Science.gov

Sample records for polymerase-1 inhibits atm

  1. ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors.

    PubMed

    Williamson, Chris T; Muzik, Huong; Turhan, Ali G; Zamò, Alberto; O'Connor, Mark J; Bebb, D Gwyn; Lees-Miller, Susan P

    2010-02-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) inhibition is toxic to cells with mutations in the breast and ovarian cancer susceptibility genes BRCA1 or BRCA2, a concept termed synthetic lethality. However, whether this approach is applicable to other human cancers with defects in other DNA repair genes has yet to be determined. The ataxia telangiectasia mutated (ATM) gene is altered in several human cancers including mantle cell lymphoma (MCL). Here, we characterize a panel of MCL cell lines for ATM status and function and investigate the potential for synthetic lethality in MCL in the presence of small-molecule inhibitors of PARP-1. We show that Granta-519 and UPN2 cells have low levels of ATM protein, are defective in DNA damage-induced ATM-dependent signaling, are radiation sensitive, and have cell cycle checkpoint defects: all characteristics of defective ATM function. Significantly, Granta-519 and UPN2 cells were more sensitive to PARP-1 inhibition than were the ATM-proficient MCL cell lines examined. Furthermore, the PARP-1 inhibitor olaparib (known previously as AZD2281/KU-0059436) significantly decreased tumor growth and increased overall survival in mice bearing s.c. xenografts of ATM-deficient Granta-519 cells while producing only a modest effect on overall survival of mice bearing xenografts of the ATM-proficient cell line, Z138. Thus, PARP inhibitors have therapeutic potential in the treatment of MCL, and the concept of synthetic lethality extends to human cancers with ATM alterations. PMID:20124459

  2. Inhibition of poly(ADP-ribose) polymerase-1 attenuates the toxicity of carbon tetrachloride

    PubMed Central

    Banasik, Marek; Stedeford, Todd; Strosznajder, Robert P; Takehashi, Masanori; Tanaka, Seigo; Ueda, Kunihiro

    2011-01-01

    Carbon tetrachloride (CCl4) is routinely used as a model compound for eliciting centrilobular hepatotoxicity. It can be bioactivated to the trichloromethyl radical, which causes extensive lipid peroxidation and ultimately cell death by necrosis. Overactivation of poly(ADP-ribose) polymerase-1 (PARP-1) can rapidly reduce the levels of (β-nicotinamide adenine dinucleotide and adenosine triphosphate and ultimately promote necrosis. The aim of this study was to determine whether inhibition of PARP-1 could decrease CCl4-induced hepatotoxicity, as measured by degree of poly(ADP-ribosyl)ation, serum levels of lactate dehydrogenase (LDH), lipid peroxidation,and oxidative DNA damage. For this purpose, male ICR mice were administered intraperitoneally a hepatotoxic dose of CCl4 with or without 6(5H)-phenanthridinone, a potent inhibitor of PARP-1. Animals treated with CCl4 exhibited extensive poly(ADP-ribosyl)ation in centrilobular hepatocytes, elevated serum levels of LDH, and increased lipid peroxidation. In contrast, animals treated concomitantly with CCl4 and 6(5H)-phenanthridinone showed significantly lower levels of poly(ADP-ribosyl) ation, serum LDH, and lipid peroxidation. No changes were observed in the levels of oxidative DNA damage regardless of treatment. These results demonstrated that the hepatotoxicity of CCl4is dependent on the overactivation of PARP-1 and that inhibition of this enzyme attenuates the hepatotoxicity of CCl4. PMID:21395487

  3. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    PubMed

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. PMID:26627003

  4. Inhibition of poly(ADP-ribose) polymerase-1 by arsenite interferes with repair of oxidative DNA damage.

    PubMed

    Ding, Wei; Liu, Wenlan; Cooper, Karen L; Qin, Xu-Jun; de Souza Bergo, Patrícia L; Hudson, Laurie G; Liu, Ke Jian

    2009-03-13

    Arsenic enhances skin tumor formation when combined with other carcinogens, including UV radiation (UVR). In this study we report that low micromolar concentrations of arsenite synergistically increases UVR-induced oxidative DNA damage in human keratinocytes as detected by 8-hydroxyl-2'-deoxyguanine (8-OHdG) formation. Poly(ADP-ribose) polymerase-1 (PARP-1) is involved in base excision repair, a process that repairs 8-OHdG lesions. Arsenite suppresses UVR-induced PARP-1 activation in a concentration-dependent manner. Inhibition of PARP-1 activity by 3-aminobenzamide or small interfering RNA silencing of PARP-1 expression significantly increases UVR-induced 8-OHdG formation, suggesting that inhibition of PARP-1 activity by arsenite contributes to oxidative DNA damage. PARP-1 is a zinc finger protein, and mass spectrometry analysis reveals that arsenite can occupy a synthetic apopeptide representing the first zinc finger of PARP-1 (PARPzf). When the PARPzf peptide is preincubated with Zn(II) followed by incubation with increasing concentrations of arsenite, the ZnPARPzf signal is decreased while the AsPARPzf signal intensity is increased as a function of arsenite dose, suggesting a competition between zinc and arsenite for the same binding site. Addition of Zn(II) abolished arsenite enhancement of UVR-stimulated 8-OHdG generation and restored PARP-1 activity. Our findings demonstrate that arsenite inhibits oxidative DNA damage repair and suggest that interaction of arsenite with the PARP-1 zinc finger domain contributes to the inhibition of PARP-1 activity by arsenite. Arsenite inhibition of poly(ADP-ribosyl)ation is one likely mechanism for the reported co-carcinogenic activities of arsenic in UVR-induced skin carcinogenesis. PMID:19056730

  5. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    PubMed Central

    Rom, Slava; Reichenbach, Nancy L.; Dykstra, Holly; Persidsky, Yuri

    2015-01-01

    Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60–80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85–95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection. PMID:26379653

  6. NOTCH1 Inhibits Activation of ATM by Impairing the Formation of an ATM-FOXO3a-KAT5/Tip60 Complex.

    PubMed

    Adamowicz, Marek; Vermezovic, Jelena; d'Adda di Fagagna, Fabrizio

    2016-08-23

    The DNA damage response (DDR) signal transduction pathway is responsible for sensing DNA damage and further relaying this signal into the cell. ATM is an apical DDR kinase that orchestrates the activation and the recruitment of downstream DDR factors to induce cell-cycle arrest and repair. We have previously shown that NOTCH1 inhibits ATM activation upon DNA damage, but the underlying mechanism remains unclear. Here, we show that NOTCH1 does not impair ATM recruitment to DNA double-strand breaks (DSBs). Rather, NOTCH1 prevents binding of FOXO3a and KAT5/Tip60 to ATM through a mechanism in which NOTCH1 competes with FOXO3a for ATM binding. Lack of FOXO3a binding to ATM leads to the loss of KAT5/Tip60 association with ATM. Moreover, expression of NOTCH1 or depletion of ATM impairs the formation of the FOXO3a-KAT5/Tip60 protein complex. Finally, we show that pharmacological induction of FOXO3a nuclear localization sensitizes NOTCH1-driven cancers to DNA-damage-induced cell death. PMID:27524627

  7. Restoration of ATM Expression in DNA-PKcs-Deficient Cells Inhibits Signal End Joining.

    PubMed

    Neal, Jessica A; Xu, Yao; Abe, Masumi; Hendrickson, Eric; Meek, Katheryn

    2016-04-01

    Unlike most DNA-dependent protein kinase, catalytic subunit (DNA-PKcs)-deficient mouse cell strains, we show in the present study that targeted deletion of DNA-PKcs in two different human cell lines abrogates VDJ signal end joining in episomal assays. Although the mechanism is not well defined, DNA-PKcs deficiency results in spontaneous reduction of ATM expression in many cultured cell lines (including those examined in this study) and in DNA-PKcs-deficient mice. We considered that varying loss of ATM expression might explain differences in signal end joining in different cell strains and animal models, and we investigated the impact of ATM and/or DNA-PKcs loss on VDJ recombination in cultured human and rodent cell strains. To our surprise, in DNA-PKcs-deficient mouse cell strains that are proficient in signal end joining, restoration of ATM expression markedly inhibits signal end joining. In contrast, in DNA-PKcs-deficient cells that are deficient in signal end joining, complete loss of ATM enhances signal (but not coding) joint formation. We propose that ATM facilitates restriction of signal ends to the classical nonhomologous end-joining pathway. PMID:26921311

  8. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    PubMed

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression. PMID:26824362

  9. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase

    PubMed Central

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression. PMID:26824362

  10. Hydrogen-rich saline reduces cell death through inhibition of DNA oxidative stress and overactivation of poly (ADP-ribose) polymerase-1 in retinal ischemia-reperfusion injury

    PubMed Central

    LIU, HONGWEI; HUA, NING; XIE, KELIANG; ZHAO, TINGTING; YU, YONGHAO

    2015-01-01

    Overactivation of poly (ADP-ribose) polymerase 1 (PARP-1), as a result of sustained DNA oxidation in ischemia-reperfusion injury, triggers programmed cell necrosis and apoptosis. The present study was conducted to demonstrate whether hydrogen-rich saline (HRS) has a neuroprotective effect on retinal ischemia reperfusion (RIR) injury through inhibition of PARP-1 activation. RIR was induced by transient elevation of intraocular pressure in rats. HRS (5 ml/kg) was administered peritoneally every day from the beginning of reperfusion in RIR rats until the rats were sacrificed. Retinal damage and cell death was determined using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. DNA oxidative stress was evaluated by immunofluorescence staining of 8-hydroxy-2-deoxyguanosine. In addition, the expression of PARP-1 and caspase-3 was investigated by western blot analysis and/or immunohistochemical staining. The results demonstrated that HRS administration improved morphological alterations and reduced apoptosis following RIR injury. Furthermore, the present study found that HRS alleviated DNA oxidation and PARP-1 overactivation in RIR rats. HRS can protect RIR injury by inhibition of PARP-1, which may be involved in DNA oxidative stress and caspase-3-mediated apoptosis. PMID:25954991

  11. Hydrogen-rich saline reduces cell death through inhibition of DNA oxidative stress and overactivation of poly (ADP-ribose) polymerase-1 in retinal ischemia-reperfusion injury.

    PubMed

    Liu, Hongwei; Hua, Ning; Xie, Keliang; Zhao, Tingting; Yu, Yonghao

    2015-08-01

    Overactivation of poly (ADP-ribose) polymerase 1 (PARP-1), as a result of sustained DNA oxidation in ischemia-reperfusion injury, triggers programmed cell necrosis and apoptosis. The present study was conducted to demonstrate whether hydrogen-rich saline (HRS) has a neuroprotective effect on retinal ischemia reperfusion (RIR) injury through inhibition of PARP-1 activation. RIR was induced by transient elevation of intraocular pressure in rats. HRS (5 ml/kg) was administered peritoneally every day from the beginning of reperfusion in RIR rats until the rats were sacrificed. Retinal damage and cell death was determined using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. DNA oxidative stress was evaluated by immunofluorescence staining of 8-hydroxy-2-deoxyguanosine. In addition, the expression of PARP-1 and caspase-3 was investigated by western blot analysis and/or immunohistochemical staining. The results demonstrated that HRS administration improved morphological alterations and reduced apoptosis following RIR injury. Furthermore, the present study found that HRS alleviated DNA oxidation and PARP-1 overactivation in RIR rats. HRS can protect RIR injury by inhibition of PARP-1, which may be involved in DNA oxidative stress and caspase-3-mediated apoptosis. PMID:25954991

  12. Inhibition of TGFbeta1 Signaling Attenutates ATM Activity inResponse to Genotoxic Stress

    SciTech Connect

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose; Ravani, Shraddha A.; Glick, Adam B.; Lavin, Martin J.; Koslov, Sergei; Shiloh, Yosef; Barcellos-Hoff, Mary Helen

    2006-09-15

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta}1 (TGF{beta}), which is activated by radiation, is a potent and pleiotropic mediator of physiological and pathological processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}1 null murine epithelial cells or human epithelial cells treated with a small molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17 and p53, reduced {gamma}H2AX radiation-induced foci, and increased radiosensitivity compared to TGF{beta} competent cells. We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM that directs epithelial cell stress responses, cell fate and tissue integrity. Thus, TGF{beta}1, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.

  13. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

    SciTech Connect

    Aoyagi-Scharber, Mika; Gardberg, Anna S.; Yip, Bryan K.; Wang, Bing; Shen, Yuqiao; Fitzpatrick, Paul A.

    2014-08-29

    BMN 673, a novel PARP1/2 inhibitor in clinical development with substantial tumor cytotoxicity, forms extensive hydrogen-bonding and π-stacking in the nicotinamide pocket, with its unique disubstituted scaffold extending towards the less conserved edges of the pocket. These interactions might provide structural insight into the ability of BMN 673 to both inhibit catalysis and affect DNA-binding activity. Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers. In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity.

  14. p38γ Mitogen-Activated Protein Kinase Contributes to Oncogenic Properties Maintenance and Resistance to Poly (ADP-Ribose)-Polymerase-1 Inhibition in Breast Cancer12

    PubMed Central

    Meng, Fanyan; Zhang, Haijun; Liu, Gang; Kreike, Bas; Chen, Wei; Sethi, Seema; Miller, Fred R; Wu, Guojun

    2011-01-01

    p38γ MAPK, one of the four members of p38 mitogen-activated protein kinases (MAPKs), has previously been shown to harbor oncogenic functions. However, the biologic function of p38γ MAPK in breast cancer has not been well defined. In this study, we have shown that p38γ MAPK is overexpressed in highly metastatic human and mouse breast cancer cell lines and p38γ MAPK expression is preferentially associated with basal-like and metastatic phenotypes of breast tumor samples. Ectopic expression of p38γ MAPK did not lead to an increase in oncogenic properties in vitro in most tested mammary epithelial cells. However, knockdown of p38γ MAPK expression resulted in a dramatic decrease in cell proliferation, colony formation, cell migration, invasion in vitro and significant retardation of tumorigenesis, and long-distance metastasis to the lungs in vivo. Moreover, knockdown of p38γ MAPK triggered the activation of AKT signaling. Inhibition of this feedback loop with various PI3K/AKT signaling inhibitors facilitated the effect of targeting p38γ MAPK. We further found that overexpression of p38γ MAPK did not promote cell resistance to chemotherapeutic agents doxorubicin and paclitaxel but significantly increased cell resistance to PJ-34, a DNA damage agent poly (ADP-ribose)-polymerase-1 (PARP) inhibitor in vitro and in vivo. Finally, we identified that p38γ MAPK overexpression led to marked cell cycle arrest in G2/M phase. Our study for the first time clearly demonstrates that p38γ MAPK is a promising target for the design of targeted therapies for basal-like breast cancer with metastatic characteristics and for overcoming potential resistance against the PARP inhibitor. PMID:21532888

  15. Interdependent genotoxic mechanisms of monomethylarsonous acid: Role of ROS-induced DNA damage and poly(ADP-ribose) polymerase-1 inhibition in the malignant transformation of urothelial cells

    SciTech Connect

    Wnek, Shawn M.; Kuhlman, Christopher L.; Camarillo, Jeannie M.; Medeiros, Matthew K.; Liu, Ke J.; Lau, Serrine S.; Gandolfi, A.J.

    2011-11-15

    Exposure of human bladder urothelial cells (UROtsa) to 50 nM of the arsenic metabolite, monomethylarsonous acid (MMA{sup III}), for 12 weeks results in irreversible malignant transformation. The ability of continuous, low-level MMA{sup III} exposure to cause an increase in genotoxic potential by inhibiting repair processes necessary to maintain genomic stability is unknown. Following genomic insult within cellular systems poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger protein, is rapidly activated and recruited to sites of DNA strand breaks. When UROtsa cells are continuously exposed to 50 nM MMA{sup III}, PARP-1 activity does not increase despite the increase in MMA{sup III}-induced DNA single-strand breaks through 12 weeks of exposure. When UROtsa cells are removed from continuous MMA{sup III} exposure (2 weeks), PARP-1 activity increases coinciding with a subsequent decrease in DNA damage levels. Paradoxically, PARP-1 mRNA expression and protein levels are elevated in the presence of continuous MMA{sup III} indicating a possible mechanism to compensate for the inhibition of PARP-1 activity in the presence of MMA{sup III}. The zinc finger domains of PARP-1 contain vicinal sulfhydryl groups which may act as a potential site for MMA{sup III} to bind, displace zinc ion, and render PARP-1 inactive. Mass spectrometry analysis demonstrates the ability of MMA{sup III} to bind a synthetic peptide representing the zinc-finger domain of PARP-1, and displace zinc from the peptide in a dose-dependent manner. In the presence of continuous MMA{sup III} exposure, continuous 4-week zinc supplementation restored PARP-1 activity levels and reduced the genotoxicity associated with MMA{sup III}. Zinc supplementation did not produce an overall increase in PARP-1 protein levels, decrease the levels of MMA{sup III}-induced reactive oxygen species, or alter Cu-Zn superoxide dismutase levels. Overall, these results present two potential interdependent mechanisms in which MMA

  16. Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53.

    PubMed

    Williamson, Chris T; Kubota, Eiji; Hamill, Jeffrey D; Klimowicz, Alexander; Ye, Ruiqiong; Muzik, Huong; Dean, Michelle; Tu, LiRen; Gilley, David; Magliocco, Anthony M; McKay, Bruce C; Bebb, D Gwyn; Lees-Miller, Susan P

    2012-06-01

    Poly-ADP ribose polymerase (PARP) inhibitors have shown promise in the treatment of human malignancies characterized by deficiencies in the DNA damage repair proteins BRCA1 and BRCA2 and preclinical studies have demonstrated the potential effectiveness of PARP inhibitors in targeting ataxia-telangiectasia mutated (ATM)-deficient tumours. Here, we show that mantle cell lymphoma (MCL) cells deficient in both ATM and p53 are more sensitive to the PARP inhibitor olaparib than cells lacking ATM function alone. In ATM-deficient MCL cells, olaparib induced DNA-PK-dependent phosphorylation and stabilization of p53 as well as expression of p53-responsive cell cycle checkpoint regulators, and inhibition of DNA-PK reduced the toxicity of olaparib in ATM-deficient MCL cells. Thus, both DNA-PK and p53 regulate the response of ATM-deficient MCL cells to olaparib. In addition, small molecule inhibition of both ATM and PARP was cytotoxic in normal human fibroblasts with disruption of p53, implying that the combination of ATM and PARP inhibitors may have utility in targeting p53-deficient malignancies. PMID:22416035

  17. MiR-203 inhibits tumor invasion and metastasis in gastric cancer by ATM.

    PubMed

    Zhou, Ping; Jiang, Nan; Zhang, Guo-Xia; Sun, Qing

    2016-08-01

    Gastric cancer is one of the most common malignancies in the world. A number of miRNAs are aberrantly expressed during the progression of gastric cancer. In this study, we aimed to investigate the role of miR-203 in the invasion and metastasis of gastric cancer and the potential mechanism of the effect of miR-203 on the tumor progression of gastric cancer. Our results showed that miR-203 was significantly downregulated in gastric cancer tissues and cells, while ataxia telangiectasia mutated kinase (ATM) was upregulated in gastric cancer tissues and cells and was directly regulated by miR-203. Ectopic overexpression of miR-203 inhibited the colony formation, migration, and invasion of gastric cancer cells. In addition, miR-203 overexpression significantly suppressed the protein level of Snail and obviously promoted the protein level of E-cadherin in gastric cancer cells. ATM knockdown phenocopied the effect of miR-203 overexpression. These results suggested that miR-203 suppressed the migration and invasion of gastric cancer through regulating the level of ATM-mediated-Snail and E-cadherin. MiR-203 might be a novel therapeutic strategy for the treatment of gastric cancer. PMID:27542403

  18. ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells.

