

    Cuerrier, Charles M.; Lebel, Rejean; Grandbois, Michel . E-mail: michel.grandbois@usherbrooke.ca

    2007-04-13

    Eukaryotic cells were individually transfected using commercially available atomic force microscope tips decorated with plasmidic DNA encoding for the fluorescent protein EGFP. In a typical transfection attempt, the tip is forcibly incorporated into the cell thus allowing for the transfer of the genetic material through the cell membrane. A sharp discontinuity, corresponding to the passage of the tip through the cell membrane can be easily detected when monitoring the cellular deformation as a function of the applied force. In order for the transfection to be successful, the tip must reversibly penetrates the membrane without causing disturbance or damage to the cell. Transfection success rate (30%), cell survival, and growth are confirmed by epifluorescence microscopy. This technique provides an alternative tool to the transfection toolbox, allowing the transfection of specific individual cells with minimal disturbance.

  4. Oxygen-glucose deprivation of neurons transfected with toll-like receptor 3-siRNA: Determination of an optimal transfection sequence

    PubMed Central

    Cui, Guiyun; Wang, Xiaopeng; Ye, Xinchun; Zu, Jie; Zan, Kun; Hua, Fang

    2013-01-01

    Toll-like receptor 3 protein expression has been shown to be upregulated during cerebral ischemia/reperfusion injury in rats. In this study, rat primary cortical neurons were subjected to oxygen-glucose deprivation to simulate cerebral ischemia/reperfusion injury. Chemically synthesized small interfering RNA (siRNA)-1280, -1724 and -418 specific to toll-like receptor 3 were transfected into oxygen-glucose deprived cortical neurons to suppress the upregulation of toll-like receptor 3 protein expression. Western blotting demonstrated that after transfection with siRNA, toll-like receptor 3 protein expression reduced, especially in the toll-like receptor 3-1724 group. These results suggested that siRNA-1724 is an optimal sequence for inhibiting toll-like receptor 3 expression in cortical neurons following oxygen-glucose deprivation. PMID:25206644

  5. Mammalian cell transfection: the present and the future

    PubMed Central

    Kim, Tae Kyung

    2010-01-01

    Transfection is a powerful analytical tool enabling study of the function of genes and gene products in cells. The transfection methods are broadly classified into three groups; biological, chemical, and physical. These methods have advanced to make it possible to deliver nucleic acids to specific subcellular regions of cells by use of a precisely controlled laser-microcope system. The combination of point-directed transfection and mRNA transfection is a new way of studying the function of genes and gene products. However, each method has its own advantages and disadvantages so the optimum method depends on experimental design and objective. PMID:20549496

  6. Optimization of Transfection Conditions for siRNA Screening.

    PubMed

    Montoya, Justin J; Azorsa, David O

    2016-01-01

    RNAi screening of mammalian cells is often performed using siRNAs and cationic lipids as transfection reagents. Efficiency of transfection depends on growth characteristics of the cells and the cationic lipid used. With a large selection of cationic lipids available, it can often be difficult to select the optimal lipid and lipid:siRNA (vol:wt) ratio. Here, we describe the process of optimizing siRNA transfection conditions for efficient reverse transfection of mammalian cells using specific positive and negative siRNA controls. PMID:27581281

  7. Quantitative study of effects of free cationic chains on gene transfection in different intracellular stages.

    PubMed

    Cai, Jinge; Yue, Yanan; Wang, Yanjing; Jin, Zhenyu; Jin, Fan; Wu, Chi

    2016-09-28

    Previously, we revealed that in the application of using cationic polymer chains, polyethylenimine (PEI), to condense anionic plasmid DNA chains (pDNA) to form the DNA/polymer polyplexes, after all the pDNAs are complexed with PEI, further added PEIs exist individual chains and free in the solution mixture. It is those uncomplexed polycation chains that dramatically promote the gene transfection. In the current study, we studied how those free cationic chains with different lengths and topologies affect the intracellular trafficking of the polyplexes, the translocation of pDNA through the nuclear membrane, the transcription of pDNA to mRNA and the translocation of mRNA from nucleus to cytosol in HepG2 cells by using a combination of the three-dimensional confocal microscope and TaqMan real-time PCR. We found that free branched PEI chains with a molar mass of 25,000g/mol and a total concentration of 1.8×10(-6)g/mL promote the overall gene transfection efficiency by a factor of ~500 times. Our results quantitatively reveal that free chains help little in the cellular uptake, but clearly reduce the lysosomal entrapment of those internalized polyplexes (2-3 folds); assist the translocation of pDNA through nuclear membrane after it is released from the polyplexes in the cytosol (~5 folds); enhance the pDNA-to-mRNA transcription efficiency (~4 folds); and facilitate the nucleus-to-cytosol translocation of mRNA (7-8 folds). The total enhancement of those steps agrees well with the overall efficiency, demonstrating, for the first time, how free cationic polymer chains quantitatively promote the gene transfection in each step in the intracellular space. PMID:27448443

  8. Synthesis and evaluation of diethylethylamine-chitosan for gene delivery: composition effects on the in vitro transfection efficiency

    NASA Astrophysics Data System (ADS)

    Pansani Oliveira, Franciele de Paula; Pfeifer Dalla Picola, Isadora; Shi, Qin; Franciane Gonçalves Barbosa, Hellen; Aparecida de Oliveira Tiera, Vera; Fernandes, Júlio Cesar; José Tiera, Marcio

    2013-02-01

    Chitosan has been indicated as a safe and promising polycation vector for gene delivery. However its low transfection efficiency has been a challenging obstacle for its application. To address this limitation, we synthesized chitosan derivatives which had increasing amounts of diethylethylamine groups (DEAE) attached to the chitosan main chain. The plasmid DNA VR1412 (pDNA), encoding the ß-galactosidase (ß-gal) reporter gene was used to prepare nanoparticles with the chitosan derivatives, and the transfection studies were performed with HeLa cells. By means of dynamic light scattering and zeta potential measurements, it was shown that diethylethylamine-chitosan derivatives (DEAEx-CH) were able to condense DNA into small particles having a surface charge depending on the polymer/DNA ratio (N/P ratio). Nanoparticles prepared with derivatives containing 15 and 25% of DEAE groups (DEAE15-CH and DEAE25-CH) exhibited transfection efficiencies ten times higher than that observed with deacetylated chitosan (CH). For derivatives with higher degrees of substitution (DS), transfection efficiency decreased. The most effective carriers showed low cytotoxicity and good transfection activities at low charge ratios (N/P). Vectors with low DS were easily degraded in the presence of lysozyme at physiological conditions in vitro and the nontoxicity displayed by these vectors opens up new opportunities in the design of DEAE-chitosan-based nanoparticles for gene delivery.

  9. Solid-state hierarchical cyclodextrin-based supramolecular polymer constructed by primary, secondary, and tertiary azido interactions.

    PubMed

    Ménand, Mickaël; Adam de Beaumais, Ségolène; Chamoreau, Lise-Marie; Derat, Etienne; Blanchard, Sébastien; Zhang, Yongmin; Bouteiller, Laurent; Sollogoub, Matthieu

    2014-07-01

    The crystallization of a di-azido-α-cyclodextrin revealed a polymeric self-assembly involving a variety of azido-type interactions. The crystal arrangement relies on the cooperativity of a primary azido inclusion, a secondary azido-azido interaction involving an unprecedented distribution of canonical forms, and a tertiary azido-groove interaction. The second azido group brings in a major contribution to the supramolecular structure illustrating the benefit of a difunctionalization for the generation of hierarchy. PMID:24866704

  10. Effects of trehalose polycation end-group functionalization on plasmid DNA uptake and transfection.

    PubMed

    Anderson, Kevin; Sizovs, Antons; Cortez, Mallory; Waldron, Chris; Haddleton, D M; Reineke, Theresa M

    2012-08-13

    In this study, we have synthesized six analogs of a trehalose-pentaethylenehexamine glycopolymer (Tr4) that contain (1A) adamantane, (1B) carboxy, (1C) alkynyl-oligoethyleneamine, (1D) azido trehalose, (1E) octyl, or (1F) oligoethyleneamine end groups and evaluated the effects of polymer end group chemistry on the ability of these systems to bind, compact, and deliver pDNA to cultured HeLa cells. The polymers were synthesized in one-pot azide-alkyne cycloaddition reactions with an adaptation of the Carothers equation for step-growth polymerization to produce a series of polymers with similar degrees of polymerization. An excess of end-capping monomer was added at the end of the polymerizations to maximize functionalization efficiency, which was evaluated with GPC, NMR, and MALDI-TOF. The polymers were all found to bind and compact pDNA at similarly low N/P ratios and form polyplexes with plasmid DNA. The effects of the different end group structures were most evident in the polyplex internalization and transfection assays in the presence of serum as determined by flow cytometry and luciferase gene expression, respectively. The Tr4 polymers end-capped with carboxyl groups (1B) (N/P = 7), octyne (1E) (N/P = 7), and oligoethyleneamine (1F) (N/P = 7), were taken into cells as polyplex and exhibited the highest levels of fluorescence, resulting from labeled plasmid. Similarly, the polymers end-functionalized with carboxyl groups (1E at N/P = 7), octyl groups (1E at N/P = 15), and in particular oligoethyleneamine groups (1F at N/P = 15) yielded dramatically higher reporter gene expression in the presence of serum. This study yields insight into how very subtle structural changes in polymer chemistry, such as end groups can yield very significant differences in the biological delivery efficiency and transgene expression of polymers used for pDNA delivery. PMID:22616977

  11. Bacteriophage Mediates Efficient Gene Transfer in Combination with Conventional Transfection Reagents

    PubMed Central

    Donnelly, Amanda; Yata, Teerapong; Bentayebi, Kaoutar; Suwan, Keittisak; Hajitou, Amin

    2015-01-01

    The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i) provides enhanced phage-mediated gene transfer; (ii) is applicable for laboratory transfection processes and (iii) shows promise within industry for large-scale gene transfer applications. PMID:26670247

  12. Unexpected transcellular protein crossover occurs during canonical DNA transfection.

    PubMed

    Arsenault, Jason; Cuijpers, Sabine A G; Niranjan, Dhevahi; Davletov, Bazbek

    2014-12-01

    Transfection of DNA has been invaluable for biological sciences, yet the effects upon membrane homeostasis are far from negligible. Here, we demonstrate that Neuro2A cells transfected using Lipofectamine LTX with the fluorescently coupled Botulinum serotype A holoenzyme (EGFP-LcA) cDNA express this SNAP25 protease that can, once translated, escape the transfected host cytosol and become endocytosed into untransfected cells, without its innate binding and translocation domains. Fluorescent readouts revealed moderate transfection rates (30-50%) while immunoblotting revealed a surprisingly total enzymatic cleavage of SNAP25; the transgenic protein acted beyond the confines of its host cell. Using intracellular dyes, no important cytotoxic effects were observed from reagent treatment alone, which excluded the possibility of membrane ruptures, though noticeably, intracellular acidic organelles were redistributed towards the plasma membrane. This drastic, yet frequently unobserved, change in protein permeability and endosomal trafficking following reagent treatment highlights important concerns for all studies using transient transfection. PMID:25043607

  13. Highly efficient transfection of human THP-1 macrophages by nucleofection.

    PubMed

    Maeß, Marten B; Wittig, Berith; Lorkowski, Stefan

    2014-01-01

    Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings. PMID:25226503

  14. Highly Efficient Transfection of Human THP-1 Macrophages by Nucleofection

    PubMed Central

    Maeß, Marten B.; Wittig, Berith; Lorkowski, Stefan

    2014-01-01

    Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings. PMID:25226503

  15. Cell penetrating peptide-based polyplexes shelled with polysaccharide to improve stability and gene transfection

    NASA Astrophysics Data System (ADS)

    Li, Wenyu; Liu, Yajie; Du, Jianwei; Ren, Kefeng; Wang, Youxiang

    2015-04-01

    Cell-penetrating peptides (CPP) have been widely developed as a strategy to enhance cell penetrating ability and transfection. In this work, octa-arginine modified dextran gene vector with pH-sensitivity was developed via host-guest interactions. α-Cyclodextrin was modified with octa-arginine (CDR), which had excellent cell penetrating ability. Dextran was selected as a backbone and modified with azobenzene as guest units by acid-labile imine bonds (Az-I-Dex). The supramolecular polymer CDR/Az-I-Dex with high a C/A molar ratio (molar ratio of CD on CDR to Az on Az-I-Dex) was unfavorable for DNA condensation. The dextran shell of CDR/Az-I-Dex/DNA polyplexes improved the stability under physiological conditions. However, once treated with acetate buffer (pH 5.4) for 3 h, large aggregates formed rapidly due to the cleavage of the dextran shell. As expected, the vector had cell viability of 80% even when the CDR concentration increased to 100 μg mL-1. Moreover, due to the effective cellular uptake efficiency, CDR/Az-I-Dex/DNA polyplexes had 6-300 times higher transfection efficiency than CDR/DNA polyplexes. It was even higher than high molecular weight PLL-based polyplexes of HEK293 T cells. Importantly, chloroquine as an endosomal escape agent could not improve the transfection of CDR/Az-I-Dex/DNA polyplexes, which indicated that the CDR/Az-I-Dex supramolecular polymer had its own ability for endosomal escape. These results suggested that the CPP-based polyplexes shelled with polysaccharide can be promising non-viral gene delivery carriers.Cell-penetrating peptides (CPP) have been widely developed as a strategy to enhance cell penetrating ability and transfection. In this work, octa-arginine modified dextran gene vector with pH-sensitivity was developed via host-guest interactions. α-Cyclodextrin was modified with octa-arginine (CDR), which had excellent cell penetrating ability. Dextran was selected as a backbone and modified with azobenzene as guest units by acid

  16. Electroporation for Transfection and Differentiation of Dental Pulp Stem Cells

    PubMed Central

    Rabie, Bakr M.

    2013-01-01

    Abstract Target gene delivery is needed to induce cellular differentiation or a specific therapeutic effect. Electroporation is a relatively safe and simple technique to deliver nucleic acids to the cell that acts by rendering cells transiently permeable using short periods of high voltage. In stem cell research, human dental pulp stem cells (hDPSCS) are highly accessible, and they exhibit broad differentiation potential. Until now, no studies have attempted to optimize electroporation parameters for DPSCs with respect to transfection efficiency and viability. In this study, we aimed to optimize transfection of DPSCs through varying different electroporation parameters, including voltage, mode of pulsation, and the number of pulses. As positive control, we used commonly utilized the chemical transfection reagents Lipofectamine 2000 and FuGene 6. In addition, we used our newly optimized transfection conditions to transfect hDPSCs with a functional chondrogenic transgene. We obtained higher transfection efficiency and cell viability with these electroporation conditions compared to controls. The highest transfection efficiency (63.81±4.72%) was achieved with 100 V, 20 msec, one-pulse square-wave condition. Among chemical transfection groups, FuGene 6 showed the highest cell viability at all tested transfection ratios, while Lipofectamine 2000 showed the highest transfection efficiency (19.23±3.19%) using 1:1 DNA (μg):Lipofectamine (μL). Transfected DPSCs functionally expressed the transforming growth factor β-3 chondrogenic transgene on the mRNA level as detected by real-time polymerase chain reaction and on the protein level as detected by Western blot analysis. An increase in various chondrogenic markers was also found when studying mRNA expression in transfected cells. In conclusion, the results of our study demonstrate optimal electroporation and chemical transfection reagent conditions for hDPSCs, and, subsequently, we provide proof of concept for

  17. Gene gun bombardment with DNA-coated gold particles is a potential alternative to hydrodynamics-based transfection for delivering genes into superficial hepatocytes.

    PubMed

    Chang, Ming-Ling; Chen, Jeng-Chang; Yeh, Chau-Ting; Chang, Ming-Yu; Liang, Chun-Kai; Chiu, Cheng-Tang; Lin, Deng-Yn; Liaw, Yun-Fan

    2008-04-01

    Although in vivo nonviral gene delivery to the liver is critical for hepatic gene therapy, there are a number of technical obstacles. Enhanced green fluorescent protein (EGFP)-encoding DNA was coated onto gold particles (gold-DNA), dissolved in phosphate-buffered saline (pure DNA), and prepared as a polymer adjuvant (jetPEI)-galactosidase solution (polymer-DNA). Murine liver transfection was attempted by nonviral approaches, which included hydrodynamics-based transfection (HBT) of pure DNA, transport and transhepatic injection of polymer-DNA, and gene gun bombardment with pure DNA, gold-DNA, and polymer-DNA. Only HBT and gene gun bombardment yielded significant numbers of EGFP(+) hepatocytes. With the exception of the edge of the liver, HBT had a whole-liver transfection rate of 20% under optimized conditions. HBT resulted in marked hepatic infarctions, most prominently at the edge of the liver. For gene gun bombardment, the transfection rate was pressure dependent and limited to 15% for gold-DNA. Triple or quadruple bombardment at 30 psi resulted in a transfection rate comparable to that of a single bombardment at higher pressure, but was associated with minimal scattered hepatic necrosis. The EGFP(+) hepatocytes were located mainly in the superficial layers. We conclude that both HBT and gene gun bombardment yielded efficient murine hepatocyte transfection in vivo. Severe hepatic infarction impedes foreign gene expression in the superficial hepatocytes after HBT. Repeated bombardment with gold-DNA, using an accelerated particle gene gun at 30 psi, is a potential alternative to HBT for delivering genes to superficial hepatocytes in vivo, although gold-related hepatic necrosis is a persistent problem. PMID:18366343

  18. Inhibition of primary and metastatic tumors in mice by E-selectin-targeted polymer-drug conjugates.

    PubMed

    Shamay, Yosi; Raviv, Lior; Golan, Moran; Voronov, Elena; Apte, Ron N; David, Ayelet

    2015-11-10

    There is currently no effective means to prevent or control metastatic dissemination of cancer cells. E-selectin, an adhesion molecule expressed exclusively on inflamed and angiogenic blood vessels, plays an important role in several rate-limiting steps of cancer metastasis. In this study, we assessed the in vivo antitumor efficacy of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers conjugated to an E-selectin binding peptide (Esbp, DITWDQLWDLMK) and equipped with the chemotherapeutic drug doxorubicin (P-(Esbp)-DOX) or with the proapoptotic peptide D(KLAKLAK)2 (P-(Esbp)-KLAK). Following a single intravenous injection, P-(Esbp)-DOX reduced tumor growth rate and prolonged the survival of mice bearing primary Lewis lung carcinoma (3LL) tumors significantly more than treatment with a non-targeted copolymer (P-DOX) or with free DOX. In an experimental B16-F10 lung metastasis model, a single intravenous dose of P-(Esbp)-DOX or P-(Esbp)-KLAK prolonged mice survival time significantly more than the non-targeted copolymers or the free drugs, and the percentage of complete tumor regression increased with increasing doses and with dosing frequency. In addition, mice pretreated with an E-selectin-targeted "drug-free" copolymer (P-(Esbp)-FITC) exhibited significantly fewer B16-F10 tumor foci in the lungs as compared with non-treated mice, demonstrating the anti-metastatic properties of the copolymer and its ability to control cancer spread through E-selectin-mediated interactions. Biodistribution analysis further confirmed the preferential accumulation of the E-selectin-targeted near-infrared fluorescently-labeled copolymer P-(Esbp)-IR783 in B16-F10 lung metastases. Taken together, this study demonstrates, for the first time, that the E-selectin targeted copolymer-drug conjugates can inhibit primary tumor growth and prevent metastases in vivo. PMID:26297207

  19. Cell penetrating peptide-based polyplexes shelled with polysaccharide to improve stability and gene transfection.

    PubMed

    Li, Wenyu; Liu, Yajie; Du, Jianwei; Ren, Kefeng; Wang, Youxiang

    2015-05-14

    Cell-penetrating peptides (CPP) have been widely developed as a strategy to enhance cell penetrating ability and transfection. In this work, octa-arginine modified dextran gene vector with pH-sensitivity was developed via host-guest interactions. α-Cyclodextrin was modified with octa-arginine (CDR), which had excellent cell penetrating ability. Dextran was selected as a backbone and modified with azobenzene as guest units by acid-labile imine bonds (Az-I-Dex). The supramolecular polymer CDR/Az-I-Dex with high a C/A molar ratio (molar ratio of CD on CDR to Az on Az-I-Dex) was unfavorable for DNA condensation. The dextran shell of CDR/Az-I-Dex/DNA polyplexes improved the stability under physiological conditions. However, once treated with acetate buffer (pH 5.4) for 3 h, large aggregates formed rapidly due to the cleavage of the dextran shell. As expected, the vector had cell viability of 80% even when the CDR concentration increased to 100 μg mL(-1). Moreover, due to the effective cellular uptake efficiency, CDR/Az-I-Dex/DNA polyplexes had 6-300 times higher transfection efficiency than CDR/DNA polyplexes. It was even higher than high molecular weight PLL-based polyplexes of HEK293 T cells. Importantly, chloroquine as an endosomal escape agent could not improve the transfection of CDR/Az-I-Dex/DNA polyplexes, which indicated that the CDR/Az-I-Dex supramolecular polymer had its own ability for endosomal escape. These results suggested that the CPP-based polyplexes shelled with polysaccharide can be promising non-viral gene delivery carriers. PMID:25893559

  20. Effect of proteins with different isoelectric points on the gene transfection efficiency mediated by stearic acid grafted chitosan oligosaccharide micelles.

    PubMed

    Yan, Jingjing; Du, Yong-Zhong; Chen, Feng-Ying; You, Jian; Yuan, Hong; Hu, Fu-Qiang

    2013-07-01

    A stearic acid-grafted chitosan oligosaccharide (CS-SA) micelle has been demonstrated as an effective gene carrier in vitro and in vivo. Although being advantageous for DNA package, protection, and excellent cellular internalization, a CS-SA based delivery system may lead to difficulties in the dissociation of polymer/DNA complexes in intracells. In this research, bovine serum albumin (BSA) with a different isoelectric point value (4.7, 6.0 and 9.3) was synthesized and incorporated into a CS-SA based gene delivery system. CS-SA/DNA binary complexes and CS-SA/BSA/DNA ternary complexes were then prepared and characterized. The binding ability of the CS-SA vector with DNA was not affected by the incorporation of BSA. However, referring to the transfection activity, the BSA of different isoelectric point value (pI) had a distinct influence on the CS-SA/BSA/DNA complexes. CS-SA/BSA(4.7)/DNA and CS-SA/BSA(6.0)/DNA complexes had better transfection efficiency than binary complexes, especially CS-SA/BSA(4.7)/DNA complexes which showed the highest transfection efficiency. On the contrary, CS-SA/BSA(9.3)/DNA complexes had undesirable performances. Interestingly, the incorporation of BSA(4.7) in CS-SA/DNA complexes significantly enhanced the dissociation of polymer/DNA complexes and improved the release of DNA intracellular without influencing their cellular uptake. The aforementioned results indicated that the acid group in protein played an important role in enhancing the transfection efficiency of CS/BSA/DNA complexes, and the study provided guidelines in the design of an efficient vector for DNA transfection. PMID:23679858

  1. Lipid-based transfection reagents can interfere with cholesterol biosynthesis.

    PubMed

    Danielli, Mauro; Marinelli, Raúl A

    2016-02-15

    Lipid-based transfection reagents are widely used for delivery of small interfering RNA into cells. We examined whether the commonly used commercial transfection reagents DharmaFECT-4 and Lipofectamine 2000 can interfere with lipid metabolism by studying cholesterogenesis. Cholesterol de novo synthesis from [(14)C]acetate was assessed in human hepatocyte-derived Huh-7 cells. The results revealed that DharmaFECT, but not Lipofectamine, markedly inhibited cholesterol biosynthesis by approximately 70%. Cell viability was not significantly altered. These findings suggest that caution is required in the choice of certain lipid-based transfection reagents for gene silencing experiments, particularly when assessing cholesterol metabolism. PMID:26656923

  2. High-Efficiency Gene Transfection of Cells through Carbon Nanotube Arrays.

    PubMed

    Golshadi, Masoud; Wright, Leslie K; Dickerson, Ian M; Schrlau, Michael G

    2016-06-01

    Introducing nucleic acids into mammalian cells is a crucial step to elucidate biochemical pathways, and to modify gene expression and cellular development in immortalized cells, primary cells, and stem cells. Current transfection technologies are time consuming and limited by the size of genetic cargo, the inefficient introduction of test molecules into large populations of target cells, and the cytotoxicity of the techniques. A novel method of introducing genes and biomolecules into tens of thousands of mammalian cells has been developed through an array of aligned hollow carbon nanotubes, manufactured by template-based nanofabrication processes, to achieve rapid high-efficiency transfer with low cytotoxicity. The utilization of carbon nanotube arrays for gene transfection overcomes molecular weight limits of current technologies and can be adapted to deliver drugs or proteins in addition to nucleic acids. PMID:27059518

  3. GENERATION OF RECOMBINANT BACULOVIRUS VIA LIPOSOME MEDIATED TRANSFECTION

    EPA Science Inventory

    Baculovirus expression vectors have become a popular method of producing recombinant proteins. Production of recombinant virus requires the transfection of both the native viral DNA and a transfer plasmid into insect cells where recombination takes place. While several methods of...

  4. Transfecting RNA quadruplexes results in few transcriptome perturbations

    PubMed Central

    Sanders, Phil G.T.; Cotterell, James; Sharpe, James; Isalan, Mark

    2013-01-01

    Guanine-rich nucleic acid sequences can form four-stranded structures called G-quadruplexes. Previous studies showed that transfecting G-quadruplex DNA oligonucleotides inhibits proliferation in many cancer cell lines and can induce apoptosis. However, little is known about the effects of transfecting RNA quadruplexes. In this study, we transfected a G-quadruplex RNA oligonucleotide (GqRNA) into HEK293T cells and observed that it did not alter cell viability. Subsequent transcriptome expression profiling revealed that only two genes, EGR1 and FOS, were significantly altered in the presence of GqRNA (upregulated 2- to 4-fold). Sequence analysis showed that both genes contained putative quadruplex sequences (PQS) in their 3′-UTRs, immediately adjacent to the stop codons. Transfection of the EGR1 PQS as an RNA oligonucleotide also caused an increase in EGR1 expression. Similar motifs are found in a variety of genomes, but are relatively rare and have been missed by previous annotations. A bioinformatic analysis revealed stop codon-proximal enrichment of such motifs compared with the rest of the 3′-UTR, although these genes were not affected by RNA quadruplex transfection, and their function remains unknown. Overall, transfecting RNA quadruplexes results in relatively few alterations in gene expression. PMID:23235467

  5. Poly(amido amine)-based multilayered thin films on 2D and 3D supports for surface-mediated cell transfection.

    PubMed

    Hujaya, Sry D; Marchioli, Giulia; Roelofs, Karin; van Apeldoorn, Aart A; Moroni, Lorenzo; Karperien, Marcel; Paulusse, Jos M J; Engbersen, Johan F J

    2015-05-10

    Two linear poly(amido amine)s, pCABOL and pCHIS, prepared by polyaddition of cystamine bisacrylamide (C) with 4-aminobutanol (ABOL) or histamine (HIS), were explored to form alternating multilayer thin films with DNA to obtain functionalized materials with transfection capacity in 2D and 3D. Therefore, COS-7 cells were cultured on top of multilayer films formed by layer-by-layer dipcoating of these polymers with GFP-encoded pDNA, and the effect of the number of layers and cell seeding density on the transfection efficiency was evaluated. Multilayer films with pCABOL were found to be superior to pCHIS in facilitating transfection, which was attributed to higher incorporation of pDNA and release of the transfection agent. High amounts of transfected cells were obtained on pCABOL films, correlating proportionally over a wide range with seeding density. Optimal transfection efficiency was obtained with pCABOL films composed of 10 bilayers. Further increase in the number of bilayers only marginally increased transfection efficiency. Using the optimal multilayer and cell seeding conditions, pCABOL multilayers were fabricated on poly(ε-caprolactone) (PCL), heparinized PCL (PCL-HEP), and poly(lactic acid) (PLA) disks as examples of common biomedical supports. The multilayers were found to completely mask the properties of the original substrates, with significant improvement in cell adhesion, which is especially pronounced for PCL and PLA disks. With all these substrates, transfection efficiency was found to be in the range of 25-50% transfected cells. The pCABOL/pDNA multilayer films can also conveniently add transfection capability to 3D scaffolds. Significant improvement in cell adhesion was observed after multilayer coating of 3D-plotted fibers of PCL (with and without an additional covalent heparin layer), especially for the PCL scaffold without heparin layer and transfection was observed on both 3D PCL and PCL-HEP scaffolds. These results show that layer

  6. A comparison study in cell transfection: Which one is better, sonoporation versus electroporation?

    NASA Astrophysics Data System (ADS)

    Wu, Junru; Pepe, Jason; Rincon, Mercedes

    2001-05-01

    An experimental study has been performed for cell suspensions to compare efficiency of cell transfection, which is the process of introducing recombinant DNA into eukaryotic cells (eukaryotic cells have chromosomes with nucleosomal structure) and subsequently integrating that DNA into the recipient cell's chromosomal DNA. It was demonstrated that electroporation was superior to sonoporation in terms of viability (65.8 2.3% vs. 50.8 4.15%) and transfection efficiency (15.83 3.5% vs. 7.53 0.4%) for Jurkat lymphocytes (nonprimary cells), and sonoporation was better in terms of viability (64.8 1.51% vs. 53.7 1.53 %) and transfection efficiency (2.73 0.21% vs. 0.43 0.06%) for human peripheral blood mononuclear cells (primary cells). The electroporation was performed using a Gene Pulser II Apparatus with voltage of 250 V, and the sonoporation was achieved using 2-MHz pulsed ultrasound exposure (ISPPA=80 W/cm2) assisted with encapsulated bubbles (Optison).

  7. Multivalent dendritic polyglycerolamine with arginine and histidine end groups for efficient siRNA transfection

    PubMed Central

    Sheikhi Mehrabadi, Fatemeh; Zeng, Hanxiang; Johnson, Mark; Schlesener, Cathleen

    2015-01-01

    Summary The success of siRNA-based therapeutics highly depends on a safe and efficient delivery of siRNA into the cytosol. In this study, we post-modified the primary amines on dendritic polyglycerolamine (dPG-NH2) with different ratios of two relevant amino acids, namely, arginine (Arg) and histidine (His). To investigate the effects from introducing Arg and His to dPG, the resulting polyplexes of amino acid functionalized dPG-NH2s (AAdPGs)/siRNA were evaluated regarding cytotoxicity, transfection efficiency, and cellular uptake. Among AAdPGs, an optimal vector with (1:3) Arg to His ratio, showed efficient siRNA transfection with minimal cytotoxicity (cell viability ≥ 90%) in NIH 3T3 cells line. We also demonstrated that the cytotoxicity of dPG-NH2 decreased as a result of amino acid functionalization. While the incorporation of both cationic (Arg) and pH-responsive residues (His) are important for safe and efficient siRNA transfection, this study indicates that AAdPGs containing higher degrees of His display lower cytotoxicity and more efficient endosomal escape. PMID:26124878

  8. Proliferation and Differentiation of Rat Osteoporosis Mesenchymal Stem Cells (MSCs) after Telomerase Reverse Transcriptase (TERT) Transfection

    PubMed Central

    Li, Chao; Wei, Guojun; Gu, Qun; Wang, Qiang; Tao, Shuqin; Xu, Liang

    2015-01-01

    Background The aim of this study was to determine whether MSC are excellent materials for MSCs transplantation in the treatment of osteoporosis. Material/Methods We studied normal, osteoporosis, and TERT-transfected MSC from normal and osteoporosis rats to compare the proliferation and osteogenic differentiation using RT-PCR and Western blot by constructing an ovariectomized rat model of osteoporosis (OVX). The primary MSC from model rats were extracted and cultured to evaluate the proliferation and differentiation characteristics. Results MSCs of osteoporosis rats obviously decreased in proliferation ability and osteogenic differentiation compared to that of normal rats. In contrast, in TERT-transfected MSC, the proliferation and differentiation ability, and especially the ability of osteogenic differentiation, were significantly higher than in osteoporosis MSC. Conclusions TERT-transfected MSCs can help osteoporosis patients in whom MSC proliferation and osteogenic differentiation ability are weak, with an increase in both bone mass and bone density, becoming an effective material for autologous transplantation of MSCs in further treatment of osteoporosis. However, studies are still needed to prove the in vivo effect, biological safety, and molecular mechanism of TERT-osteoporosis treatment. Additionally, because the results are from an animal model, more research is needed in generalizing rat model findings to human osteoporosis patients. PMID:25796354

  9. Characterisation of human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA transfection.

    PubMed Central

    Lemoine, N. R.; Mayall, E. S.; Jones, T.; Sheer, D.; McDermid, S.; Kendall-Taylor, P.; Wynford-Thomas, D.

    1989-01-01

    Human primary thyroid follicular epithelial cells were transfected with a plasmid containing an origin-defective SV40 genome (SVori-) to produce several immortal cell lines. Two of the 10 cell lines analysed expressed specific features of thyroid epithelial function (iodide-trapping and thyroglobulin production). These two lines were characterised in detail and found to be growth factor-independent, capable of anchorage-independent growth at low frequency but non-tumorigenic in nude mice. These differentiated, These differentiated, partially transformed cell lines were shown to be suitable for gene transfer at high frequency using simple coprecipitation techniques. Images Figure 2 Figure 3 Figure 4 PMID:2557880

  10. Femtosecond cellular transfection using a non-diffracting beam

    NASA Astrophysics Data System (ADS)

    Tsampoula, X.; Garcés-Chávez, V.; Comrie, M.; Stevenson, D. J.; Agate, B.; Brown, C. T. A.; Gunn-Moore, F.; Dholakia, K.

    2008-02-01

    Efficient DNA delivery into single living cells would be a very powerful capability for cell biologists for elucidating basic cellular functions but also in other fields such as applied drug discovery and gene therapy. The ability to gently permeate the cell membrane and introduce foreign DNA with the assistance of lasers is a powerful methodology but requires exact focusing due to the required two-photon power density. Here, we demonstrate a laser-mediated delivery method of the red fluorescent protein DS-RED into Chinese hamster Ovary (CHO) cells. We used an elongated beam of light created by a Bessel beam (BB) which obviates the need to locate precisely the cell membrane, permitting two-photon excitation along a line leading to cell transfection. Assuming a threshold for transfection of 20%, the BB gives us transfection over twenty times the axial distance compared to the Gaussian beam of equivalent core diameter. In addition, by exploiting the BB property of reconstruction, we demonstrate successful transfection of CHO cells which involves the BB passing through an obstructive layer and re forming itself prior to reaching the cell membrane. In the light of this exciting result, one can envisage the possibility of achieving transfection through multiple cell monolayer planes and tissues using this novel light field, eliminating this way the stringent requirements for tight focusing.

  11. In vitro gene transfection using dendritic poly(L-lysine).

    PubMed

    Ohsaki, Mio; Okuda, Tatsuya; Wada, Akihiro; Hirayama, Toshiya; Niidome, Takuro; Aoyagi, Haruhiko

    2002-01-01

    Monodispersed dendritic poly(L-lysine)s (DPKs) of several generations were synthesized, and their characteristics as a gene transfection reagent were then investigated. The agarose gel shift and ethidium bromide titration assay proved that the DPKs of the third generation and higher could form a complex with a plasmid DNA, and the degree of compaction of the DNA was increased by the increasing number of the generation. The DPKs of the fifth and sixth generation, which have 64 and 128 amine groups on the surface of the molecule, respectively, showed efficient gene transfection ability into several cultivated cell lines without significant cytotoxity. In addition, the transfection efficiency of the DPK of the sixth generation was not seriously reduced even if serum was added at 50% of the final concentration into the transfection medium. Because we can strictly synthesize various DPK derivatives, which have several types of branch units, terminal cationic groups, and so on, they are expected to be a good object of study regarding the basic information on the detailed mechanism of gene transfection into cells. We also expect to be able to easily construct DPK-based functional gene carriers, e.g., DPKs modified by ligands such as a sugar chain, which can enable advanced gene delivery in vivo. PMID:12009940

  12. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  13. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  14. Self-assembled carboxymethyl poly (L-histidine) coated poly (β-amino ester)/DNA complexes for gene transfection.

    PubMed

    Gu, Jijin; Wang, Xiao; Jiang, Xinyi; Chen, Yanzuo; Chen, Liangcen; Fang, Xiaoling; Sha, Xianyi

    2012-01-01

    Biomaterials coated polymer/DNA complexes are developed as an efficient non-viral gene delivery system. It is able to circumvent the changes of various biophysical properties of the biomaterials and the corresponding polymer/DNA nanoparticles with covalent linkage. In the present study, we introduced pH-sensitive carboxymethyl poly (l-histidine) (CM-PLH) and poly (β-amino ester) (PbAE) as functional biomaterials to form CM-PLH/PbAE/DNA core-shell ternary complexes system based on electrostatically adsorbed coatings for gene efficient delivery and transfection. The preparation of the complexes was performed self-assembly in 25 mm sodium acetate buffer solution at pH 5.2. The complexes kept stable nano-size, behaving good condensation capacity and low toxicity, even provided a higher transfection efficiency than the binary complexes (PbAE/DNA without CM-PLH) and transfected up to (89.6 ± 4.45) % in HEK293 and (57.1 ± 2.10) % in B16-F10 in vitro. The ternary complexes significantly enhanced their cellular uptake and endosomal escape which were proved by the results that the complexes could evade the endosomal lumen and localize in the nucleus of treated cells visualized under Fluorescence Confocal Microscopy (FCM). The aforementioned results indicated that CM-PLH with pH-sensitive imidazole groups played an important role in enhancing the endosomal escape and transfection efficiency. The in vivo gene transfection confirmed that the ternary complexes with pGL3-promoter as led to effectively deposit at the tumor site by the EPR effect and shown 4 fold higher luciferase expression in B16-F10 tumor than the binary complexes. Consequently, CM-PLH/PbAE/DNA ternary complexes system exhibited significant improvements in transfection efficiency in comparison with non-coated PbAE/DNA both in vitro and in vivo, highlighting their functional prospect. Our approach and the gene delivery system fabrication could potentially be useful for effective gene delivery and therapies to

  15. Transient transfection of mammalian cells using a violet diode laser

    NASA Astrophysics Data System (ADS)

    Torres-Mapa, Maria Leilani; Angus, Liselotte; Ploschner, Martin; Dholakia, Kishan; Gunn-Moore, Frank J.

    2010-07-01

    We demonstrate the first use of the violet diode laser for transient mammalian cell transfection. In contrast to previous studies, which showed the generation of stable cell lines over a few weeks, we develop a methodology to transiently transfect cells with an efficiency of up to ~40%. Chinese hamster ovary (CHO-K1) and human embryonic kidney (HEK293) cells are exposed to a tightly focused 405-nm laser in the presence of plasmid DNA encoding for a mitochondrial targeted red fluorescent protein. We report transfection efficiencies as a function of laser power and exposure time for our system. We also show, for the first time, that a continuous wave laser source can be successfully applied to selective gene silencing experiments using small interfering RNA. This work is a major step towards an inexpensive and portable phototransfection system.

  16. Improved assays for xenosensor activation based on reverse transfection.

    PubMed

    Küblbeck, Jenni; Anttila, Teemu; Pulkkinen, Juha T; Honkakoski, Paavo

    2015-10-01

    Discovery of receptor-dependent mechanisms for regulation of drug metabolism has provided a new way to evaluate the propensity of drug candidates to cause induction of cytochrome P450 enzymes. Therefore, receptor-based reporter assays have become common in early stages of drug development projects and in mechanistic studies. Here, we report a reverse transfection system to conduct activation assays for human xenosensors AhR, CAR and PXR. The assay format is based on long-term stability and uniformity of DNA/carrier complexes on culture plates, avoiding multiple stages and variation inherent in conventional transfection methods. Consequently, these improved assays are streamlined, reproducible and formally validated with Z' factors exceeding 0.5. This novel reverse transfection system is expected to find use in diverse areas of early drug development such prediction of CYP induction, evaluation of species differences and in mechanistic studies. PMID:26187274

  17. In vitro cytotoxic activity and transfection efficiency of polyethyleneimine functionalized gold nanoparticles.

    PubMed

    Lazarus, Geraldine Genevive; Singh, Moganavelli

    2016-09-01

    In this study, we report on the synthesis of polyethyleneimine (PEI) coated gold nanoparticles for potential application as non-viral gene carriers. In the presence of the electrolyte, sodium citrate, the electrophoretic mobility confirmed the electroneutral nature of the nanocomplex. MTT cell viability assays showed that the Au-PEI/pDNA complexes maintained over 60% cell viability across the four cell lines tested. Transfection studies were accomplished using the luciferase reporter gene assay. Results showed that the FAuNPs produced greater transgene activity than the cationic polymer/DNA complexes on their own. This was evident for the Au-PEI/pDNA complex which produced a 12 fold increase in the HEK293 cells and a 9 fold increase in the HepG2 cells, compared to the PEI/pDNA complexes. PMID:27341304

  18. Physicochemical and transfection properties of cationic Hydroxyethylcellulose/DNA nanoparticles.

    PubMed

    Fayazpour, Farzaneh; Lucas, Bart; Alvarez-Lorenzo, Carmen; Sanders, Niek N; Demeester, Jo; De Smedt, Stefaan C

    2006-10-01

    In this study the physicochemical and transfection properties of cationic hydroxyethylcellulose/plasmid DNA (pDNA) nanoparticles were investigated and compared with the properties of DNA nanoparticles based on polyethylene imine (PEI), which is widely investigated as a gene carrier. The two types of cationic hydroxyethylcelluloses studied, polyquaternium-4 (PQ-4) and polyquaternium-10 (PQ-10), are already commonly used in cosmetic and topical drug delivery devices. Both PQ-4 and PQ-10 spontaneously interact with pDNA with the formation of nanoparticles approximately 200 nm in size. Gel electrophoresis and fluorescence dequenching experiments indicated that the interactions between pDNA and the cationic celluloses were stronger than those between pDNA and PEI. The cationic cellulose/pDNA nanoparticles transfected cells to a much lesser extent than the PEI-based pDNA nanoparticles. The low transfection property of the PQ-4/pDNA nanoparticles was attributed to their neutrally charged surface, which does not allow an optimal binding of PQ-4/pDNA nanoparticles to cellular membranes. Although the PQ-10/pDNA nanoparticles were positively charged and thus expected to be taken up by cells, they were also much less efficient in transfecting cells than were PEI/pDNA nanoparticles. Agents known to enhance the endosomal escape were not able to improve the transfection properties of PQ-10/pDNA nanoparticles, indicating that a poor endosomal escape is, most likely, not the major reason for the low transfection activity of PQ-10/pDNA nanoparticles. We hypothesized that the strong binding of pDNA to PQ-10 prohibits the release of pDNA from PQ-10 once the PQ-10/pDNA nanoparticles arrive in the cytosol of the cells. Tailoring the nature and extent of the cationic side chains on this type of cationic hydroxyethylcellulose may be promising to further enhance their DNA delivery properties. PMID:17025362

  19. GDNF Gene Delivery via a 2-(Dimethylamino)ethyl Methacrylate Based Cyclized Knot Polymer for Neuronal Cell Applications

    PubMed Central

    2013-01-01

    Nonviral genetic therapeutic intervention strategies for neurological disorders hold great promise, but a lack of vector efficacy, coupled with vector toxicity, continue to hinder progress. Here we report the application of a newly developed class of polymer, distinctly different from conventional branched polymers, as a transfection agent for the delivery of glial cell line derived neurotrophic factor (GDNF) encoding gene. This new 2-(dimethylamino)ethyl methacrylate (DMAEMA) based cyclized knot polymer was studied for neuronal cell transfection applications, in comparison to branched polyethyleneimine (PEI). While showing a similar transfection profile over multiple cell types, the cyclized knot polymer showed far lower toxicity. In addition, transfection of Neu7 astrocytes with the GDNF encoding gene was able to cause neurite outgrowth when cocultured with dorsal root ganglia (DRGs). The cyclized knot polymer assessed here (PD-E 8%PEG), synthesized via a simple one-pot reaction, was shown to have great potential for neuronal gene therapy applications. PMID:23391146

  20. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    PubMed

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination. PMID:27349114

  1. Carbon nanoparticles for gene transfection in eukaryotic cell lines.

    PubMed

    Zanin, H; Hollanda, L M; Ceragioli, H J; Ferreira, M S; Machado, D; Lancellotti, M; Catharino, R R; Baranauskas, V; Lobo, A O

    2014-06-01

    For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed π-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests. PMID:24863237

  2. Multiplexing nano-electroporation for simultaneous transfection of multiple cells

    NASA Astrophysics Data System (ADS)

    Howdyshell, M.; Vieira, G.; Gallego-Perez, D.; Zhao, X.; Lee, L. J.; Sooryakumar, R.

    2013-03-01

    Transfection of biomolecules into cells via electrophoresis across nanochannels, or nano-electroporation, is a recently developed technique shown to deliver precisely controlled dosages with low cell mortality rates. Such advantages are due to the nanochannels used for transfection, which distinguish this technique from bulk and micro-electroporation. Recent demonstrations of nano-electroporation rely on optical tweezers for cell localization, which restrict throughput to sequential electroporation of one cell at a time. In the current work, we overcome this drawback by advancing a multiplexed approach that integrates the nano-channel device with an array of magnetic traps remotely controlled by external magnetic fields. This setup enables multiple magnetically labeled cells to be manipulated in parallel, allowing for simultaneous electroporation of many cells with precisely controlled dosages. After transfection, the cells can be moved downstream for further analysis. Such a magnetically-actuated, remotely-controlled approach for loading of cells and subsequent removal of transfected cells has the potential to transform the current device into an automated platform for simultaneous dosage-controlled biomolecule delivery to large numbers of individual cells.

  3. Physicochemical features and transfection properties of chitosan/poloxamer 188/poly(D,L-lactide-co-glycolide) nanoplexes

    PubMed Central

    Cosco, Donato; Federico, Cinzia; Maiuolo, Jessica; Bulotta, Stefania; Molinaro, Roberto; Paolino, Donatella; Tassone, Pierfrancesco; Fresta, Massimo

    2014-01-01

    The aim of this study was the evaluation of the effects of two emulsifiers on the physicochemical and technological properties of low molecular weight chitosan/poly (D,L-lactide-co-glycolide) (PLGA) nanoplexes and their transfection efficiency. Nanospheres were prepared using the nanoprecipitation method of the preformed polymer. The mean diameter and surface charge of the nanospheres were investigated by photocorrelation spectroscopy. The degree of binding of the plasmid with the nanoplexes was qualitatively and quantitatively determined. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) testing was performed using HeLa, RPMI8226, and SKMM1 cell lines. Flow cytometry and confocal laser scanning microscopy were used to determine the degree of cellular transfection and internalization of the nanoplexes into cells, respectively. The nanoplexes had a positive zeta potential, and low amounts of PLGA and poloxamer 188 showed a mean colloidal size of ~200 nm with a polydispersity index of ~0.14. The nanoplexes had suitable entrapment efficiency (80%). In vitro experiments showed that the colloidal nanodevices did not induce significant cytotoxicity. The nanoplexes investigated in this study could represent efficient and useful nonviral devices for gene delivery. Use of low amounts of PLGA and poloxamer 188 enabled development of a nanosphere able to transfect cells efficiently. These nanosystems are a helpful platform for delivery of genetic material while preserving therapeutic efficacy. PMID:24876772

  4. Dual-degradable disulfide-containing PEI–Pluronic/DNA polyplexes: transfection efficiency and balancing protection and DNA release

    PubMed Central

    Zhang, Lifen; Chen, Zhenzhen; Li, Yanfeng

    2013-01-01

    Polymeric gene-delivery vectors to achieve lack of toxicity and a balance between protection and DNA release remains a formidable challenge. Incorporating intracellular environment-responsive degradable bonds is an appreciable step toward developing safer transfection agents. In this study, novel, dual-degradable polycation copolymers (Pluronic-diacrylate [PA]–polyethyleneimine [PEI]–SS) were synthesized through the addition of low molecular weight (800 Da) PEI cross-linked with SS (PEI-SS) to PA. Three PA-PEI-SS copolymers (PA-PEI-SS1, 2, and 3) with different PEI-SS to Pluronic molar ratios were investigated and found to strongly condense plasmid DNA into positively charged nanoparticles with an average particle size of approximately 200 nm and to possess higher stability against DNase I digestion and sodium heparin. Disulfide and ester bonds of the copolymers were susceptible to intracellular redox conditions. In vitro experiments demonstrated that the PA-PEI-SS copolymers had significantly lower cytotoxicity and higher transfection efficiency in both BGC-823 and 293T cell lines than the controls of degradable PEI-SS and nondegradable 25 kDa PEI. Transfection activity was influenced by the PEI-SS content in the polymers and PA-PEI-SS1 showed the highest efficiency of the three copolymers. These studies suggest that these dual-degradable copolymers could be used as potential biocompatible gene delivery carriers. PMID:24109182

  5. Approach to Rapid Synthesis and Functionalization of Iron Oxide Nanoparticles for High Gene Transfection.

    PubMed

    Stephen, Zachary R; Dayringer, Christopher J; Lim, Josh J; Revia, Richard A; Halbert, Mackenzie V; Jeon, Mike; Bakthavatsalam, Arvind; Ellenbogen, Richard G; Zhang, Miqin

    2016-03-16

    Surface functionalization of theranostic nanoparticles (NPs) typically relies on lengthy, aqueous postsynthesis labeling chemistries that have limited ability to fine-tune surface properties and can lead to NP heterogeneity. The need for a rapid, simple synthesis approach that can provide great control over the display of functional moieties on NP surfaces has led to increased use of highly selective bioorthoganol chemistries including metal-affinity coordination. Here we report a simple approach for rapid production of a superparamagnetic iron oxide NPs (SPIONs) with tunable functionality and high reproducibility under aqueous conditions. We utilize the high affinity complex formed between catechol and Fe((III)) as a means to dock well-defined catechol modified polymer modules on the surface of SPIONs during sonochemical coprecipitation synthesis. Polymer modules consisted of chitosan and poly(ethylene glycol) (PEG) copolymer (CP) modified with catechol (CCP), and CCP functionalized with cationic polyethylenimine (CCP-PEI) to facilitate binding and delivery of DNA for gene therapy. This rapid synthesis/functionalization approach provided excellent control over the extent of PEI labeling, improved SPION magnetic resonance imaging (MRI) contrast enhancement and produced an efficient transfection agent. PMID:26894609

  6. Degradable Polymer-Coated Gold Nanoparticles for Co-Delivery of DNA and siRNA

    PubMed Central

    Bishop, Corey J.; Tzeng, Stephany Y.; Green, Jordan J.

    2014-01-01

    Gold nanoparticles have utility for in vitro, ex vivo, and in vivo imaging applications as well as for serving as a scaffold for therapeutic delivery and theranostic applications. Starting with gold nanoparticles as a core, layer-by-layer degradable polymer coatings enable co-delivery of both DNA and short interfering RNA simultaneously. To engineer release kinetics, polymers which degrade through two different mechanisms can be utilized to construct hybrid inorganic/polymeric particles. During fabrication of the nanoparticles, the zeta potential reverses upon the addition of each oppositely charged polyelectrolyte layer and the final nanoparticle size reaches approximately 200 nm in diameter. When the hybrid gold/polymer/nucleic acid nanoparticles are added to human primary brain cancer cells in vitro, they are internalizable by cells and reach the cytoplasm and nucleus as visualized by transmission electron microscopy and observed through exogenous gene expression. This nanoparticle delivery leads to both exogenous DNA expression and siRNA-mediated knockdown, with the knockdown efficacy superior to that of Lipofectamine® 2000, a commercially available transfection reagent. These gold/polymer/nucleic acid hybrid nanoparticles are an enabling theranostic platform technology capable of delivering combinations of genetic therapies to human cells. PMID:25246314

  7. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA.

