Sample records for polymer-dispersed liquid crystal

  1. Electrowetting on polymer dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Fan, Shih-Kang; Chiu, Cheng-Pu; Lin, Jing-Wei

    2009-04-01

    Polymer dispersed liquid crystal (PDLC) is used as a dielectric layer in electrowetting. By applying voltage between a liquid droplet and the electrode underlying PDLC, electrowetting occurs at the liquid/PDLC interface accompanied with electro-optic responses of the reoriented LC droplets embedded in PDLC. Two basic experiments investigating the electrowetting by sessile water droplets and the electro-optic effects through squeezed water droplets were design and performed. The basic functions of a liquid lens and droplet manipulations, including transporting, splitting, and merging, were demonstrated.

  2. Polymer-dispersed liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan

    2016-10-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.

  3. Focusing of light by polymer-dispersed liquid-crystal films with nanosized droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.

    2006-12-15

    An analysis is presented of polarization-independent electrically tunable light focusing by polymerdispersed liquid-crystal films with nanosized liquid-crystal droplets. Polymer-dispersed liquid-crystal films with axially symmetric distributions of liquid-crystal droplet concentration and layers with axially symmetric thickness profiles are considered. The paraxial, Rayleigh, and Rayleigh-Gans approximations, as well as the Foldy-Twersky equation, are used to examine the dependence of focal length on lens geometry, droplet size, concentration of nematic liquid-crystal droplets, and applied field. The tunable focusing ranges are evaluated for both lens types considered in the study. Dependence of the transmittance of polymer-dispersed liquid-crystal film on its characteristics is analyzed. Themore » results obtained are compared with those available from the literature.« less

  4. A dynamic gain equalizer based on holographic polymer dispersed liquid crystal gratings

    NASA Astrophysics Data System (ADS)

    Xin, Zhaohui; Cai, Jiguang; Shen, Guotu; Yang, Baocheng; Zheng, Jihong; Gu, Lingjuan; Zhuang, Songlin

    2006-12-01

    The dynamic gain equalizer consisting of gratings made of holographic polymer dispersed liquid crystal is explored and the structure and principle presented. The properties of the holographic polymer dispersed liquid crystal grating are analyzed in light of the rigorous coupled-wave theory. Experimental study is also conducted in which a beam of infrared laser was incident to the grating sample and an alternating current electric field applied. The electro-optical properties of the grating and the influence of the applied field were observed. The results of the experiment agree with that of the theory quite well. The design method of the dynamic gain equalizer with the help of numerical simulation is presented too. The study shows that holographic polymer dispersed liquid crystal gratings have great potential to play a role in fiber optics communication.

  5. Random lasing in dye-doped polymer dispersed liquid crystal film

    NASA Astrophysics Data System (ADS)

    Wu, Rina; Shi, Rui-xin; Wu, Xiaojiao; Wu, Jie; Dai, Qin

    2016-09-01

    A dye-doped polymer-dispersed liquid crystal film was designed and fabricated, and random lasing action was studied. A mixture of laser dye, nematic liquid crystal, chiral dopant, and PVA was used to prepare the dye-doped polymer-dispersed liquid crystal film by means of microcapsules. Scanning electron microscopy analysis showed that most liquid crystal droplets in the polymer matrix ranged from 30 μm to 40 μm, the size of the liquid crystal droplets was small. Under frequency doubled 532 nm Nd:YAG laser-pumped optical excitation, a plurality of discrete and sharp random laser radiation peaks could be measured in the range of 575-590 nm. The line-width of the lasing peak was 0.2 nm and the threshold of the random lasing was 9 mJ. Under heating, the emission peaks of random lasing disappeared. By detecting the emission light spot energy distribution, the mechanism of radiation was found to be random lasing. The random lasing radiation mechanism was then analyzed and discussed. Experimental results indicated that the size of the liquid crystal droplets is the decisive factor that influences the lasing mechanism. The surface anchor role can be ignored when the size of the liquid crystal droplets in the polymer matrix is small, which is beneficial to form multiple scattering. The transmission path of photons is similar to that in a ring cavity, providing feedback to obtain random lasing output. Project supported by the National Natural Science Foundation of China (Grant No. 61378042), the Colleges and Universities in Liaoning Province Outstanding Young Scholars Growth Plans, China (Grant No. LJQ2015093), and Shenyang Ligong University Laser and Optical Information of Liaoning Province Key Laboratory Open Funds, China.

  6. Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Cao, Mingxuan; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yan, Chao; Dai, Haitao; Liu, Guang; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm-2, which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm-2). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE.

  7. Polymer dispersed nematic liquid crystal for large area displays and light valves

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.

    1986-09-01

    A new electro-optical material based on nematic liquid crystal dispersed in a polymer matrix has recently been introduced by Fergason. This technology (termed NCAP, for nematic curvilinear aligned phase) is suitable for making very large area (thousands of square centimeter) light valves and displays. The device consists of micron size droplets of liquid crystal dispersed in and surrounded by a polymer film. Light passing through the film in the absence of an applied field is strongly forward scattered, giving a milky, translucent film. Application of an electric field across the liquid crystal/polymer film places the film in a highly transparent state. Pleochroic dyes may be employed in the system in order to achieve controllable light absorption as well as scattering. Microscopically, it is shown that the liquid-crystal director lies preferentially parallel to the polymer wall, leading to a bipolar-like configuration of the liquid-crystal directors within the droplet. The symmetry axes of the droplets are randomly oriented in the unpowered, scattering state, but align parallel to the field in the powered, transparent state. The electric field required to reorient a given droplet varies inversely with the diameter of that droplet, and it is shown that the macroscopic electro-optical properties of the film can be modeled if the distribution of liquid-crystal droplet sizes is known.

  8. Hidden Gratings in Holographic Liquid Crystal Polymer-Dispersed Liquid Crystal Films.

    PubMed

    De Sio, Luciano; Lloyd, Pamela F; Tabiryan, Nelson V; Bunning, Timothy J

    2018-04-18

    Dynamic diffraction gratings that are hidden in the field-off state are fabricated utilizing a room-temperature photocurable liquid crystal (LC) monomer and nematic LC (NLC) using holographic photopolymerization techniques. These holographic LC polymer-dispersed LCs (HLCPDLCs) are hidden because of the refractive index matching between the LC polymer and the NLC regions in the as-formed state (no E-field applied). Application of a moderate E-field (5 V/μm) generates a refractive index mismatch because of the NLC reorientation (along the E-field) generating high-diffraction efficiency transmission gratings. These dynamic gratings are characterized by morphological, optical, and electrooptical techniques. They exhibit a morphology made of oriented LC polymer regions (containing residual NLC) alternating with a two-phase region of an NLC and LC polymer. Unlike classic holographic polymer-dispersed LC gratings formed with a nonmesogenic monomer, there is index matching between the as-formed alternating regions of the grating. These HLCPDLCs exhibit broad band and high diffraction efficiency (≈90%) at the Bragg angle, are transparent to white light across the visible range because of the refractive index matching, and exhibit fast response times (1 ms). The ability of HLCPDLCs not to consume electrical power in the off state opens new possibilities for the realization of energy-efficient switchable photonic devices.

  9. Dynamic Time Multiplexing Fabrication of Holographic Polymer Dispersed Liquid Crystals for Increased Wavelength Sensitivity

    NASA Technical Reports Server (NTRS)

    Fontecchio, Adam K. (Inventor); Rai, Kashma (Inventor)

    2017-01-01

    Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically-switchable beam steering capability is disclosed. XXXX Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband 10 HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more 15 motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting 20 a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically switchable beam steering capability is disclosed.

  10. Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model

    NASA Astrophysics Data System (ADS)

    Sutherland, Richard L.

    2002-12-01

    Polarization properties and electro-optical switching behavior of holographic polymer-dispersed liquid-crystal (HPDLC) reflection and transmission gratings are studied. A theoretical model is developed that combines anisotropic coupled-wave theory with an elongated liquid-crystal-droplet switching model and includes the effects of a statistical orientational distribution of droplet-symmetry axes. Angle- and polarization-dependent switching behaviors of HPDLC gratings are elucidated, and the effects on dynamic range are described. A new type of electro-optical switching not seen in ordinary polymer-dispersed liquid crystals, to the best of the author's knowledge, is presented and given a physical interpretation. The model provides valuable insight to the physics of these gratings and can be applied to the design of HPDLC holographic optical elements.

  11. Ultra fast polymer network blue phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar

    2011-06-01

    Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).

  12. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices.

    PubMed

    Torres, Juan C; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán

    2014-05-02

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.

  13. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    PubMed Central

    Torres, Juan C.; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán

    2014-01-01

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed. PMID:28788632

  14. Shear-induced surface alignment of polymer dispersed liquid crystal microdroplets on the boundary layer

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.

  15. Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    McPhail, Dennis; Straub, Martin; Gu, Min

    2005-01-01

    Electrically tunable three-dimensional photonic crystals with a tunable wavelength range of over 70nm of stop gaps between 3 and 4μm have been generated in a liquid crystal-polymer composite. The photonic crystals were fabricated by femtosecond-laser direct writing of void channels in an inverse woodpile configuration with 20 layers providing an extinction of infrared light transmission of 70% in the stacking direction. Stable structures could be manufactured up to a liquid crystal concentration of 24%. Applying a direct voltage of several hundred volts in the stacking direction of the photonic crystal changes the alignment of the liquid crystal directors and hence the average refractive index of the structure. This mechanism permits the direct tuning of the photonic stop gap.

  16. Three-Dimensional Large Screen Display Using Polymer-Dispersed Liquid-Crystal Light Valves and a Schlieren Optical System: Proposal and Basic Experiments

    NASA Astrophysics Data System (ADS)

    Takizawa, Kuniharu

    A novel three-dimensional (3-D) projection display used with polarized eyeglasses is proposed. It consists of polymer-dispersed liquid crystal-light valves that modulate the illuminated light based on light scattering, a polarization beam splitter, and a Schlieren projection system. The features of the proposed display include a 3-D image display with a single projector, half size and half power consumption compared with a conventional 3-D projector with polarized glasses. Measured electro-optic characteristics of a polymer-dispersed liquid-crystal cell inserted between crossed polarizers suggests that the proposed display achieves small cross talk and high-extinction ratio.

  17. A Polymer-Dispersed Liquid Crystal-Based Dynamic Gain Equalizer

    NASA Astrophysics Data System (ADS)

    Barge, M.; Battarel, D.; de Bougrenet de La Tocnaye, J. L.

    2005-08-01

    This paper presents results obtained with a spatial light modulator (SLM) using a polymer-dispersed liquid-crystal (LC) material to provide dynamic gain equalization (DGE) for wavelength-division multiplexing (WDM) networks. We show the benefit of using a nonchannelized approach to adjust some physical parameters such as the ripple and the maximum obtainable attenuation slope for the spectra to be equalized. Particular attention is paid here to polarization dependence that can result from parasitic anisotropic multiple path interferences as well as induced anisotropy due to a planar transverse field when using a free-space SLM structure. In this frame, we demonstrate an original approach using a depolarizing prism that is only appropriate to such choice of material and that mitigates these effects. Finally, material engineering to widen the operating temperature range is also shortly presented in this paper.

  18. Pressure dependence of the electro-optic response function in partially exposed polymer dispersed ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Holmes, H. K.

    1993-01-01

    Ferroelectric liquid crystals in a new configuration, termed partially exposed polymer dispersed ferroelectric liquid crystal (PEPDFLC), respond to external pressures and demonstrate pressure-induced electro-optic switching response. When the PEPDFLC thin film is sandwiched between two transparent conducting electrodes, one a glass plate and the other a flexible sheet such as polyvenylidene fluoride, the switching characteristics of the thin film are a function of the pressure applied to the flexible transparent electrode and the bias voltage across the electrodes. Response time measurements reveal a linear dependence of the change in electric field with external pressure.

  19. Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals

    NASA Astrophysics Data System (ADS)

    Fan, Yun Hsing; Ren, Hongwen; Wu, Shin Tson

    2004-05-01

    Inhomogeneous nanoscale polymer-dispersed liquid crystal (PDLC) devices having gradient nanoscale droplet distribution were fabricated. This gradient refractive index nanoscale (GRIN) PDLC film was obtained by exposing the LC/ monomer with a uniform ultraviolet (UV) light through a patterned photomask. The monomer and LC were mixed at 70: 30 wt% ratio. The area exposed to a weaker UV intensity would produce a larger droplet size, and vice versa. Owing to the nanoscale LC droplets involved, the GRIN PDLC devices are highly transparent in the whole visible region. The gradient refractive index profile can be used as switchable prism gratings, Fresnel lens, and positive and negative lenses with tunable focal lengths. Such a GRIN PDLC device is a broadband device and independent of light polarization. The diffraction efficiency of the lens is controllable by the applied voltage. The major advantages of the GRIN PDLC devices are in simple fabrication process, polarization-independent, and fast switching speed, although the required driving voltage is higher than 100 Vrms. To lower the driving voltage, the technique of polymer-networked liquid crystal (PNLC) has been developed. The PNLC was also produced by exposing the LC/monomer mixture with a uniform UV light through a patterned photomask. However, the monomer concentration in PNLC is only around 2-5 wt%. The formed PNLC structure exhibits a gradient polymer network distribution. The LC in the regions stabilized by a higher polymer concentration exhibits a higher threshold voltage. By using this technique, prism grating, tunable electronic lens and Fresnel lens have been demonstrated. The driving voltage is around 10 Vrms. A drawback of this kind of device is polarization dependence. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC lens is considered.

  20. Morphological and electro optic studies of polymer dispersed liquid crystal in reverse mode

    NASA Astrophysics Data System (ADS)

    Sharma, Vandna; Kumar, Pankaj; Chinky, Malik, Praveen; Raina, K. K.

    2018-05-01

    Present work deals with reverse mode polymer dispersed liquid crystals (PDLCs) sensitive to electric field. Contrary to the conventional PDLCs operate from opaque (OFF state) to transparent state (ON state) with the application of field, reverse mode PDLCs work in transparent to opaque state. Reverse mode PDLC composed of nematic LC and UV curable optical adhesive polymer were prepared by the polymerization induced phase separation. The polarizing optical microscope study shows the vertical alignment of LCs within droplets with initial dark state under cross polarizers and confirms preliminary natural transparent state. The electro optic (EO) results show that the reverse mode PDLC lowered the threshold and operating voltages significantly compared with reported values. The contrast ratio of the film was also studied.

  1. Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Martínez, F. J.; Pascual, I.; Beléndez, A.

    2018-02-01

    Holographic polymer dispersed liquid crystals (HPDLCs) are the result of the optimization of the photopolymer fabrication techniques. They are made by recording in a photopolymerization induced phase separation process (PIPS) in which the liquid crystal molecules diffuse to dark zones in the diffraction grating originated. Thanks to the addition of liquid crystal molecules to the composition, this material has a dynamic behavior by reorientation of the liquid crystal molecules applying an electrical field. In this sense, it is possible to use this material to make dynamic devices. In this work, we study the behavior of this material working in low frequencies with different spatial periods of blazed gratings, a sharp profile whose recording is possible thanks to the addition of a Holoeye LCoS-Pluto spatial light modulator with a resolution of 1920 × 1080 pixels (HD) and a pixel size of 8 × 8 μm2. This device allows us to have an accurate and dynamic control of the phase and amplitude of the recording beam.

  2. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films.

    PubMed

    Sun, Yujian; Zhang, Cuihong; Zhou, Le; Fang, Hua; Huang, Jianhua; Ma, Haipeng; Zhang, Yi; Yang, Jie; Zhang, Lan-Ying; Song, Ping; Gao, Yanzi; Xiao, Jiumei; Li, Fasheng; Li, Kexuan

    2016-12-30

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  3. Ultrasound sensing using the acousto-optic effect in polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Trushkevych, O.; Eriksson, T. J. R.; Ramadas, S. N.; Dixon, S.; Edwards, R. S.

    2015-08-01

    Acousto-optic effects are demonstrated in polymer dispersed liquid crystal (PDLC) films, showing promise for applications in ultrasound sensing. The PDLC films are used to image two displacement profiles of air-coupled flexural transducers' resonant modes at 295 kHz and 730 kHz. Results are confirmed using laser vibrometry. The regions on the transducers with the largest displacements are clearly imaged by the PDLC films, with the resolution agreeing well with laser vibrometry scanning. Imaging takes significantly less time than a scanning system (switching time of a few seconds, as compared to 8 h for laser vibrometry). Heating effects are carefully monitored using thermal imaging and are found not to be the main cause of PDLC clearing.

  4. Design and fabrication of a variable optical attenuator based on polymer-dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    She, Jun; Xu, Su; Tao, Tao; Wang, Qian

    2005-02-01

    In order to obtain a low polarization dependent loss (PDL) and a large attenuation range simultaneously, an optimal design and fabrication of a polymer-dispersed liquid crystal (PDLC) based variable optical attenuator (VOA) is presented. First, an optimal diameter of the liquid crystal droplets is determined by the anomalous diffraction approach (ADA). This optimal diameter gives maximal scattering and thus a large attenuation range is achieved with a relatively thin liquid crystal cell. Secondly, the fabrication of PDLC cell is carried out. The influence of the ultraviolet (UV) curing condition on the morphology of the LC droplets is investigated. For a given liquid crystal concentration, the optimal UV curing power is obtained after a series of statistically designed experiments. Finally, an optical configuration of the PDLC based VOA is presented. Measurements of the attenuation and the PDL are carried out with this configuration. The measured results show that the device has a typical attenuation range of 25dB. The corresponding PDL is nearly 1dB and the insertion loss is 1.8dB. The threshold voltage is 8Vrms and the saturation voltage is 40Vrms. From these measured results, one can see that the fabricated VOA based on PDLC is much more practical for optical communications as compared to the existing ones.

  5. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  6. Reverse-mode microdroplet liquid crystal display

    NASA Astrophysics Data System (ADS)

    Ma, Yao-Dong; Wu, Bao Gang; Xu, Gang

    1990-04-01

    This paper presents the production of the a reverse-mode microdroplet liquid crystal (RMLC) light shutter display. In this unit, the display is formed by a thin polymer film with dispersed liquid crystal microdroplets. The display is light transmissive in the absence of an applied electrical field. The display is converted to a non-transmissive state (i.e. absorbing or scattering) when an electrical field is applied. The "off' and "on" state. of this display are thus exactly opposite to that encountered in "normal-mode" microdroplet liquid crystal display devices such as polymer dispersed liquid crystals (PDLC)15 or Nematic Curvilinear Aligned Phase (NCAP)6. The Reverse Mode Microdroplet Liquid Crystal is obtained by modification of the surface energy of the polymer which encases liquid crystals via reaction of a dopant incorporated inside of the microdroplet during the droplet formation within the inside polymer layer. The liquid crystal used in RMLC is of negative dielectric anisotropy.

  7. Small-angle light scattering symmetry breaking in polymer-dispersed liquid crystal films with inhomogeneous electrically controlled interface anchoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@ifanbel.bas-net.by; Konkolovich, A. V.; Zyryanov, V. Ya.

    2017-03-15

    We have described the method of analyzing and reporting on the results of calculation of the small-angle structure of radiation scattered by a polymer-dispersed liquid crystal film with electrically controlled interfacial anchoring. The method is based on the interference approximation of the wave scattering theory and the hard disk model. Scattering from an individual liquid crystal droplet has been described using the anomalous diffraction approximation extended to the case of droplets with uniform and nonuniform interface anchoring at the droplet–polymer boundary. The director field structure in an individual droplet is determined from the solution of the problem of minimizing themore » volume density of the free energy. The electrooptical effect of symmetry breaking in the angular distribution of scattered radiation has been analyzed. This effect means that the intensities of radiation scattered within angles +θ{sub s} and–θ{sub s} relative to the direction of illumination in the scattering plane can be different. The effect is of the interference origin and is associated with asymmetry of the phase shift of the wavefront of an incident wave from individual parts of the droplet, which appears due to asymmetry of the director field structure in the droplet, caused by nonuniform anchoring of liquid crystal molecules with the polymer on its surface. This effect is analyzed in the case of normal illumination of the film depending on the interfacial anchoring at the liquid crystal–polymer interface, the orientation of the optical axes of droplets, their concentration, sizes, anisometry, and polydispersity.« less

  8. Spatial Frequency Responses of Anisotropic Refractive Index Gratings Formed in Holographic Polymer Dispersed Liquid Crystals.

    PubMed

    Fukuda, Yoshiaki; Tomita, Yasuo

    2016-03-10

    We report on an experimental investigation of spatial frequency responses of anisotropic transmission refractive index gratings formed in holographic polymer dispersed liquid crystals (HPDLCs). We studied two different types of HPDLC materials employing two different monomer systems: one with acrylate monomer capable of radical mediated chain-growth polymerizations and the other with thiol-ene monomer capable of step-growth polymerizations. It was found that the photopolymerization kinetics of the two HPDLC materials could be well explained by the autocatalytic model. We also measured grating-spacing dependences of anisotropic refractive index gratings at a recording wavelength of 532 nm. It was found that the HPDLC material with the thiol-ene monomer gave higher spatial frequency responses than that with the acrylate monomer. Statistical thermodynamic simulation suggested that such a spatial frequency dependence was attributed primarily to a difference in the size of formed liquid crystal droplets due to different photopolymerization mechanisms.

  9. Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications

    NASA Astrophysics Data System (ADS)

    Weng, Libo

    There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions

  10. Spatial Frequency Responses of Anisotropic Refractive Index Gratings Formed in Holographic Polymer Dispersed Liquid Crystals

    PubMed Central

    Fukuda, Yoshiaki; Tomita, Yasuo

    2016-01-01

    We report on an experimental investigation of spatial frequency responses of anisotropic transmission refractive index gratings formed in holographic polymer dispersed liquid crystals (HPDLCs). We studied two different types of HPDLC materials employing two different monomer systems: one with acrylate monomer capable of radical mediated chain-growth polymerizations and the other with thiol-ene monomer capable of step-growth polymerizations. It was found that the photopolymerization kinetics of the two HPDLC materials could be well explained by the autocatalytic model. We also measured grating-spacing dependences of anisotropic refractive index gratings at a recording wavelength of 532 nm. It was found that the HPDLC material with the thiol-ene monomer gave higher spatial frequency responses than that with the acrylate monomer. Statistical thermodynamic simulation suggested that such a spatial frequency dependence was attributed primarily to a difference in the size of formed liquid crystal droplets due to different photopolymerization mechanisms. PMID:28773314

  11. Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders

    NASA Astrophysics Data System (ADS)

    Liu, Minghuan; Liu, Yonggang; Zhang, Guiyang; Peng, Zenghui; Li, Dayu; Ma, Ji; Xuan, Li

    2016-11-01

    Holographic polymer dispersed liquid crystal (HPDLC) based distributed feedback (DFB) lasers were prepared with poly (-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) film as the active medium layer. The HPDLC grating film was fabricated via holographic induced photopolymerization. The pure film spectra of MEH-PPV and the amplified spontaneous emission (ASE) spectrum were investigated. The laser device was single-longitudinal mode operation. The tunability of the HPDLC DFB laser was achieved by selecting different grating periods. The lasing performances were also characterized and compared from different diffraction orders. The lasing threshold increased with the diffraction order and the third order laser possessed the largest conversion efficiency in this device. The experimental results were in good agreement with the theoretical calculations.

  12. Electro-optical properties of low viscosity driven holographic polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Moon, K. R.; Bae, S. Y.; Kim, B. K.

    2015-04-01

    Relative diffraction efficiency (RDE), operating voltage, and response times are most important performance characteristics of holographic polymer dispersed liquid crystals (HPDLC). Two types of triallyl isocyanurate (TI) having different structures were incorporated into the conventional transmission grating of HPDLC. Premix viscosity decreased by 13-18% with up to 3% TI, beyond which it increased. TI eliminated induction period and augmented initial grating formation rate at all contents. Saturation RDE increased over 200% while threshold voltage and rise time decreased to about half and 2/3, respectively up to 3% TI, beyond which the tendencies were reversed. Among the two TIs, low viscosity monomer (TA) showed high RDE, while high miscibility monomer (TE) low characteristic voltages and short response times. It is concluded that grating formation is largely favored by low viscosity, while interface tensions and electro-optical performances by miscibility at similar viscosities.

  13. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    PubMed

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.

  14. Effects of gold nanoparticles on the electro-optical properties of a polymer dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Hinojosa, A.; Shive, C.; Sharma, Suresh

    2010-03-01

    We have studied the electro-optical properties of a polymer-dispersed liquid crystal (PDLC) as functions of relative concentrations of gold nanoparticles. PDLC samples were synthesized between indium-tin-oxide (ITO) coated glass slides, separated by SiO2 spacers, by using liquid crystal E44, a monofunctional acrylic oligomer (CN135), and a tetrafunctional crosslinker (SR295). A UV photoinitiator (SR1124) was used to facilitate the curing of the monomer exposed to UV radiation from a Hg spectral lamp. A He-Ne laser was used to measure optical transmission through the PDLC as a function of applied ac electric field (1 kHz). The PDLC without gold nanoparticles shows the expected behavior; transmission through the PDLC increases from a minimum (opaque) to a maximum (transparent) with increasing electric field. The electro-optical behavior of the PDLC is altered significantly (e. g., relatively low switching field) upon addition of relatively low concentrations of gold nanoparticles into the starting PDLC syrup. We present electro-optical data as functions of gold nanoparticle concentration and discuss possible mechanism to understand our results.

  15. Near-infrared sensitive photorefractive device using polymer dispersed liquid crystal and BSO:Ru hybrid structure.

    PubMed

    Liu, Ren Chung; Marinova, Vera; Lin, Shiuan Huei; Chen, Ming-Syuan; Lin, Yi-Hsin; Hsu, Ken Yuh

    2014-06-01

    A near-infrared sensitive hybrid device, based on a Ru-doped BSO photorefractive substrate and polymer dispersed liquid crystal (PDLC) layer, is reported. It is found that the photoexcited charge carriers generated in the BSO:Ru substrate create an optically induced space charge field, sufficient to penetrate into the PDLC layer and to re-orient the LC molecules inside the droplets. Beam-coupling measurements at the Bragg regime are performed showing prospective amplification values and high spatial resolution. The proposed structure does not require indium tin oxide (ITO) contacts and alignment layers. Such a device allows all the processes to be controlled by light, thus opening further potential for real-time image processing at the near-infrared range.

  16. Electrically tunable two-dimensional holographic polymer-dispersed liquid crystal grating with variable period

    NASA Astrophysics Data System (ADS)

    Wang, Kangni; Zheng, Jihong; Liu, Yourong; Gao, Hui; Zhuang, Songlin

    2017-06-01

    An electrically tunable two-dimensional (2D) holographic polymer-dispersed liquid crystal (H-PDLC) grating with variable period was fabricated by inserting a cylindrical lens in a conventional holographic interference beam. The interference between the plane wave and cylindrical wave resulting in varying intersection angles on the sample, combined with dual exposure along directions perpendicular to each other, generates a 2D H-PDLC grating with varied period. We have identified periods varying from 3.109 to 5.158 μm across a 16 mm width, with supporting theoretical equations for the period. The period exhibits a symmetrical square lattice in a diagonal direction, with an asymmetrical rectangular lattice in off-diagonal locations. With the first exposure at 2 s and the second exposure at 60 s, the phase separation between the prepolymer and liquid crystal was most evident. The diffraction properties and optic-electric characteristics were also studied. The diffraction efficiency of first-order light was observed to be 13.5% without external voltage, and the transmission efficiency of non-diffracted light was 78% with an applied voltage of 100 V. The proposed method provides the capability of generating period variation to the conventional holographic interference path, with potential application in diffractive optics such as tunable multi-wavelength organic lasing from a dye-doped 2D H-PDLC grating.

  17. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.

    1991-10-08

    Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.

  18. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, Stephen D.; Marshall, Kenneth L.; Cerqua, Kathleen A.

    1991-01-01

    Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.

  19. Thermally and optically tunable lasing properties from dye-doped holographic polymer dispersed liquid crystal in capillaries

    NASA Astrophysics Data System (ADS)

    Chen, Maozhou; Dai, Haitao; Wang, Dongshuo; Yang, Yue; Luo, Dan; Zhang, Xiaodong; Liu, Changlong

    2018-03-01

    In this paper, we investigated tunable lasing properties from the dye-doped holographic polymer dispersed liquid crystal (HPDLC) gratings in capillaries with thermal and optical manners. The thermally tunable range of the lasing from the dye-doped HPDLC reached 8.60 nm with the temperature ranging from 23 °C to 50 °C. The optically tunable laser emission was achieved by doping azo-dye in HPDLC. The transition of azo-dye from trans- to cis-state could induce the reorientation of LC molecules after UV light irradiation, which resulted in the variation of refractive index contrast of LC-rich/polymer-rich layer in HPDLC. Experimentally, the emission wavelength of lasing showed a blueshift (about 2 nm) coupled with decreasing output intensities. The tunable laser based on HPDLC may enable more applications in laser displays, optical communication, biosensors, etc.

  20. Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers.

    PubMed

    Kim, Yunhee; Choi, Heejin; Kim, Joohwan; Cho, Seong-Woo; Kim, Youngmin; Park, Gilbae; Lee, Byoungho

    2007-06-20

    A depth-enhanced three-dimensional integral imaging system with electrically variable image planes is proposed. For implementing the variable image planes, polymer-dispersed liquid-crystal (PDLC) films and a projector are adopted as a new display system in the integral imaging. Since the transparencies of PDLC films are electrically controllable, we can make each film diffuse the projected light successively with a different depth from the lens array. As a result, the proposed method enables control of the location of image planes electrically and enhances the depth. The principle of the proposed method is described, and experimental results are also presented.

  1. Enhanced contrast ratio and viewing angle of polymer-stabilized liquid crystal via refractive index matching between liquid crystal and polymer network.

    PubMed

    Lee, Ji-Hoon; Lee, Jung Jin; Lim, Young Jin; Kundu, Sudarshan; Kang, Shin-Woong; Lee, Seung Hee

    2013-11-04

    Long standing electro-optic problems of a polymer-dispersed liquid crystal (PDLC) such as low contrast ratio and transmittances decrease in oblique viewing angle have been challenged with a mixture of dual frequency liquid crystal (DFLC) and reactive mesogen (RM). The DFLC and RM molecules were vertically aligned and then photo-polymerized using a UV light. At scattering state under 50 kHz electric field, DFLC was switched to planar state, giving greater extraordinary refractive index than the normal PDLC cell. Consequently, the scattering intensity and the contrast ratio were increased compared to the conventional PDLC cell. At transparent state under 1 kHz electric field, the extraordinary refractive index of DFLC was simultaneously matched with the refractive index of vertically aligned RM so that the light scattering in oblique viewing angles was minimized, giving rise to high transmittance in all viewing angles.

  2. Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network

    PubMed Central

    Danila, Octavian; Ganea, Constantin Paul

    2018-01-01

    Electro-optical devices that work in a similar fashion as PDLCs (polymer-dispersed liquid crystals), produced from cellulose acetate (CA) electrospun fibers deposited onto indium tin oxide coated glass and a nematic liquid crystal (E7), were studied. CA and the CA/liquid crystal composite were characterized by multiple investigation techniques, such as polarized optical microscopy, dielectric spectroscopy and impedance measurements. Dielectric constant and electric energy loss were studied as a function of frequency and temperature. The activation energy was evaluated and the relaxation time was obtained by fitting the spectra of the dielectric loss with the Havriliak–Negami functions. To determine the electrical characteristics of the studied samples, impedance measurements results were treated using the Cole–Cole diagram and the three-element equivalent model. PMID:29441261

  3. Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network.

    PubMed

    Maximean, Doina Manaila; Danila, Octavian; Almeida, Pedro L; Ganea, Constantin Paul

    2018-01-01

    Electro-optical devices that work in a similar fashion as PDLCs (polymer-dispersed liquid crystals), produced from cellulose acetate (CA) electrospun fibers deposited onto indium tin oxide coated glass and a nematic liquid crystal (E7), were studied. CA and the CA/liquid crystal composite were characterized by multiple investigation techniques, such as polarized optical microscopy, dielectric spectroscopy and impedance measurements. Dielectric constant and electric energy loss were studied as a function of frequency and temperature. The activation energy was evaluated and the relaxation time was obtained by fitting the spectra of the dielectric loss with the Havriliak-Negami functions. To determine the electrical characteristics of the studied samples, impedance measurements results were treated using the Cole-Cole diagram and the three-element equivalent model.

  4. Optical characterization of polymer liquid crystal cell exhibiting polymer blue phases.

    PubMed

    Zhang, Bao-Yan; Meng, Fan-Bao; Cong, Yue-Hua

    2007-08-06

    The optical properties of polymer liquid crystal cell exhibiting polymer blue phases (PBPs) have been determined using ultraviolet-visible spectrophotometry, polarizing optical microscopy (POM), differential scanning calorimetry (DSC), X-ray measurements, FTIR imaging and optical rotation technique. PBPs are thermodynamically stabile mesophases, which appear in chiral systems between isotropic and liquid crystal phases. A series of cyclosiloxane-based blue phase polymers were synthesized using a cholesteric LC monomer and a nematic LC monomer, and some of the polymers exhibit PBPs in temperature range over 300 degrees in cooling cycles. The unique property based on their structure and different twists formed and expect to open up new photonic application and enrich polymer blue phase contents and theory.

  5. Strength of Drug–Polymer Interactions: Implications for Crystallization in Dispersions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, Pinal; Suryanarayanan, Raj

    We investigated the influence of the strength of drug–polymer interactions on the crystallization behavior of a model drug in amorphous solid dispersions (ASDs). Ketoconazole ASDs were prepared with each poly(acrylic acid), poly(2-hydroxyethyl methacrylate), and polyvinylpyrrolidone. Over a wide temperature range in the supercooled region, the α-relaxation time was obtained, which provided a measure of molecular mobility. Isothermal crystallization studies were performed in the same temperature interval using either a synchrotron (for low levels of crystallinity) or a laboratory X-ray (for crystallization kinetics) source. The stronger the drug–polymer interaction, the longer was the delay in crystallization onset time, indicating an increasemore » in physical stability. Stronger drug–polymer interactions also translated to a decrease in the magnitude of the crystallization rate constant. In amorphous ketoconazole as well as in the dispersions, the coupling coefficient, a measure of the extent of coupling between relaxation and crystallization times was ~0.5. This value was unaffected by the strength of drug–polymer interactions. On the basis of these results, the crystallization times in ASDs were predicted at temperatures very close to Tg, using the coupling coefficient experimentally determined for amorphous ketoconazole. The predicted and experimental crystallization times were in good agreement, indicating the usefulness of the model.« less

  6. Paintable band-edge liquid crystal lasers.

    PubMed

    Gardiner, Damian J; Morris, Stephen M; Hands, Philip J W; Mowatt, Carrie; Rutledge, Rupert; Wilkinson, Timothy D; Coles, Harry J

    2011-01-31

    In this paper we demonstrate photonic band-edge laser emission from emulsion-based polymer dispersed liquid crystals. The lasing medium consists of dye-doped chiral nematic droplets dispersed within a polymer matrix that spontaneously align as the film dries. Such lasers can be easily formed on single substrates with no alignment layers. The system combines the self-organizing periodic structure of chiral nematic liquid crystals with the simplicity of the emulsion procedure so as to produce a material that retains the emission characteristics of band-edge lasers yet can be readily coated. Sequential and stacked layers demonstrate the possibility of achieving simultaneous multi-wavelength laser output from glass, metallic, and flexible substrates.

  7. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystal with orthogonal alignment layers

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin

    2012-10-01

    A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.

  8. Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals.

    PubMed

    Jo, Seong-Yong; Jeon, Sung-Wook; Kim, Byeong-Cheon; Bae, Jae-Hyun; Araoka, Fumito; Choi, Suk-Won

    2017-03-15

    The temperature ranges where a pure simple-cubic blue phase (BPII) emerges are quite narrow compared to the body-centered-cubic BP (BPI) such that the polymer stabilization of BPII is much more difficult. Hence, a polymer-stabilized BPII possessing a wide temperature range has been scarcely reported. Here, we fabricate a polymer-stabilized BPII over a temperature range of 50 °C including room temperature. The fabricated polymer-stabilized BPII is confirmed via polarized optical microscopy, Bragg reflection, and Kossel diagram observations. Furthermore, we demonstrate reflective BP liquid-crystal devices utilizing the reflectance-voltage performance as a potential application of the polymer-stabilized BPII. Our work demonstrates the possibility of practical application of the polymer-stabilized BPII to photonic crystals.

  9. Holographic storage of three-dimensional image and data using photopolymer and polymer dispersed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Gao, Hong-Yue; Liu, Pan; Zeng, Chao; Yao, Qiu-Xiang; Zheng, Zhiqiang; Liu, Jicheng; Zheng, Huadong; Yu, Ying-Jie; Zeng, Zhen-Xiang; Sun, Tao

    2016-09-01

    We present holographic storage of three-dimensional (3D) images and data in a photopolymer film without any applied electric field. Its absorption and diffraction efficiency are measured, and reflective analog hologram of real object and image of digital information are recorded in the films. The photopolymer is compared with polymer dispersed liquid crystals as holographic materials. Besides holographic diffraction efficiency of the former is little lower than that of the latter, this work demonstrates that the photopolymer is more suitable for analog hologram and big data permanent storage because of its high definition and no need of high voltage electric field. Therefore, our study proposes a potential holographic storage material to apply in large size static 3D holographic displays, including analog hologram displays, digital hologram prints, and holographic disks. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474194, 11004037, and 61101176) and the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1415500).

  10. Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.

    2017-02-01

    Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.

  11. Characteristics of color optical shutter with dye-doped polymer network liquid crystal.

    PubMed

    Lee, G H; Hwang, K Y; Jang, J E; Jin, Y W; Lee, S Y; Jung, J E

    2011-03-01

    The optical properties and the theoretical prediction of color optical shutter with dye-doped polymer network liquid crystal (PNLC) were investigated. The view-angle dependence of reflectance according to the bias conditions showed distinctive characteristics, which could be explained from the effects of dye absorption and path length. It was also shown that the thickness dependence of reflectance was strongly influenced by the light-scattering coefficient. Our experimental results matched up well with the theoretical prediction based on the light scattering of liquid crystals in polymer network and the absorption of dichroic dye. This work indicates potential to improve the optical device using dye-doped liquid crystal-polymer composite.

  12. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions.

    PubMed

    Rumondor, Alfred C F; Stanford, Lindsay A; Taylor, Lynne S

    2009-12-01

    The objective of this study was to investigate the effects of polymer type and storage relative humidity (RH) on the crystallization kinetics of felodipine from amorphous solid dispersions. Crystallization of the model drug felodipine from amorphous solid dispersion samples containing poly(vinyl pyrrolidone) (PVP) and hypromellose acetate succinate (HPMCAS) were evaluated. Samples at three different drug-polymer weight ratios (10, 25, and 50 wt. % polymer) were prepared and stored at six different RHs (0%, 32%, 52% or 66%, 75%, 86%, and 93%). Periodically, the fraction of the drug that had crystallized from the samples was quantified using powder X-ray diffractometry (PXRD). Felodipine crystallization rates from PVP-containing dispersions were found to be very sensitive to changes in storage RH, while crystallization rates from HPMCAS-containing dispersions were not. PVP and HPMCAS were similar in terms of their ability to inhibit crystallization at low RH, but when the storage RH was increased to 75% or above, felodipine crystallization from PVP-containing solid dispersions proceeded much faster. It is hypothesized that this trend was caused by moisture-induced drug-polymer immiscibility in PVP-felodipine system. For PVP-containing solid dispersion samples stored at 75% RH and above, crystallization of the model drug felodipine seemed to approach a kinetic plateau, whereby a fraction of the drug still remained amorphous even after storage for 500 days or more. The physical stability of solid dispersions as a function of RH is highly dependent on the polymer used to form the solid dispersion, with PVP-containing dispersions being much less physically stable at high RH than HPMCAS-containing dispersions.

  13. Studies of absorption coefficient cum electro-optic performance of polymer dispersed liquid crystal doped with CNT and dichroic dye

    NASA Astrophysics Data System (ADS)

    Sharma, Vandna; Kumar, Pankaj

    2017-11-01

    Absorption coefficient of doped polymer dispersed liquid crystals (PDLCs) is a critical factor for their device performance and depends on dopants parameters like solubility, order parameter and extinction coefficients, in addition to configuration and orientation of the droplets. In this study, a fixed amount (0.125% wt/wt) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye was doped in PDLC and measured the OFF state absorption coefficient. Considering the theory based on Beer's law and followed by extinction coefficients of CNT and dye, the OFF state transmission for dye doped PDLC was found lower compared to CNT doped PDLC. As a result, absorption coefficient for dye doped PDLC was higher and resulted in the superior contrast ratio. The experimental results were found be consistent with the theoretical results.

  14. Electrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same

    DOEpatents

    Marshall, Kenneth L.; Kosc, Tanya Z.; Jacobs, Stephen D.; Faris, Sadeg M.; Li, Le

    2003-12-16

    Flakes or platelets of polymer liquid crystals (PLC) or other birefringent polymers (BP) suspended in a fluid host medium constitute a system that can function as the active element in an electrically switchable optical device when the suspension is either contained between a pair of rigid substrates bearing transparent conductive coatings or dispersed as microcapsules within the body of a flexible host polymer. Optical properties of these flake materials include large effective optical path length, different polarization states and high angular sensitivity in their selective reflection or birefringence. The flakes or platelets of these devices need only a 3-20.degree. rotation about the normal to the cell surface to achieve switching characteristics obtainable with prior devices using particle rotation or translation.

  15. Gas flow-field induced director alignment in polymer dispersed liquid crystal microdroplets deposited on a glass substrate

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on glass substrates by the processes of polymerization and solvent evaporation induced phase separation. The electron and the optical polarization microscopies of the films reveal that PDLC microdroplets formed during the process of phase separation near the top surface of the film remain exposed and respond to shear stress due to air or gas flow on the surface. Optical response of the film to an air flow-induced shear stress input on the free surface has been measured. Director orientation in the droplets changes with the applied shear stress leading to time varying transmitted light intensity. Director dynamics of the droplet for an applied step shear stress has been discussed from free energy considerations. Results on the measurement of light transmission as a function of the gas flow parameter unambiguously demonstrate the potential of these systems for use as boundary layer and gas flow sensors.

  16. Flexible, ferroelectric nanoparticle doped polymer dispersed liquid crystal devices for lower switching voltage and nanoenergy generation

    NASA Astrophysics Data System (ADS)

    Nimmy John, V.; Varanakkottu, Subramanyan Namboodiri; Varghese, Soney

    2018-06-01

    Flexible polymer dispersed liquid crystal (F-PDLC) devices were fabricated using transparent conducting ITO/PET film. Polymerization induced phase separation (PIPS) method was used for pure and ferroelectric BaTiO3 (BTO) and ZnO doped PDLC devices. The distribution of nanoparticles in the PDLC and the formation of micro cavities were studied using field emission scanning electron microscopy (FESEM). It was observed that the addition of ferroelectric BTO nanoparticles has reduced the threshold voltage (Vth) and saturation voltage (Vsat) of FNP-PDLC by 85% and 41% respectively due to the spontaneous polarization of ferroelectric nanoparticles. The ferroelectric properties of BTO and ZnO in the fabricated devices were investigated using dynamic contact electrostatic force microscopy (DC EFM). Flexing the device can generate a potential due to the piezo-tribo electric effect of the ferroelectric nanomaterial doped in the PDLC matrix, which could be utilized as an energy generating system. The switching voltage after multiple flexing was also studied and found to be in par with non-flexing situations.

  17. Statistics of wormlike chains. II. Phase transition of polymer liquid crystals and its mixture with low molecular weight liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhang, W. X.; Zhao, S. R.; Sun, C. P.

    1997-02-01

    A general self-consistent field (SCF) for the mixture of polymer and low molecular weight (LMW) molecules has been derived by variation principle. Considering a Maier-Saupe type of interaction, the analytical expressions of the SCF for polymer liquid crystals (PLCs) and the mixture of PLCs and LMW liquid crystals are obtained, from which the phase behaviors of PLCs as well as the mixture are studied. The theoretical results are in agreement with experimental results by adjusting a parameter.

  18. A microlens array based on polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Xu, Miao; Zhou, Zuowei; Ren, Hongwen; Hee Lee, Seung; Wang, Qionghua

    2013-02-01

    Using UV light to expose a homogeneous cell containing liquid crystal (LC)/monomer mixture through a patterned photomask, we prepared a polymer network liquid crystal (PNLC) microlens array. In each microlens, the formed polymer network presents a central-symmetrical inhomogeneous morphology and LC exhibits a gradient refractive index distribution. By applying an external voltage to the cell, the gradient of the LC refractive index is changed. As a result, the focal length of the microlens can be tuned. Our PNLC microlens array has the advantages of low operating voltage, easy fabrication, and good stability. This kind of microlens array has potential applications in image processing, optical communications, and switchable 2D/3D displays.

  19. Reduced Crystallization Temperature Methodology for Polymer Selection in Amorphous Solid Dispersions: Stability Perspective.

    PubMed

    Bhugra, Chandan; Telang, Chitra; Schwabe, Robert; Zhong, Li

    2016-09-06

    API-polymer interactions, used to select the right polymeric matrix with an aim to stabilize an amorphous dispersion, are routinely studied using spectroscopic and/or calorimetric techniques (i.e., melting point depression). An alternate selection tool has been explored to rank order polymers for formation of stable amorphous dispersions as a pragmatic method for polymer selection. Reduced crystallization temperature of API, a parameter introduced by Zhou et al.,1 was utilized in this study for rank ordering interactions in API-polymeric systems. The trends in reduced crystallization temperature monitored over polymer concentration range of up to 20% polymer loading were utilized to calculate "crystallization parameter" or CP for two model systems (nifedipine and BI ABC). The rank order of CP, i.e., a measure of API-polymer interaction, for nifedipine followed the order PVP > PVP-VA > Soluplus > HPMCAS > PV Ac > PAA. This rank ordering was correlated to published results of molecular interactions and physical stability for nifedipine. A different rank ordering was observed for BI ABC: PAA > PVP > HPMCAS > Soluplus > PVPV-VA > PVAc. Interactions for BI ABC were not as differentiated when compared to nifedipine based on CP trends. BI ABC dispersions at drug loadings between 40 and 60% were physically stable for prolonged periods under ICH conditions as well as accelerated stress. We propose that large CP differences among polymers could be predictive of stability outcomes. Acceptable stability at pharmaceutically relevant drug loadings would suggest that the relative influence of downstream processes, such as polymer solubility in various solvents, process suitability and selection, and more importantly supersaturation potential, should be higher compared to stability considerations while developing compounds like BI ABC.

  20. Hysteresis-free and submillisecond-response polymer network liquid crystal.

    PubMed

    Lee, Yun-Han; Gou, Fangwang; Peng, Fenglin; Wu, Shin-Tson

    2016-06-27

    We demonstrate a polymer network liquid crystal (PNLC) with negligible hysteresis while keeping submillisecond response time. By doping about 1% dodecyl acrylate (C12A) into the liquid crystal/monomer precursor, both hysteresis and residual birefringence are almost completely eliminated. The operating voltage and scattering properties remain nearly intact, but the tradeoff is enhanced double relaxation. This hysteresis-free PNLC should find applications in spatial light modulators, laser beam control, and optical communications in infrared region.

  1. Neutron scattering studies of molecular conformations in liquid crystal polymers

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Moussa, F.; Cotton, J. P.; Keller, P.; Pépy, G.

    1991-03-01

    A comblike liquid crystal polymer (LPC) is a polymer on which mesogenic molecules have been grafted. It exhibits a succession of liquid crystal phases. Usually the equilibrium conformation of an ordinary polymeric chain corresponds to a maximum entropy, i.e., to an isotropic spherical coil. How does the backbone of a LCP behave in the nematic and smectic field? Small-angle neutron scattering may answer this question. Such measurements are presented here on four different polymers as a function of temperature. An anisotropy of the backbone conformation is found in all these studied compounds, much more pronounced in the smectic phase than in the nematic phase: the backbone spreads more or less perpendicularly to its hanging cores. A comparison with existing theories and a discussion of these results is outlined.

  2. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    PubMed

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  3. New PDLC materials obtained from dispersion of LC under microgravity

    NASA Astrophysics Data System (ADS)

    Matos, M. R.; Leitao, J. C.; Andre, R. M.; Zambujal, R.; Carmelo Rosa, Carla; Simeao Carvalho, P.; Podgorski, Thomas

    Aknowledgements: This project has been supported by ESA-Education, the University of Porto, IFIMUP and INESC-Porto. Bibliography: [1] F Bloisi and L Vicari. Optical Applications of Liquid Crystals, chapter 4: Polymer-dispersed liquid crystals. Institute of Physics Publishing, 2003. [2] J. William Doane. Liquid Crystals Applications and Uses, volume 1, chapter 14: Polymer Dispersed Liquid Crystal Displays, pages 361-391. World Scientific, 1990. [3] K. Parbhakar, J. M. Jin, H. M. Nguyen, and L. H. Dao. Effect of microgravity on the distribution of liquid-crystal droplets dispersed in a polymer matrix. CHEMISTRY OF MA-TERIALS, 8(??):1210-1216, Jun 1996. [4] Paul S. Drzaic. Liquid Crystal Dispersions, volume 1. World Scientific, 1995.

  4. Tunable microlens arrays using polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Ren, Hongwen; Fan, Yun-Hsing; Gauza, Sebastian; Wu, Shin-Tson

    2004-02-01

    A tunable-focus microlens array based on polymer network liquid crystal (PNLC) is demonstrated. The PNLC was prepared using an ultraviolet (UV) light exposure through a patterned photomask. The photocurable monomer in each of the UV exposed spot forms an inhomogeneous centro-symmetrical polymer network which acts as a lens when a homogeneous electric field is applied to the cell. The focal length of the microlens arrays is tunable with the applied voltage.

  5. Nanoporous Polymers Based on Liquid Crystals

    PubMed Central

    Mulder, Dirk Jan; Sijbesma, Rint; Schenning, Albert

    2018-01-01

    In the present review, we discuss recent advances in the field of nanoporous networks based on polymerisable liquid crystals. The field has matured in the last decade, yielding polymers having 1D, 2D, and 3D channels with pore sizes on the nanometer scale. Next to the current progress, some of the future challenges are presented, with the integration of nanoporous membranes in functional devices considered as the biggest challenge. PMID:29324669

  6. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-Impact of different polymers.

    PubMed

    Wegiel, Lindsay A; Mauer, Lisa J; Edgar, Kevin J; Taylor, Lynne S

    2013-01-01

    The objective of this study was to investigate intermolecular interactions between resveratrol and polymers in amorphous blends and to study the potential correlations between compound-polymer interactions, manufacturability, and stability of the amorphous system to crystallization during storage. Polymers included two grades of poly (vinylpyrrolidone) (PVP), Eudragit E100 (E100), hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate, and poly (acrylic acid) (PAA). Amorphous blends ("solid dispersions") were prepared by dissolving both resveratrol and polymer in a solvent followed by rotary evaporation. Crystallinity was evaluated using X-ray powder diffraction and was studied as a function of time. Mid-infrared (IR) spectroscopy was used to investigate resveratrol-polymer interactions. Polymer influence on the crystallization behavior of resveratrol varied and could be correlated to the polymer structure, whereby polymers with good hydrogen bond acceptor groups performed better as crystallization inhibitors. Resveratrol-polymer hydrogen bonding interactions could be inferred from the IR spectra. Somewhat surprisingly, E100 and resveratrol showed evidence of an acid-base reaction, in addition to intermolecular hydrogen bonding interactions. PVP K29/32 appeared to form stronger hydrogen bond interactions with resveratrol relative to HPMC, HPMCAS, and PAA, consistent with acceptor group chemistry. Long-term stability of the systems against crystallization suggested that stability is linked to the type and strength of intermolecular interactions present. whereby resveratrol blended with E100 and PVP K29/32 showed the greatest stability to crystallization. In conclusion, amorphous resveratrol is unstable and difficult to form, requiring the assistance of a polymeric crystallization inhibitor to facilitate the formation of an amorphous solid dispersion. Polymers effective at inhibiting

  7. Photoluminescence analysis of self induced planer alignment in azo dye dispersed nematic liquid crystal complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rishi, E-mail: kkraina@gmail.com; Sood, Srishti, E-mail: kkraina@gmail.com; Raina, K. K., E-mail: kkraina@gmail.com

    2014-04-24

    We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.

  8. In situ creation of reactive polymer nanoparticles and resulting polymer layers formed at the interfaces of liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kang, Shin-Woong; Kundu, Sudarshan; Park, Heung-Shik; Oh, Keun Chan; Lyu, Jae Jin

    2017-02-01

    We report the in situ creation of reactive polymer nanoparticles and resulting polymer networks formed at the interfaces of liquid crystals. It is known that polymerization-induced phase separation proceeds in two distinct regimes depending on the concentration of monomer. For a high monomer concentration, phase separation occurs mainly through the spinodal decomposition process, consequently resulting in interpenetrating polymer networks. For a dilute system, however, the phase separation mainly proceeds and completes in the binodal decomposition regime. The system resembles the aggregation process of colloidal particle. In this case, the reaction kinetics is limited by the reaction between in situ created polymer aggregates and hence the network morphologies are greatly influenced by the diffusion of reactive polymer particles. The thin polymer layers localized at the surface of substrate are inevitably observed and can be comprehended by the interfacial adsorption and further cross-linking reaction of reactive polymer aggregates at the interface. This process provides a direct perception on understanding polymer stabilized liquid crystals accomplished by the interfacial polymer layer. The detailed study has been performed for an extremely dilute condition (below 0.5 wt%) by employing systematic experimental approaches. Creation and growth of polymer nanoparticles have been measured by particle size analyzer. The interfacial localization of polymer aggregates and resulting interfacial layer formation with a tens of nanometer scale have been exploited at various interfaces such as liquid-solid, liquid-liquid, and liquid-gas interfaces. The resulting interfacial layers have been characterized by using fuorescent confocal microscope and field emission scanning electron microscope. The detailed processes of the polymer stabilized vertically aligned liquid crystals will be discussed in support of the reported study.

  9. Organic Solid-State Tri-Wavelength Lasing from Holographic Polymer-Dispersed Liquid Crystal and a Distributed Feedback Laser with a Doped Laser Dye and a Semiconducting Polymer Film.