    PubMed

    Kwok, Marwan; Davies, Nicholas; Agathanggelou, Angelo; Smith, Edward; Oldreive, Ceri; Petermann, Eva; Stewart, Grant; Brown, Jeff; Lau, Alan; Pratt, Guy; Parry, Helen; Taylor, Malcolm; Moss, Paul; Hillmen, Peter; Stankovic, Tatjana

    2016-02-01

    TP53 and ataxia telangiectasia mutated (ATM) defects are associated with genomic instability, clonal evolution, and chemoresistance in chronic lymphocytic leukemia (CLL). Currently, therapies capable of providing durable remissions in relapsed/refractory TP53- or ATM-defective CLL are lacking. Ataxia telangiectasia and Rad3-related (ATR) mediates response to replication stress, the absence of which leads to collapse of stalled replication forks into chromatid fragments that require resolution through the ATM/p53 pathway. Here, using AZD6738, a novel ATR kinase inhibitor, we investigated ATR inhibition as a synthetically lethal strategy to target CLL cells with TP53 or ATM defects. Irrespective of TP53 or ATM status, induction of CLL cell proliferation upregulated ATR protein, which then became activated in response to replication stress. In TP53- or ATM-defective CLL cells, inhibition of ATR signaling by AZD6738 led to an accumulation of unrepaired DNA damage, which was carried through into mitosis because of defective cell cycle checkpoints, resulting in cell death by mitotic catastrophe. Consequently, AZD6738 was selectively cytotoxic to both TP53- and ATM-defective CLL cell lines and primary cells. This was confirmed in vivo using primary xenograft models of TP53- or ATM-defective CLL, where treatment with AZD6738 resulted in decreased tumor load and reduction in the proportion of CLL cells with such defects. Moreover, AZD6738 sensitized TP53- or ATM-defective primary CLL cells to chemotherapy and ibrutinib. Our findings suggest that ATR is a promising therapeutic target for TP53- or ATM-defective CLL that warrants clinical investigation. PMID:26563132

  19. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone.

    PubMed

    Aoyagi-Scharber, Mika; Gardberg, Anna S; Yip, Bryan K; Wang, Bing; Shen, Yuqiao; Fitzpatrick, Paul A

    2014-09-01

    Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers. In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity. PMID:25195882

  20. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

    PubMed Central

    Aoyagi-Scharber, Mika; Gardberg, Anna S.; Yip, Bryan K.; Wang, Bing; Shen, Yuqiao; Fitzpatrick, Paul A.

    2014-01-01

    Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers. In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity. PMID:25195882

  1. Effects of poly (ADP-ribose) polymerase-1 (PARP-1) inhibition on sulfur mustard-induced cutaneous injuries in vitro and in vivo

    PubMed Central

    Liu, Feng; Jiang, Ning; Xiao, Zhi-yong; Cheng, Jun-ping; Mei, Yi-zhou; Zheng, Pan; Wang, Li; Zhang, Xiao-rui; Zhou, Xin-bo

    2016-01-01

    Early studies with first-generation poly (ADP-ribose) polymerase (PARP) inhibitors have already indicated some therapeutic potential for sulfur mustard (SM) injuries. The available novel and more potential PARP inhibitors, which are undergoing clinical trials as drugs for cancer treatment, bring it back to the centre of interest. However, the role of PARP-1 in SM-induced injury is not fully understood. In this study, we selected a high potent specific PARP inhibitor ABT-888 as an example to investigate the effect of PARP inhibitor in SM injury. The results showed that in both the mouse ear vesicant model (MEVM) and HaCaT cell model, PARP inhibitor ABT-888 can reduce cell damage induced by severe SM injury. ABT-888 significantly reduced SM induced edema and epidermal necrosis in MEVM. In the HaCaT cell model, ABT-888 can reduce SM-induced NAD+/ATP depletion and apoptosis/necrosis. Then, we studied the mechanism of PARP-1 in SM injury by knockdown of PARP-1 in HaCaT cells. Knockdown of PARP-1 protected cell viability and downregulated the apoptosis checkpoints, including p-JNK, p-p53, Caspase 9, Caspase 8, c-PARP and Caspase 3 following SM-induced injury. Furthermore, the activation of AKT can inhibit autophagy via the regulation of mTOR. Our results showed that SM exposure could significantly inhibit the activation of Akt/mTOR pathway. Knockdown of PARP-1 reversed the SM-induced suppression of the Akt/mTOR pathway. In summary, the results of our study indicated that the protective effects of downregulation of PARP-1 in SM injury may be due to the regulation of apoptosis, necrosis, energy crisis and autophagy. However, it should be noticed that PARP inhibitor ABT-888 further enhanced the phosphorylation of H2AX (S139) after SM exposure, which indicated that we should be very careful in the application of PARP inhibitors in SM injury treatment because of the enhancement of DNA damage. PMID:27077006

  2. Pharmacologic inhibition of ATR and ATM offers clinically important distinctions to enhancing platinum or radiation response in ovarian, endometrial, and cervical cancer cells

    PubMed Central

    Teng, Pang-ning; Bateman, Nicholas W.; Darcy, Kathleen M.; Hamilton, Chad A.; Maxwell, George Larry; Bakkenist, Christopher J.; Conrads, Thomas P.

    2015-01-01

    Objective Significant reductions in gynecologic (GYN) cancer mortality and morbidity require treatments that prevent and reverse resistance to chemotherapy and radiation. The objective of this study was to determine if pharmacologic inhibition of key DNA damage response kinases in GYN cancers would enhance cell killing by platinum-based chemotherapy and radiation. Methods A panel of human ovarian, endometrial and cervical cancer cell lines were treated with platinum drugs or ionizing radiation (IR) along with small molecule pharmacological kinase inhibitors of Ataxia telangiectasia mutated (ATM) and ATM and Rad-3-related (ATR). Results Pharmacologic inhibition of ATR significantly enhanced platinum drug response in all GYN cancer cell lines tested, whereas inhibition of ATM did not enhance the response to platinum drugs. Co-inhibition of ATM and ATR did not enhance platinum kill beyond that observed by inhibition of ATR alone. By contrast, inhibiting either ATR or ATM enhanced the response to IR in all GYN cancer cells, with further enhancement achieved with co-inhibition. Conclusions These studies highlight actionable mechanisms operative in GYN cancer cells with potential to maximize response of platinum agents and radiation in newly diagnosed as well as recurrent gynecologic cancers. PMID:25560806

  3. β-elemene enhances both radiosensitivity and chemosensitivity of glioblastoma cells through the inhibition of the ATM signaling pathway.

    PubMed

    Liu, Siwei; Zhou, Lei; Zhao, Yongshun; Yuan, Yuhui

    2015-08-01

    Glioblastoma multiforme (GBM), a tumor associated with poor prognosis, is known to be resistant to radiotherapy and alkylating agents such as temozolomide (TMZ). β-elemene, a monomer found in Chinese traditional herbs extracted from Curcuma wenyujin, is currently being used as an antitumor drug for different types of tumors including GBM. In the present study, we investigated the roles of β-elemene in the radiosensitivity and chemosensitivity of GBM cells. Human GBM cell lines U87-MG, T98G, U251, LN229 and rat C6 cells were treated with β-elemene combined with radiation or TMZ. We used MTT and colony forming assays to evaluate the proliferation and survival of the cells, and the comet assay to observe DNA damage. Expression of proteins was analyzed by immunoblotting. In the present study, we found that β-elemene inhibited the proliferation and survival of different GBM cell lines when combined with radiotherapy or TMZ via inhibition of DNA damage repair. Treatment of GBM cells with β-elemene decreased the phosphorylation of ataxia telangiectasia mutated (ATM), AKT and ERK following radiotherapy or chemotherapy. These results revealed that β-elemene could significantly increase the radiosensitivity and chemosensitivity of GBM. β-elemene may be used as a potential drug in combination with the radiotherapy and chemotherapy of GBM. PMID:26062577

  4. Effect of ATM and HDAC Inhibition on Etoposide-Induced DNA Damage in Porcine Early Preimplantation Embryos

    PubMed Central

    Wang, HaiYang; Luo, YiBo; Lin, ZiLi; Lee, In-Won; Kwon, Jeongwoo; Cui, Xiang-Shun; Kim, Nam-Hyung

    2015-01-01

    Oocyte maturation and embryonic development are sensitive to DNA damage. Compared with somatic cells or oocytes, little is known about the response to DNA damage in early preimplantation embryos. In this study, we examined DNA damage checkpoints and DNA repair mechanisms in parthenogenetic preimplantation porcine embryos. We found that most of the etoposide-treated embryos showed delay in cleavage and ceased development before the blastocyst stage. In DNA-damaged embryos, the earliest positive TUNEL signals were detected on Day 5 of in vitro culture. Caffeine, which is an ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3-related protein) kinase inhibitor, and KU55933, which is an ATM kinase inhibitor, were equally effective in rescuing the etoposide-induced cell-cycle blocks. This indicates that ATM plays a central role in the regulation of the checkpoint mechanisms. Treating the embryos with histone deacetylase inhibitors (HDACi) increased embryonic development and reduced etoposide-induced double-strand breaks (DSBs). The mRNA expression of genes involved in non-homologous end-joining (NHEJ) or homologous recombination (HR) pathways for DSB repair was reduced upon HDACi treatment in 5-day-old embryos. Furthermore, HDACi treatment increased the expression levels of pluripotency-related genes (OCT4, SOX2 and NANOG) and decreased the expression levels of apoptosis-related genes (CASP3 and BAX). These results indicate that early embryonic cleavage and development are disturbed by etoposide-induced DNA damage. ATMi (caffeine or KU55933) treatment bypasses the checkpoint while HDACi treatment improves the efficiency of DSB repair to increase the cleavage and blastocyst rate in porcine early preimplantation embryos. PMID:26556501

  5. Hyperactivation of ATM upon DNA-PKcs inhibition modulates p53 dynamics and cell fate in response to DNA damage.

    PubMed

    Finzel, Ana; Grybowski, Andrea; Strasen, Jette; Cristiano, Elena; Loewer, Alexander

    2016-08-01

    A functional DNA damage response is essential for maintaining genome integrity in the presence of DNA double-strand breaks. It is mainly coordinated by the kinases ATM, ATR, and DNA-PKcs, which control the repair of broken DNA strands and relay the damage signal to the tumor suppressor p53 to induce cell cycle arrest, apoptosis, or senescence. Although many functions of the individual kinases have been identified, it remains unclear how they act in concert to ensure faithful processing of the damage signal. Using specific inhibitors and quantitative analysis at the single-cell level, we systematically characterize the contribution of each kinase for regulating p53 activity. Our results reveal a new regulatory interplay in which loss of DNA-PKcs function leads to hyperactivation of ATM and amplification of the p53 response, sensitizing cells for damage-induced senescence. This interplay determines the outcome of treatment regimens combining irradiation with DNA-PKcs inhibitors in a p53-dependent manner. PMID:27280387

  6. p53-dependent but ATM-independent inhibition of DNA synthesis and G2 arrest in cadmium-treated human fibroblasts

    SciTech Connect

    Cao Feng |; Zhou Tong; Simpson, Dennis; Zhou Yingchun; Boyer, Jayne; Chen Bo |; Jin Taiyi; Cordeiro-Stone, Marila; Kaufmann, William . E-mail: wkarlk@med.unc.edu

    2007-01-15

    This study focused on the activation of cell cycle checkpoint responses in diploid human fibroblasts that were treated with cadmium chloride and the potential roles of ATM and p53 signaling pathways in cadmium-induced responses. The alkaline comet assay indicated that cadmium caused a dose-dependent increase in DNA damage. Cells that were rendered p53-defective by expression of a dominant-negative p53 allele or knockdown of p53 mRNA were more resistant to cadmium-induced inactivation of colony formation than normal and ataxia telangiectasia (AT) cells. Synchronized fibroblasts in S were more sensitive to cadmium toxicity than cells in G1, suggesting that cadmium may target some element of DNA replication. Cadmium produced a dose- and time-dependent inhibition of DNA synthesis. An immediate inhibition was associated with severe delay in progression through S phase and a delayed inhibition seen 24 h after treatment was associated with accumulation of cells in G2. AT and normal cells displayed similar patterns of inhibition of DNA synthesis and G2 delay after treatment with cadmium, while p53-defective cells displayed significantly less of the delayed inhibition of DNA synthesis and accumulation in G2 post-treatment. Total p53 protein and ser15-phosphorylated p53 were induced by cadmium in normal and AT cells. The p53 transactivation target Gadd45{alpha} was induced in both p53-effective and p53-defective cells after 4 h cadmium treatment, and this was associated with an acute inhibition of mitosis. Cadmium produced a very unusual pattern of toxicity in human fibroblasts, inhibiting DNA replication and inducing p53-dependent growth arrest but without induction of p21{sup Cip1/Waf1} or activation of Chk1.

  7. Novel targets for ATM-deficient malignancies

    PubMed Central

    Winkler, Johannes; Hofmann, Kay; Chen, Shuhua

    2014-01-01

    Conventional chemo- and radiotherapies for the treatment of cancer target rapidly dividing cells in both tumor and non-tumor tissues and can exhibit severe cytotoxicity in normal tissue and impair the patient's immune system. Novel targeted strategies aim for higher efficacy and tumor specificity. The role of ATM protein in the DNA damage response is well known and ATM deficiency frequently plays a role in tumorigenesis and development of malignancy. In addition to contributing to disease development, ATM deficiency also renders malignant cells heavily dependent on other pathways that cooperate with the ATM-mediated DNA damage response to ensure tumor cell survival. Disturbing those cooperative pathways by inhibiting critical protein components allows specific targeting of tumors while sparing healthy cells with normal ATM status. We review druggable candidate targets for the treatment of ATM-deficient malignancies and the mechanisms underlying such targeted therapies. PMID:27308314

  8. When the guardian becomes the enemy: Targeting ATM in PTEN-deficient cancers

    PubMed Central

    McCabe, Nuala; Walker, Steven M; Kennedy, Richard D

    2016-01-01

    ABSTRACT Ataxia telangiectasia mutated (ATM) is an important signaling molecule in the DNA damage response and inhibitors of ATM are under clinical development. We identified a synthetic lethal interaction between ATM inhibition and phosphatase and tensin homolog (PTEN) loss that was the result of increased oxidative stress. Inhibition of ATM therefore represents a novel strategy to target PTEN-associated cancers. PMID:27308567

  9. When the guardian becomes the enemy: Targeting ATM in PTEN-deficient cancers.

    PubMed

    McCabe, Nuala; Walker, Steven M; Kennedy, Richard D

    2016-01-01

    Ataxia telangiectasia mutated (ATM) is an important signaling molecule in the DNA damage response and inhibitors of ATM are under clinical development. We identified a synthetic lethal interaction between ATM inhibition and phosphatase and tensin homolog (PTEN) loss that was the result of increased oxidative stress. Inhibition of ATM therefore represents a novel strategy to target PTEN-associated cancers. PMID:27308567

  10. ATM technology and beyond

    NASA Technical Reports Server (NTRS)

    Cheung, Nim K.

    1993-01-01

    Networks based on Asynchronous Transfer Mode (ATM) are expected to provide cost-effective and ubiquitous infrastructure to support broadband and multimedia services. In this paper, we give an overview of the ATM standards and its associated physical layer transport technologies. We use the experimental HIPPI-ATM-SONET (HAS) interface in the Nectar Gigabit Testbed to illustrate how one can use the SONET/ATM public network to provide transport for bursty gigabit applications.

  11. Chk1 inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase.

    PubMed

    McNeely, Samuel; Conti, Chiara; Sheikh, Tahir; Patel, Himali; Zabludoff, Sonya; Pommier, Yves; Schwartz, Gary; Tse, Archie

    2010-03-01

    Checkpoint kinase 1 (Chk1) regulates cell cycle checkpoints and DNA damage repair in response to genotoxic stress. Inhibition of Chk1 is an emerging strategy for potentiating the cytotoxicity of chemotherapeutic drugs. Here, we demonstrate that AZD7762, an ATP -competitive Chk1/2 inhibitor induces gammaH2AX in gemcitabine-treated cells by altering both dynamics and stability of replication forks, allowing the firing of suppressed replication origins as measured by DNA fiber combing and causing a dramatic increase in DNA breaks as measured by comet assay. Furthermore, we identify ATM and DNA-PK, rather than ATR, as the kinases mediating gammaH2AX induction, suggesting AZD7762 converts stalled forks into double strand breaks (DSBs). Consistent with DSB formation upon fork collapse, cells deficient in DSB repair by lack of BRCA2, XRCC3 or DNA-PK were selectively more sensitive to combined AZD7762 and gemcitabine. Checkpoint abrogation by AZD7762 also caused premature mitosis in gemcitabine-treated cells arrested in G(1)/early S-phase. Prevention of premature mitotic entry via Cdk1 siRNA knockdown suppressed apoptosis. These results demonstrate that chemosensitization of gemcitabine by Chk1 inhibition results from at least three cellular events, namely, activation of origin firing, destabilization of stalled replication forks and entry of cells with damaged DNA into lethal mitosis. Additionally, the current study indicates that the combination of Chk1 inhibitor and gemcitabine may be particularly effective in targeting tumors with specific DNA repair defects. PMID:20160494

  12. ATM encryption testing

    NASA Astrophysics Data System (ADS)

    Capell, Joyce; Deeth, David

    1996-01-01

    This paper describes why encryption was selected by Lockheed Martin Missiles & Space as the means for securing ATM networks. The ATM encryption testing program is part of an ATM network trial provided by Pacific Bell under the California Research Education Network (CalREN). The problem being addressed is the threat to data security which results when changing from a packet switched network infrastructure to a circuit switched ATM network backbone. As organizations move to high speed cell-based networks, there is a break down in the traditional security model which is designed to protect packet switched data networks from external attacks. This is due to the fact that most data security firewalls filter IP packets, restricting inbound and outbound protocols, e.g. ftp. ATM networks, based on cell-switching over virtual circuits, does not support this method for restricting access since the protocol information is not carried by each cell. ATM switches set up multiple virtual connections, thus there is no longer a single point of entry into the internal network. The problem is further complicated by the fact that ATM networks support high speed multi-media applications, including real time video and video teleconferencing which are incompatible with packet switched networks. The ability to restrict access to Lockheed Martin networks in support of both unclassified and classified communications is required before ATM network technology can be fully deployed. The Lockheed Martin CalREN ATM testbed provides the opportunity to test ATM encryption prototypes with actual applications to assess the viability of ATM encryption methodologies prior to installing large scale ATM networks. Two prototype ATM encryptors are being tested: (1) `MILKBUSH' a prototype encryptor developed by NSA for transmission of government classified data over ATM networks, and (2) a prototype ATM encryptor developed by Sandia National Labs in New Mexico, for the encryption of proprietary data.

  13. Structure of the human dimeric ATM kinase

    PubMed Central

    Lau, Wilson C. Y.; Li, Yinyin; Liu, Zhe; Gao, Yuanzhu; Zhang, Qinfen; Huen, Michael S. Y.