    PubMed

    Bishop, Corey J; Tzeng, Stephany Y; Green, Jordan J

    2015-01-01

    Gold nanoparticles have utility for in vitro, ex vivo and in vivo imaging applications as well as for serving as a scaffold for therapeutic delivery and theranostic applications. Starting with gold nanoparticles as a core, layer-by-layer degradable polymer coatings enable the simultaneous co-delivery of DNA and short interfering RNA (siRNA). To engineer release kinetics, polymers which degrade through two different mechanisms can be utilized to construct hybrid inorganic/polymeric particles. During fabrication of the nanoparticles, the zeta potential reverses upon the addition of each oppositely charged polyelectrolyte layer and the final nanoparticle size reaches approximately 200nm in diameter. When the hybrid gold/polymer/nucleic acid nanoparticles are added to human primary brain cancer cells in vitro, they are internalizable by cells and reach the cytoplasm and nucleus as visualized by transmission electron microscopy and observed through exogenous gene expression. This nanoparticle delivery leads to both exogenous DNA expression and siRNA-mediated knockdown, with the knockdown efficacy superior to that of Lipofectamine® 2000, a commercially available transfection reagent. These gold/polymer/nucleic acid hybrid nanoparticles are an enabling theranostic platform technology capable of delivering combinations of genetic therapies to human cells. PMID:25246314

  8. Photoporation and cell transfection using a violet diode laser

    NASA Astrophysics Data System (ADS)

    Paterson, L.; Agate, B.; Comrie, M.; Ferguson, R.; Lake, T. K.; Morris, J. E.; Carruthers, A. E.; Brown, C. T. A.; Sibbett, W.; Bryant, P. E.; Gunn-Moore, F.; Riches, A. C.; Dholakia, Kishan

    2005-01-01

    The introduction and subsequent expression of foreign DNA inside living mammalian cells (transfection) is achieved by photoporation with a violet diode laser. We direct a compact 405 nm laser diode source into an inverted optical microscope configuration and expose cells to 0.3 mW for 40 ms. The localized optical power density of ~1200 MW/m2 is six orders of magnitude lower than that used in femtosecond photoporation (~104 TW/m2). The beam perforates the cell plasma membrane to allow uptake of plasmid DNA containing an antibiotic resistant gene as well as the green fluorescent protein (GFP) gene. Successfully transfected cells then expand into clonal groups which are used to create stable cell lines. The use of the violet diode laser offers a new and simple poration technique compatible with standard microscopes and is the simplest method of laser-assisted cell poration reported to date.

  9. Ultrasonic enhancement of gene transfection in murine melanoma tumors.

    PubMed

    Miller, D L; Bao, S; Gies, R A; Thrall, B D

    1999-11-01

    The enhancement of gene transfection by ultrasound (US) was evaluated in vitro and in vivo using the B16 mouse melanoma model. Cultured cells were either exposed in suspensions in vitro or implanted subcutaneously in female C57BL/6 mice for 10-14 days and, subsequently exposed, in vivo. For comparison to results with a luciferase plasmid, a reporter plasmid for green fluorescent protein (GFP) was used to evaluate transfection efficiency. US was supplied by a system, similar to a Dornier HM-3 lithotripter, that produced shock waves (SW) of 24.4 MPa peak positive and 5.2 MPa peak negative pressure amplitudes at the focus. The plasmids were mixed with the suspensions to achieve 20 ,microL mL(-1), or were injected intratumorally to provide 0.2 mg DNA per mL of tumor. Acoustic cavitation was promoted by retaining 0.2 mL of air in the 1.2-mL exposure chambers in vitro and by injecting air at 10% of tumor volume in vivo. In vitro, cell counts declined to 5.3% of shams after 800 SW exposure, with 1.4% of the cells expressing GFP after 2 days of culture. In vivo, 2 days after 400 SW exposure, viable-cell recovery from excised tumors was reduced to 4.2% of shams and cell transfection was enhanced by a factor of about 8, reaching 2.5% of cell counts (p < 0.005 in t-test). These results show that strong tumor ablation induced by US shock wave treatment can be coupled with simultaneous enhancement of gene transfection. PMID:10626630

  10. High Throughput siRNA Screening Using Reverse Transfection.

    PubMed

    von Schantz, Carina; Saarela, Jani

    2016-01-01

    RNA interference (RNAi) is a commonly used technique to knockdown gene function. Here, we describe a high throughput screening method for siRNA mediated gene silencing of the breast cancer cell line MDA-MB-231 using reverse transfection. Furthermore, we describe the setup for two separate methods for detecting viable and dead cells using either homogenous assays or image-based analysis. PMID:27581282

  11. Cell transfection as a tool to study growth hormone action

    SciTech Connect

    Norstedt, G.; Enberg, B.; Francis, S.

    1994-12-31

    The isolation of growth hormone receptor (GHR) cDNA clones has made possible the transfection of GHRs into cultured cells. Our aim in this minireview is to show how the application of such approaches have benefited GHR research. GH stimulation of cells expressing GHR cDNAs can cause an alteration of cellular function that mimic those of the endogenous GHR. GHR cDNA transfected cells also offer a system where the mechanism of GH action can be studied. Such a system has been used to demonstrate that the GHR itself becomes tyrosine phosphorylated and that further phosphorylation of downstream proteins is important in GH action. The GH signals are transmitted to the nucleus and GH regulated genes have now begun to be characterized. The ability to use cell transfection for mechanistic studies of GH action will be instrumental to define domains within the receptor that are of functional importance and to determined pathways whereby GH signals are conveyed within the cell. 33 refs., 2 tabs.

  12. DNA uptake, intracellular trafficking and gene transfection after ultrasound exposure.

    PubMed

    Liu, Ying; Yan, Jing; Santangelo, Philip J; Prausnitz, Mark R

    2016-07-28

    Ultrasound has been studied as a promising tool for intracellular gene delivery. In this work, we studied gene transfection of a human prostate cancer cell line exposed to megahertz pulsed ultrasound in the presence of contrast agent and assessed the efficiency of fluorescently labelled DNA delivery into cell nuclei, which is necessary for gene transfection. At the sonication conditions studied, ~30% of cells showed DNA uptake 30min after sonication, but that fraction decreased over time to ~10% of cells after 24h. Most cells containing DNA had DNA in their nuclei, but the amount varied significantly. Transfection efficiency peaked at ~10% at 8h post sonication. Among those cells containing DNA, ~30% of DNA was localized in the cell nuclei, ~30% was in autophagosomes/autophagolysosomes and the remainder was "free" in the cytoplasm 30min after sonication. At later times up to 24h, ~30% of DNA continued to be found in the nuclei and most or all of the rest of the DNA was in autophagosomes/autophagolysosomes. These results demonstrate that ultrasound can deliver DNA into cell nuclei shortly after sonication and that the rest of the DNA can be cleared by autophagosomes/autophagolysosomes. PMID:27165808

  13. Laser-based patterning for transfected cell microarrays.

    PubMed

    Hook, Andrew L; Creasey, Rhiannon; Hayes, Jason P; Thissen, Helmut; Voelcker, Nicolas H

    2009-12-01

    The spatial control over biomolecule- and cell-surface interactions is of great interest to a broad range of biomedical applications, including sensors, implantable devices and cell microarrays. Microarrays in particular require precise spatial control and the formation of patterns with microscale features. Here, we have developed an approach specifically designed for transfected cell microarray (TCM) applications that allows microscale spatial control over the location of both DNA and cells on highly doped p-type silicon substrates. This was achieved by surface modification, involving plasma polymerization of allylamine, grafting of poly(ethylene glycol) and subsequent excimer laser ablation. DNA could be delivered in a spatially defined manner using ink-jet printing. In addition, electroporation was investigated as an approach to transfect attached cells with adsorbed DNA and good transfection efficiencies of approximately 20% were observed. The ability of the microstructured surfaces to spatially direct both DNA adsorption and cell attachment was demonstrated in a functional TCM, making this system an exciting platform for chip-based functional genomics. PMID:20811112

  14. Characterization of cell lines stably transfected with rubella virus replicons

    SciTech Connect

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  15. Lipothioureas as Lipids for Gene Transfection: A Review

    PubMed Central

    Breton, Marie; Leblond, Jeanne; Tranchant, Isabelle; Scherman, Daniel; Bessodes, Michel; Herscovici, Jean; Mignet, Nathalie

    2011-01-01

    Non-viral gene therapy requires innovative strategies to achieve higher transfection efficacy. A few years ago, our group proposed bioinspired lipids whose interaction with DNA was not based on ionic interactions, but on hydrogen bonds. We thus developed lipids bearing a thiourea head which allowed an interaction with DNA phosphates through hydrogen bonds. After a proof of concept with a lipid bearing three thiourea functions, a molecular and cellular screening was performed by varying all parts of the lipids: the hydrophobic anchor, the spacer, the linker, and the thiourea head. Two lipothiourea-based structures were identified as highly efficient in vitro transfecting agents. The lipothioureas were shown to reduce non specific interactions with cell membranes and deliver their DNA content intracellularly more efficiently, as compared to cationic lipoplexes. These lipids could deliver siRNA efficiently and allowed specific cell targeting in vitro. In vivo, thiourea lipoplexes presented a longer retention time in the blood and less accumulation in the lungs after an intravenous injection in mice. They also induced luciferase gene expression in muscle and tumor after local administration in mice. Therefore, these novel lipoplexes represent an excellent alternative to cationic lipoplexes as transfecting agents. In this review we will focus on the structure activity studies that permitted the identification of the two most efficient thiourea lipids.

  16. Impact of plasmid quality on lipoplex-mediated transfection.

    PubMed

    De La Vega, Jonathan; Braak, Bas Ter; Azzoni, Adriano R; Monteiro, Gabriel A; Prazeres, Duarte Miguel F

    2013-11-01

    This work investigates the impact of quality attributes (impurity content, plasmid charge, and compactness) of plasmid DNA isolated with different purification methodologies on the characteristics of lipoplexes prepared thereof (size, zeta potential, stability) and on their ability to transfect mammalian cells. A 3.7 kb plasmid with a green fluorescence protein (GFP) reporter gene, Lipofectamine®-based liposomes, and Chinese Hamster Ovary (CHO) cells were used as models. The plasmid was purified by hydrophobic interaction chromatography (HIC)/gel filtration, and with three commercial kits, which combine the use of chaotropic salts with silica membranes/glass fiber fleeces. The HIC-based protocol delivered a plasmid with the smallest hydrodynamic diameter (144 nm) and zeta potential (-46.5 mV), which is virtually free from impurities. When formulated with Lipofectamine®, this plasmid originated the smallest (146 nm), most charged (+13 mV), and most stable lipoplexes. In vitro transfection experiments further showed that these lipoplexes performed better in terms of plasmid uptake (∼500,000 vs. ∼100,000-200,000 copy number/cell), transfection efficiency (50% vs. 20%-40%), and GFP expression levels (twofold higher) when compared with lipoplexes prepared with plasmids isolated using commercial kits. Overall our observations highlight the potential impact that plasmid purification methodologies can have on the outcome of gene transfer experiments and trials. PMID:23996350

  17. Graphene and carbon nanotube nanocomposite for gene transfection.

    PubMed

    Hollanda, L M; Lobo, A O; Lancellotti, M; Berni, E; Corat, E J; Zanin, H

    2014-06-01

    Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5m(2)/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency. PMID:24863227

  18. Enhanced effect of microdystrophin gene transfection by HSV-VP22 mediated intercellular protein transport

    PubMed Central

    Xiong, Fu; Xiao, Shaobo; Yu, Meijuan; Li, Wanyi; Zheng, Hui; Shang, Yanchang; Peng, Funing; Zhao, Cuiping; Zhou, Wenliang; Chen, Huanchun; Fang, Liurong; Chamberlain, Jeffrey S; Zhang, Cheng

    2007-01-01

    Background Duchenne musclar dystrophy (DMD) is an X-linked recessive disease caused by mutations of dystrophin gene, there is no effective treatment for this disorder at present. Plasmid-mediated gene therapy is a promising therapeutical approach for the treatment of DMD. One of the major issues with plasmid-mediated gene therapy for DMD is poor transfection efficiency and distribution. The herpes simplex virus protein VP22 has the capacity to spread from a primary transduced cell to surrounding cells and improve the outcome of gene transfer. To improve the efficiency of plasmid-mediated gene therapy and investigate the utility of the intercellular trafficking properties of VP22-linked protein for the treatment for DMD, expression vectors for C-terminal versions of VP22-microdystrophin fusion protein was constructed and the VP22-mediated shuttle effect was evaluated both in vitro and in vivo. Results Our results clearly demonstrate that the VP22-microdystrophin fusion protein could transport into C2C12 cells from 3T3 cells, moreover, the VP22-microdystrophin fusion protein enhanced greatly the amount of microdystrophin that accumulated following microdystrophin gene transfer in both transfected 3T3 cells and in the muscles of dystrophin-deficient (mdx) mice. Conclusion These results highlight the efficiency of the VP22-mediated intercellular protein delivery for potential therapy of DMD and suggested that protein transduction may be a potential and versatile tool to enhance the effects of gene delivery for somatic gene therapy of DMD. PMID:17617925

  19. The effect of the suspension cells in plasma gene transfection method

    NASA Astrophysics Data System (ADS)

    Isozaki, Yuki; Nakano, Koki; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Tachibana, Kunihide; Jinno, Masafumi

    2015-09-01

    Plasma gene transfection method is a unique technique for introducing nucleic acids into cells by using plasma irradiation. In our previous works, plasma gene transfection method was performed for the adherent cells, e.g. COS-7 cells, and the influence of plasma on gene transfection has been investigated. As a next step for plasma medicine, transfection to much more various kinds of target cells is required. In this study, the authors attempted gene transfection to two kinds of suspension and four kinds of adherent cells. Although the transfection ratios to the suspension cells were low, transfection to all the kinds of cells were validated. To upregulate the transfection ratio for suspension cells, the authors are validating related factors by plasma irradiation. This work was partly supported by JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas (Number 25108509, 15H00896) and a grant from Ehime University.

  20. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  1. Glycated polyelectrolyte multilayer films: differential adhesion of primary versus tumor cells

    PubMed Central

    Schneider, Aurore; Bolcato-Bellemin, Anne-Laure; Francius, Gregory; Jedrzejwska, Justyna; Schaaf, Pierre; Voegel, Jean-Claude; Frisch, Benoit; Picart, Catherine

    2008-01-01

    Glycated polymers have already been widely employed for cell transfection studies as cell possess specific lectins. However, up to now, these glycated polymers have barely been investigated for their cell adhesive properties, save macrophages. In this work, we use polyelectrolyte multilayer films made of poly(L-lysine) and poly(L-glutamic) acid as polymeric substrates to investigate the role of sugar molecules, e.g. mannose and lactose, on the adhesion of primary cells as compared to that of a tumor cell line. The glycated polymeric films were compared to ungrafted and chemically cross-linked films, which are known to present opposite adhesive properties. A differential adhesion could be evidenced on mannose grafted films: primary chondrocytes adhere and proliferate well on these films whereas chondrosarcoma cells do not grow well. Although present, the effect of lactose on cell adhesion was much less important. This adhesion, mediated by glycated polymers, appears to be specific. These results show that it is possible to use glycated polyelectrolytes not only as non viral vectors but also as cell adhesive substrates. PMID:17025366

  2. Hydrodynamic Transfection for Generation of Novel Mouse Models for Liver Cancer Research

    PubMed Central

    Chen, Xin; Calvisi, Diego F.

    2015-01-01

    Primary liver cancers, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, are leading causes of cancer-related death worldwide. Recent large-scale genomic approaches have identified a wide number of genes whose deregulation is associated with hepatocellular carcinoma and intrahepatic cholangiocarcinoma development. Murine models are critical tools to determine the oncogenic potential of these genes. Conventionally, transgenic or knockout mouse models are used for this purpose. However, several limitations apply to the latter models. Herein, we review a novel approach for stable gene expression in mouse hepatocytes by hydrodynamic injection in combination with Sleeping Beauty–mediated somatic integration. This method represents a flexible, reliable, and cost-effective tool to generate preclinical murine models for liver cancer research. Furthermore, it can be used as an in vivo transfection method to study biochemical cross talks among multiple pathways along hepatocarcinogenesis and to test the therapeutic potential of drugs against liver cancer. PMID:24480331

  3. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  4. Graphene for improved femtosecond laser based pluripotent stem cell transfection.

    PubMed

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Khanyile, Thulile; Warner, Jamie H

    2014-05-01

    Pluripotent stem cells are hugely attractive in the tissue engineering research field as they can self-renew and be selectively differentiated into various cell types. For stem cell and tissue engineering research it is important to develop new, biocompatible scaffold materials and graphene has emerged as a promising material in this area as it does not compromise cell proliferation and accelerates specific cell differentiation. Previous studies have shown a non-invasive optical technique for mouse embryonic stem (mES) cell differentiation and transfection using femtosecond (fs) laser pulses. To investigate cellular responses to the influence of graphene and laser irradiation, here we present for the first time a study of mES cell fs laser transfection on graphene coated substrates. First we studied the impact of graphene on Chinese Hamster Ovary (CHO-K1) cell viability and cell cytotoxicity in the absence of laser exposure. These were tested via evaluating the mitochondrial activity through adenosine triphosphates (ATP) luminescence and breakages on the cell plasma membrane assessed using cytosolic lactate dehydrogenase (LDH) screening. Secondly, the effects of fs laser irradiation on cell viability and cytotoxicity at 1064 and 532 nm for cells plated and grown on graphene and pure glass were assessed. Finally, optical transfection of CHO-K1 and mES cells was performed on graphene coated versus plain glass substrates. Our results show graphene stimulated cell viability whilst triggering a mild release of intracellular LDH. We also observed that compared to pure glass substrates; laser irradiation at 1064 nm on graphene plates was less cytotoxic. Finally, in mES cells efficient optical transfection at 1064 (82%) and 532 (25%) nm was obtained due to the presence of a graphene support as compared to pristine glass. Here we hypothesize an up-regulation of cell adhesion promoting peptides or laminin-related receptors of the extracellular matrix (ECM) in cell samples

  5. Paradoxical regulation of dopamine receptors in transfected 293 cells.

    PubMed

    Filtz, T M; Artymyshyn, R P; Guan, W; Molinoff, P B

    1993-08-01

    Selective expression of subtypes of receptors in mammalian cell lines permits the study of the regulation of receptors in a homogeneous population of cells growing under controlled conditions. cDNAs encoding the human D2L and D2S receptors were ligated into a eukaryotic expression vector, pRc/CMV. The resulting plasmid, which contains a cytomegalovirus promoter for high expression levels, was used for stable transfection of 293 cells, a human kidney cell line. Expression of D2L and D2S receptors in 293 cells was confirmed by radioligand binding assays with [125I]NCQ 298. The pharmacological properties of the expressed receptors were comparable to those of receptors in rat striatal homogenates and in other transfected cell lines. D2L and D2S receptors were coupled to inhibition of cAMP accumulation in 293 cells. Incubation of 293-D2L cells with agonists resulted in an increase in the density of D2 receptors without a change in the affinity of the receptors for [125I]NCQ 298. This effect was time dependent, with a t1/2 of approximately 6 hr. The dose dependence of up-regulation followed the pharmacological profile expected of a D2 receptor, with an order of potency of N-propylnorapomorphine (NPA) > quinpirole > dopamine. The density of receptors was further increased by incubation of cells with agonist together with forskolin or 8-bromo-cAMP. D2S receptors responded similarly to D2L receptors to treatment with NPA and forskolin. Exposure of 293-D2L cells to the beta-adrenergic receptor agonist isoproterenol did not change the density of D2L receptors. Similarly, NPA had no effect on levels of endogenously expressed beta-adrenergic receptors in 293-D2L cells, as assayed by binding of [125I]iodocyanopindolol. Levels of beta-adrenergic receptors in transfected 293-beta 2 or 293-D2L cells did not increase after exposure to NPA but decreased after exposure to isoproterenol. Cells expressing D2L receptors were incubated with antagonists, including SCH-23390, sulpiride

  6. Conceptual and technical aspects of transfection and gene delivery.

    PubMed

    Kaestner, Lars; Scholz, Anke; Lipp, Peter

    2015-03-15

    Genetically modified animals are state of the art in biomedical research as gene therapy is a promising perspective in the attempt to cure hereditary diseases. Both approaches have in common that modified or corrected genetic information must be transferred into cells in general or into particular cell types of an organism. Here we give an overview of established and emerging methods of transfection and gene delivery and provide conceptual and technical advantages and drawbacks of their particular use. Additionally, based on a flow chart, we compiled a rough guideline to choose a gene transfer method for a particular field of application. PMID:25677659

  7. Preparation of Gene Gun Bullets and Biolistic Transfection of Neurons in Slice Culture

    PubMed Central

    Woods, Georgia; Zito, Karen

    2008-01-01

    Biolistic transfection is a physical means of transfecting cells by bombarding tissue with high velocity DNA coated particles. We provide a detailed protocol for biolistic transfection of rat hippocampal slices, from the initial preparation of DNA coated bullets to the final shooting of the organotypic slice cultures using a gene gun. Gene gun transfection is an efficient and easy means of transfecting neurons and is especially useful for fluorescently labeling a small subset of cells in tissue slice. In this video, we first outline the steps required to coat gold particles with DNA. We next demonstrate how to line the inside of plastic tubing with the gold/DNA bullets, and how to cut this tubing to obtain the plastic cartridges for loading into the gene gun. Finally, we perform biolistic transfection of rat hippocampal slice cultures, demonstrating handling of the Bio-Rad Helios gene gun, and offering trouble shooting advice to obtain healthy and optimally transfected tissue slices. PMID:19066564

  8. Improvement of efficiency and viability in plasma gene transfection by plasma minimization and optimization electrode configuration

    NASA Astrophysics Data System (ADS)

    Jinno, Masafumi; Tachibana, Kunihide; Motomura, Hideki; Saeki, Noboru; Satoh, Susumu

    2016-07-01

    Plasma gene transfection is expected as a safe and useful method of gene transfection. However, in this method, there is difficulty in keeping both high transfection efficiency and less cell damage simultaneously. The authors have evaluated transfection efficiency and cell viability using four different plasma sources, such as arc discharge, plasma jet, dielectric barrier discharge (DBD), and microplasma. A high transfection efficiency was achieved by discharge forms in which the electric current flows via the cells. This suggested that an electric current plays an important role in plasma gene transfection. The total volume of gas flow must be small or zero and the area in which the cells are directly irradiated by plasma must be small in order to achieve a higher cell viability. The microplasma that satisfies these conditions achieved both the highest transfection efficiency and the highest cell viability simultaneously.

  9. Low-Molecular Weight Polyethylenimine Modified with Pluronic 123 and RGD- or Chimeric RGD-NLS Peptide: Characteristics and Transfection Efficacy of Their Complexes with Plasmid DNA.

    PubMed

    Hu, Jing; Zhao, Wenfang; Liu, Kehai; Yu, Qian; Mao, Yuan; Lu, Zeyu; Zhang, Yaguang; Zhu, Manman

    2016-01-01

    To solve the problem of transfection efficiency vs. cytotoxicity and tumor-targeting ability when polyethylenimine (PEI) was used as a nonviral gene delivery vector, new degradable PEI polymers were synthesized via cross-linking low-molecular-weight PEI with Pluronic P123 and then further coupled with a targeting peptide R4 (RGD) and a bifunctional R11 (RGD-NLS), which were termed as P123-PEI-R4 and P123-PEI-R11, respectively. Agarose gel electrophoresis showed that both P123-PEI-R4 and P123-PEI-R11 efficaciously condense plasmid DNA at a polymer-to-pDNA w/w ratio of 3.0 and 0.4, respectively. The polyplexes were stable in the presence of serum and could protect plasmid DNA against DNaseI. They had uniform spherical nanoparticles with appropriate sizes around 100-280 nm and zeta-potentials about +40 mV. Furthermore, in vitro experiments showed that these polyplexes had lower cytotoxicity at any concentration compared with PEI 25 kDa, thus giving promise to high transfection efficiency as compared with another P123-PEI derivate conjugated with trifunctional peptide RGD-TAT-NLS (P123-PEI-R18). More importantly, compared with the other polymers, P123-PEI-R11 showed the highest transfection efficiency with relatively lower cytotoxicity at any concentration, indicating that the new synthetic polymer P123-PEI-R11 could be used as a safe and efficient gene deliver vector. PMID:27213305

  10. Comparison of nanoparticle-mediated transfection methods for DNA expression plasmids: efficiency and cytotoxicity

    PubMed Central

    2011-01-01

    Background Reproducibly high transfection rates with low methodology-induced cytotoxic side effects are essential to attain the required effect on targeted cells when exogenous DNA is transfected. Different approaches and modifications such as the use of nanoparticles (NPs) are being evaluated to increase transfection efficiencies. Several studies have focused on the attained transfection efficiency after NP-mediated approaches. However, data comparing toxicity of these novel approaches with conventional methods is still rare. Transfection efficiency and methodology-induced cytotoxicity were analysed after transfection with different NP-mediated and conventional approaches. Two eukaryotic DNA-expression-plasmids were used to transfect the mammalian cell line MTH53A applying six different transfection protocols: conventional transfection reagent (FuGENE HD, FHD), FHD in combination with two different sizes of stabilizer-free laser-generated AuNPs (PLAL-AuNPs_S1,_S2), FHD and commercially available AuNPs (Plano-AuNP), and two magnetic transfection protocols. 24 h post transfection efficiency of each protocol was analysed using fluorescence microscopy and GFP-based flow cytometry. Toxicity was assessed measuring cell proliferation and percentage of propidium iodide (PI%) positive cells. Expression of the respective recombinant proteins was evaluated by immunofluorescence. Results The addition of AuNPs to the transfection protocols significantly increased transfection efficiency in the pIRES-hrGFPII-eIL-12 transfections (FHD: 16%; AuNPs mean: 28%), whereas the magnet-assisted protocols did not increase efficiency. Ligand-free PLAL-AuNPs had no significant cytotoxic effect, while the ligand-stabilized Plano-AuNPs induced a significant increase in the PI% and lower cell proliferation. For pIRES-hrGFPII-rHMGB1 transfections significantly higher transfection efficiency was observed with PLAL-AuNPs (FHD: 31%; PLAL-AuNPs_S1: 46%; PLAL-AuNPs_S2: 50%), while the magnet

  11. Improving Viability and Transfection Efficiency with Human Umbilical Cord Wharton's Jelly Cells Through Use of a ROCK Inhibitor

    PubMed Central

    Mellott, Adam J.; Godsey, Megan E.; Shinogle, Heather E.; Moore, David S.; Forrest, M. Laird

    2014-01-01

    Abstract Differentiating stem cells using gene delivery is a key strategy in tissue engineering and regenerative medicine applications. Nonviral gene delivery bypasses several safety concerns associated with viral gene delivery; however, leading nonviral techniques, such as electroporation, subject cells to high stress and can result in poor cell viabilities. Inhibition of Rho-associated coiled-coil kinase (ROCK) has been shown to mitigate apoptotic mechanisms associated with detachment and freezing of induced pluripotent stem cells and embryonic stem cells; however, inhibiting ROCK in mesenchymal stromal cells (MSCs) for improving gene delivery applications has not been reported previously. In this study, we hypothesized that ROCK Inhibitor (RI) would improve cell viability and gene expression in primary human umbilical cord mesenchymal stromal cells (hUCMSCs) when transfected via Nucleofection™. As hypothesized, the pre-treatment and post-treatment of hUCMSCs transfected via nucleofection with Y-27632-RI significantly improved survival rates of hUCMSCs and gene expression as measured by green fluorescent protein intensity. This study provides the first comparative look at the effect of Y-27632-RI on hUCMSCs that underwent transfection via nucleofection and shows that using Y-27632-RI in concert with nucleofection could greatly enhance the utility of differentiating and reprogramming hUCMSCs for tissue engineering applications. PMID:24552552

  12. Improving viability and transfection efficiency with human umbilical cord wharton's jelly cells through use of a ROCK inhibitor.

    PubMed

    Mellott, Adam J; Godsey, Megan E; Shinogle, Heather E; Moore, David S; Forrest, M Laird; Detamore, Michael S

    2014-04-01

    Differentiating stem cells using gene delivery is a key strategy in tissue engineering and regenerative medicine applications. Nonviral gene delivery bypasses several safety concerns associated with viral gene delivery; however, leading nonviral techniques, such as electroporation, subject cells to high stress and can result in poor cell viabilities. Inhibition of Rho-associated coiled-coil kinase (ROCK) has been shown to mitigate apoptotic mechanisms associated with detachment and freezing of induced pluripotent stem cells and embryonic stem cells; however, inhibiting ROCK in mesenchymal stromal cells (MSCs) for improving gene delivery applications has not been reported previously. In this study, we hypothesized that ROCK Inhibitor (RI) would improve cell viability and gene expression in primary human umbilical cord mesenchymal stromal cells (hUCMSCs) when transfected via Nucleofection™. As hypothesized, the pre-treatment and post-treatment of hUCMSCs transfected via nucleofection with Y-27632-RI significantly improved survival rates of hUCMSCs and gene expression as measured by green fluorescent protein intensity. This study provides the first comparative look at the effect of Y-27632-RI on hUCMSCs that underwent transfection via nucleofection and shows that using Y-27632-RI in concert with nucleofection could greatly enhance the utility of differentiating and reprogramming hUCMSCs for tissue engineering applications. PMID:24552552

  13. Lipophosphoramidate-based bipolar amphiphiles: their syntheses and transfection properties.

    PubMed

    Berchel, Mathieu; Le Gall, Tony; Lozach, Olivier; Haelters, Jean-Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2016-03-14

    Six new cationic bolaamphiphiles (also called bipolar amphiphiles, bolaform amphiphiles, or bolalipids) were readily prepared by a thiol-ene click reaction that engaged a mercapto-alcohol (mercapto-ethanol or mercapto-hexanol) and a cationic based lipophosphoramidate. The cationic lipophosphoramidates contain two lipid chains that end in an alkene group and a selected cationic polar head group (trimethylammonium, dimethyl hydroxyethyl ammonium, or methylimidazolium). These compounds were formulated in water (with or without DOPE as a colipid) to produce supramolecular aggregates. These aggregates, before (i.e. bolasomes) and after (i.e. bolaplexes) mixing with plasmid DNA (pDNA) at various charge ratios, were characterized with regard to their sizes and zeta potentials. In the case of bolasomes, the suspensions were unstable since precipitation occurred after only a few hours at room temperature. On the other hand, bolaplex formulations exhibited clearly a better colloidal stability. Then, the gene delivery properties of the cationic bolasomes were investigated using two human-derived epithelial cell lines (A549 and 16HBE). Compared to the commercially available lipofection reagent (Lipofectamine), most of the cationic bolaamphiphiles were able to efficiently transfect these cells when they were formulated with DOPE in a 1 : 1 molar ratio. We report herein that bolaamphiphiles possessing a trimethylammonium or a dimethyl hydroxyethyl ammonium head group were the most efficient in terms of transfection efficiency while exhibiting no significant cytotoxicity. PMID:26864681

  14. In vitro transformation of mouse testis cells by oncogene transfection.

    PubMed

    Morimoto, Hiroko; Lee, Jiyoung; Tanaka, Takashi; Ishii, Kei; Toyokuni, Shinya; Kanatsu-Shinohara, Mito; Shinohara, Takashi

    2012-05-01

    Germ cell tumors (GCTs) are unique in that they exhibit diverse biological characteristics and pathological features. Although several in vivo GCT models are available, studies on GCTs are hampered because in vivo development of GCTs is time consuming and prevents a detailed molecular analysis of the transformation process. Here we developed a novel strategy to transform mouse testis cells in vitro. Lentivirus-mediated transfection of dominant negative Trp53, Myc, and activated Hras1 into a CD9-expressing testis cells caused tumorigenic conversion in vitro. Although these cells resembled embryonic stem (ES) cells, they were aneuploid and lacked Nanog expression, which is involved in the maintenance of the undifferentiated state in ES cells. Euploid ES-like cells were produced by transfecting the Yamanaka factors (Pou5f1, Myc, Klf4, and Sox2) into the same cell population. Although these cells expressed Nanog, they were distinct from ES cells in that they expressed CD44, a cancer stem cell antigen. Both treatments induced similar changes in the DNA methylation patterns in differentially methylated regions of imprinted genes. Moreover, despite the differences in their phenotype and karyotype, both cell types similarly produced mixed GCTs on transplantation, which were composed of teratomas, seminomas, and embryonal carcinomas. Thus, in vitro testis cell transformation facilitates an analysis of the GCT formation process, and our results also suggest the close similarity between GCT formation and reprogramming. PMID:22357549

  15. Altered cholesterol metabolism in APP695-transfected neuroblastoma cells.

    PubMed

    Wirths, Oliver; Thelen, Karin M; Lütjohann, Dieter; Falkai, Peter; Bayer, Thomas A

    2007-06-01

    Cholesterol has been implicated to play an important role in the generation of Abeta peptides, which are the main component of beta-amyloid plaques in the brains of patients suffering from Alzheimer's disease (AD). Epidemiological data implicate that lowering cholesterol levels has beneficial effects on the extent of beta-amyloid pathology. Thus therapeutic intervention using cholesterol lowering drugs like statins seems to be a promising approach. A couple of studies, in vitro or in vivo by the use of AD transgenic mouse models, focused on the manipulation of cholesterol levels and the resulting effects on Abeta generation. In contrast, there is not much known about the effect of the amyloid precursor protein (APP) on cholesterol levels. In the present report, we transfected human neuroblastoma cells with human APP695 and compared cellular cholesterol levels with the respective levels in Mock-transfected control cells. Furthermore, we determined the levels of diverse cholesterol precursors and metabolites using gas chromatography-mass spectrometry (GC-MS). Significant differences in the levels of the respective cholesterol precursors were observed, whereas inhibition of gamma-secretase activity by the gamma-secretase inhibitor DAPT did not have a significant effect on cellular cholesterol metabolism. PMID:17428449

  16. Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery.

    PubMed

    He, Bingwei; Wang, Yitong; Shao, Naimin; Chang, Hong; Cheng, Yiyun

    2015-08-01

    Cationic polymers are widely used as gene carriers, however, these polymers are usually associated with low transfection efficacy and non-negligible toxicity. Fluorination on polymers significantly improves their performances in gene delivery, but a high density of fluorous chains must be conjugated on a single polymer. Here we present a new strategy to construct fluorinated polymers with minimal fluorous chains for efficient DNA and siRNA delivery. A double-tailed fluorous compound 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (CBT) was conjugated on dendrimers of different generations and low molecular weight polyethylenimine via a facile synthesis. The yielding products with average numbers of 1-2 conjugated CBT moieties showed much improved EGFP and luciferase transfection efficacy compared to unmodified polymers. In addition, these polymers show high siRNA delivery efficacy on different cell lines. Among the synthesized polymers, generation 1 (G1) dendrimer modified with an average number of 1.9 CBT moieties (G1-CBT1.9) shows the highest efficacy when delivering both DNA and siRNA and its efficacy approaches that of Lipofectamine 2000. G1-CBT1.9 also shows efficient gene silencing in vivo. All of the CBT-modified polymers exhibit minimal toxicity on the cells at their optimal transfection conditions. This study provides a new strategy to design efficient fluorous polymers for DNA and siRNA delivery. PMID:25937003

  17. Stable gene transfection mediated by polysulfobetaine/PDMAEMA diblock copolymer in salted medium.

    PubMed

    Dai, Fengying; Liu, Yuan; Wang, Wei; Liu, Wenguang

    2013-01-01

    Cationic polyplexes would aggregate immediately after intravenous injection due to the plasma proteins and high ionic strength. A cationic polyplexes with long-term and salt stability was very important for a systemic gene therapy. In this research, a polysulfobetaine-b-polycation diblock copolymer composed of cationic block of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and zwtterionic block of poly(propylsulfonate dimethylammonium ethylmethacrylate) (PSPE) was conveniently synthesized by atom transfer radical polymerization method to obtain a cationic polymers with long-term and salt stability. The results of agarose gel electrophoresis and transmission electron microscope indicated that copolymerization of PSPE did not compromise the DNA condensation ability of PDMAEMA, meanwhile exhibiting lower cytotoxicity. The effect of salt on the absorbance and particle size of PDMAEMA100/DNA and PDMAEMA100-PSPEy/DNA complexes was investigated, which showed that PSPE block could increase the resistance of polyplexes against salt-induced aggregation owing to the antielectrolyte effect. In comparison with PDMAEMA homopolymer, PDMAEMA100-PSPEy retained more stable gene transfection in a certain range of salt concentration. The expression of red fluorescence protein (RFP) was evaluated by small animal in vivo fluorescence imaging system and the results showed that the expression of RFP was much higher in the mice injected with PDMAEMA100-PSPE20/pDNA-RFP than with PDMAEMA/pDNA-RFP. Both in vitro and in vivo results suggested that PDMAEMA-PSPE diblock copolymer may be potentially used as a vector for systemic gene therapy. PMID:23565651

  18. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  19. Hydrocarbon compositions containing polyolefin graft polymers

    SciTech Connect

    Kapuscinski, M.M.; Liu, C.S.; Hart, W.P.; Grina, L.D.

    1987-02-03

    A graft polymer is described comprising an oil-soluble, substantially linear, carbon-carbon backbone polymer having graft polymerized thereon units derived from, as a functional monomer, the reaction product of (i) an unsaturated aldehyde or ketone and (ii) a primary or secondary amine which contains at least one nitrogen atom in a heterocyclic ring. The graft polymer is also described wherein the backbone polymer is a copolymer of ethylene-propylene or a terpolymer of ethylene-propylene-diene monomer.

  20. Differential expression of calcium-related genes in gastric cancer cells transfected with cellular prion protein.

    PubMed

    Liang, Jie; Luo, Guanhong; Ning, Xiaoxuan; Shi, Yongquan; Zhai, Huihong; Sun, Shiren; Jin, Haifeng; Liu, Zhenxiong; Zhang, Faming; Lu, Yuanyuan; Zhao, Yunping; Chen, Xiong; Zhang, Hongbo; Guo, Xuegang; Wu, Kaichun; Fan, Daiming

    2007-06-01

    The prion protein (PrPC) has a primary role in the pathogenesis of transmissible spongiform encephalopathies, which causes prion disorders partially due to Ca2+ dysregulation. In our previous work, we found that overexpressed PrPC in gastric cancer was involved in apoptosis, cell proliferation, and metastasis of gastric cancer. To better understand how PrPC acts in gastric cancer, a human microarray was performed to select differentially regulated genes that correlate with the biological function of PrPC. The microarray data were analyzed and revealed 3798 genes whose expression increased at least 2-fold in gastric cancer cells transfected with PrPC. These genes encode proteins involved in several aspects of cell biology, among which, we specially detected molecules related to calcium, especially the S100 calcium-binding proteins, and found that PrPC upregulates S100A1, S100A6, S100B, and S100P but downregulates CacyBP in gastric cancer cells. We also found that intracellular Ca2+ levels in cells transfected with PrPC increased, whereas these levels decreased in knockdowns of these cells. Taken together, PrPC might increase intracellular Ca2+, partially through calcium-binding proteins, or PrPC might upregulate the expression of S100 proteins, partially through stimulating the intracellular calcium level in gastric cancer. Though the underlying mechanisms need further exploration, this study provides a new insight into the role of PrPC in gastric cancer and enriches our knowledge of prion protein. PMID:17612632

  1. Immune Monitoring Using mRNA-Transfected Dendritic Cells.

    PubMed

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by mRNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA. PMID:27236804

  2. Gold Nanoparticles Enhanced Electroporation for Mammalian Cell Transfection

    PubMed Central

    Zu, Yingbo; Huang, Shuyan; Liao, Wei-Ching; Lu, Yang; Wang, Shengnian

    2015-01-01

    Electroporation figured prominently as an effective nonviral gene delivery approach for its balance on the transfection efficiency and cell viability, no restrictions of probe or cell type, and operation simplicity. The commercial electroporation systems have been widely adopted in the past two decades while still carry drawbacks associated with the high applied electric voltage, unsatisfied delivery efficiency, and/or low cell viability. By adding highly conductive gold nanoparticles (AuNPs) in electroporation solution, we demonstrated enhanced electroporation performance (i.e. better DNA delivery efficiency and higher cell viability) on mammalian cells from two different aspects: the free, naked AuNPs reduce the resistance of the electroporation solution so that the local pulse strength on cells was enhanced; targeting AuNPs (e.g., Tf-AuNPs) were brought to the cell membrane to work as virtual microelectrodes to porate cells with limited area from many different sites. The enhancement was confirmed with leukemia cells in both a commercial batch electroporation system and a home-made flow-through system using pWizGFP plasmid DNA probes. Such enhancement depends on the size, concentration, and the mixing ratio of free AuNPs/Tf-AuNPs. An equivalent mixture of free AuNPs and Tf-AuNPs exhibited the best enhancement with the transfection efficiency increased 2-3 folds at minimum sacrifice of cell viability. This new delivery concept, the combination of nanoparticles and electroporation technologies, may stimulate various in vitro and in vivo biomedical applications which rely on the efficient delivery of nucleic acids, anticancer drugs, or other therapeutic materials. PMID:24749393

  3. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents

    PubMed Central

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40–80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles. PMID:26274324

  4. Ultrasound-Mediated Gene Transfection In vitro: Enhanced Efficiency by Complexation of Plasmid DNA

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwei; Tachibana, Rie; Okamoto, Akio; Azuma, Takashi; Sasaki, Akira; Yoshinaka, Kiyoshi; Osada, Kensuke; Kataoka, Kazunori; Takagi, Shu; Matsumoto, Yoichiro

    2012-07-01

    Ultrasound-mediated gene transfection in the presence of microbubbles is a recently developed promising nonviral gene delivery method. The main obstacle towards its clinical application is its low transfection efficiency. In this work, we investigate the effect of the complexation of plasmid DNA (pDNA) into polyplex micelles on the transfection efficiency. Complexation changes the structure of pDNA and results in the condensation in size and enhanced stability. Both naked and complexed pDNAs were transfected into cultured cells using ultrasound in the presence of microbubbles. The transfection rate using complexed pDNA is considerably enhanced (from ˜0.92 to ˜1.67%, by ˜82%) compared with the rate using naked pDNA. Our method provides an alternative for the improvement of the transfection efficiency of the ultrasound-mediated method.

  5. Application of fluorescence spectroscopy and multispectral imaging for non-invasive estimation of GFP transfection efficiency

    NASA Astrophysics Data System (ADS)

    Tamošiūnas, M.; Jakovels, D.; Lihačovs, A.; Kilikevičius, A.; Baltušnikas, J.; Kadikis, R.; Šatkauskas, S.

    2014-10-01

    Electroporation and ultrasound induced sonoporation has been showed to induce plasmid DNA transfection to the mice tibialis cranialis muscle. It offers new prospects for gene therapy and cancer treatment. However, numerous experimental data are still needed to deliver the plausible explanation of the mechanisms governing DNA electro- or sono-transfection, as well as to provide the updates on transfection protocols for transfection efficiency increase. In this study we aimed to apply non-invasive optical diagnostic methods for the real time evaluation of GFP transfection levels at the reduced costs for experimental apparatus and animal consumption. Our experimental set-up allowed monitoring of GFP levels in live mice tibialis cranialis muscle and provided the parameters for DNA transfection efficiency determination.

  6. Comparative study of nanoparticle-mediated transfection in different GI epithelium co-culture models.

    PubMed

    Loo, Yihua; Grigsby, Christopher L; Yamanaka, Yvonne J; Chellappan, Malathi K; Jiang, Xuan; Mao, Hai-Quan; Leong, Kam W

    2012-05-30

    Oral nonviral gene delivery is the most attractive and arguably the most challenging route of administration. To identify a suitable carrier, we studied the transport of different classes (natural polymer, synthetic polymer and synthetic lipid-polymer) of DNA nanoparticles through three well-characterized cellular models of intestinal epithelium (Caco2, Caco2-HT29MTX and Caco2-Raji). Poly(phosphoramidate-dipropylamine) (PPA) and Lipid-Protamine-DNA (LPD) nanoparticles consistently showed the highest level of human insulin mRNA expression and luciferase protein expression in these models, typically at least three orders of magnitude above background. All of the nanoparticles increased tight junction permeability, with PPA and PEI having the most dramatic transepithelial electrical resistance (TEER) decreases of (35.3±8.5%) and (37.5±1.5%) respectively in the first hour. The magnitude of TEER decrease correlated with nanoparticle surface charge, implicating electrostatic interactions with the tight junction proteins. However, confocal microscopy revealed that the nanoparticles were mostly uptaken by the enterocytes. Quantitative uptake and transport experiments showed that the endocytosed, quantum dot (QD)-labeled PPA-DNA nanoparticles remained in the intestinal cells even after 24h. Negligible amount of quantum dot labeled DNA was detected in the basolateral chamber, with the exception of the Caco2-Raji co-cultures, which internalized nanoparticles 2 to 3 times more readily compared to Caco2 and Caco2-HT29MTX cultures. PEGylation decreased the transfection efficacy by at least an order of magnitude, lowered the magnitude of TEER decrease and halved the uptake of PPA-DNA nanoparticles. A key finding was insulin mRNA being detected in the underlying HepG2 cells, signifying that some of the plasmid was transported across the intestinal epithelial layer while retaining at least partial bioactivity. However, the inefficient transport suggests that transcytosis alone

  7. Targeted Surface Expression of an Exogenous Antigen in Stably Transfected Babesia bovis

    PubMed Central

    Laughery, Jacob M.; Knowles, Donald P.; Schneider, David A.; Bastos, Reginaldo G.; McElwain, Terry F.; Suarez, Carlos E.

    2014-01-01

    Babesia bovis is a tick-borne intraerythocytic protozoan responsible for acute disease in cattle which can be controlled by vaccination with attenuated B. bovis strains. Emerging B. bovis transfection technologies may increase the usefulness of these live vaccines. One use of transfected B. bovis parasites may be as a vaccine delivery platform. Previous transfection methods for B. bovis were limited by single expression sites and intracellular expression of transfected antigens. This study describes a novel transfection system in which two exogenous genes are expressed: one for selection and the other for a selected antigen designed to be delivered to the surface of the parasites. The strategy for duplicating the number of transfected genes was based on the use of the putative bidirectional promoter of the B. bovis 1.4 Kb ef-1α intergenic region. The ability of this region to regulate two independent expression sites was demonstrated using a luciferase assay on transiently transfected B. bovis parasites and then incorporated into a stable transfection plasmid to control independent expression of the selectable marker GFP-BSD and another gene of interest. A chimeric gene was synthetized using sequences from the protective B-cell epitopes of Rhipicephalus microplus tick antigen Bm86 along with sequences from the surface exposed B. bovis major surface antigen-1. This chimeric gene was then cloned into the additional expression site of the transfection plasmid. Transfection of the B. bovis Mo7 strain with this plasmid resulted in stable insertion into the ef-1α locus and simultaneous expression of both exogenous genes. Expression of the Bm86 epitopes on the surface of transfected merozoites was demonstrated using immunofluorescence analyses. The ability to independently express multiple genes by the inclusion of a bidirectional promoter and the achievement of surface expression of foreign epitopes advances the potential of transfected B. bovis as a future vaccine

  8. Targeted surface expression of an exogenous antigen in stably transfected Babesia bovis.

    PubMed

    Laughery, Jacob M; Knowles, Donald P; Schneider, David A; Bastos, Reginaldo G; McElwain, Terry F; Suarez, Carlos E

    2014-01-01

    Babesia bovis is a tick-borne intraerythocytic protozoan responsible for acute disease in cattle which can be controlled by vaccination with attenuated B. bovis strains. Emerging B. bovis transfection technologies may increase the usefulness of these live vaccines. One use of transfected B. bovis parasites may be as a vaccine delivery platform. Previous transfection methods for B. bovis were limited by single expression sites and intracellular expression of transfected antigens. This study describes a novel transfection system in which two exogenous genes are expressed: one for selection and the other for a selected antigen designed to be delivered to the surface of the parasites. The strategy for duplicating the number of transfected genes was based on the use of the putative bidirectional promoter of the B. bovis 1.4 Kb ef-1α intergenic region. The ability of this region to regulate two independent expression sites was demonstrated using a luciferase assay on transiently transfected B. bovis parasites and then incorporated into a stable transfection plasmid to control independent expression of the selectable marker GFP-BSD and another gene of interest. A chimeric gene was synthetized using sequences from the protective B-cell epitopes of Rhipicephalus microplus tick antigen Bm86 along with sequences from the surface exposed B. bovis major surface antigen-1. This chimeric gene was then cloned into the additional expression site of the transfection plasmid. Transfection of the B. bovis Mo7 strain with this plasmid resulted in stable insertion into the ef-1α locus and simultaneous expression of both exogenous genes. Expression of the Bm86 epitopes on the surface of transfected merozoites was demonstrated using immunofluorescence analyses. The ability to independently express multiple genes by the inclusion of a bidirectional promoter and the achievement of surface expression of foreign epitopes advances the potential of transfected B. bovis as a future vaccine

  9. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture.

    PubMed

    Majumdar, M; Ratho, R; Chawla, Y; Singh, M P

    2014-01-01

    The conventional method of transfection of suspension cells by chemical has proven to be very difficult. We present a new transfection protocol, wherein, low-speed centrifugation of cell culture plates immediately after adding the lipid: DNA complex significantly enhances the transfection efficiency. Peripheral blood mononuclear cells (PBMCs) were transfected with BLOCK-iT™ Fluorescent Oligo (scrambled siRNA) and lipofectamine complex using conventional and low-speed centrifugation modified transfection protocols. The efficiency of transfection was determined using flowcytometer and cell viability was checked using MTT assay. Incorporation of low-speed centrifugation significantly enhances the transfection efficiency of BLOCK-iT™ in the suspension culture of PBMCs as compared to conventional transfection method (99.8% vs 28.3%; P < 0.0001), even at a low concentration of 40 picomoles without affecting the cell viability. Centrifugation enhanced transfection (CET) technique is simple, time-saving and novel application without compromising the cell viability in the context of recently popular RNA interference in suspension cultures of PBMCs. This undemanding modification might be applicable to a wide variety of cell lines and solve crucial problem of researchers working with RNA interference in suspension cultures. PMID:24713904

  10. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems.