    PubMed

    Liu, Minghuan; Liu, Yonggang; Peng, Zenghui; Wang, Shaoxin; Wang, Qidong; Mu, Quanquan; Cao, Zhaoliang; Xuan, Li

    2017-05-07

    Organic solid-state tri-wavelength lasing was demonstrated from dye-doped holographic polymer-dispersed liquid crystal (HPDLC) distributed feedback (DFB) laser with semiconducting polymer poly[-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and laser dye [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM) by a one-step holography technique, which centered at 605.5 nm, 611.9 nm, and 671.1 nm. The temperature-dependence tuning range for the tri-wavelength dye-doped HPDLC DFB laser was as high as 8 nm. The lasing emission from the 9th order HPDLC DFB laser with MEH-PPV as active medium was also investigated, which showed excellent s-polarization characterization. The diffraction order is 9th and 8th for the dual-wavelength lasing with DCM as the active medium. The results of this work provide a method for constructing the compact and cost-effective all solid-state smart laser systems, which may find application in scientific and applied research where multi-wavelength radiation is required.

  10. Theory of liquid crystal elastomers and polymer networks : Connection between neoclassical theory and differential geometry.

    PubMed

    Nguyen, Thanh-Son; Selinger, Jonathan V

    2017-09-01

    In liquid crystal elastomers and polymer networks, the orientational order of liquid crystals is coupled with elastic distortions of crosslinked polymers. Previous theoretical research has described these materials through two different approaches: a neoclassical theory based on the liquid crystal director and the deformation gradient tensor, and a geometric elasticity theory based on the difference between the actual metric tensor and a reference metric. Here, we connect those two approaches using a formalism based on differential geometry. Through this connection, we determine how both the director and the geometry respond to a change of temperature.

  11. Identification of polymer stabilized blue-phase liquid crystal display by chromaticity diagram

    NASA Astrophysics Data System (ADS)

    Lan, Yi-Fen; Tsai, Cheng-Yeh; Wang, Ling-Yung; Ku, Po-Jen; Huang, Tai-Hsiang; Liu, Chu-Yu; Sugiura, Norio

    2012-04-01

    We reported an identification method of blue phase liquid crystal (BPLC) display status by using Commission International de l'Éclairage (CIE) chromaticity diagram. The BPLC was injected into in-plane-switch (IPS) cell, polymer stabilized (PS) by ultraviolet cured process and analyzed by luminance colorimeter. The results of CIE chromaticity diagram showed a remarkable turning point when polymer stabilized blue phase liquid crystal II (PSBPLC-II) formed in the IPS cell. A mechanism of CIE chromaticity diagram identify PSBPLC display status was proposed, and we believe this finding will be useful to application and production of PSBPLC display.

  12. Transient Current Behaviour of Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Yarramaneni, Sridharbabu; Sharma, Anu; Quamara, J. K.

    2011-07-01

    Transient current behaviour of pristine Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid crystal polymer which is a copolymer of poly ethylene terephthalate and poly p-hydroxybenzoic acid referred as PET/x.PHB polymer liquid crystals have been studied at different biasing electric fields ranging from 13 kV/cm to 104.3 kV/cm and at temperatures 120° C and 250° C for molar ratio x =0.8.

  13. Angular selectivity asymmetry of holograms recorded in near infrared sensitive liquid crystal photopolymerizable materials

    NASA Astrophysics Data System (ADS)

    Harbour, Steven; Galstian, Tigran; Akopyan, Rafik; Galstyan, Artur

    2004-08-01

    We have experimentally observed and theoretically explained the angular selectivity asymmetry in polymer dispersed liquid crystal holograms. Experiments are conducted in compounds with near infrared sensitivity. The coupled-wave theory is used to describe the diffraction properties of obtained anisotropic holographic gratings. Furthermore, the comparison of theory and experiments provides information about the optical axis direction that is defined by the average molecular orientation of the liquid crystal in the polymer matrix.

  14. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahle, Markus, E-mail: markus.wahle@uni-paderborn.de; Kitzerow, Heinz-Siegfried

    2015-11-16

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue ormore » red shifted depending on the frequency of the applied voltage.« less

  15. Visible Light Responsive Liquid Crystal Polymers Containing Reactive Moieties with Good Processability.

    PubMed

    Liu, Yuyun; Wu, Wei; Wei, Jia; Yu, Yanlei

    2017-01-11

    Two types of novel reactive linear liquid crystal polymers (LLCPs) with different azotolene concentrations have been synthesized and processed into films and fibers by solution and melting processing methods. Then, the LLCPs in the obtained monodomain fiber and polydomain film were easily cross-linked with difunctional primary amines. The resulted cross-linked liquid crystal polymers (CLCPs) underwent reversible photoinduced bending and unbending behaviors in response to 445 and 530 nm visible light at room temperature, respectively. The post-cross-linking method provides a facile way to prepare the CLCP films and fibers with different shapes from LLCPs, which can be processed by traditional melting and solution methods.

  16. LIQUID CRYSTAL POLYMERS (LCP) USED AS A MACHINING FLUID CD

    EPA Science Inventory

    This interactive CD was produced to present the science, research activities, and beneficial environmental and machining advantages for utilizing Liquid Crystal Polymers (LCPs) as a machine fluid in the manufacturing industry.

    In 1995, the USEPA funded a project to cut flu...

  17. Electro-Optic Properties of Holographically Patterned, Polymer Stabilized Cholesteric Liquid Crystals (Preprint)

    DTIC Science & Technology

    2007-01-01

    Electro - optic properties of cholesteric liquid crystals with holographically patterned polymer stabilization were examined. It is hypothesized that...enhanced electro - optic properties of the final device. Prior to holographic patterning, polymer stabilization with large elastic memory was generated by way... electro - optic properties appear to stem from a single dimension domain size increase, which allows for a reduction in the LC/polymer interaction.

  18. Abnormal viscoelastic behavior of side-chain liquid-crystal polymers

    NASA Astrophysics Data System (ADS)

    Gallani, J. L.; Hilliou, L.; Martinoty, P.; Keller, P.

    1994-03-01

    We show that, contrary to what is commonly believed, the isotropic phase of side-chain liquid-crystal polymers has viscoelastic properties which are totally different from those of ordinary flexible melt polymers. The results can be explained by the existence of a transient network created by the dynamic association of mesogenic groups belonging to different chains. The extremely high sensitivity of the compound to the state of the surfaces with which it is in contact offers us an unexpected method of studying surface states.

  19. Liquid crystals in tribology.

    PubMed

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-09-18

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  20. Liquid Crystals in Tribology

    PubMed Central

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-01-01

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered. PMID:19865534

  1. Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Knoll, Thomas E.; Blizard, Kent; Jayaraj, K.; Rubin, Leslie S.

    1994-01-01

    Dielectric materials based on innovative Liquid Crystal Polymers (LCP's) have been used to fabricate surface mount printed wiring boards (PWB's) with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology has resulted in self reinforcing material with balanced in-plane mechanical properties. In addition, LCP's possess excellent electrical properties, including a low dielectric constant (less than 2.9) and very low moisture absorption (less than 0.02%). LCP-based multilayer boards processed with conventional drilling and plating processes show improved performance over other materials because they eliminate the surface flatness problems of glass or aramid reinforcements. Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. The material is ideally suited for MCM-L and PCMCIA applications fabricated with very thin dielectric layers of the liquid crystal polymer.

  2. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator.

    PubMed

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Jiancheng, Zeng; Dayong, Zhang; Yongquan, Luo

    2014-06-16

    Polymer network liquid crystal (PNLC) was one of the most potential liquid crystal for submillisecond response phase modulation, which was possible to be applied in submillisecond response phase only spatial light modulator. But until now the light scattering when liquid crystal director was reoriented by external electric field limited its phase modulation application. Dynamic response of phase change when high voltage was applied was also not elucidated. The mechanism that determines the light scattering was studied by analyzing the polymer network morphology by SEM method. Samples were prepared by varying the polymerization temperature, UV curing intensity and polymerization time. The morphology effect on the dynamic response of phase change was studied, in which high voltage was usually applied and electro-striction effect was often induced. The experimental results indicate that the polymer network morphology was mainly characterized by cross linked single fibrils, cross linked fibril bundles or even both. Although the formation of fibril bundle usually induced large light scattering, such a polymer network could endure higher voltage. In contrast, although the formation of cross linked single fibrils induced small light scattering, such a polymer network cannot endure higher voltage. There is a tradeoff between the light scattering and high voltage endurance. The electro-optical properties such as threshold voltage and response time were taken to verify our conclusion. For future application, the monomer molecular structure, the liquid crystal solvent and the polymerization conditions should be optimized to generate optimal polymer network morphology.

  3. Light-scattering study of a polymer nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1985-07-01

    We study the relaxation of thermally excited orientation fluctuations in a polymer nematic liquid crystal using photon correlation spectroscopy. The material studied is poly-γ-benzyl glutamate at a concentration just above the isotropic to nematic transition point. The relaxation rates of elastic deformation modes exhibit large anisotropies. Quantitative measurements of ratios of Frank elastic constants and Leslie viscosities are described.

  4. Stable dispersions of polymer-coated graphitic nanoplatelets

    NASA Technical Reports Server (NTRS)

    Nguyen, Sonbinh T. (Inventor); Stankovich, Sasha (Inventor); Ruoff, Rodney S. (Inventor)

    2011-01-01

    A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.

  5. Amorphization of thiamine chloride hydrochloride: A study of the crystallization inhibitor properties of different polymers in thiamine chloride hydrochloride amorphous solid dispersions.

    PubMed

    Arioglu-Tuncil, Seda; Bhardwaj, Vivekanand; Taylor, Lynne S; Mauer, Lisa J

    2017-09-01

    Amorphous solid dispersions of thiamine chloride hydrochloride (THCl) were created using a variety of polymers with different physicochemical properties in order to investigate how effective the various polymers were as THCl crystallization inhibitors. THCl:polymer dispersions were prepared by lyophilizing solutions of THCl and amorphous polymers (guar gum, pectin, κ-carrageenan, gelatin, and polyvinylpyrrolidone (PVP)). These dispersions were stored at select temperature (25 and 40°C) and relative humidity (0, 23, 32, 54, 75, and 85% RH) conditions and monitored at different time points using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Moisture sorption isotherms of all samples were also obtained. Initially amorphous THCl was produced in the presence of ≥40% w/w pectin, κ-carrageenan, gelatin, and guar gum or ≥60% w/w PVP. Trends in polymer THCl crystallization inhibition (pectin≥κ-carrageenan>gelatin>guar gum≫PVP) were primarily based on the ability of the polymer to interact with THCl via hydrogen bonding and/or ionic interactions. The onset of THCl crystallization from the amorphous dispersions was also related to storage conditions. THCl remained amorphous at low RH conditions (0 and 23% RH) in all 1:1 dispersions except THCl:PVP. THCl crystallized in some dispersions below the glass transition temperature (T g ) but remained amorphous in others at T~T g . At high RHs (75 and 85% RH), THCl crystallized within one day in all samples. Given the ease of THCl amorphization in the presence of a variety of polymers, even at higher vitamin concentrations than would be found in foods, it is likely that THCl is amorphous in many low moisture foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Programmable and electrically controllable light scattering from surface-polymer stabilized liquid crystals.

    PubMed

    Bédard-Arcand, Jean-Philippe; Galstian, Tigran

    2012-08-01

    We report the creation and study of a polarization independent light scattering material system based on surface-polymer stabilized liquid crystals. Originally isotropic cell substrates with thin nonpolymerized reactive mesogen layers are used for the alignment of pure nonreactive nematic liquid crystals. The partial interdiffusion of the two materials followed by the application of orienting external electric and magnetic fields and the photo polymerization of the reactive mesogen allow us the control of electro-optic scattering properties of obtained cells.

  7. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih

    2012-07-01

    A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 π rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.

  8. Tunable electronic lens using a gradient polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Ren, Hongwen; Wu, Shin-Tson

    2003-01-01

    Tunable electronic lenses using gradient polymer network liquid crystal (PNLC) cells were demonstrated. By changing the photomask pattern, both positive and negative lenses were fabricated. The advantages of such a PNLC lens are low operation voltage, large aperture size, and simple electrode design. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC cells is considered.

  9. Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals.

    PubMed

    Liu, Qingkun; Tang, Jianwei; Zhang, Yuan; Martinez, Angel; Wang, Shaowei; He, Sailing; White, Timothy J; Smalyukh, Ivan I

    2014-05-01

    We use both lyotropic liquid crystals composed of prolate micelles and thermotropic liquid crystals made of rod-like molecules to uniformly disperse and unidirectionally align relatively large gold nanorods and other complex-shaped nanoparticles at high concentrations. We show that some of these ensuing self-assembled orientationally ordered soft matter systems exhibit polarization-dependent plasmonic properties with strongly pronounced molar extinction exceeding that previously achieved in self-assembled composites. The long-range unidirectional alignment of gold nanorods is mediated mainly by anisotropic surface anchoring interactions at the surfaces of gold nanoparticles. Polarization-sensitive absorption, scattering, and extinction are used to characterize orientations of nanorods and other nanoparticles. The experimentally measured unique optical properties of these composites, which stem from the collective plasmonic effect of the gold nanorods with long-range order in a liquid crystal matrix, are reproduced in computer simulations. A simple phenomenological model based on anisotropic surface interaction explains the alignment of gold nanorods dispersed in liquid crystals and the physical underpinnings behind our observations.

  10. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  11. Low voltage polymer network liquid crystal for infrared spatial light modulators.

    PubMed

    Peng, Fenglin; Xu, Daming; Chen, Haiwei; Wu, Shin-Tson

    2015-02-09

    We report a low-voltage and fast-response polymer network liquid crystal (PNLC) infrared phase modulator. To optimize device performance, we propose a physical model to understand the curing temperature effect on average domain size. Good agreement between model and experiment is obtained. By optimizing the UV curing temperature and employing a large dielectric anisotropy LC host, we have lowered the 2π phase change voltage to 22.8V at 1.55μm wavelength while keeping response time at about 1 ms. Widespread application of such a PNLC integrated into a high resolution liquid-crystal-on-silicon (LCoS) for infrared spatial light modulator is foreseeable.

  12. Fast response liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Wu, Yung-Hsun

    Liquid crystal (LC) has been widely used for displays, spatial light modulators, variable optical attenuators (VOAs) and other tunable photonic devices. The response time of these devices is mainly determined by the employed liquid crystal material. The response time of a LC device depends on the visco-elastic coefficient (gamma1/K11), LC cell gap (d), and applied voltage. Hence, low visco-elastic coefficient LC materials and thinner cell gap are favorable for reducing the response time. However, low visco-elastic coefficient LCs are usually associated with a low birefringence because of shorter molecular conjugation. For display applications, such as LCD TVs, low birefringence (Deltan<0.1) LCs are commonly used. However, for optical communications at 1550 nm, low birefringence requires to a thick cell gap which, in turn, increases the response time. How to obtain fast response for the LC devices is a fundamentally important and technically challenging task. In this dissertation, we investigate several methods to improve liquid crystal response time, for examples, using dual-frequency liquid crystals, polymer stabilized liquid crystals, and sheared polymer network liquid crystals. We discover a new class of material, denoted as sheared polymer network liquid crystal (SPNLC) which exhibits a submillisecond response time. Moreover, this response time is insensitive to the LC cell gap. This is the first LC device exhibiting such an interesting property. Chapters 1 and 2 describe the motivation and background of this dissertation. From chapter 3 to chapter 6, dual-frequency liquid crystals and polymer network methods are demonstrated as examples for the variable optical attenuators. Variable optical attenuator (VOA) is a key component in optical communications. Especially, the sheared PNLC VOA shows the best result; its dynamic range reaches 43 dB while the response time is in the submillisecond range at 1550 nm wavelength, which is 50 times faster than the commercial

  13. Enhanced dual-frequency operation of a polymerized liquid crystal microplate by liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Kumagai, Takayuki; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-04-01

    The electric-field-induced switching behavior of a polymer microplate is investigated. A microplate fabricated with a photopolymerizable dual-frequency liquid crystal was surrounded by an unpolymerized photopolymerizable dual-frequency liquid crystal in the isotropic phase. As an electric field was applied along the plane of the microplate, the microplate switched to set its interior molecular orientation to be either parallel or perpendicular to the field, depending on the frequency. Analysis of the rotational behavior, as well as numerical calculations, showed that the surrounding unpolymerized photopolymerizable dual-frequency liquid crystal infiltrated into the microplate, which enhanced the dielectric properties of the microplate. To the best of our knowledge, this is the first report of an enhanced dual-frequency dielectric response of a polymer microplate induced by liquid crystal infiltration.

  14. Amino-functionalized sub-40 nm ultrathin Ag/ZnO transparent electrodes for flexible polymer dispersed liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Huang, Jinhua; Lu, Yuehui; Wu, Wenxuan; Li, Jia; Zhang, Xianpeng; Zhu, Chaoting; Yang, Ye; Xu, Feng; Song, Weijie

    2017-11-01

    Various flexible transparent conducting electrodes (FTCEs) have been studied for promising applications in flexible optoelectronic devices, but there are still challenges in achieving higher transparency and conductivity, lower thickness, better mechanical flexibility, and lower preparation temperatures. In this work, we prepared a sub-40 nm Ag(9 nm)/ZnO(30 nm) FTCE at room temperature, where each layer played a relatively independent role in the tailoring of the optoelectronic properties. A continuous and smooth 9-nm Ag thin film was grown on amino-functionalized glass and polyethylene terephthalate (PET) substrates to provide good conductivity. A 30-nm ZnO cladding, as an antireflection layer, further improved the transmittance while hardly affecting the conductivity. The room-temperature grown sub-40 nm Ag/ZnO thin films on PET substrate exhibited a transmittance of 88.6% at 550 nm and a sheet resistance of 7.6 Ω.sq-1, which were superior to those of the commercial ITO. The facile preparation benefits the integration of FTCEs into various flexible optoelectronic devices, where the excellent performance of the sub-40 nm Ag/ZnO FTCEs in a flexible polymer dispersed liquid crystal device was demonstrated. Sub-40 nm Ag/ZnO FTCEs that have the characteristics of simple structure, room-temperature preparation, and easily tailored optoelectronic properties would provide flexible optoelectronic devices with more degrees of freedom.

  15. Co-dispersion of plasmonic nanorods in thermotropic nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sheetah, Ghadah; Liu, Qinkun; Smalukh, Ivan

    Colloidal dispersions of plasmonic metal nanoparticles in liquid crystals promise the capability of pre-engineering tunable optical properties of mesostructured metal-dielectric composites. Recently, concentrated dispersions of anisotropic gold, silver, and metal alloy nanoparticles in nematic hosts have been achieved and successfully controlled by low-voltage fields. However, to enable versatile designs of material behavior of the composites, simultaneous co-dispersion of anisotropic particles with different shapes, alignment properties, and compositions are often needed. We achieve such co-dispersions and explore their switching characteristics in response to external stimuli like light and electric fields. We demonstrated that spectral characteristics of co-dispersions of multiple types of anisotropic nanoparticles in a common nematic host provides unprecedented variety of electrically- and optically-tunable material behavior, with a host of potential practical applications in electro-optic devices and displays Ghadah acknowledges support from the King Faisal University (KFU) graduate fellowship.

  16. Dispersions of Semiconductor Nanoparticles in Thermotropic Liquid Crystal: From Optical Modification to Assisted Self-Assembly

    NASA Astrophysics Data System (ADS)

    Rodarte, Andrea L.

    The interaction of semiconducting quantum dot nanoparticles (QDs) within thermotropic liquid crystalline (LC) materials are studied in this thesis. LC materials are ideal for bottom-up organization of nanoparticles as an active matrix that can be externally manipulated via electric or magnetic fields. In addition, the optical properties of QDs can be modified by the surrounding LC resulting in novel devices such as a quantum dot/liquid crystal laser. The first system studies the dispersion of spherical nanoparticles in the phase. The dispersion is investigated with the use of polarized optical microscopy, fluorescence microscopy and confocal scanning microscopy. Quantum dots well dispersed in the isotropic phase are expelled from ordered domains of LC at the phase transition. Under controlled conditions, the majority of QDs in the system can form ordered three dimensional assemblies that are situated at defect points in the liquid crystal. The internal order of the assemblies is probed utilizing Forster resonance energy transfer (FRET), combined with small angle X-ray scattering (SAXS). Furthermore, the location of these assemblies can be predetermined with the use of beads as defect nucleation points in the cell. The interaction of QDs in a cholesteric liquid crystal (CLC) is also investigated. The reflection band created by the periodic change of index of refraction in a planar aligned CLC acts as a 1-D photonic cavity when the CLC is doped with a low concentration of QDs. A Cano-wedge cell varies the pitch of the CLC leading to the formation of Grandjean steps. This spatially tunes the photonic stop band, changing the resonance condition and continuously altering both the emission wavelength and polarization state of the QD ensemble. Using high resolution spatially and spectrally resolved photoluminescence measurements, the emission is shown to be elliptically polarized and that the tilt of the ellipse, while dependent on the emission wavelength, additionally

  17. Side-chain Liquid Crystal Polymers (SCLCP): Methods and Materials. An Overview

    PubMed Central

    Ganicz, Tomasz; Stańczyk, Włodzimierz

    2009-01-01

    This review focuses on recent developments in the chemistry of side chain liquid crystal polymers. It concentrates on current trends in synthetic methods and novel, well defined structures, supramolecular arrangements, properties, and applications. The review covers literature published in this century, apart from some areas, such as dendritic and elastomeric systems, which have been recently reviewed.

  18. The effect of the temperature on the bandgaps based on the chiral liquid crystal polymer

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Shi, Shuhui; Wang, Bainian

    2015-10-01

    Chiral side-chain liquid crystal polymer is synthesized from polysiloxanes and liqud crystal monomer 4-(Undecenoic-1- yloxybenzoyloxy)-4'-benzonitrile and 6-[4-(4- Undecenoic -1-yloxybenzoyloxy)- hydroxyphenyl] cholesteryl hexanedioate. The optical and thermal property of the monomer and polymer are shown by POM and DSC. As the unique optical property of the polymer, the bandgaps are shifted for heating temperature. The reflection bandgaps is shifted from 546nm to 429nm with temperature increase. As a photonic material, the chiral polymer which sensitive responses under the outfield is widely studied for reflection display, smart switchable reflective windows and defect model CLC laser etc.

  19. Pressure sensor using liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  20. A low voltage submillisecond-response polymer network liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Wu, Shin-Tson; Haseba, Yasuhiro

    2014-01-01

    We report a low voltage and highly transparent polymer network liquid crystal (PNLC) with submillisecond response time. By employing a large dielectric anisotropy LC host JC-BP07N, we have lowered the V2π voltage to 23 V at λ = 514 nm. This will enable PNLC to be integrated with a high resolution liquid-crystal-on-silicon spatial light modulator, in which the maximum voltage is 24 V. A simple model correlating PNLC performance with its host LC is proposed and validated experimentally. By optimizing the domain size, we can achieve V2π < 15 V with some compromises in scattering and response time.

  1. Polypeptide Liquid Crystal Assisted Assembly of Cylindrically Symmetric Silica-Polypeptide Hybrid Microparticles

    NASA Astrophysics Data System (ADS)

    Russo, Paul; Rosu, Cornelia; Jacobeen, Shane; Park, Katherine; Yunker, Peter; Reichmanis, Elsa

    Liquid crystals can organize dispersed particles into exotic structures. Matching the particle surface coating to the chemistry of the mesogenic phase permits a tight focus on factors such as extended particle shape. The colloidal particles developed for this work consist of a magnetic and fluorescent cylinder-like silica core. One end of the silica is rounded, almost hemispherical, giving the particles a bullet-like shape. These particles are functionalized with helical poly(γ-stearyl-L-glutamate) and dispersed, at different concentrations in cholesteric liquid crystals (ChLC) of the same polymer in tetrahydrofuran. Defects introduced by the particles to the director field of the bulk PSLG/THF host led to a variety of phases, including a quasi-hexagonal alignment of the particles. National Science Foundation.

  2. Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment.

    PubMed

    Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy

    2017-04-01

    We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.

  3. Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy

    2017-04-01

    We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.

  4. Nematic Liquid-Crystal Colloids

    PubMed Central

    Muševič, Igor

    2017-01-01

    This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology. PMID:29295574

  5. Polymer-directed crystallization of atorvastatin.

    PubMed

    Choi, Hyemin; Lee, Hyeseung; Lee, Min Kyung; Lee, Jonghwi

    2012-08-01

    Living organisms secrete minerals composed of peptides and proteins, resulting in "mesocrystals" of three-dimensional-assembled composite structures. Recently, this biomimetic polymer-directed crystallization technique has been widely applied to inorganic materials, although it has seldom been used with drugs. In this study, the technique was applied to the drowning-out crystallization of atorvastatin using various polymers. Nucleation and growth at optimized conditions successfully produced composite crystals with significant polymer contents and unusual characteristics. Atorvastatin composite crystals containing polyethylene glycol, polyacrylic acid, polyethylene imine, and chitosan showed a markedly decreased melting point and heat of fusion, improved stability, and sustained-release patterns. The use of hydroxypropyl cellulose yielded a unique combination of enhanced in vitro release and improved drug stability under a forced degradation condition. The formation hypothesis of unique mesocrystal structures was strongly supported by an X-ray diffraction pattern and substantial melting point reduction. This polymer-directed crystallization technique offers a novel and effective way, different from the solid dispersion approach, to engineer the release, stability, and processability of drug crystals. Copyright © 2012 Wiley Periodicals, Inc.

  6. Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites

    PubMed Central

    Kim, Jun Young

    2009-01-01

    This paper focuses on the fabrication via simple melt blending of thermotropic liquid crystal polyester (TLCP) nanocomposites reinforced with a very small quantity of modified carbon nanotube (CNT) and the unique effects of the modified CNT on the physical properties of the nanocomposites. The thermal, mechanical, and rheological properties of modified CNT-reinforced TLCP nanocomposites are highly dependent on the uniform dispersion of CNT and the interactions between the CNT and TLCP, which can be enhanced by chemical modification of the CNT, providing a design guide of CNT-reinforced TLCP nanocomposites with great potential for industrial uses.

  7. Ferroelectric BaTiO3 and LiNbO3 Nanoparticles Dispersed in Ferroelectric Liquid Crystal Mixtures: Electrooptic and Dielectric (Postprint)

    DTIC Science & Technology

    2016-10-14

    Nematic Liquid Crystals allowing for rapidly changing moving pictures during the time frame below about 5-10 ms. Ferroelectric Liquid Crystals (FLCs...could fill this gap bearing some advantages over Nematic Liquid Crystals , mainly a fast switching time in the microsecond range, better optical...AFRL-RX-WP-JA-2017-0210 FERROELECTRIC BaTiO3 AND LiNbO3 NANOPARTICLES DISPERSED IN FERROELECTRIC LIQUID CRYSTAL MIXTURES: ELECTROOPTIC

  8. Thermotropic Ionic Liquid Crystals

    PubMed Central

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  9. Thermotropic Ionic Liquid Crystals.

    PubMed

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  10. Crystallization Kinetics of Indomethacin/Polyethylene Glycol Dispersions Containing High Drug Loadings.

    PubMed

    Duong, Tu Van; Van Humbeeck, Jan; Van den Mooter, Guy

    2015-07-06

    The reproducibility and consistency of physicochemical properties and pharmaceutical performance are major concerns during preparation of solid dispersions. The crystallization kinetics of drug/polyethylene glycol solid dispersions, an important factor that is governed by the properties of both drug and polymer has not been adequately explored, especially in systems containing high drug loadings. In this paper, by using standard and modulated differential scanning calorimetry and X-ray powder diffraction, we describe the influence of drug loading on crystallization behavior of dispersions made up of indomethacin and polyethylene glycol 6000. Higher drug loading increases the amorphicity of the polymer and inhibits the crystallization of PEG. At 52% drug loading, polyethylene glycol was completely transformed to the amorphous state. To the best of our knowledge, this is the first detailed investigation of the solubilization effect of a low molecular weight drug on a semicrystalline polymer in their dispersions. In mixtures containing up to 55% indomethacin, the dispersions exhibited distinct glass transition events resulting from amorphous-amorphous phase separation which generates polymer-rich and drug-rich domains upon the solidification of supercooled polyethylene glycol, whereas samples containing at least 60% drug showed a single amorphous phase during the period in which crystallization normally occurs. The current study demonstrates a wide range in physicochemical properties of drug/polyethylene glycol solid dispersions as a result of the complex nature in crystallization of this system, which should be taken into account during preparation and storage.

  11. Effects of polymers on the rotational viscosities of nematic liquid crystals and dynamics of field alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.

    Many of the important physical phenomena exhibited by the nematic phase, such as its unusual flow properties and its responses to the electric and the magnetic fields, can be discussed regarding it as a continous medium. The Leslie-Erickson dynamic theory has the six dissipative coefficients from continuum model of liquid crystal. Parodi showed that only five of them are independent, when Onsagar`s reciprocal relations are used. One of these, which has no counterpart in the isotropic liquids, is the rotational viscosity co-efficient, {gamma}{sub 1}. The main objective of this project is to study the rotational viscosities of selected micellar nematicmore » systems and the effect of dissolved polymers in micellar and thermotropic liqud crystals. We used rotating magnetic field method which allows one to determine {gamma}{sub 1} and the anisotropic magnetic susceptibility, {chi}{sub a}. For the ionic surfactant liquid crystals of SDS and KL systems used in this study, the rotational viscosity exhibited an extraordinary drop after reaching the highest values {gamma}{sub 1} as the temperature was lowered. This behavior is not observed in normal liquid crystals. But this phenomena can be attributed to the existence of nematic biaxial phase below the rod-like nematic N{sub c} phase. The pretransitional increase in {gamma}{sub 1} near the disk-like nematic to smectic-A phase transition of the pure CsPFO/H{sub 2}O systems are better understood with the help of mean-field models of W.L. McMillan. He predicted a critical exponent {nu} = {1/2} for the divergence of {gamma}{sub 1}. The polymer (PEO, molecular weight = 10{sup 5}) dissolved in CsPFO/H{sub 2}O system (which has 0.6% critical polymer concentration), suppressed the nematic to lamellar smectic phase transition in concentrated polymer solutions (0.75% and higher). In dilute polymer solutions with lower than 0.3% polyethylene-oxide, a linear increase of {gamma}{sub 1} is observed, which agrees with Brochard theory.« less

  12. Temperature-independent zero-birefringence polymer for liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Shikanai, M. D.; Tagaya, A.; Koike, Y.

    2016-03-01

    A polymer film that shows almost no orientational birefringence even when the polymer main chain is in an oriented state and almost no temperature dependence of orientational birefringence in the temperature range from around -40 to 85 °C was prepared. This temperature range is important because it is where in-car liquid crystal displays (LCDs) are generally used; therefore, it is desirable to have constant orientational birefringence over this range. We suggest a method to compensate for the intrinsic birefringence and temperature coefficient of intrinsic birefringence of individual polymers by copolymerizing monomers of homopolymers that display opposite signs of the two parameters described above. Analysis of four types of polymers, methyl methacrylate (MMA), 2,2,2-trifluoroethyl methacrylate, benzyl methacrylate (BzMA), and phenyl methacrylate (PhMA), reveal that they possess both positive and negative signs of their temperature coefficient of intrinsic birefringence. Using this approach, we prepare P(MMA/PhMA/BzMA) (39:23:38 wt. %), which exhibits almost no intrinsic birefringence and almost no temperature dependence of intrinsic birefringence. The retardation of this polymer film when drawn uniaxially scarcely changed (between 0.3 and 0.8 nm) between 12 and 70 °C, which is small enough not to cause image degradation in LCDs.

  13. Fast-response and scattering-free polymer network liquid crystals for infrared light modulators

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing; Lin, Yi-Hsin; Ren, Hongwen; Gauza, Sebastian; Wu, Shin-Tson

    2004-02-01

    A fast-response and scattering-free homogeneously aligned polymer network liquid crystal (PNLC) light modulator is demonstrated at λ=1.55 μm wavelength. Light scattering in the near-infrared region is suppressed by optimizing the polymer concentration such that the network domain sizes are smaller than the wavelength. The strong polymer network anchoring assists LC to relax back quickly as the electric field is removed. As a result, the PNLC response time is ˜250× faster than that of the E44 LC mixture except that the threshold voltage is increased by ˜25×.

  14. Spatial-temporal light modulation by a liquid crystal-polymer photoconductor structure with conjugate bonds

    NASA Astrophysics Data System (ADS)

    Sliusar', A. V.; Myl'Nikov, V. S.

    1991-11-01

    A method is proposed for the spatial-temporal modulation of light by a polymer photoconductor-liquid crystal structure using conjugate-bond organic polymers as photosensitive elements. The preparation of such structures and their modulation characteristics are described. It is shown that the spectral absorption and photosensitivity characteristics of the structures are largely determined by the heat treament of the polymer film. Sensitivity limits of a modulator using a polyacrylonitrile film are 5 x 10 exp -6 J/sq cm and 5 x 10 exp -4 W/sq cm for the write and read light, respectively.

  15. Chem I Supplement: Liquid Crystals--The Chameleon Chemicals.

    ERIC Educational Resources Information Center

    Brown, Glenn H.

    1983-01-01

    Presents information relevant to everyday life so as to stimulate student interest in the properties of the two basic types of liquid crystals: thermotropic and lyotropic. Describes the applications of liquid crystals to electronics, biomedicine, and polymer science and appraises the future of liquid crystal research. (JM)

  16. Role of the Strength of Drug-Polymer Interactions on the Molecular Mobility and Crystallization Inhibition in Ketoconazole Solid Dispersions.

    PubMed

    Mistry, Pinal; Mohapatra, Sarat; Gopinath, Tata; Vogt, Frederick G; Suryanarayanan, Raj

    2015-09-08

    The effects of specific drug-polymer interactions (ionic or hydrogen-bonding) on the molecular mobility of model amorphous solid dispersions (ASDs) were investigated. ASDs of ketoconazole (KTZ), a weakly basic drug, with each of poly(acrylic acid) (PAA), poly(2-hydroxyethyl methacrylate) (PHEMA), and polyvinylpyrrolidone (PVP) were prepared. Drug-polymer interactions in the ASDs were evaluated by infrared and solid-state NMR, the molecular mobility quantified by dielectric spectroscopy, and crystallization onset monitored by differential scanning calorimetry (DSC) and variable temperature X-ray diffractometry (VTXRD). KTZ likely exhibited ionic interactions with PAA, hydrogen-bonding with PHEMA, and weaker dipole-dipole interactions with PVP. On the basis of dielectric spectroscopy, the α-relaxation times of the ASDs followed the order: PAA > PHEMA > PVP. In addition, the presence of ionic interactions also translated to a dramatic and disproportionate decrease in mobility as a function of polymer concentration. On the basis of both DSC and VTXRD, an increase in strength of interaction translated to higher crystallization onset temperature and a decrease in extent of crystallization. Stronger drug-polymer interactions, by reducing the molecular mobility, can potentially delay the crystallization onset temperature as well as crystallization extent.

  17. Microstructure of Pharmaceutical Semicrystalline Dispersions: The Significance of Polymer Conformation.

    PubMed

    Van Duong, Tu; Goderis, Bart; Van Humbeeck, Jan; Van den Mooter, Guy

    2018-02-05

    The microstructure of pharmaceutical semicrystalline solid dispersions has attracted extensive attention due to its complexity that might result in the diversity in physical stability, dissolution behavior, and pharmaceutical performance of the systems. Numerous factors have been reported that dictate the microstructure of semicrystalline dispersions. Nevertheless, the importance of the complicated conformation of the polymer has never been elucidated. In this study, we investigate the microstructure of dispersions of polyethylene glycol and active pharmaceutical ingredients by small-angle X-ray scattering and high performance differential scanning calorimetry. Polyethylene glycol with molecular weight of 2000 g/mol (PEG2000) and 6000 g/mol (PEG6000) exhibited remarkable discrepancy in the lamellar periodicity in dispersions with APIs which was attributed to the differences in their folding behavior. The long period of PEG2000 always decreased upon aging-induced exclusion of APIs from the interlamellar region of extended chain crystals whereas the periodicity of PEG6000 may decrease or increase during storage as a consequence of the competition between the drug segregation and the lamellar thickening from nonintegral-folded into integral-folded chain crystals. These processes were in turn significantly influenced by the crystallization tendency of the pharmaceutical compounds, drug-polymer interactions, as well as the dispersion composition and crystallization temperature. This study highlights the significance of the polymer conformation on the microstructure of semicrystalline systems that is critical for the preparation of solid dispersions with consistent and reproducible quality.

  18. The Determination of Birefringence Dispersion in Nematic Liquid Crystals by Using the S-Transform

    NASA Astrophysics Data System (ADS)

    Coşkun, E.; Özder, S.; Kocahan, Ö.; Köysal, O.

    2007-04-01

    Transmittance spectra of 5CB and ZLI-6000 coded nematic liquid crystals were acquired in the 12600-22200 cm-1 region at room temperature. The S-transform was applied to analyze the transmittance signal. Dispersion curves of the birefringence were obtained for 5CB and ZLI-6000 by this analysis and data were fitted to the Cauchy formula whereby the dispersion parameters were extracted. Results are found to be in favorable accordance with the published values.

  19. Advancing flexible volatile compound sensors using liquid crystals encapsulated in polymer fibers

    NASA Astrophysics Data System (ADS)

    Reyes, Catherine G.; Lagerwall, Jan P. F.

    2018-02-01

    Until recently, organic vapor sensors using liquid crystals (LCs) have employed rigid glass substrates for confining the LC, and bulky equipment for vapor detection. Previously, we demonstrated that coaxially electrospinning nematic LC within the core of polymer fibers provides an alternative and improved form factor for confinement. This enables ppm level sensitivity to harmful industrial organics, such as toluene, while giving the flexibility of textile-like sheets (imparted by polymer encapsulation). Moreover, toluene vapor responses of the LC-core fiber mats were visible macroscopically with the naked eye depending on the morphology of the fibers produced, and whether they were oriented in specific geometries (aligned, or random). We identified two types of responses: one corresponds to the LC transition from nematic to isotropic, and the other we suggest is due to an anchoring change at the LC-polymer interface that influences the alignment. While we need to study the presence that defects can have in more detail, we noted that fiber mat thickness is crucial in attempting to understand how and why we are able to visualize two responses in aligned LC-fiber mats. Ultimately, we noted that the response of the polymer sheath itself (softening) to organic vapor exposure affects the liquid crystal confinement in the core. From the microscopic point of view, this will influence the threshold concentration that fibers in a mat will overall respond to. In this paper we will discuss three findings the morphologies enabling LC-core fiber mat response to vapor seen both micro- and macroscopically, how thickness of the fiber mat can play a role in the visualization of the responses, and the effect that the polymer structure has in the mat's sensitivity threshold.

  20. Nonlinear geometries in liquid crystals and liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Dingemans, Theo Jacobus

    The thermodynamic properties of thermotropic liquid crystals (LCs), and polymeric LCs are strongly dependent on mesogenic shape and in order to explore the relationships between shape and physical properties new, nonlinear geometries were examined. Symmetric oxadiazole based model compounds were synthesized and despite an internal exocyclic bond angle of 134sp° the model compounds exhibit a variety of mesophases. Conoscopic studies on bis(p-hexyloxyphenyl) 4,4sp'- (1,3,4-oxadiazole-2,5-diyl) dicarboxylate in its phase Ssb{A} phase are not consistent with the uniaxial Ssb{A} phase, but rather a biaxial Ssb{CM} phase. Uniaxial and biaxial mesogenic monomers were incorporated in main-chain polyesters. Transition temperatures of the interfacially prepared polymers were higher than materials that were melt polymerized. sp{13}C NMR showed that all polymers prepared by melt condensation have random monomer sequence distributions at the diad level. Thiophene and 1,3-phenylene modified p-quinquephenyls were synthesized in order to investigate the effects of mesogen nonlinearity and dipole direction on the LC thermodynamic properties. Results indicate that shape asymmetry favors mesophase formation and stability; the thiophene dipole moment appears to have no effect. The 120sp° exocyclic bond angle disrupts liquid crystallinity in 1,3-phenylene derivatives. Additionally the placement of 2,5-thiophene in "p-quinquephenyls" affects a red shift in its UV absorption. This was exploited in single layer light emitting diodes (LEDs) to tune the electroluminescence emission. In double layer LEDs these compounds function as efficient hole transport materials with high light outputs. Ferroelectric LCs derived from isoleucine were synthesized and shown to have spontaneous polarizations that are a strong function of halogen size (F > Cl > Br).

  1. Adsorption of ions onto nanosolids dispersed in liquid crystals: Towards understanding the ion trapping effect in nanocolloids

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Yuriy

    2016-05-01

    The ion capturing effect in liquid crystal nanocolloids was quantified by means of the ion trapping coefficient. The dependence of the ion trapping coefficient on the concentration of nano-dopants and their ionic purity was calculated for a variety of nanosolids dispersed in liquid crystals: carbon nanotubes, graphene nano-flakes, diamond nanoparticles, anatase nanoparticles, and ferroelectric nanoparticles. The proposed method perfectly fits existing experimental data and can be useful in the design of highly efficient ion capturing nanomaterials.

  2. Self-assembly of nematic liquid crystal elastomer filaments

    NASA Astrophysics Data System (ADS)

    Wei, Wei-Shao; Xia, Yu; Yang, Shu; Yodh, A. G.

    In this work we investigate the self-assembly of nematic liquid crystal polymer (NLCP) filaments and their corresponding cross-linked elastomer structures. Specifically, by fine-tuning surfactant concentration, prepolymer chain length, and temperature within a background aqueous phase we can generate filaments composed of oligomerized LC monomers. Filaments with narrowly dispersed diameters ranging from one hundred nanometers to a few micrometers can be obtained. Using polarization optical microscopy, we show that the nematic LCs within the filaments have an escaped radial structure. After photo-cross-linking, nematic liquid crystal elastomer filaments are obtained with well-maintained directors and smooth surface structure. Since these materials are elastomers, the size and mechanical and optical response of the filaments can be ''tuned'' near the nematic to isotropic phase transition temperature. This work is supported by NSF DMR16-07378, PENN MRSEC Grant DMR11-20901, and NASA Grant NNX08AO0G.

  3. Rewritable Optical Storage with a Spiropyran Doped Liquid Crystal Polymer Film.

    PubMed

    Petriashvili, Gia; De Santo, Maria Penelope; Devadze, Lali; Zurabishvili, Tsisana; Sepashvili, Nino; Gary, Ramla; Barberi, Riccardo

    2016-03-01

    Rewritable optical storage has been obtained in a spiropyran doped liquid crystal polymer films. Pictures can be recorded on films upon irradiation with UV light passing through a grayscale mask and they can be rapidly erased using visible light. Films present improved photosensitivity and optical contrast, good resistance to photofatigue, and high spatial resolution. These photochromic films work as a multifunctional, dynamic photosensitive material with a real-time image recording feature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gradient polymer network liquid crystal with a large refractive index change.

    PubMed

    Ren, Hongwen; Xu, Su; Wu, Shin-Tson

    2012-11-19

    A simple approach for preparing gradient polymer network liquid crystal (PNLC) with a large refractive index change is demonstrated. To control the effective refractive index at a given cell position, we applied a voltage to a homogeneous cell containing LC/diacrylate monomer mixture to generate the desired tilt angle and then stabilize the LC orientation with UV-induced polymer network. By varying the applied voltage along with the cells' movement, a PNLC with a gradient refractive index distribution is obtained. In comparison with conventional approaches using patterned photomask or electrode, our method offers following advantages: large refractive index change, freedom to design specific index profile, and large panel capability. Potential applications include tunable-focus lenses, prism gratings, phase modulators, and other adaptive photonic devices.

  5. Ionic liquids as lubricants of metal-polymer contacts. Preparation and properties of the first dispersions of ionic liquids and nanoparticles in polymers

    NASA Astrophysics Data System (ADS)

    Sanes Molina, Jose

    Room-temperature ionic liquids (ILs) are high performance fluids that stand out because of a wide range of functional properties and exhibit a great potential for engineering applications. Although they have been employed as lubricants in metal-metal, metal-ceramic and ceramic-ceramic contacts, in this thesis we present the first study about the use of ILs as pure lubricants in polymer/steel contacts. The tests have established the efficacy of the ILs to reduce friction coefficient and wear rates in a variety of kinds of contacts, and criogenic to high temperature performance. Novel dispersions of ILs in polymers have been obtained with epoxy resin and thermoplastics as matrix. Therefore, the thermal, mechanical and tribological properties of the materials have studied and are discussed in the present thesis. Furthermore, the contents of ILs in the polymer matrix have been studied in relation to the tribological properties using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectrometry (EDS), the wear mechanisms that operated in the contacts were established. The novel dispersions showed a reduction in the friction coefficient and wear in comparison with neat polymers, reaching in some cases a decrease of 79%. In the case of thermoplastics such as polystyrene and polyamide 6, the new dispersions showed a reduction in friction coefficient and wear in the same range as that of the ILs when used as external lubricants in the steel/polymer contact. In addition nanoparticles of zinc oxide were used to obtain polycarbonate based nanohybrids with the purpose of improving the tribological properties. Novel nanohybrids of zinc oxide and modified zinc oxide were obtained. The mechanical, thermal and tribological properties were studied. The results of experiments clearly demonstrated that the use of ILs modifies the shape and size of the ZnO nanoparticles, increasing the tribological properties of the novel nanohybrids. Different techniques such as EDS

  6. High Birefringence Liquid Crystals for Laser Hardening and IR Countermeasure

    DTIC Science & Technology

    2004-09-24

    A fast-switching and scattering-free phase modulator using polymer network liquid crystal ( PNLC ) is demonstrated at **=l.55 um for laser beam...steering application. The strong polymer network anchoring greatly reduces the visco-elastic coefficient of the liquid crystal. As a result, the PNLC

  7. Dispersing nanoparticles in a polymer film via solvent evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shengfeng; Grest, Gary S.

    Large-scale molecular dynamics simulations are used to study the dispersion of nanoparticles (NPs) in a polymer film during solvent evaporation. As the solvent evaporates, a dense polymer-rich skin layer forms at the liquid/vapor interface, which is either NP rich or poor depending on the strength of the NP/polymer interaction. When the NPs are strongly wet by the polymer, the NPs accumulate at the interface and form layers. However, when the NPs are only partially wet by the polymer, most NPs are uniformly distributed in the bulk of the polymer film, with the dense skin layer serving as a barrier tomore » prevent the NPs from moving to the interface. Furthermore, our results point to a possible route to employ less favorable NP/polymer interactions and fast solvent evaporation to uniformly disperse NPs in a polymer film, contrary to the common belief that strong NP/polymer attractions are needed to make NPs well dispersed in polymer nanocomposites.« less

  8. Dispersing nanoparticles in a polymer film via solvent evaporation

    DOE PAGES

    Cheng, Shengfeng; Grest, Gary S.

    2016-05-19

    Large-scale molecular dynamics simulations are used to study the dispersion of nanoparticles (NPs) in a polymer film during solvent evaporation. As the solvent evaporates, a dense polymer-rich skin layer forms at the liquid/vapor interface, which is either NP rich or poor depending on the strength of the NP/polymer interaction. When the NPs are strongly wet by the polymer, the NPs accumulate at the interface and form layers. However, when the NPs are only partially wet by the polymer, most NPs are uniformly distributed in the bulk of the polymer film, with the dense skin layer serving as a barrier tomore » prevent the NPs from moving to the interface. Furthermore, our results point to a possible route to employ less favorable NP/polymer interactions and fast solvent evaporation to uniformly disperse NPs in a polymer film, contrary to the common belief that strong NP/polymer attractions are needed to make NPs well dispersed in polymer nanocomposites.« less

  9. Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion

    NASA Astrophysics Data System (ADS)

    Tasolamprou, A. C.; Mitov, M.; Zografopoulos, D. C.; Kriezis, E. E.

    2009-03-01

    Single-layer cholesteric liquid crystals exhibit a reflection coefficient which is at most 50% for unpolarized incident light. We give theoretical and experimental evidence of single-layer polymer-stabilized cholesteric liquid-crystalline structures that demonstrate hyper-reflective properties. Such original features are derived by the concurrent and randomly interlaced presence of both helicities. The fundamental properties of such structures are revealed by detailed numerical simulations based on a stochastic approach.

  10. Blazed vector gratings fabricated using photosensitive polymer liquid crystals and control of polarization diffraction

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro

    2014-03-01

    The blazed vector grating possessing antisymmetric distributions of the birefringence were fabricated by exposing the line-focused linearly polarized ultraviolet light on the photosensitive polymer liquid crystals. The polarization states of the diffraction beams can be highly and widely controlled by designing the blazed structures, and the diffraction properties were well-explained by Jones calculus.

  11. Neutron scattering as a probe of liquid crystal polymer-reinforced composite materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hjelm, R.P.; Douglas, E.P.; Benicewicz, B.C.

    1995-12-31

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to obtain nanoscale and molecular level information on the mechanism of reinforcement in liquid crystal polymer (LCP)-reinforced composites, to realize molecular-reinforced LCP composites, and to test the validity of the concept of molecular reinforcement. Small-angle neutron scattering was used to study the structures in the ternary phase diagram of LCP with liquid crystal thermosets and solvent on length scales ranging from 1-100 nm. The goal of the scattering measurements is to understand the phase morphologymore » and degree of segregation of the reinforcing and matrix components. This information helps elucidate the physics of self assembly in these systems. This work provides an experimental basis for a microengineering approach to composites of vastly improved properties.« less

  12. Crystallization of Polymers in Confined Environments: Structural Development of Semi-crystalline Polymer-Layered Silicate Nanocomposites

    NASA Astrophysics Data System (ADS)

    Vaia, Richard A.; Lincoln, Derek M.; Wang, Zhi-Gang; Hsiao, Benjamin S.; Krishnamoorti, Ramanan

    2000-03-01

    Over the last decade, the utility of ultrafine dispersions of inorganic nanoparticles to enhance polymer performance and function as precursors to form self-passivating / self-healing inorganic coatings on the polymer surface has been established. Before developing the fundamental structure-property relationships though, a detailed understanding of processing / morphology relationships is necessary. As with other multiphase systems exhibiting nano (1-100 nm) and meso (100-500 nm) order (such as biopolymers, block-copolymers, colloidal suspensions, liquid crystals), physical properties ranging from toughness to optical clarity are determined by morphology on various length scales which in turn arise from processing history. This is anticipated to be especially important for blends containing two or more constituents with fundamental structural features on the nanoscale, such as crystal lamellae and aluminosilicate sheets. Small-angle x-ray scattering experiments with synchrotron radiation reveal the presence of ultra-long range (20-60 nm) mesoscopic ordering of the layered silicate in molten polyamide 6-layered silicate nanocomposites. This superstructure of these semi-rigid inorganic sheets provides a confined environment to examine the crystallization of polyamide 6 with traditional bulk characterization techniques. In addition to a change lamellae organization and lamellae size, the presence of the aluminosilicate layers and extent of interfacial interactions (end-tethered v. physiadsorbed chains) substantially alters the nucleation rate, growth kinetics and Brill transition of the crystal phase as revealed by isothermal crystallization experiments monitored in-situ with synchrotron radiation. These exfoliated nanocomposites provide new opportunities to investigate confined polymer crystallization as well as provide insight into the origin of various property enhancements in these systems.

  13. Radhard optical patchcords and packaging for satellites using liquid crystal polymers

    NASA Astrophysics Data System (ADS)

    O'Riorden, S.; Mahapatra, A.

    2017-11-01

    There are many advantages to employing fiber optics for high capacity satellite communication. However, optical cables can be susceptible to high radiation, temperature extremes and vacuum environment. Any hardware used in these systems must be rugged, durable and immune to the detrimental effects of the aforementioned conditions. Standard COTS optical fiber will darken when exposed to high levels of radiation limiting the effectiveness of the communications system. Of particular concern to satellites in GEO are energetic electrons, bursts of heavy particles due to solar storms which can cause total dose and single event effects (SEE). Conventional fiber optic cables have several issues performing in high radiation environments. Linden has patented and developed a novel cable using an extruded layer of Liquid Crystal Polymer (LCP) applied to commercially available fiber. Total dose effects are minimized by shielding with Liquid Crystal Polymer jacketing. It is a simple, inexpensive way to increase the radiation shielding and mechanical performance of cables in satellites while concomitantly providing hermeticity and thus increased fatigue factor for optical glass. • LCPs exposed to 5000 Mrad dose of gamma rays retain in excess of 90% of their mechanical properties. • LCPs exposed to 1 Mrad radiation dose with energetic protons retain almost 100% of their mechanical strength. Tensile modulus increases with exposure to the radiation. • Weight for weight the proton absorbing power of LCP is 25% better than that of aluminum. We will present experimental data on radhard optical patchcords.

  14. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    PubMed

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Highly robust crystalsome via directed polymer crystallization at curved liquid/liquid interface

    PubMed Central

    Wang, Wenda; Qi, Hao; Zhou, Tian; Mei, Shan; Han, Lin; Higuchi, Takeshi; Jinnai, Hiroshi; Li, Christopher Y.

    2016-01-01

    Lipids and amphiphilic block copolymers spontaneously self-assemble in water to form a plethora of micelles and vesicles. They are typically fluidic in nature and often mechanically weak for applications such as drug delivery and gene therapeutics. Mechanical properties of polymeric materials could be improved by forming crystalline structures. However, most of the self-assembled micelles and vesicles have curved surfaces and precisely tuning crystallization within a nanoscale curved space is challenging, as the curved geometry is incommensurate with crystals having three-dimensional translational symmetry. Herein, we report using a miniemulsion crystallization method to grow nanosized, polymer single-crystal-like capsules. We coin the name crystalsome to describe this unique structure, because they are formed by polymer lamellar crystals and their structure mimics liposomes and polymersomes. Using poly(L-lactic acid) (PLLA) as the model polymer, we show that curved water/p-xylene interface formed by the miniemulsion process can guide the growth of PLLA single crystals. Crystalsomes with the size ranging from ∼148 nm to over 1 μm have been formed. Atomic force microscopy measurement demonstrate a two to three orders of magnitude increase in bending modulus compared with conventional polymersomes. We envisage that this novel structure could shed light on investigating spherical crystallography and drug delivery. PMID:26837260

  16. Polymer-induced phase separation and crystallization in immunoglobulin G solutions.

    PubMed

    Li, Jianguo; Rajagopalan, Raj; Jiang, Jianwen

    2008-05-28

    We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.