    2016-01-01

    ABSTRACT DNA-double strand breaks activate the serine/threonine protein kinase ataxia-telangiectasia mutated (ATM) to initiate DNA damage signal transduction. This activation process involves autophosphorylation and dissociation of inert ATM dimers into monomers that are catalytically active. Using single-particle electron microscopy (EM), we determined the structure of dimeric ATM in its resting state. The EM map could accommodate the crystal structure of the N-terminal truncated mammalian target of rapamycin (mTOR), a closely related enzyme of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family, allowing for the localization of the N- and the C-terminal regions of ATM. In the dimeric structure, the actives sites are buried, restricting the access of the substrates to these sites. The unanticipated domain organization of ATM provides a basis for understanding its mechanism of inhibition. PMID:27097373

  14. Structure of the human dimeric ATM kinase.

    PubMed

    Lau, Wilson C Y; Li, Yinyin; Liu, Zhe; Gao, Yuanzhu; Zhang, Qinfen; Huen, Michael S Y

    2016-01-01

    DNA-double strand breaks activate the serine/threonine protein kinase ataxia-telangiectasia mutated (ATM) to initiate DNA damage signal transduction. This activation process involves autophosphorylation and dissociation of inert ATM dimers into monomers that are catalytically active. Using single-particle electron microscopy (EM), we determined the structure of dimeric ATM in its resting state. The EM map could accommodate the crystal structure of the N-terminal truncated mammalian target of rapamycin (mTOR), a closely related enzyme of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family, allowing for the localization of the N- and the C-terminal regions of ATM. In the dimeric structure, the actives sites are buried, restricting the access of the substrates to these sites. The unanticipated domain organization of ATM provides a basis for understanding its mechanism of inhibition. PMID:27097373

  15. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    PubMed Central

    Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie

    2015-01-01

    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159

  16. ATMS Step By Step.

    ERIC Educational Resources Information Center

    National Library of Australia, Canberra.

    This manual is designed to provide an introduction and basic guide to the use of IBM's Advanced Text Management System (ATMS), the text processing system to be used for the creation of Australian data bases within AUSINET. Instructions are provided for using the system to enter, store, retrieve, and modify data, which may then be displayed at the…

  17. The role of ATM mutations and 11q deletions in disease progression in chronic lymphocytic leukemia.

    PubMed

    Stankovic, Tatjana; Skowronska, Anna

    2014-06-01

    Abstract ATM gene alteration is a frequent event in pathogenesis of chronic lymphocytic leukemia (CLL) and occurs as monoallelic loss in the form of 11q23 deletion, with and without mutation in the remaining ATM allele. ATM is a principal DNA damage response gene and biallelic ATM alterations lead to ATM functional loss and chemoresistance. The introduction of new therapies, such as intensive chemoimmunotherapy and inhibition of B-cell receptor (BCR) signaling, has changed clinical responses for the majority of CLL tumors including those with 11q deletion, but it remains to be determined whether these strategies can prevent clonal evolution of tumors with biallelic ATM alterations. In this review we discuss ATM function and the consequences of its loss during CLL pathogenesis, differences in clinical behavior of tumors with monoallelic and biallelic ATM alterations, and we outline possible approaches for targeting the ATM null CLL phenotype. PMID:23906020

  18. Mode of ATM-dependent suppression of chromosome translocation

    SciTech Connect

    Yamauchi, Motohiro; Suzuki, Keiji; Oka, Yasuyoshi; Suzuki, Masatoshi; Kondo, Hisayoshi; Yamashita, Shunichi

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer We addressed how ATM suppresses frequency of chromosome translocation. Black-Right-Pointing-Pointer We found ATM/p53-dependent G1 checkpoint suppresses translocation frequency. Black-Right-Pointing-Pointer We found ATM and DNA-PKcs function in a common pathway to suppress translocation. -- Abstract: It is well documented that deficiency in ataxia telangiectasia mutated (ATM) protein leads to elevated frequency of chromosome translocation, however, it remains poorly understood how ATM suppresses translocation frequency. In the present study, we addressed the mechanism of ATM-dependent suppression of translocation frequency. To know frequency of translocation events in a whole genome at once, we performed centromere/telomere FISH and scored dicentric chromosomes, because dicentric and translocation occur with equal frequency and by identical mechanism. By centromere/telomere FISH analysis, we confirmed that chemical inhibition or RNAi-mediated knockdown of ATM causes 2 to 2.5-fold increase in dicentric frequency at first mitosis after 2 Gy of gamma-irradiation in G0/G1. The FISH analysis revealed that ATM/p53-dependent G1 checkpoint suppresses dicentric frequency, since RNAi-mediated knockdown of p53 elevated dicentric frequency by 1.5-fold. We found ATM also suppresses dicentric occurrence independently of its checkpoint role, as ATM inhibitor showed additional effect on dicentric frequency in the context of p53 depletion and Chk1/2 inactivation. Epistasis analysis using chemical inhibitors revealed that ATM kinase functions in the same pathway that requires kinase activity of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to suppress dicentric frequency. From the results in the present study, we conclude that ATM minimizes translocation frequency through its commitment to G1 checkpoint and DNA double-strand break repair pathway that requires kinase activity of DNA-PKcs.

  19. Scalable ATM encryption

    SciTech Connect

    1995-04-01

    In order to provide needed security assurances for traffic carried in Asynchronous Transfer Mode (ATM) networks, methods of protecting the integrity and privacy of traffic must be employed. Cryptographic methods can be used to assure authenticity and privacy, but are hard to scale and the incorporation of these methods into computer networks can severely impact functionality, reliability, and performance. To study these trade-offs, a research prototype encryptor/decryptor is under development. This prototype is to demonstrate the viability of implementing certain encryption techniques in high speed networks by processing Asynchronous Transfer Mode (ATM) cells in a SONET OC-3 payload. This paper describes the objectives and design trade-offs intended to be investigated with the prototype. User requirements for high performance computing and communication have driven Sandia to do work in the areas of functionality, reliability, security, and performance of high speed communication networks. Adherence to standards (including emerging standards) achieves greater functionality of high speed computer networks by providing wide interoperability of applications, network hardware, and network software.

  20. Small Molecule Inhibition of miR-544 Biogenesis Disrupts Adaptive Responses to Hypoxia by Modulating ATM-mTOR Signaling.

    PubMed

    Haga, Christopher L; Velagapudi, Sai Pradeep; Strivelli, Jacqueline R; Yang, Wang-Yong; Disney, Matthew D; Phinney, Donald G

    2015-10-16

    Hypoxia induces a complex circuit of gene expression that drives tumor progression and increases drug resistance. Defining these changes allows for an understanding of how hypoxia alters tumor biology and informs design of lead therapeutics. We probed the role of microRNA-544 (miR-544), which silences mammalian target of rapamycin (mTOR), in a hypoxic breast cancer model by using a small molecule (1) that selectively impedes the microRNA's biogenesis. Application of 1 to hypoxic tumor cells selectively inhibited production of the mature microRNA, sensitized cells to 5-fluorouracil, and derepressed mRNAs affected by miR-544 in cellulo and in vivo, including boosting mTOR expression. Thus, small molecule inhibition of miR-544 reverses a tumor cell's physiological response to hypoxia. Importantly, 1 sensitized tumor cells to hypoxia-associated apoptosis at a 25-fold lower concentration than a 2'-O-methyl RNA antagomir and was as selective. Further, the apoptotic effect of 1 was suppressed by treatment of cell with rapamycin, a well-known inhibitor of the mTOR signaling pathway, illustrating the selectivity of the compound. Thus, RNA-directed chemical probes, which could also serve as lead therapeutics, enable interrogation of complex cellular networks in cells and animals. PMID:26181590

  1. Poly(ADP-ribose) polymerase 1 modulates the lethality of CHK1 inhibitors in carcinoma cells.

    PubMed

    Mitchell, Clint; Park, Margaret; Eulitt, Patrick; Yang, Chen; Yacoub, Adly; Dent, Paul

    2010-11-01

    Prior studies have demonstrated that inhibition of CHK1 can promote the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and phosphorylation of histone H2AX and that inhibition of poly(ADP-ribose) polymerase 1 (PARP1) can affect growth factor-induced ERK1/2 activation. The present studies were initiated to determine whether CHK1 inhibitors interacted with PARP1 inhibition to facilitate apoptosis. Transient expression of dominant-negative CHK1 raised basal ERK1/2 activity and prevented CHK1 inhibitors from activating ERK1/2. CHK1 inhibitors modestly increased the levels of PARP1 ADP ribosylation and molecular or small-molecule inhibition of PARP1 blocked CHK1 inhibitor-stimulated histone H2AX phosphorylation and activation of ERK1/2. Stimulated histone H2AX phosphorylation was ataxia telangiectasia-mutated protein-dependent. Multiple CHK1 inhibitors interacted in a greater than additive fashion with multiple PARP1 inhibitors to cause transformed cell-killing in short-term viability assays and synergistically killed tumor cells in colony-formation assays. Overexpression of BCL-xL or loss of BAX/BAK function, but not the function of BID, suppressed CHK1 inhibitor + PARP1 inhibitor lethality. Inhibition of BCL-2 family protein function enhanced CHK1 inhibitor + PARP1 inhibitor lethality and restored drug-induced cell-killing in cells overexpressing BCL-xL. Thus, PARP1 plays an important role in regulating the ability of CHK1 inhibitors to activate ERK1/2 and the DNA damage response. An inability of PARP1 to modulate this response results in transformed cell death mediated through the intrinsic apoptosis pathway. PMID:20696794

  2. Satellite Communications for ATM

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  3. Poly(ADP-ribose) polymerase 1 is a novel target to promote axonal regeneration

    PubMed Central

    Brochier, Camille; Jones, James I.; Willis, Dianna E.; Langley, Brett

    2015-01-01

    Therapeutic options for the restoration of neurological functions after acute axonal injury are severely limited. In addition to limiting neuronal loss, effective treatments face the challenge of restoring axonal growth within an injury environment where inhibitory molecules from damaged myelin and activated astrocytes act as molecular and physical barriers. Overcoming these barriers to permit axon growth is critical for the development of any repair strategy in the central nervous system. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a previously unidentified and critical mediator of multiple growth-inhibitory signals. We show that exposure of neurons to growth-limiting molecules—such as myelin-derived Nogo and myelin-associated glycoprotein—or reactive astrocyte-produced chondroitin sulfate proteoglycans activates PARP1, resulting in the accumulation of poly(ADP-ribose) in the cell body and axon and limited axonal growth. Accordingly, we find that pharmacological inhibition or genetic loss of PARP1 markedly facilitates axon regeneration over nonpermissive substrates. Together, our findings provide critical insights into the molecular mechanisms of axon growth inhibition and identify PARP1 as an effective target to promote axon regeneration. PMID:26598704

  4. Effect and mechanism of poly (ADP-ribose) polymerase-1 in aldosterone-induced apoptosis

    PubMed Central

    QIAO, WEIWEI; ZHANG, WEILI; SHAO, SHUHONG; GAI, YUSHENG; ZHANG, MINGXIANG

    2015-01-01

    The present study aimed to investigate the effects of aldosterone on vascular endothelial cells and the viability of poly (ADP-ribose) polymerase 1 (PARP1) in cells, and to examine the molecular mechanisms underlying the effects of aldosterone on vascular endothelial cell injury. Cultured endothelial cells were treated either with different concentrations of aldosterone for the same duration or with the same concentrations of aldosterone for different durations, and the levels of apoptosis and activity of PARP1 in the cells were detected, respectively. Aldosterone receptor antagonists or PARP1 inhibitors were added to cells during treatment with aldosterone and the levels of apoptosis and activity of PARP1 were detected. As the concentration of aldosterone increased or the treatment time increased, the number of apoptotic cells and the activity of PARP1 increased. The aldosterone receptor antagonists and PARP1 inhibitors inhibited the increase of apoptosis and PARP1 activity caused by aldosterone treatment. Aldosterone activated the activity of PARP1 via the aldosterone receptor, inhibiting cell proliferation and inducing apoptosis. Treatment with PARP1 may be used as a target for vascular diseases caused by aldosterone at high concentrations. PMID:25872931

  5. Connecting Remote Clusters with ATM

    SciTech Connect

    Hu, T.C.; Wyckoff, P.S.

    1998-10-01

    Sandia's entry into utilizing clusters of networked workstations is called Computational Plant or CPlant for short. The design of CPlant uses Ethernet to boot the individual nodes, Myrinet to communicate within a node cluster, and ATM to connect between remote clusters. This SAND document covers the work done to enable the use of ATM on the CPlant nodes in the Fall of 1997.

  6. Structure of the intact ATM/Tel1 kinase

    PubMed Central

    Wang, Xuejuan; Chu, Huanyu; Lv, Mengjuan; Zhang, Zhihui; Qiu, Shuwan; Liu, Haiyan; Shen, Xuetong; Wang, Weiwu; Cai, Gang

    2016-01-01

    The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents. PMID:27229179

  7. Structure of the intact ATM/Tel1 kinase.

    PubMed

    Wang, Xuejuan; Chu, Huanyu; Lv, Mengjuan; Zhang, Zhihui; Qiu, Shuwan; Liu, Haiyan; Shen, Xuetong; Wang, Weiwu; Cai, Gang

    2016-01-01

    The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents. PMID:27229179

  8. Structure of the intact ATM/Tel1 kinase

    NASA Astrophysics Data System (ADS)

    Wang, Xuejuan; Chu, Huanyu; Lv, Mengjuan; Zhang, Zhihui; Qiu, Shuwan; Liu, Haiyan; Shen, Xuetong; Wang, Weiwu; Cai, Gang

    2016-05-01

    The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents.

  9. ATM CMG bearing failure analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The cause or causes for the failure of ATM CMG S/N 5 (Skylab 1) and the anomalies associated with ATM CMG S/N 6 (Skylab 2) were investigated. Skylab telemetry data were reviewed and presented in the form of parameter distributions. The theory that the problems were caused by marginal bearing lubrication was studied along with the effects of orbital conditions on lubricants. Bearing tests were performed to investigate the effect of lubricant or lack of lubricant in the ATM CMG bearings and the dispersion and migration of the lubricant. The vacuum and weightless conditions of space were simulated in the bearing tests. Analysis of the results of the tests conducted points to inadequate lubrication as the predominant factor causing the failure of ATM CMG S/N 5 (Skylab 1) and the anomalies associated with ATM CMG S/N 6 (Skylab 2).

  10. Sandia ATM SONET Interface Logic

    Energy Science and Technology Software Center (ESTSC)

    1994-07-21

    SASIL is used to program the EPLD's (Erasable Programmable Logic Devices) and PAL's (Programmable Array Logic) that make up a large percentage of the Sandia ATM SONET Interface (OC3 version) for the INTEL Paragon.

  11. Using ATM over SATCOM links

    NASA Technical Reports Server (NTRS)

    Comparetto, Gary M.

    1995-01-01

    The Asynchronous Transfer Mode (ATM) protocol is studied from the standpoint of determining what limitations, if any, exist in using it over satellite links. It is concluded that, while there is nothing intrinsic about ATM that would generally preclude its use over satellite links, there are, however, several intrinsic characteristics of satellite links, as well as some satellite system configuration-specific issues, that must be taken into account.

  12. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    SciTech Connect

    Gebhard, Catherine; Staehli, Barbara E.; Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine; Matter, Christian M.; Hassa, Paul O.; Hottiger, Michael O.; Malinski, Tadeusz; Luescher, Thomas F.; and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  13. Security Services Discovery by ATM Endsystems

    SciTech Connect

    Sholander, Peter; Tarman, Thomas

    1999-07-15

    This contribution proposes strawman techniques for Security Service Discovery by ATM endsystems in ATM networks. Candidate techniques include ILMI extensions, ANS extensions and new ATM anycast addresses. Another option is a new protocol based on an IETF service discovery protocol, such as Service Location Protocol (SLP). Finally, this contribution provides strawman requirements for Security-Based Routing in ATM networks.

  14. Traffic Management for Satellite-ATM Networks

    NASA Technical Reports Server (NTRS)

    Goyal, Rohit; Jain, Raj; Fahmy, Sonia; Vandalore, Bobby; Goyal, Mukul

    1998-01-01

    Various issues associated with "Traffic Management for Satellite-ATM Networks" are presented in viewgraph form. Specific topics include: 1) Traffic management issues for TCP/IP based data services over satellite-ATM networks; 2) Design issues for TCP/IP over ATM; 3) Optimization of the performance of TCP/IP over ATM for long delay networks; and 4) Evaluation of ATM service categories for TCP/IP traffic.

  15. Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation

    PubMed Central

    Bakr, A.; Oing, C.; Köcher, S.; Borgmann, K.; Dornreiter, I.; Petersen, C.; Dikomey, E.; Mansour, W.Y.

    2015-01-01

    Ataxia-telangiectasia mutated (ATM) is needed for the initiation of the double-strand break (DSB) repair by homologous recombination (HR). ATM triggers DSB end resection by stimulating the nucleolytic activity of CtIP and MRE11 to generate 3′-ssDNA overhangs, followed by RPA loading and RAD51 nucleofilament formation. Here we show for the first time that ATM is also needed for later steps in HR after RAD51 nucleofilament formation. Inhibition of ATM after completion of end resection did not affect RAD51 nucleofilament formation, but resulted in HR deficiency as evidenced by (i) an increase in the number of residual RAD51/γH2AX foci in both S and G2 cells, (ii) the decrease in HR efficiency as detected by HR repair substrate (pGC), (iii) a reduced SCE rate and (iv) the radiosensitization of cells by PARP inhibition. This newly described role for ATM was found to be dispensable in heterochromatin-associated DSB repair, as KAP1-depletion did not alleviate the HR-deficiency when ATM was inhibited after end resection. Moreover, we demonstrated that ATR can partly compensate for the deficiency in early, but not in later, steps of HR upon ATM inhibition. Taken together, we describe here for the first time that ATM is needed not only for the initiation but also for the completion of HR. PMID:25753674

  16. Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation.