    PubMed

    Selmeczi, David; Hansen, Thomas Steen; Met, Özcan; Svane, Inge Marie; Larsen, Niels B

    2016-01-01

    Electroporation is well established for transient mRNA transfection of many mammalian cells, including immune cells such as dendritic cells used in cancer immunotherapy. Therapeutic application requires methods to efficiently electroporate and transfect millions of immune cells in a fast process with high cell survival. Continuous flow of suspended dendritic cells through a channel incorporating spatially separated microporous meshes with a synchronized electrical pulsing sequence can yield dendritic cell transfection rates of >75 % with survival rates of >90 %. This chapter describes the instrumentation and methods needed for the efficient transfection by electroporation of millions of dendritic cells in one continuous flow process. PMID:27236798

  11. Beyond branching: multiknot structured polymer for gene delivery.

    PubMed

    Aied, Ahmed; Zheng, Yu; Newland, Ben; Wang, Wenxin

    2014-12-01

    Polymer-based transfection vectors are increasingly becoming the preferred alternative to viral vectors thanks to their safety and ease of production, but low transfection potency has limited their application. Many polycationic vectors show high efficiency in vitro, but their excessive charge density makes them toxic for in vivo applications. Herein, we demonstrate the synthesis of new and unique disulfide-reducible polymeric gene nanocarriers that exhibit significantly enhanced transfection potency and low cytotoxicity, particularly in skin cells, surpassing the efficiency of the well-known transfection reagents polyethylenimine (PEI) and Lipofectamine2000. The unique three-dimensional (3D) "multiknot" vectors were synthesized from in situ deactivation enhanced atom transfer radical (co)polymerization (DE-ATRP) of multivinyl monomers (MVMs). The high transfection levels and low toxicity of this multiknot structured polymer in vitro, combined with its ability to mediate collagen VII expression in 3D skin equivalents made from cells of recessive dystrophic epidermolysis bullosa patients, demonstrates its use as a platform nanotechnology which should be investigated further for dermatological disease therapies. Our findings suggest that the marked improvements stem from the dense multiknot architecture and degradable property, which facilitate both the binding and releasing process of the plasmid DNA. PMID:25375252

  12. Temperature-Responsive Gene Silencing by a Smart Polymer.

    PubMed

    Wang, Mingming; Cheng, Yiyun

    2016-03-16

    Intracellular siRNA release is a crucial step in efficient gene silencing mediated by cationic polymers. Here, we show an example of temperature change-induced intracellular siRNA release and silencing using a temperature-responsive polymer consisting of dendrimer, poly(N-isopropylacrylamide) and phenylboronic acid. The smart polymer can trigger the release of loaded siRNA in a controlled manner upon cooling the surrounding solution below its lower critical solution temperature. Gene silencing efficacy of the polymer was significantly increased by cool treatment after its cellular uptake. The polymer and the cool treatment cause minimal toxicity to the transfected cells. The results provide a facile and promising strategy to design stimuli-responsive polymers for efficient gene silencing. PMID:26783999

  13. Nucleic acid transfection and transgenesis in parasitic nematodes.

    PubMed

    Lok, James B

    2012-04-01

    Transgenesis is an essential tool for assessing gene function in any organism, and it is especially crucial for parasitic nematodes given the dwindling armamentarium of effective anthelmintics and the consequent need to validate essential molecular targets for new drugs and vaccines. Two of the major routes of gene delivery evaluated to date in parasitic nematodes, bombardment with DNA-coated microparticles and intragonadal microinjection of DNA constructs, draw upon experience with the free-living nematode Caenorhabditis elegans. Bombardment has been used to transiently transfect Ascaris suum, Brugia malayi and Litomosoides sigmodontis with both RNA and DNA. Microinjection has been used to achieve heritable transgenesis in Strongyloides stercoralis, S. ratti and Parastrongyloides trichosuri and for additional transient expression studies in B. malayi. A third route of gene delivery revisits a classic method involving DNA transfer facilitated by calcium-mediated permeabilization of recipient cells in developing B. malayi larvae and results in transgene inheritance through host and vector passage. Assembly of microinjected transgenes into multi-copy episomal arrays likely results in their transcriptional silencing in some parasitic nematodes. Methods such as transposon-mediated transgenesis that favour low-copy number chromosomal integration may remedy this impediment to establishing stable transgenic lines. In the future, stable transgenesis in parasitic nematodes could enable loss-of-function approaches by insertional mutagenesis, in situ expression of inhibitory double-stranded RNA or boosting RNAi susceptibility through heterologous expression of dsRNA processing and transport proteins. PMID:21880161

  14. Thermoresponsive hydrogel as a delivery scaffold for transfected rat MSCs

    PubMed Central

    Borden, Bradley A; Yockman, James; Kim, Sung Wan

    2010-01-01

    The concept of stem cells as a therapeutic agent has been gaining momentum. A common mode of administration of these cells is by direct injection into the target tissue. This can result in many of the cells being lost due to reflux from the injection site leading to a local loss of implanted cells. PoligoGel is a non-toxic hydrogel with an LCST near body temperature. It is also shown to be non-toxic to multiple cell types, and in the case of rat mesenchymal stem cells does not alter their differentiative capacity, either by inducing differentiation, or limiting the potential for subsequent differentiation after removal from the gel. Embedding cells in PoligoGel also does not interfere with the cells ability to delivery therapeutic growth factors post transfection with plasmid DNA. Here a thermoresponsive hydrogel, PoligoGel, is shown to have potential to act as a scaffold for the retention of cells at an injection site, mitigating migration or washing of the cells away from the target site after implantation. PMID:20583814

  15. Software-aided automatic laser optoporation and transfection of cells

    NASA Astrophysics Data System (ADS)

    Georg Breunig, Hans; Uchugonova, Aisada; Batista, Ana; König, Karsten

    2015-06-01

    Optoporation, the permeabilization of a cell membrane by laser pulses, has emerged as a powerful non-invasive and highly efficient technique to induce transfection of cells. However, the usual tedious manual targeting of individual cells significantly limits the addressable cell number. To overcome this limitation, we present an experimental setup with custom-made software control, for computer-automated cell optoporation. The software evaluates the image contrast of cell contours, automatically designates cell locations for laser illumination, centres those locations in the laser focus, and executes the illumination. By software-controlled meandering of the sample stage, in principle all cells in a typical cell culture dish can be targeted without further user interaction. The automation allows for a significant increase in the number of treatable cells compared to a manual approach. For a laser illumination duration of 100 ms, 7-8 positions on different cells can be targeted every second inside the area of the microscope field of view. The experimental capabilities of the setup are illustrated in experiments with Chinese hamster ovary cells. Furthermore, the influence of laser power is discussed, with mention on post-treatment cell survival and optoporation-efficiency rates.

  16. Dentin barrier test with transfected bovine pulp-derived cells.

    PubMed

    Schmalz, G; Schuster, U; Thonemann, B; Barth, M; Esterbauer, S

    2001-02-01

    Growth kinetics of SV40 large T-antigen-transfected bovine pulp-derived cells on dentin were investigated. These cells were used in a dentin barrier test device, and the system was evaluated by testing a set of dental filling materials. Cells (120 cells/mm2) were seeded on dentin slices and incubated for up to 21 days. Cell proliferation was recorded using MTT assay. For cytotoxicity tests 3500 cells/mm2 were seeded on dentin discs, which were then incorporated into the dentin barrier test device. After 72 h preincubation test materials were applied. After a 24 h exposure with or without perfusion of the pulpal part of the test device, cell survival was evaluated using MTT assay. The cells revealed similar growth kinetics on dentin slices and on tissue culture plates. In cytotoxicity tests the cells were more sensitive toward the test materials than previously used three-dimensional cultures of human foreskin fibroblasts and as anticipated from clinical experience. Further improvement is expected by using three-dimensional cultures of pulp-derived cells. PMID:11491647

  17. Asymmetric partitioning of transfected DNA during mammalian cell division

    PubMed Central

    Wang, Xuan; Le, Nhung; Denoth-Lippuner, Annina; Barral, Yves; Kroschewski, Ruth

    2016-01-01

    Foreign DNA molecules and chromosomal fragments are generally eliminated from proliferating cells, but we know little about how mammalian cells prevent their propagation. Here, we show that dividing human and canine cells partition transfected plasmid DNA asymmetrically, preferentially into the daughter cell harboring the young centrosome. Independently of how they entered the cell, most plasmids clustered in the cytoplasm. Unlike polystyrene beads of similar size, these clusters remained relatively immobile and physically associated to endoplasmic reticulum-derived membranes, as revealed by live cell and electron microscopy imaging. At entry of mitosis, most clusters localized near the centrosomes. As the two centrosomes split to assemble the bipolar spindle, predominantly the old centrosome migrated away, biasing the partition of the plasmid cluster toward the young centrosome. Down-regulation of the centrosomal proteins Ninein and adenomatous polyposis coli abolished this bias. Thus, we suggest that DNA clustering, cluster immobilization through association to the endoplasmic reticulum membrane, initial proximity between the cluster and centrosomes, and subsequent differential behavior of the two centrosomes together bias the partition of plasmid DNA during mitosis. This process leads to their progressive elimination from the proliferating population and might apply to any kind of foreign DNA molecule in mammalian cells. Furthermore, the functional difference of the centrosomes might also promote the asymmetric partitioning of other cellular components in other mammalian and possibly stem cells. PMID:27298340

  18. Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  19. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings. PMID:27299693

  20. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  1. Targeted surface expression of an exogenous antigen in stably transfected babesia bovis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Babesia bovis is a tick-borne intraerythocytic protozoan responsible for acute disease in cattle which can be controlled by vaccination with attenuated B. bovis strains. Emerging B. bovis transfection technologies may increase the usefulness of these live vaccines. Here we propose using transfected ...

  2. Serum-free transfection of CHO-cells with tailor-made unilamellar vesicles

    PubMed Central

    Sevcsik, Eva; Vorauer-Uhl, Karola; Lohner, Karl; Katinger, Hermann; Kunert, Renate

    2007-01-01

    At present, a number of transfection techniques are available to introduce foreign DNA into cells, but still minimal intrusion or interference with normal cell physiology, low toxicity, reproducibility, cost efficiency and successful creation of stable transfectants are highly desirable properties for improved transfection techniques. For all previous transfection experiments done in our labs, using serum-free cultivated host cell lines, an efficiency value of ∼0.1% for selection of stable cell lines has not been exceeded, consequently we developed and improved a transfection system based on defined liposomes, so-called large unilamellar vesicles, consisting of different lipid compositions to facilitate clone selection and increase the probability for creation of recombinant high-production clones. DNA and DOTAP/DOPE or CHEMS/DOPE interact by electrostatic means forming so-called lipoplexes (Even-Chen and Barenholz 2000) and the lipofection efficiency of those lipoplexes has been determined via confocal microscopy. In addition, the expression of the EGFP was determined by FACS to investigate transient as well as stable transfection and the transfection efficiency of a selection of different commercially available transfection reagents and kits has been compared to our tailor-made liposomes. PMID:19003008

  3. Non-Viral Transfection Methods Optimized for Gene Delivery to a Lung Cancer Cell Line

    PubMed Central

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-01-01

    Background Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. Methods In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Results Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. Conclusion This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods. PMID:23799175

  4. Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications.

    PubMed

    King, William J; Kouris, Nicholas A; Choi, Siyoung; Ogle, Brenda M; Murphy, William L

    2012-03-01

    Non-viral transfection is a promising technique that could be used to increase the therapeutic potential of stem cells. The purpose of this study was to explore practical culture parameters of relevance in potential human mesenchymal stem cell (hMSC) clinical and tissue engineering applications, including type of polycationic transfection reagent, N/P ratio and dose of polycation/pDNA polyplexes, cell passage number, cell density and cell proliferation. The non-viral transfection efficiency was significantly influenced by N/P ratio, polyplex dose, cell density and cell passage number. hMSC culture conditions that inhibited cell division also decreased transfection efficiency, suggesting that strategies to promote hMSC proliferation may be useful to enhance transfection efficiency in future tissue engineering studies. Non-viral transfection treatments influenced hMSC phenotype, including the expression level of the hMSC marker CD105 and the ability of hMSCs to differentiate down the osteogenic and adipogenic lineages. The parameters found here to promote hMSC transfection efficiency, minimize toxicity and influence hMSC phenotype may be instructive in future non-viral transfection studies and tissue engineering applications. PMID:22277991

  5. Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications

    PubMed Central

    King, William J.; Kouris, Nicholas A.; Choi, Siyoung; Ogle, Brenda M.; Murphy, William L.

    2012-01-01

    Non-viral transfection is a promising technique which could be used to increase the therapeutic potential of stem cells. The purpose of this study was to explore practical culture parameters of relevance in potential human mesenchymal stem cell (hMSC) clinical and tissue engineering applications, including type of polycationic transfection reagent, N/P ratio and dose of polycation/pDNA polyplexes, cell passage number, cell density, and cell proliferation. The non-viral transfection efficiency was significantly influenced by N/P ratio, polyplex dose, cell density, and cell passage number. hMSC culture conditions that inhibited cell division also decreased transfection efficiency, suggesting that strategies to promote hMSC proliferation may be useful to enhance transfection efficiency in future tissue engineering studies. Non-viral transfection treatments influenced hMSC phenotype, including the expression level of the hMSC marker CD105, and the ability of hMSCs to differentiate down the osteogenic and adipogenic lineages. The parameters found here to promote hMSC transfection efficiency, minimize toxicity, and influence hMSC phenotype may be instructive in future non-viral transfection studies and tissue engineering applications. PMID:22277991

  6. Acute and persistent infection by a transfected Mo7 strain of Babesia bovis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable transfection of the Mo7 strain of Babesia bovis and expression of an exogenous gene has been demonstrated in long term culture. However, the use of transfected parasites as marker vaccines or vehicles for expressing exogenous antigens in vivo requires demonstration of acute and persistent inf...

  7. A High-Throughput Microfluidic Platform for Mammalian Cell Transfection and Culturing

    PubMed Central

    Woodruff, Kristina; Maerkl, Sebastian J.

    2016-01-01

    Mammalian synthetic biology could be augmented through the development of high-throughput microfluidic systems that integrate cellular transfection, culturing, and imaging. We created a microfluidic chip that cultures cells and implements 280 independent transfections at up to 99% efficiency. The chip can perform co-transfections, in which the number of cells expressing each protein and the average protein expression level can be precisely tuned as a function of input DNA concentration and synthetic gene circuits can be optimized on chip. We co-transfected four plasmids to test a histidine kinase signaling pathway and mapped the dose dependence of this network on the level of one of its constituents. The chip is readily integrated with high-content imaging, enabling the evaluation of cellular behavior and protein expression dynamics over time. These features make the transfection chip applicable to high-throughput mammalian protein and synthetic biology studies. PMID:27030663

  8. NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection.

    PubMed

    Ueno, Yoshinobu; Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2007-11-20

    Gene transfection is a fundamental technology for molecular and cell biology, and also clinical gene therapy. A variety of non-viral vectors have been investigated for gene transfection, but their gene delivery had remained an inefficient process. Recently, we found that a biosurfactant, mannosylerythritol lipid (MEL)-A, dramatically increased the efficiency in transfection of plasmid DNA mediated by cationic liposomes. However, its mechanism has not been understood yet. Here we examined the mechanism of the transfection mediated by cationic liposomes with NBD-conjugated MEL-A. We found that MEL-A first gradually distributed on the intracellular membranes through the plasma membranes of target cells, while the cationic liposomes with MEL-A fused to the plasma membranes in 20-35 min. Thereafter, the oligonucleotide released from the vesicles was immediately transferred to the nucleus. The present results showed a new role of non-viral vectors in transfection. PMID:17884224

  9. A High-Throughput Microfluidic Platform for Mammalian Cell Transfection and Culturing.

    PubMed

    Woodruff, Kristina; Maerkl, Sebastian J

    2016-01-01

    Mammalian synthetic biology could be augmented through the development of high-throughput microfluidic systems that integrate cellular transfection, culturing, and imaging. We created a microfluidic chip that cultures cells and implements 280 independent transfections at up to 99% efficiency. The chip can perform co-transfections, in which the number of cells expressing each protein and the average protein expression level can be precisely tuned as a function of input DNA concentration and synthetic gene circuits can be optimized on chip. We co-transfected four plasmids to test a histidine kinase signaling pathway and mapped the dose dependence of this network on the level of one of its constituents. The chip is readily integrated with high-content imaging, enabling the evaluation of cellular behavior and protein expression dynamics over time. These features make the transfection chip applicable to high-throughput mammalian protein and synthetic biology studies. PMID:27030663

  10. Transfection of eggs in the bivalve mollusc Chamelea gallina (Bivalvia, Veneridae).

    PubMed

    Guerra, R; Esponda, P

    2006-04-01

    Eggs from the bivalve mollusc Chamelea gallina were transfected in vitro. The p-GeneGrip gene construction that expresses the green fluorescent protein (GFP) was employed. It was necessary to remove the jelly coat which covers the egg surface for a successful transfection, and then 44.2% of gametes appeared transfected after using naked DNA. On the other hand, cationic liposomes (Lipofectamine) and neutral lipids (GenePORTER) were employed as gene vectors. After the employ of Lipofectamine 35.6% of eggs were transfected and 41.4% after using GenePORTER. Fluorescence analysis showed that the foreign gene appeared principally located in the egg cytoplasm, but laser confocal microscopy showed that it was also present in the nucleus. Furthermore, PCR analysis demonstrated that the foreign DNA appeared in the DNA extracted from the treated eggs. This simple method for the transfection of mollusc eggs would be interesting for future biotechnological applications in species of commercial interest. PMID:17283962

  11. Gold nanoparticle mediated laser transfection for high-throughput antisense applications

    NASA Astrophysics Data System (ADS)

    Kalies, S.; Heinemann, D.; Schomaker, M.; Birr, T.; Ripken, T.; Meyer, H.

    2013-06-01

    The delivery of antisense structures, like siRNA, is beneficial for new therapeutic approaches in regenerative sciences. Optical transfection techniques enable high spatial control combined with minimal invasive treatment of cells due to the use of short laser pulses. However, single cell laser transfection by a tightly focused laser beam, for example femtosecond laser transfection, has the major drawback of low throughput. Compared to this, high-throughput in laser transfection is possible by applying gold nanoparticles irradiated by a weakly focused laser beam scanning over the cell sample. Herein, we show the delivery of antisense molecules and demonstrate the minimal cytotoxicity of a method called gold nanoparticle mediated (GNOME) laser transfection. A 532 nm microchip laser in conjugation with 200 nm gold nanoparticles at a concentration of 0.5 μg/cm2 is used. In addition to antisense molecules, the uptake of dextrans of several sizes is analyzed.

  12. Role of cholesterol on the transfection barriers of cationic lipid/DNA complexes

    NASA Astrophysics Data System (ADS)

    Pozzi, Daniela; Cardarelli, Francesco; Salomone, Fabrizio; Marchini, Cristina; Amenitsch, Heinz; Barbera, Giorgia La; Caracciolo, Giulio

    2014-08-01

    Most lipid formulations need cholesterol for efficient transfection, but the precise motivation remains unclear. Here, we have investigated the effect of cholesterol on the transfection efficiency (TE) of cationic liposomes made of 1,2-dioleoyl-3-trimethylammonium-propane and dioleoylphosphocholine in Chinese hamster ovary cells. The transfection mechanisms of cholesterol-containing lipoplexes have been investigated by TE, synchrotron small angle X-ray scattering, and laser scanning confocal microscopy experiments. We prove that cholesterol-containing lipoplexes enter the cells using different endocytosis pathways. Formulations with high cholesterol content efficiently escape from endosomes and exhibit a lamellar-nonlamellar phase transition in mixture with biomembrane mimicking lipid formulations. This might explain both the DNA release ability and the high transfection efficiency. These studies highlight the enrichment in cholesterol as a decisive factor for transfection and will contribute to the rational design of lipid nanocarriers with superior TE.

  13. Antitumoral effect of IL-12 gene transfected via liposomes into B16F0 cells.

    PubMed

    Speroni, Lucía; Gasparri, Julieta; de los A Bustuoabad, Victoria; Chiaramoni, Nadia S; Smagur, Andrzej; Szala, Stanisław; Taira, María C; del V Alonso, Silvia

    2009-01-01

    Murine melanoma B16F0 cells were transfected with SA:DPPC:DOPE (2:1:1 molar ratio) liposomes associated with a plasmid encoding murine IL-12. Stearylamine, a cationic lipid, showed a greater transfection efficiency compared to DOTAP-containing liposomes. The lipid:DNA ratio was 2:1 (w/w). Control groups were mock transfected or transfected with an empty plasmid (pNeo). pNeo or IL-12 transfected cells and controls were inoculated intradermically into the dorsal region of the foot or the lateral flank of C57BL6 mice. Results showed that IL-12 expression had a marked effect on in vivo growth of B16 melanoma tumors developed in both anatomic sites, significantly retarding their growth and prolonging host survival. PMID:19421429

  14. Enhanced transfection efficiency of poly(N,N-dimethylaminoethyl methacrylate)-based deposition transfection by combination with tris(hydroxymethyl)aminomethane.

    PubMed

    Iwai, Ryosuke; Haruki, Ryota; Nemoto, Yasushi; Nakayama, Yasuhide

    2013-02-20

    We have developed a substrate-mediated transfection method called "deposition transfection technology" using a poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) homopolymer with both thermoresponsive and cationic characteristics. In this study, we enhanced deposition transfection efficiency by using tris(hydroxymethyl)aminomethane (Tris buffer) as a pH adjuster for transfection solution composed of PDMAEMA and plasmid DNA (pDNA). PDMAEMA with a molecular weight of 9.7 × 10(4) g mol(-1) was synthesized by photoinduced radical polymerization. The pH of PDMAEMA solution was increased gradually in the range from 8 to 11 by the addition of Tris, and then the solubility of PDMAEMA was significantly decreased and the dissolution time was extended from 15 to 40 min at Tris/PDMAEMA ratio of 1 and higher. On the other hand, while the polyion complexes (polyplexes) were formed by mixing PDMAEMA with luciferase-encoding plasmid DNA even under an excess amount of Tris at Tris/PDMAEMA ratio of 8, the binding affinity between PDMAEMA and pDNA was decreased with increasing Tris at Tris/PDMAEMA ratio of 2 and higher. When HeLa cells, smooth muscle cells, and cardiac fibroblasts were transfected by the deposition method using polyplex solution containing various amounts of Tris, the transgene expression dramatically increased at a Tris/PDMAEMA ratio of 2 in all cell types, which were more than 150-fold in HeLa cells, 40-fold in smooth muscle cells, and 30-fold in cardiac fibroblasts compared to those in the Tris-free condition. In addition, the enhanced transgene expression by Tris was sustained for over 10 days post-transfection as well as that observed in Tris-free condition. Thus, deposition transfection efficiency can be dramatically enhanced by using Tris buffer as a pH adjuster for polyplex solution. PMID:23360504

  15. Validation of efficient high-throughput plasmid and siRNA transfection of human monocyte-derived dendritic cells without cell maturation.

    PubMed

    Bowles, Robert; Patil, Sonali; Pincas, Hanna; Sealfon, Stuart C

    2010-12-15

    Transfection of primary immune cells is difficult to achieve at high efficiency and without cell activation and maturation. Dendritic cells (DCs) represent a key link between the innate and adaptive immune systems. Delineating the signaling pathways involved in the activation of human primary DCs and reverse engineering cellular inflammatory pathways have been challenging tasks. We optimized and validated an effective high-throughput transfection protocol, allowing us to transiently express DNA in naïve primary DCs, as well as investigate the effect of gene silencing by RNA interference. Using a high-throughput nucleofection system, monocyte-derived DCs were nucleoporated with a plasmid expressing green fluorescent protein (GFP), and transfection efficiency was determined by flow cytometry, based on GFP expression. To evaluate the effect of nucleoporation on DC maturation, the expression of cell surface markers CD86 and MHCII in GFP-positive cells was analyzed by flow cytometry. We established optimal assay conditions with a cell viability reaching 70%, a transfection efficiency of over 50%, and unchanged CD86 and MHCII expression. We examined the impact of small interfering RNA (siRNA)-mediated knockdown of RIG-I, a key viral recognition receptor, on the induction of the interferon (IFN) response in DCs infected with Newcastle disease virus. RIG-I protein was undetectable by Western blot in siRNA-treated cells. RIG-I knockdown caused a 75% reduction in the induction of IFNβ mRNA compared with the negative control siRNA. This protocol should be a valuable tool for probing the immune response pathways activated in human DCs. PMID:20875421

  16. Abnormal response to DNA crosslinking agents of Fanconi anemia fibroblasts can be corrected by transfection with normal human DNA.

    PubMed

    Diatloff-Zito, C; Papadopoulo, D; Averbeck, D; Moustacchi, E

    1986-09-01

    Primary skin fibroblast cell lines from patients with Fanconi anemia were cotransfected with UV-irradiated pSV2neo plasmids and high molecular weight DNA from normal human cells. Restoration of a normal cellular resistance to mitomycin C (MMC) was observed provided that a Fanconi anemia cell line is selected for DNA-mediated transformation (neo gene) and that at least two successive rounds of transfection are performed. Cells were selected by taking advantage of the higher proliferation rate and plating efficiency of the MMC resistant transformants. As estimated from reconstruction experiments, the frequency of transfer of MMC resistance lies between 1 and 30 X 10(-7). The MMC resistance phenotype was maintained for at least 10 generations following transfection. Evidence for DNA-mediated transformation also includes the recovery of a normal pattern of DNA semiconservative synthesis after treatment with 8-methoxypsoralen and 365-nm UV irradiation, and the presence of exogenous pSV2neo DNA sequences was shown by Southern blot analysis. The acquired MMC resistance is probably due to the presence of DNA from normal cells. Indeed, sensitivity to MMC was maintained when Fanconi anemia cells were cotransfected with the UV-irradiated pSV2neo plasmid mixed with their own DNA or with yeast or salmon sperm DNA. These negative results also render unlikely the selection of spontaneous MMC resistant revertants in transfection of Fanconi anemia cells with normal DNA. These experiments establish the prerequisites for the isolation of the gene(s) involved in the response to DNA crosslinking lesions in human cells. PMID:3092225

  17. Polymer Informatics

    NASA Astrophysics Data System (ADS)

    Adams, Nico

    Polymers are arguably the most important set of materials in common use. The increasing adoption of both combinatorial as well as high-throughput approaches, coupled with an increasing amount of interdisciplinarity, has wrought tremendous change in the field of polymer science. Yet the informatics tools required to support and further enhance these changes are almost completely absent. In the first part of the chapter, a critical analysis of the challenges facing modern polymer informatics is provided. It is argued, that most of the problems facing the field today are rooted in the current scholarly communication process and the way in which chemists and polymer scientists handle and publish data. Furthermore, the chapter reviews existing modes of representing and communicating polymer information and discusses the impact, which the emergence of semantic technologies will have on the way in which scientific and polymer data is published and transmitted. In the second part, a review of the use of informatics tools for the prediction of polymer properties and in silico design of polymers is offered.

  18. Polymers & People

    ERIC Educational Resources Information Center

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  19. Two motifs target Batten disease protein CLN3 to lysosomes in transfected nonneuronal and neuronal cells.

    PubMed

    Kyttälä, Aija; Ihrke, Gudrun; Vesa, Jouni; Schell, Michael J; Luzio, J Paul

    2004-03-01

    Batten disease is a neurodegenerative disorder resulting from mutations in CLN3, a polytopic membrane protein, whose predominant intracellular destination in nonneuronal cells is the lysosome. The topology of CLN3 protein, its lysosomal targeting mechanism, and the development of Batten disease are poorly understood. We provide experimental evidence that both the N and C termini and one large loop domain of CLN3 face the cytoplasm. We have identified two lysosomal targeting motifs that mediate the sorting of CLN3 in transfected nonneuronal and neuronal cells: an unconventional motif in the long C-terminal cytosolic tail consisting of a methionine and a glycine separated by nine amino acids [M(X)9G], and a more conventional dileucine motif, located in the large cytosolic loop domain and preceded by an acidic patch. Each motif on its own was sufficient to mediate lysosomal targeting, but optimal efficiency required both. Interestingly, in primary neurons, CLN3 was prominently seen both in lysosomes in the cell body and in endosomes, containing early endosomal antigen-1 along neuronal processes. Because there are few lysosomes in axons and peripheral parts of dendrites, the presence of CLN3 in endosomes of neurons may be functionally important. Endosomal association of the protein was independent of the two lysosomal targeting motifs. PMID:14699076

  20. In vivo transfection of melanoma cells by lithotripter shock waves.

    PubMed

    Bao, S; Thrall, B D; Gies, R A; Miller, D L

    1998-01-15

    The potential for gene transfection during shock wave tumor therapy was evaluated by searching for shock wave-induced DNA transfer in mouse tumor cells. B16 mouse melanoma cells were cultured by standard methods and implanted s.c. in female C57BL/6 mice 10-14 days before treatment. A luciferase reporter vector was used as the DNA plasmid for intratumoral injection at 0.2 mg/ml tumor. Air at 10% of tumor volume was injected after the DNA in some tumors to enhance acoustic cavitation activity. The shock wave generation system was similar to a Dornier HM-3 lithotripter with pressure amplitudes of 24.4 MPa peak positive and 5.2 MPa peak negative. Luciferase production in isolated tumor cells was measured with a luminometer 1 day after treatment to assess gene transfer and expression. Exposure to 800 shock waves, followed by immediate isolation and culture of tumor cells for 1 day, yielded 1.1 (0.43 SE) pg/10(6) cells for plasmid injection only and 7.5 (2.5 SE) pg/10(6) cells for plasmid plus air injection. Significantly increased luciferase production, relative to shams, occurred for 200-, 400-, 800-, and 1200-shock wave treatments with plasmid and air injection. Exposure with the isolation of tumor cells delayed for a day to allow gene expression within the growing tumors gave increased luciferase production for 100- and 400-shock wave exposures without and with air injection. Gene transfer therefore can be induced during lithotripter shock wave treatment in vivo, particularly with enhanced acoustic cavitation, which supports the concept that gene and shock wave therapy might be advantageously merged. PMID:9443395

  1. Study of mechanisms of electric field-induced DNA transfection. II. Transfection by low-amplitude, low-frequency alternating electric fields.

    PubMed

    Xie, T D; Tsong, T Y

    1990-10-01

    Electroporation for DNA transfection generally uses short intense electric pulses (direct current of kilovolts per centimeter, microseconds to milliseconds), or intense dc shifted radio-frequency oscillating fields. These methods, while remarkably effective, often cause death of certain cell populations. Previously it was shown that a completely reversible, high ionic permeation state of membranes could be induced by a low-frequency alternating electric field (ac) with a strength one-tenth, or less, of the critical breakdown voltage of the cell membrane (Teissie, J., and T. Y. Tsong. 1981. J. Physiol. (Paris). 77:1043-1053). We report the transfection of E. coli (JM105) by plasmid PUC18 DNA, which carries an ampicillin-resistance gene, using low-amplitude, low-frequency ac fields. E. coli transformants confer the ampicillin resistance and the efficiency of the transfection can be conveniently assayed by counting colonies in a selection medium containing ampicillin. For the range of ac fields employed (peak-to-peak amplitude 50-200 V/cm, frequency 0.1 Hz-1 MHz, duration 1-100 s), 100% of the E. coli survived the electric field treatment. Transfection efficiencies varied with field strength and frequency, and as high as 1 x 10(5)/micrograms DNA was obtained with a 200 V/cm square wave, 1 Hz ac field, 30 s exposure time, when the DNA/cell ratio was 50-75. Control samples gave a background transfection of much less than 10/micrograms DNA. With a square wave ac field, the transfection efficiency showed a frequency window: the optimal frequency was 1 Hz with a 200 V/cm field, and was approximately 0.1 Hz with a 50 V/cm field. Transfection efficiency varied with the waveform: square wave > sine wave > triangle wave. If the DNA was added after the ac field was turned off, transfection efficiency was reduced to the background level within 1 min. The field intensity used in this study was low and insufficient to cause electric breakdown of cell membranes. Thus, DNA

  2. An electroporation protocol for efficient DNA transfection in PC12 cells.

    PubMed

    Covello, Giuseppina; Siva, Kavitha; Adami, Valentina; Denti, Michela A

    2014-08-01

    A wide variety of mammalian cell types is used in gene transfection studies. Establishing transfection methods that enable highly efficient DNA uptake has become increasingly important. PC12 is an established rat pheochromocytoma cell line, which responds to exposure to NGF with cessation of growth, expression of cytoplasmic processes, and differentiation into cells resembling sympathetic neurons. Although PC12 cells represent an important model system to study a variety of neuronal functions, they proved relatively difficult to transfect. We have compared the efficiency of three different chemical transfection reagents (Lipofectamine 2000, Lipofectamine LTX and TransIT-LT1) and of two electroporation systems (Neon and Gene Pulser Xcell) in transiently transfecting undifferentiated PC12 cells. By comparing efficiencies from replicate experiments we proved electroporation (in particular Neon) to be the method of choice. By optimizing different parameters (voltage, pulse width and number of pulses) we reached high efficiency of transfection (90 %) and viability (99 %). We also demonstrated that, upon electroporation, cells are not altered by the transfection and maintain their ability to differentiate. PMID:23846478

  3. Serum starvation improves transient transfection efficiency in differentiating embryonic stem cells.

    PubMed

    Wallenstein, Eric J; Barminko, Jeffrey; Schloss, Rene S; Yarmush, Martin L

    2010-01-01

    Control of genetic expression is a critical issue in the field of stem cell biology, where determining a cell fate or reprogramming adult somatic cells into pluripotent cells has become a common experimental practice. In turn, for these cells to have therapeutic clinical potential, techniques for controlling gene expression are needed that minimizes or eliminates the risk of oncogenesis and mutagenesis. Possible routes for achieving this outcome could come in the form of a transient nonviral gene delivery system. In this study, we improved the efficiency of transient gene delivery to differentiating murine embryonic stem (ES) cells via serum starvation for 3 days before transfection. The transient expression of a constitutively-controlled plasmid increased from ∼50% (replated control) to ∼83% when transfected after 3 days of serum starvation but decreased to ∼28% when transfected after 3 days in normal high serum-containing media. When probed with a liver-specific reporter, Cyp7A1, expression increased from ∼1.4% (replated control) to ∼3.7% when transfected after 3 days of serum starvation but decreased to ∼0.7% when transfected after 3 days in high serum-containing media. Cy3-tagged oligonucleotides were used to rapidly quantify DNA uptake and predict ultimate transfection efficiency. This study suggests that modifications in media serum levels before transfection can have a profound effect on improving nonviral gene delivery. PMID:20574993

  4. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite.

    PubMed

    Zhang, Gen; He, Li-Sheng; Wong, Yue Him; Yu, Li; Qian, Pei-Yuan

    2015-08-01

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in 'double transfections', in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments. PMID:26113139

  5. Recording, labeling, and transfection of single neurons in deep brain structures.

    PubMed

    Dempsey, Bowen; Turner, Anita J; Le, Sheng; Sun, Qi-Jian; Bou Farah, Lama; Allen, Andrew M; Goodchild, Ann K; McMullan, Simon

    2015-01-01

    Genetic tools that permit functional or connectomic analysis of neuronal circuits are rapidly transforming neuroscience. The key to deployment of such tools is selective transfection of target neurons, but to date this has largely been achieved using transgenic animals or viral vectors that transduce subpopulations of cells chosen according to anatomical rather than functional criteria. Here, we combine single-cell transfection with conventional electrophysiological recording techniques, resulting in three novel protocols that can be used for reliable delivery of conventional dyes or genetic material in vitro and in vivo. We report that techniques based on single cell electroporation yield reproducible transfection in vitro, and offer a simple, rapid and reliable alternative to established dye-labeling techniques in vivo, but are incompatible with targeted transfection in deep brain structures. In contrast, we show that intracellular electrophoresis of plasmid DNA transfects brainstem neurons recorded up to 9 mm deep in the anesthetized rat. The protocols presented here require minimal, if any, modification to recording hardware, take seconds to deploy, and yield high recovery rates in vitro (dye labeling: 89%, plasmid transfection: 49%) and in vivo (dye labeling: 66%, plasmid transfection: 27%). They offer improved simplicity compared to the juxtacellular labeling technique and for the first time offer genetic manipulation of functionally characterized neurons in previously inaccessible brain regions. PMID:25602013

  6. Effects of molecular size and chemical factor on plasma gene transfection

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  7. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection.

    PubMed

    Jinno, Masafumi; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu

    2016-09-01

    This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors. PMID:27136710

  8. Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy.

    PubMed

    Chang, Lingqian; Gallego-Perez, Daniel; Zhao, Xi; Bertani, Paul; Yang, Zhaogang; Chiang, Chi-Ling; Malkoc, Veysi; Shi, Junfeng; Sen, Chandan K; Odonnell, Lynn; Yu, Jianhua; Lu, Wu; Lee, L James

    2015-08-01

    Current transfection technologies lead to significant inter-clonal variations. Previously we introduced a unique electrotransfection technology, Nanochannel-Electroporation (NEP), which can precisely and benignly transfect small cell populations (~100-200 cells) with single-cell resolution. Here we report on the development of a novel 3D NEP system for large scale transfection. A properly-engineered array of nanochannels, capable of handling/transfecting ~60 000 cells cm(-2), was fabricated using cleanroom technologies. Positive dielectrophoresis was used to selectively position cells on the nanochannels, thus allowing highly efficient transfection. Single-cell dosage control was demonstrated using both small and large molecules, and different cell types. The potential clinical relevance of this system was tested with difficult-to-transfect natural killer cell suspensions, and plasmids encoding for the chimeric antigen receptor (CAR), a model of high relevance for adoptive immunotherapy. Our results show significantly higher CAR transfection efficiencies for the DEP-NEP system (>70% vs. <30%), as well as enhanced cell viabilities. PMID:26105628

  9. Exploring the Solid State Properties of Enzymatic Poly(amine-co-ester) Terpolymers to Expand their Applications in Gene Transfection.

    PubMed

    Voevodina, Irina; Scandola, Mariastella; Zhang, Junwei; Jiang, Zhaozhong

    2014-01-01

    Polymers bearing amino functional groups are an important class of materials capable of serving as non-viral carriers for DNA delivery to living cells. In this work biodegradable poly(amine-co-ester) terpolymers were synthesized via ring-opening and polycondensation copolymerization of lactone (ε-caprolactone (CL), ω-dodecalactone, ω-pentadecalactone (PDL), and ω-hexadecalactone) with diethyl sebacate (DES) and N-methyldiethanolamine (MDEA) in diphenyl ether, catalyzed by Candida antarctica lipase B (CALB). All lactone-DES-MDEA terpolymers had random distributions of lactone, sebacate, MDEA repeat units in the polymer chains. PDL-DES-MDEA terpolymers were studied in the composition range from 21 mol% to 90 mol% PDL whereas the terpolymers with other lactones were investigated at a single composition (80 mol% lactone). DSC and WAXS analyses showed that all investigated terpolymers crystallize in their respective homopolylactone crystal lattice. Terpolymers with large lactones and a high lactone content melt well above room temperature and are hard solids, whereas terpolymers with small lactones (e.g. CL) or with a low lactone content melt below/around ambient temperature and are waxy/gluey materials. Given the importance of hydrophobicity in influencing gene delivery, water contact angle measurements were carried out on lactone-DES-MDEA terpolymers showing that it is possible to tune the hydrophilic-to-hydrophobic balance by varying polymer composition and size of lactone units. To demonstrate the feasibility of using solid terpolymers as nanocarriers for DNA delivery, PDL-DES-MDEA copolymers with 65-90% PDL were successfully transformed into free-standing nanoparticles with average particle size ranging from 163 to 175 nm. Our preliminary results showed that LucDNA-loaded nanoparticles of the terpolymer with 65% PDL were effective for luciferase gene transfection of HEK293 cells. PMID:24683469

  10. Exploring the Solid State Properties of Enzymatic Poly(amine-co-ester) Terpolymers to Expand their Applications in Gene Transfection

    PubMed Central

    Voevodina, Irina; Scandola, Mariastella; Zhang, Junwei; Jiang, Zhaozhong

    2014-01-01

    Polymers bearing amino functional groups are an important class of materials capable of serving as non-viral carriers for DNA delivery to living cells. In this work biodegradable poly(amine-co-ester) terpolymers were synthesized via ring-opening and polycondensation copolymerization of lactone (ε-caprolactone (CL), ω-dodecalactone, ω-pentadecalactone (PDL), and ω-hexadecalactone) with diethyl sebacate (DES) and N-methyldiethanolamine (MDEA) in diphenyl ether, catalyzed by Candida antarctica lipase B (CALB). All lactone-DES-MDEA terpolymers had random distributions of lactone, sebacate, MDEA repeat units in the polymer chains. PDL-DES-MDEA terpolymers were studied in the composition range from 21 mol% to 90 mol% PDL whereas the terpolymers with other lactones were investigated at a single composition (80 mol% lactone). DSC and WAXS analyses showed that all investigated terpolymers crystallize in their respective homopolylactone crystal lattice. Terpolymers with large lactones and a high lactone content melt well above room temperature and are hard solids, whereas terpolymers with small lactones (e.g. CL) or with a low lactone content melt below/around ambient temperature and are waxy/gluey materials. Given the importance of hydrophobicity in influencing gene delivery, water contact angle measurements were carried out on lactone-DES-MDEA terpolymers showing that it is possible to tune the hydrophilic-to-hydrophobic balance by varying polymer composition and size of lactone units. To demonstrate the feasibility of using solid terpolymers as nanocarriers for DNA delivery, PDL-DES-MDEA copolymers with 65–90% PDL were successfully transformed into free-standing nanoparticles with average particle size ranging from 163 to 175 nm. Our preliminary results showed that LucDNA-loaded nanoparticles of the terpolymer with 65% PDL were effective for luciferase gene transfection of HEK293 cells. PMID:24683469

  11. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors

    PubMed Central

    2010-01-01

    Background The use of lentiviruses to reprogram human somatic cells into induced pluripotent stem (iPS) cells could limit their therapeutic usefulness due to the integration of viral DNA sequences into the genome of the recipient cell. Recent work has demonstrated that human iPS cells can be generated using episomal plasmids, excisable transposons, adeno or sendai viruses, mRNA, or recombinant proteins. While these approaches offer an advance, the protocols have some drawbacks. Commonly the procedures require either subcloning to identify human iPS cells that are free of exogenous DNA, a knowledge of virology and safe handling procedures, or a detailed understanding of protein biochemistry. Results Here we report a simple approach that facilitates the reprogramming of human somatic cells using standard techniques to transfect expression plasmids that encode OCT4, NANOG, SOX2, and LIN28 without the need for episomal stability or selection. The resulting human iPS cells are free of DNA integration, express pluripotent markers, and form teratomas in immunodeficient animals. These iPS cells were also able to undergo directed differentiation into hepatocyte-like and cardiac myocyte-like cells in culture. Conclusions Simple transient transfection of plasmid DNA encoding reprogramming factors is sufficient to generate human iPS cells from primary fibroblasts that are free of exogenous DNA integrations. This approach is highly accessible and could expand the use of iPS cells in the study of human disease and development. PMID:20682060

  12. Direct Transfection of Dendritic Cells in the Epidermis After Plasmid Delivery Enhanced by Surface Electroporation

    PubMed Central

    Amante, Dinah H.; Smith, Trevor R.F.; Kiosses, Bill B.; Sardesai, Niranjan Y.; Humeau, Laurent M.P.F.

    2014-01-01

    Abstract The skin is rich in antigen-presenting cells and as such is an excellent target tissue for vaccination strategies. Electroporation is a physical delivery method that potentiates the uptake of DNA vaccines into target cells. Intradermal electroporation offers a minimally invasive solution to DNA delivery in the clinic. Here we describe the direct transfection of dendritic cells in the epidermis, using a surface dermal electroporation device, and specifically show a dendritic cell transfected with plasmid expressing green fluorescent protein. The dendritic cell has used its motile capabilities after transfection to move from the epidermis into the dermis, making its way to the lymphatic system. PMID:25470335

  13. Direct transfection of dendritic cells in the epidermis after plasmid delivery enhanced by surface electroporation.

    PubMed

    Amante, Dinah H; Smith, Trevor R F; Kiosses, Bill B; Sardesai, Niranjan Y; Humeau, Laurent M P F; Broderick, Kate E

    2014-12-01

    The skin is rich in antigen-presenting cells and as such is an excellent target tissue for vaccination strategies. Electroporation is a physical delivery method that potentiates the uptake of DNA vaccines into target cells. Intradermal electroporation offers a minimally invasive solution to DNA delivery in the clinic. Here we describe the direct transfection of dendritic cells in the epidermis, using a surface dermal electroporation device, and specifically show a dendritic cell transfected with plasmid expressing green fluorescent protein. The dendritic cell has used its motile capabilities after transfection to move from the epidermis into the dermis, making its way to the lymphatic system. PMID:25470335

  14. Assay of insulator enhancer-blocking activity with the use of transient transfection.

    PubMed

    Smirnov, N A; Didych, D A; Akopov, S B; Nikolaev, L G; Sverdlov, E D

    2013-08-01

    We used a transient transfection of cultured cells with linearized plasmids to analyze the enhancer-blocking activity of potential insulators including the standard cHS4 chicken beta-globin insulator and several DNA fragments selected from the human genome sequence. About 60-80% of the potential insulators do reveal the enhancer-blocking activity when probed by the transient transfection assay. The activity of different sequences is characterized by certain tissue specificity and by dependence on the orientation of the fragments relative to the promoter. Thus, the transfection model may be used for quantitative analysis of the enhancer-blocking activity of the potential insulators. PMID:24228877

  15. Design, synthesis, and optimization of nanostructured calcium phosphates (NanoCaPs) and natural polymer based 3-D non-viral gene delivery systems

    NASA Astrophysics Data System (ADS)

    Ko, Hsu-Feng

    Sustained delivery of therapeutic genes from a three-dimensional (3-D) scaffold and subsequent gene expression capable of triggering the regeneration of damaged tissues is a tissue engineering strategy that has been gaining increased attention. Nanostructured calcium phosphates (NanoCaPs) are biocompatible and non-toxic biomaterials. Furthermore, their efficient transfection in vitro have rendered them attractive gene delivery carriers compared to other viral- or lipid-based agents that tend to be immunogenic or cytotoxic, leading to undesirable responses when utilized above a critical threshold. However, NanoCaPs are typically characterized by variable transfection and short shelf life due to particle aggregation. A viable solution to this problem is the incorporation of NanoCaPs into 3-D scaffolds. The main objectives of this research are therefore two-fold: (1) Examination of the potential of achieving optimized transfection of NanoCaPs via anionic substitution and (2) high throughput synthesis and screening of non-viral gene delivery systems (GDS) comprised of naturally-derived polymers as scaffolds containing NanoCaPs gene carriers. Results indicated that in addition to the excellent transfection levels exhibited by NanoCaPs in vitro, an additional 20-30% increase was observed for NanoCaPs with 10-25 mol% anion substitution. In contrast, high anion substitution (>60%) yielded a drastic decline in transfection. Structural characterizations verified successful anion substitution with a noticeable increase in lattice parameters indicative of an expanded unit cell due to ionic substitution. All of the anion substituted calcium phosphates exhibited the primary phase of hydroxyapatite. For the first time, GDS composed of various concentrations of alginate (AA), fibronectin (FN), and NanoCaPs-DNA complexes were demonstrated. The presence of AA and FN was effective in immobilizing NanoCaPs and reducing the aggregation. High throughput synthesis and screening

  16. Co-transplantation of plasmid-transfected myoblasts and myotubes into rat brains enables high levels of gene expression long-term

    NASA Technical Reports Server (NTRS)

    Jiao, S.; Williams, P.; Safda, N.; Schultz, E.; Wolff, J. A.

    1993-01-01

    We have previously proposed the use of primary muscle cells as a "platform," or "vehicle" for intracerebral transgene expression. Brain grafts of minced muscle, or cultured muscle cells persisted in rat brains for at least 6 mo without any decrease in graft size, or tumor formation. Stable, but moderate levels of intracerebral transgene expression were obtained by transplanting plasmid-transfected myotubes in culture. In the present study, high and stable levels of intracerebral transgene expression were achieved by the co-transplantation of plasmid-transfected myoblasts and myotubes in culture. Approximately 5 X 10(5) myoblasts and myotubes were transfected with 10 micrograms pRSVL plasmid DNA, and 30 micrograms Lipofectin (BRL), respectively. They were mixed together (total cell number was 1 million), and stereotactically injected into the caudate nucleus of an adult rat brain. The activity of luciferase, the product of transgene expression, was stable for at least 4 mo, and much higher than the levels in myotube grafts, or co-grafts of myoblasts and minced muscle. Presumably, the myotubes served as a framework on which the myoblasts can form myotubes. The sections of brains transplanted with co-graft of myoblasts, and myotubes transfected with pRSVLac-Z were stained immunofluorescently for beta-galactosidase activity. The muscle grafts contained beta-galactosidase positive myofibers 4 mo after transplantation. Such high and stable levels of in vivo expression after postnatal gene transfer have rarely been achieved. Primary muscle cells are useful vehicle for transgene expression in brains, and potentially valuable for gene therapy of degenerative neurological disorders.

  17. Organometallic Polymers.

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  18. Polymer flooding

    SciTech Connect

    Littmann, W.

    1988-01-01

    This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10-15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. An indispensable book for reservoir engineers, production engineers and lab. technicians within the petroleum industry.

  19. Polymers All Around You!

    ERIC Educational Resources Information Center

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  20. Structure-activity correlation in transfection promoted by pyridinium cationic lipids.

    PubMed

    Parvizi-Bahktar, P; Mendez-Campos, J; Raju, L; Khalique, N A; Jubeli, E; Larsen, H; Nicholson, D; Pungente, M D; Fyles, T M

    2016-03-21

    The efficiency of the transfection of a plasmid DNA encoding a galactosidase promoted by a series of pyridinium lipids in mixtures with other cationic lipids and neutral lipids was assessed in CHO-K1 cells. We identify key molecular parameters of the lipids in the mixture - clog P, lipid length, partial molar volume - to predict the morphology of the lipid-DNA lipoplex and then correlate these same parameters with transfection efficiency in an in vitro assay. We define a Transfection Index that provides a linear correlation with normalized transfection efficiency over a series of 90 different lipoplex compositions. We also explore the influence of the same set of molecular parameters on the cytotoxicity of the formulations. PMID:26891970

  1. Femtosecond optical transfection as a tool for genetic manipulation of human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Torres-Mapa, M. L.; Gardner, J.; Bradburn, H.; King, J.; Dholakia, K.; Gunn-Moore, F.

    2013-03-01

    We demonstrate the use of femtosecond optical transfection for the genetic manipulation of human embryonic stem cells. Using a system with an SLM combined with a scanning mirror allows poration of both single-cell and colony-formed human embryonic stem cells in a rapid and targeted manner. In this work, we show successful transfection of plasmid DNA tagged with fluorescent reporters into human embryonic stem cells using three doses of focused femtosecond laser. A significant number of transfected cells retained their undifferentiated morphological feature of large nucleus with high nucleus to cytoplasmic ratio, 48h after photoporation. Furthermore, DNA constructs driven by different types of promoters were also successfully transfected into human embryonic stem cells using this technique.

  2. Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection.

    PubMed

    Ueno, Yoshinobu; Hirashima, Naohide; Inoh, Yoshikazu; Furuno, Tadahide; Nakanishi, Mamoru

    2007-01-01

    Recently we showed significance of biosurfactants in the field of non-viral vectors for gene transfection. There, a biosurfactant, mannosylerythritol lipid A (MEL-A), especially increased the efficiency of gene transfection mediated with cationic liposomes. However, the molecular mechanism has not been well-understood yet. Here, through the examination of the ability of cationic liposomes containing an MEL (MEL-A, MEL-B or MEL-C) for important transfectional processes of the DNA capsulation and the membrane fusion with anionic liposomes, we found that MEL-A-containing liposomes increased both processes, but that MEL-B and MEL-C-containing liposomes just increased either of them. The results indicated that these kinds of the physicochemical properties in MEL-A-containing liposomes are able to increase the efficiency of liposome-mediated gene transfection. PMID:17202680

  3. DEVELOPMENT OF AN ENVIRONMENTAL ESTROGEN SCREEN USING TRANSIENTLY TRANSFECTED RAINBOW TROUT CELL LINES

    EPA Science Inventory

    Rainbow troutp hepatoma (RTH-149) and gonad cells (RTG-2) were used to develop a screening protocol for estrogen disrupting chemicals. Transfection of an estrogen-responsive luciferase reporter plasmid into...