  17. Fast-response IR spatial light modulators with a polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Peng, Fenglin; Chen, Haiwei; Tripathi, Suvagata; Twieg, Robert J.; Wu, Shin-Tson

    2015-03-01

    Liquid crystals (LC) have widespread applications for amplitude modulation (e.g. flat panel displays) and phase modulation (e.g. beam steering). For phase modulation, a 2π phase modulo is required. To extend the electro-optic application into infrared region (MWIR and LWIR), several key technical challenges have to be overcome: 1. low absorption loss, 2. high birefringence, 3. low operation voltage, and 4. fast response time. After three decades of extensive development, an increasing number of IR devices adopting LC technology have been demonstrated, such as liquid crystal waveguide, laser beam steering at 1.55μm and 10.6 μm, spatial light modulator in the MWIR (3~5μm) band, dynamic scene projectors for infrared seekers in the LWIR (8~12μm) band. However, several fundamental molecular vibration bands and overtones exist in the MWIR and LWIR regions, which contribute to high absorption coefficient and hinder its widespread application. Therefore, the inherent absorption loss becomes a major concern for IR devices. To suppress IR absorption, several approaches have been investigated: 1) Employing thin cell gap by choosing a high birefringence liquid crystal mixture; 2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination and chlorination; 3) Reducing the overlap vibration bands by using shorter alkyl chain compounds. In this paper, we report some chlorinated LC compounds and mixtures with a low absorption loss in the near infrared and MWIR regions. To achieve fast response time, we have demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms.

  18. UV response on dielectric properties of nano nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Pandey, Kamal Kumar; Tripathi, Pankaj Kumar; Misra, Abhishek Kumar; Manohar, Rajiv

    2018-03-01

    In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB) and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz-10 MHz in the nematic mesophase range.

  19. Formation of Polymer Networks for Fast In-Plane Switching of Liquid Crystals at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Byeong-Hun; Song, Dong Han; Kim, Ki-Han; Wok Park, Byung; Choi, Sun-Wook; Park, Sung Il; Kang, Sung Gu; Yoon, Jeong Hwan; Kim, Byeong Koo; Yoon, Tae-Hoon

    2013-09-01

    We formed a polymer structure to enable fast in-plane switching of liquid crystals at low temperatures. The problem of the inevitable slow response at low temperatures was reduced by the formation of in-cell polymer networks in in-plane switching (IPS) cells. The electro-optic characteristics of polymer-networked IPS cells were measured at temperatures ranging from -10 to 20 °C. The turn-on and turn-off times of an IPS cell were reduced by 44.5 and 47.2% at -10 °C by the formation of polymer networks. We believe that the proposed technology can be applied to emerging display devices such as mobile phones and automotive displays that may be used at low temperatures.

  20. Nanoparticle guests in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Dölle, Sarah; Park, Ji Hyun; Schymura, Stefan; Jo, Hyeran; Scalia, Giusy; Lagerwall, Jan P. F.

    In this chapter we discuss the benefits, peculiarities and main challenges related to nanoparticle templating in lyotropic liquid crystals. We first give a brief bird's-eye view of the field, discussing different nanoparticles as well as different lyotropic hosts that have been explored, but then quickly focus on the dispersion of carbon nanotubes in surfactant-based lyotropic nematic phases. We discuss in some detail how the transfer of orientational order from liquid crystal host to nanoparticle guest can be verified and which degree of ordering can be expected, as well as the importance of choosing the right surfactant and its concentration for the stability of the nanoparticle suspension. We introduce a method for dispersing nanoparticles with an absolute minimum of stabilizing surfactant, based on dispersion below the Krafft temperature, and we discuss the peculiar phenomenon of filament formation in lyotropic nematic phases with a sufficient concentration of well-dispersed carbon nanotubes. Finally, we describe how the total surfactant concentration in micellar nematics can be greatly reduced by combining cat- and anionic surfactants, and we discuss how nanotubes can help in inducing the liquid crystal phase close to the isotropic-nematic boundary.

  1. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    NASA Astrophysics Data System (ADS)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on

  2. Surface dynamics and mechanics in liquid crystal polymer coatings

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  3. Bright color optical switching device by polymer network liquid crystal with a specular reflector.

    PubMed

    Lee, Gae Hwang; Hwang, Kyu Young; Jang, Jae Eun; Jin, Yong Wan; Lee, Sang Yoon; Jung, Jae Eun

    2011-07-04

    The color optical switching device by polymer network liquid crystal (PNLC) with color filter on a specular reflector shows excellent performance; white reflectance of 22%, color gamut of 32%, and contrast ratio up to 50:1 in reflective mode measurement. The view-angle dependence of the reflectance can be adjusted by changing the PNLC thickness. The color chromaticity shown by the device is close to the limit value of color filters, and its value nearly remains with respect to the operating voltage. These optical properties of the device can be explained from the prediction based on multiple interactions between the light and the droplets of liquid crystal. The high reflectance, vivid color image, and moderate responds time allow the PNLC device to drive good color moving image. It can widely extend the applications of the reflective device.

  4. Submillisecond-response polymer network liquid crystal phase modulators at 1.06-μm wavelength

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Xianyu, Haiqing; Chen, Yuan; Wu, Shin-Tson

    2011-07-01

    A fast-response and scattering-free polymer network liquid crystal (PNLC) light modulator is demonstrated at λ = 1.06 μm wavelength. A decay time of 117 μs for 2π phase modulation is obtained at 70 °C, which is ˜ 650 × faster than that of the host nematic LCs. The major tradeoff is the increased operating voltage. Potential applications include spatial light modulators and adaptive optics.

  5. Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ta; Chen, Chun-Wei; Yang, Tzu-Hsuan; Nys, Inge; Li, Cheng-Chang; Lin, Tsung-Hsien; Neyts, Kristiaan; Beeckman, Jeroen

    2018-01-01

    Selection of the bandedge lasing mode of a photonic crystal laser has been realized in a fluorescent dye doped chiral nematic liquid crystal by exerting electrical control over the mode competition. The bandedge lasing can be reversibly switched from the short-wavelength edge mode to the long-wavelength edge mode by applying a voltage of only 20 V, without tuning the bandgap. The underlying mechanism is the field-induced change in the order parameter of the fluorescent dye in the liquid crystal. The orientation of the transition dipole moment determines the polarization state of the dye emission, thereby promoting lasing in the bandedge mode that favors the emission polarization. Moreover, the dynamic mode-selection capability is retained upon polymer-stabilizing the chiral nematic liquid crystal laser. In the polymer-stabilized system, greatly improved stability and lasing performance are observed.

  6. Liquid-crystal WDM power equalizer

    NASA Astrophysics Data System (ADS)

    Chiao, Jung-Chih; Huang, Tizhi

    2002-06-01

    In this work, we demonstrated a liquid-crystal WDM (wavelength-division-multiplexing) power equalizer. It provides functionality of optical power equalization and tilting using liquid-crystal modulators and harmonic synthesis approach. The demonstrations show fast gain equalization with a flatness of +/- 0.3dB for several EDFA profiles in C or L bands. The equalization for WDM discrete-channel cases also reached flatness within +/- 0.3dB. The measured polarization dependent losses are less than 0.15dB and 0.1dB for flattened and through-state profiles, respectively. The measured polarization mode dispersions are less than 0.15ps under the through, flattened and 10-dB attenuation states. The measured chromatic dispersion is less than degree(s)7ps/nm.

  7. Auto-Origami and Soft Programmable Transformers: Simulation Studies of Liquid Crystal Elastomers and Swelling Polymer Gels

    NASA Astrophysics Data System (ADS)

    Konya, Andrew; Santangelo, Christian; Selinger, Robin

    2014-03-01

    When the underlying microstructure of an actuatable material varies in space, simple sheets can transform into complex shapes. Using nonlinear finite element elastodynamic simulations, we explore the design space of two such materials: liquid crystal elastomers and swelling polymer gels. Liquid crystal elastomers (LCE) undergo shape transformations induced by stimuli such as heating/cooling or illumination; complex deformations may be programmed by ``blueprinting'' a non-uniform director field in the sample when the polymer is cross-linked. Similarly, swellable gels can undergo shape change when they are swollen anisotropically as programmed by recently developed halftone gel lithography techniques. For each of these materials we design and test programmable motifs which give rise to complex deformation trajectories including folded structures, soft swimmers, apertures that open and close, bas relief patterns, and other shape transformations inspired by art and nature. In order to accommodate the large computational needs required to model these materials, our 3-d nonlinear finite element elastodynamics simulation algorithm is implemented in CUDA, running on a single GPU-enabled workstation.

  8. Switchable polarization-sensitive surface plasmon resonance of highly stable gold nanorods liquid crystals composites

    NASA Astrophysics Data System (ADS)

    Liu, Qingkun; Qian, Jun; Cai, Fuhong; Smalyukh, Ivan I.; He, Sailing

    2011-12-01

    In this work, we demonstrate the bulk self-alignment of gold nanorods (GNRs) dispersed in lyotropic nematic liquid crystals (LCs) with high optical absorption coefficient at the surface plasmon resonant wavelength. The polymer-coated GNRs which show spontaneous long-range orientational ordering along the director of LC host exhibit long-term stability as well as high concentration. External magnetic field and shearing allow for alignment and realignment of the orientation of gold nanorods by changing the director of the liquid crystal matrix. This results in a switchable polarization-sensitive surface plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The devise-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of surface plasmon resonance of nanoparticles.

  9. High Resolution Displays Using NCAP Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Macknick, A. Brian; Jones, Phil; White, Larry

    1989-07-01

    Nematic curvilinear aligned phase (NCAP) liquid crystals have been found useful for high information content video displays. NCAP materials are liquid crystals which have been encapsulated in a polymer matrix and which have a light transmission which is variable with applied electric fields. Because NCAP materials do not require polarizers, their on-state transmission is substantially better than twisted nematic cells. All dimensional tolerances are locked in during the encapsulation process and hence there are no critical sealing or spacing issues. By controlling the polymer/liquid crystal morphology, switching speeds of NCAP materials have been significantly improved over twisted nematic systems. Recent work has combined active matrix addressing with NCAP materials. Active matrices, such as thin film transistors, have given displays of high resolution. The paper will discuss the advantages of NCAP materials specifically designed for operation at video rates on transistor arrays; applications for both backlit and projection displays will be discussed.

  10. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    NASA Astrophysics Data System (ADS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-05-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10-100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  11. Polymer-stabilized liquid crystal blue phases.

    PubMed

    Kikuchi, Hirotsugu; Yokota, Masayuki; Hisakado, Yoshiaki; Yang, Huai; Kajiyama, Tisato

    2002-09-01

    Blue phases are types of liquid crystal phases that appear in a temperature range between a chiral nematic phase and an isotropic liquid phase. Because blue phases have a three-dimensional cubic structure with lattice periods of several hundred nanometres, they exhibit selective Bragg reflections in the range of visible light corresponding to the cubic lattice. From the viewpoint of applications, although blue phases are of interest for fast light modulators or tunable photonic crystals, the very narrow temperature range, usually less than a few kelvin, within which blue phases exist has always been a problem. Here we show the stabilization of blue phases over a temperature range of more than 60 K including room temperature (260-326 K). Furthermore, we demonstrate an electro-optical switching with a response time of the order of 10(-4) s for the stabilized blue phases at room temperature.

  12. Ionic Liquid-Modified Thermosets and Their Nanocomposites: Dispersion, Exfoliation, Degradation, and Cure

    NASA Astrophysics Data System (ADS)

    Throckmorton, James A.

    properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. Cyanate Ester Cure: Dicyanamide-containing ionic liquids decrease the cure temperature of bi- and tri-functional CEs. During the cure reaction, the dicyanamide anion completely reacts and is incorporated into the triazine network. The cure effect was found in many dicyanamide-containing ionic liquids with diverse cations. This invention creates a novel, ionic thermoset polymer. The dicyanamide initiator provides an alternative to metal and hydroxyl catalysts (which have been shown to accelerate degradation and possess human and environmental toxicity). Additionally, the ionic character of the new polymer, rare among thermosets, lends itself to future research and novel applications. RTIL initiation also paves the way to new CE technologies, including RTIL-CE nanocomposites, prepared by graphite exfoliation and nanocomposite dispersion techniques developed herin.

  13. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    PubMed Central

    Dierking, Ingo

    2017-01-01

    Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide. PMID:28974025

  14. Noncovalent Polymerization of Mesogens Crystallizes Lysozyme: Correlation between Nonamphiphilic Lyotropic Liquid Crystal Phase and Protein Crystal Formation

    PubMed Central

    Simon, Karen A.; Shetye, Gauri S.; Englich, Ulrich; Wu, Lei; Luk, Yan-Yeung

    2011-01-01

    Crystallization of proteins is important for fundamental studies and biopharmaceutical development but remains largely an empirical science. Here, we report the use of organic salts that can form a class of unusual non-amphiphilic lyotropic liquid crystals to crystallize the protein lysozyme. Certain non-amphiphilic organic molecules with fused aromatic rings and two charges can assemble into stable thread-like noncovalent polymers that may further form liquid crystal phases in water, traditionally termed chromonic liquid crystals. Using five of these mesogenic molecules as additives to induce protein crystallization, we discover that molecules that can form liquid crystal phases in water are highly effective at inducing the crystal formation of lysozyme, even at concentrations significantly lower than that required for forming liquid crystal phases. This result reveals an example of inducing protein crystallization by the molecular assembly of the additives, and is consistent with a new mechanism by which the strong hydration of an assembly process provides a gradual means to compete for the water molecules to enable solvated proteins to form crystals. PMID:21786812

  15. Large birefringence and polarization holographic gratings formed in photocross-linkable polymer liquid crystals comprising bistolane mesogenic side groups

    NASA Astrophysics Data System (ADS)

    Emoto, Akira; Matsumoto, Taro; Yamashita, Ayumi; Shioda, Tatsutoshi; Ono, Hiroshi; Kawatsuki, Nobuhiro

    2009-10-01

    Polarization gratings with large birefringence are formed in photoreactive polymer liquid crystals with bistolane moiety and terminal cinnamic acid moiety by the use of polarized ultraviolet interference light and subsequent annealing. The polarized ultraviolet light causes the axis-selective photoreaction between the cinnamic acid groups and subsequent annealing induce the reorientation of peripheral molecules without cross-linking along the cross-linked groups. Long bistolane mesogenic moiety exhibits large birefringence in comparison with a biphenyl mesogenic moiety, the value of the induced birefringence in the bistolane mesogenic liquid crystalline (LC) polymer is strongly dependent on both the grating constant and the wavelength of the reconstruction light.

  16. Stretchable liquid-crystal blue-phase gels.

    PubMed

    Castles, F; Morris, S M; Hung, J M C; Qasim, M M; Wright, A D; Nosheen, S; Choi, S S; Outram, B I; Elston, S J; Burgess, C; Hill, L; Wilkinson, T D; Coles, H J

    2014-08-01

    Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.

  17. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo

    2015-01-01

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.

  18. Development of dye-sensitized solar cells composed of liquid crystal embedded, electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers as polymer gel electrolytes.

    PubMed

    Ahn, Sung Kwang; Ban, Taewon; Sakthivel, P; Lee, Jae Wook; Gal, Yeong-Soon; Lee, Jin-Kook; Kim, Mi-Ra; Jin, Sung-Ho

    2012-04-01

    In order to overcome the problems associated with the use of liquid electrolytes in dye-sensitized solar cells (DSSCs), a new system composed of liquid crystal embedded, polymer electrolytes has been developed. For this purpose, three types of DSSCs have been fabricated. The cells contain electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVdF-co-HFP) polymer gel electrolyte, with and without doping with the liquid crystal E7 and with a liquid electrolyte. The morphologies of the newly prepared DSSCs were explored using field emission scanning electron microscopy (FE-SEM). Analysis of the FE-SEM images indicate that the DSSC composed of E7 embedded on e-PVdF-co-HFP polymer gel electrolyte has a greatly regular morphology with an average diameter. The ionic conductivity of E7 embedded on e-PVdF-co-HFP polymer gel electrolyte was found to be 2.9 × 10(-3) S/cm at room temperature, a value that is 37% higher than that of e-PVdF-co-HFP polymer gel electrolyte. The DCCS containing the E7 embedded, e-PVdF-co-HFP polymer gel electrolyte was observed to possess a much higher power conversion efficiency (PCE = 6.82%) than that of an e-PVdF-co-HFP nanofiber (6.35%). In addition, DSSCs parameters of the E7 embedded, e-PVdF-co-HFP polymer gel electrolyte (V(oc) = 0.72 V, J(sc) = 14.62 mA/cm(2), FF = 64.8%, and PCE = 6.82% at 1 sun intensity) are comparable to those of a liquid electrolyte (V(oc) = 0.75 V, J(sc) = 14.71 mA/cm(2), FF = 64.9%, and PCE = 7.17%, both at a 1 sun intensity).

  19. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartan, Chloe C., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk; Salter, Patrick S.; Booth, Martin J.

    2016-05-14

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phasemore » of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.« less

  20. A high throughput liquid crystal light shutter for unpolarized light using polymer polarization gratings

    NASA Astrophysics Data System (ADS)

    Komanduri, Ravi K.; Lawler, Kris F.; Escuti, Michael J.

    2011-05-01

    We report on a broadband, diffractive, light shutter with the ability to modulate unpolarized light. This polarizer-free approach employs a conventional liquid crystal (LC) switch, combined with broadband Polarization Gratings (PGs) formed with polymer LC materials. The thin-film PGs act as diffractive polarizing beam-splitters, while the LC switch operates on both orthogonal polarization states simultaneously. As an initial experimental proof-of- concept for unpolarized light with +/-7° aperture, we utilize a commercial twisted-nematic LC switch and our own polymer PGs to achieve a peak transmittance of 80% and peak contrast ratio of 230:1. We characterize the optoelectronic performance, discuss the limitations, and evaluate its use in potential nonmechanical shutter applications (imaging and non-imaging).

  1. Formation of holographic memory for optically reconfigurable gate array by angle-multiplexing recording of multi-circuit information in liquid crystal composites

    NASA Astrophysics Data System (ADS)

    Ogiwara, Akifumi; Maekawa, Hikaru; Watanabe, Minoru; Moriwaki, Retsu

    2014-02-01

    A holographic polymer-dispersed liquid crystal (HPDLC) memory to record multi-context information for an optically reconfigurable gate array is formed by the angle-multiplexing recording using a successive laser exposure in liquid crystal (LC) composites. The laser illumination system is constructed using the half mirror and photomask written by the different configuration contexts placed on the motorized stages under the control of a personal computer. The fabricated holographic memory implements a precise reconstruction of configuration contexts corresponding to the various logical circuits such as OR circuit and NOR circuit by the laser illumination at different incident angle in the HPDLC memory.

  2. Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization

    PubMed Central

    2017-01-01

    While ∼75% of commercially utilized polymers are semicrystalline, the generally low mechanical modulus of these materials, especially for those possessing a glass transition temperature below room temperature, restricts their use for structural applications. Our focus in this paper is to address this deficiency through the controlled, multiscale assembly of nanoparticles (NPs), in particular by leveraging the kinetics of polymer crystallization. This process yields a multiscale NP structure that is templated by the lamellar semicrystalline polymer morphology and spans NPs engulfed by the growing crystals, NPs ordered into layers in the interlamellar zone [spacing of (10–100 nm)], and NPs assembled into fractal objects at the interfibrillar scale, (1–10 μm). The relative fraction of NPs in this hierarchy is readily manipulated by the crystallization speed. Adding NPs usually increases the Young’s modulus of the polymer, but the effects of multiscale ordering are nearly an order of magnitude larger than those for a state where the NPs are not ordered, i.e., randomly dispersed in the matrix. Since the material’s fracture toughness remains practically unaffected in this process, this assembly strategy allows us to create high modulus materials that retain the attractive high toughness and low density of polymers. PMID:28776017

  3. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiangjie, Zhao, E-mail: zxjdouble@163.com, E-mail: zxjdouble@gmail.com; Cangli, Liu; Jiazhu, Duan

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulationmore » effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.« less

  4. Polymer-cholesteric liquid-crystalline composites with a broad light reflection band

    NASA Astrophysics Data System (ADS)

    Mitov, Michel

    2016-05-01

    Cholesteric liquid crystals selectively reflect the light. The reflection bandgap is typically limited to 100 nm in the visible spectrum and, at the best, 50% of the unpolarized incident light is reflected. Solutions are found in biopolymers and polymer-liquid crystal composite materials to go beyond these limits.

  5. Influence of the strength of the smectic order on the backbone anisotropy of side-chain liquid crystal polymers as revealed by SANS

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Keller, P.; Cotton, J. P.

    1992-06-01

    It is proposed that the strength of the smectic order determines the backbone anisotropy of side-chain liquid crystal polymers. Here this strength increases with the length of the alkyl terminal group of the mesogens. Two liquid crystal polymethacrylates differing only by the mesogenic tails —OCH3 and —OC4H9 are considered. The backbone anisotropy of these polymers is measured by small angle neutron scattering (SANS) whereas the smectic order is evaluated from the intensity of the 001 Bragg peak. Il est proposé que la qualité de l'ordre smectique détermine l'anisotropie du squelette de polymères mésomorphes en peigne confinés dans les lamelles. Ici l'ordre smectique est augmenté en allongeant le groupe alkyl terminal des mésogènes. Nous étudions deux polyméthacrylates cristal liquide qui ne différent que par leurs groupes terminaux : —OCH3 et —OC4H9. L'anisotropie du squellete est mesurée par diffusion de neutrons aux petits angles tandis que l'ordre smectique est évalué à l'aide de l'intensité du pic de Bragg 001.

  6. Langmuir Films of Flexible Polymers Transferred to Aqueous/Liquid Crystal Interfaces Induce Uniform Azimuthal Alignment of the Liquid Crystal

    PubMed Central

    Kinsinger, Michael I.; Buck, Maren E.; Meli, Maria-Victoria; Abbott, Nicholas L.; Lynn, David M.

    2009-01-01

    We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous-LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir-Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4’-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4’-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous-5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous-5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous-air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films

  7. Exploratory development of foams from liquid crystal polymers

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1985-01-01

    Two types of liquid crystal polymer (LCP) compositions were studied and evaluated as structural foam materials. One is a copolymer of 6-hydroxy-2-naphthoic acid, terephthalic acid, and p-acetoxyacetanilide (designed HNA/TA/AAA), and the other is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (designated HBA/HNA). Experimental results showed that the extruded HNA/TA/AA foams have better mechanical quality and appearance than HBA/HNA foams. Heat treatment improved foam tensile strength and break elongation, but reduced their modulus. The injection molding results indicated that nitrogen foaming agents with a low-pressure process gave better void distribution in the injection molded LCP foams than those made by the conventional injection-molding machine and chemical blowing agents. However, in comparing LCP foams with other conventional plastic foams, HBA/HNA foams have better mechanical properties than foamed ABS and PS, but are comparable to PBT and inferior to polycarbonate foams, especially in heat-deflection temperature and impact resistance energy. These deficiencies are due to LCP molecules not having been fully oriented during the Union-Carbide low-pressure foaming process.

  8. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal.

    PubMed

    Tercjak, A; Garcia, I; Mondragon, I

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  9. Liquid crystal materials and tunable devices for optical communications

    NASA Astrophysics Data System (ADS)

    Du, Fang

    In this dissertation, liquid crystal materials and devices are investigated in meeting the challenges for photonics and communications applications. The first part deals with polymer-stabilized liquid crystal (PSLC) materials and devices. Three polymer-stabilized liquid crystal systems are developed for optical communications. The second part reports the experimental investigation of a novel liquid-crystal-infiltrated photonic crystal fiber (PCF) and explores its applications in fiber-optic communications. The curing temperature is found to have significant effects on the PSLC performance. The electro-optic properties of nematic polymer network liquid crystal (PNLC) at different curing temperatures are investigated experimentally. At high curing temperature, a high contrast, low drive voltage, and small hysteresis PNLC is obtained as a result of the formed large LC microdomains. With the help of curing temperature effect, it is able to develop PNLC based optical devices with highly desirable performances for optical communications. Such high performance is generally considered difficult to realize for a PNLC. In fact, the poor performance of PNLC, especially at long wavelengths, has hindered it from practical applications for optical communications for a long time. Therefore, the optimal curing temperature effect discovered in this thesis would enable PSLCs for practical industrial applications. Further more, high birefringence LCs play an important role for near infrared photonic devices. The isothiocyanato tolane liquid crystals exhibit a high birefringence and low viscosity. The high birefringence LC dramatically improves the PSLC contrast ratio while keeping a low drive voltage and fast response time. A free-space optical device by PNLC is experimentally demonstrated and its properties characterized. Most LC devices are polarization sensitive. To overcome this drawback, we have investigated the polymer-stabilized cholesteric LC (PSCLC). Combining the curing

  10. Liquid-filled simplified hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Gao, Wei; Li, Hongwei; Dong, Yongkang; Zhang, Hongying

    2014-12-01

    We report on a novel type of liquid-filled simplified hollow-core photonic crystal fibers (HC-PCFs), and investigate their transmission properties with various filling liquids, including water, ethanol and FC-40. The loss and dispersion characterizations are calculated for different fiber parameters including strut thickness and core diameter. The results show that there are still low-loss windows existing for liquid-filled simplified HC-PCFs, and the low-loss windows and dispersions can be easily tailored by filling different liquids. Such liquid-filled simplified HC-PCFs open up many possibilities for nonlinear fiber optics, optical, biochemical and medical sensing.

  11. Graphene chiral liquid crystals and macroscopic assembled fibres

    PubMed Central

    Xu, Zhen; Gao, Chao

    2011-01-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390

  12. Molecular mechanism of melting of a helical polymer crystal: Role of conformational order, packing and mobility of polymers

    NASA Astrophysics Data System (ADS)

    Cheerla, Ramesh; Krishnan, Marimuthu

    2018-03-01

    The molecular mechanism of melting of a superheated helical polymer crystal has been investigated using isothermal-isobaric molecular dynamics simulation that allows anisotropic deformation of the crystal lattice. A detailed microscopic analysis of the onset and progression of melting and accompanying changes in the polymer conformational order, translational, and orientation order of the solid along the melting pathway is presented. Upon gradual heating from room temperature to beyond the melting point at ambient pressure, the crystal exhibits signatures of premelting well below the solid-to-liquid melting transition at the melting point. The melting transition is manifested by abrupt changes in the crystal volume, lattice energy, polymer conformation, and dynamical properties. In the premelting stage, the crystal lattice structure and backbone orientation of the polymer chains are retained but with the onset of weakening of long-range helical order and interchain packing of polymers perpendicular to the fibre axis of the crystal. The premelting also marks the onset of conformational defects and anisotropic solid-state diffusion of polymers along the fibre axis. The present study underscores the importance of the interplay between intermolecular packing, interactions, and conformational dynamics at the atomic level in determining the macroscopic melting behavior of polymer crystals.

  13. Reconfigurable optical multiplexer based on liquid crystals for polymer optical fiber networks

    NASA Astrophysics Data System (ADS)

    Lallana, P. C.; Vázquez, C.; Pena, J. M. S.; Vergaz, R.

    2006-12-01

    In this work, different novel 3×1 multiplexer structures for being used in polymer optical fiber networks are proposed. Designs are compact, scalable, and of low consumption, capable of operating in a large wavelength range simultaneously 660, 850, and 1300 nm, due to the use of nematic liquid crystal cells. Light that comes from each input port is handled independently and eight operation modes are possible. Control electronics has been made using a programmable integrated circuit. Electronic system makes available the managing of the optical stage using a computer. An additional four optical sensors have been included for allowing the optical status checking. Finally, a polarization independent multiplexer has been implemented and tested. Insertion losses less than 4 dB and isolation better than 23 dB have been measured. In addition, 30-ms and 15-ms setup and rise times have been obtained. The proposed multiplexer can be used in any polymer optical fiber network, even in perfluorinated graded index one, and it can be specially useful in optical sensor networks, or in coarse wavelength division multiplexing networks.

  14. Tunable liquid crystal photonic devices

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing

    2005-07-01

    Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In

  15. Fabrication of a dye-doped liquid crystal light shutter by thermal curing of polymer

    NASA Astrophysics Data System (ADS)

    Yu, Byeong-Hun; Ji, Seong-Min; Kim, Jin-Hun; Huh, Jae-Won; Yoon, Tae-Hoon

    2017-07-01

    We report a thermal curing method for fabrication of a dye-doped polymer-stabilized liquid crystal (PSLC) light shutter, which can prevent the decrease in absorption and discoloration of the dye caused by the UV curing process. We found that the measured transmittance in the opaque state of a dye-doped PSLC cell fabricated by thermal curing was approximately 35% lower than that of a dye-doped PSLC cell fabricated by UV curing. Thermal curing can be an alternative approach for fabrication of a dye-doped PSLC light shutter which can be used to provide high visibility of a see-through display.

  16. Dichroic Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    * Effect of Thickness * Impact of Order Parameter * Impact of the Host * Impact of Polarizer * Colour Applications * Multiplexing * QUARTER WAVE PLATE DICHROIC DISPLAYS * Operational Principle and Display Configuration11-13 * Electro-Optical Performance * DYE-DOPED TN DISPLAYS * Threshold Characteristic, Contrast Ratio and Switching Speed * PHASE CHANGE EFFECT DICHROIC LCDs * Theoretical Background * Threshold Characteristic and Molecular Orientation * MOLECULAR ORIENTATION DURING FIELD-INDUCED PHASE TRANSITION WITH HOMOGENEOUS WALL ALIGNMENT * MOLECULAR ORIENTATION DURING FIELD-INDUCED PHASE TRANSITION WITH HOMEOTROPIC WALL ALIGNMENT * Contrast Ratio, Transmission, Brightness and Switching Speed3,7,10,198-214 * Memory or Reminiscent Contrast * Electro-optical Performance vs. Temperature * Multiplexing Phase Change Dichroic LCDs * DOUBLE CELL DICHROIC LCDs3,9,14-17,232-234 * Double Cell Nematic Dichroic LCD3,8,9,14,15,233 * Double Cell One Pitch Cholesteric LCD16,17 * Double Cell Phase Change Dichroic LCD214,232 * POSITIVE MODE DICHROIC LCDS3,8,9 * Positive Mode Heilmeier Cells3,8,9,43,77,78,235-238 * USING PLEOCHROIC DYES3,8,9,43,235-238 * USING NEGATIVE DICHROIC DYES3,8,9,63,77,78156 * DUAL FREQUENCY ADDRESSED DICHROIC DISPLAYS75,238 * Positive Mode Dichroic LCDs Using λ/4 Plate * Positive Mode Double Cell Dichroic LCD * Positive Mode Dichroic LCDs Using Special Electrode patterns7,8,239-241 * Positive Mode Phase Change Dichroic LCDs3,8,9,230,243-248 * Dichroic LCDs Using an Admixture of Pleochroic and Negative Dichroic Dyes78,118 * SUPERTWIST DICHROIC EFFECT (SDE) DISPLAYS21-23 * FERROELECTRIC DICHROIC LCDs24-27 * Devices Using A Single Polarizer * Devices Using No Polarizer24-27 * POLYMER DISPERSED DICHROIC LCDs28-30,252-259 * DICHROIC POLYMER LIQUID CRYSTAL DISPLAYS * Heilmeier Type Displays * Guest-Host Cell Using an Admixture Of L.C. Polymer and Low Molecular Weight Liquid Crysta As Host * Polymeric Ferroelectric Dichroic LCDs * SMECTIC A DICHROIC LCDs * Laser

  17. Versatile alignment layer method for new types of liquid crystal photonic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnemeyer, V.; Bryant, D.; Lu, L.

    2015-07-21

    Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research on such alignment layers has shown that they have limited stability, particularly against subsequent light exposure. As such, we further describe a method of utilizing a pre-polymer, infused into the microcavity along with the liquid crystal, to provide photostability. We demonstrate that the polymer layer, formed under ultraviolet irradiation ofmore » liquid crystal cells, has been effectively localized to a thin region near the substrate surface and provides a significant improvement in the photostability of the liquid crystal alignment. This versatile alignment layer method, capable of being utilized in devices from the described microcavities to displays, offers significant promise for new photonics applications.« less

  18. Liquid-Crystal Thermosets, a New Generation of High-Performance Liquid-Crystal Polymers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theo; Weiser, Erik; Hou, Tan; Jensen, Brian; St. Clair, Terry

    2004-01-01

    One of the major challenges for NASA's next-generation reusable-launch-vehicle (RLV) program is the design of a cryogenic lightweight composite fuel tank. Potential matrix resin systems need to exhibit a low coefficient of thermal expansion (CTE), good mechanical strength, and excellent barrier properties at cryogenic temperatures under load. In addition, the resin system needs to be processable by a variety of non-autoclavable techniques, such as vacuum-bag curing, resin-transfer molding (RTM), vacuum-assisted resin-transfer molding (VaRTM), resin-film infusion (RFI), pultrusion, and advanced tow placement (ATP). To meet these requirements, the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center developed a new family of wholly aromatic liquid-crystal oligomers that can be processed and thermally cross-linked while maintaining their liquid-crystal order. All the monomers were polymerized in the presence of a cross-linkable unit by use of an environmentally benign melt-condensation technique. This method does not require hazardous solvents, and the only side product is acetic acid. The final product can be obtained as a powder or granulate and has an infinite shelf life. The obtained oligomers melt into a nematic phase and do not exhibit isotropization temperatures greater than the temperatures of decomposition (Ti > T(sub dec)). Three aromatic formulations were designed and tested and included esters, ester-amides, and ester-imides. One of the major advantages of this invention, named LaRC-LCR or Langley Research Center-Liquid Crystal Resin, is the ability to control a variety of resin characteristics, such as melting temperature, viscosity, and the cross-link density of the final part. Depending on the formulation, oligomers can be prepared with melt viscosities in the range of 10-10,000 poise (100 rad/s), which can easily be melt-processed using a variety of composite-processing techniques. This capability provides NASA with custom

  19. Vibration analysis of a new polymer quartz piezoelectric crystal sensor for detecting characteristic materials of volatility liquid

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Li, Qiang; Xu, Bao-Jun; Zhao, Zhe

    2014-01-01

    We present a new polymer quartz piezoelectric crystal sensor that takes a quartz piezoelectric crystal as the basal material and a nanometer nonmetallic polymer thin film as the surface coating based on the principle of quartz crystal microbalance (QCM). The new sensor can be used to detect the characteristic materials of a volatile liquid. A mechanical model of the new sensor was built, whose structure was a thin circle plate composing of polytef/quartz piezoelectric/polytef. The mechanical model had a diameter of 8 mm and a thickness of 170 μm. The vibration state of the model was simulated by software ANSYS after the physical parameters and the boundary condition of the new sensor were set. According to the results of experiments, we set up a frequency range from 9.995850 MHz to 9.997225 MHz, 17 kinds of frequencies and modes of vibration were obtained within this range. We found a special frequency fsp of 9.996358 MHz. When the resonant frequency of the new sensor's mechanical model reached the special frequency, a special phenomenon occurred. In this case, the amplitude of the center point O on the mechanical model reached the maximum value. At the same time, the minimum absolute difference between the simulated frequency based on the ANSYS software and the experimental measured stable frequency was reached. The research showed that the design of the new polymer quartz piezoelectric crystal sensor perfectly conforms to the principle of QCM. A special frequency value fsp was found and subsequently became one of the most important parameters in the new sensor design.

  20. Transparent ITO electrode in the polymer network liquid crystal variable optical attenuator

    NASA Astrophysics Data System (ADS)

    Zhang, Xindong; Dong, Wei; Liu, Caixia; Chen, Yinghua; Ruan, Shengping; Zhang, Shuang; Guo, Wenbin; Yang, Dong; Han, Lin; Chen, Weiyou

    2004-05-01

    Indium tin oxide (ITO) films as transparent conductors have caused a great deal of interest due to their prominent electro-optical behavior. This paper describes a study of the properties of ITO thin films that are used for a new type variable optical attenuator using polymer network liquid crystal (PNLC). The mechanism of PNLC optical attenuator operation is that the light from the input fiber is scattered when no voltage is applied, and the light passes through the attenuator when sufficient voltage is applied. So the ITO thin films can provide transparent electrodes for PNLC. They were deposited under various preparation conditions using the radio-frequency (rf) magnetron sputtering technique. Here discuss the results of the structural, electrical and optical properties of the ITO films. The paper presents some experimental results obtained in laboratory.

  1. Non-covalent nanodiamond-polymer dispersions and electrostatic immobilization of bovine serum albumin protein

    NASA Astrophysics Data System (ADS)

    Skaltsas, T.; Pispas, S.; Tagmatarchis, N.

    2015-11-01

    Nanodiamonds (NDs) lack efficient dispersion, not only in solvents but also in aqueous media. The latter is of great importance, considering the inherent biocompatibility of NDs and the plethora of suitable strategies for immobilizing functional biomolecules. In this work, a series of polymers was non-covalently interacted with NDs, forming ND-polymer ensembles, and their dispersibility and stability was examined. Dynamic light scattering gave valuable information regarding the size of the ensembles in liquid phase, while their morphology was further examined by high-resolution transmission electron microscopy imaging. In addition, thermal analysis measurements were applied to collect information on the thermal behavior of NDs and their ensembles and to calculate the amount of polymer interacting with the NDs, as well as the dispersibility values of the ND-polymer ensembles. Finally, the bovine serum albumin protein was electrostatically bound to a ND-polymer ensemble in which the polymeric moiety was carrying quaternized pyridine units.

  2. Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate

    NASA Astrophysics Data System (ADS)

    Escuti, Michael J.; Cairns, Darran R.; Crawford, Gregory P.

    2004-03-01

    The optomechanical characteristics of oriented polymer films made from a photopolymerizable liquid crystal diacrylate (BASF LC242) were examined, with general implications for oriented films of similar materials being used and considered for display-component applications. The birefringence of these uniaxial films before and after polymerization was determined by measuring the retardation between crossed polarizers, (resulting in Δn=0.142±0.002 at 633 nm for the cured polymer films). Optical-strain characteristics were also determined by measuring the transmittance of the films between crossed polarizers at two wavelengths (612 and 633 nm) during the application of a monotonically increasing tensile strain. Under the conservative assumption that Poisson's ratio is constant for the relatively small strains in our experiment, we develop a strained-waveplate model to detect changes in birefringence directly from the modulation in transmittance with increasing strain. We show that strain applied along the axis of the polymer chains did not substantially affect the birefringence, and strain applied perpendicularly caused only a slight decrease (˜1% decrease for 10% strain). These results highlight the robustness of fully polymerized reactive mesogen optical films to withstand the moderate strains anticipated during manufacturing processes and in-service deformation caused by bending or impact.

  3. Liquid Crystals in Chromatography

    NASA Astrophysics Data System (ADS)

    Witkiewicz, Zygfryd

    The following sections are included: * INTRODUCTION * LIQUID CRYSTALS SUITABLE FOR GAS CHROMATOGRAPHY * Monomeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Conventional Analytical Columns * Capillary Columns * FACTORS AFFECTING THE CHROMATOGRAPHIC SEPARATIONS ON LIQUID CRYSTAL STATIONARY PHASES * Kind of Mesophase of the Liquid Crystal * Molecular Structure of the Liquid Crystals and of the Chromatographed Substances * Substrate on which the Liquid Crystal is Deposited * ANALYTICAL APPLICATIONS OF LIQUID CRYSTAL STATIONARY PHASES IN GAS CHROMATOGRAPHY * Separation of Isomers of Benzene and Naphthalene Derivatives * Separation of Alkane and Alkene Isomers * Separation of Mixtures of Benzene and Aliphatic Hydrocarbon Derivatives Containing Heteroatoms * Separation of Polynuclear Hydrocarbons * INVESTIGATION OF THE PROPERTIES OF LIQUID CRYSTALS BY GAS CHROMATOGRAPHY * APPLICATION OF LIQUID CRYSTALS IN LIQUID CHROMATOGRAPHY * Column Chromatography * Thin-Layer Chromatography * APPLICATION OF LIQUID CRYSTAL STATIONARY PHASES IN SUPERCRITICAL FLUID CHROMATOGRAPHY * FINAL REMARKS * References

  4. Current progress and technical challenges of flexible liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Fujikake, Hideo; Sato, Hiroto

    2009-02-01

    We focused on several technical approaches to flexible liquid crystal (LC) display in this report. We have been developing flexible displays using plastic film substrates based on polymer-dispersed LC technology with molecular alignment control. In our representative devices, molecular-aligned polymer walls keep plastic-substrate gap constant without LC alignment disorder, and aligned polymer networks create monostable switching of fast-response ferroelectric LC (FLC) for grayscale capability. In the fabrication process, a high-viscosity FLC/monomer solution was printed, sandwiched and pressed between plastic substrates. Then the polymer walls and networks were sequentially formed based on photo-polymerization-induced phase separation in the nematic phase by two exposure processes of patterned and uniform ultraviolet light. The two flexible backlight films of direct illumination and light-guide methods using small three-primary-color light-emitting diodes were fabricated to obtain high-visibility display images. The fabricated flexible FLC panels were driven by external transistor arrays, internal organic thin film transistor (TFT) arrays, and poly-Si TFT arrays. We achieved full-color moving-image displays using the flexible FLC panel and the flexible backlight film based on field-sequential-color driving technique. Otherwise, for backlight-free flexible LC displays, flexible reflective devices of twisted guest-host nematic LC and cholesteric LC were discussed with molecular-aligned polymer walls. Singlesubstrate device structure and fabrication method using self-standing polymer-stabilized nematic LC film and polymer ceiling layer were also proposed for obtaining LC devices with excellent flexibility.

  5. Invited review liquid crystal models of biological materials and silk spinning.

    PubMed

    Rey, Alejandro D; Herrera-Valencia, Edtson E

    2012-06-01

    A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. Copyright © 2011 Wiley Periodicals, Inc.

  6. Coordinative nanoporous polymers synthesized with hydrogen-bonded columnar liquid crystals.

    PubMed

    Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji

    2012-10-01

    In this paper, we report the development of nanoporous polymer which demonstrates the coordination property toward zinc porphyrin. A hydrogen-bonded columnar liquid crystalline precursor composed of a triphenylene template and three equivalent of the surrounding dendric amphiphile bearing a pyridyl head group and a polymerizable aliphatic chain, was covalently fixed by photopolymerization, and then the subsequent selective removal of the template successively resulted in a nanoporous polymer in which the pore wall is modified with pyridyl groups. The nanoporous polymer reflected the conformation of template, and displayed considerable coordination ability of the pyridyl groups towards zinc porphyrin. The coordinative nanoporous polymer is promising as a nano-scaled scaffold for the organization of dyes into functional supramolecular architectures.

  7. Chirality transfer technique between liquid crystal microdroplets using microfluidic systems

    NASA Astrophysics Data System (ADS)

    Guo, Jin-kun; Lee, Doyeon; Song, Jang-kun

    2018-02-01

    Cholesteric liquid crystal (LC) microdroplet is applied in many areas, such as tunable laser, biosensor, information display and security identification, due to its unique optical properties. The topological structure, defects, and photonic crystallinity in the cholesteric liquid crystal (LC) microdroplet can be controlled through the chirality. Here we report an interesting phenomenon that chirality information can be shared among dispersed LC microdroplets in surfactant aqueous solution, which is driven by the transferring of chiral dopant molecules. As a result, we developed an artificial molecule transfer technology which could in situ vary the material composition within the isolated dispersed microdroplets. The molecular transfer is switchable and the transfer speed is controllable by tuning the molecular solubility in continuous phase. Based on this technique, we manipulated, forward and backward, the topological evolution and the photonic crystal band-gap of the dispersed LC droplet. This technique is an easy and powerful experimental tool, and it may be applicable to other fields in optical application, biology, chemistry and material science.

  8. Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.

    PubMed

    Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A

    2017-10-25

    Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.

  9. Nanoparticles in liquid crystals, and liquid crystals in nanoparticles

    NASA Astrophysics Data System (ADS)

    de Pablo, Juan

    2015-03-01

    Liquid crystals are remarkably sensitive to interfacial interactions. Small perturbations at a liquid crystal interface, for example, can be propagated over relatively long length scales, thereby providing the basis for a wide range of applications that rely on amplification of molecular events into macroscopic observables. Our recent research efforts have focused on the reverse phenomenon; that is, we have sought to manipulate the interfacial assembly of nanoparticles or the organization of surface active molecules by controlling the structure of a liquid crystal. This presentation will consist of a review of the basic principles that are responsible for liquid crystal-mediated interactions, followed by demonstrations of those principles in the context of two types of systems. In the first, a liquid crystal is used to direct the assembly of nanoparticles; through a combination of molecular and continuum models, it is found that minute changes in interfacial energy and particle size lead to liquid-crystal induced attractions that can span multiple orders of magnitude. Theoretical predictions are confirmed by experimental observations, which also suggest that LC-mediated assembly provides an effective means for fabrication of plasmonic devices. In the second type of system, the structure of a liquid crystal is controlled by confinement in submicron droplets. The morphology of the liquid crystal in a drop depends on a delicate balance between bulk and interfacial contributions to the free energy; that balance can be easily perturbed by adsorption of analytes or nanoparticles at the interface, thereby providing the basis for development of hierarchical assembly of responsive, anisotropic materials. Theoretical predictions also indicate that the three-dimensional order of a liquid crystal can be projected onto a two-dimensional interface, and give rise to novel nanostructures that are not found in simple isotropic fluids.

  10. Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture.

    PubMed

    Konno, Hajime; Taylor, Lynne S

    2008-04-01

    To investigate the ability of various polymers to inhibit the crystallization of amorphous felodipine from amorphous molecular dispersions in the presence of absorbed moisture. Spin coated films of felodipine with poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydroxypropylmethylcellulose (HPMC) were exposed to different storage relative humidities and nucleation rates were measured using polarized light microscopy. Solid dispersions were further characterized using differential scanning calorimetry, infrared spectroscopy and gravimetric measurement of water vapor sorption. It was found that the polymer additive reduced nucleation rates whereas absorbed water enhanced the nucleation rate as anticipated. When both polymer and water were present, nucleation rates were reduced relative to those of the pure amorphous drug stored at the same relative humidity, despite the fact that the polymer containing systems absorbed more water. Differences between the stabilizing abilities of the various polymers were observed and these were explained by the variations in the moisture contents of the solid dispersions caused by the different hygroscopicities of the component polymers. No correlations could be drawn between nucleation rates and the glass transition temperature (Tg) of the system. PVP containing solid dispersions appeared to undergo molecular level changes on exposure to moisture which may be indicative of phase separation. In conclusion, it was found that for a given storage relative humidity, although the addition of a polymer increases the moisture content of the system relative to that of the pure amorphous drug, the crystallization tendency was still reduced.

  11. Theoretical Studies of Nonuniform Orientational Order in Liquid Crystals and Active Particles

    NASA Astrophysics Data System (ADS)

    Duzgun, Ayhan

    I investigate three systems that exhibit complex patterns in orientational order, which are controlled by geometry interacting with the dynamics of phase transitions, metastability, and activity. 1. Liquid Crystal Elastomers: Liquid-crystal elastomers are remarkable materials that combine the elastic properties of cross-linked polymer networks with the anisotropy of liquid crystals. Any distortion of the polymer network affects the nematic order of the liquid crystal, and, likewise, any change in the magnitude or direction of the nematic order influences the shape of the elastomer. When elastomers are prepared without any alignment, they develop disordered polydomain structures as they are cooled into the nematic phase. To model these polydomain structures, I develop a dynamic theory for the isotropic-nematic transition in elastomers. 2. Active Brownian Particles: Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. I perform Langevin dynamics simulations and analytic calculations to explore how systems cross over from equilibrium to active behavior as the activity is increased. Based on these results, I calculate how the pressure depends on wall curvature, and hence make analytic predictions for the motion of curved tracers and other effects of confinement in active matter systems. 3. Skyrmions in Liquid Crystals: Skyrmions are localized topological defects in the orientation of an order parameter field, without a singularity in the magnitude of the field. For many years, such defects have been studied in the context of chiral liquid crystals--for example, as bubbles in a confined cholesteric phase or as double-twist tubes in a blue phase. More recently, skyrmions have been investigated extensively in the context of chiral magnets. In this project, I compare skyrmions in chiral liquid crystals with the analogous magnetic defects. Through simulations based on the nematic order tensor, I model both isolated skyrmions

  12. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  13. Motion of Doped-Polymer-Cholesteric Liquid Crystal Flakes in a Direct-Current Electric Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trajkovska Petkoska, A.; Kosc, T.Z.; Marshall, K.L.

    The behavior of polymer cholesteric liquid crystal (PCLC) flakes suspended in silicone oil host fluids has been explored in the presence of a direct-current electric field. In addition to “neat” (undoped) flakes, the PCLC material was doped with either conductive, carbon-based particles or highly dielectric inorganic particles to modify the dielectric properties of the resulting PCLC flakes. Doping with conductive particles produced flakes with a net charge, and they exhibited either translational or rotational motion depending on both the distribution of dopant within the flake and the dielectric characteristics of the host fluid. Flakes doped with titania (TiO2) particles reorientedmore » 90º when suspended in a host fluid with a differing dielectric permittivity« less

  14. Molecular implications of drug-polymer solubility in understanding the destabilization of solid dispersions by milling.

    PubMed

    Yang, Ziyi; Nollenberger, Kathrin; Albers, Jessica; Qi, Sheng

    2014-07-07

    The solubility of drugs in polymer matrixes has been recognized as one of the key factors governing the physical stability of solid dispersions. This study has explored the implications of drug solubility on the destabilization that occurs on milling, which is often used as an additional process for hot melt extruded (HME) solid dispersions. The theoretical drug solubility in the polymer was first predicted using various theoretical and experimental approaches. The destabilization effects of high-energy mechanical milling on the solid dispersions with drug loadings below and above the predicted solubility were then investigated using a range of thermal, microscopic, and spectroscopic techniques. Four model drug-polymer combinations were studied. The HME formulations with drug loading below the predicted solid solubility (undersaturated and true molecular dispersion) showed good stability against milling. In contrast, milling destabilized supersaturated HME dispersions via increasing molecular mobility and creating phase-separated, amorphous, drug-rich domains. However, these additional amorphous drug-rich domains created by milling show good stability under ambient conditions, though crystallization can be accelerated by additional heating. These results highlighted that the processing method used to prepare the solid dispersions may play a role in facilitating the stabilization of amorphous drug in supersaturated solid dispersions. The degree of supersaturation of the drug in the polymer showed significant impact on the destabilization behavior of milling on solid dispersions. An improved understanding of the destabilization behavior of solid dispersions upon milling can provide new insights into the processing related apparent solubility of drugs in polymers.

  15. An unusual type of polymorphism in a liquid crystal

    DOE PAGES

    Li, Lin; Salamonczyk, Miroslaw; Shadpour, Sasan; ...

    2018-02-19

    Polymorphism is a remarkable concept in chemistry, materials science, computer science, and biology. Whether it is the ability of a material to exist in two or more crystal structures, a single interface connecting to two different entities, or alternative phenotypes of an organism, polymorphism determines function and properties. In materials science, polymorphism can be found in an impressively wide range of materials, including crystalline materials, minerals, metals, alloys, and polymers. Here in this paper we report on polymorphism in a liquid crystal. A bent-core liquid crystal with a single chiral side chain forms two structurally and morphologically significantly different liquidmore » crystal phases solely depending on the cooling rate from the isotropic liquid state. On slow cooling, the thermodynamically more stable oblique columnar phase forms, and on rapid cooling, a not heretofore reported helical microfilament phase. Since structure determines function and properties, the structural color for these phases also differs.« less

  16. An unusual type of polymorphism in a liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lin; Salamonczyk, Miroslaw; Shadpour, Sasan

    Polymorphism is a remarkable concept in chemistry, materials science, computer science, and biology. Whether it is the ability of a material to exist in two or more crystal structures, a single interface connecting to two different entities, or alternative phenotypes of an organism, polymorphism determines function and properties. In materials science, polymorphism can be found in an impressively wide range of materials, including crystalline materials, minerals, metals, alloys, and polymers. Here in this paper we report on polymorphism in a liquid crystal. A bent-core liquid crystal with a single chiral side chain forms two structurally and morphologically significantly different liquidmore » crystal phases solely depending on the cooling rate from the isotropic liquid state. On slow cooling, the thermodynamically more stable oblique columnar phase forms, and on rapid cooling, a not heretofore reported helical microfilament phase. Since structure determines function and properties, the structural color for these phases also differs.« less

  17. Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light.

    PubMed

    Hadjichristov, Georgi B; Marinov, Yordan G; Petrov, Alexander G

    2011-06-01

    The light modulating ability of gradient polymer-disposed liquid crystal (PDLC) single layer of large droplets formed by nematic E7 in UV-cured polymer NOA65 is studied. Operating at relatively low voltages, such PDLC film with a of thickness 10-25 μm and droplet size up to 50 μm exhibits a good contrast ratio and is capable of producing a large phase shift for the propagating coherent light. For a linearly polarized He-Ne laser (λ=633 nm), an electrically commanded phase shift as large as π/2 can be obtained by the large-droplet region of the film. The electrically produced phase shift and its spatial profile controlled by the thickness of the gradient PDLC single layers of large nematic droplets can be useful for tunable spatial light modulators and other devices for active control of laser light.

  18. Low-voltage tunable color in full visible region using ferroelectric liquid-crystal-doped cholesteric liquid-crystal smart materials

    NASA Astrophysics Data System (ADS)

    Lin, Jia-De; Lin, Jyun-Wei; Lee, Chia-Rong

    2018-02-01

    Electrical tuning of photonic bandgap (PBG) of cholesteric liquid crystal (CLC) without deformation within the entire visible region at low voltages is not easy to achieve. This study demonstrates low-voltage-tunable PBG in full visible region with less deformation of the PBG based on smart materials of ferroelectric liquid crystal doped CLC (FLC-CLC) integrating with electrothermal film heaters. Experimental results show that the reflective color of the FLC-CLC can be low-voltage-tuned through entire visible region. The induced temperature change is induced by electrically heating the electrothermal film heaters at low voltages at near the smectic-CLC transition temperature. Coaxial electrospinning can be used to develop smart fibrous devices with FLC/CLC-core and polymer-shell which color is tunable in full visible region at low voltages.

  19. Copper and liquid crystal polymer bonding towards lead sensing

    NASA Astrophysics Data System (ADS)

    Redhwan, Taufique Z.; Alam, Arif U.; Haddara, Yaser M.; Howlader, Matiar M. R.