    PubMed

    Bakr, A; Oing, C; Köcher, S; Borgmann, K; Dornreiter, I; Petersen, C; Dikomey, E; Mansour, W Y

    2015-03-31

    Ataxia-telangiectasia mutated (ATM) is needed for the initiation of the double-strand break (DSB) repair by homologous recombination (HR). ATM triggers DSB end resection by stimulating the nucleolytic activity of CtIP and MRE11 to generate 3'-ssDNA overhangs, followed by RPA loading and RAD51 nucleofilament formation. Here we show for the first time that ATM is also needed for later steps in HR after RAD51 nucleofilament formation. Inhibition of ATM after completion of end resection did not affect RAD51 nucleofilament formation, but resulted in HR deficiency as evidenced by (i) an increase in the number of residual RAD51/γH2AX foci in both S and G2 cells, (ii) the decrease in HR efficiency as detected by HR repair substrate (pGC), (iii) a reduced SCE rate and (iv) the radiosensitization of cells by PARP inhibition. This newly described role for ATM was found to be dispensable in heterochromatin-associated DSB repair, as KAP1-depletion did not alleviate the HR-deficiency when ATM was inhibited after end resection. Moreover, we demonstrated that ATR can partly compensate for the deficiency in early, but not in later, steps of HR upon ATM inhibition. Taken together, we describe here for the first time that ATM is needed not only for the initiation but also for the completion of HR. PMID:25753674

  17. Gigabit ATM: another technical mistake?

    NASA Astrophysics Data System (ADS)

    Christ, Paul

    1998-09-01

    Once upon a time, or more precisely during February 1988 at the CCITT Seoul plenary, and definitely arriving as a revolution, ATM hit the hard-core B-ISDN circuit-switching gang. Initiated by the Telecoms' camp, but, surprisingly, soon to be pushed by computer minded people, ATM's generic technological history is somewhat richer than single-sided stories. Here are two classical elements of that history: Firstly, together with X.25, ATM suffers from the connection versus datagram dichotomy, well known for more than twenty years. Secondly, and lesser known, ATM's use of cells in support of the 'I' of B-ISDN was questioned from the very beginning by the packet switching camp. Furthermore, in this context, there are two other essential elements to be considered: Firstly, the exponential growth of the Internet and later intranets, using Internet technology, sparked by the success of the Web and the WINTEL alliance, resulted in a corresponding demand for both aggregate and end-system network bandwidth. Secondly, servers, historically restricted to the exclusive club of HIPPI-equipped supercomputers, suddenly become ordinary high-end PCs with 64-bit wide PCI busses -- definitely aiming at the Gigabit. Here, if your aim is for Gigabit ATM with 5000-transactions per second classical supercomputers, a 65K ATM MTU -- as implemented by Cray -- might be okay. Following Clark and others, another part of the story is the adoption and redefinition, by the IETF, of the Telecoms' notion of 'Integrated Services' and QoS mechanisms. The quest for low-delay IP packet forwarding, perhaps possible over ATM cut-throughs, has resulted in the switching versus/or integrated-with-routing movement. However, a blow for ATM may be the recent results concerning fast routing table lookup algorithms. This, by making Gigabit routing possible using ordinary Pentium processors may eventually render the much prophesized ATM switching performance unnecessary. Recently, with the rise of Gigabit Ethernet

  18. A novel crosstalk between BRCA1 and poly (ADP-ribose) polymerase 1 in breast cancer

    PubMed Central

    Li, Da; Bi, Fang-Fang; Chen, Na-Na; Cao, Ji-Min; Sun, Wu-Ping; Zhou, Yi-Ming; Li, Chun-Yan; Yang, Qing

    2014-01-01

    BRCA mutations are the main known hereditary factor for breast cancer. Notably, poly (ADP-ribose) polymerase 1 (PARP1) expression status plays a critical role in breast cancer progression and the clinical development of PARP1 inhibitors to treat BRCA-mutated breast cancer has advanced rapidly. However, dynamic crosstalk between BRCA1 and PARP1 remains largely unknown. Here, we showed that: (i) BRCA1 inactivation events (mutation, promoter methylation, or knockdown) were accompanied by increased PARP1 and nicotinamide adenine dinucleotide (NAD) levels, and a subsequent increase in NAD-dependent PARP1 activity in MDA-MB-231 and primary breast cancer cells; (ii) the overexpression of BRCA1 resulted in decreased PARP1 and NAD levels, and a subsequent impairment in NAD-dependent PARP1 activity in MDA-MB-231 and primary breast cancer cells; and (iii) intracellular NAD levels were largely responsible for regulating PARP1 activity in breast cancer cells, and NAD levels were positively correlated with PARP1 activity in human breast cancer specimens (R = 0.647, P < 0.001). Interestingly, the high efficiency of PARP1 triggered by BRCA1 inactivation may further inhibit BRCA1 transcription by NAD depletion. These results highlight a novel interaction between BRCA1 and PARP1, which may be beneficial for the dynamic balance between BRCA1 and PARP1-related biologic processes, especially for maintaining stable DNA repair ability. All of this may improve our understanding of the basic molecular mechanism underlying BRCA1- and PARP1-related breast cancer progression. PMID:25485588

  19. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    SciTech Connect

    Fukumoto, Yasunori Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto

    2014-09-26

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.

  20. ATM kinase is required for telomere elongation in mouse and human cells

    PubMed Central

    Lee, Stella Suyong; Bohrson, Craig; Pike, Alexandra Mims; Wheelan, Sarah Jo; Greider, Carol Widney

    2015-01-01

    Summary Short telomeres induce a DNA damage response, senescence and apoptosis; thus, maintaining telomere length equilibrium is essential for cell viability. Telomerase addition of telomere repeats is tightly regulated in cells. To probe pathways that regulate telomere addition, we developed the ADDIT assay to measure new telomere addition at a single telomere in vivo. Sequence analysis showed telomerase specific addition of repeats onto a new telomere occurred in just 48 hr. Using the ADDIT assay, we found that ATM is required for addition of new repeats onto telomeres in mouse cells. Evaluation of bulk telomeres, in both human and mouse cells, showed that blocking ATM inhibited telomere elongation. Finally, the activation of ATM through the inhibition of PARP1 resulted in increased telomere elongation, supporting the central role of the ATM pathway in regulating telomere addition. Understanding this role of ATM may yield new areas for possible therapeutic intervention in telomere-mediated disease. PMID:26586427

  1. ATM promotes apoptosis and suppresses tumorigenesis in response to Myc

    NASA Astrophysics Data System (ADS)

    Pusapati, Raju V.; Rounbehler, Robert J.; Hong, Sungki; Powers, John T.; Yan, Mingshan; Kiguchi, Kaoru; McArthur, Mark J.; Wong, Paul K.; Johnson, David G.

    2006-01-01

    Overexpression of the c-myc oncogene contributes to the development of a significant number of human cancers. In response to deregulated Myc activity, the p53 tumor suppressor is activated to promote apoptosis and inhibit tumor formation. Here we demonstrate that p53 induction in response to Myc overexpression requires the ataxia-telangiectasia mutated (ATM) kinase, a major regulator of the cellular response to DNA double-strand breaks. In a transgenic mouse model overexpressing Myc in squamous epithelial tissues, inactivation of Atm suppresses apoptosis and accelerates tumorigenesis. Deregulated Myc expression induces DNA damage in primary transgenic keratinocytes and the formation of H2AX and phospho-SMC1 foci in transgenic tissue. These findings suggest that Myc overexpression causes DNA damage in vivo and that the ATM-dependent response to this damage is critical for p53 activation, apoptosis, and the suppression of tumor development. p53 | DNA damage

  2. A TAD closer to ATM.

    PubMed

    Aymard, Francois; Legube, Gaëlle

    2016-05-01

    Ataxia telangiectasia mutated (ATM) has been known for decades as the main kinase mediating the DNA double-strand break response. Our recent findings suggest that its major role at the sites of breaks likely resides in its ability to modify both the local chromatin landscape and the global chromosome organization in order to promote repair accuracy. PMID:27314089

  3. [Progress of the ATM Crew

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Activities for each of the following programs are discussed in separate sections for the bimonthly reporting period: Airborne Oceanographic Lidar (AOL); Airborne Topographic Mapper (ATM); Other Mission Support Activities, including modeling activities, EAARL activities, and the Scanning Radar Altimeter (SAR); Tropical Rain Measuring Mission (TRMM). The tasks undertaken for each program are discussed in the pertinent section of the report.

  4. NPP ATMS Snowfall Rate Product

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  5. Molecular Imaging of the ATM Kinase Activity

    SciTech Connect

    Williams, Terence M.; Nyati, Shyam; Ross, Brian D.; Rehemtulla, Alnawaz

    2013-08-01

    Purpose: Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including from DNA double-strand breaks. ATM activation results in the initiation of a complex cascade of events including DNA damage repair, cell cycle checkpoint control, and survival. We sought to create a bioluminescent reporter that dynamically and noninvasively measures ATM kinase activity in living cells and subjects. Methods and Materials: Using the split luciferase technology, we constructed a hybrid cDNA, ATM-reporter (ATMR), coding for a protein that quantitatively reports on changes in ATM kinase activity through changes in bioluminescence. Results: Treatment of ATMR-expressing cells with ATM inhibitors resulted in a dose-dependent increase in bioluminescence activity. In contrast, induction of ATM kinase activity upon irradiation resulted in a decrease in reporter activity that correlated with ATM and Chk2 activation by immunoblotting in a time-dependent fashion. Nuclear targeting improved ATMR sensitivity to both ATM inhibitors and radiation, whereas a mutant ATMR (lacking the target phosphorylation site) displayed a muted response. Treatment with ATM inhibitors and small interfering (si)RNA-targeted knockdown of ATM confirm the specificity of the reporter. Using reporter expressing xenografted tumors demonstrated the ability of ATMR to report in ATM activity in mouse models that correlated in a time-dependent fashion with changes in Chk2 activity. Conclusions: We describe the development and validation of a novel, specific, noninvasive bioluminescent reporter that enables monitoring of ATM activity in real time, in vitro and in vivo. Potential applications of this reporter include the identification and development of novel ATM inhibitors or ATM-interacting partners through high-throughput screens and in vivo pharmacokinetic/pharmacodynamic studies of ATM inhibitors in preclinical models.

  6. Running TCP/IP over ATM Networks.

    ERIC Educational Resources Information Center

    Witt, Michael

    1995-01-01

    Discusses Internet protocol (IP) and subnets and describes how IP may operate over asynchronous transfer mode (ATM). Topics include TCP (transmission control protocol), ATM cells and adaptation layers, a basic architectural model for IP over ATM, address resolution, mapping IP to a subnet technology, and connection management strategy. (LRW)

  7. 3-aminobenzamide, one of poly(ADP-ribose)polymerase-1 inhibitors, rescuesapoptosisin rat models of spinal cord injury

    PubMed Central

    Meng, Xianqing; Song, Wenqi; Deng, Bin; Xing, Ziling; Zhang, Weihong

    2015-01-01

    Poly(ADP-ribose)polymerase-1 (PARP-1) is anubiquitous, DNA repair-associated enzyme, which participates in gene expression, cell death, central nerve system (CNS) disorders and oxidative stress. According to the previous studies, PARP-1 over-activation may lead to over-consumption of ATP and even cell apoptosis. Spinal cord injury (SCI) is an inducement towards PARP-1 over-activation due to its massive damage to DNA. 3-aminobenzamide (3-AB) is a kind of PARP-1 inhibitors. The relationship among PARP-1, 3-AB, SCI and apoptosis has not been fully understood. Hence, in the present study, we focused on the effects of 3-AB on cell apoptosis after SCI. Accordingly, SCI model was constructed artificially, and 3-AB was injected intrathecally into the Sprague-Dawley (SD) rats. The results demonstrated an increase in cell apoptosis after SCI. Furthermore, PARP-1 was over-activated after SCI but inhibited by 3-AB injection. In addition, apoptosis-inducing factor (AIF) was inhibited but B-cell lymphoma-2 (Bcl-2) was up-regulated by 3-AB. Interestingly, caspase-3 was not significantly altered with or without 3-AB. In conclusion, our experiments showed that 3-AB, as a PARP-1 inhibitor, could inhibit cell apoptosis after SCI in caspase-independent way, which could provide a better therapeutic target for the treatment of SCI. PMID:26722405

  8. Recently emerging signaling landscape of ataxia-telangiectasia mutated (ATM) kinase.

    PubMed

    Farooqi, Ammad Ahmad; Attar, Rukset; Arslan, Belkis Atasever; Romero, Mirna Azalea; ul Haq, Muhammad Fahim; Qadir, Muhammad Imran

    2014-01-01

    Research over the years has progressively and sequentially provided near complete resolution of regulators of the DNA repair pathways which are so important for cancer prevention. Ataxia-telangiectasia mutated kinase (ATM), a high-molecular-weight PI3K-family kinase has emerged as a master regulator of DNA damage signaling and extensive cross-talk between ATM and downstream proteins forms an interlaced signaling network. There is rapidly growing scientific evidence emphasizing newly emerging paradigms in ATM biology. In this review, we provide latest information regarding how oxidative stress induced activation of ATM can be utilized as a therapeutic target in different cancer cell lines and in xenografted mice. Moreover, crosstalk between autophagy and ATM is also discussed with focus on how autophagy inhibition induces apoptosis in cancer cells. PMID:25169474

  9. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    SciTech Connect

    Pauklin, Siim . E-mail: spauklin@ut.ee; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-08-26

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, {beta}-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53.

  10. Fabrication and characterization of MCC (Materials Characterization Center) approved testing material---ATM-2, ATM-3, and ATM-4 glasses

    SciTech Connect

    Wald, J.W.

    1988-03-01

    Materials Characterization Center glasses ATM-2, ATM-3, and ATM-4 are designed to simulate high-level waste glasses that are likely to result from the reprocessing of commercial nuclear reactor fuels. The three Approved Testing Materials (ATMs) are borosilicate glasses based upon the MCC-76-68 glass composition. One radioisotope was added to form each ATM. The radioisotopes added to form ATM-2, ATM-3, and ATM-4 were /sup 241/Am, /sup 237/Np, and /sup 239/Pu, respectively. Each of the ATM lots was produced in a nominal lot size of 450 g from feed stock melted in a nitrogen-atmosphere glove box at 1200/degree/C in a platinum crucible. Each ATM was then cast into bars. Analyzed compositions of these glasses are listed. The nonradioactive elements were analyzed by inductively coupled argon plasma atomic emission spectroscopy (ICP), and the radioisotope analyses were done by alpha energy analysis. Results are discussed. 7 refs., 3 figs., 5 tabs.

  11. Caffeine metabolites are inhibitors of the nuclear enzyme poly(ADP-ribose)polymerase-1 at physiological concentrations.

    PubMed

    Geraets, Liesbeth; Moonen, Harald J J; Wouters, Emiel F M; Bast, Aalt; Hageman, Geja J

    2006-09-28

    The activity of the nuclear enzyme poly(ADP-ribose)polymerase-1 (E.C.2.4.2.30), which is highly activated by DNA strand breaks, is associated with the pathophysiology of both acute as well as chronic inflammatory diseases. PARP-1 overactivation and the subsequent extensive turnover of its substrate NAD+ put a large demand on mitochondrial ATP-production. Furthermore, due to its reported role in NF-kappaB and AP-1 mediated production of pro-inflammatory cytokines, PARP-1 is considered an interesting target in the treatment of these diseases. In this study the PARP-1 inhibiting capacity of caffeine and several metabolites as well as other (methyl)xanthines was tested using an ELISA-assay with purified human PARP-1. Caffeine itself showed only weak PARP-1 inhibiting activity, whereas the caffeine metabolites 1,7-dimethylxanthine, 3-methylxanthine and 1-methylxanthine, as well as theobromine and theophylline showed significant PARP-1 inhibiting activity. Further evaluation of these compounds in H2O2-treated A549 lung epithelial and RF24 vascular endothelial cells revealed that the decrease in NAD+-levels as well as the formation of the poly(ADP-ribose)polymer was significantly prevented by the major caffeine metabolite 1,7-dimethylxanthine. Furthermore, H2O2-induced necrosis could be prevented by a high dose of 1,7-dimethylxanthine. Finally, antioxidant effects of the methylxanthines could be ruled out with ESR and measurement of the TEAC. Concluding, caffeine metabolites are inhibitors of PARP-1 and the major caffeine metabolite 1,7-dimethylxanthine has significant PARP-1 inhibiting activity in cultured epithelial and endothelial cells at physiological concentrations. This inhibition could have important implications for nutritional treatment of acute and chronic inflammatory pathologies, like prevention of ischemia-reperfusion injury or vascular complications in diabetes. PMID:16870158

  12. Loss of the DNA Damage Repair Kinase ATM Impairs Inflammasome-Dependent Anti-Bacterial Innate Immunity.

    PubMed

    Erttmann, Saskia F; Härtlova, Anetta; Sloniecka, Marta; Raffi, Faizal A M; Hosseinzadeh, Ava; Edgren, Tomas; Rofougaran, Reza; Resch, Ulrike; Fällman, Maria; Ek, Torben; Gekara, Nelson O

    2016-07-19

    The ATM kinase is a central component of the DNA damage repair machinery and redox balance. ATM dysfunction results in the multisystem disease ataxia-telangiectasia (AT). A major cause of mortality in AT is respiratory bacterial infections. Whether ATM deficiency causes innate immune defects that might contribute to bacterial infections is not known. Here we have shown that loss of ATM impairs inflammasome-dependent anti-bacterial innate immunity. Cells from AT patients or Atm(-/-) mice exhibited diminished interleukin-1β (IL-1β) production in response to bacteria. In vivo, Atm(-/-) mice were more susceptible to pulmonary S. pneumoniae infection in a manner consistent with inflammasome defects. Our data indicate that such defects were due to oxidative inhibition of inflammasome complex assembly. This study reveals an unanticipated function of reactive oxygen species (ROS) in negative regulation of inflammasomes and proposes a theory for the notable susceptibility of AT patients to pulmonary bacterial infection. PMID:27421701

  13. Depletion of ATR selectively sensitizes ATM-deficient human mammary epithelial cells to ionizing radiation and DNA-damaging agents

    PubMed Central

    Cui, Yuxia; Palii, Stela S; Innes, Cynthia L; Paules, Richard S

    2014-01-01

    DNA damage response (DDR) to double strand breaks is coordinated by 3 phosphatidylinositol 3-kinase-related kinase (PIKK) family members: the ataxia-telangiectasia mutated kinase (ATM), the ATM and Rad3-related (ATR) kinase and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). ATM and ATR are central players in activating cell cycle checkpoints and function as an active barrier against genome instability and tumorigenesis in replicating cells. Loss of ATM function is frequently reported in various types of tumors, thus placing more reliance on ATR for checkpoint arrest and cell survival following DNA damage. To investigate the role of ATR in the G2/M checkpoint regulation in response to ionizing radiation (IR), particularly when ATM is deficient, cell lines deficient of ATM, ATR, or both were generated using a doxycycline-inducible lentiviral system. Our data suggests that while depletion of ATR or ATM alone in wild-type human mammary epithelial cell cultures (HME-CCs) has little effect on radiosensitivity or IR-induced G2/M checkpoint arrest, depletion of ATR in ATM-deficient cells causes synthetic lethality following IR, which correlates with severe G2/M checkpoint attenuation. ATR depletion also inhibits IR-induced autophagy, regardless of the ATM status, and enhances IR-induced apoptosis particularly when ATM is deficient. Collectively, our results clearly demonstrate that ATR function is required for the IR-induced G2/M checkpoint activation and subsequent survival of cells with ATM deficiency. The synthetic lethal interaction between ATM and ATR in response to IR supports ATR as a therapeutic target for improved anti-cancer regimens, especially in tumors with a dysfunctional ATM pathway. PMID:25483091

  14. PIASy Mediates SUMO-2/3 Conjugation of Poly(ADP-ribose) Polymerase 1 (PARP1) on Mitotic Chromosomes*

    PubMed Central

    Ryu, Hyunju; Al-Ani, Gada; Deckert, Katelyn; Kirkpatrick, Donald; Gygi, Steven P.; Dasso, Mary; Azuma, Yoshiaki

    2010-01-01

    PIASy is a small ubiquitin-related modifier (SUMO) ligase that modifies chromosomal proteins in mitotic Xenopus egg extracts and plays an essential role in mitotic chromosome segregation. We have isolated a novel SUMO-2/3-modified mitotic chromosomal protein and identified it as poly(ADP-ribose) polymerase 1 (PARP1). PARP1 was robustly conjugated to SUMO-2/3 on mitotic chromosomes but not on interphase chromatin. PIASy promotes SUMOylation of PARP1 both in egg extracts and in vitro reconstituted SUMOylation assays. Through tandem mass spectrometry analysis of mitotically SUMOylated PARP1, we identified a residue within the BRCA1 C-terminal domain of PARP1 (lysine 482) as its primary SUMOylation site. Mutation of this residue significantly reduced PARP1 SUMOylation in egg extracts and enhanced the accumulation of species derived from modification of secondary lysine residues in assays using purified components. SUMOylation of PARP1 did not alter in vitro PARP1 enzyme activity, poly-ADP-ribosylation (PARylation), nor did inhibition of SUMOylation of PARP1 alter the accumulation of PARP1 on mitotic chromosomes, suggesting that SUMOylation regulates neither the intrinsic activity of PARP1 nor its localization. However, loss of SUMOylation increased PARP1-dependent PARylation on isolated chromosomes, indicating SUMOylation controls the capacity of PARP1 to modify other chromatin-associated proteins. PMID:20228053

  15. Buffer Management Simulation in ATM Networks

    NASA Technical Reports Server (NTRS)

    Yaprak, E.; Xiao, Y.; Chronopoulos, A.; Chow, E.; Anneberg, L.