  4. Relating Toxicity to Transfection: Using Sphingosine To Maintain Prolonged Expression in Vitro

    PubMed Central

    2015-01-01

    Cationic reagents are commonly used to facilitate DNA delivery, and transfection experiments are typically initiated in cell culture where the optimal charge ratio is determined. While transfection rates are often enhanced at higher +/– charge ratios, the cellular toxicity associated with the greater amounts of cationic components at elevated charge ratios is often not considered. In addition, the prolonged effects of cationic lipid uptake on cell viability are not evident in a typical 24–48 h transfection experiment. In this study, we compare the transfection efficiency of cationic lipoplexes to effects on viability of cultured cells in both the short and long term (7 days). Our results indicate that, while minimal toxicity is evident 24 h after exposure to DOTAP-based lipoplexes, cell viability continues to decline and ultimately compromises reporter gene expression at longer times. Substitution of a naturally occurring cationic amphiphile, sphingosine, for DOTAP greatly reduces toxicity and allows high expression to be maintained over prolonged periods. PMID:25418523

  5. Direct transfection of viral and plasmid DNA into the liver or spleen of mice.

    PubMed Central

    Dubensky, T W; Campbell, B A; Villarreal, L P

    1984-01-01

    A method for the direct transfection of polyoma viral DNA and polyoma-plasmid recombinant DNA into the liver or spleen of newborn or adult mice was developed. Calcium phosphate-precipitated DNA was injected directly into mouse organs in combination with hyaluronidase and collagenase. Transfected DNA was shown to replicate at moderate efficiency, relative to direct infection of organs with virus. Transfection with viral DNA rapidly led to an acute infection. A polyoma-bacterial plasmid recombinant DNA also was shown to replicate when transfected into mice. With this plasmid, however, genomic-length polyoma DNA rapidly recombined away from the bacterial component and replicated as viral DNA. This method should allow the direct determination of the biological activity of a cloned DNA within a mouse organ. Images PMID:6095303

  6. Characterization of cationic lipid DNA transfection complexes differing in susceptability to serum inhibition

    PubMed Central

    2002-01-01

    Background Cationic lipid DNA complexes based on DOTAP (1,2-dioleoyl-3-(trimethyammonium) propane) and mixtures of DOTAP and cholesterol (DC) have been previously optimized for transfection efficiency in the absence of serum and used as a non-viral gene delivery system. To determine whether DOTAP and DC lipid DNA complexes could be obtained with increased transfection effciency in the presence of high serum concentrations, the composition of the complexes was varied systematically and a total of 162 different complexes were analyzed for transfection efficiency in the presence and absence of high serum concentrations. Results Increasing the ratio of DOTAP or DC to DNA led to a dose dependent enhancement of transfection efficiency in the presence of high serum concentrations up to a ratio of approximately 128 nmol lipid/μg DNA. Transfection efficiency could be further increased for all ratios of DOTAP and DC to DNA by addition of the DNA condensing agent protamine sulfate (PS). For DOTAP DNA complexes with ratios of ≤ 32 nmol/μg DNA, peak transfection efficiencies were obtained with 4 μg PS/μg DNA. In contrast, increasing the amount of PS of DC complexes above 0.5 μg PS /μg DNA did not lead to significant further increases in transfection efficiency in the presence of high serum concentrations. Four complexes, which had a similar high transfection efficiency in cell culture in the presence of low serum concentrations but which differed largely in the lipid to DNA ratio and the amount of PS were selected for further analysis. Intravenous injection of the selected complexes led to 22-fold differences in transduction efficiency, which correlated with transfection efficiency in the presence of high serum concentrations. The complex with the highest transfection efficiency in vivo consisted of 64 nmol DC/ 16 μg PS/ μg DNA. Physical analysis revealed a predicted size of 440 nm and the highest zeta potential of the complexes analyzed. Conclusions Optimization of

  7. Electrotransfection and lipofection show comparable efficiency for in vitro gene delivery of primary human myoblasts.

    PubMed

    Mars, Tomaz; Strazisar, Marusa; Mis, Katarina; Kotnik, Nejc; Pegan, Katarina; Lojk, Jasna; Grubic, Zoran; Pavlin, Mojca

    2015-04-01

    Transfection of primary human myoblasts offers the possibility to study mechanisms that are important for muscle regeneration and gene therapy of muscle disease. Cultured human myoblasts were selected here because muscle cells still proliferate at this developmental stage, which might have several advantages in gene therapy. Gene therapy is one of the most sought-after tools in modern medicine. Its progress is, however, limited due to the lack of suitable gene transfer techniques. To obtain better insight into the transfection potential of the presently used techniques, two non-viral transfection methods--lipofection and electroporation--were compared. The parameters that can influence transfection efficiency and cell viability were systematically approached and compared. Cultured myoblasts were transfected with the pEGFP-N1 plasmid either using Lipofectamine 2000 or with electroporation. Various combinations for the preparation of the lipoplexes and the electroporation media, and for the pulsing protocols, were tested and compared. Transfection efficiency and cell viability were inversely proportional for both approaches. The appropriate ratio of Lipofectamine and plasmid DNA provides optimal conditions for lipofection, while for electroporation, RPMI medium and a pulsing protocol using eight pulses of 2 ms at E = 0.8 kV/cm proved to be the optimal combination. The transfection efficiencies for the optimal lipofection and optimal electrotransfection protocols were similar (32 vs. 32.5%, respectively). Both of these methods are effective for transfection of primary human myoblasts; however, electroporation might be advantageous for in vivo application to skeletal muscle. PMID:25534347

  8. Minimally-Invasive Gene Transfection by Chemical and Physical Interaction of Atmospheric Pressure Plasma Flow

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro

    2014-10-01

    Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (<4 sec) and short-distance (<40 mm) plasma irradiation, and the high transfection efficiency of 53% is realized together with the high cell viability (>90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.

  9. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  10. Cell cycle progression in denV-transfected murine fibroblasts exposed to ultraviolet radiation.

    PubMed

    Kusewitt, D F; Budge, C L; Nolla, H A; Edwards, B S; Ley, R D

    1992-09-01

    Repair-proficient murine fibroblasts transfected with the denV gene of bacteriophage T4 repaired 70-80% of pyrimidine dimers within 24 h after exposure to 150 J/m2 ultraviolet radiation (UVR) from an FS-40 sunlamp. Under the same conditions, control cells repaired only about 20% of UVR-induced pyrimidine dimers. After UVR exposure, both control and denV-transfected cells exhibited some degree of DNA-synthesis inhibition, as determined by flow cytometric analysis of cell-cycle kinetics in propidium iodide-stained cells. DenV-transfected cells had a longer and more profound S phase arrest than control cells, but both control and denV-transfected cells had largely recovered from UVR effects on cell-cycle kinetics by 48 h after UVR exposure. Inhibition of DNA synthesis by UVR was also measured by determining post-UVR incorporation of bromodeoxyuridine (BrdU). The amount of BrdU incorporated was quantitated by determining with flow cytometry the quenching of Hoechst dye 33342 by BrdU incorporated in cellular DNA. DenV-transfected cells showed more marked inhibition of BrdU incorporation after low fluences of UVR than control cells. Differences between denV-transfected and control cells in cell-cycle kinetics following UVR exposure may be related to differences in mechanisms of repair when excision repair of pyrimidine dimers is initiated by endonuclease V instead of cellular repair enzymes. PMID:1380650

  11. Laser transfection with gold nanoparticles: current state and new particle structures as a perspective

    NASA Astrophysics Data System (ADS)

    Kalies, S.; Gentemann, L.; Antonopoulos, G. C.; Rakoski, M. S.; Heinemann, D.; Schomaker, M.; Ripken, T.; Meyer, H.

    2015-03-01

    Laser-based transfection techniques have gained significant interest during the last decade. Either single cell manipulation by focusing on the cell membrane or high-throughput can be realized with laser transfection. The latter is for example provided by gold nanoparticle mediated laser transfection. It is based on the heating of gold nanoparticles through laser irradiation, which permeabilizes the membrane. This technique satisfies most prerequisites of a reliable transfection technique, like efficiency and minimal cell impact. In order to bring it closer to routine usage, we investigated new particle configurations for gold nanoparticle mediated laser transfection. Our setup employs a 532 nm and 850 ps laser system. We immobilized gold particles on cell culture surfaces or modified silica particles with a gold particle surface coverage. Furthermore, first experiments achieving cell perforation with an organic nanoparticle based on polypyrrole were conducted. These three options achieved comparable efficiencies to the incubation of cells with free gold nanoparticles. With regard to the underlying mechanisms of perforation, we performed fluorescence microscopy based imaging of the cell state combined with holographic imaging directly after perforation. First results indicated a power dependent ion (calcium) and volume exchange with the extracellular medium in the first two minutes after perforation. In conclusion, our results can pave the way to a safer and more efficient way of high-throughput laser transfection with gold nanoparticles.

  12. Development of a semi-automated high throughput transient transfection system.

    PubMed

    Bos, Aaron B; Duque, Joseph N; Bhakta, Sunil; Farahi, Farzam; Chirdon, Lindsay A; Junutula, Jagath R; Harms, Peter D; Wong, Athena W

    2014-06-20

    Transient transfection of mammalian cells provides a rapid method of producing protein for research purposes. Combining the transient transfection protein expression system with new automation technologies developed for the biotechnology industry would enable a high throughput protein production platform that could be utilized to generate a variety of different proteins in a short amount of time. These proteins could be used for an assortment of studies including proof of concept, antibody development, and biological structure and function. Here we describe such a platform: a semi-automated process for PEI-mediated transient protein production in tubespins at a throughput of 96 transfections at a time using a Biomek FX(P) liquid handling system. In one batch, 96 different proteins can be produced in milligram amounts by PEI transfection of HEK293 cells cultured in 50 mL tubespins. Methods were developed for the liquid handling system to automate the different processes associated with transient transfections such as initial cell seeding, DNA:PEI complex activation and DNA:PEI complex addition to the cells. Increasing DNA:PEI complex incubation time resulted in lower protein expression. To minimize protein production variability, the methods were further optimized to achieve consistent cell seeding, control the DNA:PEI incubation time and prevent cross-contamination among different tubespins. This semi-automated transfection process was applied to express 520 variants of a human IgG1 (hu IgG1) antibody. PMID:24704608

  13. Ultrasound-mediated gene transfection: A comparison between cells irradiated in suspension and attachment status

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwei; Azuma, Takashi; Sasaki, Akira; Yoshinaka, Kiyoshi; Takagi, Shu; Matsumoto, Yoichiro

    2012-10-01

    Sonoporation, in the presence of microbubbles, is a promising nonviral gene transfection method. Although the mechanism is not yet fully understood, shock waves emitted by cavitation bubbles have been known to play an important role in creating pores on cell membranes. This work investigates the gene transfection efficiency and influencing parameters of cells in two different statuses: attachment and suspension based on the fact that cells in suspension have more bubbles surrounding them and that shock wave has distinct effects on hit objects whether the object is attached to a rigid wall or not. Fibroblast cells (NIH3T3), both in attachment and suspension, and green fluorescent protein (GFP) plasmid were exposed to variations in acoustic pressure (0.6-1.2 MPa) and 10% duty cycle at fixed settings of 2 MHz central frequency, 5 kHz pulse repetition frequency and 1 minute insonation time, in the presence of 10% v/v microbubbles (Sonazoid, a commercialized product of ultrasound contrast agent). The transfection efficiency and cell viability are compared for two statuses and a distribution map of GFP transfected cells as well as viable cells over the well bottom is given for attachment status. The results show that cells irradiated in suspension status has higher transfection ratio as well as viability than those irradiated in attachment status with the same intensity and that the transfected cells of attachment status experiment are highly concentrated near the center of the well.

  14. Bacterial IMPDH gene used for the selection of mammalian cell transfectants.

    SciTech Connect

    Baccam, M.; Huberman, E.; Energy Systems

    2003-06-01

    Stable cell transfection is used for the expression of exogenous genes or cDNAs in eukaryotic cells. Selection of these transfectants requires a dominant selectable marker. A variety of such markers has been identified and is currently in use. However, many of these are not suitable for all cell types or require unique conditions. Here we describe a simple and versatile dominant selectable marker that involves bacterial IMP dehydrogenase (IMPDH), an enzyme essential for the replication of mammalian and bacterial cells. Although IMPDH is evolutionarily conserved, the bacterial enzyme is orders of magnitude more resistant to the toxic effect of the drug mycophenolic acid, which is an IMPDH inhibitor. We have demonstrated that transfection of human, monkey or Chinese hamster cell lines with an expression vector containing bacterial IMPDH and mycophenolic acid treatment resulted in the selection of colonies with a strikingly increased resistance to mycophenolic acid toxicity. Analysis of cells derived from these colonies indicated that the acquisition of this resistance was associated with bacterial IMPDH protein expression. As a proof of principle, we showed that mammalian cell transfection with a hicistronic IMPDH/GFP expression vector and mycophenolic acid treatment can he used to successfully select transfectants that express the fluorescent protein. These results indicate that bacterial IMPDH is a practical dominant selectable marker that can be used for the selection of transfectants that express exogenous genes or cDNAs in mammalian cells.

  15. Influence of the H2O2 in the plasma gene transfection method

    NASA Astrophysics Data System (ADS)

    Kimura, Masanori; Tachibana, Hiroki; Ohno, Yuki; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Tachibana, Kunihide; Jinno, Masafumi

    2015-09-01

    Gene transfection is the process of deliberately introducing nucleic acids into cells. The authors have been developing a novel gene transfection method using microplasma irradiation (plasma gene transfection method). Our previous study shows that long life chemically reactive species contribute to gene transfection, which induce the transfection at least 60 s after plasma irradiation (after effect). In order to clarify the key reactive species which is effective on the after effect, the effect of H2O2 addition after plasma irradiation was investigated. Addition of H2O2 at 1/1000 -1 ppm after plasma irradiation did not largely affect or slightly decease the transfection ratio, whereas the H2O2 concentration induced by plasma irradiation is estimated as 2.7 ppb after dilution by the medium. It is found that the H2O2 is not main species for the after effect. This work was partly supported by JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas (Number 25108509, 15H00896) and a grant from Ehime University.

  16. A Method to Evaluate the Efficiency of Transfection Reagents in an Adherent Zebrafish Cell Line

    PubMed Central

    Aschberger, Teresa; Pelster, Bernd

    2013-01-01

    Abstract We present a simple and robust method to evaluate the transfection efficiency of commercially available transfection reagents intended to be established for use in nonmammalian cell lines. To illustrate the method, we compare the ability of four different reagents to transfect the embryonic zebrafish cell line Z3. Z3 cells were seeded in a 96-well plate and simultaneously transfected in several variations by using minimum volumes of transfection reagent and a vector DNA encoding an amplified version of green fluorescent protein (GFP). After 24 and 48 h, transfection efficiency was determined by a dual fluorescence plate reader measurement of GFP and Hoechst 33342 fluorescence, an indicator of cell density. Of the four different reagents tested, certain variations of JetPrime™ reagent and X-tremeGene™ HP reagent produced the highest fluorescence signal per cell after 24- and 48-h incubation, respectively. The simultaneous multivariate setup enables comparing different reagent/DNA combinations at different time points well, independent of cell growth variability or seeding density. PMID:23515475

  17. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles

    PubMed Central

    Fan, Z.; Chen, D.; Deng, C.X.

    2013-01-01

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009

  18. Combined Pulse Electroporation – A Novel Strategy for Highly Efficient Transfection of Human and Mouse Cells

    PubMed Central

    Stroh, Thorsten; Erben, Ulrike; Kühl, Anja A.; Zeitz, Martin; Siegmund, Britta

    2010-01-01

    The type of a nucleic acid and the type of the cell to be transfected generally affect the efficiency of electroporation, the versatile method of choice for gene regulation studies or for recombinant protein expression. We here present a combined square pulse electroporation strategy to reproducibly and efficiently transfect eukaryotic cells. Cells suspended in a universal buffer system received an initial high voltage pulse that was continuously combined with a subsequent low voltage pulse with independently defined electric parameters of the effective field and the duration of each pulse. At comparable viable cell recoveries and transfection efficiencies of up to 95% of all cells, a wide variety of cells especially profited from this combined pulse strategy by high protein expression levels of individual cells after transfection. Long-term silencing of gene expression by transfected small interfering RNA was most likely due to the uptake of large nucleic acid amounts as shown by direct detection of fluorochromated small interfering RNA. The highly efficient combined pulse electroporation strategy enables for external regulation of the number of naked nucleic acid molecules taken up and can be easily adapted for cells considered difficult to transfect. PMID:20209146

  19. Phosphate-Buffered Saline-Based Nucleofection of Primary Endothelial Cells

    PubMed Central

    Kang, Jinjoo; Ramu, Swapnika; Lee, Sunju; Aguilar, Berenice; Ganesan, Sathish Kumar; Yoo, Jaehyuk; Kalra, Vijay K.; Koh, Chester J.; Hong, Young-Kwon

    2009-01-01

    Although various non-viral transfection methods are available, cell-toxicity, low transfection efficiency and high-cost remain hurdles for in vitro gene delivery in cultured primary endothelial cells. Recently, unprecedented transfection efficiency for primary endothelial cells has been achieved due to the newly developed nucleofection technology that utilizes a combination of novel electroporation conditions and specific buffer components that stabilize the cells in the electrical field. Despite its superior transfection efficiency and cell viability, high cost of the technology has discouraged the cardiovascular researchers to liberally adopt this new technology. Here, we report that a phosphate-buffered saline (PBS)-based nucleofection method can be used for efficient gene delivery into primary endothelial cells and other types of cells. Comparative analyses of transfection efficiency and cell viability for primary arterial, venous, microvascular and lymphatic endothelial cells were performed by using PBS. Compared to the commercial buffers, PBS can support equally remarkable nucleofection efficiency to both primary and non-primary cells. Moreover, PBS-mediated nucleofection of siRNA showed more than 90% knockdown of the expression of target genes in primary endothelial cells. Together, we demonstrate that PBS can be an unprecedented economical alternative for the high-cost buffers for nucleofection of various primary and non-primary cells. PMID:19150324

  20. Evaluation of In Vivo Transfection Efficiency of Eudragit Coated Nanoparticles of Chitosan-DNA: A pH-sensitive System Prepared for Oral DNA Delivery

    PubMed Central

    Momenzadeh, Sedigheh; Sadeghi, Abdorrahim; Vatandoust, Nasimeh; Salehi, Rasoul

    2015-01-01

    Background: Success of any gene therapy protocol relies mostly on using an efficient carrier to direct nucleic acid to the place of action. The system should also have transfection ability at release site. Different routes are available for delivering genetic materials to the target organs, amongst them; oral delivery is particularly attractive for certain reasons. However, serious obstacles, like acidic environment of stomach and presence of protease and nuclease enzymes in gastrointestinal (GI) tract, make oral route a highly challenging option. Objectives: The present study suggests preparation of gene nanoparticles (NPs) of chitosan within a layer of Eudragit L100 for oral delivery of nucleic acid. The nanoparticles have some features both in size and polymer properties that can be penetrating enough to transfect epithelial layer cells of intestine and protect the entrapped materials against stomach harsh condition. Materials and Methods: In this experimental study, conducted in Iran, particles were prepared by coacervation technique followed by encapsulation of nanoparticle within a coat of Eudragit L100 using solvent evaporation technique. Formulation behavior was monitored both in vitro and in vivo. Stability of particle construction and release profile of DNA were examined at pH of ± 0.8 environ pKa of Eudragit. Size and zeta potential of particles were measured. To demonstrate transfection efficiency of the constructed carrier, reverse transcription polymerase chain reaction (RT-PCR) was carried out using human insulin specific primers on total RNA extracted from upper part of small intestine of 48-hour post-transfected rats (sampled by simple random selection, n = 3). Results: The mean size and zeta potential of particles were 300 ± 4 nm and 14 ± 0.5 mV, respectively. Encapsulation of this system was 89.6 ± 1.2%. DNA release from batches was less than 12% at pH = 5.2 and more than 60% at pH = 6.8 with significant difference of P < 0.05. RT-PCR product

  1. Gold nanoparticle mediated cell manipulation using fs and ps laser pulses for cell perforation and transfection

    NASA Astrophysics Data System (ADS)

    Heinemann, D.; Schomaker, M.; Motekaitis, D.; Krawinkel, J.; Killian, D.; Escobar, H. M.; Junghanß, Christian; Heisterkamp, Alexander

    2011-03-01

    Manipulation of cells requires the delivery of membrane-impermeable substances like genetic materials or proteins into the cytoplasm. Thus delivery of molecules over the cell membrane barrier is one of the key technologies in molecular biology. Many techniques concerning especially the delivery foreign DNA have been developed. Notwithstanding there still is a range of applications where these standard techniques fail to raise the desired results due to low efficiencies, high toxicity or other safety issues. Especially the transfection of sensitive cell types like primary and stem cells can be problematic. Here we present an alternative, laser based technique to perforate the cell membrane and thus allowing efficient delivery of extra cellular molecules: Gold nanoparticles (GNP) are brought into close contact with the cell, were the laser-GNP interaction leads to membrane perforation. This allows the utilisation of a weakly focused laser beam leading to fast scanning of the sample and thus to a high throughput. To investigate the GNP-laser interaction in more detail we have compared membrane perforation obtained by different laser pulse lengths. From our results we assume strong light absorption for ps laser pulses and relatively small particles as the initiating perforation mechanism, whereas an enhanced near field scattering occurs at 200 nm GNP when using fs laser pulses. SEM and ESEM imaging were applied to give a deeper insight in the GNP-cell interaction and the effects of laser radiation on the GNP. Additionally dextran- FITC derivatives of varying sizes were used to investigate the impact of molecule size on delivery efficiency.

  2. Bioreducible cross-linked polymers based on G1 peptide dendrimer as potential gene delivery vectors.

    PubMed

    Li, Chun-Yan; Wang, Hai-Jiao; Cao, Jing-Ming; Zhang, Ji; Yu, Xiao-Qi

    2014-11-24

    A series of cationic polymers based on low generation (G1) peptide dendrimer were synthesized with disulfide-containing linkages. The DNA binding abilities of the target polymers were studied by gel electrophoresis and fluorescence quenching assay. The bioreducible property of the disulfide-containing polymers P2 and P3 was also investigated in the presence of dithiothreitol (DTT). Results from dynamic light scattering (DLS) and transmission electron microscopy (TEM) assays reveal that these materials may condense DNA into nanoparticles with proper sizes and zeta-potentials. In vitro cell experiments show that compared to branched 25 KDa PEI, P2 and P3 may exhibit much higher gene transfection efficiency and lower cytotoxicity in both HEK293 and U-2OS cells. Additionally, polymer prepared from Michael addition gives better gene transfection ability, while polymer prepared from ring-opening reaction has better serum tolerance. Results indicate that these polymers might be promising non-viral gene vectors for their easy preparation, very low cytotoxicity, and good transfection efficiency. PMID:25282264

  3. Expression of biologically active procorticotrophin-releasing hormone (proCRH) in stably transfected CHO-K1 cells: characterization of nuclear proCRH.

    PubMed

    Morrison, E; Tomasec, P; Linton, E A; Lowry, P J; Lowenstein, P R; Castro, M G

    1995-04-01

    Corticotrophin-releasing hormone (CRH) is a 41 amino acid neuropeptide which is cleaved at a pair of dibasic amino acids from a larger precursor molecule (pre-proCRH) by the action of endopeptidases. In cells possessing a regulated secretory pathway, sorting of proneuropeptides and prohormones occurs within the trans-Golgi network, where they are finally packaged into secretory vesicles to be released in response to an external stimulus. Such cells also possess a constitutive secretory pathway, and neuropeptides are also translocated into this subcellular compartment. We have recently established stably transfected CHO-K1 cells expressing the rat pre-proCRH cDNA, and shown that proCRH was localized within the secretory pathway and the nucleus of transfected cells. Both the cytoplasmic and nuclear species of IR-CRH displayed an apparent molecular weight approximately 19 kDa, consistent with the size of the uncleaved CRH precursor molecule. In this paper, we further characterized the bitopological, i.e. nuclear and cytoplasmic localization of proCRH within transfected CHO-K1 cells. Immunoreactive nuclear CRH was not extractable using detergents (Triton X-100 and CHAPS), 10 mM salt washes or RNase digestion but could be abolished by digestion with DNase I. These results therefore suggest that nuclear proCRH is in close association with DNA/chromatin. Treatment of transfected cells with inhibitors of protein and RNA synthesis for up to 24 h had no effect upon immunoreactive nuclear CRH, indicating that it is very stable with a long half life. Brefeldin A treatment had no effect upon the nuclear translocation of newly synthesized proCRH, suggesting that late stages of the secretory pathway (i.e. post rough endoplasmic reticulum compartments) of the transfected cells do not play a role in proCRH nuclear transport. We also demonstrate that proCRH synthesized within stably transfected CHO-K1 cells is capable of stimulating ACTH release from primary cultures of anterior

  4. Helios(®) Gene Gun-Mediated Transfection of the Inner Ear Sensory Epithelium: Recent Updates.

    PubMed

    Belyantseva, Inna A

    2016-01-01

    The transfection of vertebrate inner ear hair cells has proven to be challenging. Therefore, many laboratories attempt to use and improve different transfection methods. Each method has its own advantages and disadvantages. A particular researcher's skills in addition to available equipment and the type of experiment (in vivo or in vitro) likely determine the transfection method of choice. Biolistic delivery of exogenous DNA, mRNA, or siRNA, also known as Helios(®) Gene Gun-mediated transfection, uses the mechanical energy of compressed helium gas to bombard tissue with micron- or submicron-sized DNA or RNA-coated gold particles, which can penetrate and transfect cells in vitro or in vivo. Helios(®) Gene Gun-mediated transfection has several advantages: (1) it is simple enough to learn in a short time; (2) it is designed to overcome cell barriers even as tough as plant cell membrane or stratum corneum in the epidermis; (3) it can transfect cells deep inside a tissue such as specific neurons within a brain slice; (4) it can accommodate mRNA, siRNA, or DNA practically of any size to be delivered; and (5) it works well with various cell types including non-dividing, terminally differentiated cells that are difficult to transfect, such as neurons or mammalian inner ear sensory hair cells. The latter advantage is particularly important for inner ear research. The disadvantages of this method are: (1) low efficiency of transfection due to many variables that have to be adjusted and (2) potential mechanical damage of the tissue if the biolistic shot parameters are not optimal. This chapter provides a step-by-step protocol and critical evaluation of the Bio-Rad Helios(®) Gene Gun transfection method used to deliver green fluorescent protein (GFP)-tagged full-length cDNAs of myosin 15a, whirlin, β-actin, and Clic5 into rodent hair cells of the postnatal inner ear sensory epithelia in culture. PMID:27259918

  5. The influence of the polar head-group of synthetic cationic lipids on the transfection efficiency mediated by niosomes in rat retina and brain.

    PubMed

    Ojeda, E; Puras, G; Agirre, M; Zarate, J; Grijalvo, S; Eritja, R; Martinez-Navarrete, G; Soto-Sánchez, C; Diaz-Tahoces, A; Aviles-Trigueros, M; Fernández, E; Pedraz, J L

    2016-01-01

    The development of novel non-viral delivery vehicles is essential in the search of more efficient strategies for retina and brain diseases. Herein, optimized niosome formulations prepared by oil-in water (o/w) and film-hydration techniques were characterized in terms of size, PDI, zeta potential, morphology and stability. Three ionizable glycerol-based cationic lipids containing a primary amine group (lipid 1), a triglycine group (lipid 2) and a dimethylamino ethyl pendent group (lipid 3) as polar head-groups were part of such niosomes. Upon the addition of pCMS-EGFP plasmid, nioplexes were obtained at different cationic lipid/DNA ratios (w/w). The resultant nioplexes were further physicochemically characterized and evaluated to condense, release and protect the DNA against enzymatic digestion. In vitro experiments were performed to evaluate transfection efficiency and cell viability in HEK-293, ARPE-19 and PECC cells. Interestingly, niosome formulations based on lipid 3 showed better transfection efficiencies in ARPE-19 and PECC cells than the rest of cationic lipids showed in this study. In vivo experiments in rat retina after intravitreal and subretinal injections together with in rat brain after cerebral cortex administration showed promising transfection efficiencies when niosome formulations based on lipid 3 were used. These results provide new insights for the development of non-viral vectors based on cationic lipids and their applications for efficient delivery of genetic material to the retina and brain. PMID:26610076

  6. Antimocrobial Polymer

    DOEpatents

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  7. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  8. Polymer inflation

    NASA Astrophysics Data System (ADS)

    Hassan, Syed Moeez; Husain, Viqar; Seahra, Sanjeev S.

    2015-03-01

    We consider the semiclassical dynamics of a free massive scalar field in a homogeneous and isotropic cosmological spacetime. The scalar field is quantized using the polymer quantization method assuming that it is described by a Gaussian coherent state. For quadratic potentials, the semiclassical equations of motion yield a universe that has an early "polymer inflation" phase which is generic and almost exactly de Sitter, followed by an epoch of slow-roll inflation. We compute polymer corrections to the slow-roll formalism, and discuss the probability of inflation in this model using a physical Hamiltonian arising from time gauge fixing. We also show how in this model, it is possible to obtain a significant amount of slow-roll inflation from sub-Planckian initial data, hence circumventing some of the criticisms of standard scenarios. These results show the extent to which a quantum gravity motivated quantization method affects early universe dynamics.

  9. Altering Amine Basicities in Biodegradable Branched Polycationic Polymers for Non-Viral Gene Delivery

    PubMed Central

    Chew, Sue Anne; Hacker, Michael C.; Saraf, Anita; Raphael, Robert M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2010-01-01

    In this work, biodegradable branched polycationic polymers were synthesized by Michael addition polymerization from different amine monomers and the triacrylate monomer trimethylolpropane triacrylate. The polymers varied in the amount of amines that dissociate in different pH ranges, which are considered to be beneficial to different parts of the gene delivery process. P-DED, a polymer synthesized from trimethylolpropane triacrylate and dimethylethylenediamine, had the highest number of protonated amines that are available for pDNA complexation at pH 7.4 of all polymers synthesized. P-DED formed a positive polyplex (13.9 ± 0.5 mV) at a polymer/plasmid DNA (pDNA) weight ratio of 10:1 in contrast to the other polymers synthesized, which formed positive polyplexes only at higher weight ratios. Polyplexes formed with the synthesized polymers at the highest polymer/pDNA weight ratio tested (300:1) resulted in higher transfection with enhanced green fluorescent protein reporter gene (5.3 ± 1.0% to 30.6 ± 6.6%) compared to naked pDNA (0.8 ± 0.4%), as quantified by flow cytometry. Polyplexes formed with P-DED (weight ratio of 300:1) also showed higher transfection (30.6 ± 6.6%) as compared to polyplexes formed with branched polyethylenimine (weight ratio of 2:1, 25.5 ± 2.7%). The results from this study demonstrated that polymers with amines that dissociate above pH 7.4, which are available as positively charged groups for pDNA complexation at pH 7.4, can be synthesized to produce stable polyplexes with increased zeta potential and decreased hydrodynamic size that efficiently transfect cells. This work indicated that polymers containing varying amine functionalities with different buffering capabilities can be synthesized by using different amine monomers and used as effective gene delivery vectors. PMID:20170180

  10. Gold Nanoparticle Mediated Laser Transfection for Efficient siRNA Mediated Gene Knock Down

    PubMed Central

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Escobar, Hugo Murua; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types. PMID:23536802

  11. Sendai F/HN Viroplexes for Efficient Transfection of Leukemic T Cells

    PubMed Central

    Kim, Jung Seok; Lee, Yeon Kyung; Jeong, Hwa Yeon; Kang, Seong Jae; Kim, Min Woo; Ryu, Seung Hyun; Kim, Hong Sung; Kim, Keun Sik; Kim, Dong-Eun

    2013-01-01

    Purpose Most chemical transfection reagents are ineffective for the transfection of cells in suspension, such as leukemic cell and stem cell lineages. We developed two different types of viroplexes, cationic Sendai F/HN viroplexes (CSVs) and protamine sulfate-condensed cationic Sendai F/HN viroplexes (PCSVs) for the efficient transfection of T-leukemic cells. Materials and Methods The viroplex systems were prepared by reconstitution of fusogenic Sendai F/HN proteins in DMKE (O,O'-dimyristyl-N-lysyl glutamate) cationic liposomes. The viroplexes were further optimized for plasmid DNA and siRNA delivery to suspension cells. The particle size and surface charge of the viroplexes were analyzed with a ζ-sizer. Transfection of plasmid DNA (pDNA) and small interfering RNA (siRNA) by CSVs or PCSV was evaluated by measurement of transgene expression, confocal microscopy, FACS, and RT-PCR. Results The optimized CSVs and PCSVs exhibited enhanced gene and siRNA delivery in the tested suspension cell lines (Jurkat cells and CEM cells), compared with conventional cationic liposomes. In the case of pDNA transfection, the CSVs and PCSVs show at least 10-fold and 100-fold higher transgene expression compared with DMKE lipoplexes (or lipofectamine 2000), respectively. The CSVs showed more effective siRNA delivery to the suspension cells than cationic liposomes, as assessed by confocal microscopy, FACS, and RT-PCR. The effective transfection by the CSVs and PCSVs is presumably due to fusogenic activity of F/HN proteins resulting in facilitated internalization of pDNA and siRNA. Conclusion This study suggests that Sendai F/HN viroplexes can be widely applicable for the transfection of pDNA and siRNA to suspension cell lines. PMID:23918564

  12. A peptidomimetic siRNA transfection reagent forhighly effectivegene silencing

    SciTech Connect

    Utku, Yeliz; Dehan, Elinor; Ouerfelli, Ouathek; Piano, Fabio; Zuckermann, Ronald N.; Pagano, Michele; Kirshenbaum, Kent

    2006-05-17

    RNA interference (RNAi) techniques hold forth great promisefor therapeutic silencing of deleterious genes. However, clinicalapplications of RNAi require the development of safe and efficientmethods for intracellular delivery of small interfering RNA (siRNA)oligonucleotides specific to targeted genes. We describe the use of alipitoid, a cationic oligopeptoid phospholipid conjugate, for non-viraltransfection of synthetic siRNA oligos in cell culture. Thispeptidomimetic delivery vehicle allows for efficient siRNA transfectionin a variety of human cell lines with negligible toxicity and promotesextensive downregulation of the targeted genes at both the protein andthe mRNA level. We compare the lipitoid reagent to a standard commercialtransfection reagent. The lipitoid is highly efficient even in primaryIMR-90 human lung fibroblasts in which other commercial reagents aretypically ineffective.

  13. Enhancement of CYP3A4 Activity in Hep G2 Cells by Lentiviral Transfection of Hepatocyte Nuclear Factor-1 Alpha

    PubMed Central

    Chiang, Tsai-Shin; Yang, Kai-Chiang; Chiou, Ling-Ling; Huang, Guan-Tarn; Lee, Hsuan-Shu

    2014-01-01

    Human hepatoma cell lines are commonly used as alternatives to primary hepatocytes for the study of drug metabolism in vitro. However, the phase I cytochrome P450 (CYP) enzyme activities in these cell lines occur at a much lower level than their corresponding activities in primary hepatocytes, and thus these cell lines may not accurately predict drug metabolism. In the present study, we selected hepatocyte nuclear factor-1 alpha (HNF1α) from six transcriptional regulators for lentiviral transfection into Hep G2 cells to optimally increase their expression of the CYP3A4 enzyme, which is the major CYP enzyme in the human body. We subsequently found that HNF1α-transfected Hep G2 enhanced the CYP3A4 expression in a time- and dose-dependent manner and the activity was noted to increase with time and peaked 7 days. With a multiplicity of infection (MOI) of 100, CYP3A4 expression increased 19-fold and enzyme activity more than doubled at day 7. With higher MOI (1,000 to 3,000), the activity increased 8- to 10-fold; however, it was noted the higher MOI, the higher cell death rate and lower cell survival. Furthermore, the CYP3A4 activity in the HNF1α-transfected cells could be induced by CYP3A4-specific inducer, rifampicin, and metabolized nifedipine in a dose-dependent manner. With an MOI of 3,000, nifedipine-metabolizing activity was 6-fold of control and as high as 66% of primary hepatocytes. In conclusion, forceful delivery of selected transcriptional regulators into human hepatoma cells might be a valuable method to enhance the CYP activity for a more accurate determination of drug metabolism in vitro. PMID:24733486

  14. Polymeric vector-mediated gene transfection of MSCs for dual bioluminescent and MRI tracking in vivo.

    PubMed

    Wu, Chun; Li, Jingguo; Pang, Pengfei; Liu, Jingjing; Zhu, Kangshun; Li, Dan; Cheng, Du; Chen, Junwei; Shuai, Xintao; Shan, Hong

    2014-09-01

    MSC's transplantation is a promising cell-based therapy for injuries in regenerative medicine, and in vivo visualization of transplanted MSCs with noninvasive technique is essential for the tracking of cell infusion and homing. A new cationic polymer, poly(ethylene glycol)-block-poly(l-aspartic acid)-grafted polyethylenimine functionalized with superparamagnetic iron oxide nanoparticles (PAI/SPION), was constructed as a magnetic resonance imaging (MRI)-visible non-viral vector for the delivery of plasmids DNA (pDNA) encoding for luciferase and red fluorescence protein (RFP) as reporter genes into MSCs. As a result, the MSCs were labeled with SPION and reporter genes. The PAI/SPION complexes exhibited high transfection efficiency in transferring pDNA into MSCs, which resulted in efficient luciferase and RFP co-expression. Furthermore, the complexes did not significantly affect the viability and multilineage differentiation capacity of MSCs. After the labeled MSCs were transplanted into the rats with acute liver injury via the superior mesenteric vein (SMV) injection, the migration behavior and organ-specific accumulation of the cells could be effectively monitored using the in vivo imaging system (IVIS) and MRI, respectively. The immunohistochemical analysis further confirmed that the transplanted MSCs were predominantly distributed in the liver parenchyma. Our results indicate that the PAI/SPION is a MRI-visible gene delivery agent which can effectively label MSCs to provide the basis for bimodal bioluminescence and MRI tracking in vivo. PMID:24976241

  15. Gene transfer by histidylated lipopolyplexes: A dehydration method allowing preservation of their physicochemical parameters and transfection efficiency.

    PubMed

    Perche, Federico; Lambert, Olivier; Berchel, Mathieu; Jaffrès, Paul-Alain; Pichon, Chantal; Midoux, Patrick

    2012-02-14

    Lipid-Polycation-DNA complexes (LPD) is a promising non-viral system for nucleic acids delivery. Usually, LPD are prepared just before their use. In the present work, we have examined whether dehydration of a new type of LPD (named LPD100) might be a storage option. LPD100 comprises PEGylated histidylated polylysine/pDNA polyplexes and a liposomal formulation made with lipophosphoramidates containing N-methylimidazolium and histamine polar heads. LPD100 were dehydrated by evaporation, and the physicochemical parameters and transfection efficiency (TE) of reconstituted LPD100 were compared to that of fresh LPD100. LPD100 previously dehydrated in the presence of 20% saccharose, displayed comparable size and surface charge as freshly prepared LPD100 but gave a better TE. CryoTEM experiments showed that the reconstituted LPD100 exhibited a shape similar to fresh ones. Moreover, when LPD100 were prepared with dehydrated pDNA/polymer complexes and fresh liposomes, TE was as efficient as with fresh LPD100 while a small increase of their size were observed. These results demonstrate that evaporation of LPD100 in the presence of saccharose is a powerful method to store them for a long period of time. PMID:21514370

  16. A method for concentrating lipid peptide DNA and siRNA nanocomplexes that retains their structure and transfection efficiency

    PubMed Central

    Tagalakis, Aristides D; Castellaro, Sara; Zhou, Haiyan; Bienemann, Alison; Munye, Mustafa M; McCarthy, David; White, Edward A; Hart, Stephen L

    2015-01-01

    Nonviral gene and small interfering RNA (siRNA) delivery formulations are extensively used for biological and therapeutic research in cell culture experiments, but less so in in vivo and clinical research. Difficulties with formulating the nanoparticles for uniformity and stability at concentrations required for in vivo and clinical use are limiting their progression in these areas. Here, we report a simple but effective method of formulating monodisperse nanocomplexes from a ternary formulation of lipids, targeting peptides, and nucleic acids at a low starting concentration of 0.2 mg/mL of DNA, and we then increase their concentration up to 4.5 mg/mL by reverse dialysis against a concentrated polymer solution at room temperature. The nanocomplexes did not aggregate and they had maintained their biophysical properties, but, importantly, they also mediated DNA transfection and siRNA silencing in cultured cells. Moreover, concentrated anionic nanocomplexes administered by convection-enhanced delivery in the striatum showed efficient silencing of the β-secretase gene BACE1. This method of preparing nanocomplexes could probably be used to concentrate other nonviral formulations and may enable more widespread use of nanoparticles in vivo. PMID:25878500

  17. Proteome alteration induced by hTERT transfection of human fibroblast cells

    PubMed Central

    Mazzucchelli, Gabriel D; Gabelica, Valérie; Smargiasso, Nicolas; Fléron, Maximilien; Ashimwe, Wilson; Rosu, Frédéric; De Pauw-Gillet, Marie-Claire; Riou, Jean-François; De Pauw, Edwin

    2008-01-01

    Background Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT) gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38). Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV) and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis) analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. Results 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. Conclusion We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest that telomerase

  18. Polymer solutions

    SciTech Connect

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  19. Polymer Science.

    ERIC Educational Resources Information Center

    Frank, Curtis W.

    1979-01-01

    Described is a series of four graduate level courses in polymer science, offered or currently in preparation, at Stanford University. Course descriptions and a list of required and recommended texts are included. Detailed course outlines for two of the courses are presented. (BT)

  20. Functional polymers

    SciTech Connect

    Wegner, G.

    2000-01-01

    Improving the existing polymer materials and the designing of model polymers need fundamental insights into the structure and dynamics over a large range of length and time scales. Consequently, a host of quite different methods needs to be applied to gain insights into the molecular and supramolecular structures and interactions that determine the performance of these materials. Supramolecular structures derived from shape persistent (stiff) macromolecules are used as examples to demonstrate the correlation between chemical structure, order phenomena and performance in applications concerning advanced or developing technologies: organic light emitting diodes (OLEDs) and separator membranes in lithium based batteries and fuel cells. Polymers are also important as additives in the manufacture and the processing of other materials. The design of block copolymers to control the nucleation and growth of inorganic particles precipitating from aqueous solutions (mineralization) is discussed as well as the use of block copolymers to optimize the processing of ceramic pieces and objects. Finally, the modification of surfaces by polymers including aspects of biocompatibility is discussed. Some remarks concerning the importance of recent developments and advances in synthesis of macromolecular materials are also given.

  1. Hyaluronidase and collagenase increase the transfection efficiency of gene electrotransfer in various murine tumors.

    PubMed

    Cemazar, Maja; Golzio, Muriel; Sersa, Gregor; Escoffre, Jean-Michel; Coer, Andrej; Vidic, Suzana; Teissie, Justin

    2012-01-01

    One of the applications of electroporation/electropulsation in biomedicine is gene electrotransfer, the wider use of which is hindered by low transfection efficiency in vivo compared with viral vectors. The aim of our study was to determine whether modulation of the extracellular matrix in solid tumors, using collagenase and hyaluronidase, could increase the transfection efficiency of gene electrotransfer in histologically different solid subcutaneous tumors in mice. Tumors were treated with enzymes before electrotransfer of plasmid DNA encoding either green fluorescent protein or luciferase. Transfection efficiency was determined 3, 9, and 15 days posttransfection. We demonstrated that pretreatment of tumors with a combination of enzymes significantly increased the transfection efficiency of electrotransfer in tumors with a high extracellular matrix area (LPB fibrosarcoma). In tumors with a smaller extracellular matrix area and less organized collagen lattice, the increase was not so pronounced (SA-1 fibrosarcoma and EAT carcinoma), whereas in B16 melanoma, in which only traces of collagen are present, pretreatment of tumors with hyaluronidase alone was more efficient than pretreatment with both enzymes. In conclusion, our results suggest that modification of the extracellular matrix could improve distribution of plasmid DNA in solid subcutaneous tumors, demonstrated by an increase in transfection efficiency, and thus have important clinical implications for electrogene therapy. PMID:21797718

  2. Ultrasound-mediated interferon {beta} gene transfection inhibits growth of malignant melanoma

    SciTech Connect

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-07-22

    Highlights: {yields} Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-{beta} genes both in vitro and in vivo. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited proliferation of melanoma cells in vitro. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon {beta} (IFN-{beta}) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-{beta} in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-{beta} genes mixed with microbubbles. Successful sonotransfection with IFN-{beta} gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-{beta} gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  3. On Measuring miRNAs after Transient Transfection of Mimics or Antisense Inhibitors

    PubMed Central

    Thomson, Daniel W.; Bracken, Cameron P.; Szubert, Jan M.; Goodall, Gregory J.

    2013-01-01

    The ability to alter microRNA (miRNA) abundance is crucial for studying miRNA function. To achieve this there is widespread use of both exogenous double-stranded miRNA mimics for transient over-expression, and single stranded antisense RNAs (antimiRs) for miRNA inhibition. The success of these manipulations is often assessed using qPCR, but this does not accurately report the level of functional miRNA. Here, we draw attention to this discrepancy, which is overlooked in many published reports. We measured the functionality of exogenous miRNA by comparing the total level of transfected miRNA in whole cell extracts to the level of miRNA bound to Argonaute following transfection and show that the supraphysiological levels of transfected miRNA frequently seen using qPCR do not represent the functional levels, because the majority of transfected RNA that is detected is vesicular and not accessible for loading into Argonaute as functionally active miRNAs. In the case of microRNA inhibition by transient transfection with antisense inhibitors, there is also the potential for discrepancy, because following cell lysis the abundant inhibitor levels from cellular vesicles can directly interfere with the PCR reaction used to measure miRNA level. PMID:23358900

  4. Influence of needle gauge on in vivo ultrasound and microbubble-mediated gene transfection.

    PubMed

    Browning, Richard J; Mulvana, Helen; Tang, Mengxing; Hajnal, Jo V; Wells, Dominic J; Eckersley, Robert J

    2011-09-01

    Ultrasound and microbubble-mediated gene transfection are potential tools for safe, site-selective gene therapy. However, preclinical trials have demonstrated a low transfection efficiency that has hindered the progression of the technique to clinical application. In this paper it is shown that simple changes to the method of intravenous injection can lead to an increase in transfection efficiency when using 6-MHz diagnostic ultrasound and the ultrasound contrast agent, SonoVue. By using needles of progressively smaller gauge, i.e., larger internal diameter (ID), from 29 G (ID 0.184 mm) to 25 G (ID 0.31 mm), the transfection of a luciferase plasmid (pGL4.13) was significantly increased threefold in heart-targeted female CD1 mice. In vitro work indicated that the concentration and size distribution of SonoVue were affected by increasing needle gauge. These results suggest that the process of systemic delivery alters the bubble population and adversely affects transfection. This is exacerbated by using high-gauge needles. These findings demonstrate that the needle with the largest possible ID should be used for systemic delivery of microbubbles and genetic material. PMID:21741156

  5. Multifunctional oligomer incorporation: a potent strategy to enhance the transfection activity of poly(l-lysine).

    PubMed

    Liu, Shuai; Yang, Jixiang; Ren, Hongqi; O'Keeffe-Ahern, Jonathan; Zhou, Dezhong; Zhou, Hao; Chen, Jiatong; Guo, Tianying

    2016-03-01

    Natural polycations, such as poly(l-lysine) (PLL) and chitosan (CS), have inherent superiority as non-viral vectors due to their unparalleled biocompatibility and biodegradability. However, the application was constrained by poor transfection efficiency and safety concerns. Since previous modification strategies greatly weakened the inherent advantages of natural polycations, developing a strategy for functional group introduction with broad applicability to enhance the transfection efficiency of natural polycations without compromising their cationic properties is imperative. Herein, two uncharged functional diblock oligomers P(DMAEL-b-NIPAM) and P(DMAEL-b-Vlm) were prepared from a lactose derivative, N-iso-propyl acrylamide (NIPAM) as well as 1-vinylimidazole (Vlm) and further functionalized with four small ligands folate, glutathione, cysteine and arginine, respectively, aiming to enhance the interactions of complexes with cells, which were quantified utilizing a quartz crystal microbalance (QCM) biosensor, circumventing the tedious material screening process of cell transfection. Upon incorporation with PLL and DNA, the multifunctional oligomers endow the formulated ternary complexes with great properties suitable for transfection, such as anti-aggregation in serum, destabilized endosome membrane, numerous functional sites for promoted endocytosis and therefore robust transfection activity. Furthermore, different from the conventional strategy of decreasing cytotoxicity by reducing the charge density, the multifunctional oligomer incorporation strategy maintains the highly positive charge density, which is essential for efficient cellular uptake. This system develops a new platform to modify natural polycations towards clinical gene therapy. PMID:26797493

  6. Reducible, Dibromomaleimide-linked Polymers for Gene Delivery

    PubMed Central

    Tan, James-Kevin Y.; Choi, Jennifer L.; Wei, Hua; Schellinger, Joan G.; Pun, Suzie H.

    2014-01-01

    Polycations have been successfully used as gene transfer vehicles both in vitro and in vivo; however, their cytotoxicity has been associated with increasing molecular weight. Polymers that can be rapidly degraded after internalization are typically better tolerated by mammalian cells compared to their non-degradable counterparts. Here, we report the use of a dibromomaleimide-alkyne (DBM-alkyne) linking agent to reversibly bridge cationic polymer segments for gene delivery and to provide site-specific functionalization by azidealkyne cycloaddition chemistry. A panel of reducible and non-reducible, statistical copolymers of (2-dimethylamino) ethyl methacrylate (DMAEMA) and oligo(ethylene glycol) methyl ether methacrylate (OEGMA) were synthesized and evaluated. When complexed with plasmid DNA, the reducible and non-reducible polymers had comparable DNA condensation properties, sizes, and transfection efficiencies. When comparing cytotoxicity, the DBM-linked, reducible polymers were significantly less toxic than the non-reducible polymers. To demonstrate polymer functionalization by click chemistry, the DBM-linked polymers were tagged with an azidefluorophore and were used to monitor cellular uptake. Overall, this polymer system introduces the use of a reversible linker, DBM-alkyne, to the area of gene delivery and allows for facile, orthogonal, and site-specific functionalization of gene delivery vehicles. PMID:25485106

  7. Polymer Basics: Classroom Activities Manipulating Paper Clips to Introduce the Structures and Properties of Polymers

    ERIC Educational Resources Information Center

    Umar, Yunusa

    2014-01-01

    A simple and effective hands-on classroom activity designed to illustrate basic polymer concepts is presented. In this activity, students build primary structures of homopolymers and different arrangements of monomers in copolymer using paper clips as monomers. The activity supports formation of a basic understanding of polymer structures,…

  8. Carbohydrate Polymers for Nonviral Nucleic Acid Delivery

    PubMed Central

    Sizovs, Antons; McLendon, Patrick M.; Srinivasachari, Sathya

    2014-01-01

    Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease. PMID:21504102

  9. Carbohydrate polymers for nonviral nucleic acid delivery.

    PubMed

    Sizovs, Antons; McLendon, Patrick M; Srinivasachari, Sathya; Reineke, Theresa M

    2010-01-01

    Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease. PMID:21504102

  10. The characteristics and transfection efficiency of cationic poly (ester-co-urethane) - short chain PEI conjugates self-assembled with DNA.

    PubMed

    Liu, Xin-Yi; Ho, Wen-Yueh; Hung, Wei Jing; Shau, Min-Da

    2009-12-01

    To improve the transfection efficiency of polycations with DNA, we synthesized poly(ester-co-urethane)(PEU-g-PEI800) with short chain PEI800 in the side chain, and poly(ester-co-urethane)(PEU) without short chain PEI800. Both PEU-g-PEI800 and PEU, readily self-assembled with plasmid DNA (pCMV-betagal) in a HEPES buffer, were characterized by dynamic light scattering and zeta-potential. The results reveal that PEU-g-PEI800 and PEU were able to self-assemble particles with DNA and yield nano-sized complexes (<200nm) with positive charge at N/P ratios of 20/1 and 120/1, respectively. The degradation studies indicate that the half-life of PEU-g-PEI800 and PEU in the HEPES buffer were 14 and 35h at pH 7.4, respectively. Titration studies were performed to determine the buffering capacities of the polymers. The COS-7 cell viabilities in the presence of PEU-g-PEI800/DNA, PEU/DNA, and PEI25k/DNA were studied. In addition, The PEU-g-PEI800/DNA complexes were able to transfect COS-7 cells in vitro with a high efficiency comparable to a well-known gene carrier PEI25k. The results indicate that PEU-g-PEI800 is an attractive cationic poly (ester-co-urethane) for gene delivery and an interesting candidate for further study. PMID:19775745

  11. Comparation of enhanced green fluorescent protein gene transfected and wild-type porcine neural stem cells.

    PubMed

    Zheng, Yue-Mao; An, Zhi-Xing; Zhao, Xiao-E; Quan, Fu-Sheng; Zhao, Hui-Ying; Zhang, Ya-Rong; Liu, Jun; He, Xiao-Ying; He, Xiao-Ning

    2010-02-01

    The aim of this study was to transfect and express the enhanced green fluorescence protein (EGFP) gene into porcine neural stem cells (NSCs) to determine whether EGFP can be used as a marker to monitor NSCs. NSCs were isolated from embryonic day 30 fetal pig brain and transfected with EGFP gene using lipofection. Transfected and wild-type NSCs were induced to differentiate into cells of neuronal and myogenic lineages. Markers of passage three NSCs and their differentiated cells were tested by reverse transcription polymerase chain reaction. The results showed that EGFP could be expressed in NSCs and the differentiated cells. NSCs expressed Nestin, NogoA, DCX, Hes1, Oct4, CD-90 and Sox2. NSCs could differentiated into astrocyte (GFAP(+)), oligodendrocyte (GalC(+)), neuron (NF(+), NSE(+) and MAP2(+)) and myocyte (myf-6(+) and myoD(+)). We concluded that EGFP can be used as a marker in monitoring NSCs. PMID:19580981

  12. Targeting lipopolyplexes using bifunctional peptides incorporating hydrophobic spacer amino acids: synthesis, transfection, and biophysical studies.