    2018-02-01

    Lead (Pb) is a highly toxic and carcinogenic heavy metal causing adverse impacts on environment and human health, thus requiring its careful monitoring. In this work, we demonstrate the integration of copper (Cu) film-based electrodes toward Pb sensing. For this, we developed a direct bonding method for Cu thin film and liquid crystal polymer (LCP) substrate using oxygen plasma treatment followed by contact and heat at 230 °C. The oxygen plasma activation forms hydroxyl groups (OH-) on Cu and LCP. The activated surfaces further adsorb water molecules when exposed to clean room air during contact. After contact, hydrogen bonds are formed between the OH- groups. The interfacial water is removed when the contacted films are heated, leading to shrinkage of OH- chain. This results in an intermediate oxide layer linking the Cu and C sites of Cu and LCP respectively. A strong adhesion (670 N·m-1) is obtained between Cu/LCP that may offer prolonged use of the electrode without delamination in wet sensing applications. Anodic stripping voltammetry of Pb using Cu thin film electrode shows a stronger current peak than sputtered Cu electrode, which implies the significance of the direct bonding approach to integrate thin films. We also studied the electrochemical impedance that will enable modeling of integrated environmental sensors for on-site monitoring of heavy metals.

  20. Photoalignment and resulting holographic vector grating formation in composites of low molecular weight liquid crystals and photoreactive liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomoyuki; Shoho, Takashi; Goto, Kohei; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2015-08-01

    Polarization holographic gratings were formed in liquid crystal (LC) cells fabricated from a mixture of low molecular weight nematic LC and a photoreactive liquid crystalline polymer (PLCP) with 4-(4-methoxycinnamoyloxy)biphenyl side groups. The diffraction properties of the gratings were analyzed using theoretical models which were determined based on the polarization patterns of the polarization holography. The results demonstrated that vector gratings comprised of periodic orientation distributions of the LC molecule were induced in the cells based on the axis-selective photoreaction of the PLCP. The vector gratings were erased by applying a sufficiently high voltage to the cells and then were reformed with no hysteresis after the voltage was removed. This phenomenon suggested that the PLCP molecules were stabilized based on the axis-selective photocrosslink reaction and that the LC molecules were aligned by the photocrosslinked PLCP. This LC composite with axis-selective photoreactivity is useful for various optical applications, because of their stability, transparency, and response to applied voltage.

  1. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermannsson, Pétur G.; Vannahme, Christoph; Smith, Cameron L. C.

    2015-08-10

    Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can perform measurements at arbitrary number of wavelengths, and requires only amore » minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications.« less

  2. Homogeneous crystal nucleation in polymers.

    PubMed

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  3. Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications.

    PubMed

    Park, Jiyoung; Kang, Doo-Eui; Paulson, Bjorn; Nazari, Tavakol; Oh, Kyunghwan

    2014-07-14

    A defectless hexagonal air-silica photonic crystal fiber (PCF) structure with its central hole selectively filled by a low-refractive-index liquid is numerically analyzed. Despite the fact that the refractive index of the liquid is significantly lower than that of silica, we found an optimal range of waveguide parameters to ensure light guidance through the liquid core in the fundamental mode, maximizing the light-liquid interaction over a desired wavelength range. Using the vectorial finite element method (FEM), we report detailed parametric studies in terms of the effective index, chromatic dispersion, optical loss, and modal intensity distribution of the liquid core PCFs.

  4. A Highly Sensitive Resistive Pressure Sensor Based on a Carbon Nanotube-Liquid Crystal-PDMS Composite.

    PubMed

    Pan, Jin; Liu, Shiyu; Yang, Yicheng; Lu, Jiangang

    2018-06-08

    Resistive pressure sensors generally employ microstructures such as pores and pyramids in the active layer or on the electrodes to reduce the Young’s modulus and improve the sensitivity. However, such pressure sensors always exhibit complex fabrication process and have difficulties in controlling the uniformity of microstructures. In this paper, we demonstrated a highly sensitive resistive pressure sensor based on a composite comprising of low-polarity liquid crystal (LPLC), multi-walled carbon nanotube (MWCNT), and polydimethylsiloxane (PDMS) elastomer. The LPLC in the PDMS forms a polymer-dispersed liquid crystal (PDLC) structure which can not only reduce the Young’s modulus but also contribute to the construction of conductive paths in the active layer. By optimizing the concentration of LC in PDMS elastomer, the resistive pressure sensor shows a high sensitivity of 5.35 kPa −1 , fast response (<150 ms), and great durability. Fabrication process is also facile and the uniformity of the microstructures can be readily controlled. The pressure sensor offers great potential for applications in emerging wearable devices and electronic skins.

  5. Effect of liquid crystal birefringence on the opacity and off-axis haze of PDLC films

    NASA Astrophysics Data System (ADS)

    Pane, S.; Caporusso, M.

    1998-02-01

    PDLC systems are thin films consisting of a dispersion of liquid crystal micro-droplets in a continuous solid phase of polymer matrix. Application of an electric field on a thin layer of PDLC sandwiched between two transparent on-state. This effect make them useful for a wide variety of applications. Among them, smart windows for architectural is the most popular subject in literature. For this application, the key parameters of performance are the haze and the opacity. There are essentially two technologies used to prepare PDLC films, namely micro-encapsulation and phase separation.In the present work we will show the correlation between the opacity and the off-axis haze in PDLC films prepared with a phase separation technology. We will give the general rule in order to select the liquid crystal properties that allow the preparation of high opacity ad low haze PDLC films. Further study about the control of the parameters which influence the performances of PDLC films prepared with phase separation technology and the difference with the NCAP approach are in progress at our laboratory.

  6. Liquid crystal polymers: evidence of hairpin defects in nematic main chains, comparison with side chain polymers

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Brûlet, A.; Keller, P.; Cotton, J. P.

    1996-09-01

    This article describes the conformation of two species of liquid crystalline polymers as revealed by small angle neutron scattering. The results obtained with side chain polymers are recalled. The procedure used to analyze the scattering data of main chains in the nematic phase is reported in this paper. It permits a demonstration of the existence of hairpins. Comparison of both polymer species shows that in the isotropic phase, the two polymers adopt a random coil conformation. In the nematic phase, the conformations are very different; the side chains behave as a melt of penetrable random coils whereas the main chains behave as a nematic phase of non penetrable cylinders.

  7. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    PubMed

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Polymer Dispersed Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Doane, J. William

    The following sections are included: * INTRODUCTION AND HISTORICAL DEVELOPMENT * PDLC MATERIALS PREPARATION * Polymerization induced phase separation (PIPS) * Thermally induced phase separation (TIPS) * Solvent induced phase separation (SIPS) * Encapsulation (NCAP) * RESPONSE VOLTAGE * Dielectric and resistive effects * Radial configuration * Bipolar configuration * Other director configurations * RESPONSE TIME * DISPLAY CONTRAST * Light scattering and index matching * Incorporation of dyes * Contrast measurements * PDLC DISPLAY DEVICES AND INNOVATIONS * Reflective direct view displays * Large-scale, flexible displays * Switchable windows * Projection displays * High definition spatial light modulator * Haze-free PDLC shutters: wide angle view displays * ENVIRONMENTAL STABILITY * ACKNOWLEDGEMENTS * REFERENCES

  9. Phase separations in mixtures of a liquid crystal and a nanocolloidal particle.

    PubMed

    Matsuyama, Akihiko

    2009-11-28

    We present a mean field theory to describe phase separations in mixtures of a liquid crystal and a nanocolloidal particle. By taking into account a nematic, a smectic A ordering of the liquid crystal, and a crystalline ordering of the nanoparticle, we calculate the phase diagrams on the temperature-concentration plane. We predict various phase separations, such as a smectic A-crystal phase separation and a smectic A-isotropic-crystal triple point, etc., depending on the interactions between the liquid crystal and the colloidal surface. Inside binodal curves, we find new unstable and metastable regions, which are important in the phase ordering dynamics. We also find a crystalline ordering of the nanoparticles dispersed in a smectic A phase and a nematic phase. The cooperative phenomena between liquid-crystalline ordering and crystalline ordering induce a variety of phase diagrams.

  10. Hybrid molecular-colloidal liquid crystals.

    PubMed

    Mundoor, Haridas; Park, Sungoh; Senyuk, Bohdan; Wensink, Henricus H; Smalyukh, Ivan I

    2018-05-18

    Order and fluidity often coexist, with examples ranging from biological membranes to liquid crystals, but the symmetry of these soft-matter systems is typically higher than that of the constituent building blocks. We dispersed micrometer-long inorganic colloidal rods in a nematic liquid crystalline fluid of molecular rods. Both types of uniaxial building blocks, while freely diffusing, interact to form an orthorhombic nematic fluid, in which like-sized rods are roughly parallel to each other and the molecular ordering direction is orthogonal to that of colloidal rods. A coarse-grained model explains the experimental temperature-concentration phase diagram with one biaxial and two uniaxial nematic phases, as well as the orientational distributions of rods. Displaying properties of biaxial optical crystals, these hybrid molecular-colloidal fluids can be switched by electric and magnetic fields. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Synthesis of liquid crystal silane-functionalized gold nanoparticles and their effects on the optical and electro-optic properties of a structurally related nematic liquid crystal.

    PubMed

    Mirzaei, Javad; Urbanski, Martin; Kitzerow, Heinz-S; Hegmann, Torsten

    2014-05-19

    Chemically and thermally robust liquid crystal silane-functionalized gold nanoparticles (i.e. AuNP1-AuNP3) were synthesized through silane conjugation. Colloidal dispersions of these particles with mesogenic ligands that are structurally identical (as in AuNP1, AuNP2) or compatible (as in AuNP3) with molecules of the nematic liquid crystal (N-LC) host showed superior colloidal stability and dispersibility. The thermal, optical, and electro-optic behaviors of the N-LC composites at different concentrations of each gold nanoparticle were investigated. All dispersions showed lower values for the rotational viscosity and elastic constant, but only AuNP3 with a dissimilar structure between the nanoparticle ligand and the host displayed the most drastic thermal effects and overall strongest impact on the electro-optic properties of the host. The observed results were explained considering both the structure and the density of the surface ligands of each gold nanoparticle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of zinc oxide nanoparticles on dielectric behavior of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Kumar, Pankaj; Malik, Praveen

    2018-05-01

    In this work, phase transition and dielectric behavior of nematic liquid crystal (NLC), E7 and zinc oxide (ZnO) nanoparticles (NPs) doped nematic liquid crystals are investigated. Effect of nano-particles dispersion is analyzed and compared with the dielectric behavior of E7 and E7-ZnO. Frequency dependent dielectric permittivity at various temperatures in nematic phase for E7 and E7-ZnO sample is also studied.

  13. Rheological Characterization of Molten Polymer-Drug Dispersions as a Predictive Tool for Pharmaceutical Hot-Melt Extrusion Processability.

    PubMed

    Van Renterghem, Jeroen; Vervaet, Chris; De Beer, Thomas

    2017-11-01

    The aim of this study was to investigate (i) the influence of drug solid-state (crystalline or dissolved in the polymer matrix) on the melt viscosity and (ii) the influence of the drug concentration, temperature and shear rate on polymer crystallization using rheological tests. Poly (ethylene oxide) (PEO) (100.000 g/mol) and physical mixtures (PM) containing 10-20-30-40% (w/w) ketoprofen or 10% (w/w) theophylline in PEO were rheologically characterized. Rheological tests were performed (frequency and temperature sweeps in oscillatory shear as well as shear-induced crystallization experiments) to obtain a thorough understanding of the flow behaviour and crystallization of PEO-drug dispersions. Theophylline did not dissolve in PEO as the complex viscosity (η*) of the drug-polymer mixture increased as compared to that of neat PEO. In contrast, ketoprofen dissolved in PEO and acted as a plasticizer, decreasing η*. Acting as a nucleating agent, theophylline induced the crystallization of PEO upon cooling from the melt. On the other hand, ketoprofen inhibited crystallization upon cooling. Moreover, higher concentrations of ketoprofen in the drug-polymer mixture increasingly inhibited polymer crystallization. However, shear-induced crystallization was observed for all tested mixtures containing ketoprofen. The obtained rheological results are relevant for understanding and predicting HME processability (e.g., barrel temperature selection) and downstream processing such as injection moulding (e.g., mold temperature selection).

  14. Black-on-white polymer-stabilized cholesteric formulations

    NASA Astrophysics Data System (ADS)

    West, John L.; Magyar, Gregory R.; Francl, James J.; Nixon, Christine M.

    1995-08-01

    Recent research by Doane, Yang, and Chien demonstrated the use of cholesteric liquid crystals in multiplexed, high resolution, reflective diplays. These materials utilize the bistability of the cholesteric planar and focal conic states for displays with a colored image on a black background. Many commercial applications of these materials, such as electronic books and newspapers, portable faxes and personal data assistants, require, or at least prefer, black-on- white images. We report on relatively high polymer content (equalsV 20% by weight) dispersions of cholesteric liquid crystals that produce a white, reflecting, planar state. The polymer network appears to form cholesteric domains with varying pitch lengths resulting in planar states that reflect in the red, green, and blue portions of the spectrum. Utilizing a black absorbing layer behind a display using these materials offers white images on a black background, or vice-versa.

  15. Interphase and particle dispersion correlations in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Senses, Erkan

    Particle dispersion in polymer matrices is a major parameter governing the mechanical performance of polymer nanocomposites. Controlling particle dispersion and understanding aging of composites under large shear and temperature variations determine the processing conditions and lifetime of composites which are very important for diverse applications in biomedicine, highly reinforced materials and more importantly for the polymer composites with adaptive mechanical responses. This thesis investigates the role of interphase layers between particles and polymer matrices in two bulk systems where particle dispersion is altered upon deformation in repulsive composites, and good-dispersion of particles is retained after multiple oscillatory shearing and aging cycles in attractive composites. We demonstrate that chain desorption and re-adsorption processes in attractive composites under shear can effectively enhance the bulk microscopic mechanical properties, and long chains of adsorbed layers lead to a denser entangled interphase layer. We further designed experiments where particles are physically adsorbed with bimodal lengths of homopolymer chains to underpin the entanglement effect in interphases. Bimodal adsorbed chains are shown to improve the interfacial strength and used to modulate the elastic properties of composites without changing the particle loading, dispersion state or polymer conformation. Finally, the role of dynamic asymmetry (different mobilities in polymer blends) and chemical heterogeneity in the interphase layer are explored in systems of poly(methyl methacrylate) adsorbed silica nanoparticles dispersed in poly(ethylene oxide) matrix. Such nanocomposites are shown to exhibit unique thermal-stiffening behavior at temperatures above glass transitions of both polymers. These interesting findings suggest that the mobility of the surface-bound polymer is essential for reinforcement in polymer nanocomposites, contrary to existing glassy layer theories

  16. Functional Nanostructured Materials Based on Polymerized Surfactant Liquid Crystal Assemblies Liquid Crystal Assemblies

    NASA Astrophysics Data System (ADS)

    Gin, Douglas

    2003-03-01

    The development of materials with controlled nanostructures is one of the most important new areas of scientific research in chemistry and engineering. Our research group has developed a novel approach for making nanostructured polymer materials with unique functional properties using liquid crystals as starting materials. In this approach, we design polymerizable organic building blocks based on lyotropic liquid crystals (LLCs) (i.e., amphiphiles or surfactants) that carry, or can accommodate, a functional property of general interest. Through appropriate molecular design, these monomers self-assemble in the presence of water into fluid, yet ordered phase-separated, water-hydrocarbon assemblies with predictable nanoscale geometries. The architectures of these LLC phases can range from stacked two-dimensional lamellae to hexagonally ordered cylindrical channels with uniform feature sizes in the 1-10 nm range. These LLC phases are then photopolymerized into robust polymer networks with preservation of their small-scale structures. This approach allows us to investigate the effect of nanometer-scale architecture on important bulk properties, as well as to engineer chemical environments on the nanometer-scale for several areas of application. In this talk, new functional materials based on the polymerization of the lyotropic inverted hexagonal phase will be presented as one example of our general approach. Issues in the design and photopolymerization of functional amphiphilic monomers that adopt this LC architecture will be discussed. More importantly, the use of the resulting nanostructured polymer networks in three areas of application will be presented: (1) as templates for the synthesis of functional nanocomposites; (2) as tunable heterogeneous catalysts, and (3) as nanoporous membrane and separation media. In particular, issues pertaining to the contribution of nanoscale architecture to the performance of these systems will be highlighted. Opportunities for

  17. End Functionalized Nonionic Water-Dispersible Conjugated Polymers.

    PubMed

    Zhan, Ruoyu; Liu, Bin

    2017-09-01

    2,7-Dibromofluorene monomers carrying two or four oligo(ethylene glycol) (OEG) side chains are synthesized. Heck coupling between the monomers and 1,4-divinylbenzene followed by end capping with [4-(4-bromophenoxy)butyl]carbamic acid tert-butyl ester leads to two nonionic water-dispersible poly(fluorene-alt-1,4-divinylenephenylene)s end-functionalized with amine groups after hydrolysis. In water, the polymer with a lower OEG density (P1) has poor water dispersibility with a quantum yield of 0.24, while the polymer with a higher OEG density (P2) possesses excellent water-dispersibility with a high quantum yield of 0.45. Both polymers show fluorescence enhancement and blue-shifted absorption and emission maxima in the presence of surfactant sodium dodecyl sulfate and dodecyltrimethylammonium bromide. The polymers are also resistant to ionic strength with minimal nonspecific interactions to bovine serum albumin. When biotin is incorporated into the end of the polymer backbones through N-hydroxysuccinimide/amine coupling reaction, the biotinylated polymers interact specifically with streptavidin on solid surface. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Crystal Growth Rate Dispersion: A Predictor of Crystal Quality in Microgravity?

    NASA Technical Reports Server (NTRS)

    Kephart, Richard D.; Judge, Russell A.; Snell, Edward H.; vanderWoerd, Mark J.

    2003-01-01

    In theory macromolecular crystals grow through a process involving at least two transport phenomena of solute to the crystal surface: diffusion and convection. In absence of standard gravitational forces, the ratio of these two phenomena can change and explain why crystal growth in microgravity is different from that on Earth. Experimental evidence clearly shows, however, that crystal growth of various systems is not equally sensitive to reduction in gravitational forces, leading to quality improvement in microgravity for some crystals but not for others. We hypothesize that the differences in final crystal quality are related to crystal growth rate dispersion. If growth rate dispersion exists on Earth, decreases in microgravity, and coincides with crystal quality improvements then this dispersion is a predictor for crystal quality improvement. In order to test this hypothesis, we will measure growth rate dispersion both in microgravity and on Earth and will correlate the data with previously established data on crystal quality differences for the two environments. We present here the first crystal growth rate measurement data for three proteins (lysozyme, xylose isomerase and human recombinant insulin), collected on Earth, using hardware identical to the hardware to be used in microgravity and show how these data correlate with crystal quality improvements established in microgravity.

  19. Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles.

    PubMed

    Chen, Jie; Ormes, James D; Higgins, John D; Taylor, Lynne S

    2015-02-02

    Amorphous solid dispersions are frequently prepared by spray drying. It is important that the resultant spray dried particles do not crystallize during formulation, storage, and upon administration. The goal of the current study was to evaluate the impact of surfactants on the crystallization of celecoxib amorphous solid dispersions (ASD), suspended in aqueous media. Solid dispersions of celecoxib with hydroxypropylmethylcellulose acetate succinate were manufactured by spray drying, and aqueous suspensions were prepared by adding the particles to acidified media containing various surfactants. Nucleation induction times were evaluated for celecoxib in the presence and absence of surfactants. The impact of the surfactants on drug and polymer leaching from the solid dispersion particles was also evaluated. Sodium dodecyl sulfate and Polysorbate 80 were found to promote crystallization from the ASD suspensions, while other surfactants including sodium taurocholate and Triton X100 were found to inhibit crystallization. The promotion or inhibition of crystallization was found to be related to the impact of the surfactant on the nucleation behavior of celecoxib, as well as the tendency to promote leaching of the drug from the ASD particle into the suspending medium. It was concluded that surfactant choice is critical to avoid failure of amorphous solid dispersions through crystallization of the drug.

  20. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

  1. Influence of Polymers on the Crystal Growth Rate of Felodipine: Correlating Adsorbed Polymer Surface Coverage to Solution Crystal Growth Inhibition.

    PubMed

    Schram, Caitlin J; Taylor, Lynne S; Beaudoin, Stephen P

    2015-10-20

    The bioavailability of orally administered drugs that exhibit poor aqueous solubility can be enhanced with the use of supersaturating dosage forms. Stabilization of these forms by preventing or inhibiting crystallization in solution is an important area of study. Polymers can be used to stabilize supersaturated systems; however, the properties that impact their effectiveness as crystal growth rate inhibitors are not yet fully understood. In this study, the impact of various polymers on the crystal growth rate of felodipine and the conformation of these polymers adsorbed to crystalline felodipine was investigated in order to gain a mechanistic understanding of crystal growth inhibition. It was determined that polymer hydrophobicity impacted polymer adsorption as well as adsorbed polymer conformation. Polymer conformation impacts its surface coverage, which was shown to directly correlate to the polymer's effectiveness as a growth rate inhibitor. By modeling this correlation, it is possible to predict polymer effectiveness given the surface coverage of the polymer.

  2. Transition of vertically aligned liquid crystal driven by fan-shaped electric field

    NASA Astrophysics Data System (ADS)

    Tsung, J. W.; Ting, T. L.; Chen, C. Y.; Liang, W. L.; Lai, C. W.; Lin, T. H.; Hsu, W. H.

    2017-09-01

    Interdigital electrodes are implemented in many commercial and novel liquid crystal devices to align molecules. Although many empirical principles and patents apply to electrode design, only a few numerical simulations of alignment have been conducted. Why and how the molecules align in an ordered manner has never been adequately explained. Hence, this investigation addresses the Fréedericksz transition of vertically aligned liquid crystal that is driven by fishbone electrodes, and thereafter identifies the mechanism of liquid crystal alignment. Theoretical calculations suggest that the periodic deformation that is caused by the fan-shaped fringe field minimizes the free energy in the liquid crystal cell, and the optimal alignment can be obtained when the cell parameters satisfy the relation p /2 d =√{k11/k33 } , where p is the spatial period of the strips of the electrode; d denotes the cell gap; and k11 and k33 are the splay and bend elastic constants of the liquid crystal, respectively. Polymer-stabilized vertical alignment test cells with various p values and spacings between the electrodes were fabricated, and the process of liquid crystal alignment was observed under an optical microscope. The degree of alignment was evaluated by measuring the transmittance of the test cell. The experimental results were consistent with the theoretical predictions. The principle of design, p /2 d =√{k11/k33 } , greatly improves the uniformity and stability of the aligned liquid crystal. The methods that are presented here can be further applied to cholesteric liquid crystal and other self-assembled soft materials.

  3. Polymer-mediated growth of crystals and mesocrystals.

    PubMed

    Cölfen, Helmut

    2013-01-01

    Polymers are important additives for the control of mineralization reactions in both biological and bioinspired mineralization. The reason is that they allow for a number of interactions with the growing crystals and even amorphous minerals. These can substantially influence the way the mineral grows on several levels. Already in the prenucleation phase, polymers can control the formation of prenucleation clusters and subsequently the nucleation event. Also, polymers can control whether the further crystallization follows a classical or nonclassical particle-mediated growth path. In this chapter, the main ways in which polymers can be used to control a crystallization reaction will be highlighted. In addition, polymers that are useful for this purpose and the experimental conditions suitable for directing a crystallization reaction into the desired direction through the use of polymers will be described. © 2013 Elsevier Inc. All rights reserved.

  4. Crystalline Colloidal Arrays in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Sunkara, Hari B.; Penn, B. G.; Frazier, D. O.; Ramachandran, N.

    1997-01-01

    Crystalline Colloidal Arrays (CCA, also known as colloidal crystals), composed of aqueous or nonaqueous dispersions of self-assembled nanosized polymer colloidal spheres, are emerging toward the development of advanced optical devices for technological applications. The spontaneous self assembly of polymer spheres in a dielectric medium results from the electrostatic repulsive interaction between particles of uniform size and charge distribution. In a way similar to atomic crystals that diffract X-rays, CCA dispersions in thin quartz cells selectively and efficiently Bragg diffract the incident visible light. The reason for this diffraction is because the lattice (body or face centered cubic) spacing is on the order of the wavelength of visible light. Unlike the atomic crystals that diffract a fixed wavelength, colloidal crystals in principle, depending on the particle size, particle number and charge density, can diffract W, Vis or IR light. Therefore, the CCA dispersions can be used as laser filters. Besides, the diffraction intensity depends on the refractive index mismatch between polymer spheres and dielectric medium; therefore, it is possible to modulate incident light intensities by manipulating the index of either the spheres or the medium. Our interest in CCA is in the fabrication of all-optical devices such as optical switches, limiters, and spatial light modulators for optical signal processing. The two major requirements from a materials standpoint are the incorporation of suitable nonlinear optical materials (NLO) into polymer spheres which will allow us to alter the refractive index of the spheres by intense laser radiation, and preparation of solid CCA filters which can resist laser damage. The fabrication of solid composite filters not only has the advantage that the films are easier to handle, but also the arrays in solid films are more robust than in liquid media. In this paper, we report the photopolymerization process used to trap CCA in polymer

  5. Ultrasound liquid crystal lens

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuki; Koyama, Daisuke; Fukui, Marina; Emoto, Akira; Nakamura, Kentaro; Matsukawa, Mami

    2018-04-01

    A variable-focus lens using a combination of liquid crystals and ultrasound is discussed. The lens uses a technique based on ultrasound vibration to control the molecular orientation of the liquid crystal. The lens structure is simple, with no mechanical moving parts and no transparent electrodes, which is helpful for device downsizing; the structure consists of a liquid crystal layer sandwiched between two glass substrates with a piezoelectric ring. The tens-of-kHz ultrasonic resonance flexural vibration used to excite the lens generates an acoustic radiation force on the liquid crystal layer to induce changes in the molecular orientation of the liquid crystal. The orientations of the liquid crystal molecules and the optical characteristics of the lens were investigated under ultrasound excitation. Clear optical images were observed through the lens, and the focal point could be controlled using the input voltage to the piezoelectric ring to give the lens its variable-focus action.

  6. Characterizing SWCNT Dispersion in Polymer Composites

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Kim, Jae-Woo; Gibbons, Luke; Park, Cheol

    2007-01-01

    The new wave of single wall carbon nanotube (SWCNT) infused composites will yield structurally sound multifunctional nanomaterials. The SWCNT network requires thorough dispersion within the polymer matrix in order to maximize the benefits of the nanomaterial. However, before any nanomaterials can be used in aerospace applications a means of quality assurance and quality control must be certified. Quality control certification requires a means of quantification, however, the measurement protocol mandates a method of seeing the dispersion first. We describe here the new tools that we have developed and implemented to first be able to see carbon nanotubes in polymers and second to measure or quantify the dispersion of the nanotubes.

  7. Polymer-Particle Nanocomposites: Size and Dispersion Effects

    NASA Astrophysics Data System (ADS)

    Moll, Joseph

    Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work

  8. Templated Sphere Phase Liquid Crystals for Tunable Random Lasing

    PubMed Central

    Chen, Ziping; Hu, Dechun; Chen, Xingwu; Zeng, Deren; Lee, Yungjui; Chen, Xiaoxian; Lu, Jiangang

    2017-01-01

    A sphere phase liquid crystal (SPLC) composed of three-dimensional twist structures with disclinations among them exists between isotropic phase and blue phase in a very narrow temperature range, about several degrees centigrade. A low concentration polymer template is applied to improve the thermal stability of SPLCs and broadens the temperature range to more than 448 K. By template processing, a wavelength tunable random lasing is demonstrated with dye doped SPLC. With different polymer concentrations, the reconstructed SPLC random lasing may achieve more than 40 nm wavelength continuous shifting by electric field modulation. PMID:29140283

  9. Electro-Optical Characterization of Bistable Smectic A Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Buyuktanir, Ebru Aylin

    My dissertation focuses the characterization and optimization of the electro-optical properties of smectic A (SmA) based liquid crystal (LC) displays. I present the development of robust and flexible bistable SmA LC displays utilizing polymer dispersed liquid crystal (PDLC) technology. The SmA PDLC displays produced on plastic substrates present electrically reversible memory, high contrast ratio, paper-like sunlight readability, and wide viewing angle characteristics. In order to optimize the SmA PDLC display, I investigated polymerization conditions, such as polymer concentration effect, polymerization temperature, and UV-light intensity variations. I characterized the electro-optical responses-such as static-response, time-response, threshold characteristics, and contrast ratio values' of the optimized SmA PDLC display and compared them to those of the pure SmA LC. The best electro-optical performance of SmA PDLC formulation was obtained using the combination of low mW/cm 2 and high mW/cm2 UV-light curing intensity. The contrast ratio of the optimum SmA PDLC at a 5o collection angle was 83% of that of the pure SmA material on plastic substrates. I fabricated 2.5 x 2.5 in., 4 x 4 in., and 6 x 6 in. sized monochrome flexible SmA PDLC displays, as well as red, yellow, and fluorescent dyes colored SmA PDLC displays on plastic substrates. The electro-optic performance of the bistable SmA LC display consisting of a patterned field-induced polymer wall infrastructure was also studied and compared to those of pure SmA material. I found that the contrast ratio of the SmA LC encapsulated between polymer walls was much greater than that of the SmA PDLC system, approaching the contrast ratio value of the pure SmA material. I also improved the electro-optical characteristics of bistable SmA LC displays by adding ferroparticles into the system. Finally, I illustrated the unique capabilities of polarized confocal Raman microscopy (CRM) to resolve the orientational order of Sm

  10. Evaluate the ability of PVP to inhibit crystallization of amorphous solid dispersions by density functional theory and experimental verify.

    PubMed

    Wang, Bing; Wang, Dandan; Zhao, Shan; Huang, Xiaobin; Zhang, Jianbin; Lv, Yan; Liu, Xiaocen; Lv, Guojun; Ma, Xiaojun

    2017-01-01

    In this study, we used density functional theory (DFT) to predict polymer-drug interactions, and then evaluated the ability of poly (vinyl pyrrolidone) (PVP) to inhibit crystallization of amorphous solid dispersions by experimental-verification. Solid dispersions of PVP/resveratrol (Res) and PVP/griseofulvin (Gri) were adopted for evaluating the ability of PVP to inhibit crystallization. The density functional theory (DFT) with the B3LYP was used to calculate polymer-drug and drug-drug interactions. Fourier transform infrared spectroscopy (FTIR) was used to confirm hydrogen bonding interactions. Polymer-drug miscibility and drug crystallinity were characterized by the modulated differential scanning calorimetry (MDSC) and X-ray powder diffraction (XRD). The release profiles were studied to investigate the dissolution advantage. DFT results indicated that E PVP-Res >E Res-Res (E: represents hydrogen bonding energy). A strong interaction was formed between PVP and Res. In addition, Fourier transform infrared spectroscopy (FTIR) analysis showed hydrogen bonding formed between PVP and Res, but not between PVP and Gri. MDSC and XRD results suggested that 70-90wt% PVP/Res and PVP/Gri solid dispersions formed amorphous solid dispersions (ASDs). Under the accelerated testing condition, PVP/Res dispersions with higher miscibility quantified as 90/10wt% were more stable than PVP/Gri dispersions. The cumulative dissolution rate of 90wt% PVP/Res dispersions still kept high after 90days storage due to the strong interaction. However, the cumulative dissolution rate of PVP/Gri solid dispersions significantly dropped because of the recrystallization of Gri. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Flow induced/ refined solution crystallization of a semiconducting polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc A.

    Organic photovoltaics, a new generation of solar cells, has gained scientific and economic interests due to the ability of solution-processing and potentially low-cost power production. Though, the low power conversion efficiency of organic/ plastic solar cells is one of the most pertinent challenges that has appealed to research communities from many different fields including materials science and engineering, electrical engineering, chemical engineering, physics and chemistry. This thesis focuses on investigating and controlling the morphology of a semi-conducting, semi-crystalline polymer formed under shear-flow. Molecular structures and processing techniques are critical factors that significantly affect the morphology formation in the plastic solar cells, thus influencing device performance. In this study, flow-induced solution crystallization of poly (3-hexylthiophene) (P3HT) in a poor solvent, 2-ethylnapthalene (2-EN) was utilized to make a paint-like, structural liquid. The polymer crystals observed in this structured paint are micrometers long, nanometers in cross section and have a structure similar to that formed under quiescent conditions. There is pi-pi stacking order along the fibril axis, while polymer chain folding occurs along the fibril width and the order of the side-chain stacking is along fibril height. It was revealed that shear-flow not only induces P3HT crystallization from solution, but also refines and perfects the P3HT crystals. Thus, a general strategy to refine the semiconducting polymer crystals from solution under shear-flow has been developed and employed by simply tuning the processing (shearing) conditions with respect to the dissolution temperature of P3HT in 2-EN. The experimental results demonstrated that shear removes defects and allows more perfect crystals to be formed. There is no glass transition temperature observed in the crystals formed using the flow-induced crystallization indicating a significantly different

  12. Dispersions of Carbon nanotubes in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  13. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

  14. Plasma - enhanced dispersion of metal and ceramic nanoparticles in polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Maguire, Paul; Liu, Yazi; Askari, Sadegh; Patel, Jenish; Macia-Montero, Manuel; Mitra, Somak; Zhang, Richao; Sun, Dan; Mariotti, Davide

    2015-09-01

    In this work we demonstrate a facile method to synthesize a nanoparticle/PEDOT:PSS hybrid nanocomposite material in aqueous solution through atmospheric pressure direct current (DC) plasma processing at room temperature. Both metal (Au) and ceramic (TiO2) nanoparticle composite films have been fabricated. Nanoparticle dispersion is enhanced considerable and remains stable. TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased nanoparticle/PEDOT:PSS nanocomposite electrical conductivity has been observed. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma processed Au or TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are thought to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer bonding. This is expected to have a significant benefit in materials processing with inorganic nanoparticles for applications in energy storage, photocatalysis and biomedical sensors. Engineering and Physical Sciences Research Council (EPSRC: EP/K006088/1, EP/K006142, Nos. EP/K022237/1).

  15. Smectic layer instabilities in liquid crystals.

    PubMed

    Dierking, Ingo; Mitov, Michel; Osipov, Mikhail A

    2015-02-07

    Scientists aspire to understand the underlying physics behind the formation of instabilities in soft matter and how to manipulate them for diverse investigations, while engineers aim to design materials that inhibit or impede the nucleation and growth of these instabilities in critical applications. The present paper reviews the field-induced rotational instabilities which may occur in chiral smectic liquid-crystalline layers when subjected to an asymmetric electric field. Such instabilities destroy the so-named bookshelf geometry (in which the smectic layers are normal to the cell surfaces) and have a detrimental effect on all applications of ferroelectric liquid crystals as optical materials. The transformation of the bookshelf geometry into horizontal chevron structures (in which each layer is in a V-shaped structure), and the reorientation dynamics of these chevrons, are discussed in details with respect to the electric field conditions, the material properties and the boundary conditions. Particular attention is given to the polymer-stabilisation of smectic phases as a way to forbid the occurrence of instabilities and the decline of related electro-optical performances. It is also shown which benefit may be gained from layer instabilities to enhance the alignment of the liquid-crystalline geometry in practical devices, such as optical recording by ferroelectric liquid crystals. Finally, the theoretical background of layer instabilities is given and discussed in relation to the experimental data.

  16. Exploring the dynamics of phase separation in colloid-polymer mixtures with long range attraction.

    PubMed

    Sabin, Juan; Bailey, Arthur E; Frisken, Barbara J

    2016-06-28

    We have studied the kinetics of phase separation and gel formation in a low-dispersity colloid - non-adsorbing polymer system with long range attraction using small-angle light scattering. This system exhibits two-phase and three-phase coexistence of gas, liquid and crystal phases when the strength of attraction is between 2 and 4kBT and gel phases when the strength of attraction is increased. For those samples that undergo macroscopic phase separation, whether to gas-crystal, gas-liquid or gas-liquid-crystal coexistence, we observe dynamic scaling of the structure factor and growth of a characteristic length scale that behaves as expected for phase separation in fluids. In samples that gel, the power law associated with the growth of the dominant length scale is not equal to 1/3, but appears to depend mainly on the strength of attraction, decreasing from 1/3 for samples near the coexistence region to 1/27 at 8kBT, over a wide range of colloid and polymer concentrations.

  17. Theoretical Insight into Dispersion of Silica Nanoparticles in Polymer Melts.

    PubMed

    Wei, Zhaoyang; Hou, Yaqi; Ning, Nanying; Zhang, Liqun; Tian, Ming; Mi, Jianguo

    2015-07-30

    Silica nanoparticles dispersed in polystyrene, poly(methyl methacrylate), and poly(ethylene oxide) melts have been investigated using a density functional approach. The polymers are regarded as coarse-grained semiflexible chains, and the segment sizes are represented by their Kuhn lengths. The particle-particle and particle-polymer interactions are calculated with the Hamaker theory to reflect the relationship between particles and polymer melts. The effects of particle volume fraction and size on the particle dispersion have been quantitatively determined to evaluate their dispersion/aggregation behavior in these polymer melts. It is shown that theoretical predictions are generally in good agreement with the corresponding experimental results, providing the reasonable verification of particle dispersion/agglomeration and polymer depletion.

  18. Direct induction of molecular alignment in liquid crystal polymer network film by photopolymerization

    NASA Astrophysics Data System (ADS)

    Hisano, K.; Aizawa, M.; Ishizu, M.; Kurata, Y.; Shishido, A.

    2016-09-01

    Liquid crystal (LC) is the promising material for the fabrication of high-performance soft, flexible devices. The fascinating and useful properties arise from their cooperative effect that inherently allows the macroscopic integration and control of molecular alignment through various external stimuli. To date, light-matter interaction is the most attractive stimuli and researchers developed photoalignment through photochemical or photophysical reactions triggered by linearly polarized light. Here we show the new choice based on molecular diffusion by photopolymerization. We found that photopolymerization of a LC monomer and a crosslinker through a photomask enables to direct molecular alignment in the resultant LC polymer network film. The key generating the molecular alignment is molecular diffusion due to the difference of chemical potentials between irradiated and unirradiated regions. This concept is applicable to various shapes of photomask and two-dimensional molecular alignments can be fabricated depending on the spatial design of photomask. By virtue of the inherent versatility of molecular diffusion in materials, the process would shed light on the fabrication of various high-performance flexible materials with molecular alignment having controlled patterns.

  19. Phototropic liquid crystal materials containing naphthopyran dopants

    NASA Astrophysics Data System (ADS)

    Rumi, Mariacristina; Cazzell, Seth; Kosa, Tamas; Sukhomlinova, Ludmila; Taheri, Bahman; Bunning, Timothy; White, Timothy

    2015-03-01

    Dopant molecules dispersed in a liquid crystalline material usually affects the order of the system and the transition temperature between various phases. If the dopants undergo photoisomerization between conformers with different shapes, the interactions with the liquid crystal molecules can be different for the material in the dark and during exposure to light of appropriate wavelength. This can be used to achieve isothermal photoinduced phase transitions (phototropism). With proper selection of materials components, both order-to-disorder and disorder-to-order photoinduced transition have been demonstrated. Isothermal order-increasing transitions have been observed recently using naphthopyran derivatives as dopants. We are investigating the changes in order parameter and transition temperature of liquid crystal mixtures containing naphthopyrans and how they are related to exposure conditions and to the concentration and molecular structure of the dopants. We are also studying the nature of the photoinduced phase transitions, and comparing the behavior with that of azobenzene-doped mixtures, in which exposure to light leads to a decrease, instead of an increase, in the order of the system.

  20. Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers.

    PubMed

    Vieweg, M; Gissibl, T; Pricking, S; Kuhlmey, B T; Wu, D C; Eggleton, B J; Giessen, H

    2010-11-22

    Selective filling of photonic crystal fibers with different media enables a plethora of possibilities in linear and nonlinear optics. Using two-photon direct-laser writing we demonstrate full flexibility of individual closing of holes and subsequent filling of photonic crystal fibers with highly nonlinear liquids. We experimentally demonstrate solitonic supercontinuum generation over 600 nm bandwidth using a compact femtosecond oscillator as pump source. Encapsulating our fibers at the ends we realize a compact ultrafast nonlinear optofluidic device. Our work is fundamentally important to the field of nonlinear optics as it provides a new platform for investigations of spatio-temporal nonlinear effects and underpins new applications in sensing and communications. Selective filling of different linear and nonlinear liquids, metals, gases, gain media, and liquid crystals into photonic crystal fibers will be the basis of new reconfigurable and versatile optical fiber devices with unprecedented performance. Control over both temporal and spatial dispersion as well as linear and nonlinear coupling will lead to the generation of spatial-temporal solitons, so-called optical bullets.

  1. Thermodynamic phase behavior of API/polymer solid dispersions.

    PubMed

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele

    2014-07-07

    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  2. Liquid Crystal Colloids

    NASA Astrophysics Data System (ADS)

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  3. Low-Cost Rapid Prototyping of Liquid Crystal Polymer Based Magnetic Microactuators for Glaucoma Drainage Devices

    PubMed Central

    Park, Hyunsu; John, Simon; Lee, Hyowon

    2017-01-01

    Glaucoma is one of the leading causes of blindness in the world. Although there is no cure for glaucoma, pharmaceutical or surgical interventions are known to delay the progression of this debilitating disease. In recent years, implantation of glaucoma drainage devices (GDD) have increased due to their ability to manage IOP better than other therapeutic approaches. However, only 50% of the implanted devices remain functional after 5 years often due to biofouling. Here, we report our latest progress towards developing self-clearing GDDs using integrated magnetic microactuators. Our hypothesis is that these magnetic microdevices can provide local mechanical perturbations to prophylactically remove biological accumulation. To reduce the cost and increase the throughput of fabrication, we utilize a maskless photolithography setup and commercially available liquid crystal polymer foils to create prototype devices. The mechanical response of the devices is reported and compared with the theoretical values. PMID:28269212

  4. Low-cost rapid prototyping of liquid crystal polymer based magnetic microactuators for glaucoma drainage devices.

    PubMed

    Hyunsu Park; John, Simon; Hyowon Lee

    2016-08-01

    Glaucoma is one of the leading causes of blindness in the world. Although there is no cure for glaucoma, pharmaceutical or surgical interventions are known to delay the progression of this debilitating disease. In recent years, implantation of glaucoma drainage devices (GDD) have increased due to their ability to manage IOP better than other therapeutic approaches. However, only 50% of the implanted devices remain functional after 5 years often due to biofouling. Here, we report our latest progress towards developing self-clearing GDDs using integrated magnetic microactuators. Our hypothesis is that these magnetic microdevices can provide local mechanical perturbations to prophylactically remove biological accumulation. To reduce the cost and increase the throughput of fabrication, we utilize a maskless photolithography setup and commercially available liquid crystal polymer foils to create prototype devices. The mechanical response of the devices is reported and compared with the theoretical values.

  5. Study of Polymer Crystallization by Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jeong, Hyuncheol

    When a polymer is confined under the submicron length scale, confinement size and interfaces can significantly impact the crystallization kinetics and resulting morphology. The ability to tune the morphology of confined polymer systems is of critical importance for the development of high-performance polymer microelectronics. The wisdom from the research on confined crystallization suggests that it would be beneficial to have a processing route in which the crystallization of polymers is driven by interface and temperature effects at a nanometer-scale confinement. In practice, for atomic and small-molecular systems, physical vapor deposition (PVD) has been recognized as the most successful processing route for the precise control of the film structure at surface utilizing confinement effects. While standard PVD technologies are not generally applicable to the deposition of the chemically fragile macromolecules, the development of matrix-assisted pulsed laser evaporation (MAPLE) now enables the non-destructive PVD of high-molecular weight polymers. In this thesis work, we investigated the use of MAPLE for the precise control of the crystallization of polymer films at a molecular level. We also sought to decipher the rules governing the crystallization of confined polymers, by using MAPLE as a tool to form confined polymer systems onto substrates with a controlled temperature. We first explored the early stages of film growth and crystallization of poly(ethylene oxide) (PEO) at the substrate surface formed by MAPLE. The unique mechanism of film formation in MAPLE, the deposition of submicron-sized polymer droplets, allowed for the manifestation of confinement and substrate effects in the crystallization of MAPLE-deposited PEO. Furthermore, we also focused on the property of the amorphous PEO film formed by MAPLE, showing the dependence of polymer crystallization kinetics on the thermal history of the amorphous phase. Lastly, we probed how MAPLE processing affected

  6. Investigation of Polymer Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.

    1996-01-01

    The positron annihilation lifetime spectroscopy (PALS) using a low energy flux generator may provide a reasonably accurate technique for measuring molecular weights of linear polymers and characterization of thin polyimide films in terms of their dielectric constants and hydrophobity etc. Among the tested samples are glassy poly arylene Ether Ketone films, epoxy and other polyimide films. One of the proposed techniques relates the free volume cell size (V(sub f)) with sample molecular weight (M) in a manner remarkably similar to that obtained by Mark Houwink (M-H) between the inherent viscosity (eta) and molecular wieght of polymer solution. The PALS has also demonstrated that free-volume cell size in thermoset is a versatile, useful parameter that relates directly to the polymer segmental molecular weight, the cross-link density, and the coefficient of thermal expansion. Thus, a determination of free volume cell size provides a viable basis for complete microstructural characterization of thermoset polyimides and also gives direct information about the cross-link density and coefficient of expansion of the test samples. Seven areas of the research conducted are reported here.

  7. Preparation and characterization of PTFE coating in new polymer quartz piezoelectric crystal sensor for testing liquor products

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Li, Qiang

    2015-07-01

    A new method was developed based on the electron beam vacuum dispersion (EBVD) technology to prepare the PTFE polymer coating of the new polymer quartz piezoelectric crystal sensor for testing liquor products. The new method was applied in the new EBVD equipment which we designed. A real-time system monitoring the polymer coating’s thickness was designed for the new EBVD equipment according to the quartz crystal microbalance (QCM) principle, playing an important role in preparing stable and uniform PTFE polymer coatings of the same thickness. 30 pieces of PTFE polymer coatings on the surface of the quartz crystal basis were prepared with the PTFE polymer ultrafine powder (purity ≥ 99.99%) as the starting material. We obtained 30 pieces of new PTFE polymer sensors. By using scanning electron microscopy (SEM), the structure of the PTFE polymer coating’s column clusters was studied. One sample from the 30 pieces of new PTFE polymer sensors was analysed by SEM in four scales, i.e., 400×, 1000×, 10000×, and 25000×. It was shown that under the condition of high bias voltage and low bias current, uniformly PTFE polymer coating could be achieved, which indicates that the new EBVD equipment is suitable for mass production of stable and uniform polymer coating. Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA030901).

  8. The Viscoelastic Properties of Nematic Monodomains Containing Liquid Crystal Polymers.

    NASA Astrophysics Data System (ADS)

    Gu, Dongfeng

    The work presented here investigates the viscoelastic properties of nematic materials containing liquid crystal polymers (LCP). We focus on how the elastic constants and the viscosity coefficients of the mixture systems are influenced by polymer architectures. In dynamic light scattering studies of the relaxation of the director orientation fluctuations for the splay, twist, and bend deformation modes, decrease of the relaxation rates was observed when LCPs were dissolved into low molar mass nematics (LMMN). For the side-chain LCPs, the slowing down in the bend mode is comparable to or larger than those of the splay and twist modes. For main-chain LCPs, the relative changes in the relaxation rates for the twist and splay modes are about one order of magnitude larger than that for the bend mode. The results of light scattering under an electric field show that the decrease in the twist relaxation rate is due to a large increase in the twist viscosity and a minor decrease in the twist elastic constant. These changes were found to increase with decrease of the spacer length, with increase of molecular weight, and with decrease of the backbone flexibility. In Freedericksz transition measurements, the splay and bend elastic constants and the dielectric anisotropies of the nematic mixtures were determined and the values are 5~15% lower than those of the pure solvent. From the analysis of the results of Freedericksz transition and light scattering experiments, a complete set of the elastic constants and viscosity coefficients corresponding to the three director deformation modes were obtained for the LCP mixtures. The changes in the viscosity coefficients due to addition of LCPs were analysed to estimate the anisotropic shapes of the polymer backbone via a hydrodynamic model. The results suggest that an oblate backbone configuration is maintained by the side-chain LCPs and a prolate chain configuration appears for the main-chain LCPs. The rheological behavior of a side

  9. Thermo- and photo-driven soft actuators based on crosslinked liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Gu, Wei; Wei, Jia; Yu, Yanlei

    2016-09-01

    Crosslinked liquid crystalline polymers (CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks. The anisotropic deformation of the CLCPs takes place when the mesogens experience order to disorder change in response to external stimuli; therefore, they can be utilized to fabricate smart actuators, which have potential applications in artificial muscles, micro-optomechanical systems, optics, and energy-harvesting fields. In this review the recent development of thermo- and photo-driven soft actuators based on the CLCPs are summarized. Project supported by the National Natural Science Foundation of China (Grant Nos. 21134003, 21273048, 51225304, and 51203023) and Shanghai Outstanding Academic Leader Program, China (Grant No. 15XD1500600).

  10. Tunable two-dimensional photonic crystals using liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Leonard, S. W.; Mondia, J. P.; van Driel, H. M.; Toader, O.; John, S.; Busch, K.; Birner, A.; Gösele, U.; Lehmann, V.

    2000-01-01

    The photonic band gap of a two-dimensional photonic crystal is continuously tuned using the temperature dependent refractive index of a liquid crystal. Liquid crystal E7 was infiltrated into the air pores of a macroporous silicon photonic crystal with a triangular lattice pitch of 1.58 μm and a band gap wavelength range of 3.3-5.7 μm. After infiltration, the band gap for the H polarized field shifted dramatically to 4.4-6.0 μm while that of the E-polarized field collapsed. As the sample was heated to the nematic-isotropic phase transition temperature of the liquid crystal (59 °C), the short-wavelength band edge of the H gap shifted by as much as 70 nm while the long-wavelength edge was constant within experimental error. Band structure calculations incorporating the temperature dependence of the liquid crystal birefringence can account for our results and also point to an escaped-radial alignment of the liquid crystal in the nematic phase.

  11. Optically addressed and submillisecond response phase only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Zhao, Xiangjie; Duan, Jiazhu; Zhang, Dayong; Luo, Yongquan

    2014-10-01

    Liquid crystal based phase only spatial light modulator has attracted many research interests since last decades because of its superior advantage. Until now the liquid crystal spatial light modulator has been applied in many fields, but the response speed of nematic LC limited its further application. In this paper, an optically addressed phase only LC spatial light modulator was proposed based on polymer network liquid crystal. Morphology effect on the light scattering of PNLC was studied, which was mainly consisted of fiber and fiber bundles. The morphology nearly determined the light scattering and electro-optical property. Due to the high threshold voltage, to address the PNLC phase modulator was also concerned. Optical addressing method was proposed, in which BSO crystal was selected to replace one of the glass substrate. The response speed of PNLC was so fast that the reorientation of liquid crystal director will follow the change of effective voltage applied on LC layer, which was related with the voltage signal and especially with electron transport of photo-induced carriers due to diffusion and drift. The on state dynamic response of phase change was investigated. Based on this device, beam steering was also achieved by loading 488nm laser strip on the optical addressed phase only spatial light modulator.

  12. Switchable and responsive liquid crystal-functionalized microfibers produced via coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Lagerwall, Jan P. F.

    2012-03-01

    "Wearable technology" or "smart textiles" are concepts that are very rapidly gaining in attention around the world, as industry as well as academia are making major advances in integrating advanced devices with various textiles around our household. The technological challenges involved in this development are however considerable, calling for new solutions, new materials and truly original thinking. An attractive approach to realize certain classes of wearable devices may be to use textile fibers functionalized by responsive materials such as liquid crystals, normally not connected to textiles. We can produce non-woven textiles with such fibers by means of electrospinning, a technique for producing very thin polymer fibers that can be uniform or with core-sheath geometries. Since the core can be made out of traditionally non-spinnable materials we can use coaxial electrospinning (one fluid spun inside another) to produce composite fibers with a core of liquid crystal inside a polymer sheath. The resulting fibers constitute an entirely new configuration for applying liquid crystals, giving the fibers functionality and responsiveness. For instance, with a cholesteric core we can produce non-woven mats with iridescent color that can be tuned (or removed) e.g. by heating or cooling. In this paper I describe our method of producing these novel functionalized fibers and their characterization, and I will discuss the directions for future research and application possibilities, e.g. in clothing-integrated sensors and indicators.

  13. SANS study of deformation and relaxation of a comb-like liquid crystal polymer in the nematic phase

    NASA Astrophysics Data System (ADS)

    Brûlet, A.; Boué, F.; Keller, P.; Davidson, P.; Strazielle, C.; Cotton, J. P.

    1994-06-01

    A comb-like liquid crystal polymer is stretched and quenched after a certain time in the nematic phase. The conformation of the deformed chain is determined using small angle neutron scattering (SANS) as a function of the temperature of stretching, the stretching ratio and the duration of the relaxation. The scattering data are well fitted to junction affine and phantom network models. Some data are even well fitted by a totally affine model that we call “ pseudo affine ” because the only parameter, the stretching ratio, is found to be well below the macroscopic stretching ratio. The latter result, never encountered with amorphous polymers, is attributed to the cooperative effects of the nematic phase. We also note that the form factors of the chain in the underformed sample remain similar in the isotropic, nematic and glassy state ; they correspond to a Gaussian chain. The same samples were studied by wide angle X-ray scattering. On one hand, the orientation of the mesogenic groups is found to be parallel or perpendicular to the stretching direction depending on the stretching temperature. This result is discussed as a function of the presence of smectic fluctuations. On the other hand, longer relaxations at constant elongation ratio do not lead to a disorganization of the mesogenic group orientation whereas the polymer chains are partly relaxed.

  14. Iodine insertion and dispersion of refractive index in organic single crystal semiconductor.

    PubMed

    Kwon, Seonho; Bae, Junwan; Lee, I J

    2018-02-20

    Insertion of halogens such as bromine or iodine affects the electronic polarizability of ions and the local field inside the medium, and thus modifies the refractive index. Acquiring precise knowledge of the dispersion of refractive index and ultimately tailoring conventional semiconductors for wide-range refractive index control have been a vital issue to resolve before realizing advanced organic optoelectronic devices. In this report, dispersions of the refractive index of a single crystal tetramethyltetraselenafulvalene [C 10 H 12 Se 4 ] (TMTSF) are thoroughly studied from broadband interference modulations of photoluminescence (PL) spectra at various temperatures and doping levels. A large enhancement of the refractive index, more than 20% of the intrinsic value, is achieved with inclusion of a small composition of iodide ions, while the structural and optical properties remain mostly intact. Nearly temperature independent dispersion of the refractive index suggests that, unlike most polymers in which the thermal expansion coefficient dominates over the change of polarizability with temperature, the latter enhances significantly and may become more or less comparable to the thermal expansion coefficient given by 1.71 × 10 -4 /K, when single crystal TMTSF is doped by iodine.