    1998-01-01

    This paper presents a simulation of a new dynamic buffer allocation management scheme in ATM networks. To achieve this objective, an algorithm that detects congestion and updates the dynamic buffer allocation scheme was developed for the OPNET simulation package via the creation of a new ATM module.

  16. ATM: Restructing Learning for Deaf Students.

    ERIC Educational Resources Information Center

    Keefe, Barbara; Stockford, David

    Governor Baxter School for the Deaf is one of six Maine pilot sites chosen by NYNEX to showcase asynchronous transfer mode (ATM) technology. ATM is a network connection that allows high bandwidth transmission of data, voice, and video. Its high speed capability allows for high quality two-way full-motion video, which is especially beneficial to a…

  17. Bookmarking promoters in mitotic chromatin: poly(ADP-ribose)polymerase-1 as an epigenetic mark

    PubMed Central

    Lodhi, Niraj; Kossenkov, Andrew V.; Tulin, Alexei V.

    2014-01-01

    Epigenetics are the heritable changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence. After mitosis, it is thought that bookmarking transcription factors remain at promoters, regulating which genes become active and which remain silent. Herein, we demonstrate that poly(ADP-ribose)polymerase-1 (PARP-1) is a genome-wide epigenetic memory mark in mitotic chromatin, and we further show that the presence of PARP-1 is absolutely crucial for reactivation of transcription after mitosis. Based on these findings, a novel molecular model of epigenetic memory transmission through the cell cycle is proposed. PMID:24861619

  18. Loss of ATM kinase activity leads to embryonic lethality in mice.

    PubMed

    Daniel, Jeremy A; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V; You, Zhongsheng; Paull, Tanya T; Sleckman, Barry P; Feigenbaum, Lionel; Nussenzweig, André

    2012-08-01

    Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis. PMID:22869595

  19. Deregulation of mTOR signaling is involved in thymic lymphoma development in Atm-/- mice

    SciTech Connect

    Kuang, Xianghong; Shen, Jianjun; Wong, Paul K.Y.; Yan, Mingshan

    2009-06-05

    Abnormal thymocyte development with thymic lymphomagenesis inevitably occurs in Atm-/- mice, indicating that ATM plays a pivotal role in regulating postnatal thymocyte development and preventing thymic lymphomagenesis. The mechanism for ATM controls these processes is unclear. We have shown previously that c-Myc, an oncoprotein regulated by the mammalian target of rapamycin (mTOR), is overexpressed in Atm-/- thymocytes. Here, we show that inhibition of mTOR signaling with its specific inhibitor, rapamycin, suppresses normal thymocyte DNA synthesis by downregulating 4EBP1, but not S6K, and that 4EBP1 phosphorylation and cyclin D1 expression are coordinately increased in Atm-/- thymocytes. Administration of rapamycin to Atm-/- mice attenuates elevated phospho-4EBP1, c-Myc and cyclin D1 in their thymocytes, and delays thymic lymphoma development. These results indicate that mTOR downstream effector 4EBP1 is essential for normal thymocyte proliferation, but deregulation of 4EBP1 in Atm deficiency is a major factor driving thymic lymphomagenesis in the animals.

  20. Satellite ATM Networks: Architectures and Guidelines Developed

    NASA Technical Reports Server (NTRS)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  1. The Aspergillus nidulans ATM kinase regulates mitochondrial function, glucose uptake and the carbon starvation response.

    PubMed

    Krohn, Nadia Graciele; Brown, Neil Andrew; Colabardini, Ana Cristina; Reis, Thaila; Savoldi, Marcela; Dinamarco, Taísa Magnani; Goldman, Maria Helena S; Goldman, Gustavo Henrique

    2014-01-01

    Mitochondria supply cellular energy and also perform a role in the adaptation to metabolic stress. In mammals, the ataxia-telangiectasia mutated (ATM) kinase acts as a redox sensor controlling mitochondrial function. Subsequently, transcriptomic and genetic studies were utilized to elucidate the role played by a fungal ATM homolog during carbon starvation. In Aspergillus nidulans, AtmA was shown to control mitochondrial function and glucose uptake. Carbon starvation responses that are regulated by target of rapamycin (TOR) were shown to be AtmA-dependent, including autophagy and hydrolytic enzyme secretion. AtmA also regulated a p53-like transcription factor, XprG, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Thus, AtmA possibly represents a direct or indirect link between mitochondrial stress, metabolism, and growth through the influence of TOR and XprG function. The coordination of cell growth and division with nutrient availability is crucial for all microorganisms to successfully proliferate in a heterogeneous environment. Mitochondria supply cellular energy but also perform a role in the adaptation to metabolic stress and the cross-talk between prosurvival and prodeath pathways. The present study of Aspergillus nidulans demonstrated that AtmA also controlled mitochondrial mass, function, and oxidative phosphorylation, which directly or indirectly influenced glucose uptake. Carbon starvation responses, including autophagy, shifting metabolism to the glyoxylate cycle, and the secretion of carbon scavenging enzymes were AtmA-dependent. Transcriptomic profiling of the carbon starvation response demonstrated how TOR signaling and the retrograde response, which signals mitochondrial dysfunction, were directly or indirectly influenced by AtmA. The AtmA kinase was also shown to influence a p53-like transcription factor, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Therefore, in response to metabolic

  2. The Aspergillus nidulans ATM Kinase Regulates Mitochondrial Function, Glucose Uptake and the Carbon Starvation Response

    PubMed Central

    Krohn, Nadia Graciele; Brown, Neil Andrew; Colabardini, Ana Cristina; Reis, Thaila; Savoldi, Marcela; Dinamarco, Taísa Magnani; Goldman, Maria Helena S.; Goldman, Gustavo Henrique

    2013-01-01

    Mitochondria supply cellular energy and also perform a role in the adaptation to metabolic stress. In mammals, the ataxia-telangiectasia mutated (ATM) kinase acts as a redox sensor controlling mitochondrial function. Subsequently, transcriptomic and genetic studies were utilized to elucidate the role played by a fungal ATM homolog during carbon starvation. In Aspergillus nidulans, AtmA was shown to control mitochondrial function and glucose uptake. Carbon starvation responses that are regulated by target of rapamycin (TOR) were shown to be AtmA-dependent, including autophagy and hydrolytic enzyme secretion. AtmA also regulated a p53-like transcription factor, XprG, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Thus, AtmA possibly represents a direct or indirect link between mitochondrial stress, metabolism, and growth through the influence of TOR and XprG function. The coordination of cell growth and division with nutrient availability is crucial for all microorganisms to successfully proliferate in a heterogeneous environment. Mitochondria supply cellular energy but also perform a role in the adaptation to metabolic stress and the cross-talk between prosurvival and prodeath pathways. The present study of Aspergillus nidulans demonstrated that AtmA also controlled mitochondrial mass, function, and oxidative phosphorylation, which directly or indirectly influenced glucose uptake. Carbon starvation responses, including autophagy, shifting metabolism to the glyoxylate cycle, and the secretion of carbon scavenging enzymes were AtmA-dependent. Transcriptomic profiling of the carbon starvation response demonstrated how TOR signaling and the retrograde response, which signals mitochondrial dysfunction, were directly or indirectly influenced by AtmA. The AtmA kinase was also shown to influence a p53-like transcription factor, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Therefore, in response to metabolic

  3. ATM functions at the peroxisome to induce pexophagy in response to ROS.

    PubMed

    Zhang, Jiangwei; Tripathi, Durga Nand; Jing, Ji; Alexander, Angela; Kim, Jinhee; Powell, Reid T; Dere, Ruhee; Tait-Mulder, Jacqueline; Lee, Ji-Hoon; Paull, Tanya T; Pandita, Raj K; Charaka, Vijaya K; Pandita, Tej K; Kastan, Michael B; Walker, Cheryl Lyn

    2015-10-01

    Peroxisomes are highly metabolic, autonomously replicating organelles that generate reactive oxygen species (ROS) as a by-product of fatty acid β-oxidation. Consequently, cells must maintain peroxisome homeostasis, or risk pathologies associated with too few peroxisomes, such as peroxisome biogenesis disorders, or too many peroxisomes, inducing oxidative damage and promoting diseases such as cancer. We report that the PEX5 peroxisome import receptor binds ataxia-telangiectasia mutated (ATM) and localizes this kinase to the peroxisome. In response to ROS, ATM signalling activates ULK1 and inhibits mTORC1 to induce autophagy. Specificity for autophagy of peroxisomes (pexophagy) is provided by ATM phosphorylation of PEX5 at Ser 141, which promotes PEX5 monoubiquitylation at Lys 209, and recognition of ubiquitylated PEX5 by the autophagy adaptor protein p62, directing the autophagosome to peroxisomes to induce pexophagy. These data reveal an important new role for ATM in metabolism as a sensor of ROS that regulates pexophagy. PMID:26344566

  4. Ataxia telangiectasia mutated (ATM) is dispensable for endonuclease I-SceI-induced homologous recombination in mouse embryonic stem cells.

    PubMed

    Rass, Emilie; Chandramouly, Gurushankar; Zha, Shan; Alt, Frederick W; Xie, Anyong

    2013-03-01

    Ataxia telangiectasia mutated (ATM) is activated upon DNA double strand breaks (DSBs) and phosphorylates numerous DSB response proteins, including histone H2AX on serine 139 (Ser-139) to form γ-H2AX. Through interaction with MDC1, γ-H2AX promotes DSB repair by homologous recombination (HR). H2AX Ser-139 can also be phosphorylated by DNA-dependent protein kinase catalytic subunit and ataxia telangiectasia- and Rad3-related kinase. Thus, we tested whether ATM functions in HR, particularly that controlled by γ-H2AX, by comparing HR occurring at the euchromatic ROSA26 locus between mouse embryonic stem cells lacking either ATM, H2AX, or both. We show here that loss of ATM does not impair HR, including H2AX-dependent HR, but confers sensitivity to inhibition of poly(ADP-ribose) polymerases. Loss of ATM or H2AX has independent contributions to cellular sensitivity to ionizing radiation. The ATM-independent HR function of H2AX requires both Ser-139 phosphorylation and γ-H2AX/MDC1 interaction. Our data suggest that ATM is dispensable for HR, including that controlled by H2AX, in the context of euchromatin, excluding the implication of such an HR function in genomic instability, hypersensitivity to DNA damage, and poly(ADP-ribose) polymerase inhibition associated with ATM deficiency. PMID:23355489

  5. MSFC institutional area network and ATM technology

    NASA Technical Reports Server (NTRS)

    Amin, Ashok T.

    1994-01-01

    The New Institutional Area Network (NEWIAN) at Marshall supports over 5000 end users with access to 26 file servers providing work presentation services. It is comprised of some 150 Ethernet LAN's interconnected by bridges/routers which are in turn connected to servers over two dual FDDI rings. The network supports various higher level protocols such as IP, IPX, AppleTalk (AT), and DECNet. At present IPX and AT protocols packets are routed, and IP protocol packets are bridged; however, work is in progress to route all IP packets. The impact of routing IP packets on network operation is examined. Broadband Integrated Services Data Network (BISDN), presently at various stages of development, is intended to provide voice, video, and data transfer services over a single network. BISDN will use asynchronous transfer mode (ATM) as a data transfer technique which provides for transmission, multiplexing, switching, and relaying of small size data units called cells. Limited ATM Wide Area Network (WAN) services are offered by Wiltel, AT&T, Sprint, and others. NASA is testing a pilot ATM WAN with a view to provide Program Support Communication Network services using ATM. ATM supports wide range of data rates and quality of service requirements. It is expected that ATM switches will penetrate campus networks as well. However, presently products in these areas are at various stages of development and standards are not yet complete. We examine development of ATM to help assess its role in the evolution of NEWIAN.

  6. The ATM conversion at Sandia National Laboratories

    SciTech Connect

    Brenkosh, J.P.

    1996-08-01

    Converting a large, heterogeneous, networked, environment to ATM (Asynchronous Transfer Mode) can yield many benefits. Before these benefits can be reaped, however, numerous decisions must be made and implemented. This paper presents a case study which describes the steps that were necessary to convert a backbone network at Sandia National Laboratories in Albuquerque, New Mexico to ATM. It presents each step by explaining its importance and what options were considered along with their tradeoffs. It is hoped that organizations contemplating converting to ATM will have a better understanding of how the transition is implemented after reading this paper.

  7. A survey of IP over ATM architectures

    SciTech Connect

    Chen, H.; Tsang, R.; Brandt, J.; Hutchins, J.

    1997-07-01

    Over the past decade, the Internet has burgeoned into a worldwide information highway consisting of approximately 5 million hosts on over 45,000 interconnected networks. This unprecedented growth, together with the introduction of multimedia workstations, has spurred the development of innovative applications that require high speed, low latency, and real-time transport. Today`s Internet can neither scale in its bandwidth nor guarantee the Quality of Services (QoS) necessary to meet these performance requirements. Many network researchers propose to use the Asynchronous Transfer Mode (ATM) technology as the underlying infrastructure for the next generation of workgroup, campus, and enterprise IP networks. Since ATM is significantly different from today`s legacy network technologies, efficient implementation of IP over ATM is especially challenging. This tutorial paper covers several existing proposals that integrate IP over ATM.

  8. Dynamics of TCP traffic over ATM networks

    NASA Astrophysics Data System (ADS)

    Romanow, Allyn; Floyd, Sally

    1995-05-01

    We investigate the performance of TCP connections over ATM networks without ATM-level congestion control and compare it to the performance of TCP over packet-based networks. For simulations of congested networks, the effective throughput of TCP over ATM can be quite low when cells are dropped at the congested ATM switch. The low throughput is due to wasted bandwidth as the congested link transmits cells from 'corrupted' packets, i.e., packets in which at least one cell is dropped by the switch. We investigate two packet-discard strategies that alleviate the effects of fragmentation. Partial packet discard, in which remaining cells are discarded after one cell has been dropped from a packet, somewhat improves throughput. We introduce early packet discard, a strategy in which the switch drops whole packets prior to buffer overflow. This mechanism prevents fragmentation and restores throughput to maximal levels.

  9. SASIL. Sandia ATM SONET Interface Logic

    SciTech Connect

    Kitta, J.P.

    1994-07-01

    SASIL is used to program the EPLD`s (Erasable Programmable Logic Devices) and PAL`s (Programmable Array Logic) that make up a large percentage of the Sandia ATM SONET Interface (OC3 version) for the INTEL Paragon.

  10. Poly(ADP)-Ribose Polymerase-1 Inhibitors as a Potential Treatment for Cocaine Addiction.

    PubMed

    Scobie, Kimberly N

    2015-01-01

    As of 2008, according to the National Survey on Drug Use and Health, nearly 1.4 million Americans met the Diagnostic and Statistical Manual of Mental Disorders criteria for dependence or abuse of cocaine (in any form) in the past 12 months. However, there are no treatments for cocaine use disorders approved by the Federal Drug Administration (FDA). Alterations in gene regulation contribute significantly to the changes that occur in the brain, both structurally and functionally, and the resultant addictive phenotype that occurs with chronic exposure to drugs of abuse. The Emerging Targets of Cocaine Use Disorders meeting sought to explore novel targets for the treatment of stimulant use disorder. The evidence for a role of one novel target, Poly(ADP)-ribose polymerase-1 (PARP-1), was presented at the meeting and will be summarized in this review. PMID:26022260

  11. Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity.

    PubMed

    Yu, Seong-Woon; Wang, Hongmin; Dawson, Ted M; Dawson, Valina L

    2003-12-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is the guardian of the genome acting as a sentinel for genomic damage. However, PARP-1 is also mediator of cell death after ischemia-reperfusion injury, glutamate excitotoxicity, and various inflammatory processes. The biochemistry underlying PARP-1-mediated cell death has remained elusive, although NAD(+) consumption and energy failure have been thought to be one of the possible molecular mechanisms. Recent observations link PARP-1 activation with translocation of apoptosis-inducing factor (AIF) to the nucleus and indicate that AIF is an essential downstream effector of PARP-1-mediated cell death. PARP-1 activation signals AIF release from the mitochondria, resulting in a novel, caspase-independent pathway of programmed cell death. These recent findings suggest that AIF maybe a target for development of future therapeutic treatment for many neurological disorders involving excitotoxicity. PMID:14678748

  12. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor.

    PubMed

    Yu, Seong-Woon; Wang, Hongmin; Poitras, Marc F; Coombs, Carmen; Bowers, William J; Federoff, Howard J; Poirier, Guy G; Dawson, Ted M; Dawson, Valina L

    2002-07-12

    Poly(ADP-ribose) polymerase-1 (PARP-1) protects the genome by functioning in the DNA damage surveillance network. PARP-1 is also a mediator of cell death after ischemia-reperfusion injury, glutamate excitotoxicity, and various inflammatory processes. We show that PARP-1 activation is required for translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus and that AIF is necessary for PARP-1-dependent cell death. N-methyl-N'-nitro-N-nitrosoguanidine, H2O2, and N-methyl-d-aspartate induce AIF translocation and cell death, which is prevented by PARP inhibitors or genetic knockout of PARP-1, but is caspase independent. Microinjection of an antibody to AIF protects against PARP-1-dependent cytotoxicity. These data support a model in which PARP-1 activation signals AIF release from mitochondria, resulting in a caspase-independent pathway of programmed cell death. PMID:12114629

  13. ATM activation in hypoxia - causes and consequences

    PubMed Central

    Olcina, Monica M; Grand, Roger JA; Hammond, Ester M

    2014-01-01

    The DNA damage response is a complex signaling cascade that is triggered by cellular stress. This response is essential for the maintenance of genomic integrity and is considered to act as a barrier to the early stages of tumorigenesis. The integral role of ataxia telangiectasia mutated (ATM) kinase in the response to DNA damaging agents is well characterized; however, ATM can also be activated by non-DNA damaging agents. In fact, much has been learnt recently about the mechanism of ATM activation in response to physiologic stresses such as hypoxia that do not induce DNA damage. Regions of low oxygen concentrations that occur in solid tumors are associated with a poor prognostic outcome irrespective of treatment modality. Severe levels of hypoxia induce replication stress and trigger the activation of DNA damage response pathways including ataxia telangiectasia and Rad3-related (ATR)- and ATM-mediated signaling. In this review, we discuss hypoxia-driven ATM signaling and the possible contribution of ATM activation in this context to tumorigenesis. PMID:27308313

  14. Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 Expression and Cholesterol Efflux in Macrophages.