    PubMed

    Pilkington-Miksa, Michael A; Writer, Michele J; Sarkar, Supti; Meng, Qing-Hai; Barker, Suzie E; Shamlou, Parviz Ayazi; Hailes, Helen C; Hart, Stephen L; Tabor, Alethea B

    2007-01-01

    We have developed efficient synthetic routes to two hydrophobic amino acids, suitably protected for solid-phase peptide synthesis, and have successfully synthesized peptides containing these or other hydrophobic amino acids as spacers between a Lys16 moiety and an integrin-targeting motif. These peptides have in turn been used to formulate a range of lipopolyplex vectors with Lipofectin and plasmid DNA. The transfection efficiencies of these vectors and their aggregation behavior in buffers and in serum have been studied. We have shown that vectors containing peptides incorporating long linkers that are entirely hydrophobic are less efficient transfection agents. However, linkers of equivalent length that are in part hydrophobic show improved transfection properties, which is probably due to the improved accessibility of the integrin-binding motif. PMID:17915956

  13. Nucleofection as an efficient nonviral transfection method for human monocytic cells.

    PubMed

    Martinet, Wim; Schrijvers, Dorien M; Kockx, Mark M

    2003-07-01

    Despite some progress in the field of gene transfer into hard-to-transfect cells, so far an efficient nonviral method for monocytes has not been available. A comparison of plasmid DNA with capped and polyadenylated mRNA for enhanced green fluorescent protein gene delivery into the commonly used monocytic cell lines U937 and THP-1 suggested that limited DNA trafficking may be the underlying cause of poor transfection results. As Nucleofector technology delivers DNA (or mRNA) straight into the nucleus, we obtained nucleofection efficiencies of up to 80% without significant cell toxicity. Moreover, as the DNA quickly reaches the nucleus, nucleofected cells were ready for analysis after only 2-6 h. The technique is suitable not only for monocytes but also for other hard-to-transfect cells. PMID:12889809

  14. EBV-based plasmid DNA rearrangements after transfection of eukaryotic cells.

    PubMed

    Morozova, O V; Maksimova, T G; Kostenko, E V

    2000-05-01

    The cDNA encoding influenza virus (A/Udorn/307/72 strain) M2 protein was subcloned into the EBV-based vector pREP9. Three continuous kidney cellular lines of different origin were transfected with recombinant plasmid pREP9-M2. One and 5 months after transfection plasmid DNA rearrangements were detected by means of restriction analysis of recovered plasmids and their hybridization with an influenza-virus-specific radioactive probe. Deletions were the most frequent type of pREP9-M2 mutations. PCR with primers corresponding to cellular genome and plasmid DNA followed by Southern blot analysis with the [(32)P]-labeled M2-fragment allowed host DNA rearrangements to be revealed in transfected cells. PMID:10783296

  15. MATra - Magnet Assisted Transfection: combining nanotechnology and magnetic forces to improve intracellular delivery of nucleic acids.

    PubMed

    Bertram, J

    2006-08-01

    Recent efforts combining nanotechnology and magnetic properties resulted in the development and commercialization of magnetic nanoparticles that can be used as carriers for nucleic acids for in vitro transfection and for gene therapy approaches including DNA-based vaccination strategies. The efficiency of intracellular delivery is still a limiting factor for basic cell biological research and also for emerging technologies such as temporary gene silencing based on inhibitory RNA/siRNA. Nanotechnology has resulted in a variety of different nanostructures and especially nanoparticles as carriers in a wide range of new drug delivery systems for conventional drugs, recombinant proteins, vaccines and more recently nucleic acids. It is possible to combine superparamagnetic nanoparticles with magnetic forces to increase, direct and optimize intracellular delivery of biomolecules. This article discusses the main approaches in the field of magnet assisted transfection (MATra) focusing on the transfection or intracellular delivery of nucleic acids, although also suitable to improve the intracellular delivery of other biomolecules. PMID:16918404

  16. DNA Transfer into Animal Cells Using Stearylated CPP Based Transfection Reagent.

    PubMed

    Karro, Kristiina; Männik, Tiiu; Männik, Andres; Ustav, Mart

    2015-01-01

    The efficient transfection of cloned genes into cells has a critical role in nucleic acid-based therapeutic applications, molecular and cell biology studies, and the production of recombinant proteins in cultured cells. Using a stearylated cell-penetrating peptide (CPP) NickFect51, we have generated an effective, universal, and convenient method for the delivery of DNA vectors into animal cells derived from different origins (mammalian, avian, insect). The CPP-mediated transfection described in detail herein is efficient for many regular cell lines commonly used for research purposes and it is especially suitable for transfection of protein production cell lines adapted for growth in chemically defined serum-free medium. PMID:26202287

  17. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    NASA Astrophysics Data System (ADS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  18. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    PubMed Central

    Samadikhah, Hamid Reza; Majidi, Asia; Nikkhah, Maryam; Hosseinkhani, Saman

    2011-01-01

    Purpose Cationic liposomes (CLs) are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the deficiencies. Materials and methods CLs and magnetic cationic liposomes (MCLs) were prepared using the freeze-dried empty liposome method. Luciferase-harboring vectors (pGL3) were transferred into liposomes and the transfection efficiencies were determined by luciferase assay. Firefly luciferase is one of most popular reporter genes often used to measure the efficiency of gene transfer in vivo and in vitro. Different formulations of liposomes have been used for delivery of different kinds of gene reporters. Lipoplex (liposome–plasmid DNA complexes) formation was monitored by gel retardation assay. Size and charge of lipoplexes were determined using particle size analysis. Chinese hamster ovary cells were transfected by lipoplexes (liposome-pGL3); transfection efficiency and gene expression level was evaluated by luciferase assay. Results High transfection efficiency of plasmid by CLs and novel nanomagnetic CLs was achieved. Moreover, lipoplexes showed less cytotoxicity than polyethyleneimine and Lipofectamine™. Conclusion Novel liposome compositions (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dioctadecyldimethylammonium bromide [DOAB] and DPPC/cholesterol/DOAB) with high transfection efficiency can be useful in gene delivery in vitro. MCLs can also be used for targeted gene delivery, due to magnetic characteristic for conduction of genes or drugs to target organs. PMID:22072865

  19. Gene Transfection in High Serum Levels: Case Studies with New Cholesterol Based Cationic Gemini Lipids

    PubMed Central

    Misra, Santosh K.; Biswas, Joydeep; Kondaiah, Paturu; Bhattacharya, Santanu

    2013-01-01

    Background Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)n- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media. Methodology/Principal Findings To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features. Conclusions/Significance -OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies. PMID:23861884

  20. Structural and transfection properties of amine-substituted gemini surfactant-based nanoparticles

    SciTech Connect

    Wettig,S.; Badea, I.; Donkuru, M.; Verrall, R.; Foldvari, M.

    2007-01-01

    Increases in DNA transfection efficiencies for non-viral vectors can be achieved through rational design of novel cationic building blocks. Based on previous results examining DNA condensation by polyamines, novel gemini surfactants have been designed that incorporate aza or imino substituents within the spacer group in order to increase interactions with DNA and potentially improve their DNA transfection ability. Transfection efficiencies and cell toxicity of gemini nanoparticles constructed from plasmid DNA, gemini surfactant, and a neutral lipid were measured in COS7 cells using a luciferase assay. Structural properties of nanoparticles were examined by using circular dichroism, particle size, zeta potential, and small-angle X-ray scattering (SAXS) measurements. The incorporation of aza and imino substituents within the spacer group was observed to enhance the transfection ability of gemini surfactants. Incorporation of an imino group in the structure of the 1,9-bis(dodecyl)-1,1,9,9-tetramethyl-5-imino-1,9-nonanediammonium dibromide surfactant (12-7NH-12) resulted in a statistically significant (p < 0.01) 9-fold increase in transfection compared to an unsubstituted gemini surfactant and a 3-fold increase compared to the corresponding aza-substituted compound. A pH-dependent transition in size and zeta potential was observed to occur at pH 5.5 for complexes formed from the 12-7NH-12 compound. SAXS results show weakly ordered structures and the presence of multiple phases. The incorporation of a pH-active imino group within the spacer of the gemini surfactant results in a significant increase in transfection efficiency that can be related to both pH-induced changes in nanoparticle structure and the formation of multiple phases that more readily allow for membrane fusion that may facilitate DNA release.

  1. Effective gene delivery into human stem cells with a cell-targeting Peptide-modified bioreducible polymer.

    PubMed

    Beloor, Jagadish; Ramakrishna, Suresh; Nam, Kihoon; Seon Choi, Chang; Kim, Jongkil; Kim, Sung Hwa; Cho, Hyong Jin; Shin, HeungSoo; Kim, Hyongbum; Kim, Sung Wan; Lee, Sang-Kyung; Kumar, Priti

    2015-05-01

    Stem cells are poorly permissive to non-viral gene transfection reagents. In this study, we explored the possibility of improving gene delivery into human embryonic (hESC) and mesenchymal (hMSC) stem cells by synergizing the activity of a cell-binding ligand with a polymer that releases nucleic acids in a cytoplasm-responsive manner. A 29 amino acid long peptide, RVG, targeting the nicotinic acetylcholine receptor (nAchR) was identified to bind both hMSC and H9-derived hESC. Conjugating RVG to a redox-sensitive biodegradable dendrimer-type arginine-grafted polymer (PAM-ABP) enabled nanoparticle formation with plasmid DNA without altering the environment-sensitive DNA release property and favorable toxicity profile of the parent polymer. Importantly, RVG-PAM-ABP quantitatively enhanced transfection into both hMSC and hESC compared to commercial transfection reagents like Lipofectamine 2000 and Fugene. ∼60% and 50% of hMSC and hESC were respectively transfected, and at increased levels on a per cell basis, without affecting pluripotency marker expression. RVG-PAM-ABP is thus a novel bioreducible, biocompatible, non-toxic, synthetic gene delivery system for nAchR-expressing stem cells. Our data also demonstrates that a cell-binding ligand like RVG can cooperate with a gene delivery system like PAM-ABP to enable transfection of poorly-permissive cells. PMID:25515928

  2. Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain

    NASA Astrophysics Data System (ADS)

    Newland, B.; Aied, A.; Pinoncely, A. V.; Zheng, Y.; Zhao, T.; Zhang, H.; Niemeier, R.; Dowd, E.; Pandit, A.; Wang, W.

    2014-06-01

    The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a ``knot'' structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus ``untie'' under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot structured polymer in vitro, combined with its ability to mediate luciferase transgene expression in the adult rat brain, demonstrates its use as a platform transfection technology which should be investigated further for neurodegenerative disease therapies.The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a ``knot'' structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus ``untie'' under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot

  3. Advanced Polymer

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In the mid-1980's, Langley developed a polyimide sulfone, combining desirable properties of two classes of polymers. Composites and other products made from polyimide sulfone can be used with solvents and corrosive fluids, are light weight, low cost and can be easily fabricated for a wide range of industrial uses. High Technology Systems, Inc. obtained a license for the polymer and was awarded a Small Business Innovation Research (SBIR) contract for development in a powder form. Although its principal use is as a matrix resin for composites, the material can also be used as a high temperature structural adhesive for aircraft structures and as a coating for protection from heat and radiation for electronic components.

  4. Gene targeting in primary human trophoblasts

    PubMed Central

    Rosario, Fredrick J; Sadovsky, Yoel; Jansson, Thomas

    2012-01-01

    Studies in primary human trophoblasts provide critical insights into placental function in normal and complicated pregnancies. Mechanistic studies in these cells require experimental tools to modulate gene expression. Lipid-based methods to transfect primary trophoblasts are fairly simple to use and allow for the efficient delivery of nucleic acids, but potential toxic effects limit these methods. Viral vectors are versatile transfection tools of native trophoblastic or foreign cDNAs, providing high transfection efficiency, low toxicity and stable DNA integration into the trophoblast genome. RNA interference (RNAi), using small interfering RNA (siRNA) or microRNA, constitutes a powerful approach to silence trophoblast genes. However, off-target effects, such as regulation of unintended complementary transcripts, inflammatory responses and saturation of the endogenous RNAi machinery, are significant concerns. Strategies to minimize off-target effects include using multiple individual siRNAs, elimination of pro-inflammatory sequences in the siRNA construct and chemical modification of a nucleotide in the guide strand or of the ribose moiety. Tools for efficient gene targeting in primary human trophoblasts are currently available, albeit not yet extensively validated. These methods are critical for exploring the function of human trophoblast genes and may provide a foundation for the future application of gene therapy that targets placental trophoblasts. PMID:22831880

  5. Phthalocyanine polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1985-01-01

    A method of forming 4,4',4'',4''' -tetraamino phthalocyanines involves reducing 4,4',4'',4''' -tetranitro phthalocyanines, polymerizing the metal tetraamino phthalocyanines with a tetracarboxylic dianhydride (preferably aromatic) or copolymerizing with a tetracarboxylic dianhydride and a diamine (preferably also aromatic) to produce amic acids which are then dehydrocyclized to imides. Thermally and oxidatively stable polymers result which form tough, flexible films, varnishes, adhesives, and fibers.

  6. Periodic Polymers

    NASA Astrophysics Data System (ADS)

    Thomas, Edwin

    2013-03-01

    Periodic polymers can be made by self assembly, directed self assembly and by photolithography. Such materials provide a versatile platform for 1, 2 and 3D periodic nano-micro scale composites with either dielectric or impedance contrast or both, and these can serve for example, as photonic and or phononic crystals for electromagnetic and elastic waves as well as mechanical frames/trusses. Compared to electromagnetic waves, elastic waves are both less complex (longitudinal modes in fluids) and more complex (longitudinal, transverse in-plane and transverse out-of-plane modes in solids). Engineering of the dispersion relation between wave frequency w and wave vector, k enables the opening of band gaps in the density of modes and detailed shaping of w(k). Band gaps can be opened by Bragg scattering, anti-crossing of bands and discrete shape resonances. Current interest is in our group focuses using design - modeling, fabrication and measurement of polymer-based periodic materials for applications as tunable optics and control of phonon flow. Several examples will be described including the design of structures for multispectral band gaps for elastic waves to alter the phonon density of states, the creation of block polymer and bicontinuous metal-carbon nanoframes for structures that are robust against ballistic projectiles and quasi-crystalline solid/fluid structures that can steer shock waves.

  7. Polymer Electronics: Power from Polymers

    SciTech Connect

    Venkataraman, D.; Russell, Thomas P.

    2012-06-19

    We review polymer-based electronics and photovoltaics to provide the reader with a sense of how the field has developed, where we stand at present, and what possibilities are looming in the future. Expertise in areas ranging from synthesis to morphology to device design was sought to achieve this end. While these reviews cannot be exhaustive, they do provide a snapshot of the field at present and give some sense of where the key impediments are.

  8. Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes

    PubMed Central

    Chow, Yu Ting; Chen, Shuxun; Wang, Ran; Liu, Chichi; Kong, Chi-wing; Li, Ronald A.; Cheng, Shuk Han; Sun, Dong

    2016-01-01

    Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise amounts of materials into cells. The developed microinjection system achieved precise single-cell microinjection by pre-patterning cells in an array and controlling the amount of substance delivered based on injection pressure and time. The precision of the proposed injection technique was examined by comparing the fluorescence intensities of fluorescent dye droplets with a standard concentration and water droplets with a known injection amount of the dye in oil. Injection of synthetic modified mRNA (modRNA) encoding green fluorescence proteins or a cocktail of plasmids encoding green and red fluorescence proteins into human foreskin fibroblast cells demonstrated that the resulting green fluorescence intensity or green/red fluorescence intensity ratio were well correlated with the amount of genetic material injected into the cells. Single-cell transfection via the developed microinjection technique will be of particular use in cases where cell transfection is challenging and genetically modified of selected cells are desired. PMID:27067121

  9. Single-Cell-State Culture of Human Pluripotent Stem Cells Increases Transfection Efficiency

    PubMed Central

    Nii, Takenobu; Kohara, Hiroshi; Marumoto, Tomotoshi; Sakuma, Tetsushi; Yamamoto, Takashi; Tani, Kenzaburo

    2016-01-01

    Abstract Efficient gene transfer into human pluripotent stem cells (hPSCs) holds great promise for regenerative medicine and pharmaceutical development. In the past decade, various methods were developed for gene transfer into hPSCs; however, hPSCs form tightly packed colonies, making gene transfer difficult. In this study, we established a stable culture method of hPSCs at a single-cell state to reduce cell density and investigated gene transfection efficiency followed by gene editing efficiency. hPSCs cultured in a single-cell state were transfected using nonliposomal transfection reagents with plasmid DNA or mRNA encoding enhanced green fluorescent protein. We found that most cells (DNA > 90%; mRNA > 99%) were transfected without the loss of undifferentiated PSC marker expression or pluripotency. Moreover, we demonstrated an efficient gene editing method using transcription activator-like effector nucleases (TALENs) targeting the adenomatous polyposis coli (APC) gene. Our new method may improve hPSC gene transfer techniques, thus facilitating their use for human regenerative medicine. PMID:27257519

  10. Purification of transfection-grade plasmid DNA from bacterial cells with superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chiang, Chen-Li; Sung, Ching-Shan

    2006-07-01

    The functionalized magnetic nanobeads were used to develop a rapid protocol for extracting and purifying transfection-grade plasmid DNA from bacterial culture. Nanosized superparamagnetic nanoparticles (Fe 3O 4) were prepared by chemical coprecipitation method using Fe 2+, Fe 3+ salt, and ammonium hydroxide under a nitrogen atmosphere. The surface of Fe 3O 4 nanoparticles was modified by coating with the multivalent cationic agent, polyethylenimine (PEI). The PEI-modified magnetic nanobeads were employed to simplify the purification of plasmid DNA from bacterial cells. We demonstrated a useful plasmid, pRSETB-EGFP, encoding the green fluorescent protein with T7 promoter, was amplified in DE3 strain of Escherichia coli. The loaded nanobeads are recovered by magnetically driven separation and regenerated by exposure to the elution buffer with optimal ionic strength (1.25 M) and pH (9.0). Up to approximately 819 μg of high-purity (A 260/A 280 ratio=1.86) plasmid DNA was isolated from 100 ml of overnight bacterial culture. The eluted plasmid DNA was used directly for restriction enzyme digestion, bacterial cell transformation and animal cell transfection applications with success. The PEI-modified magnetic nanobead delivers significant time-savings, overall higher yields and better transfection efficiencies compared to anion-exchange and other methods. The results presented in this report show that PEI-modified magnetic nanobeads are suitable for isolation and purification of transfection-grade plasmid DNA.

  11. Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes.

    PubMed

    Chow, Yu Ting; Chen, Shuxun; Wang, Ran; Liu, Chichi; Kong, Chi-Wing; Li, Ronald A; Cheng, Shuk Han; Sun, Dong

    2016-01-01

    Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise amounts of materials into cells. The developed microinjection system achieved precise single-cell microinjection by pre-patterning cells in an array and controlling the amount of substance delivered based on injection pressure and time. The precision of the proposed injection technique was examined by comparing the fluorescence intensities of fluorescent dye droplets with a standard concentration and water droplets with a known injection amount of the dye in oil. Injection of synthetic modified mRNA (modRNA) encoding green fluorescence proteins or a cocktail of plasmids encoding green and red fluorescence proteins into human foreskin fibroblast cells demonstrated that the resulting green fluorescence intensity or green/red fluorescence intensity ratio were well correlated with the amount of genetic material injected into the cells. Single-cell transfection via the developed microinjection technique will be of particular use in cases where cell transfection is challenging and genetically modified of selected cells are desired. PMID:27067121

  12. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound.

    PubMed

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K Kirk

    2016-01-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca(2+) and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity. PMID:26843283

  13. Single-Cell-State Culture of Human Pluripotent Stem Cells Increases Transfection Efficiency.

    PubMed

    Nii, Takenobu; Kohara, Hiroshi; Marumoto, Tomotoshi; Sakuma, Tetsushi; Yamamoto, Takashi; Tani, Kenzaburo

    2016-01-01

    Efficient gene transfer into human pluripotent stem cells (hPSCs) holds great promise for regenerative medicine and pharmaceutical development. In the past decade, various methods were developed for gene transfer into hPSCs; however, hPSCs form tightly packed colonies, making gene transfer difficult. In this study, we established a stable culture method of hPSCs at a single-cell state to reduce cell density and investigated gene transfection efficiency followed by gene editing efficiency. hPSCs cultured in a single-cell state were transfected using nonliposomal transfection reagents with plasmid DNA or mRNA encoding enhanced green fluorescent protein. We found that most cells (DNA > 90%; mRNA > 99%) were transfected without the loss of undifferentiated PSC marker expression or pluripotency. Moreover, we demonstrated an efficient gene editing method using transcription activator-like effector nucleases (TALENs) targeting the adenomatous polyposis coli (APC) gene. Our new method may improve hPSC gene transfer techniques, thus facilitating their use for human regenerative medicine. PMID:27257519

  14. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes

    NASA Astrophysics Data System (ADS)

    Torchilin, Vladimir P.; Levchenko, Tatyana S.; Rammohan, Ram; Volodina, Natalia; Papahadjopoulos-Sternberg, Brigitte; D'Souza, Gerard G. M.

    2003-02-01

    Liposomes modified with TAT peptide (TATp-liposomes) showed fast and efficient translocation into the cell cytoplasm with subsequent migration into the perinuclear zone. TATp-liposomes containing a small quantity (10 mol %) of a cationic lipid formed firm noncovalent complexes with DNA. Here, we present results demonstrating both in vitro and in vivo transfection with TATp-liposome-DNA complexes. Mouse NIH/3T3 fibroblasts and rat H9C2 cardiomyocytes were transfected with such complexes in vitro. The transfection with the TATp-liposome-associated pEGFP-N1 plasmid encoding for the green fluorescent protein (GFP) was high, whereas the cytotoxicity was lower than that of commonly used cationic lipid-based gene-delivery systems. Intratumoral injection of TATp-liposome-DNA complexes into the Lewis lung carcinoma tumor of mice also resulted in an expression of GFP in tumor cells. This transfection system should be useful for various protocols of cell treatment in vitro or ex vivo as well as for localized in vivo gene therapy.

  15. Development of a confocal ultrasound device using an inertial cavitation control for transfection in-vitro

    NASA Astrophysics Data System (ADS)

    Mestas, J. L.; Chettab, K.; Roux, S.; Prieur, F.; Lafond, M.; Dumontet, C.; Lafon, C.

    2015-12-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. We developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (peGFP- C1) in adherent and non-adherent cell lines. The frequency spectrum of the signal receive by a hydrophone is used to compute a cavitation index (CI) representative of the inertial cavitation activity. The influence of the CI on transfection efficiency, as well as reproducibility were determined. A real-time feedback loop control on CI was integrated in the process to regulate the cavitation level during sonoporation. In both adherent and non-adherent cell lines, the sonoporation device produced a highly efficient transfection of peGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. Moreover, the sonoporation of non-adherent cell lines Jurkat and K562 was found to be equivalent to nucleofection in terms of efficiency and toxicity while these two cell lines were resistant to transfection with lipofection.

  16. Enhanced gene transfection by photochemical internalization of protomine sulfate/DNA complexes

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Mathews, Marlon B.; Shih, En-Chung; Madsen, Steen J.; Kwon, Young Jik

    2012-02-01

    Introduction: One of many limitations for cancer gene therapy is the inability of the therapeutic gene to transfect a sufficient number of tumor cells. Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. The utility of PCI for the delivery of the GFP indicator gene on the same plasmid as a tumor suppressor gene (PTEN) was investigated in monolayers of U251 human glioma cells. Materials and Methods: U251 monolayers were incubated in AlPcS2a for 18 h. The monolayers were incubated with non-viral vectors for either 4 or 18 hrs. In all cases, light treatment was performed with a diode laser at a wavelength of 670 nm. The non-viral transfection agents, branched PEI or protomine sulfate (PS), were used with the plasmid construct (GFP-PTEN). Results: PS was much less toxic to the gliomas cells compared to BPEI but was highly inefficient at gene transfection. PCI resulted in a 5-10 fold increase in GFP protein expression compared to controls. Conclusions: Collectively, the results suggest that AlPcS2a-mediated PCI can be used to enhance transfection of tumor suppressor genes in glioma cells.

  17. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection

    NASA Astrophysics Data System (ADS)

    Heinemann, D.; Kalies, S.; Schomaker, M.; Ertmer, W.; Murua Escobar, H.; Meyer, H.; Ripken, T.

    2014-06-01

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking.

  18. Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes

    NASA Astrophysics Data System (ADS)

    Chow, Yu Ting; Chen, Shuxun; Wang, Ran; Liu, Chichi; Kong, Chi-Wing; Li, Ronald A.; Cheng, Shuk Han; Sun, Dong

    2016-04-01

    Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise amounts of materials into cells. The developed microinjection system achieved precise single-cell microinjection by pre-patterning cells in an array and controlling the amount of substance delivered based on injection pressure and time. The precision of the proposed injection technique was examined by comparing the fluorescence intensities of fluorescent dye droplets with a standard concentration and water droplets with a known injection amount of the dye in oil. Injection of synthetic modified mRNA (modRNA) encoding green fluorescence proteins or a cocktail of plasmids encoding green and red fluorescence proteins into human foreskin fibroblast cells demonstrated that the resulting green fluorescence intensity or green/red fluorescence intensity ratio were well correlated with the amount of genetic material injected into the cells. Single-cell transfection via the developed microinjection technique will be of particular use in cases where cell transfection is challenging and genetically modified of selected cells are desired.

  19. GAP JUNCTION COMMUNICATON IN A TRANSFECTED HUMAN CELL LINE: ACTION OF MELATONIN AND MAGNETIC FIELDS

    EPA Science Inventory

    GAP JUNCTION COMMUNICTION IN TRANSFECTED HUMAN CELL LINE: ACTION OF MELATONIN AND MAGNETIC FIELDS.

    OBJECTIVE: We previously showed that functional gap junction communication (GJC), as monitored by dye transfer (DT), could be enhanced in mouse C3H 10T112 cells and in mouse...

  20. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-02-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

  1. The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery

    PubMed Central

    Cardarelli, Francesco; Digiacomo, Luca; Marchini, Cristina; Amici, Augusto; Salomone, Fabrizio; Fiume, Giuseppe; Rossetta, Alessandro; Gratton, Enrico; Pozzi, Daniela; Caracciolo, Giulio

    2016-01-01

    Lipofectamine reagents are widely accepted as “gold-standard” for the safe delivery of exogenous DNA or RNA into cells. Despite this, a satisfactory mechanism-based explanation of their superior efficacy has remained mostly elusive thus far. Here we apply a straightforward combination of live cell imaging, single-particle tracking microscopy, and quantitative transfection-efficiency assays on live cells to unveil the intracellular trafficking mechanism of Lipofectamine/DNA complexes. We find that Lipofectamine, contrary to alternative formulations, is able to efficiently avoid active intracellular transport along microtubules, and the subsequent entrapment and degradation of the payload within acidic/digestive lysosomal compartments. This result is achieved by random Brownian motion of Lipofectamine-containing vesicles within the cytoplasm. We demonstrate here that Brownian diffusion is an efficient route for Lipofectamine/DNA complexes to avoid metabolic degradation, thus leading to optimal transfection. By contrast, active transport along microtubules results in DNA degradation and subsequent poor transfection. Intracellular trafficking, endosomal escape and lysosomal degradation appear therefore as highly interdependent phenomena, in such a way that they should be viewed as a single barrier on the route for efficient transfection. As a matter of fact, they should be evaluated in their entirety for the development of optimized non-viral gene delivery vectors. PMID:27165510

  2. The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery.

    PubMed

    Cardarelli, Francesco; Digiacomo, Luca; Marchini, Cristina; Amici, Augusto; Salomone, Fabrizio; Fiume, Giuseppe; Rossetta, Alessandro; Gratton, Enrico; Pozzi, Daniela; Caracciolo, Giulio

    2016-01-01

    Lipofectamine reagents are widely accepted as "gold-standard" for the safe delivery of exogenous DNA or RNA into cells. Despite this, a satisfactory mechanism-based explanation of their superior efficacy has remained mostly elusive thus far. Here we apply a straightforward combination of live cell imaging, single-particle tracking microscopy, and quantitative transfection-efficiency assays on live cells to unveil the intracellular trafficking mechanism of Lipofectamine/DNA complexes. We find that Lipofectamine, contrary to alternative formulations, is able to efficiently avoid active intracellular transport along microtubules, and the subsequent entrapment and degradation of the payload within acidic/digestive lysosomal compartments. This result is achieved by random Brownian motion of Lipofectamine-containing vesicles within the cytoplasm. We demonstrate here that Brownian diffusion is an efficient route for Lipofectamine/DNA complexes to avoid metabolic degradation, thus leading to optimal transfection. By contrast, active transport along microtubules results in DNA degradation and subsequent poor transfection. Intracellular trafficking, endosomal escape and lysosomal degradation appear therefore as highly interdependent phenomena, in such a way that they should be viewed as a single barrier on the route for efficient transfection. As a matter of fact, they should be evaluated in their entirety for the development of optimized non-viral gene delivery vectors. PMID:27165510

  3. DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes.

    PubMed

    Kim, Bieong-Kil; Hwang, Guen-Bae; Seu, Young-Bae; Choi, Jong-Soo; Jin, Kyeong Sik; Doh, Kyung-Oh

    2015-10-01

    The effects of lipid compositions on their physicochemical properties and transfection efficiencies were investigated. Four liposome formulations with different 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) to dioleoylphosphatidylethanolamine (DOPE) weight ratios were investigated, that is, weight ratios 1:0 (T1P0), 3:1 (T3P1), 1:1 (T1P1), and 1:3 (T1P3). Mean sizes of liposomes were influenced by their lipid composition and the preparation concentration at the time of sonication. Zeta potentials of liposomes were inversely correlated with their liposome sizes. However, neither liposome sizes nor zeta potentials were correlated with transfection efficiency. The optimum composition of liposomes was cell-line dependent (T1P0 and T3P1 for Huh7 and AGS, T3P1 and T1P1 for COS7, and T1P1 and T1P3 for A549). The shape of lipoplexes was changed from lamellar to inverted hexagonal structure according to the increased ratio of DOPE, but there was no definite advantage of specific structure in transfection efficiency throughout all used cell lines. However, cellular internalization was consistently faster in T1P0, T3P1, T1P1 compared to T1P3 in all cell lines, suggesting the importance of endosomal escape. Our findings show that the transfection efficiency of DOTAP liposomes is mainly influenced by lipid composition and cell type, and not by size or zeta potential. PMID:26112463

  4. Safety and Efficacy of Activated Transfected Killer Cells for Neutropenic Fungal Infections

    PubMed Central

    Lin, Lin; Ibrahim, Ashraf S.; Baquir, Beverlie; Fu, Yue; Applebaum, David; Schwartz, Julie; Wang, Amy; Avanesian, Valentina; Spellberg, Brad

    2010-01-01

    Background Invasive fungal infections cause considerable morbidity and mortality in neutropenic patients. White blood cell transfusions are a promising treatment for such infections, but technical barriers have prevented their widespread use. Methods To recapitulate white blood cell transfusions, we are developing a cell-based immunotherapy using a phagocytic cell line, HL-60. We sought to stably transfect HL-60 cells with a suicide trap (herpes simplex virus thymidine kinase), to enable purging of the cells when desired, and a bioluminescence marker, to track the cells in vivo in mice. Results Transfection was stable despite 20 months of continuous culture or storage in liquid nitrogen. Activation of these transfected cells with retinoic acid and dimethyl sulfamethoxazole enhanced their microbicidal effects. Activated transfected killer (ATAK) cells were completely eliminated after exposure to ganciclovir, confirming function of the suicide trap. ATAK cells improved the survival of neutropenic mice with lethal disseminated candidiasis and inhalational aspergillosis. Bioluminescence and histopathologic analysis confirmed that the cells were purged from surviving mice after ganciclovir treatment. Comprehensive necropsy, histopathology, and metabolomic analysis revealed no toxicity of the cells. Conclusions These results lay the groundwork for continued translational development of this promising, novel technology for the treatment of refractory infections in neutropenic hosts. PMID:20397927

  5. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    PubMed Central

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-01-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity. PMID:26843283

  6. The shape and size effects of polycation functionalized silica nanoparticles on gene transfection.

    PubMed

    Lin, Xinyi; Zhao, Nana; Yan, Peng; Hu, Hao; Xu, Fu-Jian

    2015-01-01

    Silica nanoparticles are attractive candidates for the development of safe and efficient non-viral gene carriers, owing to their controlled morphologies, potential of facile surface modification and excellent biocompatibility as well as in vivo biodegradability. Conversely, the size and shape of nanoparticles are considered to have an intense influence on their interaction with cells and biological systems, but the effects of particle size and shape on gene transfection are poorly understood. In this work, a series of novel gene carriers were designed employing polycation modified silica nanoparticles with five different morphologies, while keeping uniform zeta potential and surface functionality. Then the effects of particle size and shape of these five different carriers on gene transfection were investigated. The morphology of silica nanoparticles is demonstrated to play an important role in gene transfection, especially when the amount of polycation is low. Chiral nanorods with larger aspect ratio were found to fabricate the most efficient gene carriers with compromised cytotoxicity. It was also noted that hollow nanosphere-based carriers exhibited better gene transfection performance than did solid counterparts. These results may provide new strategies to develop promising gene carriers and useful information for the application of nanoparticles in biomedical areas. PMID:25219349

  7. In Situ Transfection by Controlled Release of Lipoplexes Using Acoustic Droplet Vaporization.

    PubMed

    Juliar, Benjamin A; Bromley, Melissa M; Moncion, Alexander; Jones, Denise C; O'Neill, Eric G; Wilson, Christopher G; Franceschi, Renny T; Fabiilli, Mario L

    2016-07-01

    Localized delivery of nucleic acids to target sites (e.g., diseased tissue) is critical for safe and efficacious gene therapy. An ultrasound-based technique termed acoustic droplet vaporization (ADV) has been used to spatiotemporally control the release of therapeutic small molecules and proteins contained within sonosensitive emulsions. Here, ADV is used to control the release of lipoplex-containing plasmid DNA encoding an enhanced green fluorescent protein reporter-from a sonosensitive emulsion. Focused ultrasound (3.5 MHz, mechanical index (MI) ≥ 1.5) generates robust release of fluorescein (i.e., surrogate payload) and lipoplex from the emulsion. In situ release of the lipoplex from the emulsion using ADV (MI = 1.5, 30 cycles) yields a 55% release efficiency, resulting in 43% transfection efficiency and 95% viability with C3H/10T1/2 cells. Without exposure to ultrasound, the release and transfection efficiencies are 5% and 7%, respectively, with 99% viability. Lipoplex released by ADV retains its bioactivity while the ADV process does not yield any measureable sonoporative enhancement of transfection. Co-encapsulation of Ficoll PM 400 within the lipoplex-loaded emulsion, and its subsequent release using ADV, yield higher transfection efficiency than the lipoplex alone. The results demonstrate that ADV can have utility in the spatiotemporal control of gene delivery. PMID:27191532

  8. Transfected Type II Interleukin-1 Receptor Impairs Responsiveness of Human Keratinocytes to Interleukin-1

    PubMed Central

    Bossú, Paola; Visconti, Ugo; Ruggiero, Paolo; Macchia, Giovanni; Muda, Marco; Bertini, Riccardo; Bizzarri, Cinzia; Colagrande, Antonella; Sabbatini, Vilma; Maurizi, Giovanni; Del Grosso, Egidio; Tagliabue, Aldo; Boraschi, Diana

    1995-01-01

    Of the two known types of specific receptors for interleukin (IL)-1, the function of the type II IL-1 receptor (IL-IRII) is stil elusive. IL-1RII, is alleg-edly devoid of signaling capacity and is therefore thought to act by trapping and inbibiting IL-1. To directly assess the functional role of IL-1RII, a human keratinocyte cell line has been stably transfected with a cDNA coding for IL-1RII, and its responsiveness to IL-1 has been compared with that of nontransfected cells. Parental cells express IL-1RI and are responsive to low doses of IL-1, whereas transfected cells overexpress IL-1RII, both in its membrane and soluble form, and show a dramatically impaired response to IL-1. Selective block of IL-1RII restores the ability of transfected keratinocytes to respond to IL-1, indicating that the overexpressed IL-1RII, is in fact uniquely responsible for their refractori-ness to IL-1. The main mechanism of unrespon-siveness in transfected keratinocytes appears to be the capture and neutralization of IL-1 by the soluble form of IL-1RII. ImagesFigure 1 PMID:7495308

  9. Poly(ethyleneimine) functionalized carbon nanotubes as efficient nano-vector for transfecting mesenchymal stem cells.

    PubMed

    Moradian, Hanieh; Fasehee, Hamidreza; Keshvari, Hamid; Faghihi, Shahab

    2014-10-01

    For gene and drug delivery applications, carbon nanotubes (CNTs) have to be functionalized in order to become compatible with aqueous media and bind with genetic materials. In this study, combination of polyethyleneimine (PEI) grafted multi-walled carbon nanotubes (PEI-g-MWCNTs) and chitosan substrate is used as an efficient gene delivery system for transfection of hard-to-transfect bone marrow mesenchymal stem cells (BMSCs) with enhanced green fluorescent protein (EGFP) gene. Fourier transform infrared (FT-IR) spectra, dynamic light scattering (DLS) analysis and zeta potential measurements are used to characterize binding of PEI, particle size distribution and colloidal stability of the functionalized CNTs, respectively. DNA binding affinity, cellular uptake, transfection efficiency and possible cytotoxicity are also tested by agarose gel electrophoresis, flow cytometry, cytochemisty and MTT assay. The results demonstrate that cytotoxic effect of PEI-g-MWCNTs is negligible under optimal transfection condition. In consistency with high cellular uptake (>82%), PEI-g-MWCNTs give higher delivery of EGFP into the BMSCs which results in a more sustained expression of the model gene (EGFP) in short-term culture. These results suggest that PEI-g-MWCNTs in corporation with chitosan substrates would be a promising delivery system for BMSCs, a cell type with relevancy in the regenerative medicine and clinical applications. PMID:25033431

  10. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates.

    PubMed

    Kiviaho, Jenny K; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa; Kostiainen, Mauri A

    2016-06-01

    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications. PMID:27219684

  11. RNA recombination in a coronavirus: recombination between viral genomic RNA and transfected RNA fragments.

    PubMed Central

    Liao, C L; Lai, M M

    1992-01-01

    Mouse hepatitis virus (MHV), a coronavirus, has been shown to undergo a high frequency of RNA recombination both in tissue culture and in animal infection. So far, RNA recombination has been demonstrated only between genomic RNAs of two coinfecting viruses. To understand the mechanism of RNA recombination and to further explore the potential of RNA recombination, we studied whether recombination could occur between a replicating MHV RNA and transfected RNA fragments. We first used RNA fragments which represented the 5' end of genomic-sense sequences of MHV RNA for transfection. By using polymerase chain reaction amplification with two specific primers, we were able to detect recombinant RNAs which incorporated the transfected fragment into the 5' end of the viral RNA in the infected cells. Surprisingly, even the anti-genomic-sense RNA fragments complementary to the 5' end of MHV genomic RNA could also recombine with the MHV genomic RNAs. This observation suggests that RNA recombination can occur during both positive- and negative-strand RNA synthesis. Furthermore, the recombinant RNAs could be detected in the virion released from the infected cells even after several passages of virus in tissue culture cells, indicating that these recombinant RNAs represented functional virion RNAs. The crossover sites of these recombinants were detected throughout the transfected RNA fragments. However, when an RNA fragment with a nine-nucleotide (CUUUAUAAA) deletion immediately downstream of a pentanucleotide (UCUAA) repeat sequence in the leader RNA was transfected into MHV-infected cells, most of the recombinants between this RNA and the MHV genome contained crossover sites near this pentanucleotide repeat sequence. In contrast, when exogenous RNAs with the intact nine-nucleotide sequence were used in similar experiments, the crossover sites of recombinants in viral genomic RNA could be detected at more-downstream sites. This study demonstrated that recombination can occur

  12. Linear double-stranded DNA that mimics an infective tail of virus genome to enhance transfection.

    PubMed

    Anada, Takahisa; Karinaga, Ryouji; Koumoto, Kazuya; Mizu, Masami; Nagasaki, Takeshi; Kato, Yoshio; Taira, Kazunari; Shinkai, Seiji; Sakurai, Kazuo

    2005-11-28

    Our previous work showed that a natural beta-(1-->3)-d-glucan schizophyllan (SPG) can form a stable complex with single-stranded oligonucleotides (ssODNs). When protein transduction peptides were attached to SPG and this modified SPG was complexed with ssODNs, the resultant complex could induce cellular transfection of the bound ODNs, without producing serious cytotoxicity. However, no technique was available to transfect double-stranded DNAs (dsDNA) or plasmid DNA using SPG. This paper presents a new approach to transfect dsDNA, showing preparation and transfection efficiency for a minimal-size gene having a loop-shaped poly(dA)(80) on both ends. This poly(dA) loops of dsDNA can form a complex with SPG. An siRNA-coding dsDNA with the poly(dA) loop was complexed with Tat-attached SPG to silence luciferase expression. When LTR-Luc-HeLa cells that can express luciferase under the control of the LTR promoter were exposed to this complex, the expression of luciferase was suppressed (i.e., RNAi effect was enhanced). Cytotoxicity studies showed that the Tat-SPG complex induced much less cell death compared to polyethylenimine, indicating that the proposed method caused less harm than the conventional method. The Tat-SPG/poly(dA) looped dsDNA complex had a structure similar to the viral genome in that the dsDNA ends were able to induce transfection and protection. The present work identifies the SPG and poly(dA) looped minimum-sized gene combination as a candidate for a non-toxic gene delivery system. PMID:16219384

  13. Transfection and continuous expression of heterologous genes in the protozoan parasite Entamoeba histolytica.

    PubMed Central

    Hamann, L; Nickel, R; Tannich, E

    1995-01-01

    To provide tools for functional molecular genetics of the protozoan parasite Entamoeba histolytica, we investigated the use of the prokaryotic neomycin phosphotransferase (NEO) gene as a selectable marker for the transfection of the parasite. An Escherichia coli-derived plasmid vector was constructed (pA5'A3'NEO) containing the NEO coding region flanked by untranslated 5' and 3' sequences of an Ent. histolytica actin gene. Preceding experiments had revealed that amoebae are highly sensitive to the neomycin analogue G418 and do not survive in the presence of as little as 2 micrograms/ml. Transfection of circular pA5'A3'NEO via electroporation resulted in Ent. histolytica trophozoites resistant to G418 up to 100 micrograms/ml. DNA and RNA analyses of resistant cells indicated that (i) the transfected DNA was not integrated into the amoeba genome but was segregated episomally, (ii) in the amoebae, the plasmid replicated autonomously, (iii) the copy number of the plasmid and the expression of NEO-specific RNA were proportional to the amount of G418 used for selection, and (iv) under continuous selection, the plasmid was propagated over an observation period of 6 months. Moreover, the plasmid could be recloned into E. coli and was found to be unrearranged. To investigate the use of pA5'A3'NEO to coexpress other genes in Ent. histolytica, a second marker, the prokaryotic chloramphenicol acetyltransferase (CAT) gene under control of an Ent. histolytica lectin gene promoter was introduced into the plasmid. Transfection of the amoebae with this construct also conferred G418 resistance and, in addition, allowed continuous expression of CAT activity in quantities corresponding to the amount of G418 used for selection. When selection was discontinued, transfected plasmids were lost as indicated by an exponential decline of CAT activity in trophozoite extracts. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7568055

  14. Plasmid transfection in mammalian cells spatiotemporally tracked by a gold nanoparticle.

    PubMed

    Muroski, Megan E; Carnevale, Kate J F; Riskowski, Ryan A; Strouse, Geoffrey F

    2015-01-27

    Recent advances in cell transfection have suggested that delivery of a gene on a gold nanoparticle (AuNP) can enhance transfection efficiency. The mechanism of transfection is poorly understood, particularly when the gene is appended to a AuNP, as expression of the desired exogenous protein is dependent not only on the efficiency of the gene being taken into the cell but also on efficient endosomal escape and cellular processing of the nucleic acid. Design of a multicolor surface energy transfer (McSET) molecular beacon by independently dye labeling a linearized plasmid and short duplex DNA (sdDNA) appended to a AuNP allows spatiotemporal profiling of the transfection events, providing insight into package uptake, disassembly, and final plasmid expression. Delivery of the AuNP construct encapsulated in Lipofectamine2000 is monitored in Chinese hamster ovary cells using live-cell confocal microscopy. The McSET beacon signals the location and timing of the AuNP release and endosomal escape events for the plasmid and the sdDNA discretely, which are correlated with plasmid transcription by fluorescent protein expression within the cell. It is observed that delivery of the construct leads to endosomal release of the plasmid and sdDNA from the AuNP surface at different rates, prior to endosomal escape. Slow cytosolic diffusion of the nucleic acids is believed to be the limiting step for transfection, impacting the time-dependent expression of protein. The overall protein expression yield is enhanced when delivered on a AuNP, possibly due to better endosomal escape or lower degradation prior to endosomal escape. PMID:25494916

  15. Inner Ear Gene Transfection in Neonatal Mice Using Adeno-Associated Viral Vector: A Comparison of Two Approaches

    PubMed Central

    Xia, Li; Yin, Shankai; Wang, Jian

    2012-01-01

    Local gene transfection is a promising technique for the prevention and/or correction of inner ear diseases, particularly those resulting from genetic defects. Adeno-associated virus (AAV) is an ideal viral vector for inner ear gene transfection because of its safety, stability, long-lasting expression, and its high tropism for many different cell types. Recently, a new generation of AAV vectors with a tyrosine mutation (mut-AAV) has demonstrated significant improvement in transfection efficiency. A method for inner ear gene transfection via the intact round window membrane (RWM) has been developed in our laboratory. This method has not been tested in neonatal mice, an important species for the study of inherited hearing loss. Following a preliminary study to optimize the experimental protocol in order to reduce mortality, the present study investigated inner ear gene transfection in mice at postnatal day 7. We compared transfection efficiency, the safety of the scala tympani injection via RWM puncture, and the trans-RWM diffusion following partial digestion with an enzyme technique. The results revealed that approximately 47% of inner hair cells (IHCs) and 17% of outer hair cells (OHCs) were transfected via the trans-RWM approach. Transfection efficiency via RWM puncture (58% and 19% for IHCs and OHCs, respectively) was slightly higher, but the difference was not significant. PMID:22912830

  16. Transfer printing of transfected cell microarrays from poly(ethylene glycol)-oleyl surfaces onto biological hydrogels.

    PubMed

    Yamaguchi, Satoshi; Komiya, Senori; Matsunuma, Erika; Yamahira, Shinya; Kihara, Takanori; Miyake, Jun; Nagamune, Teruyuki

    2013-12-01

    We have developed a novel technique for constructing microarrays of transfected mammalian cells on or in extracellular matrix (ECM) hydrogels by transfer printing from patterned poly(ethylene glycol) (PEG)-oleyl surfaces. A mixed solution of small interfering RNA (siRNA) and a transfection reagent was spotted on PEG-oleyl-coated glass slides using an ink-jet printer, and the cells were then transiently immobilized on the patterned transfection mixtures. After overlaying an ECM hydrogel sheet onto the immobilized cells, the cells sandwiched between the glass slide and the hydrogel sheet were incubated at 37°C for simultaneous transfection of siRNA into cells and adhesion of cells to the hydrogel sheet. Transfer of the adhered, transfected cells was completed by peeling off the hydrogel sheet. The knockdown of a model gene in the transferred cell microarray by the transfected siRNA was successfully confirmed. Transfected cell microarrays were also embedded within three-dimensional ECM hydrogels. In the three-dimensional hydrogel, the inhibition effect of siRNA on cancer cell invasion was evaluated by quantifying the size of cell clusters on the microarrays. These results indicate that transfection of cell microarrays on or in a biological matrix is a promising technique for high-throughput screening of disease-related genes by direct observation of cellular phenomena in a physiologically relevant environment. PMID:23893595

  17. Interpretations of Polymer-Polymer Miscibility.

    ERIC Educational Resources Information Center

    Olabisi, Olagoke

    1981-01-01

    Discusses various aspects of polymeric mixtures, mixtures of structurally different homopolymers, copolymers, terpolymers, and the like. Defines concepts of polymer-polymer miscibility from practical and theoretical viewpoints, and ways of predicting such miscibility. (JN)

  18. Evaluation of pulsed laser ablation in liquids generated gold nanoparticles as novel transfection tools: efficiency and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Willenbrock, Saskia; Durán, María. Carolina; Barchanski, Annette; Barcikowski, Stephan; Feige, Karsten; Nolte, Ingo; Murua Escobar, Hugo

    2014-03-01

    Varying transfection efficiencies and cytotoxicity are crucial aspects in cell manipulation. The utilization of gold nanoparticles (AuNP) has lately attracted special interest to enhance transfection efficiency. Conventional AuNP are usually generated by chemical reactions or gas pyrolysis requiring often cell-toxic stabilizers or coatings to conserve their characteristics. Alternatively, stabilizer- and coating-free, highly pure, colloidal AuNP can be generated by pulsed laser ablation in liquids (PLAL). Mammalian cells were transfected efficiently by addition of PLAL-AuNP, but data systematically evaluating the cell-toxic potential are lacking. Herein, the transfection efficiency and cytotoxicity of PLAL AuNP was evaluated by transfection of a mammalian cell line with a recombinant HMGB1/GFP DNA expression vector. Different methods were compared using two sizes of PLAL-AuNP, commercialized AuNP, two magnetic NP-based protocols and a conventional transfection reagent (FuGENE HD; FHD). PLAL-AuNP were generated using a Spitfire Pro femtosecond laser system delivering 120 fs laser pulses at a wavelength of 800 nm focusing the fs-laser beam on a 99.99% pure gold target placed in ddH2O. Transfection efficiencies were analyzed after 24h using fluorescence microscopy and flow cytometry. Toxicity was assessed measuring cell proliferation and percentage of necrotic, propidium iodide positive cells (PI %). The addition of PLAL-AuNP significantly enhanced transfection efficiencies (FHD: 31 %; PLAL-AuNP size-1: 46 %; size-2: 50 %) with increased PI% but no reduced cell proliferation. Commercial AuNP-transfection showed significantly lower efficiency (23 %), slightly increased PI % and reduced cell proliferation. Magnetic NP based methods were less effective but showing also lowest cytotoxicity. In conclusion, addition of PLAL-AuNP provides a novel tool for transfection efficiency enhancement with acceptable cytotoxic side-effects.

  19. Comparison of Different Electroporation Parameters on Transfection Efficiency of Sheep Testicular Cells

    PubMed Central

    Niakan, Sarah; Heidari, Banafsheh; Akbari, Ghasem; Nikousefat, Zahra

    2016-01-01

    Objective Electroporation can be a highly efficient method for introducing the foreign genetic materials into the targeted cells for transient and/or permanent genetic modification. Considering the application of this technique as a very efficient method for drug, oligonucleotide, antibody and plasmid delivery for clinical applications and production of transgenic animals, the present study aimed to optimize the transfection efficiency of sheep testicular cells including spermatogonial stem cells (SSCs) via electroporation. Materials and Methods This study is an experimental research conducted in Biotechnology Research Center (Avicenna Research Institute, Tehran, Iran) from September 2013 to March 2014. Following isolation and propagation of one-month lamb testicular cells (SSCs and somatic testicular cells including; Sertoli, Leydig, and myoid cells), the effect of different electroporation parameters including total voltages (280, 320, and 350 V), burst durations (10, 8, and 5 milliseconds), burst modes (single or double) and addition of dimethyl sulfoxide (DMSO) were evaluated on transfection efficiency, viability rate and mean fluorescent intensity (MFI) of sheep testicular cells. Results The most transfection efficiency was obtained in 320 V/8 milliseconds/single burst group in transduction medium with and without DMSO. There was a significantly inverse correlation between transfection efficiency with application of both following parameters: addition of DMSO and double burst. After transfection, the highest and lowest viability rates of testicular cells were demonstrated in 320 V/8 milliseconds with transduction medium without DMSO and 350 V/5 milliseconds in medium containing DMSO. Ad- dition of DMSO to transduction medium in all groups significantly decreased the viability rate. The comparison of gene expression indicated that Sertoli and SSCs had the most fluorescence intensity in 320 V/double burst/DMSO positive. However, myoid and Leydig cells showed the

  20. Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity.