  15. Design of amine modified polymer dispersants for liquid-phase exfoliation of transition metal dichalcogenide nanosheets and their photodetective nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Jinseong; Hahnkee Kim, Richard; Yu, Seunggun; Babu Velusamy, Dhinesh; Lee, Hyeokjung; Park, Chanho; Cho, Suk Man; Jeong, Beomjin; Sol Kang, Han; Park, Cheolmin

    2017-12-01

    Liquid-phase exfoliation (LPE) of transition metal dichalcogenide (TMD) nanosheets is a facile, cost-effective approach to large-area photoelectric devices including photodetectors and non-volatile memories. Non-destructive exfoliation of nanosheets using macromolecular dispersing agents is beneficial in rendering the TMD nanocomposite films suitable for mechanically flexible devices. Here, an efficient LPE of molybdenum disulfide (MoS2) with an amine modified poly(styrene-co-maleic anhydride) co-polymer (AM-PSMA) is demonstrated, wherein the maleic anhydrides were converted into maleic imides with primary amines using N-Boc-(CH2) n -NH2. The exfoliation of nanosheets was facilitated through Lewis acid-base interaction between the primary amine and transition metal. The results demonstrate that the exfoliation depends upon both the fraction of primary amines in the polymer chain and their distance from the polymer backbone. Under optimized conditions of primary amine content and its distance from the backbone, AM-PSMA gave rise to a highly concentrated MoS2 nanosheet suspension that was stable for over 10 d. Exfoliation of several other TMDs was also achieved using the optimized AM-PSMA, indicating the scope of AM-PSMA applications. Furthermore, a flexible composite film of AM-PSMA and MoS2 nanosheets fabricated by vacuum-assisted filtration showed excellent photoconductive performances including a high I on/I off ratio of 102 and a fast photocurrent switching of 300 ms.

  16. TOPICAL REVIEW: Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    NASA Astrophysics Data System (ADS)

    Kamiya, Hidehiro; Iijima, Motoyuki

    2010-08-01

    Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.

  17. Correlating Polymer Crystals via Self-Induced Nucleation

    NASA Astrophysics Data System (ADS)

    Reiter, Günter

    Crystallizable polymers often form multiple stacks of uniquely oriented lamellae, which have good registry despite being separated by amorphous fold surfaces. These correlations require multiple synchronized, yet unidentified, nucleation events. Here, we demonstrate that in thin films of isotactic polystyrene, the probability of generating correlated lamellae is controlled by the branched morphology of a single primary lamella. The nucleation density ns of secondary lamellae is found to be dependent on the width of the branches of the primary lamella. This relation is independent of molecular weight, crystallization temperature, and film thickness. We propose a nucleation mechanism based on the insertion of polymers into a branched primary lamellar crystal. Even in single crystals, characterized by faceted structures with a well-defined envelope reflecting the underlying crystal unit cell, polymers are folded and thus in a meta-stable state. Annealing such meta-stable single crystals allowed to unveil the initial morphological framework of a dendritic single crystal, i.e. the initial stages of growth.

  18. Liquid crystal droplet formation and anchoring dynamics in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Steinhaus, Ben; Shen, Amy; Feng, James; Link, Darren

    2004-11-01

    Liquid crystal drops dispersed in a continuous phase of silicon oil are generated with a narrow distribution in droplet size in microfluidic devices both above and below the nematic to isotropic transition temperature. For these two cases, we observe not only the different LC droplet generation and coalescence dynamics, but also distinct droplet morphology. Our experiments show that the nematic liquid crystalline order is important for the LC droplet formation and anchoring dynamics.

  19. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Onck, Patrick R.

    2017-08-01

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015)., 10.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  20. Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer

    NASA Astrophysics Data System (ADS)

    Manda, Ramesh; Pagidi, Srinivas; Sarathi Bhattacharya, Surjya; Yoo, Hyesun; T, Arun Kumar; Lim, Young Jin; Lee, Seung Hee

    2018-05-01

    We have demonstrated an ultra-fast switching and efficient polymer stabilized blue phase liquid crystal (PS-BPLC) diffraction grating utilizing a chiral monomer. We have obtained a 0.5 ms response time by a novel polymer stabilization method which is three times faster than conventional PS-BPLC. In addition, the diffraction efficiency was improved 2% with a much wider phase range and the driving voltage to switch the device is reduced. The polarization properties of the diffracted beam are unaffected by this novel polymer stabilization. This device can be useful for future photonic applications.

  1. Power generating reflective-type liquid crystal displays using a reflective polariser and a polymer solar cell.

    PubMed

    Ho Huh, Yoon; Park, Byoungchoo

    2015-06-23

    We herein report the results of a study of a power generating reflective-type liquid crystal display (LCD), composed of a 90° twisted nematic (TN) LC cell attached to the top of a light-absorbing polymer solar cell (PSC), i.e., a Solar-LCD. The PSC consisted of a polymer bulk-heterojunction photovoltaic (PV) layer of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] and [6,6]-phenyl C71 butyric acid methyl ester (PCDTBT:PCBM70), and showed a high power conversion efficiency of about 5%. In order to improve the visibility of the Solar-LCD, between the TN-LC and the PV cells we inserted a reflective polariser of a giant birefringent optical (GBO) film. The reflectivity from the Solar-LCD was observed to be considerably increased by more than 13-15% under illumination by visible light. The Solar-LCD also exhibited a significantly improved contrast ratio of more than 17-19. We believe there is a clear case for using such Solar-LCDs in new power-generating reflective-type displays; taken as a whole these results also demonstrate the possibility of their application in a number of energy-harvesting opto-electrical display devices.

  2. Liquid crystal templating as an approach to spatially and temporally organise soft matter.

    PubMed

    van der Asdonk, Pim; Kouwer, Paul H J

    2017-10-02

    Chemistry quickly moves from a molecular science to a systems science. This requires spatial and temporal control over the organisation of molecules and molecular assemblies. Whilst Nature almost by default (transiently) organises her components at multiple different length scales, scientists struggle to realise even relatively straightforward patterns. In the past decades, supramolecular chemistry has taught us the rules to precisely engineer molecular assembly at the nanometre scale. At higher length scales, however, we are bound to top-down nanotechnology techniques to realise order. For soft, biological matter, many of these top-down techniques come with serious limitations since the molecules generally show low susceptibilities to the applied stimuli. A new method is based on liquid crystal templating. In this hierarchical approach, a liquid crystalline host serves as the scaffold to order polymers or assemblies. Being a liquid crystal, the host material can be ordered at many different length scales and on top of that, is highly susceptible to many external stimuli, which can even be used to manipulate the liquid crystal organisation in time. As a result, we anticipate large control over the organisation of the materials inside the liquid crystalline host. Recently, liquid crystal templating was also realised in water. This suddenly makes this tool highly applicable to start organising more delicate biological materials or even small organisms. We review the scope and limitations of liquid crystal templating and look out to where the technique may lead us.

  3. PEG-nanotube liquid crystals as templates for construction of surfactant-free gold nanorods.

    PubMed

    Kameta, Naohiro; Shiroishi, Hidenobu

    2018-05-03

    Lyotropic liquid crystals, in which nanotubes coated with polyethylene glycol were aligned side-by-side in aqueous dispersions, acted as templates for the construction of surfactant-free gold nanorods with controllable diameters, functionalizable surfaces, and tunable optical properties.

  4. Impact of polymers on the crystallization and phase transition kinetics of amorphous nifedipine during dissolution in aqueous media.

    PubMed

    Raina, Shweta A; Alonzo, David E; Zhang, Geoff G Z; Gao, Yi; Taylor, Lynne S

    2014-10-06

    The commercial and clinical success of amorphous solid dispersions (ASD) in overcoming the low bioavailability of poorly soluble molecules has generated momentum among pharmaceutical scientists to advance the fundamental understanding of these complex systems. A major limitation of these formulations stems from the propensity of amorphous solids to crystallize upon exposure to aqueous media. This study was specifically focused on developing analytical techniques to evaluate the impact of polymers on the crystallization behavior during dissolution, which is critical in designing effective amorphous formulations. In the study, the crystallization and polymorphic conversions of a model compound, nifedipine, were explored in the absence and presence of polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC), and HPMC-acetate succinate (HPMC-AS). A combination of analytical approaches including Raman spectroscopy, polarized light microscopy, and chemometric techniques such as multivariate curve resolution (MCR) were used to evaluate the kinetics of crystallization and polymorphic transitions as well as to identify the primary route of crystallization, i.e., whether crystallization took place in the dissolving solid matrix or from the supersaturated solutions generated during dissolution. Pure amorphous nifedipine, when exposed to aqueous media, was found to crystallize rapidly from the amorphous matrix, even when polymers were present in the dissolution medium. Matrix crystallization was avoided when amorphous solid dispersions were prepared, however, crystallization from the solution phase was rapid. MCR was found to be an excellent data processing technique to deconvolute the complex phase transition behavior of nifedipine.

  5. Thermally tunable-focus lenticular lens using liquid crystal.

    PubMed

    Heo, Kyong Chan; Yu, Seung Hun; Kwon, Jin Hyuk; Gwag, Jin Seog

    2013-12-10

    A thermally tunable focusing lenticular liquid crystal (LC) lens array was fabricated using a polymer LC component, including a polarizer that produces linearly polarized light. The focal length in the proposed structure could be tuned by temperature-adjusted applied voltage to a transparent heater in a lenticular LC lens cell because it alters the birefringence of the LC and varies the difference in refractive index between the LC and the polymer. The results showed that the focal length of the E7 LC used varied continuously with temperature from 5.6 to 8.7 mm from 25°C to 54°C, respectively. The proposed lenticular LC lens has potential use in photonic devices such as biological imaging, phone cameras, and optical sensors.

  6. Sharp Morphological Transitions from Nanoscale Mixed-Anchoring Patterns in Confined Nematic Liquid Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armas-Pérez, Julio C.; Li, Xiao; Martínez-González, José A.

    Liquid crystals are known to be particularly sensitive to orientational cues provided at surfaces or interfaces. In this work, we explore theoretically, computationally, and experimentally the behavior of liquid crystals on isolated nanoscale patterns with controlled anchoring characteristics at small length scales. The orientation of the liquid crystal is controlled through the use of chemically patterned polymer brushes that are tethered to a surface. This system can be engineered with remarkable precision, and the central question addressed here is whether a characteristic length scale exists at which information encoded on a surface is no longer registered by a liquid crystal.more » To do so, we adopt a tensorial description of the free energy of the hybrid liquidcrystal surface system, and we investigate its morphology in a systematic manner. For long and narrow surface stripes, it is found that the liquid crystal follows the instructions provided by the pattern down to 100 nm widths. This is accomplished through the creation of line defects that travel along the sides of the stripes. We show that a "sharp" morphological transition occurs from a uniform undistorted alignment to a dual uniform/splay-bend morphology. The theoretical and numerical predictions advanced here are confirmed by experimental observations. Our combined analysis suggests that nanoscale patterns can be used to manipulate the orientation of liquid crystals at a fraction of the energetic cost that is involved in traditional liquid crystal-based devices. The insights presented in this work have the potential to provide a new fabrication platform to assemble low power bistable devices, which could be reconfigured upon application of small external fields.« less

  7. Polymer-stabilized liquid crystalline topological defect network for micro-pixelated optical devices

    NASA Astrophysics Data System (ADS)

    Araoka, Fumito; Le, Khoa V.; Fujii, Shuji; Orihara, Hiroshi; Sasaki, Yuji

    2018-02-01

    Spatially and temporally controlled topological defects in nematic liquid crystals (NLCs) are promising for its potential in optical applications. Utilization of self-organization is a key to fabricate complex micro- and nano-structures which are often difficult to obtain by conventional lithographic tools. Using photo-polymerization technique, here we show a polymer-stabilized NLC having a micro-pixelated structure of regularly ordered umbilical defects which are induced by an electric field. Due to the formation of polymer network, the self-organized pattern is kept stable without deterioration. Moreover, the polymer network allows to template other LCs whose optical properties can be tuned with external stimuli such as temperature and electric fields.

  8. Fabrication of focus-tunable liquid crystal microlens array with spherical electrode

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Ming; Su, Guo-Dung J.

    2016-09-01

    In this paper, a new approach to fabricate a liquid crystal (LC) microlens array with spherical-shaped electrode is demonstrated, which can create the inhomogeneous electric field. Inkjet-printing, hydrophilic confinement, self-assemble and replication process is used to form the convex microlens array on glass. After the spherical-shaped electrode is done, we assemble it with ITO glass to form a liquid crystal cell. We used Zemax® to simulate the liquid crystal lens as a Gradient-index (GRIN) lens. The simulation results show that a GRIN lens model can well match with the theoretical focal length of liquid crystal lens. The dimension of the glass is 1.5 cm x 1.5 cm x 0.7 mm which has 7 concave microlens on the top surface. These microlens have same diameter and height about 300 μm and 85 μm. The gap between each other is 100 μm. We first fabricate microlens array on silicon substrate by hydrophilic confinement, which between hydrophilicity of silicon substrate and hydrophobicity of SU-8, and inkjet printing process. Then we start replication process with polydimethylsiloxane (PDMS) to transfer microlens array form silicon to glass substrate. After the transparent conducted polymer, PEDOT:PSS, is spin-coated on the microlens arrays surface, we flatten it by NOA65. Finally we assemble it with ITO glass and inkjet liquid crystal. From measuring the interference rings, the optical power range is from 47.28 to 331 diopter. This will be useful for the optical zoom system or focus-tunable lens applications.

  9. Wetting of cholesteric liquid crystals.

    PubMed

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal.

  10. Photonic liquid crystal fibers — a new challenge for fiber optics and liquid crystals photonics

    NASA Astrophysics Data System (ADS)

    Woliński, T. R.; Ertman, S.; Lesiak, P.; Domański, A. W.; Czapla, A.; Dąbrowski, R.; Nowinowski-Kruszelnicki, E.; Wójcik, J.

    2006-12-01

    The paper reviews and discusses the latest developments in the field of the photonic liquid crystal fibers that have occurred for the last three years in view of new challenges for both fiber optics and liquid crystal photonics. In particular, we present the latest experimental results on electrically induced birefringence in photonic liquid crystal fibers and discuss possibilities and directions of future developments.

  11. Morphological appearances and photo-controllable coloration of dye-doped cholesteric liquid crystal/polymer coaxial microfibers fabricated by coaxial electrospinning technique.

    PubMed

    Lin, Jia-De; Chen, Che-Pei; Chen, Lin-Jer; Chuang, Yu-Chou; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-02-08

    This study systematically investigates the morphological appearance of azo-chiral dye-doped cholesteric liquid crystal (DDCLC)/polymer coaxial microfibers obtained through the coaxial electrospinning technique and examines, for the first time, their photocontrollable reflection characteristics. Experimental results show that the quasi-continuous electrospun microfibers can be successfully fabricated at a high polymer concentration of 17.5 wt% and an optimum ratio of 2 for the feeding rates of sheath to core materials at 25 °C and a high humidity of 50% ± 2% in the spinning chamber. Furthermore, the optical controllability of the reflective features for the electrospun fibers is studied in detail by changing the concentration of the azo-chiral dopant in the core material, the UV irradiation intensity, and the core diameter of the fibers. Relevant mechanisms are addressed to explain the optical-control behaviors of the DDCLC coaxial fibers. Considering the results, optically controllable DDCLC coaxial microfibers present potential applications in UV microsensors and wearable smart textiles or swabs.

  12. Dispersions of polymer ionomers: I.

    PubMed

    Capek, Ignác

    2004-12-31

    The principal subject discussed in the current paper is the effect of ionic functional groups in polymers on the formation of nontraditional polymer materials, polymer blends or polymer dispersions. Ionomers are polymers that have a small amount of ionic groups distributed along a nonionic hydrocarbon chain. Specific interactions between components in a polymer blend can induce miscibility of two or more otherwise immiscible polymers. Such interactions include hydrogen bonding, ion-dipole interactions, acid-base interactions or transition metal complexation. Ion-containing polymers provide a means of modifying properties of polymer dispersions by controlling molecular structure through the utilization of ionic interactions. Ionomers having a relatively small number of ionic groups distributed usually along nonionic organic backbone chains can agglomerate into the following structures: (1) multiplets, consisting of a small number of tightly packed ion pairs; and (2) ionic clusters, larger aggregates than multiplets. Ionomers exhibit unique solid-state properties as a result of strong associations among ionic groups attached to the polymer chains. An important potential application of ionomers is in the area of thermoplastic elastomers, where the associations constitute thermally reversible cross-links. The ionic (anionic, cationic or polar) groups are spaced more or less randomly along the polymer chain. Because in this type of ionomer an anionic group falls along the interior of the chain, it trails two hydrocarbon chain segments, and these must be accommodated sterically within any domain structure into which the ionic group enters. The primary effects of ionic functionalization of a polymer are to increase the glass transition temperature, the melt viscosity and the characteristic relaxation times. The polymer microstructure is also affected, and it is generally agreed that in most ionomers, microphase-separated, ion-rich aggregates form as a result of strong ion

  13. The utilization of drug-polymer interactions for improving the chemical stability of hot-melt extruded solid dispersions.

    PubMed

    Guo, Zhefei; Lu, Ming; Li, Yongcheng; Pang, Huishi; Lin, Ling; Liu, Xu; Wu, Chuanbin

    2014-02-01

    Interactions between drugs and polymers were utilized to lower the processing temperature of hot-melt extrusion (HME), and thus minimize the thermal degradation of heat-sensitive drugs during preparation of amorphous solid dispersions. Diflunisal (DIF), which would degrade upon melting, was selected as a model drug. Hydrogen bonds between DIF and polymeric carriers (PVP K30, PVP VA64, hydroxypropyl methylcellulose and Soluplus) were revealed by differential scanning calorimetry and Fourier transform infrared spectroscopy. The hot-melt extruded solid dispersion was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-performance liquid chromatography (HPLC). The results of hot-stage polar microscopy indicated that DIF was dissolved in molten polymers at 160°C, much lower than the melting point of DIF (215°C). At this temperature, amorphous solid dispersions were successfully produced by HME, as confirmed by XRD and SEM. The related impurities in amorphous solid dispersions detected by HPLC were lower than 0.3%, indicating that thermal degradation was effectively minimized. The dissolution of DIF from amorphous solid dispersions was significantly enhanced as compared with the pure crystalline drug. This technique based on drug-polymer interactions to prepare chemically stable amorphous solid dispersions by HME provides an attractive opportunity for development of heat-sensitive drugs. © 2013 Royal Pharmaceutical Society.

  14. Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal

    NASA Astrophysics Data System (ADS)

    Relaix, Sabrina; Bourgerette, Christian; Mitov, Michel

    2006-12-01

    It is shown that the natural ultraviolet light absorbing properties of the liquid crystal constituent during the photoinduced elaboration of a liquid crystalline gel induce the broadening of the reflection bandwidth. The polymer component is then included in a resin by preserving its spatial distribution, and transmission electron microscopy investigations of cross sections show the existence of a structure gradient, which is at the origin of the broadening phenomenon. Such reflectors may be of interest for reflective polarizer-free displays or smart windows for the control of solar light for which a broadband reflection is required.

  15. Silicone-containing aqueous polymer dispersions with hybrid particle structure.

    PubMed

    Kozakiewicz, Janusz; Ofat, Izabela; Trzaskowska, Joanna

    2015-09-01

    In this paper the synthesis, characterization and application of silicone-containing aqueous polymer dispersions (APD) with hybrid particle structure are reviewed based on available literature data. Advantages of synthesis of dispersions with hybrid particle structure over blending of individual dispersions are pointed out. Three main processes leading to silicone-containing hybrid APD are identified and described in detail: (1) emulsion polymerization of organic unsaturated monomers in aqueous dispersions of silicone polymers or copolymers, (2) emulsion copolymerization of unsaturated organic monomers with alkoxysilanes or polysiloxanes with unsaturated functionality and (3) emulsion polymerization of alkoxysilanes (in particular with unsaturated functionality) and/or cyclic siloxanes in organic polymer dispersions. The effect of various factors on the properties of such hybrid APD and films as well as on hybrid particles composition and morphology is presented. It is shown that core-shell morphology where silicones constitute either the core or the shell is predominant in hybrid particles. Main applications of silicone-containing hybrid APD and related hybrid particles are reviewed including (1) coatings which show specific surface properties such as enhanced water repellency or antisoiling or antigraffiti properties due to migration of silicone to the surface, and (2) impact modifiers for thermoplastics and thermosets. Other processes in which silicone-containing particles with hybrid structure can be obtained (miniemulsion polymerization, polymerization in non-aqueous media, hybridization of organic polymer and polysiloxane, emulsion polymerization of silicone monomers in silicone polymer dispersions and physical methods) are also discussed. Prospects for further developments in the area of silicone-containing hybrid APD and related hybrid particles are presented. Copyright © 2015. Published by Elsevier B.V.

  16. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates

    PubMed Central

    Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.

    2016-01-01

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field. PMID:26817823

  17. On the molecular anisotropy of liquid crystalline and flexible polymer systems

    NASA Astrophysics Data System (ADS)

    van Horn, Brett L.

    The demand for products of ever increasing quality or for novel applications has required increasing attention to or manipulation of the anisotropy of manufactured parts. Oriented plastics are used everywhere from recording film to automotive body parts to monofilament fishing line. Liquid crystals are also used in a wide array of applications including their dominance in the flat panel display industry, color changing temperature sensors, and woven bullet resistant fabrics. Anisotropy can also be detrimental, for instance sometimes leading to poor fracture resistance or low yield stress along specific directions. Controlling and measuring anisotropy of materials has become increasingly important, but doing so is wrought with challenges. Measuring physical properties of isotropic liquids, such as water or most oils can be done in a straightforward fashion. Their viscosities and densities, for example, have unique values under a given set of conditions. With anisotropic fluids, like liquid crystals, the viscosity, for instance, will not only depend upon temperature, concentration, etc. but also upon the direction of observation, degree of anisotropy, source of anisotropy, and so forth. This added degree of complexity complicates our ability to define the state of the material at which the measurements are made and generally necessitates the use of more sophisticated measurement strategies or techniques. This work presents techniques and tools for investigating anisotropy in liquid crystalline and stretched polymeric systems. Included are the use of conoscopy for the determination of birefringence and orientation of nematic liquid crystals and stretched polymers, the shear response of flow aligning nematic liquid crystal monodomains, and the design of a novel linear rheometer that allows for in situ optical or scattering investigations.

  18. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model.

    PubMed

    Liu, Ling; Onck, Patrick R

    2017-08-04

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015).NCAOBW2041-172310.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  19. Wide-band tunable photonic bandgap device and laser in dye-doped liquid crystal refilled cholesteric liquid crystal polymer template system

    NASA Astrophysics Data System (ADS)

    Lin, Jia-De; Lin, Hong-Lin; Lin, Hsin-Yu; Wei, Guan-Jhong; Lee, Chia-Rong

    2017-02-01

    The scientists in the field of liquid crystal (LC) have paid significant attention in the exploration of novel cholesteric LC (CLC) polymer template (simply called template) in recent years. The self-assembling nanostructural template with chirality can effectively overcome the limitation in the optical features of traditional CLCs, such as enhancement of reflectivity over 50%, multiple photonic bandgaps (PBGs), and changeable optical characteristics by flexibly replacing the refilling LC materials, and so on. This work fabricates two gradient-pitched CLC templates with two opposite handednesses, which are then merged as a spatially tunable and highly reflective CLC template sample. This sample can simultaneously reflect right- and left-circularly polarized lights and the tunable spectral range includes the entire visible region. By increasing the temperature of the template sample exceeding the clearing point of the refilling LC, the light scattering significantly decreases and the reflectance effectively increase to exceed 50% in the entire visible region. This device has a maximum reflectance over 85% and a wide-band spatial tunability in PBG between 400 nm and 800 nm which covers the entire visible region. Not only the sample can be employed as a wide-band spatially tunable filter, but also the system doping with two suitable laser dyes which emitted fluorescence can cover entire visible region can develop a low-threshold, mirror-less laser with a spatial tunability at spectral regions including blue to red region (from 484 nm to 634 nm) and simultaneous lasing emission of left- and right-circular polarizations.

  20. Recent advances in IR liquid crystal spatial light modulators

    NASA Astrophysics Data System (ADS)

    Peng, Fenglin; Twieg, Robert J.; Wu, Shin-Tson

    2015-09-01

    Liquid crystal (LC) is an amazing class of electro-optic media; its applications span from visible to infrared, millimeter wave, and terahertz regions. In the visible and short-wavelength infrared (SWIR) regions, most LCs are highly transparent. However, to extend the electro-optic application of LCs into MWIR and LWIR, several key technical challenges have to be overcome: (1) low absorption loss, (2) high birefringence, (3) low operation voltage, and (4) fast response time. In the MWIR and LWIR regions, several fundamental molecular vibration bands and overtones exist, which contribute to high absorption loss. The absorbed light turns to heat and then alters the birefringence locally, which in turns causes spatially non-uniform phase modulation. To suppress the optical loss, several approaches have been investigated: (1) Employing thin cell gap by choosing a high birefringence LC mixture; (2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination, or chlorination; (3) Reducing the overtone absorption by using a short alkyl chain. In this paper, we report some recently developed chlorinated LC compounds and mixtures with low absorption loss in the SWIR and MWIR regions. To achieve fast response time, we demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms. Approaches to extend such a liquid crystal spatial light modulator to long-wavelength infrared will be discussed.

  1. Liquid crystals for laser applications

    NASA Astrophysics Data System (ADS)

    Jacobs, S. D.; Marshall, K. L.; Schmid, A.

    1992-10-01

    This article highlights some of the advances made in the use of liquid crystals for laser applications from 1982 through 1992. New materials and new effects were discovered, many new devices were developed, and novel applications for well-understood phenomena were conceived. This was quite an eventful time period. Several new books were published on the broad subject of LC's, and the international scientific community organized a society devoted to encouraging further scientific and educational advancement in the field. Attention was focused on LC's in October of 1991 when the Nobel Prize in Physics was awarded to Pierre-Gilles de Gennes for his pioneering work toward understanding order phenomena in LC's and polymers. This article is divided into four sections. The first section discusses new materials, specifically ferroelectric LC's and LC polymers. The former have opened up the realm of submicrosecond response for LC devices, and the latter have significantly reduced the sensitivity of LC optics to temperature. Some new insights into the optical properties of materials are also mentioned. The second section reviews new developments in passive applications for cholesterics and nematics. Included here are the fabrication of cholesteric laser mirrors and apodizers, the use of LC polymers for notch filters and as optical storage media, and some novel nematic retarder concepts such as the distributed polarization rotator.

  2. Polymer-grafted gold nanorods in polymer thin films: Dispersion and plasmonic coupling

    NASA Astrophysics Data System (ADS)

    Hore, Michael-Jon Ainsley

    This dissertation describes complementary experimental and theoretical studies to deter- mine the thermodynamic factors that affect the dispersion of polymer-grafted Au nanorods within polymer thin films. Au nanorods exhibit a uniform dispersion with a regular spacing for favorable brush / matrix interactions, such as poly(ethylene glycol) (PEG)-Au / poly(methyl methacrylate) (PMMA) and polystyrene (PS)-Au / poly(2,6-dimethyl-p-phenylene oxide) (PPO). For PEG-Au / PMMA, the nanorods are locally oriented and their dispersion is independent of the ratio of the degree of polymerization of the matrix (P) to that of the brush (N), α = P/N, whereas for chemically similar brush / matrix combinations, such as PS-Au / PS and PEG-Au / poly(ethylene oxide) (PEO), nanorods are randomly dispersed for α 2. For aggregated systems (α > 2), nanorods are found primarily within aggregates containing side-by-side aligned nanorods with a spacing that scales with N. UV-visible spectroscopy and discrete dipole approximation (DDA) calculations demonstrate that coupling between surface plasmons within the aggregates leads to a blue shift in the optical absorption as α increases, indicating the sensitivity of spectroscopy for determining nanorod dispersion in polymer nanocomposite films. Self-consistent field theory (SCFT) calculations and Monte Carlo (MC) simulations show that the aggregation of nanorods for α > 2 can be attributed to depletion-attraction forces caused by autophobic dewetting of the brush and matrix. Finally, miscible blends of PS and PPO are investigated as a route to control depletion-attraction interactions between PS-Au nanorods. Initially, nanorods aggregate in matrices having 50 vol. % PPO and then gradually disperse as PPO becomes the majority component. The brush and matrix density profiles, determined by SCFT, show that PPO segregates into the PS brush, and acts as a compatibilizer, which improves dispersion. As dispersion improves, coupling between surface

  3. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. I. Structural properties.

    PubMed

    Costa, Luciano T; Ribeiro, Mauro C C

    2006-05-14

    Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.

  4. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    PubMed

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Structural and Dielectric Properties of Ionic Liquid Doped Metal Organic Framework based Polymer Electrolyte Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, Ashok

    2016-10-01

    Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.

  6. Chemical and biological sensing using liquid crystals

    PubMed Central

    Carlton, Rebecca J.; Hunter, Jacob T.; Miller, Daniel S.; Abbasi, Reza; Mushenheim, Peter C.; Tan, Lie Na; Abbott, Nicholas L.

    2014-01-01

    The liquid crystalline state of matter arises from orientation-dependent, non-covalent interaction between molecules within condensed phases. Because the balance of intermolecular forces that underlies formation of liquid crystals is delicate, this state of matter can, in general, be easily perturbed by external stimuli (such as an electric field in a display). In this review, we present an overview of recent efforts that have focused on exploiting the responsiveness of liquid crystals as the basis of chemical and biological sensors. In this application of liquid crystals, the challenge is to design liquid crystalline systems that undergo changes in organization when perturbed by targeted chemical and biological species of interest. The approaches described below revolve around the design of interfaces that selectively bind targeted species, thus leading to surface-driven changes in the organization of the liquid crystals. Because liquid crystals possess anisotropic optical and dielectric properties, a range of different methods can be used to read out the changes in organization of liquid crystals that are caused by targeted chemical and biological species. This review focuses on principles for liquid crystal-based sensors that provide an optical output. PMID:24795857

  7. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates

    DOE PAGES

    Shuai, M.; Klittnick, A.; Shen, Y.; ...

    2016-01-28

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. We find Its zero-field magnetization produces distinctive magnetic self-interaction effects, includingmore » liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth’s magnetic field.« less

  8. Liquid crystal interfaces: Experiments, simulations and biosensors

    NASA Astrophysics Data System (ADS)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  9. Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone

    NASA Astrophysics Data System (ADS)

    Bergin, Shane D.; Nicolosi, Valeria; Giordani, Silvia; de Gromard, Antoine; Carpenter, Leslie; Blau, Werner J.; Coleman, Jonathan N.

    2007-11-01

    Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent γ-butyrolactone. This liquid, sometimes referred to as 'liquid ecstasy', is well known for its narcotic properties. At high concentrations the dispersions form an anisotropic, liquid crystalline phase which can be removed by mild centrifugation. At lower concentrations an isotropic phase is observed with a biphasic region at intermediate concentrations. By measuring the absorbance before and after centrifugation, as a function of concentration, the relative anisotropic and isotropic nanotube concentrations can be monitored. The upper limit of the pure isotropic phase was CNT~0.004 mg ml-1, suggesting that this can be considered the nanotube dispersion limit in γ-butyrolactone. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of 8 weeks at least. Atomic-force-microscopy studies on films deposited from the isotropic phase reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density. A population of individual nanotubes is always observed which increases with decreasing concentration until almost 40% of all dispersed objects are individual nanotubes at a concentration of 6 × 10-4 mg ml-1. The number density of individual nanotubes peaks at a concentration of ~6 × 10-3 mg ml-1 where almost 10% of the nanotubes by mass are individualized.

  10. Display technologies; Proceedings of the Meeting, National Chiao Tung Univ., Hsinchu, Taiwan, Dec. 17, 18, 1992

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Hsia; Wu, Shin-Tson

    1992-10-01

    A broad range of interdisciplinary subjects related to display technologies is addressed, with emphasis on high-definition displays, CRTs, projection displays, materials for display application, flat-panel displays, display modeling, and polymer-dispersed liquid crystals. Particular attention is given to a CRT approach to high-definition television display, a superhigh-resolution electron gun for color display CRT, a review of active-matrix liquid-crystal displays, color design for LCD parameters in projection and direct-view applications, annealing effects on ZnS:TbF3 electroluminescent devices prepared by RF sputtering, polycrystalline silicon thin film transistors with low-temperature gate dielectrics, refractive index dispersions of liquid crystals, a new rapid-response polymer-dispersed liquid-crystal material, and improved liquid crystals for active-matrix displays using high-tilt-orientation layers. (No individual items are abstracted in this volume)

  11. Studying the orientation of bio-objects by nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Zubtsova, Yu. A.; Kamanin, A. A.; Kamanina, N. V.

    2017-05-01

    We have studied the ability of a liquid-crystal (LC) matrix to visualize and orient DNA molecules. It is established that the relief of the interface between the LC mesophase and conducting contact can be improved without using an additional high-ohmic polymer layer. Spectroscopic and ellipsometric techniques revealed changes in the refractive properties and structure of composites. The obtained results can be used in creating devices for rapid DNA testing with retained form of biostructures.

  12. Polymer Nanocomposite Films: Dispersion of Polymer Grafted Nanorods and Optical Properties

    NASA Astrophysics Data System (ADS)

    Composto, Russell

    2013-03-01

    The thermodynamic factors that affect the dispersion of polymer-brush grafted gold nanorods (NR) in polymer matrix films have been studied by experiment and theory. When brush and matrix have a favorable interaction, such as poly(ethylene oxide) (PEO)-NR/ poly(methyl methacrylate) (PMMA) and polystyrene (PS)-NR / poly(2,6-dimethyl-p-phenylene oxide) (PPO), nanorods are uniformly dispersed. For PEO-NRs in PMMA, the NRs are regularly spaced and well dispersed, independent of the ratio of the degree of polymerization of the matrix (P) to that of the brush (N), namely P/N. As the NR volume fraction increases, the local orientation of the nanorods increases, whereas the macroscopic orientation remains isotropic. When the brush and matrix are similar (i.e., PS-NR / PS and PEO-NR / PEO), the nanorods randomly disperse for P/N < 2 (i.e., wet brush), but align side-by-side in aggregates for P/N > 2. UV-visible spectroscopy and discrete dipole approximation (DDA) calculations demonstrate that surface plasmon coupling leads to a blue shift in the longitudinal surface plasmon resonance (LSPR) as P/N increases. For P/N > 2, self-consistent field theory (SCFT) calculations and Monte Carlo (MC) simulations indicate that nanorod aggregation is caused by depletion-attraction forces. Starting with a dry brush system, namely, a PS matrix where P/N = 30, these attractive forces can be mediated by adding a compatibilizing agent (e.g., PPO) that drives the NRs to disperse. Finally, dry and wet brush behavior is observed for NR aspect ratios varying from 2.5 to 7. However, compared at the same volume fraction, long rods for the dry case exhibit much better local order than lower aspect ratio nanorods, suggesting that long rods may exhibit nematic-like ordering at higher loadings. NSF Polymer and CEMRI Programs.

  13. Liquid Crystal Mediated Nano-assembled Gold Micro-shells

    NASA Astrophysics Data System (ADS)

    Quint, Makiko; Sarang, Som; Quint, David; Huang, Kerwyn; Gopinathan, Ajay; Hirst, Linda; Ghosh, Sayantani

    We have created 3D nano-assenbled micro-shell by using thermotropic liquid crystal (LC), 4-Cyano-4'-pentylbiphenyl (5CB), doped with mesogen-functionalized gold nanoparticles (AuNPs). The assembly process is driven by the isotropic-nematic phase transition dynamics. We uniformly disperse the functionalized AuNPs into isotropic liquid crystal matrix and the mixture is cooled from the isotropic to the nematic phase. During the phase transition, the separation of LC-AuNP rich isotropic and ordered 5CB rich domains cause the functionalized AuNPs to move into the shrinking isotropic regions. The mesogenic ligands are locally crystalized during this process, which leads to the formation of a spherical shell with a densely packed wall of AuNPs. These micro-shells are capable of encapsulating fluorescence dye without visible leakages for several months. Additionally, they demonstrate strong localized surface plasmon resonance, which leads to localized heating on optical excitation. This photothermal effect disrupts the structure, releasing contents within seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances is a novel platform that combines drug-delivery and photothermal therapy in one versatile and multifunctional unit. This work is supported by the NSF Grants No. DMR-1056860, ECC-1227034, and a University of California Merced Faculty Mentor Fellowship.

  14. A swing driven by liquid crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng

    Angular momentum in liquid crystals exists as flow, director reorientation, etc. However, it is hard to observe and measure angular momentum in liquid crystals by a direct mechanical approach. Torsion pendulum is a general tool to measure angular momentum by torque balance. Our torsion pendulum can harvest the angular momentum in liquid crystals to make it observable. The oscillation of the pendulum keeps increasing by constructively adding a small angular momentum of liquid crystals each period at the resonant frequency of the pendulum. Its similar to a swing driven by a force at its resonant frequency. For the torsion pendulum, a cage made of two aluminum discs, in which a liquid crystal cell is placed, is suspended between two thin tungsten wires. A gold mirror, which is a part of the optical lever system, is attached on one tungsten wire. As first demonstration, we fabricate a circular hybrid liquid crystal cell, which can induce concentric backflows to generate angular momentum. The alignment on the planar substrate is concentric and tangential. Due to the coupling between director rotation and flow, the induced backflow goes around the cell when we add electrical pulses between top and bottom substrates. The oscillation is observed by a position sensitive detector and analyzed on the basis of Eriksen-Leslie theory. With vacuum condition and synchronous driving system, the oscillation signal is improved. We demonstrate that this torsion pendulum can sensitively detect the angular momentum in liquid crystals.

  15. A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Bong-Gi; Jeong, Eun Jeong; Chung, Jong Won

    Conjugated polymers with a one-dimensional p-orbital overlap exhibit optoelectronic anisotropy. Their unique anisotropic properties can be fully realized in device applications only when the conjugated chains are aligned. Here, we report a molecular design principle of conjugated polymers to achieve concentration-regulated chain planarization, self-assembly, liquid-crystal-like good mobility and non-interdigitated side chains. As a consequence of these intra- and intermolecular attributes, chain alignment along an applied flow field occurs. This liquid-crystalline conjugated polymer was realized by incorporating intramolecular sulphur–fluorine interactions and bulky side chains linked to a tetrahedral carbon having a large form factor. By optimizing the polymer concentration and themore » flow field, we could achieve a high dichroic ratio of 16.67 in emission from conducting conjugated polymer films. Two-dimensional grazing-incidence X-ray diffraction was performed to analyse a well-defined conjugated polymer alignment. Thin-film transistors built on highly aligned conjugated polymer films showed more than three orders of magnitude faster carrier mobility along the conjugated polymer alignment direction than the perpendicular direction.« less

  16. Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation.

    PubMed

    Patterson, Adele; Ferreira, Ana P; Banks, Elizabeth; Skeene, Kirsty; Clarke, Graham; Nicholson, Sarah; Rawlinson-Malone, Clare

    2015-01-15

    The Pharmaceutical industry is increasingly utilizing amorphous technologies to overcome solubility challenges. A common approach is the use of drug in polymer dispersions to prevent recrystallization of the amorphous drug. Understanding the factors affecting chemical and physical degradation of the drug within these complex systems, e.g., temperature and relative humidity, is an important step in the selection of a lead formulation, and development of appropriate packaging/storage control strategies. The Arrhenius equation has been used as the basis of a number of models to predict the chemical stability of formulated product. In this work, we investigate the increase in chemical degradation seen for one particular spray dried dispersion formulation using hydroxypropyl methylcellulose acetate succinate (HPMC-AS). Samples, prepared using polymers with different substitution levels, were placed on storage for 6 months under a range of different temperature and relative humidity conditions and the degradant level monitored using high-performance liquid chromatography (HPLC). While the data clearly illustrates the impact of temperature and relative humidity on the degradant levels detected, it also highlighted that these terms do not account for all the variability in the data. An extension of the Arrhenius equation to include a term for the polymer chemistry, specifically the degree of succinoyl substitution on the polymer backbone, was shown to improve the fit of the model to the data. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Application of film-casting technique to investigate drug-polymer miscibility in solid dispersion and hot-melt extrudate.

    PubMed

    Parikh, Tapan; Gupta, Simerdeep Singh; Meena, Anuprabha K; Vitez, Imre; Mahajan, Nidhi; Serajuddin, Abu T M

    2015-07-01

    Determination of drug-polymer miscibility is critical for successful development of solid dispersions. This report details a practical method to predict miscibility and physical stability of drug with various polymers in solid dispersion and, especially, in melt extrudates by applying a film-casting technique. Mixtures of itraconazole (ITZ) with hydroxypropylmethylcellulose phthalate (HPMCP), Kollidon(®) VA 64, Eudragit(®) E PO, and Soluplus(®) were film-casted, exposed to 40°C/75% RH for 1 month and then analyzed using differential scanning calorimetry (DSC), powder X-ray diffractometry, and polarized light microscopy (PLM). ITZ had the highest miscibility with HPMCP, being miscible at drug to polymer ratio of 6:4 (w/w). There was a downward trend of lower miscibility with Soluplus(®) (miscible at 3:7, w/w, and a few microcrystals present at 4:6, w/w), Kollidon(®) VA 64 (2:8, w/w) and Eudragit(®) E PO (<1:9, w/w). PLM was found more sensitive to detect drug crystallization than DSC and powder X-ray diffractometry. There was general correlation between results of film casting and hot-melt extrusion (HME) using a twin screw extruder. For ITZ-Soluplus(®) mixtures, HME at 4:6 (w/w) resulted in a single phase, whereas drug crystallization was observed at higher drug load. HME of ITZ-Kollidon(®) VA 64 mixtures also correlated well with the miscibility predicted by film casting. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Photonic band-gap modulation of blue phase liquid crystal (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Hsien

    2015-10-01

    Blue phase liquid crystals (BPLCs) are self-assembled 3D photonic crystals exhibiting high susceptibility to external stimuli. Two methods for the photonic bandgap tuning of BPs were demonstrated in this work. Introducing a chiral azobenzene into a cholesteric liquid crystal could formulate a photoresponsive BPLC. Under violet irradiation, the azo dye experiences trans-cis isomerization, which leads to lattice swelling as well as phase transition in different stages of the process. Ultrawide reversible tuning of the BP photonic bandgap from ultraviolet to near infrared has been achieved. The tuning is reversible and nonvolatile. We will then demonstract the electric field-induced bandgap tuning in polymer-stabilized BPLCs. Under different BPLCs material preparation conditions, both red-shift and broadening of the photonic bandgaps have been achieved respectively. The stop band can be shifted over 100 nm. The bandwidth can be expanded from ~ 30 nm to ~ 250 nm covering nearly the full visible range. It is believed that the developed approaches could strongly promote the use of BPLC in photonic applications.

  19. Fabrication of micro- and nanometre-scale polymer structures in liquid crystal devices for next generation photonics applications

    NASA Astrophysics Data System (ADS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-09-01

    Direct Laser Writing (DLW) by two-photon photopolymerization (TPP) enables the fabrication of micron-scale polymeric structures in soft matter systems. The technique has implications in a broad range of optics and photonics; in particular fast-switching liquid crystal (LC) modes for the development of next generation display technologies. In this paper, we report two different methodologies using our TPP-based fabrication technique. Two explicit examples are provided of voltage-dependent LC director profiles that are inherently unstable, but which appear to be promising candidates for fast-switching photonics applications. In the first instance, 1 μm-thick periodic walls of polymer network are written into a planar aligned (parallel rubbed) nematic pi-cell device containing a nematic LC-monomer mixture. The structures are fabricated when the device is electrically driven into a fast-switching nematic LC state and aberrations induced by the device substrates are corrected for by virtue of the adaptive optics elements included within the DLW setup. Optical polarizing microscopy images taken post-fabrication reveal that polymer walls oriented perpendicular to the rubbing direction promote the stability of the so-called optically compensated bend mode upon removal of the externally applied field. In the second case, polymer walls are written in a nematic LC-optically adhesive glue mixture. A polymer- LCs-polymer-slices or `POLICRYPS' template is formed by immersing the device in acetone post-fabrication to remove any remaining non-crosslinked material. Injecting the resultant series of polymer microchannels ( 1 μm-thick) with a short-pitch, chiral nematic LC mixture leads to the spontaneous alignment of a fast-switching chiral nematic mode, where the helical axis lies parallel to the glass substrates. Optimal contrast between the bright and dark states of the uniform lying helix alignment is achieved when the structures are spaced at the order of the device thickness

  20. Random lasing from dye-doped negative liquid crystals using ZnO nanoparticles as tunable scatters

    NASA Astrophysics Data System (ADS)

    Li, Long-Wu; Shang, Zhen-Zhen; Deng, Luogen

    2016-09-01

    This work demonstrates the realization of a lasing in scattering media, which contains dispersive solution of ZnO nanoparticles (NPs) and laser dye 4-dicyanomethylene-2-methyle-6-(p-dimethylaminostyryl)-4H-pyran(DCM) in negative liquid crystals (LCs) that was injected into a cell. The lasing intensity of the dye-doped negative LC laser can be tuned from low to high if the NPs concentration is increased. The tunability of the laser is attributable to the clusters-sensitive feature in effective refractive index of the negative LCs. Such a tunable negative liquid crystal laser can be used in the fabrication of new optical sources, optical communication, and liquid crystal laser displays. Project supported by the Doctoral Science Research Start-up Funding of Guizhou Normal University, China (Grant No. 11904-0514162) and the National Natural Science Foundation of China (Grant No. 11474021).

  1. Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions

    NASA Astrophysics Data System (ADS)

    Liu, Yazi; Sun, Dan; Askari, Sadegh; Patel, Jenish; Macias-Montero, Manuel; Mitra, Somak; Zhang, Richao; Lin, Wen-Feng; Mariotti, Davide; Maguire, Paul

    2015-10-01

    A facile method to synthesize a TiO2/PEDOT:PSS hybrid nanocomposite material in aqueous solution through direct current (DC) plasma processing at atmospheric pressure and room temperature has been demonstrated. The dispersion of the TiO2 nanoparticles is enhanced and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased electrical conductivity was observed for the plasma treated TiO2/PEDOT:PSS nanocomposite. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are proposed to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer binding.

  2. Ferromagnetic Switching of Knotted Vector Fields in Liquid Crystal Colloids.

    PubMed

    Zhang, Qiaoxuan; Ackerman, Paul J; Liu, Qingkun; Smalyukh, Ivan I

    2015-08-28

    We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M(r). Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M(r), which exhibit a strong sensitivity to the direction of weak magnetic fields ∼1  mT. Numerical modeling, implemented through free energy minimization to arrive at a field-dependent three-dimensional M(r), shows a good agreement with experiments and provides insights into the torus knot topology of observed field configurations and the corresponding physical underpinnings.

  3. Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets.

    PubMed

    Fan, Jing; Li, Yannian; Bisoyi, Hari Krishna; Zola, Rafael S; Yang, Deng-Ke; Bunning, Timothy J; Weitz, David A; Li, Quan

    2015-02-09

    Constructing and tuning self-organized three-dimensional (3D) superstructures with tailored functionality is crucial in the nanofabrication of smart molecular devices. Herein we fabricate a self-organized, phototunable 3D photonic superstructure from monodisperse droplets of one-dimensional cholesteric liquid crystal (CLC) containing a photosensitive chiral molecular switch with high helical twisting power. The droplets are obtained by a glass capillary microfluidic technique by dispersing into PVA solution that facilitates planar anchoring of the liquid-crystal molecules at the droplet surface, as confirmed by the observation of normal incidence selective circular polarized reflection in all directions from the core of individual droplet. Photoirradiation of the droplets furnishes dynamic reflection colors without thermal relaxation, whose wavelength can be tuned reversibly by variation of the irradiation time. The results provided clear evidence on the phototunable reflection in all directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biaxiality in Nematic and Smectic Liquid Crystals. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Satyendra; Li, Quan; Srinivasarao, Mohan

    2017-01-24

    During the award period, the project team explored several phenomena in a diverse group of soft condensed matter systems. These include understanding of the structure of the newly discovered twist-bend nematic phase, solving the mystery of de Vries smectic phases, probing of interesting associations and defect structures in chromonic liquid crystalline systems, dispersions of ferroelectric nanoparticles in smectic liquid crystals, investigations of newly synthesized light sensitive and energy harvesting materials with highly desirable transport properties. Our findings are summarized in the following report followed by a list of 36 publications and 37 conference presentations. We achieved this with the supportmore » of Basic Sciences Division of the US DOE for which we are thankful.« less

  5. Dual aging behaviour in a clay-polymer dispersion.

    PubMed

    Zulian, Laura; Augusto de Melo Marques, Flavio; Emilitri, Elisa; Ruocco, Giancarlo; Ruzicka, Barbara

    2014-07-07

    Clay-polymer compounds have recently attracted increasing attention due to their intriguing physical properties in colloidal science and their rheological non-trivial behaviour in technological applications. Aqueous solutions of Laponite clay spontaneously age from a liquid up to an arrested state of different nature (gel or glass) depending on the colloidal volume fraction and ionic strength. We have investigated, through dynamic light scattering, how the aging dynamics of Laponite dispersions at fixed clay concentration (Cw = 2.0%) is modified by the addition of various amounts of poly(ethylene oxide) (PEO) (CPEO = (0.05 ÷ 0.50) %) at two different molecular weights (Mw = 100 kg mol(-1) and Mw = 200 kg mol(-1)). A surprising and intriguing phenomenon has been observed: the existence of a critical polymer concentration C that discriminates between two different aging dynamics. With respect to pure Laponite systems the aging will be assisted (faster) or hindered (slower) for PEO concentrations respectively lower (CPEO < C) or higher (CPEO > C) than the critical concentration. In this way a control on the aging dynamics of PEO-Laponite systems is obtained. A possible explanation based on the balance of competitive mechanisms related to the progressive saturation of the clay surface by polymers is proposed. This study shows how a real control on the aging speed of the PEO-Laponite system is at hand and renders possible a real control of the complex interparticle interaction potential.

  6. Magnetic domains and defects in ferromagnetic liquid crystal colloids realized with optical patterning

    NASA Astrophysics Data System (ADS)

    Hess, Andrew; Liu, Qingkun; Smalyukh, Ivan

    A promising approach in designing composite materials with unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites not only inherit properties of their constituents but also can exhibit emergent behavior, such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematic and ferromagnetic systems alike. This research was supported by the NSF Grant DMR-1420736.

  7. Liquid Crystals: The Phase of the Future.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate; And Others

    1992-01-01

    Liquid crystal displays are currently utilized to convey information via graphic displays. Presents experiments and explanations that employ the concept of liquid crystals to learn concepts related to the various states of matter, electric and magnetic forces, refraction of light, and optics. Discusses applications of liquid crystal technology.…

  8. Crystallization of Polymers Investigated by Temperature-Modulated DSC

    PubMed Central

    Righetti, Maria Cristina

    2017-01-01

    The aim of this review is to summarize studies conducted by temperature-modulated differential scanning calorimetry (TMDSC) on polymer crystallization. This technique can provide several advantages for the analysis of polymers with respect to conventional differential scanning calorimetry. Crystallizations conducted by TMDSC in different experimental conditions are analysed and discussed, in order to illustrate the type of information that can be deduced. Isothermal and non-isothermal crystallizations upon heating and cooling are examined separately, together with the relevant mathematical treatments that allow the evolution of the crystalline, mobile amorphous and rigid amorphous fractions to be determined. The phenomena of ‘reversing’ and ‘reversible‘ melting are explicated through the analysis of the thermal response of various semi-crystalline polymers to temperature modulation. PMID:28772807

  9. Large Electro-Optic Kerr Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.

    PubMed

    Schlick, M Christian; Kapernaum, Nadia; Neidhardt, Manuel M; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Giesselmann, Frank

    2018-06-06

    The electro-optic Kerr effect in simple dipolar fluids such as nitrobenzene has been widely applied in electro-optical phase modulators and light shutters. In 2005, the discovery of the large Kerr effect in liquid-crystalline blue phases (Y. Hisakado et al., Adv. Mater. 2005, 17, 96-98.) gave new directions to the search for advanced Kerr effect materials. Even though the Kerr effect is present in all transparent and optically isotropic media, it is well known that the effect can be anomalously large in complex fluids, namely in the isotropic phase of liquid crystals or in polyelectrolyte solutions. Herein, it is shown that the Kerr effect in the isotropic phase of ionic liquid crystals combines the effective counterion polarization mechanism found in polyelectrolytes and the unique pretransitional growth of the Kerr constant found in the isotropic phase of nematic liquid crystals. Maximum Kerr constants in the order of several 10 -11  m V -2 (ten times higher than the Kerr constant of the toxic nitrobenzene and less temperature sensitive than Kerr constants of nematic liquid crystals) make ionic liquid crystals attractive as new class of functional materials in low-speed Kerr effect applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ionic Liquids in Polymer Design: From Energy to Health

    DTIC Science & Technology

    2016-10-19

    SECURITY CLASSIFICATION OF: ACS Symposium: Ionic Liquids in Polymer Design: From Energy to Health at Fall 2015 ACS Meeting in Boston, MA The...combination of ionic liquids and polymers has emerged as an active field of exploration in polymer science, where new materials have be realized for...2016 Final Report: Ionic Liquids in Polymer Design: From Energy to Health The views, opinions and/or findings contained in this report are those of

  11. Model photo-responsive elastomers based on the self-assembly of side group liquid crystal triblock copolymers (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kurji, Zuleikha; Kornfield, Julia A.; Kuzyk, Mark G.

    2015-10-01

    We report the synthesis of azobenzene-containing coil-liquid crystal-coil triblock copolymers that form uniform and highly reproducible elastomers by self-assembly. To serve as actuators to (non-invasively) steer a fiber optic, for example in deep brain stimulation, the polymers are designed to become monodomain "single liquid crystal" elastomers during the fiber-draw process and to have a large stress/strain response to stimulation with either light or heat. A fundamental scientific question that we seek to answer is how the interplay between the concentration of photoresponsive mesogens and the proximity to the nematic-isotropic transition governs the sensitivity of the material to stimuli. Specifically, a matched pair of polymers, one with ~5% azobenzene-containing side groups (~95% cyanobiphenyl side groups) and the other with 100% cyanobiphenyl side groups were synthesized from identical triblock pre-polymers (with polystyerene end blocks and 1,2-polybutadiene midblocks). These can be blended in various ratios to prepare a series of elastomers that are precisely matched in terms of the backbone length between physical crosslinks (because each polymer is derived from the same pre-polymer), while differing in % azobenzene side groups, allowing the effect of concentration of photoresponsive groups to be unambiguously determined.