    PubMed

    Shrestha, Elina; Hussein, Maryem A; Savas, Jeffery N; Ouimet, Mireille; Barrett, Tessa J; Leone, Sarah; Yates, John R; Moore, Kathryn J; Fisher, Edward A; Garabedian, Michael J

    2016-05-20

    Liver X receptors (LXR) are oxysterol-activated nuclear receptors that play a central role in reverse cholesterol transport through up-regulation of ATP-binding cassette transporters (ABCA1 and ABCG1) that mediate cellular cholesterol efflux. Mouse models of atherosclerosis exhibit reduced atherosclerosis and enhanced regression of established plaques upon LXR activation. However, the coregulatory factors that affect LXR-dependent gene activation in macrophages remain to be elucidated. To identify novel regulators of LXR that modulate its activity, we used affinity purification and mass spectrometry to analyze nuclear LXRα complexes and identified poly(ADP-ribose) polymerase-1 (PARP-1) as an LXR-associated factor. In fact, PARP-1 interacted with both LXRα and LXRβ. Both depletion of PARP-1 and inhibition of PARP-1 activity augmented LXR ligand-induced ABCA1 expression in the RAW 264.7 macrophage line and primary bone marrow-derived macrophages but did not affect LXR-dependent expression of other target genes, ABCG1 and SREBP-1c. Chromatin immunoprecipitation experiments confirmed PARP-1 recruitment at the LXR response element in the promoter of the ABCA1 gene. Further, we demonstrated that LXR is poly(ADP-ribosyl)ated by PARP-1, a potential mechanism by which PARP-1 influences LXR function. Importantly, the PARP inhibitor 3-aminobenzamide enhanced macrophage ABCA1-mediated cholesterol efflux to the lipid-poor apolipoprotein AI. These findings shed light on the important role of PARP-1 on LXR-regulated lipid homeostasis. Understanding the interplay between PARP-1 and LXR may provide insights into developing novel therapeutics for treating atherosclerosis. PMID:27026705

  15. Interplay between ATM and ATR in the regulation of common fragile site stability.

    PubMed

    Ozeri-Galai, E; Schwartz, M; Rahat, A; Kerem, B

    2008-04-01

    Common fragile sites are specific genomic loci that form constrictions and gaps on metaphase chromosomes under conditions that slow, but do not arrest, DNA replication. These sites have been shown to have a role in various chromosomal rearrangements in tumors. Different DNA damage response proteins were shown to regulate fragile site stability, including ataxia-telangiectasia and Rad3-related (ATR) and its effector Chk1. Here, we investigated the role of ataxia-telangiectasia mutated (ATM), the main transducer of DNA double-strand break (DSB) signal, in this regulation. We demonstrate that replication stress conditions, which induce fragile site expression, lead to DNA fragmentation and recruitment of phosphorylated ATM to nuclear foci at DSBs. We further show that ATM plays a role in maintaining fragile site stability, which is revealed only in the absence of ATR. However, the activation of ATM under these replication stress conditions is ATR independent. Following conditions that induce fragile site expression both ATR and ATM phosphorylate Chk1, suggesting that both proteins regulate fragile site expression probably via their effect on Chk1 activation. Our findings provide new insights into the interplay between ATR and ATM pathways in response to partial replication inhibition and in the regulation of fragile site stability. PMID:17934520

  16. Recruitment and activation of the ATM kinase in the absence of DNA damage sensors

    PubMed Central

    Hartlerode, Andrea J.; Morgan, Mary J.; Wu, Yipin; Buis, Jeffrey; Ferguson, David O.

    2015-01-01

    Two kinases, ATM and DNA-PKcs, control rapid responses to DNA double-strand breaks (DSBs). The paradigm for ATM control is recruitment and activation by the Mre11–Rad50–NBS1 (MRN) sensor complex, whereas DNA-PKcs requires the sensor Ku (Ku70–Ku80). Using Mus musculus cells harboring targeted mutant alleles of Mre11 and/or Ku70, together with pharmacologic kinase inhibition we demonstrate that ATM can in fact be activated by DSBs in the absence of MRN. When MRN is deficient, DNA-PKcs efficiently substitutes for ATM in facilitating local chromatin responses. Strikingly, in the absence of both MRN and Ku, ATM is recruited to chromatin, phosphorylates H2AX, and triggers the G2/M cell cycle checkpoint, but DNA repair functions of MRN are not restored. This implies that a complex interplay between sensors plays a significant role in ATM control, rather than straightforward recruitment and activation by MRN. PMID:26280532

  17. Asynchronous Transfer Mode (ATM) Switch Technology and Vendor Survey

    NASA Technical Reports Server (NTRS)

    Berry, Noemi

    1995-01-01

    Asynchronous Transfer Mode (ATM) switch and software features are described and compared in order to make switch comparisons meaningful. An ATM switch's performance cannot be measured solely based on its claimed switching capacity; traffic management and congestion control are emerging as the determining factors in an ATM network's ultimate throughput. Non-switch ATM products and experiences with actual installations of ATM networks are described. A compilation of select vendor offerings as of October 1994 is provided in chart form.

  18. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    SciTech Connect

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A.; Solomon, Benjamin

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  19. DNA vector-based RNAi approach for stable depletion of poly(ADP-ribose) polymerase-1

    SciTech Connect

    Shah, Rashmi G.; Ghodgaonkar, Medini M.; Affar, El Bachir; Shah, Girish M. . E-mail: girish.shah@crchul.ulaval.ca

    2005-05-27

    RNA-mediated interference (RNAi) is a powerful technique that is now being used in mammalian cells to specifically silence a gene. Some recent studies have used this technique to achieve variable extent of depletion of a nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1). These studies reported either transient silencing of PARP-1 using double-stranded RNA or stable silencing of PARP-1 with a DNA vector which was introduced by a viral delivery system. In contrast, here we report that a simple RNAi approach which utilizes a pBS-U6-based DNA vector containing strategically selected PARP-1 targeting sequence, introduced in the cells by conventional CaPO{sub 4} protocol, can be used to achieve stable and specific silencing of PARP-1 in different types of cells. We also provide a detailed strategy for selection and cloning of PARP-1-targeting sequences for the DNA vector, and demonstrate that this technique does not affect expression of its closest functional homolog PARP-2.

  20. The DISN ATM tactical extension demonstration

    NASA Astrophysics Data System (ADS)

    Barattino, William J.; Bowman, Larry; Riehl, Robert; Mallory, June; Sonderegger, Katy

    1997-01-01

    The Defense Information Systems Network (DISN) is comprised of all telecommunications systems, both fixed and mobile, to meet the information systems requirements of the Department of Defense. Scalable communications providing bandwidth on demand will be achieved with a single protocol, specifically Asynchronous Transfer Mode (ATM). This protocol must work over satellites to provide seamless communications connectivity to our deployed forces. A major demonstration was conducted by the Defense Information Systems Agency to evaluate the usage of the ATM protocol over dual satellite hops. Multi-media applications requiring three party video teleconferencing were conducted with multi-casting over switched virtual circuits. Even under the most difficult conditions of 50% cell loss, the applications performed sufficiently well to conclude that ATM over satellite can be used for the DISN.

  1. ATM alterations in childhood non-Hodgkin lymphoma.

    PubMed

    Gumy-Pause, Fabienne; Wacker, Pierre; Maillet, Philippe; Betts, David R; Sappino, André-Pascal

    2006-04-15

    ATM gene alterations and impaired ATM protein expression have been described in various adult lymphoproliferative malignancies, suggesting that ATM contributes to lymphomagenesis. The present study investigated the prevalence of ATM gene and ATM protein expression alterations in sporadic childhood non-Hodgkin lymphoma (NHL). Twenty-seven cases of NHL were screened for ATM mutations by denaturing high-performance liquid chromatography (DHPLC). Direct and indirect criteria, including in silico tools, were used to classify the gene alterations. The methylation status of the ATM promoter CpG island was determined in 25 samples; ATM protein expression was assessed by Western blot in 9 lymphomas. ATM alterations were detected in 12 NHLs (44%). Ten different heterozygous base substitutions were identified in 10 NHLs (37%). Five samples (19%) were found to harbor a gene alteration considered to be a mutation or a rare variant potentially pathogenic. In one case, an ATM mutation was found in the germline. Four NHLs (44%) showed reduced or absent ATM protein expression. Except for one sample, no definite genetic or epigenetic alteration was identified to account for impaired ATM protein expression. These observations document a high prevalence of ATM gene and protein expression alterations, suggesting that ATM is involved in childhood NHL. PMID:16631465

  2. NPP After Launch: Characterizing ATMS Performance

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn

    2011-01-01

    The NPOESS Preparatory Project (NPP) mission is scheduled to launch in the fall of 2011. Although several teams from the government and the instrument contractor will be assessing and characterizing the performance of the Advanced Technology Microwave Sounder (ATMS) and the Cross-track Infrared Sounder (CrIS) sounding suite, the NASA NPP Science Team will be paying particular attention to the aspects of these sensors that affect their utility for atmospheric and climate research. In this talk we discuss relevant aspects of ATMS and our post launch analysis approach.

  3. ATM interface design issues for IP traffic over ATM/ADSL access networks

    NASA Astrophysics Data System (ADS)

    Buschmann, Jonathan E.; Pampolini, Matteo

    1999-01-01

    The combination of ATM and ADSL is fast becoming an attractive alternative for Internet access for home and small business. ADSL modems allow the use of the existing copper plant at speeds much higher than those afforded by traditional modem technologies. The use of ATM both enables the long-sought goal of an ATM end-to-end network, and allows, through the use of QOS guarantees, efficient use of the limited upstream bandwidth of ADSL. Although the client- server model, which typified classical Internet traffic and newer multimedia IP services, fits well an asymmetric network model, performance can be greatly impacted unless the interactions between ADSL, ATM, and Internet protocols are well understood an taken into account in the design of ATM interfaces. In this paper we investigate the potential limitations on performance in IP/ATM/ADSL networks and explain how, in our ATM interface designs, we have ameliorated these problems and optimized the use of IP services over such networks. We discuss the importance of 'traffic shaping', heretofore afforded little importance for IP traffic, and the impact of latency and asymmetric bandwidth of ADSL, on both traditional and multimedia IP services, in our implementations.

  4. Poly(ADP-ribose) polymerase-1 modulates Nrf2-dependent transcription.

    PubMed

    Wu, Tongde; Wang, Xiao-Jun; Tian, Wang; Jaramillo, Melba C; Lau, Alexandria; Zhang, Donna D

    2014-02-01

    The basic leucine zipper transcription factor Nrf2 has emerged as a master regulator of intracellular redox homeostasis by controlling the expression of a battery of redox-balancing antioxidants and phase II detoxification enzymes. Under oxidative stress conditions, Nrf2 is induced at the protein level through redox-sensitive modifications on critical cysteine residues in Keap1, a component of an E3 ubiquitin ligase complex that targets Nrf2 for proteasomal degradation. Poly(ADP-ribose) polymerase-1 (PARP-1) is historically known to function in DNA damage detection and repair; however, recently PARP-1 has been shown to play an important role in other biochemical activities, such as DNA methylation and imprinting, insulator activity, chromosome organization, and transcriptional regulation. The exact role of PARP-1 in transcription modulation and the underlying mechanisms remain poorly defined. In this study, we report that PARP-1 forms complexes with the antioxidant response element (ARE) within the promoter region of Nrf2 target genes and upregulates the transcriptional activity of Nrf2. Interestingly, PARP-1 neither physically interacts with Nrf2 nor promotes the expression of Nrf2. In addition, PARP-1 does not target Nrf2 for poly(ADP-ribosyl)ation. Instead, PARP-1 interacts directly with small Maf proteins and the ARE of Nrf2 target genes, which augments ARE-specific DNA-binding of Nrf2 and enhances the transcription of Nrf2 target genes. Collectively, these results suggest that PARP-1 serves as a transcriptional coactivator, upregulating the transcriptional activity of Nrf2 by enhancing the interaction among Nrf2, MafG, and the ARE. PMID:24140708

  5. Terminal Area ATM Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard

    1997-01-01

    The presentation will highlight the following: (1) A brief review of ATC research underway 15 years ago; (2) A summary of Terminal Area ATM Tool Development ongoing at NASA Ames; and (3) A projection of research activities 10-15 years from now.

  6. Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation.

    PubMed

    Blake, Sophia M; Stricker, Stefan H; Halavach, Hanna; Poetsch, Anna R; Cresswell, George; Kelly, Gavin; Kanu, Nnennaya; Marino, Silvia; Luscombe, Nicholas M; Pollard, Steven M; Behrens, Axel

    2016-01-01

    Glioblastoma multiforme (GBM) is the most aggressive human primary brain cancer. Using a Trp53-deficient mouse model of GBM, we show that genetic inactivation of the Atm cofactor Atmin, which is dispensable for embryonic and adult neural development, strongly suppresses GBM formation. Mechanistically, expression of several GBM-associated genes, including Pdgfra, was normalized by Atmin deletion in the Trp53-null background. Pharmacological ATM inhibition also reduced Pdgfra expression, and reduced the proliferation of Trp53-deficient primary glioma cells from murine and human tumors, while normal neural stem cells were unaffected. Analysis of GBM datasets showed that PDGFRA expression is also significantly increased in human TP53-mutant compared with TP53-wild-type tumors. Moreover, combined treatment with ATM and PDGFRA inhibitors efficiently killed TP53-mutant primary human GBM cells, but not untransformed neural stem cells. These results reveal a new requirement for ATMIN-dependent ATM signaling in TP53-deficient GBM, indicating a pro-tumorigenic role for ATM in the context of these tumors. PMID:26984279

  7. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  8. Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation

    PubMed Central

    Blake, Sophia M; Stricker, Stefan H; Halavach, Hanna; Poetsch, Anna R; Cresswell, George; Kelly, Gavin; Kanu, Nnennaya; Marino, Silvia; Luscombe, Nicholas M; Pollard, Steven M; Behrens, Axel

    2016-01-01

    Glioblastoma multiforme (GBM) is the most aggressive human primary brain cancer. Using a Trp53-deficient mouse model of GBM, we show that genetic inactivation of the Atm cofactor Atmin, which is dispensable for embryonic and adult neural development, strongly suppresses GBM formation. Mechanistically, expression of several GBM-associated genes, including Pdgfra, was normalized by Atmin deletion in the Trp53-null background. Pharmacological ATM inhibition also reduced Pdgfra expression, and reduced the proliferation of Trp53-deficient primary glioma cells from murine and human tumors, while normal neural stem cells were unaffected. Analysis of GBM datasets showed that PDGFRA expression is also significantly increased in human TP53-mutant compared with TP53-wild-type tumors. Moreover, combined treatment with ATM and PDGFRA inhibitors efficiently killed TP53-mutant primary human GBM cells, but not untransformed neural stem cells. These results reveal a new requirement for ATMIN-dependent ATM signaling in TP53-deficient GBM, indicating a pro-tumorigenic role for ATM in the context of these tumors. DOI: http://dx.doi.org/10.7554/eLife.08711.001 PMID:26984279

  9. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells.

    PubMed

    Ghosh, Somnath; Ghosh, Anu; Krishna, Malini

    2015-12-01

    The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types. PMID:26653982

  10. FACET: Future ATM Concepts Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Bilmoria, Karl D.; Banavar, Sridhar; Chatterji, Gano B.; Sheth, Kapil S.; Grabbe, Shon

    2000-01-01

    FACET (Future ATM Concepts Evaluation Tool) is an Air Traffic Management research tool being developed at the NASA Ames Research Center. This paper describes the design, architecture and functionalities of FACET. The purpose of FACET is to provide E simulation environment for exploration, development and evaluation of advanced ATM concepts. Examples of these concepts include new ATM paradigms such as Distributed Air-Ground Traffic Management, airspace redesign and new Decision Support Tools (DSTs) for controllers working within the operational procedures of the existing air traffic control system. FACET is currently capable of modeling system-wide en route airspace operations over the contiguous United States. Airspace models (e.g., Center/sector boundaries, airways, locations of navigation aids and airports) are available from databases. A core capability of FACET is the modeling of aircraft trajectories. Using round-earth kinematic equations, aircraft can be flown along flight plan routes or great circle routes as they climb, cruise and descend according to their individual aircraft-type performance models. Performance parameters (e.g., climb/descent rates and speeds, cruise speeds) are obtained from data table lookups. Heading, airspeed and altitude-rate dynamics are also modeled. Additional functionalities will be added as necessary for specific applications. FACET software is written in Java and C programming languages. It is platform-independent, and can be run on a variety of computers. FACET has been designed with a modular software architecture to enable rapid integration of research prototype implementations of new ATM concepts. There are several advanced ATM concepts that are currently being implemented in FACET airborne separation assurance, dynamic density predictions, airspace redesign (re-sectorization), benefits of a controller DST for direct-routing, and the integration of commercial space transportation system operations into the U.S. National

  11. Remote facility sharing with ATM networks [PC based ATM Link Delay Simulator (LDS)]. Final report

    SciTech Connect

    Kung, H. T.

    2001-06-01

    The ATM Link Delay Simulator (LDS) adds propagation delay to the ATM link on which it is installed, to allow control of link propagation delay in network protocol experiments simulating an adjustable piece of optical fiber. Our LDS simulates a delay of between 1.5 and 500 milliseconds and is built with commodity PC hardware, only the ATM network interface card is not generally available. Our implementation is special in that it preserves the exact spacing of ATM data cells a feature that requires sustained high performance. Our implementation shows that applications demanding sustained high performance are possible on commodity PC hardware. This illustrates the promise that PC hardware has for adaptability to demanding specialized testing of high speed network.

  12. ATM/cable arch and beam structural test program

    NASA Technical Reports Server (NTRS)

    Housley, J. A.

    1972-01-01

    The structural testing is described of an Apollo Telescope Mount (ATM) cable arch and beam assembly, using static loads to simulate the critical conditions expected during transportation and launch of the ATM. All test objectives were met. Stress and deflection data show that the assembly is structurally adequate for use in the ATM.

  13. A Managerial Analysis of ATM in Facilitating Distance Education.

    ERIC Educational Resources Information Center

    Littman, Marlyn Kemper

    In this paper, the fundamental characteristics and capabilities of ATM (Asynchronous Transfer Mode) networks in a distance learning environment are examined. Current and projected ATM applications are described, and issues and challenges associated with developing ATM networking solutions for instructional delivery are explored. Other topics…

  14. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53

    PubMed Central

    Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Gui, Xiangai; Achek, Asma; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway. PMID:26522181

  15. ATM photoheliograph. [at a solar observatory

    NASA Technical Reports Server (NTRS)

    Prout, R. A.

    1975-01-01

    The design and fabrication are presented of a 65 cm photoheliograph functional verification unit (FVU) installed in a major solar observatory. The telescope is used in a daily program of solar observation while serving as a test bed for the development of instrumentation to be included in early space shuttle launched solar telescopes. The 65 cm FVU was designed to be mechanically compatible with the ATM spar/canister and would be adaptable to a second ATM flight utilizing the existing spar/canister configuration. An image motion compensation breadboard and a space-hardened, remotely tuned H alpha filter, as well as solar telescopes of different optical configurations or increased aperture are discussed.