    PubMed

    Omokoko, Tana A; Luxemburger, Uli; Bardissi, Shaheer; Simon, Petra; Utsch, Magdalena; Breitkreuz, Andrea; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Immunotherapy is rapidly evolving as an effective treatment option for many cancers. With the emerging fields of cancer vaccines and adoptive cell transfer therapies, there is an increasing demand for high-throughput in vitro cytotoxicity assays that efficiently analyze immune effector functions. The gold standard (51)Cr-release assay is very accurate but has the major disadvantage of being radioactive. We reveal the development of a versatile and nonradioactive firefly luciferase in vitro transcribed (IVT) RNA-based assay. Demonstrating high efficiency, consistency, and excellent target cell viability, our optimized luciferase IVT RNA is used to transfect dividing and nondividing primary antigen presenting cells. Together with the long-lasting expression and minimal background, the direct measurement of intracellular luciferase activity of living cells allows for the monitoring of killing kinetics and displays paramount sensitivity. The ability to cotransfect the IVT RNA of the luciferase reporter and the antigen of interest into the antigen presenting cells and its simple read-out procedure render the assay high-throughput in nature. Results generated were comparable to the (51)Cr release and further confirmed the assay's ability to measure antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The assay's combined simplicity, practicality, and efficiency tailor it for the analysis of antigen-specific cellular and humoral effector functions during the development of novel immunotherapies. PMID:27057556

  1. Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity

    PubMed Central

    Omokoko, Tana A.; Luxemburger, Uli; Bardissi, Shaheer; Simon, Petra; Utsch, Magdalena; Breitkreuz, Andrea; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Immunotherapy is rapidly evolving as an effective treatment option for many cancers. With the emerging fields of cancer vaccines and adoptive cell transfer therapies, there is an increasing demand for high-throughput in vitro cytotoxicity assays that efficiently analyze immune effector functions. The gold standard 51Cr-release assay is very accurate but has the major disadvantage of being radioactive. We reveal the development of a versatile and nonradioactive firefly luciferase in vitro transcribed (IVT) RNA-based assay. Demonstrating high efficiency, consistency, and excellent target cell viability, our optimized luciferase IVT RNA is used to transfect dividing and nondividing primary antigen presenting cells. Together with the long-lasting expression and minimal background, the direct measurement of intracellular luciferase activity of living cells allows for the monitoring of killing kinetics and displays paramount sensitivity. The ability to cotransfect the IVT RNA of the luciferase reporter and the antigen of interest into the antigen presenting cells and its simple read-out procedure render the assay high-throughput in nature. Results generated were comparable to the 51Cr release and further confirmed the assay's ability to measure antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The assay's combined simplicity, practicality, and efficiency tailor it for the analysis of antigen-specific cellular and humoral effector functions during the development of novel immunotherapies. PMID:27057556

  2. Encapsulation of Adenovirus Serotype 5 in Anionic Lecithin Liposomes using a Bead-Based Immunoprecipitation Technique Enhances Transfection Efficiency

    PubMed Central

    Mendez, N.; Herrera, V.; Zhang, L.; Hedjran, F.; Feuer, R.; Blair, S.; Trogler, W.; Reid, T.

    2014-01-01

    Oncolytic viruses (OVs) constitute a promising class of cancer therapeutics which exploit validated genetic pathways known to be deregulated in many cancers. To overcome an immune response and to enhance its potential use to treat primary and metastatic tumors, a method for liposomal encapsulation of adenovirus has been developed. The encapsulation of adenovirus in non-toxic anionic lecithin-cholesterol-PEG liposomes ranging from 140–180nm in diameter have been prepared by self-assembly around the viral capsid. The encapsulated viruses retain their ability to infect cancer cells. Furthermore, an immunoprecipitation (IP) technique has shown to be a fast and effective method to extract non-encapsulated viruses and homogenize the liposomes remaining in solution. 78% of adenovirus plaque forming units were encapsulated and retained infectivity after IP processing. Additionally, encapsulated viruses have shown enhanced transfection efficiency up to 4× higher compared to non-encapsulated Ads. Extracting non-encapsulated viruses from solution may prevent an adverse in vivo immune response and may enhance treatment for multiple administrations. PMID:25154663

  3. Electroelasticity of polymer networks

    NASA Astrophysics Data System (ADS)

    Cohen, Noy; Dayal, Kaushik; deBotton, Gal

    2016-07-01

    A multiscale analysis of the electromechanical coupling in elastic dielectrics is conducted, starting from the discrete monomer level through the polymer chain and up to the macroscopic level. Three models for the local relations between the molecular dipoles and the electric field that can fit a variety of dipolar monomers are considered. The entropy of the network is accounted for within the framework of statistical mechanics with appropriate kinematic and energetic constraints. At the macroscopic level closed-form explicit expressions for the behaviors of amorphous dielectrics and isotropic polymer networks are determined, none of which admits the commonly assumed linear relation between the polarization and the electric field. The analysis reveals the dependence of the macroscopic coupled behavior on three primary microscopic parameters: the model assumed for the local behavior, the intensity of the local dipole, and the length of the chain. We show how these parameters influence the directional distributions of the monomers and the hence the resulting overall response of the network. In particular, the dependences of the polarization and the polarization induced stress on the deformation of the dielectric are illustrated. More surprisingly, we also reveal a dependence of the stress on the electric field which stems from the kinematic constraint imposed on the chains.

  4. From Commodity Polymers to Functional Polymers

    PubMed Central

    Xiang, Tao; Wang, Ling-Ren; Ma, Lang; Han, Zhi-Yuan; Wang, Rui; Cheng, Chong; Xia, Yi; Qin, Hui; Zhao, Chang-Sheng

    2014-01-01

    Functional polymers bear specified chemical groups, and have specified physical, chemical, biological, pharmacological, or other uses. To adjust the properties while keeping material usage low, a method for direct synthesis of functional polymers is indispensable. Here we show that various functional polymers can be synthesized by in situ cross-linked polymerization/copolymerization. We demonstrate that the polymers synthesized by the facile method using different functional monomers own outstanding pH-sensitivity and pH-reversibility, antifouling property, antibacterial, and anticoagulant property. Our study opens a route for the functionalization of commodity polymers, which lead to important advances in polymeric materials applications. PMID:24710333

  5. Effect of recombinant Newcastle disease virus transfection on lung adenocarcinoma A549 cells in vivo

    PubMed Central

    YAN, YULAN; JIA, LIJUAN; ZHANG, JIN; LIU, YANG; BU, XUEFENG

    2014-01-01

    Newcastle disease virus (NDV) has been reported to selectively duplicate in and then destroy tumor cells, whilst sparing normal cells. However, the effect of NDV on lung cancer has yet to be elucidated. In the present study, recombinant NDV (rl-RVG) was applied to lung adenocarcinoma A549 cell tumor-bearing mice to explore its effect on the proliferation of the cells and the immune response of the mice. Following rl-RVG transfection, RVG and NDV gene expression, decreased tumor growth, subcutaneous tumor necrosis, tumor apoptosis and an increased number of cluster of differentiation (CD)3−/CD49+ natural killer cells were more evident in the rl-RVG group. The present study demonstrated that rl-RVG transfection effectively restrained lung adenocarcinoma A549 cell growth in vivo, which may have been accomplish by inducing tumor cell apoptosis and regulating the cell immune response. PMID:25364430

  6. Preconditioning Vaccine Sites for mRNA-Transfected Dendritic Cell Therapy and Antitumor Efficacy.

    PubMed

    Batich, Kristen A; Swartz, Adam M; Sampson, John H

    2016-01-01

    Messenger RNA (mRNA)-transfected dendritic cell (DC) vaccines have been shown to be a powerful modality for eliciting antitumor immune responses in mice and humans; however, their application has not been fully optimized since many of the factors that contribute to their efficacy remain poorly understood. Work stemming from our laboratory has recently demonstrated that preconditioning the vaccine site with a recall antigen prior to the administration of a dendritic cell vaccine creates systemic recall responses and resultantly enhances dendritic cell migration to the lymph nodes with improved antitumor efficacy. This chapter describes the generation of murine mRNA-transfected DC vaccines, as well as a method for vaccine site preconditioning with protein antigen formulations that create potent recall responses. PMID:27076169

  7. Evaluation of transfection efficiency in skeletal muscle using nano/microbubbles and ultrasound.

    PubMed

    Kodama, Tetsuya; Aoi, Atsuko; Watanabe, Yukiko; Horie, Sachiko; Kodama, Mizuho; Li, Li; Chen, Rui; Teramoto, Noriyoshi; Morikawa, Hidehiro; Mori, Shiro; Fukumoto, Manabu

    2010-07-01

    Recent studies have revealed that ultrasound contrast agents with low-intensity ultrasound, namely, sonoporation, can noninvasively deliver therapeutic molecules into target sites. However, the efficiency of molecular delivery is relatively low and the methodology requires optimization. Here, we investigated three types of nano/microbubbles (NMBs)-human albumin shell bubbles, lipid bubbles and acoustic liposomes-to evaluate the efficiency of gene expression in skeletal muscle as a function of their physicochemical properties and the number of bubbles in solution. We found that acoustic liposomes showed the highest transfection and gene expression efficiency among the three types of NMBs under ultrasound-optimized conditions. Liposome transfection efficiency increased with bubble volume concentration; however, neither bubble volume concentration nor their physicochemical properties were related to the tissue damage detected in the skeletal muscle, which was primarily caused by needle injection. PMID:20620706

  8. Transfection of Mammalian Cells with Plasmid DNA by Scrape Loading and Sonication Loading

    NASA Astrophysics Data System (ADS)

    Fechheimer, Marcus; Boylan, John F.; Parker, Sandra; Sisken, Jesse E.; Patel, Gordhan L.; Zimmer, Stephen G.

    1987-12-01

    Scrape loading and sonication loading are two recently described methods of introducing macromolecules into living cells. We have tested the efficacy of these methods for transfection of mammalian cells with exogenous DNA, using selection systems based either on resistance to the drug G418 (Geneticin) or on acquisition of the ability to utilize the salvage pathway of pyrimidine biosynthesis. These loading methods can be employed to generate cell lines that express the gene product of the transfected DNA molecules both transiently and stably. Optimal transfection is observed when the DNA is added to cells in physiological saline lacking divalent cations and containing K+ in place of Na+. DNA molecules 7.1 to 30 kilobases long have been introduced by the scrape loading procedure. In addition, the scrape loading procedure has been employed for cotransfection and subsequent expression of nonselectable genes encoded on DNA molecules added in a mixture with DNA molecules whose expression is selected. Cell lines expressing oncogenes or proteins that are important for regulation of cell growth and division have been obtained by this procedure. The scrape loading procedure is also useful for studies of the cellular changes that occur upon expression of an exogenous gene. As many as 80% of cells scrape loaded with the plasmid pC6, which encodes the simian virus 40 large tumor antigen, contained this protein in the nucleus between 1 and 5 days after transfection. Thus, scrape loading and sonication loading are simple, economical, and reproducible methods for introduction of DNA molecules into adherent and nonadherent cells, and these methods may be useful in the future for experimentation at both fundamental and applied levels.

  9. Avermectin transepithelial transport in MDR1- and MRP-transfected canine kidney monolayers.

    PubMed

    Brayden, David J; Griffin, Joanna

    2008-01-01

    Fluxes of the anti-parasitic agents, [(3)H]-ivermectin, [(3)H]-selamectin and [(3)H]-moxidectin were studied across non-transfected and transfected canine kidney epithelial monolayers, MDCK II/wt, MDCK II-MDR1, MDCK II-MRP1 and MDCK II-MRP2. All four lines surprisingly expressed significant levels of P-glycoprotein (P-gp), coded for by MDR1, but MDCK II-MDR1 expressed increased levels compared to the other lines. MDCK II-MRP1 and MDCK II-MRP2 expressed increased levels of MRP1 and MRP2 respectively. Fluxes of [(3)H]-ivermectin, [(3)H]-selamectin, [(3)H]-moxidectin, and the P-gp substrates, rhodamine-123 and DiOC(2), were polarized in the basolateral-to-apical (secretory) direction across the four lines. Selected MRP inhibitors used in relevant pharmacological concentrations did not block the secretory fluxes of either [(3)H]-ivermectin or [(3)H]-selamectin in either the non-transfected or MRP-transfected lines. In contrast, secretory fluxes of ivermectin and selamectin were inhibited in all four lines by the P-gp inhibitor, verapamil. These data confirm that ivermectin and selamectin are substrates for P-gp in four additional cell lines, but suggest that they are not significant substrates for MRP1 or MRP2 where there is background expression of P-gp. Since this pattern of expression also pertains on the blood-brain barrier, it is unlikely that MRP1 and MRP2 play a significant role in ivermectin and selamectin blood: brain distribution in vivo. PMID:17578674

  10. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli.

    PubMed

    Maeß, Marten B; Wittig, Berith; Cignarella, Andrea; Lorkowski, Stefan

    2014-01-15

    Macrophages are versatile cells of the immune system which react to various external stimuli through different polarization patterns which adjust the cells to the required function whether it is removal of pathogens or necrotic cells, tissue repair or propagation of inflammation. As much of macrophage behavior is determined by their polarization, appropriate models to study macrophage polarization are required. Previously we have published a protocol for transfection of THP-1 macrophages, which in brief pre-differentiates THP-1 monocytes for 48h using 100ng/ml PMA, followed by detachment of the cells and eletroporation using Lonza nucleofector technology and finally includes further 48h of differentiation with 100ng/ml PMA. When we applied this protocol to study interleukin (IL) 10 dependent polarization, the cells were inert to the IL10 stimulus, as indicated by a failure to induce IL10 target genes such as SOCS3. Further investigation revealed that the cells were classically activated by the differentiation agent phorbol 12-myristate 13-acetate (PMA) as shown by induction of chemokine receptor CCR7. Subsequent reduction of PMA concentration during THP-1 macrophage differentiation significantly improved their response to IL10 as SOCS3 increased more than 40-fold. This increased responsiveness of the THP-1 macrophages was also confirmed for polarization with LPS and IFNγ. Up-regulation of classical activation markers CCL3, CCR7 and TNFα was enhanced from 18-, 21- and 70-fold, respectively, to 48-, 222- and 951-fold, respectively. Reduction of PMA concentration did not negatively affect macrophage differentiation or transfection efficiency. Expression of macrophage differentiation markers CD11b and CD68 as well as cell morphology remained unchanged. In addition transfection efficiency and rates of apoptosis and necrosis remained unaffected. Thus our revised protocol combines high transfection efficiency and cell vitality with a strong response to polarizing

  11. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Warner, Jamie W.

    2014-03-01

    Literature reports graphene, an atomic-thick sheet of carbon atoms as one of the promising biocompatible scaffolds that promotes cellular proliferation in human mesenchymal stem cells. On the other hand, different mammalian cell lines including the induced pluripotent stem cells exhibited an accelerated proliferation rate when cultured on graphene or graphene oxide coated substrates. These findings provide strong motivation to explore the full capability of graphene in further pluripotent stem cell research activities as there exists an urgent requirement to preserve their therapeutic potential. This therefore calls for non-invasive procedures for handling stem cells in-vitro. For example, resent literature has shown successful laser light driven transfection in both multipotent and pluripotent stem cells. In order to explore the non-invasive nature of optical transfection alongside biocompatible qualities of graphene, in this work we investigated the impact of optically transfecting mouse embryonic stem (mES) cells plated on graphene coated sample chambers. Using Chinese Hamster Ovary cells (CHO-K1), we further studied the influence of graphene on cell viability as well as cell cytotoxicity through assessing changes in levels of mitochondrial adenosine triphosphate (ATP) activity and the release of cytosolic lactate dehydrogenase (LHD) respectively. Our results showed that compared to those treated on plain glass, CHO-K1 cells optically treated while plated on graphene coated substrates exhibited a higher production of ATP and a milder release of LDH. In addition there was enhanced photo-transfection efficiency in both CHO-K1 and mES cells irradiated on graphene sample chambers.

  12. Characterization of a tachykinin peptide NK2 receptor transfected into murine fibroblast B82 cells.

    PubMed Central

    van Giersbergen, P L; Shatzer, S A; Henderson, A K; Lai, J; Nakanishi, S; Yamamura, H I; Buck, S H

    1991-01-01

    Membranes isolated from a murine fibroblast B82 cell line (SKLKB82#3) transfected with the bovine stomach cDNA pSKR56S exhibited binding of [His(125I)1]neurokinin A (125I-NKA) to a single population of sites with a Bmax of 147 fmol/mg of protein and a Kd of 0.59 nM. Control cell lines had little or no specific binding. The ligand binding in SKLKB82#3 cells was reversible and was inhibited by peptides in the potency rank of neuropeptide gamma greater than neuropeptide K greater than neurokinin A greater than [10-norleucine]neurokinin A-(4-10) greater than substance P much greater than senktide (succinyl-Asp-Phe-MePhe-Gly-Leu-Met-NH2). Specific binding was enhanced by Mn2+, Mg2+, and Ca2+ and was inhibited by guanine nucleotide analogues. Thus, SKLKB82#3 cells have been transfected with NK2 receptors that have become associated with an endogenous guanine nucleotide-binding protein. In comparison with membranes from the hamster urinary bladder, a tissue enriched in NK2 receptors, NK2 receptor antagonists displayed markedly different potencies, either more or less potent, in inhibiting specific binding in membranes of the transfected cells. Furthermore, inhibition of 125I-NKA binding by nucleotide analogues was markedly different in SKLKB82#3 cells compared with hamster bladder tissue. The different binding profile in the cells is not due to an artefact introduced during cDNA transfection because a similar profile was also observed in bovine stomach membranes. These results may indicate the existence of two distinct NK2 receptors. PMID:1848006

  13. Chitosan as a non-viral co-transfection system in a cystic fibrosis cell line.

    PubMed

    Fernández Fernández, Elena; Santos-Carballal, Beatriz; Weber, Wolf-Michael; Goycoolea, Francisco M

    2016-04-11

    Successful gene therapy requires the development of suitable vehicles for the selective and efficient delivery of genes to specific target cells at the expense of minimal toxicity. In this work, we investigated a non-viral gene delivery system based on chitosan (CS) to specifically address cystic fibrosis (CF). Thus, electrostatic self-assembled CS-pEGFP and CS-pEGFP-siRNA complexes were prepared from high-pure fully characterized CS (Mw ∼ 20 kDa and degree of acetylation ∼ 30%). The average diameter of positively-charged complexes (i.e. ζ ∼+25 mV) was ∼ 200 nm. The complexes were found relatively stable over 14h in Opti-MEM. Cell viability study did not show any significant cytotoxic effect of the CS-based complexes in a human bronchial cystic fibrosis cell line (CFBE41o-). We evaluated the transfection efficiency of this cell line with both CS-pEGFP and co-transfected with CS-pEGFP-siRNA complexes at (N/P) charge ratio of 12. We reported an increase in the fluorescence intensity of CS-pEGFP and a reduction in the cells co-transfected with CS-pEGFP-siRNA. This study shows proof-of-principle that co-transfection with chitosan might be an effective delivery system in a human CF cell line. It also offers a potential alternative to further develop therapeutic strategies for inherited disease treatments, such as CF. PMID:26875537

  14. Engineered glycated amino dendritic polymers as specific nonviral gene delivery vectors targeting the receptor for advanced glycation end products.

    PubMed

    Giron-Gonzalez, M Dolores; Morales-Portillo, Arturo; Salinas-Castillo, Alfonso; Lopez-Jaramillo, F Javier; Hernandez-Mateo, Fernando; Santoyo-Gonzalez, Francisco; Salto-Gonzalez, Rafael

    2014-06-18

    The receptor for advanced glycation end products (RAGE) is involved in diabetes or angiogenesis in tumors. Under pathological conditions, RAGE is overexpressed and upon ligand binding and internalization stimulates signaling pathways that promote cell proliferation. In this work, amino dendritic polymers PEI 25 kDa and alkylated derivatives of PAMAM-G2 were engineered by the nonenzymatic Maillard glycation reaction to generate novel AGE-containing gene delivery vectors targeting the RAGE. The glycated dendritic polymers were easily prepared and retained the capability to bind and protect DNA from endonucleases. Furthermore, while glycation decreased the transfection efficiency of the dendriplexes in CHO-k1 cells which do not express RAGE, glycated dendriplexes acted as efficient transfection reagents in CHO-k1 cells which stably express recombinant RAGE. In addition, preincubation with BSA-AGEs, a natural ligand of the RAGE, or dansyl cadaverine, an inhibitor of the RAGE internalization, blocked transfection, confirming their specificity toward RAGE. The results were confirmed in NRK and RAW264.7 cell lines, which naturally express the receptor. The glycated compounds retain their transfection efficiency in the presence of serum and promote in vivo transfection in a mouse model. Accordingly, RAGE is a suitable molecular target for the development of site-directed engineered glycated nonviral gene vectors. PMID:24852962

  15. Single-cell optoporation and transfection using femtosecond laser and optical tweezers.

    PubMed

    Waleed, Muhammad; Hwang, Sun-Uk; Kim, Jung-Dae; Shabbir, Irfan; Shin, Sang-Mo; Lee, Yong-Gu

    2013-01-01

    In this paper, we demonstrate a new single-cell optoporation and transfection technique using a femtosecond Gaussian laser beam and optical tweezers. Tightly focused near-infrared (NIR) femtosecond laser pulse was employed to transiently perforate the cellular membrane at a single point in MCF-7 cancer cells. A distinct technique was developed by trapping the microparticle using optical tweezers to focus the femtosecond laser precisely on the cell membrane to puncture it. Subsequently, an external gene was introduced in the cell by trapping and inserting the same plasmid-coated microparticle into the optoporated cell using optical tweezers. Various experimental parameters such as femtosecond laser exposure power, exposure time, puncture hole size, exact focusing of the femtosecond laser on the cell membrane, and cell healing time were closely analyzed to create the optimal conditions for cell viability. Following the insertion of plasmid-coated microparticles in the cell, the targeted cells exhibited green fluorescent protein (GFP) under the fluorescent microscope, hence confirming successful transfection into the cell. This new optoporation and transfection technique maximizes the level of selectivity and control over the targeted cell, and this may be a breakthrough method through which to induce controllable genetic changes in the cell. PMID:24049675

  16. Non-toxic phototriggered gene transfection by PAMAM-porphyrin conjugates.

    PubMed

    Shieh, Ming-Jium; Peng, Cheng-Liang; Lou, Pei-Jen; Chiu, Chieh-Hua; Tsai, Tsiao-Yu; Hsu, Chia-Yen; Yeh, Chen-Yu; Lai, Ping-Shan

    2008-08-01

    Development of controllable and non-toxic gene transfection systems is a core issue in gene therapy. Photochemical internalization, an innovative strategy in cytosolic release, provides us with an opportunity to develop a light-inducible gene delivery system. In this study, a novel photochemical internalization (PCI)-mediated gene delivery system was synthesized by surface modification of polyamidoamine (PAMAM) dendrimers via 5,10,15-tri(4-acetamidophenyl)-20-mono(4-carboxyl-phenyl)porphyrin (TAMCPP) conjugated to the generation 4 PAMAM dendrimer (G4). This water-soluble PAMAM-TAMCPP conjugate was characterized for cell viability, phototoxicity, DNA complexation, and in vitro transfection activity. The results show that TAMCPP conjugation did not increase the cytotoxicity of the PAMAM dendrimer below 20 microM, but significantly induced cell death after suitable irradiation. Under almost non-toxic G4-TAMCPP-mediated PCI treatment, the expression of green fluorescent protein determined by flow cytometry could be markedly enhanced in HeLa cells. Therefore, the G4-TAMCPP conjugate had an inducible and effective gene transfection activity, and showed considerable potential as a bimodal biomaterial for PCI-mediated gene therapy. PMID:18541326

  17. Photochemical internalization-mediated nonviral gene transfection: polyamine core-shell nanoparticles as gene carrier

    PubMed Central

    Zamora, Genesis; Wang, Frederick; Sun, Chung-Ho; Trinidad, Anthony; Kwon, Young Jik; Cho, Soo Kyung; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2014-01-01

    Abstract. The overall objective of the research was to investigate the utility of photochemical internalization (PCI) for the enhanced nonviral transfection of genes into glioma cells. The PCI-mediated introduction of the tumor suppressor gene phosphatase and tensin homolog (PTEN) or the cytosine deaminase (CD) pro-drug activating gene into U87 or U251 glioma cell monolayers and multicell tumor spheroids were evaluated. In the study reported here, polyamine-DNA gene polyplexes were encapsulated in a nanoparticle (NP) with an acid degradable polyketal outer shell. These NP synthetically mimic the roles of viral capsid and envelope, which transport and release the gene, respectively. The effects of PCI-mediated suppressor and suicide genes transfection efficiency employing either “naked” polyplex cores alone or as NP-shelled cores were compared. PCI was performed with the photosensitizer AlPcS2a and λ=670-nm laser irradiance. The results clearly demonstrated that the PCI can enhance the delivery of both the PTEN or CD genes in human glioma cell monolayers and multicell tumor spheroids. The transfection efficiency, as measured by cell survival and inhibition of spheroid growth, was found to be significantly greater at suboptimal light and DNA levels for shelled NPs compared with polyamine-DNA polyplexes alone. PMID:25341069

  18. Ultrasound-targeted microbubble destruction enhances naked plasmid DNA transfection in rabbit Achilles tendons in vivo.

    PubMed

    Qiu, L; Zhang, L; Wang, L; Jiang, Y; Luo, Y; Peng, Y; Lin, L

    2012-07-01

    The study was to investigate the probability of increasing the transfection of the gene in tendons by ultrasound-targeted microbubble destruction (UTMD), and to search for the most suitable transfection conditions. A mixture of microbubbles and enhanced green fluorescent protein (EGFP) plasmids was injected into rabbit Achilles tendons by different administration routes and the tendons were ultrasound pulse by different ultrasonic conditions in order to determine the most appropriate conditions. Then, the rabbits were divided into four groups: (1) ultrasound + microbubbles + plasmid; (2) ultrasound+ plasmid; (3) microbubble + plasmid; (4) plasmid only. EGFP expression in the tendons and other tissues, and the damage to tendon and paratenon were all observed. The results showed that EGFP expression in the tendon was higher by ultrasound pulse with 2 W cm(-2) of output intensity and a 20% duty cycle for 10 min. Local injection was determined to be the better administration route. Among the four groups, EGFP expression in Group 1 was higher than that in other groups. EGFP expression was highest on seventh day, then it gradually decrease over time, and lasted more than 56 days. EGFP expression was not found in other tissues. There was no obvious injury caused by UTMD. Under suitable conditions, it is feasible to use UTMD as a safe and effective gene transfection therapy for tendon injuries. PMID:22033463

  19. Glyoxalase I in detoxification: studies using a glyoxalase I transfectant cell line.

    PubMed Central

    Ranganathan, S; Walsh, E S; Tew, K D

    1995-01-01

    The glyoxalase system (glyoxalase I, glyoxalase II and GSH as cofactor) is involved in the detoxification of methylglyoxal (a byproduct of the glycolytic pathway) and other alpha-oxoaldehydes. We have transfected a 622 bp cDNA encoding human glyoxalase I into murine NIH3T3 cells. The recipient cells were shown to express elevated transcript and protein levels and a 10-fold increase in glyoxalase I enzyme activity. This was accompanied by an increased tolerance for exogenous methylglyoxal and enhanced resistance to the cytotoxic effects of two glyoxalase I inhibitors (s-p-bromobenzylglutathione diethyl ester and s-p-bromobenzylglutathione dicyclopentyl ester), a glutathione analogue [gamma-glutamyl-(S)-(benzyl)cysteinyl-(R)-(-)-phenylglycine diethyl ester] and the anti-cancer drugs mitomycin C and adriamycin. Steady-state levels of GSH were significantly lower in the transfected cells, perhaps reflecting increased flux as a consequence of elevated glyoxalase activity. This decrease did not alter the sensitivity to the alkylating agent chlorambucil. Although transfection did not affect the growth or doubling time of the NIH3T3 cells, analysis of glyoxalase I activity showed a consistent increase in tumour tissue when compared with pair-matched controls. Thus increased glyoxalase I is associated with the malignant phenotype and may also contribute to protection against the cytotoxicity of certain anti-cancer drugs. Images Figure 1 PMID:7619046

  20. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    PubMed Central

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  1. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection.

    PubMed

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes. PMID:26974323

  2. New Transfection Agents Based on Liposomes Containing Biosurfactant MEL-A

    PubMed Central

    Nakanishi, Mamoru; Inoh, Yoshikazu; Furuno, Tadahide

    2013-01-01

    Nano vectors are useful tools to deliver foreign DNAs, oligonucleotides, and small interfering double-stranded RNAs (siRNAs) into mammalian cells with gene transfection and gene regulation. In such experiments we have found the liposomes with a biosurfacant mannosylerythriol lipid (MEL-A) are useful because of their high transfer efficiency, and their unique mechanism to transfer genes to target cells with the lowest toxicity. In the present review we will describe our current work, which may contribute to the great advance of gene transfer to target cells and gene regulations. For more than two decades, the liposome technologies have changed dramatically and various methods have been proposed in the fields of biochemistry, cell biology, biotechnology, and so on. In addition, they were towards to pharmaceutics and clinical applications. The liposome technologies were expected to use gene therapy, however, they have not reached a requested goal as of yet. In the present paper we would like to present an approach using a biosurfactant, MEL-A, which is a surface-active compound produced by microorganisms growing on water-insoluble substrates and increases efficiency in gene transfection. The present work shows new transfection agents based on liposomes containing biosurfactant MEL-A. PMID:24300514

  3. Photochemical internalization-mediated nonviral gene transfection: polyamine core-shell nanoparticles as gene carrier

    NASA Astrophysics Data System (ADS)

    Zamora, Genesis; Wang, Frederick; Sun, Chung-Ho; Trinidad, Anthony; Kwon, Young Jik; Cho, Soo Kyung; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2014-10-01

    The overall objective of the research was to investigate the utility of photochemical internalization (PCI) for the enhanced nonviral transfection of genes into glioma cells. The PCI-mediated introduction of the tumor suppressor gene phosphatase and tensin homolog (PTEN) or the cytosine deaminase (CD) pro-drug activating gene into U87 or U251 glioma cell monolayers and multicell tumor spheroids were evaluated. In the study reported here, polyamine-DNA gene polyplexes were encapsulated in a nanoparticle (NP) with an acid degradable polyketal outer shell. These NP synthetically mimic the roles of viral capsid and envelope, which transport and release the gene, respectively. The effects of PCI-mediated suppressor and suicide genes transfection efficiency employing either "naked" polyplex cores alone or as NP-shelled cores were compared. PCI was performed with the photosensitizer AlPcS2a and λ=670-nm laser irradiance. The results clearly demonstrated that the PCI can enhance the delivery of both the PTEN or CD genes in human glioma cell monolayers and multicell tumor spheroids. The transfection efficiency, as measured by cell survival and inhibition of spheroid growth, was found to be significantly greater at suboptimal light and DNA levels for shelled NPs compared with polyamine-DNA polyplexes alone.

  4. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures.

    PubMed

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  5. Polycation-functionalized gold nanoparticles with different morphologies for superior gene transfection

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Wang, Ranran; Zhao, Nana; Zhao, Hong; Chen, Da-Fu; Xu, Fu-Jian

    2015-03-01

    Favorable physical and chemical properties endow Au nanoparticles (Au NPs) with various biomedical applications. After appropriate surface functionalization, Au NPs could construct promising drug/gene carriers with multiple functions. There is now ample evidence that physicochemical properties, such as size, shape, and surface chemistry, can dramatically influence the behaviors of Au NPs in biological systems. Investigation of these parameters could be fundamentally important for the application of Au NPs as drug/gene carriers. In this work, we designed a series of novel gene carriers employing polycation-functionalized Au NPs with five different morphologies (including Au nanospheres, Au nano-octahedra, arrow-headed Au nanorods, and Au nanorods with different aspect ratios). The effects of the particle size and shape of these different carriers on gene transfection were investigated in detail. The morphology of Au NPs is demonstrated to play an important role in gene transfection. The most efficient gene carriers are those fabricated with arrow-headed Au nanorods. Au nanosphere-based carriers exhibit the poorest performance in gene transfection. In addition, Au nanorods with smaller aspect ratios perform better than longer ones. These results may provide new avenues to develop promising gene carriers and gain useful information on the interaction of Au NPs with biological systems.

  6. Biosurfactant MEL-A enhances cellular association and gene transfection by cationic liposome.

    PubMed

    Igarashi, Saki; Hattori, Yoshiyuki; Maitani, Yoshie

    2006-05-30

    Mannnosylerythritol lipid A (MEL-A), a biosurfactant produced by microorganisms, has many biological activities. To enhance the gene transfection efficiency of a cationic liposome, we prepared a MEL-liposome (MEL-L) composed of 3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol), dioleoyl phosphatidylethanolamine (DOPE) and MEL-A, and investigated its transfection efficiency in human cervix carcinoma Hela cells. MEL-L was about 40 nm in size, and the MEL-L/plasmid DNA complex (MEL-lipoplex) remained an injectable size (169 nm). MEL-A induced a significantly higher level of gene expression, compared to commercially available Tfx20 and the liposome without MEL-A (Cont-L). Analysis of flow cytometric profiles clearly indicated that the amount of DNA associated with the cells was rapidly increased and sustained by addition of MEL-A to the liposome. Confocal microscopic observation indicated that the MEL-lipoplex distributed widely in the cytoplasm, and the DNA was detected strongly in the cytoplasm and around the nucleus, compared with Cont-L. These results suggested that MEL-A increased gene expression by enhancing the association of the lipoplexes with the cells in serum. MEL-L might prove a remarkable non-viral vector for gene transfection and gene therapy. PMID:16624437

  7. The ratio of unsaturated fatty acids in biosurfactants affects the efficiency of gene transfection.

    PubMed

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2010-10-15

    An unsaturated hydrocarbon chain in phospholipid was reported to affect a phase transition and a fusogenic activity after mixing membranes, and consequently to achieve a high DNA transfection efficiency. We previously showed that a biosurfactant mannosylerythritol lipid-A (MEL-A) enhances the gene transfection efficiency of cationic liposomes. Here, we have studied the effects of unsaturated fatty acid ratio of MEL-A on the physicochemical properties and gene delivery into cells of cationic liposomes using MEL-A with three different unsaturated fatty acid ratios (9.1%, 21.5%, and 46.3%). The gene transfer efficiency of cationic liposomes containing MEL-A (21.5%) was much higher than that of those containing MEL-A (9.1%) and MEL-A (46.3%). MEL-A (21.5%)-containing cationic liposomes induced highly efficient membrane fusion after addition of anionic liposomes and led to subsequent DNA release. Imaging analysis revealed that MEL-A (21.5%)-containing liposomes fused with the plasma membrane and delivered DNA into the nucleus of NIH-3T3 cells, MEL-A (46.3%)-containing liposomes fused with the plasma membrane did not deliver DNA into the nucleus, and MEL-A (9.1%)-containing liposomes neither fused with the plasma membrane nor delivered DNA into the nucleus. Thus, it is understandable that the unsaturated fatty acid ratio of MEL-A strongly influences the gene transfection efficiency of cationic liposomes. PMID:20674726

  8. Experimental transfection of Macaca sylvanus with cloned human hepatitis B virus.

    PubMed

    Gheit, Tarik; Sekkat, Souad; Cova, Lucyna; Chevallier, Michèle; Petit, Marie Anne; Hantz, Olivier; Lesénéchal, Mylène; Benslimane, Abdallah; Trépo, Christian; Chemin, Isabelle

    2002-07-01

    Due to the absence of easily accessible animal models for the study of hepatitis B virus (HBV), the possibility of using Macaca sylvanus, a monkey originating from Morocco, North Africa, was investigated. Three monkeys were intrahepatically inoculated with a replication-competent head-to-tail HBV DNA plasmid dimer construct. The HBV surface antigen and HBV DNA were detected prior to alanine aminotransferase elevation in the serum of two of three HBV-inoculated monkeys at day 2 post-transfection and persisted for several weeks. This indicates that transfected animals developed markers of HBV infection. In addition, electron microscopy of the serum 3 weeks post-transfection showed the presence of virus particles whose shape and size were similar to complete 42 nm HBV Dane particles. Histological examination of liver tissues also revealed pathological changes not observed in uninfected controls, which strongly suggested acute hepatitis. HBV DNA was also detected by PCR in these monkey livers. Taken together, these results indicate that HBV can successfully replicate in this model and that M. sylvanus could be a potentially useful new primate model for the study of HBV replication. PMID:12075082

  9. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA

    PubMed Central

    Orzalli, Megan H.; Conwell, Sara E.; Berrios, Christian; DeCaprio, James A.; Knipe, David M.

    2013-01-01

    Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection. We have found that nuclear interferon (IFN)-inducible protein 16 (IFI16) acts as a restriction factor against ICP0-null herpes simplex virus 1 (HSV-1) to limit viral replication and immediate–early gene expression. IFI16 promoted the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin. IFI16 also restricted the expression of plasmid DNAs introduced by transfection but did not restrict SV40 DNA introduced into the cellular nucleus in the form of nucleosomal chromatin by viral infection. These results argue that IFI16 restricts unchromatinized DNA when it enters the cell nucleus by promoting the loading of nucleosomes and the addition of heterochromatin marks. Furthermore, these results indicate that IFI16 provides a broad surveillance role against viral and transfected DNA by promoting restriction of gene expression from the exogenous DNA and inducing innate immune responses. PMID:24198334

  10. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA.

    PubMed

    Orzalli, Megan H; Conwell, Sara E; Berrios, Christian; DeCaprio, James A; Knipe, David M

    2013-11-19

    Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection. We have found that nuclear interferon (IFN)-inducible protein 16 (IFI16) acts as a restriction factor against ICP0-null herpes simplex virus 1 (HSV-1) to limit viral replication and immediate-early gene expression. IFI16 promoted the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin. IFI16 also restricted the expression of plasmid DNAs introduced by transfection but did not restrict SV40 DNA introduced into the cellular nucleus in the form of nucleosomal chromatin by viral infection. These results argue that IFI16 restricts unchromatinized DNA when it enters the cell nucleus by promoting the loading of nucleosomes and the addition of heterochromatin marks. Furthermore, these results indicate that IFI16 provides a broad surveillance role against viral and transfected DNA by promoting restriction of gene expression from the exogenous DNA and inducing innate immune responses. PMID:24198334

  11. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection

    PubMed Central

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes. PMID:26974323

  12. Pressure-Mediated Oligonucleotide Transfection of Rat and Human Cardiovascular Tissues

    NASA Astrophysics Data System (ADS)

    Mann, Michael J.; Gibbons, Gary H.; Hutchinson, Howard; Poston, Robert S.; Hoyt, E. Grant; Robbins, Robert C.; Dzau, Victor J.

    1999-05-01

    The application of gene therapy to human disease is currently restricted by the relatively low efficiency and potential hazards of methods of oligonucleotide or gene delivery. Antisense or transcription factor decoy oligonucleotides have been shown to be effective at altering gene expression in cell culture expreriments, but their in vivo application is limited by the efficiency of cellular delivery, the intracellular stability of the compounds, and their duration of activity. We report herein the development of a highly efficient method for naked oligodeoxynucleotide (ODN) transfection into cardiovascular tissues by using controlled, nondistending pressure without the use of viral vectors, lipid formulations, or exposure to other adjunctive, potentially hazardous substances. In this study, we have documented the ability of ex vivo, pressure-mediated transfection to achieve nuclear localization of fluorescent (FITC)-labeled ODN in approximately 90% and 50% of cells in intact human saphenous vein and rat myocardium, respectively. We have further documented that pressure-mediated delivery of antisense ODN can functionally inhibited target gene expression in both of these tissues in a sequence-specific manner at the mRNA and protein levels. This oligonucleotide transfection system may represent a safe means of achieving the intraoperative genetic engineering of failure-resistant human bypass grafts and may provide an avenue for the genetic manipulation of cardiac allograft rejection, allograft vasculopathy, or other transplant diseases.

  13. Drug Delivery and Cell Transfection Using Shock Waves Produced by Nanothermites

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Shubhra

    2009-06-01

    Shock waves have non-destructive life science applications in cell transfection and drug delivery. Based on molecular dynamics simulations, the shockwave causes transient compression of the cell membrane, which causes the hydrophobic interior of the lipid bilayer to become thinner. This allows diffusion of water molecules across the membrane. Recently, the nanothermite composition consisting of CuO nanorods and Al nanoparticles was shown to propagate at velocities in the same range as metallic azides and fulminates; however, the CuO/Al mixture produces lower pressure levels. An in vitro testing system was developed to deliver shock waves produced by nanothermites into cell suspensions and/or tissues. The plasmid encoded for production of green-fluorescent protein was delivered into cells including, among other types, chicken cardiomyocytes, cell lines (T47-D and Ins-1), and Arabidopsis plant cells. It was found that the nanothermite pressure impulses induced transfection resulting in production of green fluorescent protein in 99% of the cardiomyocytes. Additionally, transfected cell survival was evaluated, and the pressure impulses did not produce any elevated levels of cell death compared with control cell suspensions.

  14. Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector

    NASA Astrophysics Data System (ADS)

    Munye, Mustafa M.; Ravi, Jascindra; Tagalakis, Aristides D.; McCarthy, David; Ryadnov, Maxim G.; Hart, Stephen L.

    2015-03-01

    Lipopolyplexes are of widespread interest for gene therapy due to their multifunctionality and high transfection efficiencies. Here we compared the biological and biophysical properties of a lipopolyplex formulation with its lipoplex and polyplex equivalents to assess the role of the lipid and peptide components in the formation and function of the lipopolyplex formulation. We show that peptide efficiently packaged plasmid DNA forming spherical, highly cationic nanocomplexes that are taken up efficiently by cells. However, transgene expression was poor, most likely due to endosomal degradation since the polyplex lacks membrane trafficking properties. In addition the strong peptide-DNA interaction may prevent plasmid release from the complex and so limit plasmid DNA availability. Lipid/DNA lipoplexes, on the other hand, produced aggregated masses that showed poorer cellular uptake than the polyplex but contrastingly greater levels of transgene expression. This may be due to the greater ability of lipoplexes relative to polyplexes to promote endosomal escape. Lipopolyplex formulations formed spherical, cationic nanocomplexes with efficient cellular uptake and significantly enhanced transfection efficiency. The lipopolyplexes combined the optimal features of lipoplexes and polyplexes showing optimal cell uptake, endosomal escape and availability of plasmid for transcription, thus explaining the synergistic increase in transfection efficiency.

  15. The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations.

    PubMed

    Du, Zixiu; Munye, Mustafa M; Tagalakis, Aristides D; Manunta, Maria D I; Hart, Stephen L

    2014-01-01

    Multifunctional, lipopolyplex formulations comprising a mixture of cationic liposomes and cationic, receptor-targeting peptides have potential use in gene therapy applications. Lipopolyplex formulations described here are typically far more efficient transfection agents than binary lipoplex or polyplex formulations. It has been shown previously that the peptide component mediates both DNA packaging and targeting of the nanoparticle while in this report we investigate the contribution of the lipid component. We hypothesised that the lipid components synergise with the peptides in the transfection process by promoting endosomal escape after lipid bilayer fusion. Lipopolyplexes were prepared with cationic liposomes comprising DOTAP with either neutral lipid DOPE or DOPC. DOPE promotes fusogenic, inverted hexagonal lipid structures while DOPC promotes more stable laminar structures. Lipopolyplexes containing DOPE showed substantially higher transfection efficiency than those formulated with DOPC, both in vitro and in vivo. DOPE-containing lipopolyplexes showed rapid endosomal trafficking and nuclear accumulation of DNA while DOPC-containing formulations remained within the late endo-lysosomal compartments. These findings are consistent with previous finding for the role of DOPE in lipoplexes and support the hypothesis regarding the function of the lipid components in lipopolyplexes. These findings will help to inform future lipopolyplex design, strategies and clinical development processes. PMID:25407686

  16. A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells.

    PubMed

    Veiseh, Omid; Kievit, Forrest M; Gunn, Jonathan W; Ratner, Buddy D; Zhang, Miqin

    2009-02-01

    As conventional cancer therapies struggle with toxicity issues and irregular remedial efficacy, the preparation of novel gene therapy vectors could offer clinicians the tools for addressing the genetic errors of diseased tissue. The transfer of gene therapy to the clinic has proven difficult due to safety, target specificity, and transfection efficiency concerns. Polyethylenimine (PEI) nanoparticles have been identified as promising gene carriers that induce gene transfection with high efficiency. However, the inherent toxicity of the material and non-selective delivery are the major concerns in applying these particles clinically. Here, a non-viral nanovector has been developed by PEGylation of DNA-complexing PEI in nanoparticles functionalized with an Alexa Fluor 647 near infrared fluorophore, and the chlorotoxin (CTX) peptide which binds specifically to many forms of cancer. With this nanovector, the potential toxicity to healthy cells is minimized by both the reduction of the toxicity of PEI with the biocompatible copolymer and the targeted delivery of the nanovector to cancer cells, as evaluated by viability studies. The nanovector demonstrated high levels of targeting specificity and gene transfection efficiency with both C6 glioma and DAOY medulloblastoma tumor cells. Significantly, with the CTX as the targeting ligand, the nanovector may serve as a widely applicable gene delivery system for a broad array of cancer types. PMID:18990439

  17. Alteration of some cellular function in amikacin resistant Pseudomonas aeruginosa transfected macrophages: a time dependent approach

    PubMed Central

    Chakraborty, Subhankari Prasad; KarMahapatra, Santanu; Das, Sabyasachi; Roy, Somenath

    2011-01-01

    Objective To evaluate the free radical generation and antioxidant enzymes status in murine peritoneal macrophage during in vitro amikacin resistant Pseudomonas aeruginosa (ARPA) treatment with different time interval. Methods Peritoneal macrophages were treated with 1×108 CFU/mL ARPA cell suspension in vitro for different time interval (1, 2, 3, 6, 12, and 24 h) and super oxide anion generation, NO generation, reduced glutathione level and antioxidant enzymes status were analyzed. Results Super oxide anion generation and NO generation got peak at 12 h, indicating maximal free radical generation through activation of NADPH oxidase in murine peritoneal macrophages during ARPA transfection. Reduced glutathione level and antioxidant enzymes status were decreased significantly (P<0.05) with increasing time of ARPA transfection. All the changes in peritoneal macrophages after 12 h in vitro ARPA transfection had significant difference (P<0.05). Conclusions From this study, it may be summarized that in vitro ARPA infection not only generates excess free radical but also affects the antioxidant system and glutathione cycle in murine peritoneal macrophage. PMID:23569818

  18. Twin disulfides as opportunity for improving stability and transfection efficiency of oligoaminoethane polyplexes.

    PubMed

    Klein, Philipp M; Müller, Katharina; Gutmann, Christina; Kos, Petra; Krhac Levacic, Ana; Edinger, Daniel; Höhn, Miriam; Leroux, Jean-Christophe; Gauthier, Marc A; Wagner, Ernst

    2015-05-10

    The synthesis of precise gene delivery vehicles by solid-supported chemistry is an effective way to establish structure-activity relationships and optimize existing transfection carriers. Sequence-defined cationic oligomers with different topologies were modified with twin disulfide-forming cysteine-arginine-cysteine (CRC) motifs. The influence of this motif versus single disulfide on the biophysical properties and biological performance of polyplexes was investigated, with pDNA and siRNA as nucleic acid cargoes. Clear differences between structures with isolated cysteines and CRC motifs were observed with respect to properties like nucleic acid binding, serum stability, response to reducing agents, and gene transfer/silencing. The main observed effect of the CRC motif was to increase polyplex stability. The consequences for nucleic acid delivery were less predictable and depended on oligomer topology. For some oligomers intrinsically forming stable polyplexes (i.e., already in the absence of CRC motif), this further stabilization resulted in a reduction or even loss in transfection efficiency. For PEGylated and targeted oligomers with intrinsically less stable polyplex structures, this modification led to a significant enhancement in transfection efficiency. PMID:25553827

  19. Selective Gene Transfection of Individual Cells In Vitro with Plasmonic Nanobubbles

    PubMed Central

    Lukianova-Hleb, Ekaterina; Samaniego, Adam P.; Wen, Jianguo; Metelitsa, Leonid; Chang, Chung-Che; Lapotko, Dmitri

    2011-01-01

    Gene delivery and transfection of eukaryotic cells is widely used for research and for developing gene cell therapy. However, the existing methods lack selectivity, efficacy and safety when heterogeneous cell systems must be treated. We report a new method that employs plasmonic nanobubbles (PNBs) for delivery and transfection. A PNB is a novel, tunable cellular agent with a dual mechanical and optical action due to the formation of the vapor nanobubble around a transiently heated gold nanoparticle upon its exposure to a laser pulse. PNBs enabled the mechanical injection of the extracellular cDNA plasmid into the cytoplasm of individual target living cells, cultured leukemia cells and human CD34+CD117+ stem cells and expression of a green fluorescent protein (GFP) in those cells. PNB generation and lifetime correlated with the expression of green fluorescent protein in PNB-treated cells. Optical scattering by PNBs additionally provided the detection of the target cells and the guidance of cDNA injection at single cell level. In both cell models PNBs demonstrated a gene transfection effect in a single pulse treatment with high selectivity, efficacy and safety. Thus, PNBs provided targeted gene delivery at the single cell level in a single pulse procedure that can be used for safe and effective gene therapy. PMID:21315120

  20. Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector

    PubMed Central

    Munye, Mustafa M.; Ravi, Jascindra; Tagalakis, Aristides D.; McCarthy, David; Ryadnov, Maxim G.; Hart, Stephen L.

    2015-01-01

    Lipopolyplexes are of widespread interest for gene therapy due to their multifunctionality and high transfection efficiencies. Here we compared the biological and biophysical properties of a lipopolyplex formulation with its lipoplex and polyplex equivalents to assess the role of the lipid and peptide components in the formation and function of the lipopolyplex formulation. We show that peptide efficiently packaged plasmid DNA forming spherical, highly cationic nanocomplexes that are taken up efficiently by cells. However, transgene expression was poor, most likely due to endosomal degradation since the polyplex lacks membrane trafficking properties. In addition the strong peptide-DNA interaction may prevent plasmid release from the complex and so limit plasmid DNA availability. Lipid/DNA lipoplexes, on the other hand, produced aggregated masses that showed poorer cellular uptake than the polyplex but contrastingly greater levels of transgene expression. This may be due to the greater ability of lipoplexes relative to polyplexes to promote endosomal escape. Lipopolyplex formulations formed spherical, cationic nanocomplexes with efficient cellular uptake and significantly enhanced transfection efficiency. The lipopolyplexes combined the optimal features of lipoplexes and polyplexes showing optimal cell uptake, endosomal escape and availability of plasmid for transcription, thus explaining the synergistic increase in transfection efficiency. PMID:25786833

  1. Reduction of EGF receptor levels in human tumor cells transfected with an antisense RNA expression vector

    SciTech Connect

    Yamada, Hirotomo; Koizumi, Shinji; Kimura, Masami ); Shimizu, Nobuyoshi )

    1989-09-01

    An expression vector was constructed from part of pSV2neo with the 3{prime}-ClaI fragment of the epidermal growth factor (EGF) receptor cDNA inserted in an inverted orientation downstream from the human metallothionein (MT) IIa promoter. The human squamous carcinoma cell line NA, which overproduces EGF receptor, was transfected with this vector and selected for resistance to the neomycin derivative G418. One of the stable transfectants had a 90% reduction cell-surface EGF receptor in response to ZnSO{sub 4}. The nascent EGF receptor peptide was also decreased with concurrent induction of MT mRNA. These data suggest that the antisense transcript regulated by the MT promoter inhibits the expression of the endogenous EGF receptor genes. Although no transcripts from the antisense gene were detected, the results indicate that transfection with the antisense vector provides a technique by which to modulate the number of EGF receptors on the cell surface of squamous cell carcinomas.

  2. Effects of AC/DC magnetic fields, frequency, and nanoparticle aspect ratio on cellular transfection of gene vectors

    NASA Astrophysics Data System (ADS)

    Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard

    2008-10-01

    In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.

  3. New Polymer Coatings for Chemically Selective Mass Sensors

    NASA Technical Reports Server (NTRS)

    Sims, S. C.; Wright, Cassandra; Cobb, J.; McCalla, T.; Revelle, R.; Morris, V. R.; Pollack, S. K.

    1997-01-01

    There is a current need to develop sensitive and chemically specific sensors for the detection of nitric acid for in-situ measurements in the atmosphere. Polymer coatings have been synthesized and tested for their sensitivity and selectivity to nitric acid. A primary requirement for these polymers is detectability down to the parts per trillion range. The results of studies using these polymers as coatings for quartz crystal microbalances (QCM) and surface acoustic wave (SAW) devices will be presented.