  12. Structure-property evolution during polymer crystallization

    NASA Astrophysics Data System (ADS)

    Arora, Deepak

    The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based

  13. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    PubMed Central

    Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza

    2015-01-01

    Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  14. Effect of Low-Concentration Polymers on Crystal Growth in Molecular Glasses: A Controlling Role for Polymer Segmental Mobility Relative to Host Dynamics.

    PubMed

    Huang, Chengbin; Powell, C Travis; Sun, Ye; Cai, Ting; Yu, Lian

    2017-03-02

    Low-concentration polymers can strongly influence crystal growth in small-molecule glasses, a phenomenon important for improving physical stability against crystallization. We measured the velocity of crystal growth in two molecular glasses, nifedipine (NIF) and o-terphenyl (OTP), each doped with four or five different polymers. For each polymer, the concentration was fixed at 1 wt % and a wide range of molecular weights was tested. We find that a polymer additive can strongly alter the rate of crystal growth, from a 10-fold reduction to a 10-fold increase. For a given polymer, increasing molecular weight slows down crystal growth and the effect saturates around DP = 100, where DP is the degree of polymerization. For all the systems studied, the polymer effect on crystal growth rate forms a master curve in the variable (T g,polymer - T g,host )/T cryst , where T g is the glass transition temperature and T cryst is the crystallization temperature. These results support the view that a polymer's effect on crystal growth is controlled by its segmental mobility relative to the host-molecule dynamics. In the proposed model, crystal growth rejects impurities and creates local polymer-rich regions, which must be traversed by host molecules to sustain crystal growth at rates determined by polymer segmental mobility. Our results do not support the view that host-polymer hydrogen bonding plays a controlling role in crystal growth inhibition.

  15. Ring-shaped stain patterns driven by solute reactive mesogens in liquid crystal solution

    NASA Astrophysics Data System (ADS)

    Cha, Tae Woon; Bulliard, Xavier; Choi, Sang Gun; Lee, Hyoung Sub; Kong, Hyang-Shik; Han, Sang Youn

    2014-07-01

    We report on the formation of ring-shaped stain patterns in a polymer-stabilized patterned vertical alignment mode liquid crystal display (LCD) during the cell filling process. Through the interpretation of the formation mechanism, an effective way to control its development is provided. Systematic trace of the reactive mesogens reveals that the formation of patterns is strongly related to the segregation of solute mesogens in the stain area. These undesirable patterns can be avoided or controlled by reducing the drop volume at each droplet using an inkjet printing technique, meaning that the printing technique could be a useful solution in display technology. For the formation of ring-shaped patterns, the dragging of reactive mesogens during the spreading of the liquid crystal solution plays a key role in the closed LCD cell.

  16. Reverse-mode thermoresponsive light attenuators produced by optical anisotropic composites of nematic liquid crystals and reactive mesogens

    NASA Astrophysics Data System (ADS)

    Kakiuchida, Hiroshi; Ogiwara, Akifumi

    2018-04-01

    Polymer network liquid crystals (PNLCs) whose optical transmittance state switches between transparence at low temperatures and haze at high temperatures were fabricated from mixtures of nematic liquid crystals (LCs) and reactive mesogens (RMs). This PNLC structure is simple but effective, namely, consists of micro-scale domains of orientation-ordered LCs and anisotropically polymerized RMs. The domains form through photopolymerization induced phase separation with inhomogeneous irradiation projected by laser speckling techniques. This irradiation method enables you to control the size and shape of phase-separation domains, and these PNLCs can be applied to novel thermoresponsive optical devices; optical isolators, thermometric sheets, and smart windows.

  17. Motion of polymer cholesteric liquid crystal flakes in an electric field

    NASA Astrophysics Data System (ADS)

    Kosc, Tanya Zoriana

    Polymer cholesteric liquid crystal (PCLC) flakes suspended in a host fluid can be manipulated with an electric field. Controlling a flake's orientation provides the opportunity to change and control the amount of selective reflection from the flake surface. Flake motion results from charge accumulation and an induced dipole moment established due to Maxwell-Wagner polarization. The type of flake behavior, whether random motion or uniform reorientation, depends upon the dielectric properties of the host fluid, which in turn dictate whether a DC or an AC electric field must be applied. PCLC flakes suspended in highly dielectric silicone oil host fluids tend to move randomly in the presence of a DC electric field, and no motion is seen in AC fields. Flakes suspended in a moderately conductive host fluid reorient 90° in the presence of an AC field within a specific frequency range. The flake shape and size are also important parameters that need to be controlled in order to produce uniform motion. Several methods for patterning flakes were investigated and identical square flakes were produced. Square PCLC flakes (80 mum sides) suspended in propylene carbonate reorient in 400 ms when a 40mVrms/mum field at 70 Hz is applied to the test device. Theoretical modeling supported experimental observations well, particularly in identifying the inverse quadratic dependence on the applied electric field and the electric field frequency dependence that is governed by the host fluid conductivity. Future goals and suggested experiments are provided, as well as an explanation and comparison of possible commercial applications for PCLC flakes. This research has resulted in one patent application and a series of invention disclosures that could place this research group and any industrial collaborators in a strong position to pursue commercial applications, particularly in the area of displays, and more specifically, electronic paper.

  18. Wholly aromatic liquid crystalline polyetherimide (LC-PEI) resins

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); Dingemans, Theodorus J. (Inventor); St. Clair, Terry L. (Inventor); Hinkley, Jeffrey A. (Inventor)

    2011-01-01

    The benefits of liquid crystal polymers and polyetherimides are combined in an all-aromatic thermoplastic liquid crystalline polyetherimide. Because of the unique molecular structure, all-aromatic thermotropic liquid crystal polymers exhibit outstanding processing properties, excellent barrier properties, low solubilities and low coefficients of thermal expansion in the processing direction. These characteristics are combined with the strength, thermal, and radiation stability of polyetherimides.

  19. Liquid crystal Janus emulsion droplets: preparation, tumbling, and swimming.

    PubMed

    Jeong, Joonwoo; Gross, Adam; Wei, Wei-Shao; Tu, Fuquan; Lee, Daeyeon; Collings, Peter J; Yodh, A G

    2015-09-14

    This study introduces liquid crystal (LC) Janus droplets. We describe a process for the preparation of these droplets, which consist of nematic LC and polymer compartments. The process employs solvent-induced phase separation in emulsion droplets generated by microfluidics. The droplet morphology was systematically investigated and demonstrated to be sensitive to the surfactant concentration in the background phase, the compartment volume ratio, and the possible coalescence of multiple Janus droplets. Interestingly, the combination of a polymer and an anisotropic LC introduces new functionalities into Janus droplets, and these properties lead to unusual dynamical behaviors. The different densities and solubilities of the two compartments produce gravity-induced alignment, tumbling, and directional self-propelled motion of Janus droplets. LC Janus droplets with remarkable optical properties and dynamical behaviors thus offer new avenues for applications of Janus colloids and active soft matter.

  20. Terahertz spectroscopic analysis of crystal orientation in polymers

    NASA Astrophysics Data System (ADS)

    Azeyanagi, Chisato; Kaneko, Takuya; Ohki, Yoshimichi

    2018-05-01

    Terahertz time-domain spectroscopy (THz-TDS) is attracting keen attention as a new spectroscopic tool for characterizing various materials. In this research, the possibility of analyzing the crystal orientation in a crystalline polymer by THz-TDS is investigated by measuring angle-resolved THz absorption spectra for sheets of poly(ethylene terephthalate), poly(ethylene naphthalate), and poly(phenylene sulfide). The resultant angle dependence of the absorption intensity of each polymer is similar to that of the crystal orientation examined using pole figures of X-ray diffraction. More specifically, THz-TDS can indicate the alignment of molecules in polymers.

  1. Broadband pH-Sensing Organic Transistors with Polymeric Sensing Layers Featuring Liquid Crystal Microdomains Encapsulated by Di-Block Copolymer Chains.

    PubMed

    Seo, Jooyeok; Song, Myeonghun; Jeong, Jaehoon; Nam, Sungho; Heo, Inseok; Park, Soo-Young; Kang, Inn-Kyu; Lee, Joon-Hyung; Kim, Hwajeong; Kim, Youngkyoo

    2016-09-14

    We report broadband pH-sensing organic field-effect transistors (OFETs) with the polymer-dispersed liquid crystal (PDLC) sensing layers. The PDLC layers are prepared by spin-coating using ethanol solutions containing 4-cyano-4'-pentyl-biphenyl (5CB) and a diblock copolymer (PAA-b-PCBOA) that consists of LC-philic block [poly(4-cyano-biphenyl-4-oxyundecyl acrylate) (PCBOA)] and acrylic acid block [poly(acrylic acid) (PAA)]. The spin-coated sensing layers feature of 5CB microdomains (<5 μm) encapsulated by the PAA-b-PCBOA polymer chains. The resulting LC-integrated-OFETs (PDLC-i-OFETs) can detect precisely and reproducibly a wide range of pH with only small amounts (10-40 μL) of analyte solutions in both static and dynamic perfusion modes. The positive drain current change is measured for acidic solutions (pH < 7), whereas basic solutions (pH > 7) result in the negative change of drain current. The drain current trend in the present PDLC-i-OFET devices is explained by the shrinking-expanding mechanism of the PAA chains in the diblock copolymer layers.

  2. Method for determining shear direction using liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.

    1995-01-01

    A method is provided for determining shear direction wherein a beam of white light is directed onto the surface of a liquid crystal coating to cause the white light to be dispersed (reflected) from the surface in a spectrum having bands of different colors in a fixed spatial 2 (angular) sequence. The system is calibrated by locating an observer, e.g., a video and movie camera, such that a particular color band (preferably at or near the center of the reflected spectrum) is observed to thereby provide a reference color band. Because the application of shear causes either clockwise or counterclockwise rotation of the reflected spectrum dependent on the direction of the shear, a determination is then made of the reflected color band observed by the observer when the surface of the liquid crystal is subjected to shear to thereby determine the direction of the shear based on the directional (rotation) relation of the observed color band with respect to the reference color band in the spatial sequence of color bands.

  3. Dispersion of γ-Alumina Nano-Sized Spherical Particles in a Calamitic Liquid Crystal. Study and Optimization of the Confinement Effects

    PubMed Central

    Diez-Berart, Sergio; López, David O.; Sebastián, Nerea; de la Fuente, María Rosario; Salud, Josep; Robles-Hernández, Beatriz; Pérez-Jubindo, Miguel Ángel

    2014-01-01

    We report an experimental study on confined systems formed by butyloxybenzylidene octylaniline liquid crystal (4O.8) + γ-alumina nanoparticles. The effects of the confinement in the thermal and dielectric properties of the liquid crystal under different densities of nanoparticles is analyzed by means of high resolution Modulated Differential Scanning Calorimetry (MDSC) and broadband dielectric spectroscopy. First, a drastic depression of the N-I and SmA-N transition temperatures is observed with confinement, the more concentration of nanoparticles the deeper this depression is, driving the nematic range closer to the room temperature. An interesting experimental law is found for both transition temperatures. Second, the change in shape of the heat capacity peaks is quantified by means of the full width half maximum (FWHM). Third, the confinement does not noticeably affect the molecular dynamics. Finally, the combination of nanoparticles and the external applied electric field tends to favor the alignment of the molecules in metallic cells. All these results indicate that the confinement of liquid crystals by means of γ-alumina nanoparticles could be optimum for liquid crystal-based electrooptic devices. PMID:28788528

  4. Physical stability of amorphous acetanilide derivatives improved by polymer excipients.

    PubMed

    Miyazaki, Tamaki; Yoshioka, Sumie; Aso, Yukio

    2006-08-01

    Crystallization rates of drug-polymer solid dispersions prepared with acetaminophen (ACA) and p-aminoacetanilide (AAA) as model drugs, and polyvinylpyrrolidone and polyacrylic acid (PAA) as model polymers were measured in order to further examine the significance of drug-polymer interactions. The crystallization of AAA and ACA was inhibited by mixing those polymers. The most effective inhibition was observed with solid dispersions of AAA and PAA. The combination of AAA and PAA showed a markedly longer enthalpy relaxation time relative to drug alone as well as a higher T(g) than predicted by the Gordon-Taylor equation, indicating the existence of a strong interaction between the two components. These observations suggest that crystallization is effectively inhibited by combinations of drug and polymer that show a strong intermolecular interaction due to proton transfer between acidic and basic functional groups.

  5. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.

    PubMed

    Fahrenkrug, Eli; Maldonado, Stephen

    2015-07-21

    This Account describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III-V semiconductor materials at or near ambient temperature conditions. This strategy, which we call "electrochemical liquid-liquid-solid" (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte-liquid metal-solid crystal phase boundary strongly influences crystal growth. As a synthetic strategy, ec-LLS has several intrinsic features that are attractive for preparing covalent semiconductor crystals. First, ec-LLS does not require high temperatures, toxic precursors, or high-energy-density semiconductor reagents. This largely simplifies equipment complexity and expense. In practice, ec-LLS can be performed with only a beaker filled with electrolyte and an electrical circuit capable of supplying a defined current (e.g., a battery in series with a resistor). By this same token, ec-LLS is compatible with thermally and chemically sensitive substrates (e.g., plastics) that cannot be used as deposition substrates in conventional syntheses of covalent semiconductors. Second, ec-LLS affords control over a host of crystal shapes and sizes through simple changes in common experimental parameters. As described in detail herein, large and small semiconductor crystals can be grown both homogeneously within a liquid metal electrode and heterogeneously at the interface of a liquid metal electrode and a seed substrate, depending on the particular

  6. The Landau-de Gennes approach revisited: A minimal self-consistent microscopic theory for spatially inhomogeneous nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Gârlea, Ioana C.; Mulder, Bela M.

    2017-12-01

    We design a novel microscopic mean-field theory of inhomogeneous nematic liquid crystals formulated entirely in terms of the tensor order parameter field. It combines the virtues of the Landau-de Gennes approach in allowing both the direction and magnitude of the local order to vary, with a self-consistent treatment of the local free-energy valid beyond the small order parameter limit. As a proof of principle, we apply this theory to the well-studied problem of a colloid dispersed in a nematic liquid crystal by including a tunable wall coupling term. For the two-dimensional case, we investigate the organization of the liquid crystal and the position of the point defects as a function of the strength of the coupling constant.

  7. Chiral liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Martinez, Angel; Senyuk, Bohdan; Tasinkevych, Mykola; Smalyukh, Ivan I.

    2018-01-01

    Colloidal particles disturb the alignment of rod-like molecules of liquid crystals, giving rise to long-range interactions that minimize the free energy of distorted regions. Particle shape and topology are known to guide this self-assembly process. However, how chirality of colloidal inclusions affects these long-range interactions is unclear. Here we study the effects of distortions caused by chiral springs and helices on the colloidal self-organization in a nematic liquid crystal using laser tweezers, particle tracking and optical imaging. We show that chirality of colloidal particles interacts with the nematic elasticity to predefine chiral or racemic colloidal superstructures in nematic colloids. These findings are consistent with numerical modelling based on the minimization of Landau-de Gennes free energy. Our study uncovers the role of chirality in defining the mesoscopic order of liquid crystal colloids, suggesting that this feature may be a potential tool to modulate the global orientated self-organization of these systems.

  8. Crystallization in melts of short, semiflexible hard polymer chains: An interplay of entropies and dimensions

    NASA Astrophysics Data System (ADS)

    Shakirov, T.; Paul, W.

    2018-04-01

    What is the thermodynamic driving force for the crystallization of melts of semiflexible polymers? We try to answer this question by employing stochastic approximation Monte Carlo simulations to obtain the complete thermodynamic equilibrium information for a melt of short, semiflexible polymer chains with purely repulsive nonbonded interactions. The thermodynamics is obtained based on the density of states of our coarse-grained model, which varies by up to 5600 orders of magnitude. We show that our polymer melt undergoes a first-order crystallization transition upon increasing the chain stiffness at fixed density. This crystallization can be understood by the interplay of the maximization of different entropy contributions in different spatial dimensions. At sufficient stiffness and density, the three-dimensional orientational interactions drive the orientational ordering transition, which is accompanied by a two-dimensional translational ordering transition in the plane perpendicular to the chains resulting in a hexagonal crystal structure. While the three-dimensional ordering can be understood in terms of Onsager theory, the two-dimensional transition can be understood in terms of the liquid-hexatic transition of hard disks. Due to the domination of lateral two-dimensional translational entropy over the one-dimensional translational entropy connected with columnar displacements, the chains form a lamellar phase. Based on this physical understanding, orientational ordering and translational ordering should be separable for polymer melts. A phenomenological theory based on this understanding predicts a qualitative phase diagram as a function of volume fraction and stiffness in good agreement with results from the literature.

  9. Controlling Crystal Microstructure to Minimize Loss in Polymer Dielectrics

    NASA Astrophysics Data System (ADS)

    Miranda, Daniel; Iacob, Ciprian; Zhang, Shihai; Runt, James

    Polymer dielectric films are of great importance for high performance capacitors. For these films it is critical to reduce dielectric loss, as it diminishes efficiency and contributes to waste heat generation during device operation. Here, a model semi-crystalline polymer, poly(ethylene naphthalate) (PEN), was used to examine how morphological factors inhibit chain relaxations responsible for loss. This was achieved by manipulating the extent of crystallization and the crystalline microstructure through a combination of annealing and uniaxial drawing, and investigating their effects on dielectric performance. Varying crystallization conditions influenced the dynamic Tg and extent of rigid amorphous fraction formation, but had a limited effect on loss magnitude. Film orientation however greatly reduced loss, through strain-induced crystallization and development of oriented amorphous mesophasic regions. Post-drawing annealing conditions were capable of further refining the crystal microstructure and, in turn, the dielectric properties. These findings demonstrate that semi-crystalline polymer morphology has a very strong influence on amorphous chain relaxations, and understanding how processing conditions affect morphology is critical to the rational design of polymer dielectrics. Office of Naval Research.

  10. Liquid crystalline polymers

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The remarkable mechanical properties and thermal stability of fibers fabricated from liquid crystalline polymers (LCPs) have led to the use of these materials in structural applications where weight savings are critical. Advances in processing of LCPs could permit the incorporation of these polymers into other than uniaxial designs and extend their utility into new areas such as nonlinear optical devices. However, the unique feature of LCPs (intrinsic orientation order) is itself problematic, and current understanding of processing with control of orientation falls short of allowing manipulation of macroscopic orientation (except for the case of uniaxial fibers). The current and desirable characteristics of LCPs are reviewed and specific problems are identified along with issues that must be addressed so that advances in the use of these unique polymers can be expedited.

  11. Automated Dispersion and Orientation Analysis for Carbon Nanotube Reinforced Polymer Composites

    PubMed Central

    Gao, Yi; Li, Zhuo; Lin, Ziyin; Zhu, Liangjia; Tannenbaum, Allen; Bouix, Sylvain; Wong, C.P.

    2012-01-01

    The properties of carbon nanotube (CNT)/polymer composites are strongly dependent on the dispersion and orientation of CNTs in the host matrix. Quantification of the dispersion and orientation of CNTs by microstructure observation and image analysis has been demonstrated as a useful way to understand the structure-property relationship of CNT/polymer composites. However, due to the various morphologies and large amount of CNTs in one image, automatic and accurate identification of CNTs has become the bottleneck for dispersion/orientation analysis. To solve this problem, shape identification is performed for each pixel in the filler identification step, so that individual CNT can be exacted from images automatically. The improved filler identification enables more accurate analysis of CNT dispersion and orientation. The obtained dispersion index and orientation index of both synthetic and real images from model compounds correspond well with the observations. Moreover, these indices help to explain the electrical properties of CNT/Silicone composite, which is used as a model compound. This method can also be extended to other polymer composites with high aspect ratio fillers. PMID:23060008

  12. Key Developments in Ionic Liquid Crystals.

    PubMed

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  13. Key Developments in Ionic Liquid Crystals

    PubMed Central

    Alvarez Fernandez, Alexandra; Kouwer, Paul H. J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material? PMID:27196890

  14. Perspectives on Strategies Using Swellable Polymers in Solid Dispersions for Controlled Drug Release.

    PubMed

    Tran, Thao T D; Tran, Phuong H L

    2017-01-01

    Poorly water-soluble drugs, which commonly face the issue of poor absorption and low bioavailability, have been under ongoing research of many formulation scientists for the past few decades. Solid dispersion is one of the most effective strategies in concerns for improving bioavailability of poorly water-soluble drugs. Either application of solid dispersions in dissolution enhancement of poorly water-soluble drugs or the use of swellable polymers in controlled drug release has been reported in pharmaceutical designs widely. However, a review of strategies of using swellable polymers in solid dispersion to take a full advantage of these polymers as a current perspective in facilitating drug bioavailability enhancement is still missing. In this review, we aim to provide a summary of techniques used to formulate a swellable polymer in solid dispersion especially a description of a suitable fabrication method in design of a controlled release solid dispersion. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Frequency-dependent dielectric contribution of flexoelectricity allowing control of state switching in helicoidal liquid crystals

    NASA Astrophysics Data System (ADS)

    Outram, B. I.; Elston, S. J.

    2013-07-01

    The contribution of flexoelectric polarization to the dielectric susceptibility in helicoidal liquid crystals is formulated for the static equilibrium case, and further in the case of a time-varying field. A dispersion of the dielectric permittivity due to the frequency response of flexoelectric switching is described. The special case of a negative dielectric-anisotropy nematic material is considered and experimentally shown to agree with the analytical theory. It is further demonstrated how relaxation of the flexoelectric contribution to the dielectric tensor in this special case can be exploited to switch between states in cholesteric liquid crystal structures by altering the applied time-dependent field amplitude, if Δɛ<0 and (e1-e3)2/(K1+K3)>-Δɛɛ0. Consequentially, a versatile mechanism for driving between states in liquid crystal systems has been demonstrated and its implications for technology are suggested, and include dual-mode, bistable, and transflective displays.

  16. Characterization of light scattering in nematic droplet-polymer films

    NASA Astrophysics Data System (ADS)

    Kinugasa, Naoki; Yano, Yuichi; Takigawa, Akio; Kawahara, Hideo

    1992-06-01

    The optical properties of nematic droplet-polymer films were studied both in the on and off state using Lambert-Beer''s law to characterize their scattering phenomena. For the preparation of the devices, NCAP process was employed with the different diameter, distribution, shape, and density of nematic droplets. Their cell thickness and refractive indices concerning the birefringence of liquid crystals were also controlled. The results showed that the scattering phenomena of nematic droplet-polymer films were likely caused by two types of features. One, related to the surface area of nematic droplets, was the difference of the refractive indices in the interface between liquid crystals and polymer matrix. The other, related to the liquid crystal volume inside the nematic droplets, was the birefringence of liquid crystals. Considering such relations, the extinction coefficient of Lambert-Beer''s law could be described by the sum of the area in the interface multiplied by the difference of the refractive indices between two materials and the liquid crystal volume multiplied by their birefringence. Furthermore, it was found their parallel transmittance in the off state and haze ratio in the on state were well characterized by such extinction coefficient of Lambert-Beer''s law.

  17. Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating.

    PubMed

    Liu, Danqing; Liu, Ling; Onck, Patrick R; Broer, Dirk J

    2015-03-31

    In this work we propose randomly ordered polydomain nematic liquid crystal polymer networks to reversibly generate notable jagged relief patterns at a polymer coating surface by light illumination. The domain size is controlled by the addition of traces of partly insoluble fluorinated acrylate. The photoresponse of the coating is induced by a small amount of copolymerized azobenzene monomers. Upon exposure to UV light, azobenzene undergoes trans to cis isomerization, resulting in a change in molecular order and packing within each domain. The extent of this effect and its directionality depends on the domain orientation. Localized to domain level, this morphological change forms large 3D spikes at the surface with a modulation amplitude of more than 20% of the initial thickness. The process is reversible; the surface topographical patterns erase within 10 s by stopping the light exposure. A finite element model is applied to simulate the surface topography changes of the polydomain coating. The simulations describe the formation of the topographic features in terms of light absorption and isomerization process as a function of the director orientation. The random director distribution leads to surface structures which were found to be in close agreement with the ones measured by interference microscopy. The effect of domain size on surface roughness and depth modulation was explored and related to the internal mechanical constraints. The use of nematic liquid crystal polydomains confined in a polymer network largely simplifies the fabrication of smart coatings with a prominent triggered topographic response.

  18. Liquid crystals for organic transistors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanna, Jun-ichi; Iino, Hiroaki

    2016-09-01

    Liquid crystals are a new type of organic semiconductors exhibiting molecular orientation in self-organizing manner, and have high potential for device applications. In fact, various device applications have been proposed so far, including photosensors, solar cells, light emitting diodes, field effect transistors, and so on.. However, device performance in those fabricated with liquid crystals is less than those of devices fabricated with conventional materials in spite of unique features of liquid crystals. Here we discuss how we can utilize the liquid crystallinity in organic transistors and how we can overcome conventional non-liquid crystalline organic transistor materials. Then, we demonstrate high performance organic transistors fabricated with a smectic E liquid crystal of Ph-BTBT-10, which show high mobility of over 10cm2/Vs and high thermal durability of over 200oC in OFETs fabricated with its spin-coated polycrystalline thin films.

  19. Passive Sensor Materials Based on Liquid Crystals

    DTIC Science & Technology

    2011-03-12

    REPORT Passive Sensor Materials based on Liquid Crystals 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Research supported by this grant entitled “Passive...Sensor Materials Based on Liquid Crystals” revolved around an investigation of liquid crystalline materials for use in passive sensors for chemical... based on Liquid Crystals Report Title ABSTRACT Research supported by this grant entitled “Passive Sensor Materials Based on Liquid Crystals” revolved

  20. Liquid crystals of carbon nanotubes and graphene.

    PubMed

    Zakri, Cécile; Blanc, Christophe; Grelet, Eric; Zamora-Ledezma, Camilo; Puech, Nicolas; Anglaret, Eric; Poulin, Philippe

    2013-04-13

    Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.

  1. Field-Effects in Large Axial Ratio Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Lonberg, Franklin J.

    This paper consists of an introduction and four chapters, the abstracts of which are presented below. Chapter 2. The subject of this chapter is the dynamic periodic structures which are observed in the twist Frederiks transition. It is found that, for fields above a material dependent level, a transient periodic distortion is observed. The wave vector is parallel to the unperturbed director and increases with increasing field. A theoretical model and experimental data are presented. Chapter 3. The subject of this chapter is the discovery of a new equilibrium structure in the splay Frederiks transition. Experimental observation has shown that the imposition of a field, just above the critical strength, produces a periodic distortion in the polymer liquid crystal PBG. This periodic state is not dynamic in origin but it is a true ground state. An analysis of the energy of a liquid crystal, in the splay Frederiks transition geometry, shows that in materials with K(,1)/K(,3) > 3.3 the periodic distortion will have a lower critical field than the uniform distortion. Chapter 4. The subject of this chapter is the dynamics of the bend Frederiks transition in large axial ratio nematics. Experimental evidence is presented to show that there is a distortion mode which occurs at field greater than 2H(,c), which is very fast and does not grow exponentially. An analysis of the equations of motion shows that a mode with wave length half that of the static equilibrium mode will have these properties. Chapter 5. The bend Frederiks transition is use to show that the bend and splay elastic constants are linear in concentration in PBG. Interpretation of this result is made in connection with models of the elastic energy in liquid crystal made of semi-flexible partiles.

  2. Silylene-diethynyl-arylene polymers having liquid crystalline properties

    DOEpatents

    Barton, Thomas J.; Ding, Yiwei

    1993-09-07

    The present invention provides linear organosilicon polymers including diethynyl-(substituted)arylene units, and a process for their preparation. These novel polymers possess useful properties including electrical conductivity, liquid crystallinity, and/or photoluminescence. These polymers possess good solubility in organic solvents. A preferred example is produced according to the following reaction scheme. ##STR1## These polymers can be solvent-cast to yield excellent films and can also be pulled into fibers from concentrated solutions. All possess substantial crystallinity as revealed by DSC analysis and observation through a polarizing microscope, and possess liquid crystalline properties.

  3. Towards Macroscopic Crystalline 2D Polymers.

    PubMed

    Feng, Xinliang; Schlüter, Dieter

    2018-05-29

    Periodic and nanoporous monolayer polymers, whose structures can be viewed as molecular fisherman's nets, have been classified as 2D polymers. They have been previously synthesized under mild photoirradiation conditions in the interior of layered single crystals of well-designed monomers, followed by a liquid-phase exfoliation. While these mild conditions allow for full structure control, the size of 2D polymers obtained cannot exceed that of the crystals from which they are prepared. In this Review, we discuss different concepts currently pursued to prepare macroscopically sized 2D polymers, focusing on syntheses at the air/water and liquid/liquid interfaces. While these interfaces are larger reaction loci than single crystals, sheet-like polymers obtained at them pose complex and time-consuming analytical challenges. Some of these challenges are concretely discussed and indicators are provided for identifying the promising cases enabling to concentrate on them in the future research. This Review also particularly discusses three representative examples of 2D polymers to provide a state-of-the-art picture of this emerging field of polymer and materials science. Finally, we discuss the range of applications, such as nanomembranes, electronics, optoelectronics and electrocatalysts for water splitting, that are relevant for these novel organic 2D materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  5. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  6. Computational design and fabrication of core-shell magnetic molecularly imprinted polymer for dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography for the determination of rhodamine 6G.

    PubMed

    Xie, Jin; Xie, Jie; Deng, Jian; Fang, Xiangfang; Zhao, Haiqing; Qian, Duo; Wang, Hongjuan

    2016-06-01

    A novel core-shell magnetic nano-adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro-solid-phase extraction followed by determination of rhodamine 6G using high-performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m-aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (3(4) ) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid-base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano-adsorbent was successfully applied to dispersive micro-solid-phase extraction coupled to high-performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0-99.1, 89.5-92.7, and 86.9-105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Liquid-free rechargeable Li polymer battery

    NASA Astrophysics Data System (ADS)

    Matsui, S.; Muranaga, T.; Higobashi, H.; Inoue, S.; Sakai, T.

    Safety is a key concern for high-power energy storage systems such as will be required for electric vehicles. Present lithium ion batteries, which use a flammable organic liquid electrolyte, lack inherent safety. Our approach in solving this problem is to replace the liquid electrolyte with a liquid-free polymer electrolyte. Data of the composition of the positive electrode, charge-discharge and cycle-life capability are presented. The cell using metallic lithium anode and crosslinked polymer electrolyte P(EO/MEEGE/AGE)-LiTFSI showed a discharge capacity of 134 mAh g -1 of LiCoO 2 at 60°C and 140 mAh g -1 at 140°C.

  8. Thermal expansion in dispersion-bound molecular crystals

    NASA Astrophysics Data System (ADS)

    Ko, Hsin-Yu; DiStasio, Robert A.; Santra, Biswajit; Car, Roberto

    2018-05-01

    We explore how anharmonicity, nuclear quantum effects (NQE), many-body dispersion interactions, and Pauli repulsion influence thermal properties of dispersion-bound molecular crystals. Accounting for anharmonicity with ab initio molecular dynamics yields cell parameters accurate to within 2 % of experiment for a set of pyridinelike molecular crystals at finite temperatures and pressures. From the experimental thermal expansion curve, we find that pyridine-I has a Debye temperature just above its melting point, indicating sizable NQE across the entire crystalline range of stability. We find that NQE lead to a substantial volume increase in pyridine-I (≈40 % more than classical thermal expansion at 153 K) and attribute this to intermolecular Pauli repulsion promoted by intramolecular quantum fluctuations. When predicting delicate properties such as the thermal expansivity, we show that many-body dispersion interactions and more sophisticated density functional approximations improve the accuracy of the theoretical model.

  9. Effect of binder liquid type on spherical crystallization.

    PubMed

    Maghsoodi, Maryam; Hajipour, Ali

    2014-11-01

    Spherical crystallization is a process of formation of agglomerates of crystals held together by binder liquid. This research focused on understanding the effect of type of solvents used as binder liquid on the agglomeration of crystals. Carbamazepine and ethanol/water were used respectively as a model drug and crystallization system. Eight solvents as binder liquid including chloroform, dichloromethane, isopropyl acetate, ethyl acetate, n-hexane, dimethyl aniline, benzene and toluene were examined to better understand the relationship between the physical properties of the binder liquid and its ability to bring about the formation of the agglomerates. Moreover, the agglomerates obtained from effective solvents as binder liquid were evaluated in term of size, apparent particle density and compressive strength. In this study the clear trend was observed experimentally in the agglomerate formation as a function of physical properties of the binder liquid such as miscibility with crystallization system. Furthermore, the properties of obtained agglomerates such as size, apparent particle density and compressive strength were directly related to physical properties of effective binder liquids. RESULTS of this study offer a useful starting point for a conceptual framework to guide the selection of solvent systems for spherical crystallization.

  10. Demonstrations with a Liquid Crystal Shutter

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    The experiments presented show the response of a liquid crystal shutter to applied electric voltages and the delay of the operations. Both properties are important for liquid crystal displays of computers and television sets. Two characteristics of the shutter are determined: (i) the optical transmittance versus applied voltage of various…

  11. Wide-field-of-view nanoscale Bragg liquid crystal polarization gratings

    NASA Astrophysics Data System (ADS)

    Xiang, Xiao; Kim, Jihwan; Escuti, Michael J.

    2018-02-01

    Here, we demonstrate a liquid crystal (LC) polymer Bragg polarization grating (PG) with large angular band- width and high efficiency in transmission-mode for 532 nm wavelength and 400 nm period. The field-of-view (FOV ) is increased significantly while preserving high diffraction efficiency by realizing a monolithic grating comprising two different slants. Using rigorous coupled-wave analysis simulation, we identified a structure with 48° FOV and 70% average first-order efficiency. We then experimentally fabricated and characterized the grating with a photo-aligned LC polymer network, also known as reactive mesogens. We measured 40° FOV and nearly 80% average diffraction efficiency. With this broadened and fairly uniform angular response, this wide FOV Bragg PG is a compelling option for large deflection-angle applications, including near-eye display in augmented reality systems, waveguide based illumination, and beam steering.

  12. Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences.

    PubMed

    Pramanik, Chandrani; Gissinger, Jacob R; Kumar, Satish; Heinz, Hendrik

    2017-12-26

    Debundling and dispersion of carbon nanotubes (CNTs) in polymer solutions play a major role in the preparation of carbon nanofibers due to early effects on interfacial ordering and mechanical properties. A roadblock toward ultrastrong fibers is the difficulty to achieve homogeneous dispersions of CNTs in polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) precursor solutions in solvents such as dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). In this contribution, molecular dynamics simulations with accurate interatomic potentials for graphitic materials that include virtual π electrons are reported to analyze the interaction of pristine single wall CNTs with the solvents and polymer solutions at 25 °C. The results explain the barriers toward dispersion of SWCNTs and quantify CNT-solvent, polymer-solvent, as well as CNT-polymer interactions in atomic detail. Debundling of CNTs is overall endothermic and unfavorable with dispersion energies of +20 to +30 mJ/m 2 in the pure solvents, + 20 to +40 mJ/m 2 in PAN solutions, and +20 to +60 mJ/m 2 in PMMA solutions. Differences arise due to molecular geometry, polar, van der Waals, and CH-π interactions. Among the pure solvents, DMF restricts CNT dispersion less due to the planar geometry and stronger van der Waals interactions. PAN and PMMA interact favorably with the pure solvents with dissolution energies of -0.7 to -1.1 kcal per mole monomer and -1.5 to -2.2 kcal per mole monomer, respectively. Adsorption of PMMA onto CNTs is stronger than that of PAN in all solvents as the molecular geometry enables more van der Waals contacts between alkyl groups and the CNT surface. Polar side groups in both polymers prefer interactions with the polar solvents. Higher polymer concentrations in solution lead to polymer aggregation via alkyl groups and reduce adsorption onto CNTs. PAN and PMMA solutions in DMSO and dilute solutions in DMF support CNT dispersion more than other

  13. Strategy for good dispersion of well-defined tetrapods in semiconducting polymer matrices.

    PubMed

    Lim, Jaehoon; Borg, Lisa zur; Dolezel, Stefan; Schmid, Friederike; Char, Kookheon; Zentel, Rudolf

    2014-10-01

    The morphology or dispersion control in inorganic/organic hybrid systems is studied, which consist of monodisperse CdSe tetrapods (TPs) with grafted semiconducting block copolymers with excess polymers of the same type. Tetrapod arm-length and amount of polymer loading are varied in order to find the ideal morphology for hybrid solar cells. Additionally, polymers without anchor groups are mixed with the TPs to study the effect of such anchor groups on the hybrid morphology. A numerical model is developed and Monte Carlo simulations to study the basis of compatibility or dispersibility of TPs in polymer matrices are performed. The simulations show that bare TPs tend to form clusters in the matrix of excess polymers. The clustering is significantly reduced after grafting polymer chains to the TPs, which is confirmed experimentally. Transmission electron microscopy reveals that the block copolymer-TP mixtures ("hybrids") show much better film qualities and TP distributions within the films when compared with the homopolymer-TP mixtures ("blends"), representing massive aggregations and cracks in the films. This grafting-to approach for the modification of TPs significantly improves the dispersion of the TPs in matrices of "excess" polymers up to the arm length of 100 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs.

    PubMed

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-09-01

    Poor water solubility of many drugs has emerged as one of the major challenges in the pharmaceutical world. Polymer-based amorphous solid dispersions have been considered as the major advancement in overcoming limited aqueous solubility and oral absorption issues. The principle drawback of this approach is that they can lack necessary stability and revert to the crystalline form on storage. Significant upfront development is, therefore, required to generate stable amorphous formulations. A thorough understanding of the processes occurring at a molecular level is imperative for the rational design of amorphous solid dispersion products. This review attempts to address the critical molecular and thermodynamic aspects governing the physicochemical properties of such systems. A brief introduction to Biopharmaceutical Classification System, solid dispersions, glass transition, and solubility advantage of amorphous drugs is provided. The objective of this review is to weigh the current understanding of solid dispersion chemistry and to critically review the theoretical, technical, and molecular aspects of solid dispersions (amorphization and crystallization) and potential advantage of polymers (stabilization and solubilization) as inert, hydrophilic, pharmaceutical carrier matrices. In addition, different preformulation tools for the rational selection of polymers, state-of-the-art techniques for preparation and characterization of polymeric amorphous solid dispersions, and drug supersaturation in gastric media are also discussed. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Dispersion-engineered and highly nonlinear microstructured polymer optical fibres

    NASA Astrophysics Data System (ADS)

    Frosz, Michael H.; Nielsen, Kristian; Hlubina, Petr; Stefani, Alessio; Bang, Ole

    2009-05-01

    We demonstrate dispersion-engineering of microstructured polymer optical fibres (mPOFs) made of poly(methyl methacrylate) (PMMA). A significant shift of the total dispersion from the material dispersion is confirmed through measurement of the mPOF dispersion using white-light spectral interferometry. The influence of strong loss peaks on the dispersion (through the Kramers-Kronig relations) is investigated theoretically. It is found that the strong loss peaks of PMMA above 1100 nm can significantly modify the dispersion, while the losses below 1100 nm only modify the dispersion slightly. To increase the nonlinearity of the mPOFs we investigated doping of PMMA with the highly-nonlinear dye Disperse Red 1. Both doping of a PMMA cane and direct doping of a PMMA mPOF was performed.

  16. Shrink wrapping redox-active crystals of polyoxometalate open frameworks with organic polymers via crystal induced polymerisation.

    PubMed

    Takashima, Yohei; Miras, Haralampos N; Glatzel, Stefan; Cronin, Leroy

    2016-06-14

    We report examples of crystal surface modification of polyoxometalate open frameworks whereby the use of pyrrole or aniline as monomers leads to the formation of the corresponding polymers via an oxidative polymerization process initiated by the redox active POM scaffolds. Guest-exchange experiments demonstrate that the polymers can finely tune the guest exchange rate and their structural integrity is retained after the surface modifications. In addition, the formation of polyoxometalate-based self-fabricating tubes by the dissolution of Keggin-based network crystals were also modulated by the polymers, allowing a new type of hybrid inorganic polymer with an organic coating to be fabricated.

  17. Color changing plasmonic surfaces utilizing liquid crystal (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Franklin, Daniel; Wu, Shin-Tson; Chanda, Debashis

    2016-09-01

    Plasmonic structural color has recently garnered significant interest as an alternative to the organic dyes standard in print media and liquid crystal displays. These nanostructured metallic systems can produce diffraction limited images, be made polarization dependent, and exhibit resistance to color bleaching. Perhaps even more advantageous, their optical characteristics can also be tuned, post-fabrication, by altering the surrounding media's refractive index parallel to the local plasmonic fields. A common material with which to achieve this is liquid crystal. By reorienting the liquid crystal molecules through external electric fields, the optical resonances of the plasmonic filters can be dynamically controlled. Demonstrations of this phenomenon, however, have been limited to modest shifts in plasmon resonance. Here, we report a liquid crystal-plasmonic system with an enhanced tuning range through the use of a shallow array of nano-wells and high birefringent liquid crystal. The continuous metallic nanostructure maximizes the overlap between plasmonic fields and liquid crystal while also allowing full reorientation of the liquid crystal upon an applied electric field. Sweeping over structural dimensions and voltages results in a color palette for these dynamic reflective pixels that can further be exploited to create color tunable images. These advances make plasmonic-liquid crystal systems more attractive candidates for filter, display, and other tunable optical technologies.

  18. Molecular dynamics simulations of liquid silica crystallization.

    PubMed

    Niu, Haiyang; Piaggi, Pablo M; Invernizzi, Michele; Parrinello, Michele

    2018-05-07

    Silica is one of the most abundant minerals on Earth and is widely used in many fields. Investigating the crystallization of liquid silica by atomic simulations is of great importance to understand the crystallization mechanism; however, the high crystallization barrier and the tendency of silica to form glasses make such simulations very challenging. Here we have studied liquid silica crystallization to [Formula: see text]-cristobalite with metadynamics, using X-ray diffraction (XRD) peak intensities as collective variables. The frequent transitions between solid and liquid of the biased runs demonstrate the highly successful use of the XRD peak intensities as collective variables, which leads to the convergence of the free-energy surface. By calculating the difference in free energy, we have estimated the melting temperature of [Formula: see text]-cristobalite, which is in good agreement with the literature. The nucleation mechanism during the crystallization of liquid silica can be described by classical nucleation theory. Copyright © 2018 the Author(s). Published by PNAS.

  19. Control of liquid crystal molecular orientation using ultrasound vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Satoki; Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321; Koyama, Daisuke

    2016-03-07

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distributionmore » of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.« less

  20. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.

    PubMed

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-10-01

    To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems

  1. Thermal expansion in dispersion-bound molecular crystals

    DOE PAGES

    Ko, Hsin -Yu; DiStasio, Robert A.; Santra, Biswajit; ...

    2018-05-18

    In this paper, we explore how anharmonicity, nuclear quantum effects (NQE), many-body dispersion interactions, and Pauli repulsion influence thermal properties of dispersion-bound molecular crystals. Accounting for anharmonicity with ab initio molecular dynamics yields cell parameters accurate to within 2% of experiment for a set of pyridinelike molecular crystals at finite temperatures and pressures. From the experimental thermal expansion curve, we find that pyridine-I has a Debye temperature just above its melting point, indicating sizable NQE across the entire crystalline range of stability. We find that NQE lead to a substantial volume increase in pyridine-I (≈ 40% more than classical thermalmore » expansion at 153 K) and attribute this to intermolecular Pauli repulsion promoted by intramolecular quantum fluctuations. Finally, when predicting delicate properties such as the thermal expansivity, we show that many-body dispersion interactions and more sophisticated density functional approximations improve the accuracy of the theoretical model.« less

  2. Thermal expansion in dispersion-bound molecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Hsin -Yu; DiStasio, Robert A.; Santra, Biswajit

    In this paper, we explore how anharmonicity, nuclear quantum effects (NQE), many-body dispersion interactions, and Pauli repulsion influence thermal properties of dispersion-bound molecular crystals. Accounting for anharmonicity with ab initio molecular dynamics yields cell parameters accurate to within 2% of experiment for a set of pyridinelike molecular crystals at finite temperatures and pressures. From the experimental thermal expansion curve, we find that pyridine-I has a Debye temperature just above its melting point, indicating sizable NQE across the entire crystalline range of stability. We find that NQE lead to a substantial volume increase in pyridine-I (≈ 40% more than classical thermalmore » expansion at 153 K) and attribute this to intermolecular Pauli repulsion promoted by intramolecular quantum fluctuations. Finally, when predicting delicate properties such as the thermal expansivity, we show that many-body dispersion interactions and more sophisticated density functional approximations improve the accuracy of the theoretical model.« less

  3. Blue phase liquid crystal: strategies for phase stabilization and device development

    PubMed Central

    Rahman, M D Asiqur; Mohd Said, Suhana; Balamurugan, S

    2015-01-01

    The blue phase liquid crystal (BPLC) is a highly ordered liquid crystal (LC) phase found very close to the LC–isotropic transition. The BPLC has demonstrated potential in next-generation display and photonic technology due to its exceptional properties such as sub-millisecond response time and wide viewing angle. However, BPLC is stable in a very small temperature range (0.5–1 °C) and its driving voltage is very high (∼100 V). To overcome these challenges recent research has focused on solutions which incorporate polymers or nanoparticles into the blue phase to widen the temperature range from around few °C to potentially more than 60 °C. In order to reduce the driving voltage, strategies have been attempted by modifying the device structure by introducing protrusion or corrugated electrodes and vertical field switching mechanism has been proposed. In this paper the effectiveness of the proposed solution will be discussed, in order to assess the potential of BPLC in display technology and beyond. PMID:27877782

  4. Polymer composites reinforced by locking-in a liquid-crystalline assembly of cellulose nanocrystallites.

    PubMed

    Tatsumi, Mio; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2012-05-14

    An attempt was made to synthesize novel composites comprising poly(2-hydroxyethyl methacrylate) (PHEMA) and cellulose nanocrystallites (CNC) (acid-treated cotton microfibrils) from suspensions of CNC in an aqueous 2-hydroxyethyl methacrylate (HEMA) monomer solution. The starting suspensions (∼5 wt % CNC) separated into an isotropic upper phase and an anisotropic bottom one in the course of quiescent standing. By way of polymerization of HEMA in different phase situations of the suspensions, we obtained films of three polymer composites, PHEMA-CNC(iso), PHEMA-CNC(aniso), and PHEMA-CNC(mix), coming from the isotropic phase, anisotropic phase, and embryonic nonseparating mixture, respectively. All the composites were transparent and, more or less, birefringent under a polarized optical microscope. A fingerprint texture typical of cholesteric liquid crystals of longer pitch spread widely in PHEMA-CNC(aniso) but rather locally appeared in PHEMA-CNC(iso). Any of the CNC incorporations into the PHEMA matrix improved the original thermal and mechanical properties of this amorphous polymer material. In dynamic mechanical measurements, the locking-in of the respective CNC assemblies gave rise to an increase in the glass-state modulus E' of PHEMA as well as a marked suppression of the E'-falling at temperatures higher than T(g) (≈ 110 °C) of the vinyl polymer. It was also observed for the composites that their modulus E' rerose in a range of about 150-190 °C, which was attributable to a secondary cross-linking formation between PHEMA chains mediated by the acidic CNC filler. The mechanical reinforcement effect of the CNC dispersions was ensured in a tensile test, whereby PHEMA-CNC(aniso) was found to surpass the other two composites in stiffness and strength.

  5. Aqueous Polymer Dispersion Coating Used for Osmotic Pump Tablets: Membrane Property Investigation and IVIVC Evaluation.

    PubMed

    Cheng, Lizhen; Gai, Xiumei; Wen, Haoyang; Liu, Dandan; Tang, Xin; Wang, Yanyan; Wang, Tuanjie; Pan, Weisan; Yang, Xinggang

    2018-01-01

    The objective of this study was to investigate the fundamental properties of propranolol hydrochloride osmotic pump tablets coated by aqueous polymer dispersion, simultaneously exploring the in vitro and in vivo correlation of the tablet. The physicochemical properties and parameters of aqueous polymer dispersion membranes (SEM, water uptake, and water vapor transmission coefficient) were investigated. In addition, the release behavior and the in vitro release and in vivo absorption profiles of the tablets coated by aqueous polymer dispersion were investigated by comparing with propranolol hydrochloride osmotic pump tablets coated by an organic solvent. Results showed that the similarity factor (f 2 ) between cellulose acetate-coated tablet and Eudragit-coated tablet was 78.1, and f 2 between cellulose acetate-coated tablet and Kollicoat-coated tablet was 77.6. The linear IVIVC of Eudragit-coated and Kollicoat-coated osmotic pump tablets was determined, which confirmed excellent correlation between the absorption in vivo and the drug release in vitro. Consequently, the membrane coated by aqueous polymer dispersion or organic solvent has similar in vitro release rates of controlled release. Also, compared with organic solvent coating, aqueous polymer dispersion has numerous advantages, such as reduced toxicity and no environmental damage. Therefore, the aqueous polymer dispersion technology has enormous potential as a replacement of organic solvent coating.

  6. Two distinct crystallization processes in supercooled liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tane, Masakazu, E-mail: mtane@sanken.osaka-u.ac.jp; Kimizuka, Hajime; Ichitsubo, Tetsu

    2016-05-21

    Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al{sub 2}O{sub 3} model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al{sub 2}O{sub 3} exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquidmore » does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport.« less

  7. Submillisecond-response IR spatial light modulators with polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Chen, Yuan; Wu, Shin-Tson

    2013-03-01

    Polymer network liquid crystal (PNLC) is attractive for many photonic applications because of its fast response time and large phase modulation. However, the voltage-on state light scattering caused by multi-domains of LC molecules hinders its applications in the visible and near infrared regions. To reduce domain sizes and eliminate scattering for λ=1.06 μm and 1.55 μm, we studied the effect of LC viscosity on domain sizes. PNLCs based on five different LC hosts were prepared. The LC host was first mixed with 6% reactive mesogen and then filled into a 12-μm cell with homogeneous alignment. After UV curing, we measured the on-state transmission spectra of these five PNLCs. By fitting the transmission spectra with Rayleigh-Gans-Debye model, we can estimate the average domain sizes. We found that the domain sizes of PNLC are inversely proportional to the rotational viscosity of the LC host. This finding can be explained by the Stokes-Einstein equation. As a result, PNLC with a slower diffusion rate would cause smaller domain sizes, which in turn lead to faster response time. To achieve a slower diffusion rate, we cured the PNLC samples at a lower temperature. By selecting a high viscosity and high Δɛ LC host, we demonstrate a scattering-free (<3%) 2π phase modulator at λ=1.06 μm and λ=1.55 μm. Temperature affects the PNLC performance significantly. As the operation temperature increases from 25oC to 70oC, the response time drops from 220 μs to 30 μs. 2π operating voltage for λ=1.06 μm slightly increases from 65V to 85V. Meanwhile, hysteresis decreases from 7.7% to 2%. For λ=1.55μm, operating voltage is 100V. If reflective mode is employed, operating voltage can be reduced to 55V.

  8. Optic properties of bile liquid crystals in human body

    PubMed Central

    Yang, Hai Ming; Wu, Jie; Li, Jin Yi; Zhou, Jian Li; He, Li Jun; Xu, Xian Fang

    2000-01-01

    AIM: To further study the properties of bile liquid crystals, and probe into the relationship between bile liquid crystals and gallbladder stone formation, and provide evidence for the prevention and treatment of cholecystolithiasis. METHODS: The optic properties of bile liquid crystals in human body were determined by the method of crystal optics under polarizing microscope with plane polarized light and perpendicular polarized light. RESULTS: Under a polarizing microscope with plane polarized light, bile liquid crystals scattered in bile appeared round, oval or irregularly round. The color of bile liquid crystals was a little lighter than that of the bile around. When the stage was turned round, the color of bile liquid crystals or the darkness and lightness of the color did not change obviously. On the border between bile liquid crystals and the bile around, brighter Becke-Line could be observed. When the microscope tube is lifted, Becke-Line moved inward, and when lowered, Becke-Line moved outward. Under a perpendicular polarized light, bile liquid crystals showd some special interference patterns, called Malta cross. When the stage was turning round at an angle of 360°, the Malta cross showed four times of extinction. In the vibrating direction of 45° angle of relative to upper and lower polarizing plate, gypsum test-board with optical path difference of 530 nm was inserted, the first and the third quadrants of Malt a cross appeared to be blue, and the second and the fourth quadrants appeared orange. When mica test-board with optical path difference of 147 nm was inserted, the first and the third quadrants of Malta cross appeared yellow, and the second and the fourth quadrants appeared dark grey. CONCLUSION: The bile liquid crystals were distributed in bile in the form of global grains. Their polychroism and absorption were slight, but the edge and Becke*Line were very clear. Its refractive index was larger than that of the bile. These liquid crystals were

  9. The effect of geometric and electric constraints on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band

    NASA Astrophysics Data System (ADS)

    Relaix, Sabrina; Mitov, Michel

    2008-08-01

    Polymer-stabilized cholesteric liquid crystals (PSCLCs) with a double-handed circularly polarized reflection band are fabricated. The geometric and electric constraints appear to be relevant parameters in obtaining a single-layer CLC structure with a clear-cut double-handed circularly polarized reflection band since light scattering phenomena can alter the reflection properties when the PSCLC is cooled from the elaboration temperature to the operating one. A compromise needs to be found between the LC molecule populations, which are bound to the polymer network due to strong surface effects or not. Besides, a monodomain texture is preserved if the PSCLC is subjected to an electric field at the same time as the thermal process intrinsic to the elaboration process. As a consequence, the light scattering is reduced and both kinds of circularly polarized reflected light beams are put in evidence. Related potential applications are smart reflective windows for the solar light management or reflective polarizer-free displays with higher brightness.

  10. Semiconductor liquid crystal composition and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Li, Liang-shi

    2005-04-26

    Semiconductor liquid crystal compositions and methods for making such compositions are disclosed. One embodiment of the invention is directed to a liquid crystal composition including a solvent and semiconductor particles in the solvent. The solvent and the semiconductor particles are in an effective amount in the liquid crystal composition to form a liquid crystal phase.