  16. ATM Mutations in Cancer: Therapeutic Implications.

    PubMed

    Choi, Michael; Kipps, Thomas; Kurzrock, Razelle

    2016-08-01

    Activation of checkpoint arrest and homologous DNA repair are necessary for maintenance of genomic integrity during DNA replication. Germ-line mutations of the ataxia telangiectasia mutated (ATM) gene result in the well-characterized ataxia telangiectasia syndrome, which manifests with an increased cancer predisposition, including a 20% to 30% lifetime risk of lymphoid, gastric, breast, central nervous system, skin, and other cancers. Somatic ATM mutations or deletions are commonly found in lymphoid malignancies, as well as a variety of solid tumors. Such mutations may result in chemotherapy resistance and adverse prognosis, but may also be exploited by existing or emerging targeted therapies that produce synthetic lethal states. Mol Cancer Ther; 15(8); 1781-91. ©2016 AACR. PMID:27413114

  17. Neuroprotective effects of a novel water-soluble poly(ADP-ribose) polymerase-1 inhibitor, MP-124, in in vitro and in vivo models of cerebral ischemia.

    PubMed

    Egi, Yasuhiro; Matsuura, Shigeru; Maruyama, Tomoyuki; Fujio, Masakazu; Yuki, Satoshi; Akira, Toshiaki

    2011-05-10

    Cerebral ischemia induces excessive activation of poly(ADP-ribose) polymerase-1 (PARP-1), leading to neuronal cell death and the development of post-ischemic dysfunction. Blockade of PARP-related signals during cerebral ischemia has become a focus of interest as a new therapeutic approach for acute stroke treatment. The purpose of the present study was to examine the pharmacological profiles of MP-124, a novel water-soluble PARP-1 inhibitor, and its neuroprotective effects on ischemic injury in vitro and in vivo. MP-124 demonstrated competitive inhibition of the PARP-1 activity of human recombinant PARP-1 enzyme (Ki=16.5nmol/L). In P388D(1) cells, MP-124 inhibited the LDH leakage induced by H(2)O(2) in a concentration-dependent manner. (IC(50)=20.8nmol/L). In rat primary cortical neurons, MP-124 also inhibited the NAD depletion and polymerized ADP-ribose formation induced by H(2)O(2) exposure. Moreover, we investigated the neuroprotective effects of MP-124 in rat permanent and transient stroke models. In the rat permanent middle cerebral artery occlusion (MCAO) model, MP-124 was administered intravenously for 24h from 5min after the onset of MCAO. MP-124 (1, 3 and 10mg/kg/h) significantly inhibited the cerebral infarction in a dose-dependent manner (18, 42 and 48%). In rat transient MCAO model, MP-124 was administered intravenously from 30min after the onset of MCAO. MP-124 (3 and 10mg/kg/h) significantly reduced the infarct volume (53% and 50%). The present findings suggest that MP-124 acts as a potent neuroprotective agent in focal ischemia and its actions can be attributed to a reduction in NAD depletion and PAR formation. PMID:21420942

  18. WWOX guards genome stability by activating ATM

    PubMed Central

    Hazan, Idit; Abu-Odeh, Mohammad; Hofmann, Thomas G; Aqeilan, Rami I

    2015-01-01

    Common fragile sites (CFSs) tend to break upon replication stress and have been suggested to be “hot spots” for genomic instability. Recent evidence, however, implies that in the wake of DNA damage, WW domain-containing oxidoreductase (WWOX, the gene product of the FRA16D fragile site), associates with ataxia telangiectasia-mutated (ATM) and regulates its activation to maintain genomic integrity. PMID:27308504

  19. ATM Coastal Topography-Alabama 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Alabama coastline, acquired October 3-4, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface, and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that

  20. ATM Coastal Topography-Mississippi, 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Mississippi coastline, from Lakeshore to Petit Bois Island, acquired September 9-10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS

  1. Preservation of methane hydrate at 1 atm

    USGS Publications Warehouse

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    A "pressure-release" method that enables reproducible bulk preservation of pure, porous, methane hydrate at conditions 50 to 75 K above its equilibrium T (193 K) at 1 atm is refined. The amount of hydrate preserved by this method appears to be greatly in excess of that reported in the previous citations, and is likely the result of a mechanism different from ice shielding.

  2. Experiences with the AEROnet/PSCN ATM Prototype

    NASA Technical Reports Server (NTRS)

    Kurak, Richard S.; Lisotta, Anthony J.; McCabe, James D.; Nothaft, Alfred E.; Russell, Kelly R.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    This paper discusses the experience gained by the AEROnet/PSCN networking team in deploying a prototype Asynchronous Transfer Mode (ATM) based network as part of the wide-area network for the Numerical Aerodynamic Simulation (NAS) Program at NASA Ames Research Center. The objectives of this prototype were to test concepts in using ATM over wide-area Internet Protocol (IP) networks and measure end-to-end system performance. This testbed showed that end-to-end ATM over a DS3 reaches approximately 80% of the throughput achieved from a FDDI to DS3 network. The 20% reduction in through-put can be attributed to the overhead associated with running ATM. As a result, we conclude that if the loss in capacity due to ATM overhead is balanced by the reduction in cost of ATM services, as compared to dedicated circuits, then ATM can be a viable alternative.

  3. Ionizing radiation-induced XRCC4 phosphorylation is mediated through ATM in addition to DNA-PK

    PubMed Central

    SHARMA, Mukesh Kumar; KAMDAR, Radhika Pankaj; FUKUCHI, Mikoto; MATSUMOTO, Yoshihisa

    2014-01-01

    XRCC4 (X-ray cross-complementation group 4) is a protein associated with DNA ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end-joining. It has been shown that, in response to irradiation or treatment with DNA damaging agents, XRCC4 undergoes phosphorylation, requiring DNA-PK. Here we explored possible role of ATM, which is structurally related to DNA-PK, in the regulation of XRCC4. The radiosensitizing effects of DNA-PK inhibitor and/or ATM inhibitor were dependent on XRCC4. DNA-PK inhibitor and ATM inhibitor did not affect the ionizing radiation-induced chromatin recruitment of XRCC4. Ionizing radiation-induced phosphorylation of XRCC4 in the chromatin-bound fraction was largely inhibited by DNA-PK inhibitor but further diminished by the combination with ATM inhibitor. The present results indicated that XRCC4 phosphorylation is mediated through ATM as well as DNA-PK, although DNA-PK plays the major role. We would propose a possible model that DNA-PK and ATM acts in parallel upstream of XRCC4, regulating through phosphorylation. PMID:25391321

  4. ATM Quality of Service Tests for Digitized Video Using ATM Over Satellite: Laboratory Tests

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Brooks, David E.; Frantz, Brian D.

    1997-01-01

    A digitized video application was used to help determine minimum quality of service parameters for asynchronous transfer mode (ATM) over satellite. For these tests, binomially distributed and other errors were digitally inserted in an intermediate frequency link via a satellite modem and a commercial gaussian noise generator. In this paper, the relation- ship between the ATM cell error and cell loss parameter specifications is discussed with regard to this application. In addition, the video-encoding algorithms, test configurations, and results are presented in detail.

  5. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities

    PubMed Central

    Khadka, Prabhat; Hsu, Joseph K.; Veith, Sebastian; Tadokoro, Takashi; Shamanna, Raghavendra A.; Mangerich, Aswin; Croteau, Deborah L.

    2015-01-01

    Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation (PARylation) of proteins, a posttranslational modification which forms the nucleic acid-like polymer PAR. PARP1 and PAR are integral players in the early DNA damage response, since PARylation orchestrates the recruitment of repair proteins to sites of damage. Human RecQ helicases are DNA unwinding proteins that are critical responders to DNA damage, but how their recruitment and activities are regulated by PARPs and PAR is poorly understood. Here we report that all human RecQ helicases interact with PAR noncovalently. Furthermore, we define the effects that PARP1, PARylated PARP1, and PAR have on RECQL5 and WRN, using both in vitro and in vivo assays. We show that PARylation is involved in the recruitment of RECQL5 and WRN to laser-induced DNA damage and that RECQL5 and WRN have differential responses to PARylated PARP1 and PAR. Furthermore, we show that the loss of RECQL5 or WRN resulted in increased sensitivity to PARP inhibition. In conclusion, our results demonstrate that PARP1 and PAR actively, and in some instances differentially, regulate the activities and cellular localization of RECQL5 and WRN, suggesting that PARylation acts as a fine-tuning mechanism to coordinate their functions in time and space during the genotoxic stress response. PMID:26391948

  6. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities.

    PubMed

    Khadka, Prabhat; Hsu, Joseph K; Veith, Sebastian; Tadokoro, Takashi; Shamanna, Raghavendra A; Mangerich, Aswin; Croteau, Deborah L; Bohr, Vilhelm A

    2015-12-01

    Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation (PARylation) of proteins, a posttranslational modification which forms the nucleic acid-like polymer PAR. PARP1 and PAR are integral players in the early DNA damage response, since PARylation orchestrates the recruitment of repair proteins to sites of damage. Human RecQ helicases are DNA unwinding proteins that are critical responders to DNA damage, but how their recruitment and activities are regulated by PARPs and PAR is poorly understood. Here we report that all human RecQ helicases interact with PAR noncovalently. Furthermore, we define the effects that PARP1, PARylated PARP1, and PAR have on RECQL5 and WRN, using both in vitro and in vivo assays. We show that PARylation is involved in the recruitment of RECQL5 and WRN to laser-induced DNA damage and that RECQL5 and WRN have differential responses to PARylated PARP1 and PAR. Furthermore, we show that the loss of RECQL5 or WRN resulted in increased sensitivity to PARP inhibition. In conclusion, our results demonstrate that PARP1 and PAR actively, and in some instances differentially, regulate the activities and cellular localization of RECQL5 and WRN, suggesting that PARylation acts as a fine-tuning mechanism to coordinate their functions in time and space during the genotoxic stress response. PMID:26391948

  7. ATMS Snowfall Rate Product and Its Applications

    NASA Astrophysics Data System (ADS)

    Meng, H.; Kongoli, C.; Dong, J.; Wang, N. Y.; Ferraro, R. R.; Zavodsky, B.; Banghua Yan, B.

    2015-12-01

    A snowfall rate (SFR) algorithm has been developed for the Advanced Technology Microwave Sounder (ATMS) aboard S-NPP and future JPSS satellites. The product is based on the NOAA/NESDIS operational Microwave Humidity Sounder (MHS) SFR but with several key advancements. The algorithm has benefited from continuous development to improve accuracy and snowfall detection efficiency. The enhancements also expand the applicable temperature range for the algorithm and allow significantly more snowfall to be detected than the operational SFR. Another major improvement is the drastically reduced product latency by using Direct Broadcast (DB) data. The new developments have also been implemented in the MHS SFR to ensure product consistency across satellites. Currently, there are five satellites that carry either ATMS or MHS: S-NPP, NOAA-18/-19 and Metop-A/-B. The combined satellites deliver up to ten SFR estimates a day at any location over land in mid-latitudes. The product provides much needed winter precipitation estimates for applications such as weather forecasting and hydrology. Both ATMS and MHS SFR serve as input to a global precipitation analysis product, the NOAA/NCEP CMORPH-Snow. SFR is the sole satellite-based snowfall estimates in the blended product. In addition, ATMS and MHS SFR was assessed at several NWS Weather Forecast Offices (WFOs) and NESDIS/Satellite Analysis Branch (SAB) for its operational values in winter 2015. This is a joint effort among NASA/SPoRT, NOAA/NESDIS, University of Maryland/CICS, and the WFOs. The feedback from the assessment indicated that SFR provides useful information for snowfall forecast. It is especially valuable for areas with poor radar coverage and ground observations. The feedback also identified some limitations of the product such as inadequate detection of shallow snowfall. The algorithm developers will continue to improve product quality as well as developing SFR for new microwave sensors and over ocean in a project

  8. Prevalence of deleterious ATM germline mutations in gastric cancer patients

    PubMed Central

    He, Xu-Jun; Long, Ming; Yu, Sheng; Xia, Ying-Jie; Wei, Zhang; Xiong, Zikai; Jones, Sian; He, Yiping; Yan, Hai; Wang, Xiaoyue

    2015-01-01

    Besides CDH1, few hereditary gastric cancer predisposition genes have been previously reported. In this study, we discovered two germline ATM mutations (p.Y1203fs and p.N1223S) in a Chinese family with a history of gastric cancer by screening 83 cancer susceptibility genes. Using a published exome sequencing dataset, we found deleterious germline mutations of ATM in 2.7% of 335 gastric cancer patients of different ethnic origins. The frequency of deleterious ATM mutations in gastric cancer patients is significantly higher than that in general population (p=0.0000435), suggesting an association of ATM mutations with gastric cancer predisposition. We also observed biallelic inactivation of ATM in tumors of two gastric cancer patients. Further evaluation of ATM mutations in hereditary gastric cancer will facilitate genetic testing and risk assessment. PMID:26506520

  9. Traffic Management in ATM Networks Over Satellite Links

    NASA Technical Reports Server (NTRS)

    Goyal, Rohit; Jain, Raj; Goyal, Mukul; Fahmy, Sonia; Vandalore, Bobby; vonDeak, Thomas

    1999-01-01

    This report presents a survey of the traffic management Issues in the design and implementation of satellite Asynchronous Transfer Mode (ATM) networks. The report focuses on the efficient transport of Transmission Control Protocol (TCP) traffic over satellite ATM. First, a reference satellite ATM network architecture is presented along with an overview of the service categories available in ATM networks. A delay model for satellite networks and the major components of delay and delay variation are described. A survey of design options for TCP over Unspecified Bit Rate (UBR), Guaranteed Frame Rate (GFR) and Available Bit Rate (ABR) services in ATM is presented. The main focus is on traffic management issues. Several recommendations on the design options for efficiently carrying data services over satellite ATM networks are presented. Most of the results are based on experiments performed on Geosynchronous (GEO) latencies. Some results for Low Earth Orbits (LEO) and Medium Earth Orbit (MEO) latencies are also provided.

  10. Prevalence of deleterious ATM germline mutations in gastric cancer patients.

    PubMed

    Huang, Dong-Sheng; Tao, Hou-Quan; He, Xu-Jun; Long, Ming; Yu, Sheng; Xia, Ying-Jie; Wei, Zhang; Xiong, Zikai; Jones, Sian; He, Yiping; Yan, Hai; Wang, Xiaoyue

    2015-12-01

    Besides CDH1, few hereditary gastric cancer predisposition genes have been previously reported. In this study, we discovered two germline ATM mutations (p.Y1203fs and p.N1223S) in a Chinese family with a history of gastric cancer by screening 83 cancer susceptibility genes. Using a published exome sequencing dataset, we found deleterious germline mutations of ATM in 2.7% of 335 gastric cancer patients of different ethnic origins. The frequency of deleterious ATM mutations in gastric cancer patients is significantly higher than that in general population (p=0.0000435), suggesting an association of ATM mutations with gastric cancer predisposition. We also observed biallelic inactivation of ATM in tumors of two gastric cancer patients. Further evaluation of ATM mutations in hereditary gastric cancer will facilitate genetic testing and risk assessment. PMID:26506520

  11. Preliminary experiences with telemedicine, multimedia, and ATM

    NASA Astrophysics Data System (ADS)

    Cabral, James E., Jr.; Deforge, Christian; Kim, Yongmin

    1996-04-01

    With the goal of eventually increasing the quality of medical care, especially in remote areas, we have developed a system for telemedicine research based on a combination of ATM networking and a high-speed DSP board based on the Texas Instruments TMS320C80. The purpose of the system is to give health care providers at remote locations the ability to consult with specialists using a combination of video, audio, and externally-acquired images. The system can also be used for education purposes to support bi-directional video/audio communications for grand round lectures, classes, and case conferences. In order to maximize the utilization of the available transmission medium (ranging from land-based copper and fiber optic cable to satellite link) while providing the best possible video and audio quality, the compression performed by the system is adaptable to a wide variety of bandwidths. After about two years of experience with telemedicine in a research environment, we have some preliminary findings to report regarding the performance of a telemedicine application combining ATM and programmable multimedia processors in PC environments.

  12. BNL-NYSERNet ATM project report

    SciTech Connect

    O`Connor, M.; Peskin, A.; Rabinowitz, G.

    1997-07-01

    In 1994, Brookhaven National Laboratory (BNL) and NYSERNet, Incorporated embarked on a joint project to develop a prototype Asynchronous Transfer Mode (ATM) Regional Network testbed. This project was funded as a three-year effort under a Cooperative Research and Development Activity (CRADA) agreement between the parties, with half the funds being provided directly by the U.S. Department of Energy and the remainder as an in-kind contribution by NYSERNet. This report documents that effort as it comes to a close, providing an account of the original goals, the accomplishments of the projects, and the results as they might apply to the future. It is useful to remember that, when the collaboration discussions first began in 1993, it was far from certain that ATM would be the technology of choice for the then-next generation of the Internet. That, of course, has turned out to be the case, which in retrospect makes this experience particularly valuable. The investigators were not totally prescient, however, and the project changed during its duration to account for changes in technology, available infrastructure, and other circumstances.