  4. Role of Polymeric Endosomolytic Agents in Gene Transfection: A Comparative Study of Poly(l-lysine) Grafted with Monomeric l-Histidine Analogue and Poly(l-histidine)

    PubMed Central

    2015-01-01

    Endosomal entrapment is one of the main barriers that must be overcome for efficient gene expression along with cell internalization, DNA release, and nuclear import. Introducing pH-sensitive ionizable groups into the polycationic polymers to increase gene transfer efficiency has proven to be a useful method; however, a comparative study of introducing equal numbers of ionizable groups in both polymer and monomer forms, has not been reported. In this study, we prepared two types of histidine-grafted poly(l-lysine) (PLL), a stacking form of poly(l-histidine) (PLL-g-PHis) and a mono- l-histidine (PLL-g-mHis) with the same number of imidazole groups. These two types of histidine-grafted PLL, PLL-g-PHis and PLL-g-mHis, showed profound differences in hemolytic activity, cellular uptake, internalization, and transfection efficiency. Cy3-labeled PLL-g-PHis showed strong fluorescence in the nucleus after internalization, and high hemolytic activity upon pH changes was also observed from PLL-g-PHis. The arrangement of imidazole groups from PHis also provided higher gene expression than mHis due to its ability to escape the endosome. mHis or PHis grafting reduced the cytotoxicity of PLL and changed the rate of cellular uptake by changing the quantity of free ε-amines available for gene condensation. The subcellular localization of PLL-g-PHis/pDNA measured by YOYO1-pDNA intensity was highest inside the nucleus, while the lysotracker, which stains the acidic compartments was lowest among these polymers. Thus, the polymeric histidine arrangement demonstrate the ability to escape the endosome and trigger rapid release of polyplexes into the cytosol, resulting in a greater amount of pDNA available for translocation to the nucleus and enhanced gene expression. PMID:25144273

  5. Generation and usage of aequorin lentiviral vectors for Ca(2+) measurement in sub-cellular compartments of hard-to-transfect cells.

    PubMed

    Lim, Dmitry; Bertoli, Alessandro; Sorgato, M Catia; Moccia, Francesco

    2016-05-01

    Targeted aequorin-based Ca(2+) probes represent an unprecedented tool for the reliable measurement of Ca(2+) concentration and dynamics in different sub-cellular compartments. The main advantages of aequorin are its proteinaceous nature, which allows attachment of a signal peptide for targeting aequorin to virtually any sub-cellular compartment; its low Ca(2+)-binding capacity; the wide range of Ca(2+) concentrations that can be measured, ranging from sub-micromolar to millimolar; its robust performance in aggressive environments, e.g., the strong acidic pH of the lysosomal lumen. Lentiviral vectors represent a popular tool to transduce post-mitotic or hard-to-transfect cells both in vitro and in vivo. Furthermore, it has great potential for gene therapy. Last generation lentiviral vectors represent a perfect compromise for combining large insert size, ease of production and handling, and high degree of biosafety. Here, we describe strategies for cloning aequorin probes - targeted to the cytosol, sub-plasma membrane cytosolic domains, the mitochondrial matrix, and the endoplasmic reticulum lumen - into lentiviral vectors. We describe methods for the production of lentiviral particles, and provide examples of measuring Ca(2+) dynamics by such aequorin-encoding lentiviral vectors in sub-cellular compartments of hard-to-transfect cells, including immortalized striatal neurons, primary cerebellar granule neurons and endothelial progenitor cells, which provide suitable in vitro models for the study of different human diseases. PMID:26992273

  6. Ultrasound-Mediated Vascular Gene Transfection by Cavitation of Endothelial-Targeted Cationic Microbubbles

    PubMed Central

    Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K.; Champaneri, Shivam A.; Taylor, Sarah; Davidson, Brian P.; Zhao, Yan; Klibanov, Alexander L.; Kuliszewski, Michael A.; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R.

    2013-01-01

    OBJECTIVES Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. BACKGROUND Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. METHODS Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)–stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. RESULTS Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm2). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1–targeted microbubbles and by ultrasound molecular imaging of P-selectin–targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin–targeted microbubbles but was associated with

  7. Sodium Kinetics of Na,K-ATPase α Isoforms in Intact Transfected HeLa Cells

    PubMed Central

    Zahler, Raphael; Zhang, Zhong-Ting; Manor, Mira; Boron, Walter F.

    1997-01-01

    By participating in the regulation of ion and voltage gradients, the Na-K pump (i.e., Na,K-ATPase) influences many aspects of cellular physiology. Of the four α isoforms of the pump, α1 is ubiquitous, α2 is predominant in skeletal muscle, and α3 is found in neurons and the cardiac conduction system. To determine whether the isoforms have different intracellular Na+ affinities, we used the Na+-sensitive dye sodium-binding benzofuran isophthalate (SBFI) to measure pump-mediated Na+ efflux as a function of [Na+]i in human HeLa cells stably transfected with rat Na-K pump isoforms. We Na+-loaded the cells, and then monitored the time course of the decrease in [Na+]i after removing external Na+. All transfected rat α subunits were highly ouabain resistant: the α1 isoform is naturally resistant, whereas the α2 and α3 isoforms had been mutagenized to render them resistant. Thus, the Na+ efflux mediated by endogenous and transfected pumps could be separated by studying the cells at low (1 μM) and high (4 mM) ouabain concentrations. We found that the apparent Km for Na+ efflux attributable to the native human α1 isoform was 12 mM, which was similar to the Km of rat α1. The α2 and α3 isoforms had apparent Km's of 22 and 33 mM, respectively. The cells expressing α3 had a high resting [Na+]i. The maximal activity of native α1 in the α3-transfected cells was only ∼56% of native α1 activity in untransfected HeLa cells, suggesting that transfection with α3 led to a compensatory decrease in endogenous α1 pumps. We conclude that the apparent Km(Na+) for rat Na-K pump isoforms increases in the sequence α1 < α2 < α3. The α3 isoform may be suited for handling large Na+ loads in electrically active cells. PMID:9236212

  8. Biological effects of eukaryotic recombinant plasmid pReceiver-M61-BAI-1 transfection on T24 cells and HUVECs

    PubMed Central

    Tian, Da-Wei; Hu, Hai-Long; Sun, Yan; Tang, Yang; Lei, Ming-De; Liu, Li-Wei; Han, Rui-Fa; Wu, Chang-Li

    2016-01-01

    The aim of the current study was to investigate the biological effect on T24 cells and human umbilical vein endothelial cells (HUVECs) of transfection with brain-specific angiogenesis inhibitor-1 (BAI-1). The recombinant plasmid pReceiver-M61-BAI-1 was transfected into human superficial bladder tumor cells (T24) and HUVECs, in parallel with the vector control. mRNA and protein expression levels of BAI-1 were then detected by quantitative polymerase chain reaction (qPCR) and western blotting, respectively. Cell apoptosis of T24 cells and HUVECs prior and subsequent to transfection with BAI-1 was analyzed by flow cytometric analysis. Proliferation of T24 cells and HUVECs prior and subsequent to transfection of BAI-1 was assessed by the MTT method. T24 cells and HUVECs transfected with pReceiver-M61-BA1-1 were classed as the experimental group; T24 cells and HUVECs transfected with p-Receiver-M61 were the control group. qPCR and western blotting methods confirmed that there was positive expression of BAI-1 in T24 cells and HUVECs transfected with pReceiver-M61-BAI-1, however BAI-1 was not expressed in T24 cells and HUVECs transfected with pReceiver-M61. The results of the MTT assay demonstrated that absorbance was markedly reduced in HUVECs at 12, 48 and 72 h subsequent to transfection with pReceiver-M61-BAI-1 when compared with that of the control group and in T24 cells transfected with p-Receiver-M61-BAI-1. Furthermore, flow cytometry results also indicated that the apoptotic rate of HUVECs transfected with p-Receiver-M61-BAI-1 was significantly increased compared with that of the control group and T24 cells transfected with p-Receiver-M61-BAI-1. BAI-1 was observed to markedly inhibit the proliferation of vascular endothelial cells in vitro, however, no direct inhibition by BAI-1 was observed in T24 cells. In conclusion, BAI-1 is suggested to be a potential novel therapautic target for the inhibition of tumor neovascularization. PMID:27356780

  9. Fabrication of PLGA polymer microspheres for U. S. mediated gene delivery

    NASA Astrophysics Data System (ADS)

    Williamson, Rene G.; Saltzman, William M.; Brandsma, Janet L.

    2001-05-01

    The promises of gene therapy remain unfulfilled because of the lack of a safe and efficient method for transfecting DNA into cells. PLGA has been used as a vehicle for protein, drug, and gene delivery applications because of its biocompatibility and sustained release properties. PLGA polymer microspheres offer advantages of safety and the possibility of sustained intracytoplasmic delivery. The PLGA also protects the plasmid from degradation. Using the double-emulsion microsphere fabrication technique, a new DNA delivery vehicle, comprising of plasmid DNA and octafluoropropane gas encapsulated in PLGA polymer and PVA stabilizer (Sonospheres) was made. The encapsulated gas offers acoustic activity to the microspheres, which enables them to undergo cavitation in an acoustic field. The goal is to lead to increased DNA transfection when these Sonospheres are subjected to an acoustic field in the MHz frequency range. A summary of the fabrication methods and some initial in vitro studies will be presented.

  10. Syphilis - primary

    MedlinePlus

    Primary syphilis; Secondary syphilis; Late syphilis; Tertiary syphilis ... Syphilis is a sexually transmitted, infectious disease caused by the spirochete bacterium Treponema pallidum . This bacterium causes ...

  11. Transmitter function of synapse-structure system using conducting polymer

    NASA Astrophysics Data System (ADS)

    Fujii, Masaharu; Machiya, Yuka; Ihori, Haruo

    2012-04-01

    Conducting polymers with neuron-like pattern has been polymerized by controlling polymerization conditions. These conducting polymers have been connected each other to prepare network. If the synapse function can be added to the network, artificial neural network is prepared by conducting polymer. In this paper, we consider the transmitter function using synapse-structure conducting polymer. It consists of three parts: primary circuit as presynaptic terminal, space as synaptic cleft and secondary circuit as postsynaptic structure. Dopant in conducting polymer works as neurotransmitter. Migration as well as diffusion is also considered for dopant ion to transit the space/cleft. When signals from the primary circuit came at the end of the primary circuit in electrolyte solution, the current in the secondary circuit increased because the released dopant ion transited the cleft and entered another conducting polymer. When two primary circuits was used, the current in the secondary circuit increased higher than one primary circuit. This means the synapse-structured conducting polymer system can be use as logical circuit.

  12. Peripherally cross-linking the shell of core-shell polymer micelles decreases premature release of physically loaded combretastatin A4 in whole blood and increases its mean residence time and subsequent potency against primary murine breast tumors after IV administration

    PubMed Central

    Wakaskar, Rajesh R.; Bathena, Sai Praneeth R.; Tallapaka, Shailendra; Ambardekar, Vishakha V.; Gautum, Nagsen; Thakare, Rhishikesh N.; Simet, Samantha M.; Curran, Stephen M.; Singh, Rakesh K.; Dong, Yuxiang

    2014-01-01

    Purpose Determine the feasibility and potential benefit of peripherally cross-linking the shell of core-shell polymer micelles on the premature release of physically loaded hydrophobic drug in whole blood and subsequent potency against solid tumors. Methods Individual Pluronic F127 polymer micelles (F127 PM) peripherally cross-linked with ethylenediamine at 76% of total PEO blocks (X-F127 PM) were physically loaded with combretastatin A4 (CA4) by the solid dispersion method and compared to CA4 physically loaded in uncross-linked F127 PM, CA4 in DMSO in vitro, or water-soluble CA4 phosphate (CA4P) in vivo. Results X-F127 PM had similar CA4 loading and aqueous solubility as F127 PM up to 10 mg CA4 / mL at 22.9 wt% and did not aggregate in PBS or 90% (v/v) human serum at 37°C for at least 24 h. In contrast, X-F127 PM decreased the unbound fraction of CA4 in whole blood (fu) and increased the mean plasma residence time and subsequent potency of CA4 against the vascular function and growth of primary murine 4T1 breast tumors over CA4 in F127 PM and water-soluble CA4P after IV administration. Conclusions Given that decreasing the fu is an indication of decreased drug release, peripherally cross-linking the shell of core-shell polymer micelles may be a simple approach to decrease premature release of physically loaded hydrophobic drug in the blood and increase subsequent potency in solid tumors. PMID:25223962

  13. Loop polymer brushes from polymer single crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Li, Christopher

    2014-03-01

    Loop polymer brushes represent a category of polymer brushes with both chain ends being tethered to a surface or interface with sufficiently high density. Due to this morphological difference, loop brushes exhibit distinct properties compared with traditional polymer brushes with single chain end being tethered. In our study, α, ω-functionalized polycaprolactone (PCL) single crystals were prepared as templates for polymer brush synthesis. By carefully controlling crystallization condition and immobilization, looped polymer brushes were successfully prepared. Comprehensive studies on the morphology and physical properties of these polymer brushes were carried out using Atomic Force Microscopy and FTIR. Advantages of using this method include exclusive loop morphology, high grafting density, controlled tethering sites and tunable loop size.

  14. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-07-01

    In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage.

  15. The viral RNA-based transfection of enhanced green fluorescent protein (EGFP) in the parasitic protozoan Trichomonas vaginalis.

    PubMed

    Li, Wei; Ding, He; Zhang, Xinxin; Cao, Lili; Li, Jianhua; Gong, Pengtao; Li, He; Zhang, Guocai; Li, Shuhong; Zhang, Xichen

    2012-03-01

    Here we have developed methods to transiently and stably transfect the human pathogenic protist Trichomonas vaginalis. The viral RNA-based transfection vector pTVV-EGFP/NEO was constructed by using enhanced green fluorescent protein gene (EGFP) and neomycin resistance gene (NEO) in tandem to replace the whole gene encoding region of T. vaginalis virus (TVV). The in vitro transcripts of linearized pTVV-EGFP/NEO were electroporated into trophozoites and the transfectants transiently expressed EGFP after 16 h postincubation. Stable expression of EGFP was persistently detected by fluorescence microscopy and by RT-PCR in transfected trophozoites under G418 selection. Our study provides a novel and valuable approach for genetic study of T. vaginalis. PMID:21861063

  16. Polymer Functionalized Nanoparticles in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Jayaraman, Arthi

    2013-03-01

    Significant interest has grown around the ability to control spatial arrangement of nanoparticles in a polymer nanocomposite to engineer materials with target properties. Past work has shown that one could achieve controlled assembly of nanoparticles in the polymer matrix by functionalizing nanoparticle surfaces with homopolymers. This talk will focus on our recent work using Polymer Reference Interaction Site Model (PRISM) theory and Monte Carlo simulations and GPU-based molecular dynamics simulations to specifically understand how heterogeneity in the polymer functionalization in the form of a) copolymers with varying monomer chemistry and monomer sequence, and b) polydispersity in homopolymer grafts can tune effective interactions between functionalized nanoparticles, and the assembly of functionalized nanoparticles.

  17. Mitigated cytotoxicity and tremendously enhanced gene transfection efficiency of PEI through facile one-step carbamate modification.

    PubMed

    Yang, Chuan; Cheng, Wei; Teo, Pei Yun; Engler, Amanda C; Coady, Daniel J; Hedrick, James L; Yang, Yi Yan

    2013-10-01

    Extremely efficacious gene transfection vector: The rapid and facile modification of PEI with commercially available TMC produces an extremely efficacious gene delivery vector with minimal cytotoxicity. Functionalization of PEI is easily controlled by PEI:cyclic carbonate feed ratios and allows for the addition of functionality. Modified PEIs hold great potential as gene delivery systems due to easy synthesis, scalability, low cost, low toxicity, and outstanding transfection capacity. PMID:23505024

  18. Transplantation of vascular endothelial growth factor 165-transfected endothelial progenitor cells for the treatment of limb ischemia

    PubMed Central

    WANG, SHENG; CHEN, ZHONG; TANG, XIAOBIN; LIU, HUI; YANG, LIAO; WANG, YANYANG

    2015-01-01

    The present study aimed to investigate the effects of neovascularization in rabbits with limb ischemia transplanted with vascular endothelial growth factor (VEGF)165-transfected endothelial progenitor cells (EPC). Bone marrow mononuclear cells were isolated by gradient centrifugation, cultured in M199 culture medium and induced into EPCs using VEGF, basic fibroblast growth factor, and insulin-like growth factor-1, and subsequently identified. The EPCs were transfected with Adv-green fluorescent protein-VEGF165 and the proliferation potential of the cells was determined using an MTT assay. The protein expression levels of VEGF were measured by detecting its concentration levels in the supernatant using an ABC-ELISA assay. A rabbit hind limb ischemic model was established and randomly divided into three groups: (A) Control group, (B) EPC-transplanted group, and (C) Ad-VEGF165/EPCs-transplanted group. The effects of transplantation and the levels of recanalization were detected. Incorporation of the transplanted cells into the ischemic region was confirmed by 5-bromodeoxyuridine staining, and the levels of recanalization were measured by computer tomography ateriography and immunohistochemical staining. Bone marrow-derived EPCs were induced, cultivated, and successfully identified. The results of the present study determined the optimum transfection ratio that promoted the growth of EPCs. The EPCs were successfully transfected with VEGF165, and EPC proliferation was not affected by the transfection. The supernatant protein concentration levels of VEGF were markedly higher in the VEGF165-transfected group, as compared with those of the control group. Introduction of the transplanted cells into the ischemic region of group C occurred more efficiently, as compared with groups A and B. The recanalization capillary density in group C was significantly higher, as compared with groups A and B. VEGF gene transfection was able to improve the quality of EPCs, and the response

  19. Re-Mendable Polymers

    NASA Astrophysics Data System (ADS)

    Bergman, Sheba D.; Wudl, Fred

    Polymers have become an indispensable material resource, representing billions of dollars worth of material consumption every year. The rising prices and exhaust of natural resources such as petroleum, combined with rising environmental concerns, have prompted the development of recyclable and degradable polymers. Polymers that can be reverted back to their monomers or to shorter repolymerizable oligomers, hence, reversible polymers are particularly enticing in this respect because they essentially prevent any material loss with multiple recycling. While reversible polymers have been known for a long time, there has been recent renewed interest in such polymers, since their reversibility can be exploited for repair at the molecular level.

  20. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  1. Universal Cyclic Topology in Polymer Networks.

    PubMed

    Wang, Rui; Alexander-Katz, Alfredo; Johnson, Jeremiah A; Olsen, Bradley D

    2016-05-01

    Polymer networks invariably possess topological defects: loops of different orders which have profound effects on network properties. Here, we demonstrate that all cyclic topologies are a universal function of a single dimensionless parameter characterizing the conditions for network formation. The theory is in excellent agreement with both experimental measurements of hydrogel loop fractions and Monte Carlo simulations without any fitting parameters. We demonstrate the superposition of the dilution effect and chain-length effect on loop formation. The one-to-one correspondence between the network topology and primary loop fraction demonstrates that the entire network topology is characterized by measurement of just primary loops, a single chain topological feature. Different cyclic defects cannot vary independently, in contrast to the intuition that the densities of all topological species are freely adjustable. Quantifying these defects facilitates studying the correlations between the topology and properties of polymer networks, providing a key step in overcoming an outstanding challenge in polymer physics. PMID:27203346

  2. Universal Cyclic Topology in Polymer Networks

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Alexander-Katz, Alfredo; Johnson, Jeremiah A.; Olsen, Bradley D.

    2016-05-01

    Polymer networks invariably possess topological defects: loops of different orders which have profound effects on network properties. Here, we demonstrate that all cyclic topologies are a universal function of a single dimensionless parameter characterizing the conditions for network formation. The theory is in excellent agreement with both experimental measurements of hydrogel loop fractions and Monte Carlo simulations without any fitting parameters. We demonstrate the superposition of the dilution effect and chain-length effect on loop formation. The one-to-one correspondence between the network topology and primary loop fraction demonstrates that the entire network topology is characterized by measurement of just primary loops, a single chain topological feature. Different cyclic defects cannot vary independently, in contrast to the intuition that the densities of all topological species are freely adjustable. Quantifying these defects facilitates studying the correlations between the topology and properties of polymer networks, providing a key step in overcoming an outstanding challenge in polymer physics.

  3. Exogenous hTERT gene transfected endothelial progenitor cells from bone marrow promoted angiogenesis in ischemic myocardium of rats

    PubMed Central

    Li, Shang-Hai; Wang, Dan-Dan; Xu, Yun-Jun; Ma, Guo-Dong; Li, Xing-Yue; Liang, Wei-Jun

    2015-01-01

    Objective: To explore the biological behavior and the revascularizative ability of endothelial progenitor cells (EPCs) transfected with human telomerase reverse transcriptase (hTERT) gene. Methods: EPCs were isolated from mononuclear cells in bone marrow by using the method of density gradient centrifugation, then cultured with differential velocity adherent method, EPCs were transfected by recombinant plasmid carrying GFP report gene EGFP-hTERT. The EPCs secretion and proliferation ability were detected before and after transfection. The expression of EPCs mRNA were detected by RT-PCR before and after transfection. The new capillaries of infarct area were observed. Results: After transgenesis, the proliferation of EPCs were increased, and the secretion of NO, LDH, iNOS by EPCs were significantly increased compared to the non-transgenesis group. After transplanted the transfected EPCs into the ischemic myocardial of rats, revascularization were increased obviously. Conclusion: EPCs maintained the original biological characteristics after transfecting exogenous hTER gene, the proliferation and survival rate were up-regulated significantly, and the revascularization ability of EPCs were significantly strengthen. PMID:26550433

  4. Transient transfection of serum-free suspension HEK 293 cell culture for efficient production of human rFVIII

    PubMed Central

    2011-01-01

    Background Hemophilia A is a bleeding disorder caused by deficiency in coagulation factor VIII. Recombinant factor VIII (rFVIII) is an alternative to plasma-derived FVIII for the treatment of hemophilia A. However, commercial manufacturing of rFVIII products is inefficient and costly and is associated to high prices and product shortage, even in economically privileged countries. This situation may be solved by adopting more efficient production methods. Here, we evaluated the potential of transient transfection in producing rFVIII in serum-free suspension HEK 293 cell cultures and investigated the effects of different DNA concentration (0.4, 0.6 and 0.8 μg/106 cells) and repeated transfections done at 34° and 37°C. Results We observed a decrease in cell growth when high DNA concentrations were used, but no significant differences in transfection efficiency and in the biological activity of the rFVIII were noticed. The best condition for rFVIII production was obtained with repeated transfections at 34°C using 0.4 μg DNA/106 cells through which almost 50 IU of active rFVIII was produced six days post-transfection. Conclusion Serum-free suspension transient transfection is thus a viable option for high-yield-rFVIII production. Work is in progress to further optimize the process and validate its scalability. PMID:22115125

  5. Optimization of input parameters of acoustic-transfection for the intracellular delivery of macromolecules using FRET-based biosensors

    NASA Astrophysics Data System (ADS)

    Yoon, Sangpil; Wang, Yingxiao; Shung, K. K.

    2016-03-01

    Acoustic-transfection technique has been developed for the first time. We have developed acoustic-transfection by integrating a high frequency ultrasonic transducer and a fluorescence microscope. High frequency ultrasound with the center frequency over 150 MHz can focus acoustic sound field into a confined area with the diameter of 10 μm or less. This focusing capability was used to perturb lipid bilayer of cell membrane to induce intracellular delivery of macromolecules. Single cell level imaging was performed to investigate the behavior of a targeted single-cell after acoustic-transfection. FRET-based Ca2+ biosensor was used to monitor intracellular concentration of Ca2+ after acoustic-transfection and the fluorescence intensity of propidium iodide (PI) was used to observe influx of PI molecules. We changed peak-to-peak voltages and pulse duration to optimize the input parameters of an acoustic pulse. Input parameters that can induce strong perturbations on cell membrane were found and size dependent intracellular delivery of macromolecules was explored. To increase the amount of delivered molecules by acoustic-transfection, we applied several acoustic pulses and the intensity of PI fluorescence increased step wise. Finally, optimized input parameters of acoustic-transfection system were used to deliver pMax-E2F1 plasmid and GFP expression 24 hours after the intracellular delivery was confirmed using HeLa cells.

  6. A convenient method of preparing gene vector for real time monitoring transfection process based on the quantum dots

    SciTech Connect

    Zhang, Hai-Li; Zhang, Ming-Zhen; Li, Xiang-Yong; Wan, Min; Li, Yong-Qiang; Zhang, Rong-Ying; Zhao, Yuan-Di

    2012-11-15

    Highlights: ► An easy and direct way to prepare QDs–DNA complexes was developed. ► Surface charge of QDs was tuned with different ratio of amino and glycolate. ► Transfection efficiency was dependent on the surface zeta potentials of QDs. ► Cellular toxicity of this gene vectors is much lower than commercial liposome. ► Whole intracellular behavior of QDs–DNA complexes can be monitored in real time. -- Abstract: Nanoparticle carrier has been developed by combining water-soluble quantum dots and plasmid DNA expressed enhanced green fluorescent protein (EGFP) in a convenient and direct way. First the QDs with different surface charges were obtained by coating with amino and carboxyl terminals at different ratios. Then plasmid DNA was conjugated to QDs via electrostatic interaction. The resultant QDs–DNA complexes showed enhanced resistance to DNase I digestion. The following transfection experiments demonstrated that the transfection efficiency was dependent on the surface charges on QDs. The real time imaging of the transfection process showed that the nanoparticles experienced binding, penetrating the cell membrane and entering cytoplasm in the first 6 h of transfection. The green fluorescence of EGFP began to appear after 18 h transfection and plasmid DNA was fully expressed in the following 6 h. This new QDs–DNA platform showed great potential as new gene delivery carrier.

  7. Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures.

    PubMed

    Cervera, Laura; Fuenmayor, Javier; González-Domínguez, Irene; Gutiérrez-Granados, Sonia; Segura, Maria Mercedes; Gòdia, Francesc

    2015-12-01

    The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well suited for early developmental phases, where several potential therapeutic targets need to be produced and tested in vivo. As a relatively new bioprocessing modality, a number of opportunities exist for improving cell culture productivity upon transient transfection. For instance, several compounds have shown positive effects on transient gene expression. These transfection enhancers either facilitate entry of PEI/DNA transfection complexes into the cell or nucleus or increase levels of gene expression. In this work, the potential of combining transfection enhancers to increase Gag-based virus-like particle production levels upon transfection of suspension-growing HEK 293 cells is evaluated. Using Plackett-Burman design of experiments, it is first tested the effect of eight transfection enhancers: trichostatin A, valproic acid, sodium butyrate, dimethyl sulfoxide (DMSO), lithium acetate, caffeine, hydroxyurea, and nocodazole. An optimal combination of compounds exhibiting the highest effect on gene expression levels was subsequently identified using a surface response experimental design. The optimal consisted on the addition of 20 mM lithium acetate, 3.36 mM valproic acid, and 5.04 mM caffeine which increased VLP production levels 3.8-fold, while maintaining cell culture viability at 94%. PMID:26278533

  8. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties.

    PubMed

    Sharma, Vishnu Dutt; Lees, Julia; Hoffman, Nicholas E; Brailoiu, Eugen; Madesh, Muniswamy; Wunder, Stephanie L; Ilies, Marc A

    2014-02-01

    The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact on the plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential, and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes, and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process and with transfection efficiency, cytotoxicity, and the internalization mechanism of the resultant nucleic acid complexes. We found that the blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. The transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to the transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of colipids, their nature, and amount present in lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically to obtain efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery. PMID:24377350

  9. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties

    PubMed Central

    Sharma, Vishnu Dutt; Lees, Julia; Hoffman, Nicholas E.; Brailoiu, Eugen; Madesh, Muniswamy; Wunder, Stephanie L.; Ilies, Marc A.

    2014-01-01

    The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact towards plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process, and with transfection efficiency, cytotoxicity and internalization mechanism of the resultant nucleic acid complexes. We found that blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. Transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of co-lipids, their nature and amount present into lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically for obtaining efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery. PMID:24377350

  10. Single cell transfection by laser-induced breakdown of an optically trapped gold nanoparticle

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Ploschner, Martin; Antkowiak, Maciej; Gunn-Moore, Frank; Dholakia, Kishan

    2014-03-01

    Cell selective introduction of therapeutic agents remains a challenging problem. Cavitation-based therapies including ultrasound-induced sonoporation and laser-induced optoporation have led the way for novel approaches to provide the potential of sterility and cell selectivity compared with viral or biochemical counterparts. Acoustic streaming, shockwaves and liquid microjets associated with the cavitation dynamics are implicated in gene and drug delivery. These approaches, however, often lead to non-uniform and sporadic molecular uptake that lacks refined spatial control and suffers from a significant loss of cell viability. Here we demonstrate spatially controlled cavitation instigated by laser-induced breakdown of an optically trapped single gold nanoparticle. Our unique approach employs optical tweezers to trap a single nanoparticle, which when irradiated by a nanosecond laser pulse is subject to laser-induced breakdown followed by cavitation. Using this method for laser-induced cavitation, we can gain additional degrees of freedom for the cavitation process - the particle material, its size, and its position relative to cells or tissues. We show the energy breakdown threshold of gold nanoparticles of l00nm with a single nanosecond laser pulse at 532 nm is three orders of magnitude lower than that for water, which leads to gentle nanocavitation enabling single cell transfection. We optimize the shear stress to the cells from the expanding bubble to be in the range of 1-10 kPa for transfection by precisely positioning a trapped gold nanoparticle, and thus nanobubble, relative to a cell of interest. The method shows transfection of plasmid-DNA into individual mammalian cells with an efficiency of 75%.

  11. Tumor priming enhances siRNA delivery and transfection in intraperitoneal tumors.

    PubMed

    Wang, Jie; Lu, Ze; Yeung, Bertrand Z; Wientjes, M Guillaume; Cole, David J; Au, Jessie L-S

    2014-03-28

    Cancers originating from the digestive system account for 290,000 or ~20% of all new cancer cases annually in the US. We previously developed paclitaxel-loaded tumor-penetrating microparticles (TPM) for intraperitoneal (IP) treatment of peritoneal tumors (Lu et al., 2008; Tsai et al., 2007; Tsai et al., 2013). TPM is undergoing NIH-supported IND-enabling studies for clinical evaluation. The present study evaluated the hypothesis that TPM, via inducing apoptosis and expanding the interstitial space, promotes the delivery and transfection of lipid vectors containing siRNA. The in vivo model was the metastatic human Hs766T pancreatic tumor that, upon IP injection, produced widely distributed solid tumors and ascites in the peritoneal cavity in 100% of animals. The target gene was survivin, an anti-apoptotic protein induced by chemotherapy and associated with metastases and poor prognosis of patients with gastric and colorectal cancers. The siRNA carrier was pegylated liposomes comprising cationic and neutral lipids plus a fusogenic lipid (PCat). PCat-loaded with survivin siRNA (PCat-siSurvivin) was active in cultured cells (decreased survivin mRNA and protein levels, reduced cell clonogenicity, enhanced paclitaxel activity), but lost its activity in vivo; this difference is consistent with the well-known problem of inadequate delivery and transfection of siRNA in vivo. In comparison, single agent TPM prolonged animal survival and, as expected, induced survivin expression in tumors. Addition of PCat-siSurvivin reversed the TPM-induced survivin expression and enhanced the antitumor activity of TPM. The finding that in vivo survivin knockdown by PCat-siSurvivin was successful only when it was given in combination with TPM provides the proof-of-concept that tumor priming promotes the delivery and transfection of liposomal siRNA. The data further suggest the TPM/PCat-siSurvivin combination as a potentially useful chemo-gene therapy for peritoneal cancer. PMID:24462901

  12. Boron nitride nanotubes chemically functionalized with glycol chitosan for gene transfection in eukaryotic cell lines.

    PubMed

    Ferreira, T H; Hollanda, L M; Lancellotti, M; de Sousa, E M B

    2015-06-01

    Nanostructured materials have been widely studied concerning their potential biomedical applications, primarily to selectively carry specific drugs or molecules within a tissue or organ. In this context, boron nitride nanotubes (BNNTs) have generated considerable interest in the scientific community because of their unique properties, presenting good chemical inertness and high thermal stability. Among the many applications proposed for BNNTs in the biomedical field in recent years, the most important include their use as biosensors, nanovectors for the delivery of proteins, drugs, and genes. In the present study, BNNTs were synthesized, purified, and functionalized with glycol chitosan through a chemical process, yielding the BNNT-GC. The size of BNNT-GC was reduced using an ultrasound probe. Two samples with different sizes were selected for in vitro assays. The nanostructures were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA), and dynamic light scattering (DLS). The in vitro assays MTT and neutral red (NR) were performed with NIH-3T3 and A549 cell lines and demonstrated that this material is not cytotoxic. Furthermore, the BNNT-GC was applied in gene transfection of plasmid pIRES containing a gene region that express a green fluorescent protein (GFP) in NIH-3T3 and A549 cell lines. The gene transfection was characterized by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Our results suggest that BNNT-GC has moderate stability and presents great potential as a gene carrier agent in nonviral-based therapy, with low cytotoxicity and good transfection efficiency. PMID:25231734

  13. Design of a microchannel-nanochannel-microchannel array based nanoelectroporation system for precise gene transfection.

    PubMed

    Gao, Keliang; Li, Lei; He, Lingna; Hinkle, Kevin; Wu, Yun; Ma, Junyu; Chang, Lingqian; Zhao, Xi; Perez, Daniel Gallego; Eckardt, Sigrid; McLaughlin, John; Liu, Boyu; Farson, Dave F; Lee, L James

    2014-03-12

    A micro/nano-fabrication process of a nanochannel electroporation (NEP) array and its application for precise delivery of plasmid for non-viral gene transfection is described. A dip-combing device is optimized to produce DNA nanowires across a microridge array patterned on the polydimethylsiloxane (PDMS) surface with a yield up to 95%. Molecular imprinting based on a low viscosity resin, 1,4-butanediol diacrylate (1,4-BDDA), adopted to convert the microridge-nanowire-microridge array into a microchannel-nanochannel-microchannel (MNM) array. Secondary machining by femtosecond laser ablation is applied to shorten one side of microchannels from 3000 to 50 μm to facilitate cell loading and unloading. The biochip is then sealed in a packaging case with reservoirs and microfluidic channels to enable cell and plasmid loading, and to protect the biochip from leakage and contamination. The package case can be opened for cell unloading after NEP to allow for the follow-up cell culture and analysis. These NEP cases can be placed in a spinning disc and up to ten discs can be piled together for spinning. The resulting centrifugal force can simultaneously manipulate hundreds or thousands of cells into microchannels of NEP arrays within 3 minutes. To demonstrate its application, a 13 kbp OSKM plasmid of induced pluripotent stem cell (iPSC) is injected into mouse embryonic fibroblasts cells (MEFCs). Fluorescence detection of transfected cells within the NEP biochips shows that the delivered dosage is high and much more uniform compared with similar gene transfection carried out by the conventional bulk electroporation (BEP) method. PMID:24173879

  14. Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Torres-Mapa, Maria Leilani; Lee, Woei Ming; Čižmár, Tomáš; Campbell, Paul; Gunn-Moore, Frank J.; Dholakia, Kishan

    2011-02-01

    We demonstrate laser-induced breakdown of an optically trapped nanoparticle with a nanosecond laser pulse. Controllable cavitation within a microscope sample was achieved, generating shear stress to monolayers of live cells. This efficiently permeabilize their plasma membranes. We show that this technique is an excellent tool for plasmid-DNA transfection of cells with both reduced energy requirements and reduced cell lysis compared to previously reported approaches. Simultaneous multisite targeted nanosurgery of cells is also demonstrated using a spatial light modulator for parallelizing the technique.

  15. Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties.

    PubMed

    Zhang, Y P; Sekirov, L; Saravolac, E G; Wheeler, J J; Tardi, P; Clow, K; Leng, E; Sun, R; Cullis, P R; Scherrer, P

    1999-08-01

    Previous work (Wheeler et al, Gene Therapy 1999; 6: 271-281) has shown that plasmid DNA can be entrapped in 'stabilized plasmid-lipid particles' (SPLP) containing the fusogenic lipid dioleoylphosphatidylethanolamine (DOPE), low levels (5-10 mol%) of cationic lipid, and stabilized by a polyethyleneglycol (PEG) coating. The PEG moieties are attached to a ceramide anchor containing an arachidoyl acyl group (PEG-CerC20). These SPLP exhibit low transfection potencies in vitro, due in part to the long residence time of the PEG-CerC20 on the SPLP surface. In this work we employed SPLP stabilized by PEG attached to ceramide containing an octanoyl acyl group (PEG-CerC8), which is able to quickly exchange out of the SPLP, to develop systems that give rise to optimized in vitro and in vivo (regional) transfection. A particular objective was to achieve cationic lipid contents that give rise to maximum transfection levels. It is shown that by performing the dialysis procedure in the presence of increasing concentrations of citrate, SPLP containing up to 30 mol% of the cationic lipid dioleoydimethylammonium chloride (DODAC) could be generated. The SPLP produced could be isolated from empty vesicles by sucrose density gradient centrifugation, and exhibited a narrow size distribution (62 +/- 8 nm, as determined by freeze-fracture electron microscopy) and a high plasmid-to-lipid ratio of 65 microg/micromol (corresponding to one plasmid per particle) regardless of the DODAC content. It was found that isolated SPLP containing 20-24 mol% DODAC resulted in optimum transfection of COS-7 and HepG2 cells in vitro, with luciferase expression levels comparable to those achieved for plasmid DNA-cationic lipid complexes. In vivo studies employing an intraperitoneal B16 tumor model and intraperitoneal administration of SPLP also demonstrated maximum luciferase expression for DODAC contents of 20-24 mol% and significantly improved gene expression in tumor tissue as compared with complexes. We

  16. Transfection microarrays for high-throughput phenotypic screening of genes involved in cell migration.

    PubMed

    Onuki-Nagasaki, Reiko; Nagasaki, Akira; Hakamada, Kazumi; Uyeda, Taro Q P; Fujita, Satoshi; Miyake, Masato; Miyake, Jun

    2010-01-01

    Cell migration is important in several biological phenomena, such as cancer metastasis. Therefore, the identification of genes involved in cell migration might facilitate the discovery of antimetastatic drugs. However, screening of genes by the current methods can be complicated by factors related to cell stimulation, for example, abolition of contact inhibition and the release inflammatory cytokines from wounded cells during examinations of wound healing in vitro. To overcome these problems and identify genes involved in cell migration, in this chapter we describe the use of transfection microarrays for high-throughput phenotypic screening. PMID:20387151

  17. A cost-effective approach to microporate mammalian cells with the Neon Transfection System.

    PubMed

    Brees, Chantal; Fransen, Marc

    2014-12-01

    Electroporation is one of the most efficient nonviral methods for transferring exogenous DNA into mammalian cells. However, the relatively high costs of electroporation kits and reagents temper the routine use of this fast and easy to perform technique in many laboratories. Several years ago, a new flexible and easy to operate electroporation device was launched under the name Neon Transfection System. This device uses specialized pipette tips containing gold-plated electrodes as electroporation chamber. Here we report a protocol to regenerate these expensive tips as well as some other Neon kit accessories, thereby reducing the cost of electroporation at least 10-fold. PMID:25172131

  18. Normal Expression of a Rearranged and Mutated c-myc Oncogene after Transfection into Fibroblasts

    NASA Astrophysics Data System (ADS)

    Richman, Adam; Hayday, Adrian

    1989-10-01

    Expression of the c-myc oncogene is deregulated in a variety of malignancies. Rearrangement and mutation of the c-myc locus is a characteristic feature of human Burkitt's lymphoma. Whether deregulation is solely a result of mutation of c-myc or whether it is influenced by the transformed B cell context has not been determined. A translocated and mutated allele of c-myc was stably transfected into fibroblasts. The rearranged allele was expressed indistinguishably from a normal c-myc gene: it had serum-regulated expression, was transcribed with normal promoter preference, and was strongly attenuated. Thus mutations by themselves are insufficient to deregulate c-myc transcription.

  19. Data on macrophage mediated muscle transfection upon delivery of naked plasmid DNA with block copolymers.

    PubMed

    Mahajan, Vivek; Gaymalov, Zagit; Alakhova, Daria; Gupta, Richa; Zucker, Irving H; Kabanov, Alexander V

    2016-06-01

    The data contains 14 figures supporting the research article "Horizontal gene transfer from macrophages to ischemic muscles upon delivery of naked DNA with Pluronic block copolymers" [1]. The data explains the surgical procedure and histological characterization of Murine Hind Limb Ischemia. The data also shows the kinetics of luciferase gene expression, spread of GFP expression through muscle and the colocalization of GFP with cellular markers in ischemic muscles injected with pDNA alone or pDNA/Pluronic. Finally the data shows the effect of Pluronic Block Copolymer to enhance total gene expression (cmv-promoter driven luciferase gene) in coculture of DNA transfected MØs with muscle cells. PMID:27222845

  20. 3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control

    NASA Astrophysics Data System (ADS)

    Chang, Lingqian; Bertani, Paul; Gallego-Perez, Daniel; Yang, Zhaogang; Chen, Feng; Chiang, Chiling; Malkoc, Veysi; Kuang, Tairong; Gao, Keliang; Lee, L. James; Lu, Wu

    2015-12-01

    Of great interest to modern medicine and biomedical research is the ability to inject individual target cells with the desired genes or drug molecules. Some advances in cell electroporation allow for high throughput, high cell viability, or excellent dosage control, yet no platform is available for the combination of all three. In an effort to solve this problem, here we show a ``3D nano-channel electroporation (NEP) chip'' on a silicon platform designed to meet these three criteria. This NEP chip can simultaneously deliver the desired molecules into 40 000 cells per cm2 on the top surface of the device. Each 650 nm pore aligns to a cell and can be used to deliver extremely small biological elements to very large plasmids (>10 kbp). When compared to conventional bulk electroporation (BEP), the NEP chip shows a 20 fold improvement in dosage control and uniformity, while still maintaining high cell viability (>90%) even in cells such as cardiac cells which are characteristically difficult to transfect. This high-throughput 3D NEP system provides an innovative and medically valuable platform with uniform and reliable cellular transfection, allowing for a steady supply of healthy, engineered cells.Of great interest to modern medicine and biomedical research is the ability to inject individual target cells with the desired genes or drug molecules. Some advances in cell electroporation allow for high throughput, high cell viability, or excellent dosage control, yet no platform is available for the combination of all three. In an effort to solve this problem, here we show a ``3D nano-channel electroporation (NEP) chip'' on a silicon platform designed to meet these three criteria. This NEP chip can simultaneously deliver the desired molecules into 40 000 cells per cm2 on the top surface of the device. Each 650 nm pore aligns to a cell and can be used to deliver extremely small biological elements to very large plasmids (>10 kbp). When compared to conventional bulk

  1. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Petrakova, V.; Benson, V.; Buncek, M.; Fiserova, A.; Ledvina, M.; Stursa, J.; Cigler, P.; Nesladek, M.

    2016-06-01

    Efficient delivery of stabilized nucleic acids (NAs) into cells and release of the NA payload are crucial points in the transfection process. Here we report on the fabrication of a nanoscopic cellular delivery carrier that is additionally combined with a label-free intracellular sensor device, based on biocompatible fluorescent nanodiamond particles. The sensing function is engineered into nanodiamonds by using nitrogen-vacancy color centers, providing stable non-blinking luminescence. The device is used for monitoring NA transfection and the payload release in cells. The unpacking of NAs from a poly(ethyleneimine)-terminated nanodiamond surface is monitored using the color shift of nitrogen-vacancy centers in the diamond, which serve as a nanoscopic electric charge sensor. The proposed device innovates the strategies for NA imaging and delivery, by providing detection of the intracellular release of non-labeled NAs without affecting cellular processing of the NAs. Our system highlights the potential of nanodiamonds to act not merely as labels but also as non-toxic and non-photobleachable fluorescent biosensors reporting complex molecular events.Efficient delivery of stabilized nucleic acids (NAs) into cells and release of the NA payload are crucial points in the transfection process. Here we report on the fabrication of a nanoscopic cellular delivery carrier that is additionally combined with a label-free intracellular sensor device, based on biocompatible fluorescent nanodiamond particles. The sensing function is engineered into nanodiamonds by using nitrogen-vacancy color centers, providing stable non-blinking luminescence. The device is used for monitoring NA transfection and the payload release in cells. The unpacking of NAs from a poly(ethyleneimine)-terminated nanodiamond surface is monitored using the color shift of nitrogen-vacancy centers in the diamond, which serve as a nanoscopic electric charge sensor. The proposed device innovates the strategies for

  2. Playing with Polymers.

    ERIC Educational Resources Information Center

    Chemecology, 1997

    1997-01-01

    Presents an activity that enables students to gain a better understanding of the importance of polymers. Students perform an experiment in which polymer chains of polyvinyl acetate form crosslinks. Includes background information and discussion questions. (DDR)

  3. Introduction to Polymer Chemistry.

    ERIC Educational Resources Information Center

    Harris, Frank W.

    1981-01-01

    Reviews the physical and chemical properties of polymers and the two major methods of polymer synthesis: addition (chain, chain-growth, or chain-reaction), and condensation (step-growth or step-reaction) polymerization. (JN)

  4. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  5. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  6. Polymer Fluid Dynamics.

    ERIC Educational Resources Information Center

    Bird, R. Byron

    1980-01-01

    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  7. Primary thrombocythemia

    MedlinePlus

    ... in which the bone marrow produces too many platelets. Platelets are a part of the blood that aids ... Primary thrombocythemia is caused by the overproduction of platelets. If untreated, this condition gets worse over time. ...

  8. FIDDLER CREEK POLYMER AUGMENTATION PROJECT

    SciTech Connect

    Lyle A. Johnson, Jr.

    2001-10-31

    The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1

  9. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    SciTech Connect

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  10. Effective protein inhibition in intact mouse oocytes through peptide nanoparticle-mediated antibody transfection

    PubMed Central

    Li, Ruichao; Jin, Zhen; Gao, Leilei; Liu, Peng

    2016-01-01

    Female meiosis is a fundamental area of study in reproductive medicine, and the mouse oocyte model of in vitro maturation (IVM) is most widely used to study female meiosis. To investigate the probable role(s) of an unknown protein in female meiosis, the method traditionally used involves microinjecting a specific antibody into mouse oocytes. Recently, in studies on somatic cells, peptide nanoparticle-mediated antibody transfection has become a popular tool because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, untill now no researchers have tried using this technique on mouse oocytes because the zona pellucida surrounding the oocyte membrane (vitelline membrane) is usually thought or proved to be a tough barrier to macromolecules such as antibodies and proteins. Therefore, we attempted to introduce an antibody into mouse oocytes using a peptide nanoparticle. Here we show for the first time that with our optimized method, an antibody can be effectively delivered into mouse oocytes and inhibit its target protein with high specificity. We obtained significant results using small GTPase Arl2 as a test subject protein. We propose peptide nanoparticle-mediated antibody transfection to be a superior alternative to antibody microinjection for preliminary functional studies of unknown proteins in mouse oocytes. PMID:27114861

  11. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases.

    PubMed

    Haney, Matthew J; Zhao, Yuling; Harrison, Emily B; Mahajan, Vivek; Ahmed, Shaheen; He, Zhijian; Suresh, Poornima; Hingtgen, Shawn D; Klyachko, Natalia L; Mosley, R Lee; Gendelman, Howard E; Kabanov, Alexander V; Batrakova, Elena V

    2013-01-01

    The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA) encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD). This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders. PMID:23620794

  12. Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum.

    PubMed Central

    Crabb, B S; Cowman, A F

    1996-01-01

    Genetic studies of the protozoan parasite Plasmodium falciparum have been severely limited by the inability to introduce or modify genes. In this paper we describe a system of stable transfection of P. falciparum using a Toxoplasma gondii dihydrofolate reductase-thymidylate synthase gene, modified to confer resistance to pyrimethamine, as a selectable marker. This gene was placed under the transcriptional control of the P. falciparum calmodulin gene flanking sequences. Transfected parasites generally maintained plasmids episomally while under selection; however, parasite clones containing integrated forms of the plasmid were obtained. Integration occurred by both homologous and nonhomologous recombination. In addition to the flanking sequence of the P. falciparum calmodulin gene, the 5' sequences of the P. falciparum and P. chabaudi dihydrofolate reductase-thymidylate synthase genes were also shown to be transcriptionally active in P. falciparum. The minimal 5' sequence that possessed significant transcriptional activity was determined for each gene and short sequences containing important transcriptional control elements were identified. These sequences will provide considerable flexibility in the future construction of plasmid vectors to be used for the expression of foreign genes or for the deletion or modification of P. falciparum genes of interest. Images Fig. 4 Fig. 5 PMID:8692985

  13. Cytotoxicity testing with three-dimensional cultures of transfected pulp-derived cells.

    PubMed

    Schuster, U; Schmalz, G; Thonemann, B; Mendel, N; Metzl, C

    2001-04-01

    SV40 large T-antigen-transfected bovine pulp-derived cells were grown three-dimensionally on polyamide meshes. For optimal cell growth, various cell numbers and mesh coatings were tested. Next the three-dimensional cultures were used in a dentin barrier test device, and the system was evaluated by testing a set of dental filling materials. After 24 hr exposure with or without perfusion of the pulpal part of the test device, cell survival was evaluated using an MTT assay. In all experiments pulp-derived cells transfected with SV40 large T-antigen grew three-dimensionally on polyamide meshes and showed growth kinetics similar to those on cell culture plates with lag, log, and plateau phases (reached after about 14 days of incubation). Cross-sections of the three-dimensional cell cultures revealed about 15 to 20 cell layers. In vitro cytotoxicity tests resulted in cell survival rates which are in good agreement with in vivo data and with results obtained from cytotoxicity tests with three-dimensional cultures of human foreskin fibroblasts. PMID:11485263

  14. Murine fibroblasts transfection by laser optoporation: preliminary notes on the use of a visible wavelength

    NASA Astrophysics Data System (ADS)

    Palumbo, Giuseppe; Tecce, Mario F.; Roberti, Giuseppe; Colasanti, Alberto

    1994-12-01

    A novel approach to gene trasfection, i.e. the introduction of an extraneous gene into a host cell, by the 'non-contact forces' of a laser microbeam, is presented here. By means of a large magnification (100x) objective, the blue microbeam of an Argon laser (488 nm) has been focused on the cell membrane in culture in the presence of a pH indicator (namely the phenol-red), which is an usual component of culture media. Due to the local high light absorption of phenol red, which shows an absorption peak at 475 nm, at the site of the beam impact the cell membrane melts forming small circular holes. Throughout the holes, DNA purposely added to culture medium, may penetrate the cytoplasm. The wall damage, whose extension may be regulated by controlling the irradiation time, disappear spontaneously (membrane repair) within 1-2 minutes. By this technique, thereafter indicated as 'optoporation', we have successfully transfected into murine NIH3T3 fibroblasts (beta) -galactosidase and chloramphenicol-acetyltransferase bacterial genes. These conditions of transfection by means of 'non contact' forces, are very mild and do not require any addition of extraneous, potentially toxic chemicals. In addition, since the radiation used is in the visible region, where nucleic acids and most proteins do not absorb, no further deleterious effects for the cell are expected.

  15. Intracellular Protein Delivery and Gene Transfection by Electroporation Using a Microneedle Electrode Array

    PubMed Central

    Choi, Seong-O; Kim, Yeu-Chun; Lee, Jeong Woo; Park, Jung-Hwan

    2012-01-01

    The impact of many biopharmaceuticals, including protein- and gene-based therapies, has been limited by the need for better methods of delivery into cells within tissues. Here, we present intracellular delivery of molecules and transfection with plasmid DNA by electroporation using a novel microneedle electrode array designed for targeted treatment of skin and other tissue surfaces. The microneedle array is molded out of polylactic acid. Electrodes and circuitry required for electroporation are applied to the microneedle array surface by a new metal-transfer micromolding method. The microneedle array maintains mechanical integrity after insertion into pig cadaver skin and is able to electroporate human prostate cancer cells in vitro. Quantitative measurements show that increasing electroporation pulse voltage increases uptake efficiency of calcein and bovine serum albumin, whereas increasing pulse length has lesser effects over the range studied. Uptake of molecules by up to 50 % of cells and transfection of 12 % of cells with a gene for green fluorescent protein is demonstrated at high cell viability. We conclude that the microneedle electrode array is able to electroporate cells, resulting in intracellular uptake of molecules, and has potential applications to improve intracellular delivery of proteins, DNA and other biopharmaceuticals. PMID:22328093

  16. Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet.