  11. Thermotropic liquid crystals from biomacromolecules

    PubMed Central

    Liu, Kai; Chen, Dong; Marcozzi, Alessio; Zheng, Lifei; Su, Juanjuan; Pesce, Diego; Zajaczkowski, Wojciech; Kolbe, Anke; Pisula, Wojciech; Müllen, Klaus; Clark, Noel A.; Herrmann, Andreas

    2014-01-01

    Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components. PMID:25512508

  12. Liquid Crystals for Laser Applications

    DTIC Science & Technology

    1992-07-01

    336. Zei’dovich, B . Ya. and Tabiryan, N. V., Induced light scattering in the mesophase of a nematic liquid crystal (NLC), JETP Lett., 30, 478- 482 ...and devices. ADVANCES IN MATERIALS I Ferroelectric LC’s Ferroelectricity in liquid crystals was first suggested in 1974 by R. B . Meyer2 3 who, by means...most recently, 2 4 the M* phase. These tilted chiral smectic phases are classified according to the nature of the intermolecular I I packing within

  13. Nano Liquid Crystal Droplet Impact on Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; de Pablo, Juan; dePablo Team

    2015-03-01

    Liquid droplet impaction on solid surfaces is an important problem with a wide range of applications in everyday life. Liquid crystals (LCs) are anisotropic liquids whose internal structure gives rise to rich optical and morphological phenomena. In this work we study the liquid crystal droplet impaction on solid surfaces by molecular dynamics simulations. We employ a widely used Gay-Berne model to describe the elongated liquid crystal molecules and their interactions. Our work shows that, in contrast to isotropic liquids, drop deformation is symmetric unless an instability kicks in, in which case a nano scale liquid crystal droplet exhibits distinct anisotropic spreading modes that do not occur in simple liquids. The drop prefers spreading along the low viscosity direction, but inertia can in some cases overcome that bias. The effects of the director field of the droplet, preferred anchoring direction and the anchoring strength of the wall are investigated. Large scale (0.1 micron) simulations are performed to connect our nano scale results to the experiments. Our studies indicate that LCs could provide an interesting alternative for development of next-generation printing inks.

  14. All-optical image processing with nonlinear liquid crystals

    NASA Astrophysics Data System (ADS)

    Hong, Kuan-Lun

    Liquid crystals are fascinating materials because of several advantages such as large optical birefringence, dielectric anisotropic, and easily compatible to most kinds of materials. Compared to the electro-optical properties of liquid crystals widely applied in displays and switching application, transparency through most parts of wavelengths also makes liquid crystals a better candidate for all-optical processing. The fast response time of liquid crystals resulting from multiple nonlinear effects, such as thermal and density effect can even make real-time processing realized. In addition, blue phase liquid crystals with spontaneously self-assembled three dimensional cubic structures attracted academic attention. In my dissertation, I will divide the whole contents into six parts. In Chapter 1, a brief introduction of liquid crystals is presented, including the current progress and the classification of liquid crystals. Anisotropy and laser induced director axis reorientation is presented in Chapter 2. In Chapter 3, I will solve the electrostrictive coupled equation and analyze the laser induced thermal and density effect in both static and dynamic ways. Furthermore, a dynamic simulation of laser induced density fluctuation is proposed by applying finite element method. In Chapter 4, two image processing setups are presented. One is the intensity inversion experiment in which intensity dependent phase modulation is the mechanism. The other is the wavelength conversion experiment in which I can read the invisible image with a visible probe beam. Both experiments are accompanied with simulations to realize the matching between the theories and practical experiment results. In Chapter 5, optical properties of blue phase liquid crystals will be introduced and discussed. The results of grating diffractions and thermal refractive index gradient are presented in this chapter. In addition, fiber arrays imaging and switching with BPLCs will be included in this chapter

  15. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  16. Electrically tunable liquid crystal photonic bandgap fiber laser

    NASA Astrophysics Data System (ADS)

    Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders

    2010-02-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.

  17. Shear Strength of Stabilized Kaolin Soil Using Liquid Polymer

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Fazlina, M. I. S.; Nizam, Z. M.; Fairus, Y. M.; Hakimi, M. N. A.; Riduan, Y.; Faizal, P.

    2017-08-01

    The purpose of this research is to investigate the suitability of polymer in soil stabilization by examining its strength to withstand compressive strength. Throughout this research study, manufactured polymer was used as a chemical liquid soil stabilizer. The liquid polymer was diluted using a proposed dilution factor of 1 : 3 (1 part polymer: 3 parts distilled water) to preserve the workability of the polymer in kaolin mixture. A mold with a diameter of 50 mm and a height of 100 mm was prepared. Kaolin soil was mixed with different percentages of polymer from 10%, 15%, 20%, 25%, 30% and 35% of the mass of the kaolin clay sample. Kaolin mixtures were tested after a curing period of 3 days, 7 days, 14 days and 28 days respectively. The physical properties were determined by conducting a moisture content test and Atterberg limit test which comprise of liquid limit, plastic limit and shrinkage limit. Meanwhile, the mechanical properties of the soil shear strength were identified through an unconfined compressive strength (UCS) test. Stabilized kaolin soil showed the highest compressive strength value when it was mixed with 35% of polymer compared to other percentages that marked an increment in strength which are 45.72% (3 days), 67.57% (7 days), 81.73% (14 days) and 77.84% (28 days). Hence, the most effective percentage of liquid polymer which should be used to increase the strength of kaolin soil is 35%.

  18. Dispersive liquid-liquid microextraction of phenolic compounds from vegetable oils using a magnetic ionic liquid.

    PubMed

    Zhu, Shuqiang; Wang, Lijun; Su, Along; Zhang, Haixia

    2017-08-01

    A novel method was developed for the determination of two endocrine-disrupting chemicals, bisphenol A and 4-nonylphenol, in vegetable oil by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography with tandem mass spectrometry. Using a magnetic liquid as the microextraction solvent, several key parameters were optimized, including the type and volume of the magnetic liquid, extraction time, amount of dispersant, and the type of reverse extractant. The detection limits for bisphenol A and 4-nonylphenol were 0.1 and 0.06 μg/kg, respectively. The recoveries were 70.4-112.3%, and the relative standard deviations were less than 4.2%. The method is simple for the extraction of bisphenol A and 4-nonylphenol from vegetable oil and suitable for routine analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions

    DOEpatents

    Tsouris, Constantinos; Dong, Junhang

    2002-01-01

    The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.

  20. A study of waste liquid crystal display generation in mainland China.

    PubMed

    Liu, Zhifeng; Xu, Zeying; Huang, Haihong; Li, Bingbing

    2016-01-01

    The generation of liquid crystal display waste is becoming a serious social problem. Predicting liquid crystal display waste status is the foundation for establishing a recycling network; however, the difficulty in predicting liquid crystal display waste quantity lies in data mining. In order to determine the quantity and the distribution of liquid crystal display waste in China, the four top-selling liquid crystal display products (liquid crystal display TVs, desktop PCs, notebook PCs, and mobile phones) were selected as study objects. Then, the extended logistic model and market supply A method was used to predict the quantity of liquid crystal display waste products. Moreover, the distribution of liquid crystal display waste products in different regions was evaluated by examining the consumption levels of household equipment. The results revealed that the quantity of waste liquid crystal displays would increase rapidly in the next decade. In particular, the predicted quantity of waste liquid crystal displays would rise to approximately 4.262 × 10(9) pieces in 2020, and the total display area (i.e. the surface area of liquid crystal display panels) of waste liquid crystal displays would reach 5.539 × 10(7) m(2). The prediction on the display area of waste liquid crystal display TVs showed that it would account for 71.5% of the total display area by 2020. Meanwhile, the quantity of waste mobile phones would significantly grow, increasing 5.8 times from 2012 to 2020. In terms of distribution, Guangdong is the top waste liquid crystal display-generating province in China, followed by Jiangsu, Shandong, Henan, Zhejiang, and Sichuan. Considering its regional characteristics, Guangdong has been proposed to be the most important location of the recycling network. © The Author(s) 2015.

  1. Thermodynamics of the Electric Field Induced Orientation of Nematic Droplet/Polymer Films

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.

    1989-07-01

    Films consisting of micron-sized nematic liquid crystal droplets dispersed in a polymer matrix (NCAP) represent an important new class of electro-optical devices. These films strongly scatter light in the tm powered state, but achieve a high degree of clarity when an electric field is applied. In this report we describe the aspects of liquid crystal and polymer composition that control the magnitude of the electric field required to orient the nematic droplets. The droplet shape is found to be an important factor in the electro-optical response of these films. In films deposited from aqueous solutions the nematic cavities in the film are usually oblate in nature, with the short axis perpendicular to the film plane. The nematic, which adopts a bipolar configuration within the cavity, is preferentially aligned so that each droplet's symmetry axis is aligned parallel to the film plane in the rest state, but rotates to lie parallel with the field in the powered state. Capacitance data is presented which supports this picture. It is shown that the nematic droplet shape can be a major factor in determining the thermodynamics of droplet orientation.

  2. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S.

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  3. Sunlight-switchable light shutter fabricated using liquid crystals doped with push-pull azobenzene.

    PubMed

    Oh, Seung-Won; Baek, Jong-Min; Yoon, Tae-Hoon

    2016-11-14

    We propose a sunlight-switchable light shutter using liquid crystal/polymer composite doped with push-pull azobenzene. The proposed light shutter is switchable between the translucent and transparent states by application of an electric field or by UV irradiation. Switching by UV irradiation is based on the change of the liquid crystal (LC) clearing point by the photo-isomerization effect of push-pull azobenzene. Under sunlight, the light shutter can be switched from the translucent to the transparent state by the nematic-isotropic phase transition of the LC domains triggered by trans-cis photo-isomerization of the push-pull azobenzene molecules. When the amount of sunlight is low because of cloud cover or when there is no sunlight at sunset, the light shutter rapidly relaxes from its transparent state back to its initial translucent state by the isotropic-nematic phase transition induced by cis-trans back-isomerization of the push-pull azobenzene molecules.

  4. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2015-09-30

    liquid crystals for infrared laser beam steering applications. To suppress the optical loss in MW1R and LW1R, we have investigated following...dielectric anisotropy, and low optical loss nematic liquid crystals for infrared laser beam steering applications. To suppress the optical loss in MWIR and...modulators. 1. Objective The main objective of this program is to develop low-loss liquid crystals for electronic laser beam steering in the infrared

  5. Dynamic Photonic Materials Based on Liquid Crystals (Postprint)

    DTIC Science & Technology

    2013-09-01

    AFRL-RX-WP-JA-2015-0059 DYNAMIC PHOTONIC MATERIALS BASED ON LIQUID CRYSTALS (POSTPRINT) Luciano De Sio and Cesare Umeton University...ON LIQUID CRYSTALS (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) (see back...10.1016/B978-0-444-62644-8.00001-7. 14. ABSTRACT Liquid crystals, combining optical non-linearity and self-organizing properties with fluidity, and being

  6. Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology.

    PubMed

    Cunningham, Patrick D; Souza, João B; Fedin, Igor; She, Chunxing; Lee, Byeongdu; Talapin, Dmitri V

    2016-06-28

    Semiconductor nanorods can emit linear-polarized light at efficiencies over 80%. Polarization of light in these systems, confirmed through single-rod spectroscopy, can be explained on the basis of the anisotropy of the transition dipole moment and dielectric confinement effects. Here we report emission polarization in macroscopic semiconductor-polymer composite films containing CdSe/CdS nanorods and colloidal CdSe nanoplatelets. Anisotropic nanocrystals dispersed in polymer films of poly butyl-co-isobutyl methacrylate (PBiBMA) can be stretched mechanically in order to obtain unidirectionally aligned arrays. A high degree of alignment, corresponding to an orientation factor of 0.87, was achieved and large areas demonstrated polarized emission, with the contrast ratio I∥/I⊥ = 5.6, making these films viable candidates for use in liquid crystal display (LCD) devices. To some surprise, we observed significant optical anisotropy and emission polarization for 2D CdSe nanoplatelets with the electronic structure of quantum wells. The aligned nanorod arrays serve as optical funnels, absorbing unpolarized light and re-emitting light from deep-green to red with quantum efficiencies over 90% and high degree of linear polarization. Our results conclusively demonstrate the benefits of anisotropic nanostructures for LCD backlighting. The polymer films with aligned CdSe/CdS dot-in-rod and rod-in-rod nanostructures show more than 2-fold enhancement of brightness compared to the emitter layers with randomly oriented nanostructures. This effect can be explained as the combination of linearly polarized luminescence and directional emission from individual nanostructures.

  7. Dynamic Self-Stiffening in Liquid Crystal Elastomers

    PubMed Central

    Agrawal, Aditya; Chipara, Alin C.; Shamoo, Yousif; Patra, Prabir K.; Carey, Brent J.; Ajayan, Pulickel M.; Chapman, Walter G.

    2013-01-01

    Biological tissues have the remarkable ability to remodel and repair in response to disease, injury, and mechanical stresses. Synthetic materials lack the complexity of biological tissues, and man-made materials which respond to external stresses through a permanent increase in stiffness are uncommon. Here, we report that polydomain nematic liquid crystal elastomers increase in stiffness by up to 90% when subjected to a low-amplitude (5%), repetitive (dynamic) compression. Elastomer stiffening is influenced by liquid crystal content, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through rheological and X-ray diffraction measurements, stiffening can be attributed to a nematic director which rotates in response to dynamic compression. Stiffening under dynamic compression has not been previously observed in liquid crystal elastomers and may be useful for the development of self-healing materials or for the development of biocompatible, adaptive materials for tissue replacement. PMID:23612280

  8. Liquid crystal polyester-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  9. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    PubMed

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  10. Nanoparticles Doped Liquid Crystal Filled Photonic Bandgap Fibers

    NASA Astrophysics Data System (ADS)

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders

    2008-10-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum to the one achieved with undoped liquid crystals. New interesting features such as frequency dependent behavior and a transmission spectrum with tunable attenuation on the short wavelength side of the bandgap suggest a potential application of this device as a tunable all-in-fiber gain equalization filter. The tunability of the device is demonstrated by changing the temperature of the liquid crystal and by varying both the amplitude and the frequency of the applied external electric field.

  11. Liquid crystals in micron-scale droplets, shells and fibers

    NASA Astrophysics Data System (ADS)

    Urbanski, Martin; Reyes, Catherine G.; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P. F.

    2017-04-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  12. Living liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S.; Sokolov, A.; Lavrentovich, O. D.

    2014-01-13

    Collective motion of self-propelled organisms or synthetic par­ticles, often termed •active fluid,• has attracted enormous atten­tion in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here,we introduce a class of active matter-living liquid crystals (UCs}­ that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingre­dients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena. caused by the coupling between themore » activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence­ enabled visualization of microflow generated by the nanometers­ thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications.« less

  13. Crystallization, biomimetics and semiconducting polymers in confined systems. (German Title: Kristallisation, Biomimetik und halbleitende Polymere in räumlich begrenzten Systemen)

    NASA Astrophysics Data System (ADS)

    Montenegro, Rivelino V. D.

    2003-05-01

    The colloidal systems are present everywhere in many varieties such as emulsions (liquid droplets dispersed in liquid), aerosols (liquid dispersed in gas), foam (gas in liquid), etc. Among several new methods for the preparation of colloids, the so-called miniemulsion technique has been shown to be one of the most promising. Miniemulsions are defined as stable emulsions consisting of droplets with a size of 50-500 nm by shearing a system containing oil, water, a surfactant, and a highly water insoluble compound, the so-called hydrophobe 1. In the first part of this work, dynamic crystallization and melting experiments are described which were performed in small, stable and narrowly distributed nanodroplets (confined systems) of miniemulsions. Both regular and inverse systems were examined, characterizing, first, the crystallization of hexadecane, secondly, the crystallization of ice. It was shown for both cases that the temperature of crystallization in such droplets is significantly decreased (or the required undercooling is increased) as compared to the bulk material. This was attributed to a very effective suppression of heterogeneous nucleation. It was also found that the required undercooling depends on the nanodroplet size: with decreasing droplet size the undercooling increases. 2. It is shown that the temperature of crystallization of other n-alkanes in nanodroplets is also significantly decreased as compared to the bulk material due to a very effective suppression of heterogeneous nucleation. A very different behavior was detected between odd and even alkanes. In even alkanes, the confinement in small droplets changes the crystal structure from a triclinic (as seen in bulk) to an orthorhombic structure, which is attributed to finite size effects inside the droplets. An intermediate metastable rotator phase is of less relevance for the miniemulsion droplets than in the bulk. For odd alkanes, only a strong temperature shift compared to the bulk system is

  14. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    ERIC Educational Resources Information Center

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  15. Crystallization kinetics and thermal resistance of bamboo fiber reinforced biodegradable polymer composites

    NASA Astrophysics Data System (ADS)

    Thumsorn, S.; Srisawat, N.; On, J. Wong; Pivsa-Art, S.; Hamada, H.

    2014-05-01

    Bamboo fiber reinforced biodegradable polymer composites were prepared in this study. Biodegradable poly(butylene succinate) (PBS) was blended with bamboo fiber in a twin screw extruder with varied bamboo content from 20-0wt%. PBS/bamboo fiber composites were fabricated by compression molding process. The effect of bamboo fiber contents on properties of the composites was investigated. Non-isothermal crystallization kinetic study of the composites was investigated based on Avrami equation. The kinetic parameters indicated that bamboo fiber acted as heterogeneous nucleation and enhanced crystallinity of the composites. Bamboo fiber was well dispersed on PBS matrix and good adhered with the matrix. Tensile strength of the composites slightly deceased with adding bamboo fiber. However, tensile modulus and impact strength of the composites increased when increasing bamboo fiber contents. It can be noted that bamboo fiber promoted crystallization and crystallinity of PBS in the composites. Therefore, the composites were better in impact load transferring than neat PBS, which exhibited improving on impact performance of the composites.

  16. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound.

    PubMed

    Chen, Xingwu; Wang, Ling; Chen, Yinjie; Li, Chenyue; Hou, Guoyan; Liu, Xin; Zhang, Xiaoguang; He, Wanli; Yang, Huai

    2014-01-21

    A chiral nematic liquid crystal-photopolymerizable monomer-chiral azobenzene compound composite was prepared and then polymerized under UV irradiation. The reflection wavelength of the composite can be extended to cover the 1000-2400 nm range and also be adjusted to the visible light region by controlling the concentration of chiral compounds.

  17. Light scattering by a nematic liquid crystal droplet: Wentzel–Kramers–Brillouin approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.; Miskevich, A. A.

    2016-01-15

    Light scattering by an optically anisotropic liquid crystal (LC) droplet of a nematic in an isotropic polymer matrix is considered in the Wentzel–Kramers–Brillouin (WKB) approximation. General relations are obtained for elements of the amplitude matrix of light scattering by a droplet of arbitrary shape and for the structure of the director field. Analytic expressions for the amplitude matrices are derived for spherical LC droplets with a uniformly oriented structure of local optical axes for strictly forward and strictly backward scattering. The efficiency factors of extinction and backward scattering for a spherical nonabsorbing LC droplet depending on the LC optical anisotropy,more » refractive index of the polymer, illumination conditions, and orientation of the optical axis of the droplet are analyzed. Verification of the obtained solutions has been performed.« less

  18. Drug-polymer interactions at water-crystal interfaces and implications for crystallization inhibition: molecular dynamics simulations of amphiphilic block copolymer interactions with tolazamide crystals.

    PubMed

    Gao, Yi; Olsen, Kenneth W

    2015-07-01

    A diblock copolymer, poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA), modulates the crystal growth of tolazamide (TLZ), resulting in a crystal morphology change from needles to plates in aqueous media. To understand this crystal surface drug-polymer interaction, we conducted molecular dynamics simulations on crystal surfaces of TLZ in water containing PEG-b-PLA. A 130-ns simulation of the polymer in a large water box was run before initiating 50 ns simulations with each of the crystal surfaces. The simulations demonstrated differentiated drug-polymer interactions that are consistent with experimental studies. Interaction of PEG-b-PLA with the (001) face occurred more rapidly (≤10 ns) and strongly (total interaction energy of -121.1 kJ/mol/monomer) than that with the (010) face (∼35 ns, -85.4 kJ/mol/monomer). There was little interaction with the (100) face. Hydrophobic and van der Waals (VDW) interactions were the dominant forces, accounting for more than 90% of total interaction energies. It suggests that polymers capable of forming strong hydrophobic and VDW interactions might be more effective in inhibiting crystallization of poorly water-soluble and hydrophobic drugs in aqueous media (such as gastrointestinal fluid) than those with hydrogen-bonding capacities. Such in-depth analysis and understanding facilitate the rational selection of polymers in designing supersaturation-based enabling formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. A study of substrate-liquid crystal interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Baoshe

    This thesis concerns the study of substrate-liquid crystal interaction from two different angles. In one approach, we used the IPS (in-plane switching) technique to investigate the liquid crystal alignment by rubbed polyimide films. The IPS mode of liquid crystal cell operation is facilitated through comb electrodes capable of producing planar electric field. We have fabricated comb electrodes with a periodicity of 2 mum in order to confine the planar electric field close to the liquid crystal-substrate interface. Through optical transmittance measurements and comparison with theoretical predictions based on the Ladau-de Gennes formalism, we found the experimental data to be consistent with the physical picture of soft anchoring, in which the liquid crystal director at the substrate interface is rotated azimuthally under the planar electric field. As a result, we were able to obtain the azimuthal anchoring strength as a fitting parameter of the theory. This part of the thesis thus presents evidence(s) for director switching at the liquid crystal-substrate interface, as well as a method for measuring the azimuthal anchoring strength through optical means. In the second approach, we used nano-lithographic technique to fabricate textured two dimensional periodic patterns on silicon wafers, and examined the resulting liquid crystal alignment effect of such textured substrates. It was found that with decreasing periodicity, there exists an orientational transition from a state in which the liquid crystal alignment copies the substrate pattern at larger periodicity, to a state of uniform alignment at smaller periodicity. In our system, this transition occurs at a periodicity between 0.4 mum and 0.8 mum. Through theoretical simulations based on the model of competition between the elastic distortion energy and the interfacial anchoring potential, it was found that there is indeed a first-order abrupt transition when the periodicity is decreased. This is due to the fact

  20. Trypsin coatings on electrospun and alcohol-dispersed polymer nanofibers for trypsin digestion column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Seung-Hyun; Chang, Mun Seock; Kim, Byoung Chan

    2010-09-15

    The construction of a trypsin reactor in a chromatography column for rapid and efficient protein digestion in proteomics is described. Electrospun and alcohol-dispersed polymer nanofibers were used for the fabrication of highly stable trypsin coating, which was prepared by a two-step process of covalent attachment and enzyme crosslinking. In a comparative study with the trypsin coatings on asspun and non-dispersed nanofibers, it has been observed that a simple step of alcohol dispersion improved not only the enzyme loading but also the performance of protein digestion. In-column digestion of enolase was successfully performed in less than twenty minutes. By applying themore » alcohol dispersion of polymer nanofibers, the bypass of samples was reduced by filling up the column with well-dispersed nanofibers, and subsequently, interactions between the protein and the enzymes were improved yielding more complete and reproducible digestions. Regardless of alcohol-dispersion or not, trypsin coating showed better digestion performance and improved performance stability under recycled uses than covalently-attached trypsin. The combination of highly stable trypsin coating and alcoholdispersion of polymer nanofibers has opened up a new potential to develop a trypsin column for on-line and automated protein digestion.« less

  1. Single crystal, liquid crystal, and hybrid organic semiconductors

    NASA Astrophysics Data System (ADS)

    Twieg, Robert J.; Getmanenko, Y.; Lu, Z.; Semyonov, A. N.; Huang, S.; He, P.; Seed, A.; Kiryanov, A.; Ellman, B.; Nene, S.

    2003-07-01

    The synthesis and characterization of organic semiconductors is being pursued in three primary structure formats: single crystal, liquid crystal and organic-inorganic hybrid. The strategy here is to share common structures, synthesis methods and fabrication techniques across these formats and to utilize common characterization tools such as the time of flight technique. The single crystal efforts concentrate on aromatic and heteroaromatic compounds including simple benzene derivatives and derivatives of the acenes. The structure-property relationships due to incorporation of small substituents and heteroatoms are being examined. Crystals are grown by solution, melt or vapor transport techniques. The liquid crystal studies exploit their self-organizing properties and relative ease of sample preparation. Though calamitic systems tha deliver the largest mobilities are higher order smectics, even some unusual twist grain boundary phases are being studied. We are attempting to synthesize discotic acene derivatives with appropriate substitution patterns to render them mesogenic. The last format being examined is the hybrid organic-inorganic class. Here, layered materials of alternating organic and inorganic composition are designed and synthesized. Typical materials are conjugated aromatic compounds, usually functinalized with an amine or a pyridine and reacted with appropriate reactive metal derivatives to incorporate them into metal oxide or sulfide layers.

  2. Mechanical and electro-optical properties of unconventional liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Liao, Guangxun

    Four types of unconventional liquid crystal systems - amphotropic glycolipids; novel bent-core liquid crystals, bent-core liquid crystal and glycolipid mixtures, and colloidal crystal-liquid crystal systems - were studied and characterized by polarizing microscopy, electrical current, digital scanning calorimetry, and dielectric spectroscopy. Thermotropic properties of glycolipids show a number of unusual properties, most notably high (60-120) relative dielectric constants mainly proportional to the number of polar sugar heads. The relaxation of this dielectric mode is found to be governed by the hydrogen bonding between sugar heads. Studies on novel bent-core liquid crystals reveal a new optically isotropic ferroelectric phase, molecular chirality-induced polarity, and transitions between molecular chirality and polarity driven phases. Mixtures of several bent-core substances with nematic, polar SmA and SmC phases, and a simple amphiphilic sugar lipid with SmA mesophase found to obey the well known miscibility rules, i.e. the sugar lipid mixes best with the polar SmA bent-core material. In addition, the chiral sugar lipid was found to induce tilt to the non-tilted polar SmA phase, which represents a new direction among the chirality--polarity--tilt relations. The effects of the surface properties and electric fields were studied on various colloid particles--and liquid crystal systems. It is found that the surface properties (hydrophobicity, roughness, rubbing) of the substrates are important in determining the size and symmetry of colloidal crystals. The director field of the liquid crystal infiltrated in the colloid crystals can be rendered both random and uniform along one of the crystallographic axis. We present the first observations of DC electric-field-induced rotational and translational motion of finite particles in liquid crystals. The electrorotation is essentially identical to the well - known Quincke rotation, which in liquid crystals triggers an

  3. Magneto-optic garnet and liquid crystal optical switches

    NASA Technical Reports Server (NTRS)

    Krawczak, J. A.; Torok, E. J.; Harvey, W. A.; Hewitt, F. G.; Nelson, G. L.

    1984-01-01

    Magnetic stripe domain and liquid crystal devices are being developed and evaluated as fiber optic switches that can be utilized for nonblocking type nxm optical matrix switches in networking and optical processing. Liquid crystal switches are characterized by very low insertion loss and crosstalk, while stripe domain switches commutate in less than one microsecond. Both switches operate on multimode, randomly polarized fiber light with potentially large values for (n,m). The applications of these magnetic stripe domain and liquid crystal devices are discussed.

  4. Improving nanoparticle dispersion and charge transfer in cadmium telluride tetrapod and conjugated polymer blends.

    PubMed

    Monson, Todd C; Hollars, Christopher W; Orme, Christine A; Huser, Thomas

    2011-04-01

    The dispersion of CdTe tetrapods in a conducting polymer and the resulting charge transfer is studied using a combination of confocal fluorescence microscopy and atomic force microscopy (AFM). The results of this work show that both the tetrapod dispersion and charge transfer between the CdTe and conducting polymer (P3HT) are greatly enhanced by exchanging the ligands on the surface of the CdTe and by choosing proper solvent mixtures. The ability to experimentally probe the relationship between particle dispersion and charge transfer through the combination of AFM and fluorescence microscopy provides another avenue to assess the performance of polymer/semiconductor nanoparticle composites. © 2011 American Chemical Society

  5. The Effect of Inorganic Nanoparticles on the Luminescence Properties of the 5CB Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Bezrodna, T. V.; Klishevich, G. V.; Curmei, N. D.; Melnyk, V. I.; Nesprava, V. V.

    2017-09-01

    The luminescence spectral characteristics of nanocomposites based on the 5CB liquid crystal with dispersions of inorganic particles of carbon nanotubes (CNTs), the mineral montmorillonite (MMT), and nanotubes of titanium dioxide TiO2 (TNT) were investigated in the temperature range of 4.3-300 K. The IR absorption spectra of the composites at room temperature in the region of 390-4000 cm-1 were studied. The dependence of the luminescent properties of the composites on the physical properties and parameters of the nanoparticles was studied. It was established that the longwave shift of the luminescence spectra of the composites in relation to the spectra of the pure liquid crystal is related to the specific surface area of the nanoparticles. The longwave shifts of the spectra at room and low temperatures are analyzed.

  6. Using dispersive liquid-liquid microextraction and liquid chromatography for determination of guaifenesin enantiomers in human urine.

    PubMed

    Hatami, Mehdi; Farhadi, Khalil; Abdollahpour, Assem

    2011-11-01

    A simple, rapid, and efficient method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-fluorescence detector, has been developed for the determination of guaifenesin (GUA) enantiomers in human urine samples after an oral dose administration of its syrup formulation. Urine samples were collected during the time intervals 0-2, 2-4, and 4-6 h and concentration and ratio of two enantiomers was determined. The ratio of R-(-) to S-(+) enantiomer concentrations in urine showed an increase with time, with R/S ratios of 0.66 at 2 h and 2.23 at 6 h. For microextraction process, a mixture of extraction solvent (dichloromethane, 100 μL) and dispersive solvent (THF, 1 mL) was rapidly injected into 5.0 mL diluted urine sample for the formation of cloudy solution and extraction of enantiomers into the fine droplets of CH(2)Cl(2). After optimization of HPLC enantioselective conditions, some important parameters, such as the kind and volume of extraction and dispersive solvents, extraction time, temperature, pH, and salt effect were optimized for dispersive liquid-liquid microextraction process. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 10 to 2000 ng/mL for target analytes. LOD was 3.00 ng/mL for both of the enantiomers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Determination of diflubenzuron and chlorbenzuron in fruits by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.

    PubMed

    Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan

    2015-09-01

    In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. On the dispersion of liquid in coaxial supersonic gas jet

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.; Lotov, V. V.; Nesterov, A. U.

    2017-10-01

    The aim of this work was to study the dispersion of liquids in gas jets in connection with the creation of high productivity nozzles. For effective combustion of fuel, systems with intensive air supply to the spray of a liquid are promising. In connection with this, a supersonic coaxial jet was experimentally studied with a central supply of liquid beyond the slit of the confuser nozzle at the modes Npr = 4 and Npr = 6. New data are obtained on the structure of the gas-liquid jet: the gas velocity field, the shadow visualization of the geometry and wave structure of the jet with and without liquid, the velocity profiles of the liquid phase, the dispersion of the droplets. The spatial distribution of the concentration of the spray was first determined. From these data, the parameters of the dispersion processes are obtained in terms the We numbers. A physical model of a supersonic coaxial gas-liquid jet with a central fluid supply is proposed.

  9. Visual Sensor for Sterilization of Polymer Fixtures Using Embedded Mesoporous Silicon Photonic Crystals.

    PubMed

    Kumeria, Tushar; Wang, Joanna; Chan, Nicole; Harris, Todd J; Sailor, Michael J

    2018-01-26

    A porous photonic crystal is integrated with a plastic medical fixture (IV connector hub) to provide a visual colorimetric sensor to indicate the presence or absence of alcohol used to sterilize the fixture. The photonic crystal is prepared in porous silicon (pSi) by electrochemical anodization of single crystal silicon, and the porosity and the stop band of the material is engineered such that the integrated device visibly changes color (green to red or blue to green) when infiltrated with alcohol. Two types of self-reporting devices are prepared and their performance compared: the first type involves heat-assisted fusion of a freestanding pSi photonic crystal to the connector end of a preformed polycarbonate hub, forming a composite where the unfilled portion of the pSi film acts as the sensor; the second involves generation of an all-polymer replica of the pSi photonic crystal by complete thermal infiltration of the pSi film and subsequent chemical dissolution of the pSi portion. Both types of sensors visibly change color when wetted with alcohol, and the color reverts to the original upon evaporation of the liquid. The sensor performance is verified using E. coli-infected samples.

  10. Bubble migration in a compacting crystal-liquid mush

    NASA Astrophysics Data System (ADS)

    Boudreau, Alan

    2016-04-01

    Recent theoretical models have suggested that bubbles are unlikely to undergo significant migration in a compaction crystal mush by capillary invasion while the system remains partly molten. To test this, experiments of bubble migration during compaction in a crystal-liquid mush were modeled using deformable foam crystals in corn syrup in a volumetric burette, compacted with rods of varying weights. A bubble source was provided by sodium bicarbonate (Alka-Seltzer®). Large bubbles (>several crystal sizes) are pinched by the compacting matrix and become overpressured and deformed as the bubbles experience a load change from hydrostatic to lithostatic. Once they begin to move, they move much faster than the compaction-driven liquid. Bubbles that are about the same size as the crystals but larger than the narrower pore throats move by deformation or breaking into smaller bubbles as they are forced through pore restrictions. Bubbles that are less than the typical pore diameter generally move with the liquid: The liquid + bubble mixture behaves as a single phase with a lower density than the bubble-free liquid, and as a consequence it rises faster than bubble-free liquid and allows for faster compaction. The overpressure required to force a bubble through the matrix (max grain size = 5 mm) is modest, about 5 %, and it is estimated that for a grain size of 1 mm, the required overpressure would be about 25 %. Using apatite distribution in a Stillwater olivine gabbro as an analog for bubble nucleation and growth, it is suggested that relatively large bubbles initially nucleate and grow in liquid-rich channels that develop late in the compaction history. Overpressure from compaction allows bubbles to rise higher into hotter parts of the crystal pile, where they redissolve and increase the volatile content of the liquid over what it would have without the bubble migration, leading to progressively earlier vapor saturation during crystallization of the interstitial liquid

  11. Liquid nitrogen dewar for protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  12. Floating liquid phase in sedimenting colloid-polymer mixtures.

    PubMed

    Schmidt, Matthias; Dijkstra, Marjolein; Hansen, Jean-Pierre

    2004-08-20

    Density functional theory and computer simulation are used to investigate sedimentation equilibria of colloid-polymer mixtures within the Asakura-Oosawa-Vrij model of hard sphere colloids and ideal polymers. When the ratio of buoyant masses of the two species is comparable to the ratio of differences in density of the coexisting bulk (colloid) gas and liquid phases, a stable "floating liquid" phase is found, i.e., a thin layer of liquid sandwiched between upper and lower gas phases. The full phase diagram of the mixture under gravity shows coexistence of this floating liquid phase with a single gas phase or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple point. This scenario remains valid for general asymmetric binary mixtures undergoing bulk phase separation.

  13. Controlling Au Nanorod Dispersion in Thin Film Polymer Blends

    NASA Astrophysics Data System (ADS)

    Hore, Michael J. A.; Composto, Russell J.

    2012-02-01

    Dispersion of Au nanorods (Au NRs) in polymer thin films is studied using a combination of experimental and theoretical techniques. Here, we incorporate small volume fractions of polystyrene-functionalized Au NRs (φrod 0.05) into polystyrene (PS) thin films. By controlling the ratio of the brush length (N) to that of the matrix polymers (P), we can selectively obtain dispersed or aggregated Au NR structures in the PS-Au(N):PS(P) films. A dispersion map of these structures allows one to choose N and P to obtain either uniformly dispersed Au NRs or aggregates of closely packed, side-by-side aligned Au NRs. Furthermore, by blending poly(2,6-dimethyl-p-phenylene oxide) (PPO) into the PS films, we demonstrate that the Au nanorod morphology can be further tuned by reducing depletion-attraction forces and promoting miscibility of the Au NRs. These predictable structures ultimately give rise to tunable optical absorption in the films resulting from surface plasmon resonance coupling between the Au NRs. Finally, self-consistent field theoretic (SCFT) calculations for both the PS-Au(N):PS(P) and PS-Au(N):PS(P):PPO systems provide insight into the PS brush structure, and allow us to interpret morphology and optical property results in terms of wet and dry PS brush states.

  14. Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.

    PubMed

    Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan

    2017-10-19

    In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al 2 O 3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al 2 O 3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li + ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li + ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.

  15. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavallo, Dario, E-mail: Dario.cavallo@unige.it; Portale, Giuseppe; Androsch, René

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process ismore » followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.« less

  16. Field induced heliconical structure of cholesteric liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrentovich, Oleg D.; Shiyanovsii, Sergij V.; Xiang, Jie

    A diffraction grating comprises a liquid crystal (LC) cell configured to apply an electric field through a cholesteric LC material that induces the cholesteric LC material into a heliconical state with an oblique helicoid director. The applied electric field produces diffracted light from the cholesteric LC material within the visible, infrared or ultraviolet. The axis of the heliconical state is in the plane of the liquid crystal cell or perpendicular to the plane, depending on the application. A color tuning device operates with a similar heliconical state liquid crystal material but with the heliconical director axis oriented perpendicular to themore » plane of the cell. A power generator varies the strength of the applied electric field to adjust the wavelength of light reflected from the cholesteric liquid crystal material within the visible, infrared or ultraviolet.« less

  17. Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang

    Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal

  18. Tuning the Assembly of Spherical Nanoparticles in Semicrystalline Polymers

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Jestin, Jacques; Zhao, Longxi; Kumar, Sanat K.; Mohammadkhani, Mohammad; Benicewicz, Brian C.

    We propose a simple, novel strategy to controlling nanoparticle (NPs) dispersion states in a semi-crystalline polymer matrix exploiting the kinetics of polymer crystallization. The system consists of poly(methyl methacrylate) grafted spherical silica NPs and poly(ethylene oxide) matrices, which are thermodynamically miscible in the melt. We first show that no remarkable change was observed in the spatial dispersion of NPs upon fast crystallization. However, for slow crystallization, both TEM and X-ray/neutron scattering reveal that the system starts to be organized in a ``layer-by-layer'' architecture, where the NPs are aligned in the amorphous phases intercalated by the crystalline lamellar phases. More importantly, we have found that the resulting ``sheet-like'' NP morphology gives rise to a 2-fold increase in the storage modulus but without compromising the fracture toughness of the neat polymer. These results open pathways for creating in-situ biomimetic hierarchical structures with improved mechanical properties through a simple, single-step crystallization processing, which could lead to new applications for this largest class of commercially relevant polymeric materials.

  19. Molecular reorientation of a nematic liquid crystal by thermal expansion

    PubMed Central

    Kim, Young-Ki; Senyuk, Bohdan; Lavrentovich, Oleg D.

    2012-01-01

    A unique feature of nematic liquid crystals is orientational order of molecules that can be controlled by electromagnetic fields, surface modifications and pressure gradients. Here we demonstrate a new effect in which the orientation of nematic liquid crystal molecules is altered by thermal expansion. Thermal expansion (or contraction) causes the nematic liquid crystal to flow; the flow imposes a realigning torque on the nematic liquid crystal molecules and the optic axis. The optical and mechanical responses activated by a simple temperature change can be used in sensing, photonics, microfluidic, optofluidic and lab-on-a-chip applications as they do not require externally imposed gradients of temperature, pressure, surface realignment, nor electromagnetic fields. The effect has important ramifications for the current search of the biaxial nematic phase as the optical features of thermally induced structural changes in the uniaxial nematic liquid crystal mimic the features expected of the biaxial nematic liquid crystal. PMID:23072803

  20. Organic crystal-binding peptides: morphology control and one-pot formation of protein-displaying organic crystals

    NASA Astrophysics Data System (ADS)

    Niide, Teppei; Ozawa, Kyohei; Nakazawa, Hikaru; Oliveira, Daniel; Kasai, Hitoshi; Onodera, Mari; Asano, Ryutaro; Kumagai, Izumi; Umetsu, Mitsuo

    2015-11-01

    Crystalline assemblies of fluorescent molecules have different functional properties than the constituent monomers, as well as unique optical characteristics that depend on the structure, size, and morphological homogeneity of the crystal particles. In this study, we selected peptides with affinity for the surface of perylene crystal particles by exposing a peptide-displaying phage library in aqueous solution to perylene crystals, eluting the surface-bound phages by means of acidic desorption or liquid-liquid extraction, and amplifying the obtained phages in Escherichia coli. One of the perylene-binding peptides, PeryBPb1: VQHNTKYSVVIR, selected by this biopanning procedure induced perylene molecules to form homogenous planar crystal nanoparticles by means of a poor solvent method, and fusion of the peptide to a fluorescent protein enabled one-pot formation of protein-immobilized crystalline nanoparticles. The nanoparticles were well-dispersed in aqueous solution, and Förster resonance energy transfer from the perylene crystals to the fluorescent protein was observed. Our results show that the crystal-binding peptide could be used for simultaneous control of perylene crystal morphology and dispersion and protein immobilization on the crystals.Crystalline assemblies of fluorescent molecules have different functional properties than the constituent monomers, as well as unique optical characteristics that depend on the structure, size, and morphological homogeneity of the crystal particles. In this study, we selected peptides with affinity for the surface of perylene crystal particles by exposing a peptide-displaying phage library in aqueous solution to perylene crystals, eluting the surface-bound phages by means of acidic desorption or liquid-liquid extraction, and amplifying the obtained phages in Escherichia coli. One of the perylene-binding peptides, PeryBPb1: VQHNTKYSVVIR, selected by this biopanning procedure induced perylene molecules to form homogenous planar

  1. Electronic tunability of zero dispersion wavelengths in a spiral photonic crystal fiber for supercontinuum generation in the communication window

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Nazmul; Alam, M. Shah; Mohsin, K. M.; Hasan, Dihan Md. Nuruddin

    2011-08-01

    A liquid crystal infiltrated spiral photonic crystal fiber (LCSPCF) is presented here for electrical tuning of two zero dispersion wavelengths (ZDWs) in the present communication window. The proposed LCSPCF shows tunability of the ZDWs from 1433 nm to 2136 nm due to the rotation of the infiltrated LC mesogen induced by the external electric field. Therefore, the ZDW can easily be shifted towards the available pump wavelength for effective supercontinuum generation (SCG) over a broad wavelength region. By tuning the bandwidth (BW) in between the two ZDWs the extension of the generated supercontinuum (SC) spectrum can also be electrically controlled. This will help the SCG in our desired band with optimum power budget. Moreover, the index guiding mechanism of the proposed soft glass LCSPCF shows improvement over the narrow operational bandwidth and the low nonlinearity of the band-gap guided silica LCPCF. Additionally, the solid core of the proposed LCSPCF is less lossy than the previously proposed liquid crystal core PCF.

  2. Dispersion and Mechanical Properties of Carbon Nanotube/Polymer Composites via Melt Compounding

    NASA Astrophysics Data System (ADS)

    Gorga, Russell; Cohen, Robert

    2003-03-01

    This work is focused on the fabrication of carbon nanotube/ polymer composites via melt compounding. The main objective of this work is to realize the outstanding properties of carbon nanotubes (high modulus, high thermal and electrical conductivity, elastic buckling) at the macroscopic level by blending carbon nanotubes into a polymer matrix. The challenge lies in dispersing these one dimensional nanoparticles in the polymer matrix. Dispersion of the nanotubes in the composites is analyzed via transmission and scanning electron microscopy. Mechanical properties as well as electrical and thermal conductivity are measured as a function of nanotube loading, orientation, and extrusion conditions. Multi-wall nanotube loadings in the range of 1 and 10 wtconcave-downward departures from the linear stress-strain behavior of the unmodified polymer below 5observations are discussed in the context of possible deformation mechanisms for the nanotube composites.

  3. Ionic liquids as novel solvents for ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew D.; Leo, Donald J.

    2004-07-01

    The use of ionic liquids as solvents for ionic polymer (specifically, Nafion) transducers is demonstrated. Ionic liquids are attractive for this application because of their high inherent stability. Ionic liquids are salts that exist as liquids at room temperature and have no measureable vapor pressure. Therefore, the use of ionic liquids as solvents for ionic polymer transducers can eliminate the traditional problem of water evaporation in these devices. Another benefit of the use of ionic liquids in this way is the reduction or elimination of the characteristic back-relaxation common in water-solvated ionic polymer actuators. The results demonstrate that the viscosity of the ionic liquid and the degree to which the ionic liquid swells the membrane are the important physical parameters to consider. Five ionic liquids were studied, based on substituted pyrrolidinium, phosphonium, or imidazolium cations and fluoroanions. Of these five ionic liquids, transduction is demonstrated in three of them and the best results are obtained with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. This substance has an electrochemical stability window of 4.1 V, a melting point of -10 °C, and a viscosity of 35-45 cP [19]. Results demonstrate that platinum-plated Nafion transducers solvated with this ionic liquid exhibit sensing and actuation responses and that these transducers are stable in air. Endurance testing of this sample reveals a decrease in the free strain of only 25 % after 250,000 actuation cycles in air.

  4. Accelerating MP2C dispersion corrections for dimers and molecular crystals

    NASA Astrophysics Data System (ADS)

    Huang, Yuanhang; Shao, Yihan; Beran, Gregory J. O.

    2013-06-01

    The MP2C dispersion correction of Pitonak and Hesselmann [J. Chem. Theory Comput. 6, 168 (2010)], 10.1021/ct9005882 substantially improves the performance of second-order Møller-Plesset perturbation theory for non-covalent interactions, albeit with non-trivial computational cost. Here, the MP2C correction is computed in a monomer-centered basis instead of a dimer-centered one. When applied to a single dimer MP2 calculation, this change accelerates the MP2C dispersion correction several-fold while introducing only trivial new errors. More significantly, in the context of fragment-based molecular crystal studies, combination of the new monomer basis algorithm and the periodic symmetry of the crystal reduces the cost of computing the dispersion correction by two orders of magnitude. This speed-up reduces the MP2C dispersion correction calculation from a significant computational expense to a negligible one in crystals like aspirin or oxalyl dihydrazide, without compromising accuracy.

  5. Solid dispersions of Myricetin with enhanced solubility: Formulation, characterization and crystal structure of stability-impeding Myricetin monohydrate crystals

    NASA Astrophysics Data System (ADS)

    Mureşan-Pop, M.; Pop, M. M.; Borodi, G.; Todea, M.; Nagy-Simon, T.; Simon, S.

    2017-08-01

    Three solid dispersion forms of Myricetin combined with the Polyvinylpyrrolidone were successfully prepared by spray drying method, and characterized by X-ray powder diffraction, thermal analysis, infrared spectroscopy and optical microscopy. Zeta potential measurements provided indications on solid dispersions stability in aqueous suspension related to their storage at elevated temperature and relative humidity, which depends on the Myricetin load. By increase of Myricetin load, the stability of the solid dispersion is impeded due to growth of Myricetin monohydrate crystals. The amorphous dispersions with 10% and 50% Myricetin load are stable and, compared to pure Myricetin, their aqueous solubility is enhanced by a factor of 47 and 13, respectively. The dispersion with 80% Myricetin load is unstable on storage, and this behavior acts in conjunction with the development of Myricetin monohydrate crystals. Single-crystal X-ray diffraction results obtained for Myricetin monohydrate reveal a structure of an infinite 2D network of hydrogen-bonded molecules involving all six hydroxyl groups of Myricetin. The water molecules are positioned in between the infinite chains, and contribute via H-bonds to robust crystal packing. The calculated needle-like morphology of monohydrate form is in agreement with the optical microscopy results. The study shows that the solid amorphous dispersions with up to 50% Myricetin load are a viable option for achieving substantial solubility improvement of Myricetin, and supports their potential use in pharmaceutical applications.

  6. Thermal conductivity of Glycerol’s liquid, glass, and crystal states, glass-liquid-glass transition, and crystallization at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Ove; Johari, G. P., E-mail: joharig@mcmaster.ca

    2016-02-14

    To investigate the effects of local density fluctuations on phonon propagation in a hydrogen bonded structure, we studied the thermal conductivity κ of the crystal, liquid, and glassy states of pure glycerol as a function of the temperature, T, and the pressure, p. We find that the following: (i) κ{sub crystal} is 3.6-times the κ{sub liquid} value at 140 K at 0.1 MPa and 2.2-times at 290 K, and it varies with T according to 138 × T{sup −0.95}; (ii) the ratio κ{sub liquid} (p)/κ{sub liquid} (0.1 MPa) is 1.45 GPa{sup −1} at 280 K, which, unexpectedly, is about themore » same as κ{sub crystal} (p)/κ{sub crystal} (0.1 MPa) of 1.42 GPa{sup −1} at 298 K; (iii) κ{sub glass} is relatively insensitive to T but sensitive to the applied p (1.38 GPa{sup −1} at 150 K); (iv) κ{sub glass}-T plots show an enhanced, pressure-dependent peak-like feature, which is due to the glass to liquid transition on heating; (v) continuous heating cold-crystallizes ultraviscous glycerol under pressure, at a higher T when p is high; and (vi) glycerol formed by cooling at a high p and then measured at a low p has a significantly higher κ than the glass formed by cooling at a low p. On heating at a fixed low p, its κ decreases before its glass-liquid transition range at that p is reached. We attribute this effect to thermally assisted loss of the configurational and vibrational instabilities of a glass formed at high p and recovered at low p, which is different from the usual glass-aging effect. While the heat capacity, entropy, and volume of glycerol crystal are less than those for its glass and liquid, κ{sub crystal} of glycerol, like its elastic modulus and refractive index, is higher. We discuss these findings in terms of the role of fluctuations in local density and structure, and the relations between κ and the thermodynamic quantities.« less

  7. Investigation of ferroelectric liquid crystal orientation in the silica microcapillaries

    NASA Astrophysics Data System (ADS)

    Budaszewski, D.; Domański, A. W.; Woliński, T. R.

    2013-05-01

    In the paper we present our recent results concerning the orientation of ferroelectric liquid crystal molecules inside silica micro capillaries. We have infiltrated the silica micro capillaries with experimental ferroelectric liquid crystal material W-260K synthesized in the Military University of Technology. The infiltrated micro capillaries were observed under the polarization microscope while both a polarizer and an analyzer were crossed. The studies on the orientation of ferroelectric liquid crystal molecules may contribute to further studies on behavior of this group of liquid crystal materials inside photonic crystal fiber. The obtained results may lead to design of a new type of fast optical fiber sensors.

  8. Novel Side-Chain Liquid Cyrstalline Polymers

    DTIC Science & Technology

    1989-01-01

    Synthesis and Characterization of Liquid Crystalline Polyacrylates and Poly- methacrylates Containing Benzyl Ether and Diphenyl Ethane Based Mesogens J...Crystalline Polymethacrylates and Polyacrylates of trans 2-[4-(11- hydroxyundecanyloxy)-3,5-dimethylphenylI-4-(4-methoxyphenyl)-l,3-dioxane Makromol. Chem., 189...and Characterization of Liquid Crystalline Polyacrylates and Poly- met acrylates Containing Benzyl Ether and Diphenyl Ethane Based Mesogens J. Polym

  9. Electrorotation of colloidal particles in liquid crystals

    NASA Astrophysics Data System (ADS)

    Liao, G.; Smalyukh, I. I.; Kelly, J. R.; Lavrentovich, O. D.; Jákli, A.

    2005-09-01

    We present the first observations of dc electric-field-induced rotational motion of finite particles in liquid crystals. We show that the electrorotation is essentially identical to the well-known Quincke rotation, which in liquid crystals triggers an additional translational motion at higher fields. In the smectic phase the translational motion is confined to the two-dimensional geometry of smectic layers, in contrast to the isotropic and nematic phases, where the particles can move in all three dimensions. We demonstrate that by a proper analysis of the electrorotation, one can determine the in-plane viscosity of smectic liquid crystals. This method needs only a small amount of material, does not require uniform alignment over large areas, and enables probing rheological properties locally.

  10. Liquid-Crystal-Enabled Active Plasmonics: A Review

    PubMed Central

    Si, Guangyuan; Zhao, Yanhui; Leong, Eunice Sok Ping; Liu, Yan Jun

    2014-01-01

    Liquid crystals are a promising candidate for development of active plasmonics due to their large birefringence, low driving threshold, and versatile driving methods. We review recent progress on the interdisciplinary research field of liquid crystal based plasmonics. The research scope of this field is to build the next generation of reconfigurable plasmonic devices by combining liquid crystals with plasmonic nanostructures. Various active plasmonic devices, such as switches, modulators, color filters, absorbers, have been demonstrated. This review is structured to cover active plasmonic devices from two aspects: functionalities and driven methods. We hope this review would provide basic knowledge for a new researcher to get familiar with the field, and serve as a reference for experienced researchers to keep up the current research trends. PMID:28788515

  11. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    PubMed Central

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  12. Electrodeposition of Polymer Nanostructures using Three Diffuse Double Layers: Polymerization beyond the Liquid/Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Divya, Velpula; Sangaranarayanan, M. V.

    2018-04-01

    Nanostructured conducting polymers have received immense attention during the past few decades on account of their phenomenal usefulness in diverse contexts, while the interface between two immiscible liquids is of great interest in chemical and biological applications. Here we propose a novel Electrode(solid)/Electrolyte(aqueous)/Electrolyte(organic) Interfacial assembly for the synthesis of polymeric nanostructures using a novel concept of three diffuse double layers. There exist remarkable differences between the morphologies of the polymers synthesized using the conventional electrode/electrolyte method and that of the new approach. In contrast to the commonly employed electrodeposition at liquid/liquid interfaces, these polymer modified electrodes can be directly employed in diverse applications such as sensors, supercapacitors etc.

  13. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, Lawrence L.; Bae, Jae-Heum

    1991-01-01

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes.

  14. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, L.L.; Bae, J.H.

    1991-12-24

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes. 17 figures.