    PubMed

    Ino, Kosuke; Kawasumi, Tamayo; Ito, Akira; Honda, Hiroyuki

    2008-05-01

    Modification of cellular functions by overexpression of genes is being increasingly practiced for tissue engineering. In the present study, we investigated whether transfection efficiency could be enhanced by magnetofection that involves the use of plasmid DNA (pDNA)/magnetite cationic liposomes (MCLs) complexes (pDNA/MCL) and magnetic force. The transfection efficiencies of the magnetofection technique by pDNA/MCL in fibroblasts and keratinocytes using reporter genes were 36- and 10-fold higher, respectively, than those of a lipofection technique by cationic liposomes. Moreover, in vitro construction of three-dimensional (3D) tissues is an important challenge. We recently proposed a novel technique termed "magnetic force-based tissue engineering" (Mag-TE) to produce 3D tissues. Since the fibroblasts after magnetofection incorporated both magnetite nanoparticles and pDNA, we investigated whether multilayered heterotypic cell sheets expressing transgene could be fabricated by Mag-TE. First, the fibroblasts were seeded onto an ultra-low attachment culture plate. When a magnet was placed under the plate, the cells accumulated at the bottom of the culture plate. After 24 h of culture, the transgene-expressing cells formed a multilayered cell sheet-like structure. These results indicated that MCLs are a potent biomanipulation tool for both gene transfer and 3D tissue construction, suggesting that these techniques are useful for tissue engineering. PMID:18078300

  17. Antigen mRNA-transfected, allogeneic fibroblasts loaded with NKT-cell ligand confer antitumor immunity.

    PubMed

    Fujii, Shin-ichiro; Goto, Akira; Shimizu, Kanako

    2009-04-30

    The maturation of dendritic cells (DCs) in situ by danger signals plays a central role in linking innate and adaptive immunity. We previously demonstrated that the activation of invariant natural killer T (iNKT) cells by administration of alpha-galactosylceramide (alpha-GalCer)-loaded tumor cells can act as a cellular adjuvant through the DC maturation. In the current study, we used allogeneic fibroblasts loaded with alpha-GalCer and transfected with antigen-encoding mRNA, thus combining the adjuvant effects of iNKT-cell activation with delivery of antigen to DCs in vivo. We found that these cells produce antigen protein and activate NK and iNKT cells. When injected into major histocompatibility complex (MHC)-mismatched mice, they elicited antigen-specific T-cell responses and provided tumor protection, suggesting that these immune responses depend on host DCs. In addition, antigen-expressing fibroblasts loaded with alpha-GalCer lead to a more potent T-cell response than those expressing NK cell ligands. Thus, glycolipid-loaded, mRNA-transfected allogeneic fibroblasts act as cellular vectors to provide iNKT-cell activation, leading to DC maturation and T-cell immunity. By harnessing the innate immune system and generating an adaptive immune response to a variety of antigens, this unique tool could prove clinically beneficial in the development of immunotherapies against malignant and infectious diseases. PMID:19164596

  18. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation.

    PubMed

    Han, Xin; Liu, Zongbin; Jo, Myeong Chan; Zhang, Kai; Li, Ying; Zeng, Zihua; Li, Nan; Zu, Youli; Qin, Lidong

    2015-08-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) nuclease system represents an efficient tool for genome editing and gene function analysis. It consists of two components: single-guide RNA (sgRNA) and the enzyme Cas9. Typical sgRNA and Cas9 intracellular delivery techniques are limited by their reliance on cell type and exogenous materials as well as their toxic effects on cells (for example, electroporation). We introduce and optimize a microfluidic membrane deformation method to deliver sgRNA and Cas9 into different cell types and achieve successful genome editing. This approach uses rapid cell mechanical deformation to generate transient membrane holes to enable delivery of biomaterials in the medium. We achieved high delivery efficiency of different macromolecules into different cell types, including hard-to-transfect lymphoma cells and embryonic stem cells, while maintaining high cell viability. With the advantages of broad applicability across different cell types, particularly hard-to-transfect cells, and flexibility of application, this method could potentially enable new avenues of biomedical research and gene targeting therapy such as mutation correction of disease genes through combination of the CRISPR-Cas9-mediated knockin system. PMID:26601238

  19. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds.

    PubMed

    Petrakova, V; Benson, V; Buncek, M; Fiserova, A; Ledvina, M; Stursa, J; Cigler, P; Nesladek, M

    2016-06-01

    Efficient delivery of stabilized nucleic acids (NAs) into cells and release of the NA payload are crucial points in the transfection process. Here we report on the fabrication of a nanoscopic cellular delivery carrier that is additionally combined with a label-free intracellular sensor device, based on biocompatible fluorescent nanodiamond particles. The sensing function is engineered into nanodiamonds by using nitrogen-vacancy color centers, providing stable non-blinking luminescence. The device is used for monitoring NA transfection and the payload release in cells. The unpacking of NAs from a poly(ethyleneimine)-terminated nanodiamond surface is monitored using the color shift of nitrogen-vacancy centers in the diamond, which serve as a nanoscopic electric charge sensor. The proposed device innovates the strategies for NA imaging and delivery, by providing detection of the intracellular release of non-labeled NAs without affecting cellular processing of the NAs. Our system highlights the potential of nanodiamonds to act not merely as labels but also as non-toxic and non-photobleachable fluorescent biosensors reporting complex molecular events. PMID:27240633

  20. Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection

    PubMed Central

    Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2014-01-01

    Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306

  1. Polyamidoamine-grafted multiwalled carbon nanotubes for gene delivery: synthesis, transfection and intracellular trafficking.

    PubMed

    Liu, Min; Chen, Biao; Xue, Yanan; Huang, Jie; Zhang, Liming; Huang, Shiwen; Li, Qingwen; Zhang, Zhijun

    2011-11-16

    Functionalized multiwalled carbon nanotubes (f-MWNTs) are of great interest and designed as a novel gene delivery system. In this paper, we presented synthesis of polyamidoamine-functionalized multiwalled carbon nanotubes (PAA-g-MWNTs) and their application as a novel gene delivery system. The PAA-g-MWNTs, obtained from amide formation between PAA and chemically oxidized MWNTs, were stable in aqueous solution and much less toxic to cells than PAA and PEI 25KDa. More importantly, PAA-g-MWNTs showed comparable or even higher transfection efficiency than PAA and PEI at optimal w/w ratio. Intracellular trafficking of Cy3-labeled pGL-3 indicated that a large number of Cy3-labeled pGL-3 were attached to nucleus membrane, the majority of which was localized in nucleus after incubation with cells for 24 h. We have demonstrated that PAA modification of MWNTs facilitate higher DNA uptake and gene expression in vitro. All these facts suggest potential application of PAA-g-MWNTs as a novel gene vector with high transfection efficiency and low cytotoxicity. PMID:21995530

  2. Targeted transfection and expression of hepatitis B viral DNA in human hepatoma cells.

    PubMed Central

    Liang, T J; Makdisi, W J; Sun, S; Hasegawa, K; Zhang, Y; Wands, J R; Wu, C H; Wu, G Y

    1993-01-01

    A soluble DNA carrier system consisting of an asialoglycoprotein covalently linked to poly-L-lysine was used to bind DNA and deliver hepatitis B virus (HBV) DNA constructs to asialoglycoprotein receptor-positive human hepatoma cells. 4 d after transfection with surface or core gene expression constructs, HBsAg and HBeAg in the media were measured to be 16 ng/ml and 32 U/ml per 10(7) cells, respectively. Antigen production was completely inhibited by the addition of an excess of asialoorosomucoid. On the other hand, asialoglycoprotein receptor-negative human hepatoma cells, SK-Hep1, did not produce any viral antigens under identical conditions after incubation with HBV DNA complexed to a conjugate composed of asialoorosomucoid and poly-L-lysine. Using a complete HBV genome construct, HBsAg and HBeAg levels reached 16 ng/ml and 16 U/ml per 10(7) cells, respectively. Northern blots revealed characteristic HBV RNA transcripts including 3.5-, 2.4-, and 2.1-kb fragments. Intracellular and extracellular HBV DNA sequences including relaxed circular, linear and single stranded forms were detected by Southern blot hybridization. Finally, 42-nm Dane particles purified from the spent cultures medium were visualized by electron microscopy. This study demonstrates that a targetable DNA carrier system can transfect HBV DNA in vitro resulting in the production of complete HBV virions. Images PMID:8383700

  3. Neonatal Fc Receptor Mediates Internalization of Fc in Transfected Human Endothelial Cells

    PubMed Central

    Goebl, Nancy A.; Babbey, Clifford M.; Datta-Mannan, Amita; Witcher, Derrick R.; Wroblewski, Victor J.

    2008-01-01

    The neonatal Fc receptor, FcRn mediates an endocytic salvage pathway that prevents degradation of IgG, thus contributing to the homeostasis of circulating IgG. Based on the low affinity of IgG for FcRn at neutral pH, internalization of IgG by endothelial cells is generally believed to occur via fluid-phase endocytosis. To investigate the role of FcRn in IgG internalization, we used quantitative confocal microscopy to characterize internalization of fluorescent Fc molecules by HULEC-5A lung microvascular endothelia transfected with GFP fusion proteins of human or mouse FcRn. In these studies, cells transfected with FcRn accumulated significantly more intracellular Fc than untransfected cells. Internalization of FcRn-binding forms of Fc was proportional to FcRn expression level, was enriched relative to dextran internalization in proportion to FcRn expression level, and was blocked by incubation with excess unlabeled Fc. Because we were unable to detect either surface expression of FcRn or surface binding of Fc, these results suggest that FcRn-dependent internalization of Fc may occur through sequestration of Fc by FcRn in early endosomes. These studies indicate that FcRn-dependent internalization of IgG may be important not only in cells taking up IgG from an extracellular acidic space, but also in endothelial cells participating in homeostatic regulation of circulating IgG levels. PMID:18843053

  4. Specific Transfection of Inflamed Brain by Macrophages: A New Therapeutic Strategy for Neurodegenerative Diseases

    PubMed Central

    Haney, Matthew J.; Zhao, Yuling; Harrison, Emily B.; Mahajan, Vivek; Ahmed, Shaheen; He, Zhijian; Suresh, Poornima; Hingtgen, Shawn D.; Klyachko, Natalia L.; Mosley, R. Lee; Gendelman, Howard E.; Kabanov, Alexander V.; Batrakova, Elena V.

    2013-01-01

    The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA) encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD). This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders. PMID:23620794

  5. Metal-polymer and polymer-polymer interfaces: Application to conjugated polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Smallfield, Julie Anne Osladil

    The study of metal-polymer and polymer-polymer interfaces is applied to conjugated polymer electronic devices. Conjugated polymers are a class of organic materials which have metallic or semiconducting properties which are being investigated as alternatives to traditional semiconducting materials. When conjugated polymers are used in devices, the interfaces are found to be critical to device performance. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), which give information about the atomic and chemical composition, workfunction, and ionization potential of materials, are used to study these interfaces. In studying metal-polymer interfaces, it is shown that the interface between the conjugated polymer fully sulfonated polyaniline (NSPAN) and an aluminum alloy is an active interface, in which copper is extracted by the polymer from the aluminum alloy. This results in the aluminum alloy becoming more resistant to corrosion in a salty environment. The interface between aluminum and NSPAN, as it is found in some light emitting devices (LEDS), is also studied. It is concluded that negative charge is transferred from the aluminum to the polymer, resulting in a thin layer of oxidized aluminum and a more reduced form of the polymer at the interface. In studying polymer-polymer interfaces, it is proposed that NSPAN protonates a pyridine containing polymer at an interface which is also found in some LEDs. This is proposed to be responsible for color variation found in some LEDs. A model system was studied, and protonation at the polymer-polymer interface was directly observed, supporting the earlier proposals. Polymer-polymer interfaces found in SCALE devices, which are LEDs made with three polymer layers, are studied by UPS to determine the band structure of these devices. It is concluded that the EB layers decrease the hole barrier and increase the electron barrier, which leads to better charge balance and a better device. The EB

  6. Quantitative analysis of the supernatant from host and transfected CHO cells using iTRAQ 8-plex technique.

    PubMed

    Zhu, Guijie; Sun, Liangliang; Albanetti, Thomas; Linkous, Travis; Larkin, Christopher; Schoner, Ronald; McGivney, James B; Dovichi, Norman J

    2016-10-01

    We employed UPLC-MS/MS with iTRAQ 8-plex labeling to quantitatively analyze the supernatant produced by two Chinese hamster ovary (CHO) cell lines (CHO K1SV and CHO CAT-S). In each case, the supernatant from the host and three transfected clones were analyzed at days 5, 7, and 10 of culture. A total of eight iTRAQ 8-plex experiments were performed. For each cell line, the overlap of supernatant protein identifications between transfected clones is over 60%. Over 70% of the supernatant proteins in the CHO K1SV host cell line are present in the CHO CAT-S cell line. For the CHO K1SV cell line, the overlap in supernatant protein identifications between the host cell line and the transfected clones is >59%. For the CHO CAT-S cell line, the overlap between supernatant protein identifications for the transfected clone and host cell is >45%. These differences in the supernatant protein identifications between transfected clones in each cell line and between the two host cell lines are not significant. We used cluster analysis to characterize the change in supernatant protein expression as a function of cell culture time. Roughly <60% of the supernatant proteins show significant change across the three time points (ratio >1.3 or <0.7). We also used cluster analysis to compare changes in supernatant protein expression between the host and three transfected clones at each time point. Greater than 65% of the common proteins in the CHO K1SV cell line supernatant and over 54% in the CHO CAT-S cell line supernatant show no significant expression difference between host and the three transfected clones. Data are available via ProteomeXchange with identifier PXD003462. Biotechnol. Bioeng. 2016;113: 2140-2148. © 2016 Wiley Periodicals, Inc. PMID:27070921

  7. Optimized production of HIV-1 virus-like particles by transient transfection in CAP-T cells.

    PubMed

    Gutiérrez-Granados, Sonia; Cervera, Laura; Segura, María de Las Mercedes; Wölfel, Jens; Gòdia, Francesc

    2016-05-01

    HIV-1 virus-like particles (VLPs) have great potential as new-generation vaccines. The novel CAP-T cell line is used for the first time to produce Gag-GFP HIV-1 VLPs by means of polyethylenimine (PEI)-mediated transient transfection. CAP-T cells are adapted to grow to high cell densities in serum-free medium, and are able to express complex recombinant proteins with human post-translational modifications. Furthermore, this cell line is easily transfected with PEI, which offers the flexibility to rapidly generate and screen a number of candidates in preclinical studies. Transient transfection optimization of CAP-T cells has been performed systematically in this work. It is determined that for optimal production, cells need to be growing at mid-exponential phase, Protein Expression Medium (PEM) medium has to be added post-transfection, and cells can be transfected by independent addition of DNA and PEI with no prior complexation. A Box-Behnken experimental design is used to optimize cell density at time of transfection, DNA/cell and PEI/cell ratios. The optimal conditions determined are transfection at a density of 3.3E + 06 cells/mL with 0.5 pg of DNA/cell and 3 pg of PEI/cell. Using the optimized protocol, 6 × 10(10) VLP/mL are obtained, demonstrating that CAP-T is a highly efficient cell line for the production of HIV-1 VLPs and potentially other complex viral-based biotherapeutics. PMID:26685677

  8. From the Cover: A polymer library approach to suicide gene therapy for cancer

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel G.; Peng, Weidan; Akinc, Akin; Hossain, Naushad; Kohn, Anat; Padera, Robert; Langer, Robert; Sawicki, Janet A.

    2004-11-01

    Optimal gene therapy for cancer must (i) deliver DNA to tumor cells with high efficiency, (ii) induce minimal toxicity, and (iii) avoid gene expression in healthy tissues. To this end, we generated a library of >500 degradable, poly(-amino esters) for potential use as nonviral DNA vectors. Using high-throughput methods, we screened this library in vitro for transfection efficiency and cytotoxicity. We tested the best performing polymer, C32, in mice for toxicity and DNA delivery after intratumor and i.m. injection. C32 delivered DNA intratumorally 4-fold better than one of the best commercially available reagents, jetPEI (polyethyleneimine), and 26-fold better than naked DNA. Conversely, the highest transfection levels after i.m. administration were achieved with naked DNA, followed by polyethyleneimine; transfection was rarely observed with C32. Additionally, polyethyleneimine induced significant local toxicity after i.m. injection, whereas C32 demonstrated no toxicity. Finally, we used C32 to deliver a DNA construct encoding the A chain of diphtheria toxin (DT-A) to xenografts derived from LNCaP human prostate cancer cells. This construct regulates toxin expression both at the transcriptional level by the use of a chimeric-modified enhancer/promoter sequence of the human prostate-specific antigen gene and by DNA recombination mediated by Flp recombinase. C32 delivery of the A chain of diphtheria toxin DNA to LNCaP xenografts suppressed tumor growth and even caused 40% of tumors to regress in size. Because C32 transfects tumors locally at high levels, transfects healthy muscle poorly, and displays no toxicity, it may provide a vehicle for the local treatment of cancer. prostate | cationic polymers

  9. Agmatine-Containing Bioreducible Polymer for Gene Delivery Systems and Its Dual Degradation Behavior.

    PubMed

    Choi, Ji-Yeong; Ryu, Kitae; Lee, Gyeong Jin; Kim, Kyunghwan; Kim, Tae-Il

    2015-09-14

    Agmatine-containing bioreducible polymer, poly(cystaminebis(acrylamide)-agmatine) (poly(CBA-AG)) was synthesized for gene delivery systems. It could form 200-300 nm sized and positively charged polyplexes with pDNA, which could release pDNA in reducing the environment due to the internal disulfide bonds cleavage. Poly(CBA-AG) also showed a spontaneous degradation behavior in aqueous condition in contrast to the backbone polymer, poly(cystaminebis(acrylamide)-diaminobutane) (poly(CBA-DAB)) lacking guanidine moieties, probably due to the self-catalyzed hydrolysis of internal amide bonds by guanidine moieties. The cytotoxicity of poly(CBA-AG) was cell-dependent but minimal. Poly(CBA-AG) exhibited highly enhanced transfection efficiency in comparison with poly(CBA-DAB) and even higher transfection efficiency than PEI25k. However, cellular uptake efficiency of the polyplexes did not show positive correlation with the transfection efficiency. Confocal microscopy observation revealed that pDNA delivered by poly(CBA-AG) was strongly accumulated in cell nuclei. These results suggested that high transfection efficiency of poly(CBA-AG) may be derived from the efficient pDNA localization in cell nuclei by guanidine moieties and that the polyplexes dissociation via self-catalyzed hydrolysis as well as disulfide bonds cleavage in cytosol also may facilitate the transfection process. Finally, poly(CBA-AG)/pJDK-apoptin polyplex showed a high anticancer activity induced by apoptosis, demonstrating a potential of poly(CBA-AG) as a gene carrier for cancer gene therapy. PMID:26252660

  10. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates

    NASA Astrophysics Data System (ADS)

    Kiviaho, Jenny K.; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa, Affc; Kostiainen, Mauri A.

    2016-06-01

    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications.DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The

  11. Nanoporous polymer electrolyte

    SciTech Connect

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  12. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  13. Primary hyperparathyroidism

    PubMed Central

    Madkhali, Tarıq; Alhefdhi, Amal; Chen, Herbert; Elfenbein, Dawn

    2016-01-01

    Primary hyperparathyroidism is a common endocrine disorder caused by overactivation of parathyroid glands resulting in excessive release of parathyroid hormone. The resultant hypercalcemia leads to a myriad of symptoms. Primary hyperparathyroidism may increase a patient’s morbidity and even mortality if left untreated. During the last few decades, disease presentation has shifted from the classic presentation of severe bone and kidney manifestations to most patients now being diagnosed on routine labs. Although surgery is the only curative therapy, many advances have been made over the past decades in the diagnosis and the surgical management of primary hyperparathyroidism. The aim of this review is to summarize the characteristics of the disease, the work up, and the treatment options. PMID:26985167

  14. Upregulation of ULK1 expression in PC-3 cells following tumor protein P53 transfection by sonoporation

    PubMed Central

    WANG, YU; CHEN, YI-NI; ZHANG, WEI; YANG, YU; BAI, WEN-KUN; SHEN, E; HU, BING

    2016-01-01

    The aim of the present study was to investigate whether ultrasound combined with microbubbles was able to enhance liposome-mediated transfection of genes into human prostate cancer cells, and to examine the association between autophagy and tumor protein P53 (P53). An MTT assay was used to evaluate cell viability, while flow cytometry and fluorescence microscopy were used to measure gene transfection efficiency. Autophagy was observed using transmission electron microscopy. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were used to assess the expression of autophagy-associated genes. The results of the present study revealed that cell viability was significantly reduced following successfully enhanced transfection of P53 by ultrasound combined with microbubbles. In addition, serine/threonine-protein kinase ULK1 levels were simultaneously upregulated. Castration-resistant prostate cancer is difficult to treat and is investigated in the present study. P53 has a significant role in a number of key biological functions, including DNA repair, apoptosis, cell cycle, autophagy, senescence and angiogenesis. Prior to the present study, to the best of our knowledge, increased transfection efficiency and reduced side effects have been difficult to achieve. Ultrasound is considered to be a ‘gentle’ technique that may be able to achieve increased transfection efficiency and reduced side effects. The results of the present study highlight a potential novel therapeutic strategy for the treatment of prostate cancer. PMID:26870270

  15. Efficient DNA Transfection Mediated by the C-Terminal Domain of Human Immunodeficiency Virus Type 1 Viral Protein R

    PubMed Central

    Kichler, Antoine; Pages, Jean-Christophe; Leborgne, Christian; Druillennec, Sabine; Lenoir, Christine; Coulaud, Dominique; Delain, Etienne; Le Cam, Eric; Roques, Bernard P.; Danos, Olivier

    2000-01-01

    Viral protein R (Vpr) of human immunodeficiency virus type 1 is produced late in the virus life cycle and is assembled into the virion through binding to the Gag protein. It is known to play a significant role early in the viral life cycle by facilitating the nuclear import of the preintegration complex in nondividing cells. Vpr is also able to interact with nucleic acids, and we show here that it induces condensation of plasmid DNA. We have explored the possibility of using these properties in DNA transfection experiments. We report that the C-terminal half of the protein (Vpr52–96) mediates DNA transfection in a variety of human and nonhuman cell lines with efficiencies comparable to those of the best-known transfection agents. Compared with polylysine, a standard polycationic transfection reagent, Vpr52–96 was 10- to 1,000-fold more active. Vpr52–96-DNA complexes were able to reach the cell nucleus through a pH-independent mechanism. These observations possibly identify an alternate pathway for DNA transfection. PMID:10823846

  16. Transfection of Eimeria mitis with Yellow Fluorescent Protein as Reporter and the Endogenous Development of the Transgenic Parasite

    PubMed Central

    Qin, Mei; Liu, Xian Yong; Tang, Xin Ming; Suo, Jing Xia; Tao, Ge Ru; Suo, Xun

    2014-01-01

    Background Advancements have been made in the genetic manipulation of apicomplexan parasites. Both the in vitro transient and in vivo stable transfection of Eimeria tenella have been developed successfully. Herein, we report the transient and stable transfection of Eimeria mitis. Methods and Findings Sporozoites of E. mitis transfected with enhanced yellow fluorescent protein (EYFP) expression plasmid were inoculated into chickens via the cloacal route. The recovered fluorescent oocysts were sorted by fluorescence activated cell sorting (FACS) and then passaged 6 generations successively in chickens. The resulting population was analyzed by genome walking and Western blot. The endogenous development of the transgenic E. mitis was observed and its reproduction potential was tested. The stable transfection of E. mitis was developed. Genome walking confirmed the random integration of plasmid DNA into the genome; while Western blot analysis demonstrated the expression of foreign proteins. Constitutive expression of EYFP was observed in all stages of merogony, gametogony and sporogony. The peak of the transgenic oocyst output was delayed by 24 h and the total oocyst reproduction was reduced by 7-fold when compared to the parental strain. Conclusion Stable transfection of E. mitis was successfully developed. The expression of foreign antigens in the transgenic parasites will facilitate the development of transgenic E. mitis as a vaccine vector. PMID:25490541

  17. Transfection of C6 Glioma Cells with Connexin 43 cDNA: Analysis of Expression, Intercellular Coupling, and Cell Proliferation

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Caveney, S.; Kidder, G. M.; Naus, C. C. G.

    1991-03-01

    C6 glioma cells express low levels of the gap junction protein connexin 43 and its mRNA and display very weak dye coupling. When implanted into the rat cerebrum, these cells quickly give rise to a large glioma. To investigate the role of gap junctions in the tumor characteristics of these cells, we have used Lipofectin-mediated transfection to introduce a full-length cDNA encoding connexin 43. Several transfected clones were obtained that exhibited various amounts of connexin 43 mRNA transcribed from the inserted cDNA. Immunocytochemical analysis revealed an increase in the amount of connexin 43 immunoreactivity in the transfected cells, being localized at areas of intercellular contact as well as in the cytoplasm. The level of dye coupling was also assessed and found to correlate with the amount of connexin 43 mRNA. When cell proliferation was followed over several days, cells expressing the transfected cDNA grew more slowly than nontransfected cells. These transfected cells will be useful in examining the role of gap junctions in tumorigenesis.

  18. Discovery of siRNA lipid nanoparticles to transfect suspension leukemia cells and provide in vivo delivery capability.

    PubMed

    He, Wei; Bennett, Michael J; Luistro, Leopoldo; Carvajal, Daisy; Nevins, Thomas; Smith, Melissa; Tyagi, Gaurav; Cai, James; Wei, Xin; Lin, Tai-An; Heimbrook, David C; Packman, Kathryn; Boylan, John F

    2014-02-01

    As a powerful research tool, siRNA's therapeutic and target validation utility with leukemia cells and long-term gene knockdown is severely restricted by the lack of omnipotent, safe, stable, and convenient delivery. Here, we detail our discovery of siRNA-containing lipid nanoparticles (LNPs) able to effectively transfect several leukemia and difficult-to-transfect adherent cell lines also providing in vivo delivery to mouse spleen and bone marrow tissues through tail-vein administration. We disclose a series of novel structurally related lipids accounting for the superior transfection ability, and reveal a correlation between expression of Caveolins and successful transfection. These LNPs, bearing low toxicity and long stability of >6 months, are ideal for continuous long-term dosing. Our discovery represents the first effective siRNA-containing LNPs for leukemia cells, which not only enables high-throughput siRNA screening with leukemia cells and difficult-to-transfect adherent cells but also paves the way for the development of therapeutic siRNA for leukemia treatment. PMID:24002693

  19. Water-soluble N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride as a nucleic acids vector for cell transfection.

    PubMed

    Faizuloev, Evgeny; Marova, Anna; Nikonova, Alexandra; Volkova, Irina; Gorshkova, Marina; Izumrudov, Vladimir

    2012-08-01

    To endow the cationic polysaccharides with solubility in the whole pH-range without loss of functionality of the amino groups, different chitosan samples were treated with glycidyltrimethylammonium chloride. Each modified unit of the exhaustively alkylated quaternized chitosan (QCht) contained both quaternary and secondary amino groups. The intercalated dye displacement assay and ζ-potential measurements implied stability of QCht polyplexes at physiological conditions and protonation of the secondary amino groups in slightly acidic media which is favorable for transfection according to proton sponge mechanism. The cytotoxicity and transfection efficacy increased with the chain lengthening. Nevertheless, the longest chains of QCht, 250 kDa were less toxic than PEI for COS-1 cells and revealed comparable and even significantly higher transfection activity of siRNA and plasmid DNA, respectively. Thus, highly polymerized QCht (250 kDa) provided the highest level of the plasmid DNA transfection being 5 and 80 times more active than QCht (100 kDa) and QCht (50 kDa), respectively, and 4-fold more effective than PEI, 25 kDa. The established influence of QCht molecular weight on toxicity and transfection efficacy allows elaborating polysaccharide vectors that possess rational balance of these characteristics. PMID:24750918

  20. Discovery of siRNA Lipid Nanoparticles to Transfect Suspension Leukemia Cells and Provide In Vivo Delivery Capability

    PubMed Central

    He, Wei; Bennett, Michael J; Luistro, Leopoldo; Carvajal, Daisy; Nevins, Thomas; Smith, Melissa; Tyagi, Gaurav; Cai, James; Wei, Xin; Lin, Tai-An; Heimbrook, David C; Packman, Kathryn; Boylan, John F

    2014-01-01

    As a powerful research tool, siRNA's therapeutic and target validation utility with leukemia cells and long-term gene knockdown is severely restricted by the lack of omnipotent, safe, stable, and convenient delivery. Here, we detail our discovery of siRNA-containing lipid nanoparticles (LNPs) able to effectively transfect several leukemia and difficult-to-transfect adherent cell lines also providing in vivo delivery to mouse spleen and bone marrow tissues through tail-vein administration. We disclose a series of novel structurally related lipids accounting for the superior transfection ability, and reveal a correlation between expression of Caveolins and successful transfection. These LNPs, bearing low toxicity and long stability of >6 months, are ideal for continuous long-term dosing. Our discovery represents the first effective siRNA-containing LNPs for leukemia cells, which not only enables high-throughput siRNA screening with leukemia cells and difficult-to-transfect adherent cells but also paves the way for the development of therapeutic siRNA for leukemia treatment. PMID:24002693

  1. Transfection of wild-type CFTR into cystic fibrosis lymphocytes restores chloride conductance at G1 of the cell cycle.

    PubMed Central

    Krauss, R D; Bubien, J K; Drumm, M L; Zheng, T; Peiper, S C; Collins, F S; Kirk, K L; Frizzell, R A; Rado, T A

    1992-01-01

    We complemented the Cl- conductance defect in cystic fibrosis lymphocytes by transfection with wild-type cDNA for the cystic fibrosis transmembrane conductance regulator (CFTR). Stable transfectants were selected and subjected to molecular and functional analyses. We detected expression of endogenous CFTR mRNA in several CF and non-CF lymphoid cell lines by PCR. Expression from cDNA in the transfectants was demonstrated by amplifying vector-specific sequences. Both fluorescence and patch-clamp assays showed that transfectants expressing wild-type CFTR acquired properties previously associated with Cl- conductance (GCl) regulation in non-CF lymphocytes: (i) GCl was elevated in the G1 phase of the cell cycle, (ii) cells fixed at G1 increase GCl in response to increased cellular cAMP or Ca2+, (iii) agonist-induced increases in GCl were lost as the cells progressed to the S phase of the cell cycle. The cell cycle and agonist dependent regulation of GCl was not observed in CF lymphocytes transfected with CFTR cDNA containing stop codons in all reading frames at exon 6. Our findings indicate that lymphocytes express functional CFTR since wild-type CFTR corrects the defects in Cl- conductance regulation found in CF lymphocytes. Evaluation of the mechanism of this novel, CFTR-mediated regulation of GCl during cell cycling should provide further insights into the function of CFTR. Images PMID:1372253

  2. Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors.

    PubMed

    Wang, Jie; Lu, Ze; Wang, Junfeng; Cui, Minjian; Yeung, Bertrand Z; Cole, David J; Wientjes, M Guillaume; Au, Jessie L-S

    2015-10-28

    The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (p<0.05). In comparison, PCat-siSurvivin alone did not yield survivin knockdown or antitumor activity, indicating the in vivo effectiveness of intravenous siRNA-mediated gene silencing requires paclitaxel cotreatment. Additional in vitro studies showed that paclitaxel promoted the cytoplasmic release of siGLO, a 22 nucleotide double-stranded RNA that has no mRNA targets, from its PCat lipoplex and/or endosomes/lysosomes. Taken together, our earlier and current data show paclitaxel tumor priming, by promoting the interstitial transport and cytoplasmic release, is critical to promote the delivery and transfection of siRNA in vivo. In addition, because paclitaxel has broad spectrum activity and is used to treat multiple types

  3. Osmotic shock of cultured primary mammary cells amplifies the hormonal induction of casein gene expression.

    PubMed

    Malienou-Ngassa, R; Puissant, C; Houdebine, L M

    1990-10-01

    Primary cells from rabbit mammary gland cultured on floating collagen were transfected with various plasmids in different conditions. Conventional transfection methods using DEAE-dextran or calcium phosphate followed by an osmotic shock with dimethyl sulphoxide (DMSO), polyethylene glycol (PEG) or glycerol did not prevent lactogenic hormones to induce casein synthesis. On the contrary and unexpectedly, casein synthesis was markedly stimulated by transfection. This amplification was obtained as well with DMSO, PEG and glycerol alone or in the presence of DEAE-dextran, calcium phosphate or DNA. None of these compounds induced casein synthesis in the absence of prolactin. A shock by DMSO also amplified the accumulation of beta-casein mRNA in the presence of prolactin. These results show for the first time that primary cultured mammary cells can be efficiently transfected and still keep their capacity to respond to lactogenic hormones. They also indicate that the short osmotic shocks conventionally used in transfection have a potent long-term stimulatory effect on casein gene expression, which is mediated through an unknown mechanism. PMID:2292339

  4. Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    Yi, Grace T.; deGroh, Kim, K.; Banks, Bruce A.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.

    2013-01-01

    As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results.

  5. Helix control in polymers

    PubMed Central

    Totsingan, Filbert; Jain, Vipul; Green, Mark M.

    2012-01-01

    The helix is a critical conformation exhibited by biological macromolecules and plays a key role in fundamental biological processes. Biological helical polymers exist in a single helical sense arising from the chiral effect of their primary units—for example, DNA and proteins adopt predominantly a right-handed helix conformation in response to the asymmetric conformational propensity of D-sugars and L-amino acids, respectively. In using these homochiral systems, nature blocks our observations of some fascinating aspects of the cooperativity in helical systems, although when useful for a specific purpose, “wrong” enantiomers may be incorporated in specific places. In synthetic helical systems, on the contrary, incorporation of non-racemic chirality is an additional burden, and the findings discussed in this review show that this burden may be considerably alleviated by taking advantage of the amplification of chirality, in which small chiral influences lead to large consequences. Peptide nucleic acid (PNA), which is a non-chiral synthetic DNA mimic, shows a cooperative response to a small chiral effect induced by a chiral amino acid, which is limited, however, due to the highly flexible nature of this oligomeric chimera. The lack of internal stereochemical bias is an important factor which makes PNA an ideal system to understand some cooperative features that are not directly accessible from DNA. PMID:22772039

  6. A method to detect transfected chloramphenicol acetyltransferase gene expression in intact animals

    SciTech Connect

    Narayanan, R.; Jastreboff, M.M.; Chiu, Chang Fang; Ito, Etsuro; Bertino, J.R. )

    1988-01-01

    A rapid procedure is described for assaying chloramphenicol acetyltransferase enzyme activity in intact animals following transfection of the RSV CAT plasmid into mouse bone marrow cells by electroporation. The reconstituted mice were injected with ({sup 14}C)chloramphenicol and ethyl acetate extracts of 24-h urine samples were analyzed by TLC autoradiography for the excretion of {sup 14}C-labeled metabolites. CAT expression in vivo can be detected by the presence of acetylated {sup 14}C-labeled metabolites in the urine within 1 week after bone marrow transplantation and, under the conditions described, these metabolites can be detected for at least 3 months. CAT expression in intact mice as monitored by the urine assay correlates with the CAT expression in the hematopoietic tissues assayed in vitro. This method offers a quick mode of screening for introduced CAT gene expression in vivo without sacrificing the mice.

  7. Characterization and Insights Into the Nano Liposomal Magnetic Gene Vector Used for Cell Co-Transfection.

    PubMed

    Chen, Wenjie; Cui, Haixin; Zhao, Xiang; Cui, Jinhui; Wang, Yan; Sun, Chaojiao; Cui, Bo; Lei, Feng

    2015-08-01

    The development of magnetofection technology has brought a promising method for gene delivery. Here, we develop a novel liposomal magnetofection system, consisted of magnetic nanoparticle and liposome through molecular assembly, was applied to introduce double genes into porcin somatic cells with high co-transfection efficiency. The performace of liposomal magnetic gene nanovectors has been evaluated by involving the micro morphology, diameters distribution, zeta potentials and the capacity of loading DNA molecules. The assembly way among magnetic gene nanovectors and DNA molecules was investigated by atomic force microscopy. Liposomal nano magnetic gene vectors complexes displayed nanoscale assembly and formed compact "fishing-net structure" after combining with plasmid DNA, which is favorable to enhance the loading capacity of DNA molecules. PMID:26369113

  8. Targeted transfection of stem cells with sub-20 femtosecond laser pulses.

    PubMed

    Uchugonova, Aisada; König, Karsten; Bueckle, Rainer; Isemann, Andreas; Tempea, Gabriel

    2008-06-23

    Multiphoton microscopes have become important tools for non-contact sub-wavelength three-dimensional nanoprocessing of living biological specimens based on multiphoton ionization and plasma formation. Ultrashort laser pulses are required, however, dispersive effects limit the shortest pulse duration achievable at the focal plane. We report on a compact nonlinear laser scanning microscope with sub-20 femtosecond 75 MHz near infrared laser pulses for nanosurgery of human stem cells and two-photon high-resolution imaging. Single point illumination of the cell membrane was performed to induce a transient nanopore for the delivery of extracellular green fluorescent protein plasmids. Mean powers of less than 7 mW (<93 pJ) and low millisecond exposure times were found to be sufficient to transfect human pancreatic and salivary gland stem cells in these preliminary studies. Ultracompact sub-20 femtosecond laser microscopes may become optical tools for nanobiotechnology and nanomedicine including optical stem cell manipulation. PMID:18575499

  9. Sodium-dependent GABA-induced currents in GAT1-transfected HeLa cells.

    PubMed Central

    Risso, S; DeFelice, L J; Blakely, R D

    1996-01-01

    1. HeLa cells were infected with recombinant vaccinia virus containing the T7 RNA polymerase gene and transfected with the cDNA for a rat GABA transporter, GAT1, cloned downstream of a T7 RNA polymerase promoter. Six to sixteen hours after transfection, whole-cell recording with a voltage ramp in the range -90 to 50 mV revealed GABA-induced currents (approximately -100 pA at -60 mV in 100 microM GABA, 16 h after transfection at room temperature). No GABA-induced currents were observed in parental HeLa cells or in mock-transfected cells. 2. GABA-induced currents were suppressed by extracellular perfusion with GABA-free solutions or addition of GAT1 inhibitors SKF89976-A or SKF100330-A. At fixed voltage the GABA dependence of the inward current fitted the Michaelis-Menten equation with a Hill coefficient, n, near unity and an equilibrium constant, K(m), near 3 microM. The Na+ dependence of the inward currents fitted the Michaelis-Menten equation with n approximately equal to 2 and K(m) approximately equal to 10 mM. The constants n and K(m) for GABA and Na+ were independent of voltage in the range -90 to -30 mV. 3. GABA-induced currents reverse direction in the range 5-10 mV. The implication of this result is that GAT1 can mediate electrogenic (electrophoretic) influx or efflux of GABA depending on the membrane voltage. The presence of an outward current in our experiments is consistent with radioactive-labelled flux data from resealed vesicle studies. However, it is inconsistent with frog oocyte expression experiments using the sample clone. In oocytes, GAT1 generates no outward current in a similar voltage range. Smaller intracellular volume or higher turnover rates in the mammalian expression system may explain the outward currents. 4. External GABA induces inward current, and internal GABA induces outward current. However, in cells initially devoid of internal GABA, external GABA can also facilitate an outward current. This GAT1-mediated outward current occurs

  10. Data on macrophage mediated muscle transfection upon delivery of naked plasmid DNA with block copolymers

    PubMed Central

    Mahajan, Vivek; Gaymalov, Zagit; Alakhova, Daria; Gupta, Richa; Zucker, Irving H.; Kabanov, Alexander V.

    2016-01-01

    The data contains 14 figures supporting the research article “Horizontal gene transfer from macrophages to ischemic muscles upon delivery of naked DNA with Pluronic block copolymers” [1]. The data explains the surgical procedure and histological characterization of Murine Hind Limb Ischemia. The data also shows the kinetics of luciferase gene expression, spread of GFP expression through muscle and the colocalization of GFP with cellular markers in ischemic muscles injected with pDNA alone or pDNA/Pluronic. Finally the data shows the effect of Pluronic Block Copolymer to enhance total gene expression (cmv-promoter driven luciferase gene) in coculture of DNA transfected MØs with muscle cells. PMID:27222845

  11. Transfection of Tumor-Infiltrating T Cells with mRNA Encoding CXCR2.

    PubMed

    Idorn, Manja; Thor Straten, Per; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Adoptive T-cell therapy based on the infusion of patient's own immune cells after ex vivo culturing is among the most potent forms of personalized treatment among recent clinical developments for the treatment of cancer. However, despite high rates of successful initial clinical responses, only about 20 % of patients with metastatic melanoma treated with tumor-infiltrating lymphocytes (TILs) enter complete and long-term regression, with the majority either relapsing after initial partial regression or not benefiting at all. Previous studies have shown a positive correlation between the number infused T cells migrating to the tumor and the clinical response, but also that only a small fraction of adoptively transferred T cells reach the tumor site. In this chapter, we describe a protocol for transfection of TILs with mRNA encoding the chemokine receptor CXCR2 transiently redirecting and improving TILs migration toward tumor-secreted chemokines in vitro. PMID:27236805

  12. A quantum dot photoswitch for DNA detection, gene transfection, and live-cell imaging.

    PubMed

    Wu, Yuzhou; Eisele, Klaus; Doroshenko, Mikheil; Algara-Siller, Gerardo; Kaiser, Ute; Koynov, Kaloian; Weil, Tanja

    2012-11-19

    Quantum dots (QDs) coated with an albumin-derived copolymer shell exhibit significant photoresponsiveness to DNA loading and have great potential for investigating gene delivery processes. The QDs reported herein are positively charged, have attractive optical properties, and are noncytotoxic and notably stable in live cells. Their complex formation with plasmid DNA leads to proportionally decreased photoluminescence and efficient gene transfection is observed. Therefore, they are suitable for live-cell bioimaging and mechanistic studies of nonviral gene delivery. Fluorescence correlation spectroscopy is applied for the first time to investigate individual QDs diffusing in large endosomes inside living cells, and serves as a valuable tool to study the physical properties of QDs inside live cells. The data obtained in this study strongly support the notable stability of these QDs, even in cell endosomes. PMID:22915540

  13. Nerve growth factor (NGF) induces neuronal differentiation in neuroblastoma cells transfected with the NGF receptor cDNA

    SciTech Connect

    Matsushima, H.; Bogenmann, E. )

    1990-09-01

    Human nerve growth factor (NGF) receptor (NGFR) cDNA was transfected into a neuroblastoma cell line (HTLA 230) which does not express a functional NGF-NGFR signal transduction cascade. Short-term treatment of stably transfected cells (98-3) expressing membrane-bound NGF receptor molecules resulted in a cell cycle-dependent, transient expression of the c-fos gene upon treatment with NGF, suggesting the presence of functional high-affinity NGFR. Extensive outgrowth of neurites and cessation of DNA synthesis occurred in transfectants grown on an extracellular matrix after long-term treatment with NGF, suggesting terminal differentiation. Our data support the idea that introduction of a constitutively expressed NGFR cDNA into cells with neuronal background results in the assembly of a functional NGF-NGFR signal cascade in a permissive extracellular environment.

  14. Hypoxia/hepatoma dual specific suicide gene expression plasmid delivery using bio-reducible polymer for hepatocellular carcinoma therapy.

    PubMed

    Kim, Hyun Ah; Nam, Kihoon; Lee, Minhyung; Kim, Sung Wan

    2013-10-10

    Gene therapy is suggested as a promising alternative strategy of hepatocellular carcinoma (HCC, also called hepatoma) therapy. To achieve a successful and safe gene therapy, tight regulation of gene expression is required to minimize side-effects in normal tissues. In this study, we developed a novel hypoxia and hepatoma dual specific gene expression vector. The constructed vectors were transfected into various cell lines using bio-reducible polymer, PAM-ABP. First, pAFPS-Luc or pAFPL-Luc vector was constructed with the alpha-fectoprotein (AFP) promoter and enhancer for hepatoma tissue specific gene expression. Then, pEpo-AFPL-Luc was constructed by insertion of the erythropoietin (Epo) enhancer for hypoxic cancer specific gene expression. In vitro transfection assay showed that pEpo-AFPL-Luc transfected hepatoma cell increased gene expression under hypoxic condition. To confirm the therapeutic effect of dual specific vector, herpes simplex virus thymidine kinase (HSV-TK) gene was introduced for cancer cell killing. The pEpo-AFPL-TK was transfected into hepatoma cell lines in the presence of ganciclovir (GCV) pro-drug. Caspase-3/7, MTT and TUNEL assays elucidated that pEpo-AFPL-TK transfected cells showed significant increasing of death rate in hypoxic hepatoma cells compared to controls. Therefore, the hypoxia/hepatoma dual specific gene expression vector with the Epo enhancer and AFP promoter may be useful for hepatoma specific gene therapy. PMID:23830978

  15. Efficient Gene Transfection into Mammalian Cells Mediated by Cross-linked Polyethylenimine

    PubMed Central

    Dong, Wei; Li, Shufeng; Jin, Guanghui; Sun, Qiming; Ma, Dingyuan; Hua, Zichun

    2007-01-01

    25 kDa branched polyethylenimine (PEI) has successfully been used for in vitro and in vivo gene delivery approaches, but it is cytotoxic. Smaller PEIs are usually non-cytotoxic but less efficient. In order to enhance the gene delivery efficiency and minimize cytotoxicity of PEI, we explored to synthesize cross-linked PEIs with degradable bonds by reacting amines of small branched 2000 Da PEI with small diacrylate (1,4-butanediol diacrylate or ethyleneglycol dimethacrylate) for 2–6 hours. The efficiency of the cross-linked PEIs during in vitro delivering plasmid containing enhanced green fluorescent protein (EGFP) gene reporter and their cytotoxicity were assessed in melanoma B16F10 cell and other cell lines. In vivo gene delivery efficiency was evaluated by direct injection delivery of the EGFP plasmid/cross-linked PEI complexes into mice and by estimating the EGFP expression in animal muscles. Compared to commercially available 25-kDa branched PEI, the cross-linked PEIs reported here could mediate more efficient expression of reporter gene than the 25-kDa PEI control, 19-fold more efficiently in B16F10 cells, 17-fold in 293T cells, 2.3-fold in 3T3 cells, and they exhibited essentially nontoxic at their optimized condition for gene delivery. Furthermore the transfection activity of polyplexs was preserved in the presence of serum proteins. The muscle transfected with the cross-linked PEI prepared here exhibited normal morphology and excellent gene expression. The cross-linked PEIs reported here were evidently more efficient than the commercial 25-kD PEI control and had less cytotoxicity in gene delivery in vitro and in vivo.

  16. Three-dimensional imaging of nucleolin trafficking in normal cells, transfectants, and heterokaryons

    NASA Astrophysics Data System (ADS)

    Ballou, Byron T.; Fisher, Gregory W.; Deng, Jau-Shyong; Hakala, Thomas R.; Srivastava, Meera; Farkas, Daniel L.

    1996-04-01

    The study of intracellular trafficking using labeled molecules has been aided by the development of the cyanine fluorochromes, which are easily coupled, very soluble, resist photobleaching, and fluoresce at far-red wavelengths where background fluorescence is minimal. We have used Cy3-, Cy5-, and Cy5.5-labeled antibodies, antigen-binding fragments, and specifically binding single-stranded oligonucleotides to follow expression and trafficking of nucleolin, the most abundant protein of the nucleolus. Nucleolin shuttles between the nucleolus and the cytoplasm, and is also expressed on the cell surface, allowing us to test our techniques at all three cellular sites. Differentially cyanine-labeled non-specific antibodies were used to control for non-specific binding. Similarly, the differentially labeled non-binding strand of the cloned oligonucleotide served as a control. The multimode microscope allowed us to follow both rapid and slow redistributions of labeled ligands in the same study. We also performed 3-D reconstructions of nucleolin distribution in cells using rapid acquisition and deconvolution. Microinjection of labeled ligands was used to follow intracellular distribution, while incubation of whole cells with antibody and antigen-binding fragments was used to study uptake. To unambiguously define trafficking, and eliminate the possibility of interference by cross-reactive proteins, we transfected mouse renal cell carcinoma cells that express cell surface nucleolin with human nucleolin. We used microinjection and cell surface staining with Cy3- or Cy5- labeled monoclonal antibody D3 (specific for human nucleolin) to assess the cellular distribution of the human protein. Several clones expressed human nucleolin on their surfaces and showed high levels of transport of the human protein into the mouse nucleus and nucleolus. This distribution roughly parallels that of mouse nucleolin as determined by labeled polyclonal antibody. We have used these engineered

  17. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    NASA Astrophysics Data System (ADS)

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Bernkop Schnürch, Andreas

    2008-01-01

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy.

  18. PGC-1α overexpression via local transfection attenuates mitophagy pathway in muscle disuse atrophy.

    PubMed

    Kang, Chounghun; Ji, Li Li

    2016-04-01

    Loss of mitochondrial structural and functional integrity plays a critical role in the pathogenesis of muscle disuse atrophy. Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) has been suggested to modulate autophagy-lysosome pathway (mitophagy) during muscle atrophy, but clear evidence is still lacking. In the current study, we tested the hypothesis that overexpression of PGC-1α via in vivo transfection would ameliorate mitophagy in mouse tibialis anterior muscle subjected to two weeks of immobilization (IM), followed by remobilization (RM). While mitochondrial biogenesis and antioxidant enzymes are decreased, all autophagic and mitophagic protein markers such as Beclin-1, Bnip3, PINK1, parkin, Mul1 and the LC3II/LC3I ratio were increased in IM-RM muscle together with activation of FoxO pathway. Overexpression of PGC-1α significantly increased mitochondrial DNA proliferation and oxidative enzyme activity, whereas it mitigated oxidative stress and mitochondrial ubiquination in IM-RM muscle. Protein contents of PINK1, parkin and Mul1 in mitochondria decreased by approximately 50% with PGC-1α treatment. Furthermore, PGC-1α overexpression suppressed FoxO1 and FoxO3 activation along with a decreased LC3II/LC3I ratio. Importantly, PGC-1α attenuated IM-RM-induced ubiquination and degradation of mitofusion protein Mfn2. Muscle apoptotic tendency, measured by Bax/Bcl2 ratio and caspase-3 activity, were elevated with IM-RM, but unaffected by PGC-1α. We conclude that overexpression of PGC-1α by in vivo transfection can inhibit activation of mitophagy pathway in the atrophying muscle caused by immobilization. PMID:26746585

  19. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    PubMed Central

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. PMID:25834424

  20. Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown.

    PubMed

    Fakhoury, Johans J; Edwardson, Thomas G; Conway, Justin W; Trinh, Tuan; Khan, Farhad; Barłóg, Maciej; Bazzi, Hassan S; Sleiman, Hanadi F

    2015-12-28

    Therapeutic nucleic acids are powerful molecules for shutting down protein expression. However, their cellular uptake is poor and requires transport vectors, such as cationic polymers. Of these, poly(ethylenimine) (PEI) has been shown to be an efficient vehicle for nucleic acid transport into cells. However, cytotoxicity has been a major hurdle in the development of PEI-DNA complexes as clinically viable therapeutics. We have synthesized antisense-polymer conjugates, where the polymeric block is completely monodisperse and sequence-controlled. Depending on the polymer sequence, these can self-assemble to produce micelles of very low polydispersity. The introduction of linear poly(ethylenimine) to these micelles leads to aggregation into size-defined PEI-mediated superstructures. Subsequently, both cellular uptake and gene silencing are greatly enhanced over extended periods compared to antisense alone, while at the same time cellular cytotoxicity remains very low. In contrast, gene silencing is not enhanced with antisense polymer conjugates that are not able to self-assemble into micelles. Thus, using antisense precision micelles, we are able to achieve significant transfection and knockdown with minimal cytotoxicity at much lower concentrations of linear PEI then previously reported. Consequently, a conceptual solution to the problem of antisense or siRNA delivery is to self-assemble these molecules into 'gene-like' micelles with high local charge and increased stability, thus reducing the amount of transfection agent needed for effective gene silencing. PMID:26597764

  1. Gene silencing activity of siRNA polyplexes based on biodegradable polymers.

    PubMed

    Varkouhi, Amir K; Lammers, Twan; Schiffelers, Raymond M; van Steenbergen, Mies J; Hennink, Wim E; Storm, Gert

    2011-04-01

    Cationic polymers are used as non-viral vectors for nucleic acid delivery. In this study, two biodegradable cationic polymers were evaluated for the purpose of siRNA delivery: pHPMA-MPPM (poly((2-hydroxypropyl) methacrylamide 1-methyl-2-piperidine methanol)) and TMC (O-methyl-free N,N,N-trimethylated chitosan). The silencing activity and the cellular cytotoxicity of polyplexes based on these biodegradable polymers were compared with those based on non-biodegradable pDMAEMA (poly(2-dimethylamino)ethyl methacrylate) and PEI (polyethylenimine) and with the regularly used lipidic transfection agent Lipofectamine. To promote endosomal escape, either the endosomolytic peptide diINF-7 was add