  15. Imprint Characteristics by Photo-Induced Solidification of Liquid Polymer

    NASA Astrophysics Data System (ADS)

    Komuro, Masanori; Taniguchi, Jun; Inoue, Seiji; Kimura, Naoya; Tokano, Yuji; Hiroshima, Hiroshi; Matsui, Shinji

    2000-12-01

    Nanoimprint lithography is an attractive technology for LSIs era below 40-nm critical dimension from the viewpoints of high-throughput and low-cost equipment. In order to avoid a pattern placement error due to thermal expansion in the conventional thermal imprint process, we attempted to replicate the mold pattern onto a liquid polymer, which was solidified using ultra-violet (UV) light irradiation at room temperature. The liquid polymer used here was supplied by TEIJIN SEIKI Co., and termed TSR-820. It was spin coated on slide glass to produce approximately 1.5-μm-thick polymer film. The thickness remained after UV exposure and rinsing in acetone was observed at the dose of 10 J/cm2 and it saturated about a UV exposure dose of 100 J/cm2 with an increase in the exposure dose. The mold fabricated of quartz plate was first pressed onto the polymer film at about 100 kg/cm2 and then the UV light was irradiated using an imprint apparatus developed for this work. After releasing the mold from the film, the substrate was rinsed in acetone to remove the residual liquid polymer. Eventually the minimum feature size of 100-nm line and 300-nm space pattern was successfully replicated in the polymer with good fidelity.

  16. Reflective liquid crystal light valve with hybrid field effect mode

    NASA Technical Reports Server (NTRS)

    Boswell, Donald D. (Inventor); Grinberg, Jan (Inventor); Jacobson, Alexander D. (Inventor); Myer, Gary D. (Inventor)

    1977-01-01

    There is disclosed a high performance reflective mode liquid crystal light valve suitable for general image processing and projection and particularly suited for application to real-time coherent optical data processing. A preferred example of the device uses a CdS photoconductor, a CdTe light absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The non-coherent light image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the AC voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state (voltage off the liquid crystal) and the optical birefringence effect to create the bright on-state. The liquid crystal thus modulates the polarization of the coherent read-out or projection light responsively to the non-coherent image. An analyzer is used to create an intensity modulated output beam.

  17. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... color changes of heat sensitive liquid crystals corresponding to the variation in the surface temperature of the skin. The liquid crystals, which are cholesteric esters, are sealed in plastic. (b...

  18. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... color changes of heat sensitive liquid crystals corresponding to the variation in the surface temperature of the skin. The liquid crystals, which are cholesteric esters, are sealed in plastic. (b...

  19. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... color changes of heat sensitive liquid crystals corresponding to the variation in the surface temperature of the skin. The liquid crystals, which are cholesteric esters, are sealed in plastic. (b...

  20. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... color changes of heat sensitive liquid crystals corresponding to the variation in the surface temperature of the skin. The liquid crystals, which are cholesteric esters, are sealed in plastic. (b...

  1. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... color changes of heat sensitive liquid crystals corresponding to the variation in the surface temperature of the skin. The liquid crystals, which are cholesteric esters, are sealed in plastic. (b...

  2. Polymer photonic crystal slab waveguides

    NASA Astrophysics Data System (ADS)

    Liguda, C.; Böttger, G.; Kuligk, A.; Blum, R.; Eich, M.; Roth, H.; Kunert, J.; Morgenroth, W.; Elsner, H.; Meyer, H. G.

    2001-04-01

    We present details of the fabrication, calculations, and transmission measurements for finite two-dimensional (2D) polymer photonic crystal (PC) slab waveguides, which were fabricated from a benzocyclobutene polymer on a low refractive index substrate from Teflon. A square air hole lattice (500 nm lattice constant, 300 nm hole diameter) was realized by electron beam lithography and reactive ion etching. Polarization and wavelength dependent transmission results show TE-like and TM-like stop gaps at 1.3 μm excitation wavelengths and are in good agreement with the calculated data obtained by 2D and three-dimensional finite difference time domain methods. Transmission was suppressed by 15 dB in the center of the TE-like stop gap for a PC length of ten lattice constants.

  3. A framework for multi-scale simulation of crystal growth in the presence of polymers.

    PubMed

    Mandal, Taraknath; Huang, Wenjun; Mecca, Jodi M; Getchell, Ashley; Porter, William W; Larson, Ronald G

    2017-03-01

    We present a multi-scale simulation method for modeling crystal growth in the presence of polymer excipients. The method includes a coarse-grained (CG) model for small molecules of known crystal structure whose force field is obtained using structural properties from atomistic simulations. This CG model is capable of stabilizing the molecular crystal structure and capturing the crystal growth from the melt for a wide range of small organic molecules, as demonstrated by application of our method to the molecules isoniazid, urea, sulfamethoxazole, prilocaine, oxcarbazepine, and phenytoin. This CG model can also be used to study the effect of additives, such as polymers, on the inhibition of crystal growth by polymers, as exemplified by our simulation of suppression of the rate of crystal growth of phenytoin, an active pharmaceutical ingredient (API), by a cellulose excipient, functionalized with acetate (Ac), hydroxy-propyl (Hp) and succinate (Su) groups. We show that the efficacy of the cellulosic polymers in slowing crystal growth of small molecules strongly depends on the functional group substitution on the cellulose backbone, with the acetate substituent group slowing crystal growth more than does the deprotonated succinate group, which we confirm by experimental drug supersaturation studies.

  4. Experimental investigations of the time and flow-direction responses of shear-stress-sensitive liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Muratore, Joseph J., Jr.; Heineck, James T.

    1993-01-01

    Time and flow-direction responses of shearstress-sensitive liquid crystal coatings were explored experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing Schlieren system and recorded with a 1000 frame/sec color video camera. Liquid crystal responses to these changing-shear environments were then recorded with the same video system, documenting color-play response times equal to, or faster than, the time interval between sequential frames (i.e., 1 millisecond). For the flow-direction experiments, a planar test surface was exposed to equal-magnitude and known-direction surface shear stresses generated by both normal and tangential subsonic jet-impingement flows. Under shear, the sense of the angular displacement of the liquid crystal dispersed (reflected) spectrum was found to be a function of the instantaneous direction of the applied shear. This technique thus renders dynamic flow reversals or flow divergences visible over entire test surfaces at image recording rates up to 1 KHz. Extensions of the technique to visualize relatively small changes in surface shear stress direction appear feasible.

  5. Development of New Supramolecular Lyotropic Liquid Crystals and Their Application as Alignment Media for Organic Compounds.

    PubMed

    Leyendecker, Martin; Meyer, Nils-Christopher; Thiele, Christina M

    2017-09-11

    Most alignment media for the residual dipolar coupling (RDC) based molecular structure determination of small organic compounds consist of rod-like polymers dissolved in organic solvents or of swollen cross-linked polymer gels. Thus far, the synthesis of polymer-based alignment media has been a challenging process, which is often followed by a time-consuming sample preparation. We herein propose the use of non-polymeric alignment media based on benzenetricarboxamides (BTAs), which self-assemble into rod-like supramolecules. Our newly found supramolecular lyotropic liquid crystals (LLCs) are studied in terms of their LLC properties and their suitability as alignment media in NMR spectroscopy. Scalable enantiodifferentiating properties are introduced through a sergeant-and-soldier principle by blending achiral with chiral substituted BTAs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Young-Laplace equation for liquid crystal interfaces

    NASA Astrophysics Data System (ADS)

    Rey, Alejandro D.

    2000-12-01

    This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.

  7. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid crystal vein locator. 880.6970 Section 880.6970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters). (b...

  8. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid crystal vein locator. 880.6970 Section 880.6970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters). (b...

  9. Shear sensitive monomer-polymer laminate structure and method of using same

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); Parmar, Devendra S. (Inventor)

    1993-01-01

    Monomer cholesteric liquid crystals have helical structures which result in a phenomenon known as selective reflection, wherein incident white light is reflected in such a way that its wavelength is governed by the instantaneous pitch of the helix structure. The pitch is dependent on temperature and external stress fields. It is possible to use such monomers in flow visualization and temperature measurement. However, the required thin layers of these monomers are quickly washed away by a flow, making their application time dependent for a given flow rate. The laminate structure according to the present invention comprises a liquid crystal polymer substrate attached to a test surface of an article. A light absorbing coating is applied to the substrate and is thin enough to permit bonding steric interaction between the liquid crystal polymer substrate and an overlying liquid crystal monomer thin film. Light is directed through and reflected by the liquid crystal monomer thin film and unreflected light is absorbed by the underlying coating. The wavelength of the reflected light is indicative of the shear stress experienced by the test surface. Novel aspects of the invention include its firm bonding of a liquid crystal monomer to a model and its use of a coating to reduce interference from light unreflected by the monomer helical structure.

  10. Enabling thermal processing of ritonavir-polyvinyl alcohol amorphous solid dispersions by KinetiSol® Dispersing.

    PubMed

    LaFountaine, Justin S; Jermain, Scott V; Prasad, Leena Kumari; Brough, Chris; Miller, Dave A; Lubda, Dieter; McGinity, James W; Williams, Robert O

    2016-04-01

    Polyvinyl alcohol has received little attention as a matrix polymer in amorphous solid dispersions (ASDs) due to its thermal and rheological limitations in extrusion processing and limited organic solubility in spray drying applications. Additionally, in extrusion processing, the high temperatures required to process often exclude thermally labile APIs. The purpose of this study was to evaluate the feasibility of processing polyvinyl alcohol amorphous solid dispersions utilizing the model compound ritonavir with KinetiSol® Dispersing (KSD) technology. The effects of KSD rotor speed and ejection temperature on the physicochemical properties of the processed material were evaluated. Powder X-ray diffraction and modulated differential scanning calorimetry were used to confirm amorphous conversion. Liquid chromatography-mass spectroscopy was used to characterize and identify degradation pathways of ritonavir during KSD processing and (13)C nuclear magnetic resonance spectroscopy was used to investigate polymer stability. An optimal range of processing conditions was found that resulted in amorphous product and minimal to no drug and polymer degradation. Drug release of the ASD produced from the optimal processing conditions was evaluated using a non-sink, pH-shift dissolution test. The ability to process amorphous solid dispersions with polyvinyl alcohol as a matrix polymer will enable further investigations of the polymer's performance in amorphous systems for poorly water-soluble compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Liquid crystal nanocomposites produced by mixtures of hydrogen bonded achiral liquid crystals and functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Keskinova, E.; Naradikian, H.; Rafailov, P. M.; Dettlaff-Weglikowska, U.; Spassov, T.

    2014-12-01

    The liquid crystalline (LC) nature of alkyloxybenzoic acids is preserved after adding of any mesogenic or non-mesogenic compound through hydrogen bonding. However, this noncovalent interaction provokes a sizable effect on the physical properties as, e. g. melting point and mesomorphic states. In the present work we investigate nanocomposites, prepared by mixture of the eighth homologue of p-n-alkyloxybenzoic acids (8OBA) with single-walled carbon nanotubes (SWCNT) with the purpose to modify the optical properties of the liquid crystal. We exercise optical control on the LC system by inserting SWCNT specially functionalized by carboxylic groups. Since the liquid crystalline state combines order and mobility at the molecular (nanoscale) level, molecular modification can lead to different macroscopical nanocomposite symmetry. The thermal properties of the functionalized nanocomposite are confirmed by DSC analyses. The mechanism of the interaction between surface-treated nanoparticles (functionalized nanotubes) and the liquid crystal 8OBA bent- dimer molecules is briefly discussed.

  12. Determination of triazine herbicides in juice samples by microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography.

    PubMed

    Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei

    2017-07-01

    A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of Viscosity on the Crystallization of Undercooled Liquids

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There have been numerous studies of glasses indicating that low-gravity processing enhances glass formation. NASA PI s are investigating the effect of low-g processing on the nucleation and crystal growth rates. Dr. Ethridge is investigating a potential mechanism for glass crystallization involving shear thinning of liquids in 1-g. For shear thinning liquids, low-g (low convection) processing will enhance glass formation. The study of the viscosity of glass forming substances at low shear rates is important to understand these new crystallization mechanisms. The temperature dependence of the viscosity of undercooled liquids is also very important for NASA s containerless processing studies. In general, the viscosity of undercooled liquids is not known, yet knowledge of viscosity is required for crystallization calculations. Many researchers have used the Turnbull equation in error. Subsequent nucleation and crystallization calculations can be in error by many orders of magnitude. This demonstrates the requirement for better methods for interpolating and extrapolating the viscosity of undercooled liquids. This is also true for undercooled water. Since amorphous water ice is the predominant form of water in the universe, astrophysicists have modeled the crystallization of amorphous water ice with viscosity relations that may be in error by five orders-of-magnitude.

  14. Evaluation of crystallization behavior on the surface of nifedipine solid dispersion powder using inverse gas chromatography.

    PubMed

    Miyanishi, Hideo; Nemoto, Takayuki; Mizuno, Masayasu; Mimura, Hisashi; Kitamura, Satoshi; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2013-02-01

    To investigate crystallization behavior on the surface of amorphous solid dispersion powder using inverse gas chromatography (IGC) and to predict the physical stability at temperatures below the glass transition temperature (T (g)). Amorphous solid dispersion powder was prepared by melt-quenching of a mixture of crystalline nifedipine and polyvinylpyrrolidon (PVP) K-30. IGC was conducted by injecting undecane (probe gas) and methane (reference gas) repeatedly to the solid dispersion at temperatures below T (g). Surface crystallization was evaluated by the retention volume change of undecane based on the observation that the surface of the solid dispersion with crystallized nifedipine gives an increased retention volume. On applying the retention volume change to the Hancock-Sharp equation, surface crystallization was found to follow a two-dimensional growth of nuclei mechanism. Estimation of the crystallization rates at temperatures far below T (g) using the Avrami-Erofeev equation and Arrhenius equation showed that, to maintain its quality for at least three years, the solid dispersion should be stored at -20°C (T (g) - 65°C). IGC can be used to evaluate crystallization behavior on the surface of a solid dispersion powder, and, unlike traditional techniques, can also predict the stability of the solid dispersion based on the surface crystallization behavior.

  15. Process for Encapsulating Protein Crystals

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Mosier, Benjamin

    2003-01-01

    A process for growing protein crystals encapsulated within membranes has been invented. This process begins with the encapsulation of a nearly saturated aqueous protein solution inside semipermeable membranes to form microcapsules. The encapsulation is effected by use of special formulations of a dissolved protein and a surfactant in an aqueous first liquid phase, which is placed into contact with a second, immiscible liquid phase that contains one or more polymers that are insoluble in the first phase. The second phase becomes formed into the semipermeable membranes that surround microglobules of the first phase, thereby forming the microcapsules. Once formed, the microcapsules are then dehydrated osmotically by exposure to a concentrated salt or polymer solution. The dehydration forms supersaturated solutions inside the microcapsules, thereby enabling nucleation and growth of protein crystals inside the microcapsules. By suitable formulation of the polymer or salt solution and of other physical and chemical parameters, one can control the rate of transport of water out of the microcapsules through the membranes and thereby create physicochemical conditions that favor the growth, within each microcapsule, of one or a few large crystals suitable for analysis by x-ray diffraction. The membrane polymer can be formulated to consist of low-molecular-weight molecules that do not interfere with the x-ray diffraction analysis of the encapsulated crystals. During dehydration, an electrostatic field can be applied to exert additional control over the rate of dehydration. This protein-crystal-encapsulation process is expected to constitute the basis of protein-growth experiments to be performed on the space shuttle and the International Space Station. As envisioned, the experiments would involve the exposure of immiscible liquids to each other in sequences of steps under microgravitational conditions. The experiments are expected to contribute to knowledge of the precise

  16. Liquid scintillators with near infrared emission based on organoboron conjugated polymers.

    PubMed

    Tanaka, Kazuo; Yanagida, Takayuki; Yamane, Honami; Hirose, Amane; Yoshii, Ryousuke; Chujo, Yoshiki

    2015-11-15

    The organic liquid scintillators based on the emissive polymers are reported. A series of conjugated polymers containing organoboron complexes which show the luminescence in the near infrared (NIR) region were synthesized. The polymers showed good solubility in common organic solvents. From the comparison of the luminescent properties of the synthesized polymers between optical and radiation excitation, similar emission bands were detected. In addition, less significant degradation was observed. These data propose that the organoboron conjugated polymers are attractive platforms to work as an organic liquid scintillator with the emission in the NIR region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.

    PubMed

    Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru

    2017-04-30

    Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation

  18. Manufacturing Amorphous Solid Dispersions with a Tailored Amount of Crystallized API for Biopharmaceutical Testing.

    PubMed

    Theil, Frank; Milsmann, Johanna; Anantharaman, Sankaran; van Lishaut, Holger

    2018-05-07

    The preparation of an amorphous solid dispersion (ASD) by dissolving a poorly water-soluble active pharmaceutical ingredient (API) in a polymer matrix can improve the bioavailability by orders of magnitude. Crystallization of the API in the ASD, though, is an inherent threat for bioavailability. Commonly, the impact of crystalline API on the drug release of the dosage form is studied with samples containing spiked crystallinity. These spiked samples possess implicit differences compared to native crystalline samples, regarding size and spatial distribution of the crystals as well as their molecular environment. In this study, we demonstrate that it is possible to grow defined amounts of crystalline API in solid dosage forms, which enables us to study the biopharmaceutical impact of actual crystallization. For this purpose, we studied the crystal growth in fenofibrate tablets over time under an elevated moisture using transmission Raman spectroscopy (TRS). As a nondestructive method to assess API crystallinity in ASD formulations, TRS enables the monitoring of crystal growth in individual dosage forms. Once the kinetic trace of the crystal growth for a certain environmental condition is determined, this method can be used to produce samples with defined amounts of crystallized API. To investigate the biopharmaceutical impact of crystallized API, non-QC dissolution methods were used, designed to identify differences between the various amounts of crystalline materials present. The drug release in the samples manufactured in this fashion was compared to that of samples with spiked crystallinity. In this study, we present for the first time a method for targeted crystallization of amorphous tablets to simulate crystallized ASDs. This methodology is a valuable tool to generate model systems for biopharmaceutical studies on the impact of crystallinity on the bioavailability.

  19. Long-range dipolar order and dispersion forces in polar liquids

    NASA Astrophysics Data System (ADS)

    Besford, Quinn Alexander; Christofferson, Andrew Joseph; Liu, Maoyuan; Yarovsky, Irene

    2017-11-01

    Complex solvation phenomena, such as specific ion effects, occur in polar liquids. Interpretation of these effects in terms of structure and dispersion forces will lead to a greater understanding of solvation. Herein, using molecular dynamics, we probe the structure of polar liquids through specific dipolar pair correlation functions that contribute to the potential of mean force that is "felt" between thermally rotating dipole moments. It is shown that unique dipolar order exists at separations at least up to 20 Å for all liquids studied. When the structural order is compared with a dipolar dispersion force that arises from local co-operative enhancement of dipole moments, a strong agreement is found. Lifshitz theory of dispersion forces was compared with the structural order, where the theory is validated for all liquids that do not have significant local dipole correlations. For liquids that do have significant local dipole correlations, specifically liquid water, Lifshitz theory underestimates the dispersion force by a factor of 5-10, demonstrating that the force that leads to the increased structure in liquid water is missed by Lifshitz theory of van der Waals forces. We apply similar correlation functions to an ionic aqueous system, where long-range order between water's dipole moment and a single chloride ion is found to exist at 20 Å of separation, revealing a long-range perturbation of water's structure by an ion. Furthermore, we found that waters within the 1st, 2nd, and 3rd solvation shells of a chloride ion exhibit significantly enhanced dipolar interactions, particularly with waters at larger distances of separation. Our results provide a link between structures, dispersion forces, and specific ion effects, which may lead to a more robust understanding of solvation.

  20. Formation of radial aligned and uniform nematic liquid crystal droplets via drop-on-demand inkjet printing into a partially-wet polymer layer

    NASA Astrophysics Data System (ADS)

    Parry, Ellis; Kim, Dong-Jin; Castrejón-Pita, Alfonso A.; Elston, Steve J.; Morris, Stephen M.

    2018-06-01

    This paper investigates the drop-on-demand inkjet printing of a nematic liquid crystal (LC) onto a variety of substrates. Achieving both a well-defined droplet boundary and uniformity of the LC director in printed droplets can be challenging when traditional alignment surfaces are employed. Despite the increasing popularity of inkjet printing LCs, the mechanisms that are involved during the deposition process such as drop impact, wetting and spreading have received very little attention, in the way of experiments, as viable routes for promoting alignment of the resultant LC droplets. In this work, radial alignment of the director and uniformity of the droplet boundary are achieved in combination via the use of a partially-wet polymer substrate, which makes use of the forces and flow generated during droplet impact and subsequent wetting process. Our findings could have important consequences for future LC inkjet applications, including the development of smart inks, printable sensors and lasers.

  1. Transport phenomena in the crystallization of lysozyme by osmotic dewatering and liquid-liquid diffusion in low gravity

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Sportiello, Michael G.; Gregory, Derek; Cassanto, John M.; Alvarado, Ulises A.; Ostroff, Robert; Korszun, Z. R.

    1993-01-01

    Two methods of protein crystallization, osmotic dewatering and liquid-liquid diffusion, like the vapor diffusion (hanging-drop and sessile-drop) methods allow a gradual approach to supersaturation conditions. The crystallization of hen egg-white lysozyme, an extensively characterized protein crystal, in the presence of sodium chloride was used as an experimental model with which to compare these two methods in low gravity and in the laboratory. Comparisons of crystal growth rates by the two methods under the two conditions have, to date, indicated that the rate of crystal growth by osmotic dewatering is nearly the same in low gravity and on the ground, while much faster crystal growth rates can be achieved by the liquid-liquid diffusion method in low gravity.

  2. Hydrogels dispersed by doped rare earth fluoride nanocrystals: ionic liquid dispersion and down/up-conversion luminescence.

    PubMed

    Yan, Zhi-Yuan; Jia, Li-Ping; Yan, Bing

    2014-01-01

    Two typical kinds of rare earth fluoride nanocrystals codoped with rare earth ions (Eu(3+) and Tm(3+)/Er(3+),Yb(3+)) are synthesized and dispersed in ionic liquid compound (1-chlorohexane-3-methylimidazolium chloride, abbreviated as [C6mim][Cl]). Assisted by agarose, the luminescent hydrogels are prepared homogeneously. The down/up-conversion luminescence of these hydrogels can be realized for the dispersed rare earth fluoride nanocrystals. The results provide a strategy to prepare luminescent (especially up-conversion luminescent) hydrogels with ionic liquid to disperse rare earth fluoride nanocrystals. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2013-10-22

    Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic mixture, deuteration, nematic phase, birefringence, overtone...absorption compounds for LWIR and SWIR are also investigated. Key words: Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic ...the melting point significantly. We did careful investigation and formed a eutectic mixture consisting of five fluorinated compounds without any

  4. Liquid-crystal science from 1888 to 1922: building a revolution.

    PubMed

    Mitov, Michel

    2014-05-19

    The saga of liquid crystals started with their discovery in 1888 by the botanist Friedrich Reinitzer, who unexpectedly observed "two melting points" for crystals extracted from the root of a carrot. At the end of the nineteenth century, most scientists did not believe in the existence of "liquid crystals" as promoted by the crystallographer Otto Lehmann. The controversies were very vivid; to the point that the recognition of mesomorphic states of matter by the scientific community required more than two decades. In the end, liquid crystals have changed our vision of matter by shattering the three-state paradigm. Since the mid-1970s, liquid crystals have revolutionized the worldwide information-display industry and now play a host of key roles in various technologies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modeling and simulations of carbon nanotube (CNT) dispersion in water/surfactant/polymer systems

    NASA Astrophysics Data System (ADS)

    Uddin, Nasir Mohammad

    An innovative multiscale (atomistic to mesoscale) model capable of predicting carbon nanotube (CNT) interactions and dispersion in water/surfactant/polymer systems was developed. The model was verified qualitatively with available experimental data in the literature. It can be used to computationally screen potential surfactants, solvents, polymers, and CNT with appropriate diameter and length to obtain improved CNT dispersion in aqueous medium. Thus the model would facilitate the reduction of time and cost required to produce CNT dispersed homogeneous solutions and CNT reinforced materials. CNT dispersion in any water/surfactant/polymer system depends on interactions between CNTs and surrounding molecules. Central to the study was the atomistic scale model which used the atomic structure of the surfactant, solvent, polymer, and CNT. The model was capable of predicting the CNT interactions in terms of potential of mean force (PMF) between CNTs under the influence of surrounding molecules in an aqueous solution. On the atomistic scale, molecular dynamics method was used to compute the PMF as a function of CNT separation and CNT alignment. An adaptive biasing force (ABF) method was used to speed up the calculations. Correlations were developed to determine the effective interactions between CNTs as a function of their any inter-atomic distance and orientation angle in water as well as in water/surfactant by fitting the calculated PMF data. On the mesoscale, the fitted PMF correlations were used as input in the Monte Carlo simulations to determine the degree of dispersion of CNTs in water and water/surfactant system. The distribution of CNT cluster size was determined for the CNTs dispersed in water with and without surfactant addition. The entropie and enthalpie contributions to the CNT interactions in water were determined to understand the dispersion mechanism of CNTs in water. The effects of CNT orientation, length, diameter, chirality and surfactant

  6. Intangible pointlike tracers for liquid-crystal-based microsensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasselet, Etienne; Juodkazis, Saulius

    2010-12-15

    We propose an optical detection technique for liquid-crystal-based sensors that is based on polarization-resolved tracking of optical singularities and does not rely on standard observation of light-intensity changes caused by modifications of the liquid crystal orientational ordering. It uses a natural two-dimensional network of polarization singularities embedded in the transverse cross section of a probe beam that passes through a liquid crystal sample, in our case, a nematic droplet held in laser tweezers. The identification and spatial evolution of such a topological fingerprint is retrieved from subwavelength polarization-resolved imaging, and the mechanical constraint exerted on the molecular ordering by themore » trapping beam itself is chosen as the control parameter. By restricting our analysis to one type of point singularity, C points, which correspond to location in space where the polarization azimuth is undefined, we show that polarization singularities appear as intangible pointlike tracers for liquid-crystal-based three-dimensional microsensors. The method has a superresolution potential and can be used to visualize changes at the nanoscale.« less

  7. Self-organization of glucose oxidase-polymer surfactant nanoconstructs in solvent-free soft solids and liquids.

    PubMed

    Sharma, Kamendra P; Zhang, Yixiong; Thomas, Michael R; Brogan, Alex P S; Perriman, Adam W; Mann, Stephen

    2014-10-02

    An anisotropic glucose oxidase-polymer surfactant nanoconjugate is synthesized and shown to exhibit complex temperature-dependent phase behavior in the solvent-free state. At close to room temperature, the nanoconjugate crystallizes as a mesolamellar soft solid with an expanded interlayer spacing of ca. 12 nm and interchain correlation lengths consistent with alkyl tail-tail and PEO-PEO ordering. The soft solid displays a birefringent spherulitic texture and melts at 40 °C to produce a solvent-free liquid protein without loss of enzyme secondary structure. The nanoconjugate melt exhibits a birefringent dendritic texture below the conformation transition temperature (Tc) of glucose oxidase (58 °C) and retains interchain PEO-PEO ordering. Our results indicate that the shape anisotropy of the protein-polymer surfactant globular building block plays a key role in directing mesolamellar formation in the solvent-free solid and suggests that the microstructure observed in the solvent-free liquid protein below Tc is associated with restrictions in the intramolecular motions of the protein core of the nanoconjugate.

  8. Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals (Postprint)

    DTIC Science & Technology

    2014-10-01

    DISTRIBUTION STATEMENT. //Signature// //Signature// TIMOTHY J. WHITE CHRISTOPHER D. BREWER, Chief Photonic Materials Branch... Photonic Materials Branch Functional Materials Division Functional Materials Division //Signature// TIMOTHY J. BUNNING, Chief Functional...LIQUID CRYSTALS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-09-D-5434-0009 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S

  9. Liquid crystals for organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  10. Electrically Tilted Liquid Crystal Display Mode for High Speed Operation

    NASA Astrophysics Data System (ADS)

    Gwag, Jin Seog; Kim, Jae Chang; Yoon, Tae-Hoon

    2006-09-01

    To develop liquid crystal displays suitable for moving picture, a liquid crystal display mode having an electrically tilted phase is proposed. This is realized by initially having a tilted liquid crystal with low bias voltage. We found that its measured response time is in good agreement with numerical calculation obtained using the Erickson-Leslie equation. The falling times were smaller than 10 ms with conventional driving and 6 ms with overdriving.

  11. Optical detection of sepsis markers using liquid crystal based biosensors

    NASA Astrophysics Data System (ADS)

    McCamley, Maureen K.; Artenstein, Andrew W.; Opal, Steven M.; Crawford, Gregory P.

    2007-02-01

    A liquid crystal based biosensor for the detection and diagnosis of sepsis is currently in development. Sepsis, a major clinical syndrome with a significant public health burden in the US due to a large elderly population, is the systemic response of the body to a localized infection and is defined as the combination of pathologic infection and physiological changes. Bacterial infections are responsible for 90% of cases of sepsis in the US. Currently there is no bedside diagnostic available to positively identify sepsis. The basic detection scheme employed in a liquid crystal biosensor contains attributes that would find value in a clinical setting, especially for the early detection of sepsis. Utilizing the unique properties of liquid crystals, such as birefringence, a bedside diagnostic is in development which will optically report the presence of biomolecules. In a septic patient, an endotoxin known as lipopolysaccharide (LPS) is released from the outer membrane of Gram-negative bacteria and can be found in the blood stream. It is hypothesized that this long chained molecule will cause local disruptions to the open surface of a sensor containing aligned liquid crystal. The bulk liquid crystal ampli.es these local changes at the surface due to the presence of the sepsis marker, providing an optical readout through polarizing microscopy images. Liquid crystal sensors consisting of both square and circular grids, 100-200 μm in size, have been fabricated and filled with a common liquid crystal material, 5CB. Homeotropic alignment was confirmed using polarizing microscopy. The grids were then contacted with either saline only (control), or saline with varying concentrations of LPS. Changes in the con.guration of the nematic director of the liquid crystal were observed through the range of concentrations tested (5mg/mL - 1pg/mL) which have been confirmed by a consulting physician as clinically relevant levels.

  12. Slovenian Pre-Service Teachers' Conceptions about Liquid Crystals

    ERIC Educational Resources Information Center

    Pavlin, Jerneja; Vaupotic, Natasa; Glazar, Sasa A.; Cepic, Mojca; Devetak, Iztok

    2011-01-01

    A total of 448 first-year university students participated in the study at the beginning of the academic year 2009/10. A paper-pencil liquid crystal questionnaire (LCQ) comprising 20 items was used to evaluate students' general conceptions related to liquid crystals, their properties and to the state of matter in general. The results show that 2/3…

  13. Novel photonics polymer and its application in IT

    NASA Astrophysics Data System (ADS)

    Koike, Yasuhiro

    2003-07-01

    In the field of LANs, transmission systems based on a multimode silica fiber network is heading towards capacities of Gb/s. We have proposed a low-loss, high-bandwidth and large-core graded-index plastic optical fiber (GI POF) in data-com. area. We sill show that GI POF enables to virtually eliminate the "modal noise" problem cased by the medium-core silica fibers. Therefore, stable high-speed data transmission is realized by GI POF rather than silica fibers. Furthermore, advent of perfluorinated (PF) polymer based GI POF network can support higher transmission than silica fibers network because of the small material dispersion of PF polymer compared with silica. In addition, we proposed a "highly scattering optical transmission (HSOT) polymer" and applied it to a light guide plate of a liquid crystal display (LCD) backlight. The advanced HSOT polymer backlight that was proposed using the HSOT designing simulation program demonstrated approximately three times higher luminance than the conventional flat-type HSOT backlight of 14.1-inch diagonal because of the microscopic prism structures at the bottom of the advanced HSOT light guide plate. The HSOT polymer containing the optimized heterogeneous structures produced homogeneous scattered light with forward directivity and sufficient color uniformity.

  14. Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying

    2018-01-01

    Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.

  15. Engineering ultra-flattened normal dispersion photonic crystal fiber with silica material

    NASA Astrophysics Data System (ADS)

    Ferhat, Mohamed Lamine; Cherbi, Lynda; Bahloul, Lies; Hariz, Abdelhafid

    2017-05-01

    The tailoring of the group velocity dispersion (GVD) of an optical fiber is critical in many applications, influence on the bandwidth of information transmission in optical communication systems, successful utilization of nonlinear optical properties in applications such as supercontinuum generation, wavelength conversion and harmonic generation via stimulated Raman scattering ...In this work, we propose a design of ultra-flattened photonic crystal fiber by changing the diameter of the air holes of the cladding rings. The geometry is composed of only four rings, hexagonal structure of air holes and silica as background of the solid core. As a result, we present structures with broadband flat normal dispersion on many wavelengths bands useful for several applications. We obtain flat normal dispersion over 1000 nm broadband flat normal dispersion below -7 [ps/nm.km], and ultra-flat near zero normal dispersion below -0.2 [ps/nm.km] over 150 nm. The modeled photonic crystal fiber would be valuable for the fabrication of ultra-flattened-dispersion fibers, and have potential applications in wide-band high-speed optical communication systems, supercontinuum generation and many other applications.

  16. Characterising laser beams with liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Naidoo, Darryl; Forbes, Andrew

    2016-02-01

    We show how one can determine the various properties of light, from the modal content of laser beams to decoding the information stored in optical fields carrying orbital angular momentum, by performing a modal decomposition. Although the modal decomposition of light has been known for a long time, applied mostly to pattern recognition, we illustrate how this technique can be implemented with the use of liquid-crystal displays. We show experimentally how liquid crystal displays can be used to infer the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD or photo-diode). Such a diagnostic tool is extremely relevant to the real-time analysis of solid-state and fibre laser systems as well as mode division multiplexing as an emerging technology in optical communication.

  17. Coating and dispersion of ceramic nanoparticles by UV-ozone etching assisted surface-initiated living radical polymerization.

    PubMed

    Arita, Toshihiko

    2010-10-01

    Commercially available unmodified ceramic nanoparticles (NPs) in dry powder state were surface-modified and dispersed in almost single-crystal size. The surface-initiated living radical polymerization after just UV-ozone soft etching enables one to graft polymers onto the surface of ceramic NPs and disperse them in solvents. Furthermore, a number of NPs were dispersed with single-crystal sizes. The technique developed here could be applied to almost all ceramic NPs including metal nitrides.

  18. Determination of the chromatic dispersion of liquids based on the liquid-prism SPR configuration in angular and spectral interrogations

    NASA Astrophysics Data System (ADS)

    Lan, Guoqiang; Liu, Shugang; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin

    2015-10-01

    In this work, we use the liquid-prism SPR sensing configuration to determine the chromatic dispersion of different liquids, since the condition of SPR is sensitive to the refractive index of the liquid prism. We use the glass slide coated with 50 nm Au film as the sensing chip, and use AvaLight - HAL (360 nm - 2500 nm) light source as the broaden band light source in our experiments. We adopt the deionized water as the standard sample to determine the chromatic dispersion of different liquid samples (ethanol and n-hexane), and we implement the experiment through the SPR sensing configuration in angular and spectral interrogations. According to the experimental data, the chromatic dispersions of ethanol and n-hexane are obtained. The proposed technique provides a new high sensitive method for the determination of chromatic dispersion of liquids.

  19. Two-step emulsification process for water-in-oil-in-water multiple emulsions stabilized by lamellar liquid crystals.

    PubMed

    Ito, Toshifumi; Tsuji, Yukitaka; Aramaki, Kenji; Tonooka, Noriaki

    2012-01-01

    Multiple emulsions, also called complex emulsions or multiphase emulsions, include water-in-oil-in-water (W/O/W)-type and oil-in-water-in-oil (O/W/O)-type emulsions. W/O/W-type multiple emulsions, obtained by utilizing lamellar liquid crystal with a layer structure showing optical anisotropy at the periphery of emulsion droplets, are superior in stability to O/W/O-type emulsions. In this study, we investigated a two-step emulsification process for a W/O/W-type multiple emulsion utilizing liquid crystal emulsification. We found that a W/O/W-type multiple emulsion containing lamellar liquid crystal can be prepared by mixing a W/O-type emulsion (prepared by primary emulsification) with a lamellar liquid crystal obtained from poly(oxyethylene) stearyl ether, cetyl alcohol, and water, and by dispersing and emulsifying the mixture in an outer aqueous phase. When poly(oxyethylene) stearyl ether and cetyl alcohol are each used in a given amount and the amount of water added is varied from 0 to 15 g (total amount of emulsion, 100 g), a W/O/W-type multiple emulsion is efficiently prepared. When the W/O/W-type multiple emulsion was held in a thermostatic bath at 25°C, the droplet size distribution showed no change 0, 30, or 60 days after preparation. Moreover, the W/O/W-type multiple emulsion strongly encapsulated Uranine in the inner aqueous phase as compared with emulsions prepared by one-step emulsification.

  20. Aqueous Lyotropic Liquid Crystalline Frank-Kasper Mesophases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun

    Amphiphilic molecules undergo water concentration-dependent self-assembly to form lyotropic liquid crystal (LLC) mesophases. LLC morphology selection is directed by cooperative optimization of preferred molecular packing arrangements, which stem from a subtle balance of local, non-covalent interactions. We recently discovered a class of amphiphiles that form a progression of discontinuous micellar LLCs, including two tetrahedrally-closest packed Frank-Kasper phases that exhibit exceptional long range order. This discovery complements recent reports of their formation in thermotropic liquid crystals, neat diblock and tetrablock polymers, and in lyotropic mesophases of block polymers in ionic liquids. Using a combination of MD simulations and experiments, we provide new insights into the mechanisms of formation for these low symmetry micelle phases.

  1. Dispersed bubble reactor for enhanced gas-liquid-solids contact and mass transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang

    An apparatus to promote gas-liquid contact and facilitate enhanced mass transfer. The dispersed bubble reactor (DBR) operates in the dispersed bubble flow regime to selectively absorb gas phase constituents into the liquid phase. The dispersion is achieved by shearing the large inlet gas bubbles into fine bubbles with circulating liquid and additional pumped liquid solvent when necessary. The DBR is capable of handling precipitates that may form during absorption or fine catalysts that may be necessary to promote liquid phase reactions. The DBR can be configured with multistage counter current flow sections by inserting concentric cylindrical sections into the risermore » to facilitate annular flow. While the DBR can absorb CO.sub.2 in liquid solvents that may lead to precipitates at high loadings, it is equally capable of handling many different types of chemical processes involving solids (precipitates/catalysts) along with gas and liquid phases.« less

  2. Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water-ethanol mixture

    NASA Astrophysics Data System (ADS)

    Van, Hieu Le; Buczynski, Ryszard; Long, Van Cao; Trippenbach, Marek; Borzycki, Krzysztof; Manh, An Nguyen; Kasztelanic, Rafal

    2018-01-01

    We present experimental and simulation results of the zero-dispersion shift in photonics crystal fibers infiltrated with water-ethanol mixture. The fiber based on the fused silica glass with a hexagonal lattice consists of seven rings of air-holes filled by liquid. We show that it is possible to shift the zero-dispersion wavelength by 35 ps/nm/km when changing the temperature by 60 °C, and by 42 ps/nm/km when changing the concentration of ethanol from 0 to 100%. The results also show that for the optical fiber filed with pure ethanol the flattened part of the dispersion shifts from anomalous to the normal regime at temperatures below -70 °C.

  3. Thaumatin crystallization aboard the International Space Station using liquid-liquid diffusion in the Enhanced Gaseous Nitrogen Dewar (EGN).

    PubMed

    Barnes, Cindy L; Snell, Edward H; Kundrot, Craig E

    2002-05-01

    This paper reports results from the first biological crystal-growth experiment on the International Space Station (ISS). Crystals of thaumatin were grown using liquid-liquid diffusion in Tygon tubing transported in the Enhanced Gaseous Nitrogen Dewar (EGN). Different volume ratios and concentrations of protein and precipitant were used to test different adaptations of the vapor-diffusion crystallization recipe to the liquid-liquid diffusion method. The EGN warmed up from 77 to 273 K in about 4 d, about the same time it took to warm from 273 to 293 K. The temperature within the EGN was 293-297 K for the majority of the experiment. Air gaps that blocked liquid-liquid diffusion formed in the tubes. Nonetheless, crystals were grown. Synchrotron diffraction data collected from the best space-grown crystal extended to 1.28 A, comparable to previous studies of space-grown thaumatin crystals. The resolution of the best ground-control crystal was only 1.47 A. It is not clear if the difference in diffraction limit arises from factors other than crystal size. Improvements in temperature control and the elimination of air gaps are needed, but the results show that the EGN on the ISS can be used to produce space-grown crystals that diffract to high resolution.

  4. Thaumatin Crystallization Aboard the International Space Station Using Liquid-Liquid Diffusion in the Enhanced Gaseous Nitrogen Dewar (EGN)

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig; Barnes, Cindy L.; Snell, Edward H.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    This paper reports results from the first biological crystal growth experiment on the International Space Station (ISS). Crystals of thaumatin were grown using liquid-liquid diffusion in Tygon tubing transported in the Enhanced Gaseous Nitrogen Dewar (EGN). Different Volume ratios and concentrations of protein and precipitant were used to test different adaptations of the vapor diffusion crystallization recipe to the liquid-liquid diffusion method. The EGN warmed up from -196 C to 0 C in about four days, about the same time it took to warm from 0 C to 20 C. The temperature within the EGN was 20 - 24 C for the majority of the experiment. Air gaps that blocked liquid-liquid diffusion formed in the tubes. Nonetheless, crystals were grown. Synchrotron diffraction data collected from the best space grown crystal extended to 1.28 Angstroms, comparable to previous studies of space-grown thaumatin crystals. The resolution of the best ground control crystal was only 1.47 Angstroms. It is not clear if the difference in diffraction limit is due to factors other than crystal size. Improvements in temperature control and the elimination of air gaps are needed, but the results show that EGN on the ISS can be used to produce space grown crystals that diffract to high resolution.

  5. Phase-Equilibria and Nanostructure Formation in Charged Rigid-Rod Polymers and Carbon Nanotubes

    DTIC Science & Technology

    2002-11-10

    or liquid crystalline) and the crystalline polymer state. The form-I crystal solvate, identi- fied as a cocrystal of the protonated polymer and the...dissolution temperature, below 100 °C.12,13 The form-II crystal solvate, considered a polymer-solvent cocrystal in which the polymer is deprotonated,11,12...solvate that is a cocrystal of protonated PBZT and PPA anions. As previously mentioned, the fact that these two extreme cases result in similar

  6. Molecular dynamics of liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1997-02-01

    We derive Green-Kubo relations for the viscosities of a nematic liquid crystal. The derivation is based on the application of a Gaussian constraint algorithm that makes the director angular velocity of a liquid crystal a constant of motion. Setting this velocity equal to zero means that a director-based coordinate system becomes an inertial frame and that the constraint torques do not do any work on the system. The system consequently remains in equilibrium. However, one generates a different equilibrium ensemble. The great advantage of this ensemble is that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals, whereas they are complicated rational functions in the conventional canonical ensemble. This facilitates the numerical evaluation of the viscosities by molecular dynamics simulations.

  7. USAXS analysis of concentration-dependent self-assembling of polymer-brush-modified nanoparticles in ionic liquid: [I] concentrated-brush regime

    NASA Astrophysics Data System (ADS)

    Nakanishi, Yohei; Ishige, Ryohei; Ogawa, Hiroki; Sakakibara, Keita; Ohno, Kohji; Morinaga, Takashi; Sato, Takaya; Kanaya, Toshiji; Tsujii, Yoshinobu

    2018-03-01

    Using ultra-small angle X-ray scattering (USAXS), we analyzed the higher-order structures of nanoparticles with a concentrated brush of an ionic liquid (IL)-type polymer (concentrated-polymer-brush-modified silica particle; PSiP) in an IL and the structure of the swollen shell layer of PSiP. Homogeneous mixtures of PSiP and IL were successfully prepared by the solvent-casting method involving the slow evaporation of a volatile solvent, which enabled a systematic study over an exceptionally wide range of compositions. Different diffraction patterns as a function of PSiP concentration were observed in the USAXS images of the mixtures. At suitably low PSiP concentrations, the USAXS intensity profile was analyzed using the Percus-Yevick model by matching the contrast between the shell layer and IL, and the swollen structure of the shell and "effective diameter" of the PSiP were evaluated. This result confirms that under sufficiently low pressures below and near the liquid/crystal-threshold concentration, the studied PSiP can be well described using the "hard sphere" model in colloidal science. Above the threshold concentration, the PSiP forms higher-order structures. The analysis of diffraction patterns revealed structural changes from disorder to random hexagonal-closed-packing and then face-centered-cubic as the PSiP concentration increased. These results are discussed in terms of thermodynamically stable "hard" and/or "semi-soft" colloidal crystals, wherein the swollen layer of the concentrated polymer brush and its structure play an important role.

  8. Molecular mechanism of polymer-assisting supersaturation of poorly water-soluble loratadine based on experimental observations and molecular dynamic simulations.

    PubMed

    Zhang, Shenwu; Sun, Mengchi; Zhao, Yongshan; Song, Xuyang; He, Zhonggui; Wang, Jian; Sun, Jin

    2017-10-01

    Polymers have been usually used to retard nucleation and crystal growth in order to maintain supersaturation, yet their roles in inhibition of nucleation and crystal growth are poorly understood. In our work, the polymer-based supersaturation performances and molecular mechanisms of poorly aqueous soluble loratadine were investigated. Two common hydrophilic polymers (hydroxylpropylmethyl cellulose acetate succinate (HPMC-AS) and poly(vinylpyrrolidone-co-vinyl-acetate) (PVP-VA)) were used. It was found that HPMC-AS was a better polymer to prevent drug molecules from aggregation and to maintain the supersaturated state in solution than PVP-VA. The in vitro dissolution experiments showed that HPMC-AS solid dispersions had more rapid release at pH 4.5 and 6.8 media than PVP-VA solid dispersions under the un-sink condition. Moreover, molecular dynamic simulation results showed that HPMC-AS was more firmly absorbed onto a surface of the drug nanoparticles than PVP-VA due to bigger hydrophobic areas of HPMC-AS. Thereby, crystallization process of loratadine was inhibited in the presence of water to provide prolonged stability of the supersaturated state. In conclusion, polymers played a key role in maintaining supersaturation state of loratadine solid dispersions by strong drug-polymer interactions and the hydrophobic characteristic of polymers.

  9. Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew; Leo, Donald

    2005-05-01

    Ionic liquids have shown promise as replacements for water in ionic polymer transducers. Ionic liquids are non-volatile and have a larger electrochemical stability window than water. Therefore, transducers employing ionic liquids can be operated for long periods of time in air and can be actuated with higher voltages. Furthermore, transducers based on ionic liquids do not exhibit the characteristic back relaxation that is common with water-swollen materials. However, the physics of transduction in the ionic liquid-swollen materials is not well understood. In this paper, the morphology of Nafion/ionic liquid composites is characterized using small-angle X-ray scattering (SAXS). The electromechanical transduction behavior of the composites is also investigated. For this testing, five different counterions and two ionic liquids are used. The results reveal that both the morphology and transduction performance of the composites is affected by the identity of the ionic liquid, the cation, and the swelling level of ionic liquid within the membrane. Specifically, speed of response is found to be lower for the membranes that were exchanged with the smaller lithium and potassium ions. The response speed is also found to increase with increased content of ionic liquid. Furthermore, for the two ionic liquids studied, the actuators swollen with the less viscous ionic liquid exhibited a slower response. The slower speed of response corresponds to less contrast between the ionically conductive phase and the inert phase of the polymer. This suggests that disruption of the clustered morphology in the ionic liquid-swollen membranes as compared to water-swollen membranes attenuates ion mobility within the polymer. This attenuation is attributed to swelling of the non-conductive phase by the ionic liquids.

  10. Packaging consideration of two-dimensional polymer-based photonic crystals for laser beam steering

    NASA Astrophysics Data System (ADS)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T.

    2009-02-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results were also reported.

  11. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    NASA Astrophysics Data System (ADS)

    Sun, Guanqing

    discussion of emulsion stabilization and preparation. A historical review of multiple emulsions is presented subsequently and the stability mechanism is discussed in details with regard to the transportation kinetics of small molecules through the separating membrane of double emulsions. The principle, property and applications of liquid marbles are then summarized. Secondly, the preparation of monodisperse Pickering emulsions stabilized by soft PNIPAM-co-MAA microgels through SPG membrane emulsification is described. The influence of the membrane pore size, pH of the particle dispersion, particle size and the operating parameters of the membrane emulsification device on the size of the emulsion droplets was investigated systematically. The improvement in monodispersity of the emulsion droplets allows us to measure the release profiles of a small molecular dye and a larger nanoparticle through the colloidosomes. It is further demonstrated that the preparation of monodisperse emulsions stabilized by other types of soft particles allows us control the stability of the emulsion with a pH trigger and improved biocompatibility. Thirdly, the preparation of multiple emulsions stabilized by a special designed PEG-b-PS diblock copolymer with desired hydrophobicity by one-step method was presented. The ultra-stability of the as-obtained multiple emulsions was ascribed to the effective steric stabilization of the two interfaces with different polymer configurations at the interfaces. A series of diblock copolymer with increasing PS chain length was then synthesized to investigate the influence of asymmetry ratio on the type of emulsions prepared. It is found that the diblock copolymers with the asymmetry ratio of approximately 1 had the highest power to stabilize multiple emulsions. The multiple emulsions were demonstrated to be a promising platform for controlled release. In the end, particle-stabilized water-in-air liquid marbles were investigated. PSco-MAA nanoparticles synthesized

  12. Statistical foundations of liquid-crystal theory

    PubMed Central

    Seguin, Brian; Fried, Eliot

    2013-01-01

    Working on a state space determined by considering a discrete system of rigid rods, we use nonequilibrium statistical mechanics to derive macroscopic balance laws for liquid crystals. A probability function that satisfies the Liouville equation serves as the starting point for deriving each macroscopic balance. The terms appearing in the derived balances are interpreted as expected values and explicit formulas for these terms are obtained. Among the list of derived balances appear two, the tensor moment of inertia balance and the mesofluctuation balance, that are not standard in previously proposed macroscopic theories for liquid crystals but which have precedents in other theories for structured media. PMID:23554513

  13. Liquid crystals for organic thin-film transistors

    PubMed Central

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-ichi

    2015-01-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V−1 s−1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics. PMID:25857435

  14. Liquid crystals for organic thin-film transistors.

    PubMed

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-ichi

    2015-04-10

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm(2) V(-1) s(-1)) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  15. Rapid determination of pyridine derivatives by dispersive liquid-liquid microextraction coupled with gas chromatography/gas sensor based on nanostructured conducting polypyrrole.

    PubMed

    Pirsa, Sajad; Alizadeh, Naader

    2011-12-15

    Polypyrrole (PPy) gas sensor has been prepared by polymerization of pyrrole on surfaces of commercial polymer fibers in the presence of an oxidizing agent. The sensing behavior of PPy gas sensor was investigated in the presence of pyridine derivatives. The resistive responses of the PPy gas sensor to pyridine derivatives were in the order of quinoline>pyridine>4-methyl pyridine and 2-methyl pyridine. The PPy gas sensor was used as gas chromatography (GC) detector and exhibited linear responses to pyridine derivatives in the ranges 40-4,000 ng. Dispersive liquid-liquid microextraction (DLLME) combined with GC/PPy gas sensor has been developed for simultaneous determination of pyridine derivatives and quinoline. The purposed method was used for determination of pyridine derivatives from cigarette smoke. The GC runs were completed in 4 min. The reproducibility of this method is suitable and good standard deviations were obtained. RSD value is less than 10% for all analytes. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    ERIC Educational Resources Information Center

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  17. Reflection Spectra of Distorted Cholesteric Liquid Crystal Structures in Cells with Interdigitated Electrodes (Postprint)

    DTIC Science & Technology

    2014-07-01

    adjusting the magnitude of the electric field. 15. SUBJECT TERMS liquid crystals , liquid- crystal devices, Bragg reflectors, optical properties, chiral ...160.3710) Liquid crystals ; (230.3720) Liquid- crystal devices; (230.1480) Bragg reflectors; (160.4760) Optical properties; (160.1585) Chiral media...White, and T. J. Bunning, “Local optical spectra and texture for chiral nematic liquid crystals in cells with interdigitated electrodes,” Mol

  18. Sensitive spectrophotometric determination of Co(II) using dispersive liquid-liquid micro-extraction method in soil samples.

    PubMed

    Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira

    2016-05-01

    Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples.

  19. Submillisecond-response and scattering-free infrared liquid crystal phase modulators.

    PubMed

    Sun, Jie; Chen, Yuan; Wu, Shin-Tson

    2012-08-27

    We demonstrate a submillisecond-response and scattering-free infrared phase modulator using a polymer network liquid crystal (PNLC). The required voltage for achieving 2π phase change at λ = 1.06 µm is 70V (or 5.8 V/μm) and the measured response time is ~200 µs at 25°C and 30 µs at 70°C. Opposite to our conventional understanding, a high viscosity LC helps to achieve small domain size during polymerization process, which in turn reduces the response time and light scattering. We use Rayleigh-Gans-Debye scattering model to analyze the voltage-on state transmission spectra. When the domain size is comparable to the wavelength, the model fits with experimental results well. But when the domain size is smaller than the wavelength, the simple Rayleigh model works well.

  20. Liquid crystal polymer substrate MMIC receiver modules for the ECE Imaging system on the DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y.; Ye, Y.; Yu, J-H

    A new generation of millimeter-wave heterodyne imaging receiver arrays has been developed and demonstrated on the DIII-D ECEI system. Improved circuit integration, allowing for absolute calibration, improved noise performance, and shielding from out-of-band emission, is made possible by using advanced liquid crystal polymer (LCP) substrates and MMIC (Monolithic Microwave Integrated Circuit) receiver chips. This array exhibits ~ 15 dB additional gain and > 30x reduction in noise temperature compared to the previous generation and provide ECEI capability for absolute 2-D electron temperature profile measurements. Each LCP horn-waveguide module houses a 3x3 mm GaAs MMIC receiver chip, which consists of amore » low noise amplifier (LNA), balanced mixer, local oscillator multiplier chain driven by ~12 GHz input via an RF cable to the enclosure box, and IF amplifier. A proof-of-principle instrument with 5 poloidal channels was installed on DIII-D in 2017. The full proof-of-principle system installation (20 poloidal x 8 radial channels) was commissioned early in 2018. The LCP ECEI system is used for pedestal region measurements, especially focusing on temperature evolution during ELM bursting. The DIII-D ECE Imaging signal has been significantly improved with extremely effective shielding of out-of-band microwave noise which plagued previous ECE Imaging studies on DIII-D. In H-mode ELM bursting, the radial propagation of electron heat flow has been detected on DIII-D. The LCP ECE Imaging is expected to be a valuable diagnostic tool for ELM physics investigations.« less