  13. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage

    PubMed Central

    Ortega-Atienza, Sara; Wong, Victor C.; DeLoughery, Zachary; Luczak, Michal W.; Zhitkovich, Anatoly

    2016-01-01

    Many carcinogens damage both DNA and protein constituents of chromatin, and it is unclear how cells respond to this compound injury. We examined activation of the main DNA damage-responsive kinase ATM and formation of DNA double-strand breaks (DSB) by formaldehyde (FA) that forms histone adducts and replication-blocking DNA-protein crosslinks (DPC). We found that low FA doses caused a strong and rapid activation of ATM signaling in human cells, which was ATR-independent and restricted to S-phase. High FA doses inactivated ATM via its covalent dimerization and formation of larger crosslinks. FA-induced ATM signaling showed higher CHK2 phosphorylation but much lower phospho-KAP1 relative to DSB inducers. Replication blockage by DPC did not produce damaged forks or detectable amounts of DSB during the main wave of ATM activation, which did not require MRE11. Chromatin-monitoring KAT5 (Tip60) acetyltransferase was responsible for acetylation and activation of ATM by FA. KAT5 and ATM were equally important for triggering of intra-S-phase checkpoint and ATM signaling promoted recovery of normal human cells after low-dose FA. Our results revealed a major role of the KAT5-ATM axis in protection of replicating chromatin against damage by the endogenous carcinogen FA. PMID:26420831

  14. Poly(ADP-Ribose) Polymerase 1–Sirtuin 1 Functional Interplay Regulates LPS-Mediated High Mobility Group Box 1 Secretion

    PubMed Central

    Walko, Thomas D; Di Caro, Valentina; Piganelli, Jon; Billiar, Timothy R; Clark, Robert SB; Aneja, Rajesh K

    2014-01-01

    Pathophysiological conditions that lead to the release of the prototypic damage-associated molecular pattern molecule high mobility group box 1 (HMGB1) also result in activation of poly(ADP-ribose) polymerase 1 (PARP1; now known as ADP-ribosyl transferase 1 [ARTD1]). Persistent activation of PARP1 promotes energy failure and cell death. The role of poly(ADP-ribosyl)ation in HMGB1 release has been explored previously; however, PARP1 is a versatile enzyme and performs several other functions including cross-talk with another nicotinamide adenine dinucleotide- (NAD+) dependent member of the Class III histone deacetylases (HDACs), sirtuin-1 (SIRT1). Previously, it has been shown that the hyperacetylation of HMGB1 is a seminal event prior to its secretion, a process that also is dependent on HDACs. Therefore, in this study, we seek to determine if PARP1 inhibition alters LPS-mediated HMGB1 hyperacetylation and subsequent secretion due to its effect on SIRT1. We demonstrate in an in vitro model that LPS treatment leads to hyperacetylated HMGB1 with concomitant reduction in nuclear HDAC activity. Treatment with PARP1 inhibitors mitigates the LPS-mediated reduction in nuclear HDAC activity and decreases HMGB1 acetylation. By utilizing an NAD+-based mechanism, PARP1 inhibition increases the activity of SIRT1. Consequently, there is an increased nuclear retention and decreased extracellular secretion of HMGB1. We also demonstrate that PARP1 physically interacts with SIRT1. Further confirmation of this data was obtained in a murine model of sepsis, that is, administration of PJ-34, a specific PARP1 inhibitor, led to decreased serum HMGB1 concentrations in mice subjected to cecal ligation and puncture (CLP) as compared with untreated mice. In conclusion, our study provides new insights in understanding the molecular mechanisms of HMGB1 secretion in sepsis. PMID:25517228

  15. Glucagon-Like Peptide 1 Protects against Hyperglycemic-Induced Endothelial-to-Mesenchymal Transition and Improves Myocardial Dysfunction by Suppressing Poly(ADP-Ribose) Polymerase 1 Activity

    PubMed Central

    Yan, Fei; Zhang, Guang-hao; Feng, Min; Zhang, Wei; Zhang, Jia-ning; Dong, Wen-qian; Zhang, Cheng; Zhang, Yun; Chen, Li; Zhang, Ming-Xiang

    2015-01-01

    Under high glucose conditions, endothelial cells respond by acquiring fibroblast characteristics, that is, endothelial-to-mesenchymal transition (EndMT), contributing to diabetic cardiac fibrosis. Glucagon-like peptide-1 (GLP-1) has cardioprotective properties independent of its glucose-lowering effect. However, the potential mechanism has not been fully clarified. Here we investigated whether GLP-1 inhibits myocardial EndMT in diabetic mice and whether this is mediated by suppressing poly(ADP-ribose) polymerase 1 (PARP-1). Streptozotocin diabetic C57BL/6 mice were treated with or without GLP-1 analog (24 nmol/kg daily) for 24 wks. Transthoracic echocardiography was performed to assess cardiac function. Human aortic endothelial cells (HAECs) were cultured in normal glucose (NG) (5.5 mmol/L) or high glucose (HG) (30 mmol/L) medium with or without GLP-1analog. Immunofluorescent staining and Western blot were performed to evaluate EndMT and PARP-1 activity. Diabetes mellitus attenuated cardiac function and increased cardiac fibrosis. Treatment with the GLP-1 analog improved diabetes mellitus–related cardiac dysfunction and cardiac fibrosis. Immunofluorescence staining revealed that hyperglycemia markedly increased the percentage of von Willebrand factor (vWF)+/alpha smooth muscle actin (α-SMA)+ cells in total α-SMA+ cells in diabetic hearts compared with controls, which was attenuated by GLP-1 analog treatment. In cultured HAECs, immunofluorescent staining and Western blot also showed that both GLP-1 analog and PARP-1 gene silencing could inhibit the HG-induced EndMT. In addition, GLP-1 analog could attenuate PARP-1 activation by decreasing the level of reactive oxygen species (ROS). Therefore, GLP-1 treatment could protect against the hyperglycemia-induced EndMT and myocardial dysfunction. This effect is mediated, at least partially, by suppressing PARP-1 activation. PMID:25715248

  16. Structural characterization of AtmS13, a putative sugar aminotransferase involved in indolocarbazole AT2433 aminopentose biosynthesis.

    PubMed

    Singh, Shanteri; Kim, Youngchang; Wang, Fengbin; Bigelow, Lance; Endres, Michael; Kharel, Madan K; Babnigg, Gyorgy; Bingman, Craig A; Joachimiak, Andrzej; Thorson, Jon S; Phillips, George N

    2015-08-01

    AT2433 from Actinomadura melliaura is an indolocarbazole antitumor antibiotic structurally distinguished by its unique aminodideoxypentose-containing disaccharide moiety. The corresponding sugar nucleotide-based biosynthetic pathway for this unusual sugar derives from comparative genomics where AtmS13 has been suggested as the contributing sugar aminotransferase (SAT). Determination of the AtmS13 X-ray structure at 1.50-Å resolution reveals it as a member of the aspartate aminotransferase fold type I (AAT-I). Structural comparisons of AtmS13 with homologous SATs that act upon similar substrates implicate potential active site residues that contribute to distinctions in sugar C5 (hexose vs. pentose) and/or sugar C2 (deoxy vs. hydroxyl) substrate specificity. PMID:26061967

  17. Reactive oxygen species abrogate the anticarcinogenic effect of eicosapentaenoic acid in Atm-deficient mice.

    PubMed

    Schubert, Ralf; Reichenbach, Janine; Koch, Claudia; Kloess, Stephan; Koehl, Ulrike; Mueller, Klaus; Baer, Patrick; Beermann, Christopher; Boehles, Hansjosef; Zielen, Stefan

    2010-01-01

    Recent studies have demonstrated that n-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) are able to suppress cell proliferation and inhibit tumor growth. The objective of our study was to investigate the influence of a high dose EPA on the development of the tumor phenotype in ataxia-telangiectasia mutated (Atm)-deficient mice, a genetic cancer model that is associated with increased levels of oxidative stress. We analyzed toxicity, proliferation, cell-cycle progression, and apoptosis of EPA in vitro and latency to tumorigenesis in vivo. Because of the impact of reactive oxygen species (ROS) on the tumor incidence in ataxia telangiectasia (AT), we further analyzed the effect of EPA on the generation of ROS and oxidative DNA damage (ODD). EPA effectively inhibited proliferation, altered cell-cycle progression, and induced apoptosis of tumor cells (AT-4). EPA showed no effect on the latency to tumorigenesis in Atm-deficient mice. EPA treatment was accompanied by a significant increase of ROS and ODD. Our results demonstrate the antiproliferative effect of EPA on tumor cells by alteration of cell-cycle progression and induction of apoptosis in vitro. On the other hand, EPA treatment of Atm-deficient mice led to the formation of ROS and accumulation of ODD that might have abrogated the anticarcinogenic effect caused by EPA. PMID:20574919

  18. FPGA Based Reconfigurable ATM Switch Test Bed

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.; Jones, Robert E.

    1998-01-01

    Various issues associated with "FPGA Based Reconfigurable ATM Switch Test Bed" are presented in viewgraph form. Specific topics include: 1) Network performance evaluation; 2) traditional approaches; 3) software simulation; 4) hardware emulation; 5) test bed highlights; 6) design environment; 7) test bed architecture; 8) abstract sheared-memory switch; 9) detailed switch diagram; 10) traffic generator; 11) data collection circuit and user interface; 12) initial results; and 13) the following conclusions: Advances in FPGA make hardware emulation feasible for performance evaluation, hardware emulation can provide several orders of magnitude speed-up over software simulation; due to the complexity of hardware synthesis process, development in emulation is much more difficult than simulation and requires knowledge in both networks and digital design.

  19. Parametric analysis of ATM solar array.

    NASA Technical Reports Server (NTRS)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  20. Dissecting cellular responses to irradiation via targeted disruptions of the ATM-CHK1-PP2A circuit

    PubMed Central

    Palii, Stela S.; Cui, Yuxia; Innes, Cynthia L.; Paules, Richard S.

    2013-01-01

    Exposure of proliferating cells to genotoxic stresses activates a cascade of signaling events termed the DNA damage response (DDR). The DDR preserves genetic stability by detecting DNA lesions, activating cell cycle checkpoints and promoting DNA damage repair. The phosphoinositide 3-kinase-related kinases (PIKKs) ataxia telangiectasia-mutated (ATM), ATM and Rad 3-related kinase (ATR) and DNA-dependent protein kinase (DNA-PK) are crucial for sensing lesions and signal transduction. The checkpoint kinase 1 (CHK1) is a traditional ATR target involved in DDR and normal cell cycle progression and represents a pharmacological target for anticancer regimens. This study employed cell lines stably depleted for CHK1, ATM or both for dissecting cross-talk and compensatory effects on G₂/M checkpoint in response to ionizing radiation (IR). We show that a 90% depletion of CHK1 renders cells radiosensitive without abrogating their IR-mediated G₂/M checkpoint arrest. ATM phosphorylation is enhanced in CHK1-deficient cells compared with their wild-type counterparts. This correlates with lower nuclear abundance of the PP2A catalytic subunit in CHK1-depleted cells. Stable depletion of CHK1 in an ATM-deficient background showed only a 50% reduction from wild-type CHK1 protein expression levels and resulted in an additive attenuation of the G₂/M checkpoint response compared with the individual knockdowns. ATM inhibition and 90% CHK1 depletion abrogated the early G₂/M checkpoint and precluded the cells from mounting an efficient compensatory response to IR at later time points. Our data indicates that dual targeting of ATM and CHK1 functionalities disrupts the compensatory response to DNA damage and could be exploited for developing efficient anti-neoplastic treatments. PMID:23462183

  1. Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366.

    PubMed Central

    Sapkota, Gopal P; Deak, Maria; Kieloch, Agnieszka; Morrice, Nick; Goodarzi, Aaron A; Smythe, Carl; Shiloh, Yosef; Lees-Miller, Susan P; Alessi, Dario R

    2002-01-01

    The serine/threonine protein kinase LKB1 functions as a tumour suppressor, and mutations in this enzyme lead to the inherited Peutz-Jeghers cancer syndrome. We previously found that LKB1 was phosphorylated at Thr-366 in vivo, a residue conserved in mammalian, Xenopus and Drosophila LKB1, located on a C-terminal non-catalytic moiety of the enzyme. Mutation of Thr-366 to Ala or Asp partially inhibited the ability of LKB1 to suppress growth of G361 melanoma cells, but did not affect LKB1 activity in vitro or LKB1 localization in vivo. As a first step in exploring the role of this phosphorylation further, we have generated a phosphospecific antibody specifically recognizing LKB1 phosphorylated at Thr-366 and demonstrate that exposure of cells to ionizing radiation (IR) induced a marked phosphorylation of LKB1 at Thr-366 in the nucleus. Thr-366 lies in an optimal phosphorylation motif for the phosphoinositide 3-kinase-like kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated kinase (ATM) and ataxia telangiectasia-related kinase (ATR), which function as sensors for DNA damage in cells and mediate cellular responses to DNA damage. We demonstrate that both DNA-PK and ATM efficiently phosphorylate LKB1 at Thr-366 in vitro and provide evidence that ATM mediates this phosphorylation in vivo. This is based on the finding that LKB1 is not phosphorylated in a cell line lacking ATM in response to IR, and that agents which induce cellular responses via ATR in preference to ATM poorly induce phosphorylation of LKB1 at Thr-366. These observations provide the first link between ATM and LKB1 and suggest that ATM could regulate LKB1. PMID:12234250

  2. Discovery of Novel 3-Quinoline Carboxamides as Potent, Selective, and Orally Bioavailable Inhibitors of Ataxia Telangiectasia Mutated (ATM) Kinase.

    PubMed

    Degorce, Sébastien L; Barlaam, Bernard; Cadogan, Elaine; Dishington, Allan; Ducray, Richard; Glossop, Steven C; Hassall, Lorraine A; Lach, Franck; Lau, Alan; McGuire, Thomas M; Nowak, Thorsten; Ouvry, Gilles; Pike, Kurt G; Thomason, Andrew G

    2016-07-14

    A novel series of 3-quinoline carboxamides has been discovered and optimized as selective inhibitors of the ataxia telangiectasia mutated (ATM) kinase. From a modestly potent HTS hit (4), we identified molecules such as 6-[6-(methoxymethyl)-3-pyridinyl]-4-{[(1R)-1-(tetrahydro-2H-pyran-4-yl)ethyl]amino}-3-quinolinecarboxamide (72) and 7-fluoro-6-[6-(methoxymethyl)pyridin-3-yl]-4-{[(1S)-1-(1-methyl-1H-pyrazol-3-yl)ethyl]amino}quinoline-3-carboxamide (74) as potent and highly selective ATM inhibitors with overall ADME properties suitable for oral administration. 72 and 74 constitute excellent oral tools to probe ATM inhibition in vivo. Efficacy in combination with the DSB-inducing agent irinotecan was observed in a disease relevant model. PMID:27259031

  3. ATM: The Key To Harnessing the Power of Networked Multimedia.

    ERIC Educational Resources Information Center

    Gross, Rod

    1996-01-01

    ATM (Asynchronous Transfer Mode) network technology handles the real-time continuous traffic flow necessary to support desktop multimedia applications. Describes network applications already used: desktop video collaboration, distance learning, and broadcasting video delivery. Examines the architecture of ATM technology, video delivery and sound…

  4. Multimedia Applications in Heterogeneous Internet/ATM Environments.

    ERIC Educational Resources Information Center

    Wolf, Lars C.

    1999-01-01

    Discussion of multimedia systems focuses on interaction approaches for the quality of service (QoS) architectures developed for the Internet and for asynchronous transfer mode (ATM). Highlights include interactions, videoconferencing, video on demand, a comparison of the ATM and IntServ QoS architectures, interaction models, and subordination…

  5. ATM Technology Adoption in U.S. Campus Networking.

    ERIC Educational Resources Information Center

    Yao, Engui; Perry, John F.; Anderson, Larry S.; Brook, R. Dan; Hare, R. Dwight; Moore, Arnold J.; Xu, Xiaohe

    This study examined the relationships between ATM (asynchronous transfer mode) adoption in universities and four organizational variables: university size, type, finances, and information processing maturity. Another purpose of the study was to identify the current status of ATM adoption in campus networking. Subjects were university domain LAN…

  6. ATM LAN Emulation: Getting from Here to There.

    ERIC Educational Resources Information Center

    Learn, Larry L., Ed.

    1995-01-01

    Discusses current LAN (local area network) configuration and explains ATM (asynchronous transfer mode) as the future telecommunications transport. Highlights include LAN emulation, which enables the interconnection of legacy LANs and the new ATM environment; virtual LANs; broadcast servers; and standards. (LRW)

  7. ATM test and integration. [Skylab Apollo Telescope Mount

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Mitchell, J. R.

    1974-01-01

    The test and checkout philosophy of the test program for the Skylab ATM module and the overall test flow including in-process, post-manufacturing, vibration, thermal vacuum, and prelaunch checkout activities are described. Capabilities and limitations of the test complex and its use of automation are discussed. Experiences with the organizational principle of using a dedicated test team for all checkout activities are reported. Material on the development of the ATM subsystems, the experimental program and the requirements of the scientific community, and the integration and verification of the complex systems/subsystems of the ATM are presented. The performance of the ATM test program in such areas as alignment, systems and subsystems, contamination control, and experiment operation is evaluated. The conclusions and recommendations resulting from the ATM test program are enumerated.

  8. ATM regulates proteasome-dependent subnuclear localization of TRF1, which is important for telomere maintenance

    PubMed Central

    McKerlie, Megan; Lin, Sichun; Zhu, Xu-Dong

    2012-01-01

    Ataxia telangiectasia mutated (ATM), a PI-3 kinase essential for maintaining genomic stability, has been shown to regulate TRF1, a negative mediator of telomerase-dependent telomere extension. However, little is known about ATM-mediated TRF1 phosphorylation site(s) in vivo. Here, we report that ATM phosphorylates S367 of TRF1 and that this phosphorylation renders TRF1 free of chromatin. We show that phosphorylated (pS367)TRF1 forms distinct non-telomeric subnuclear foci and that these foci occur predominantly in S and G2 phases, implying that their formation is cell cycle regulated. We show that phosphorylated (pS367)TRF1-containing foci are sensitive to proteasome inhibition. We find that a phosphomimic mutation of S367D abrogates TRF1 binding to telomeric DNA and renders TRF1 susceptible to protein degradation. In addition, we demonstrate that overexpressed TRF1-S367D accumulates in the subnuclear domains containing phosphorylated (pS367)TRF1 and that these subnuclear domains overlap with nuclear proteasome centers. Taken together, these results suggest that phosphorylated (pS367)TRF1-containing foci may represent nuclear sites for TRF1 proteolysis. Furthermore, we show that TRF1 carrying the S367D mutation is unable to inhibit telomerase-dependent telomere lengthening or to suppress the formation of telomere doublets and telomere loss in TRF1-depleted cells, suggesting that S367 phosphorylation by ATM is important for the regulation of telomere length and stability. PMID:22266654

  9. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo

    PubMed Central

    Vendetti, Frank P.; Lau, Alan; Schamus, Sandra; Conrads, Thomas P.; O'Connor, Mark J.; Bakkenist, Christopher J.

    2015-01-01

    ATR and ATM are DNA damage signaling kinases that phosphorylate several thousand substrates. ATR kinase activity is increased at damaged replication forks and resected DNA double-strand breaks (DSBs). ATM kinase activity is increased at DSBs. ATM has been widely studied since ataxia telangiectasia individuals who express no ATM protein are the most radiosensitive patients identified. Since ATM is not an essential protein, it is widely believed that ATM kinase inhibitors will be well-tolerated in the clinic. ATR has been widely studied, but advances have been complicated by the finding that ATR is an essential protein and it is widely believed that ATR kinase inhibitors will be toxic in the clinic. We describe AZD6738, an orally active and bioavailable ATR kinase inhibitor. AZD6738 induces cell death and senescence in non-small cell lung cancer (NSCLC) cell lines. AZD6738 potentiates the cytotoxicity of cisplatin and gemcitabine in NSCLC cell lines with intact ATM kinase signaling, and potently synergizes with cisplatin in ATM-deficient NSCLC cells. In contrast to expectations, daily administration of AZD6738 and ATR kinase inhibition for 14 consecutive days is tolerated in mice and enhances the therapeutic efficacy of cisplatin in xenograft models. Remarkably, the combination of cisplatin and AZD6738 resolves ATM-deficient lung cancer xenografts. PMID:26517239

  10. Phosphorylation of Merkel Cell Polyomavirus Large Tumor Antigen at Serine 816 by ATM Kinase Induces Apoptosis in Host Cells*

    PubMed Central

    Li, Jing; Diaz, Jason; Wang, Xin; Tsang, Sabrina H.; You, Jianxin

    2015-01-01

    Merkel cell carcinoma is a highly aggressive form of skin cancer. Merkel cell polyomavirus (MCV) infection and DNA integration into the host genome correlate with 80% of all Merkel cell carcinoma cases. Integration of the MCV genome frequently results in mutations in the large tumor antigen (LT), leading to expression of a truncated LT that retains pRB binding but with a deletion of the C-terminal domain. Studies from our laboratory and others have shown that the MCV LT C-terminal helicase domain contains growth-inhibiting properties. Additionally, we have shown that host DNA damage response factors are recruited to viral replication centers. In this study, we identified a novel MCV LT phosphorylation site at Ser-816 in the C-terminal domain. We demonstrate that activation of the ATM pathway stimulated MCV LT phosphorylation at Ser-816, whereas inhibition of ATM kinase activity prevented LT phosphorylation at this site. In vitro phosphorylation experiments confirmed that ATM kinase is responsible for phosphorylating MCV LT at Ser-816. Finally, we show that ATM kinase-mediated MCV LT Ser-816 phosphorylation may contribute to the anti-tumorigenic properties of the MCV LT C-terminal domain. PMID:25480786

  11. The ATM protein: the importance of being active.

    PubMed

    Shiloh, Yosef; Ziv, Yael

    2012-08-01

    The ataxia telangiectasia mutated (ATM) protein kinase regulates the cellular response to deoxyribonucleic acid (DNA) double-strand breaks by phosphorylating numerous players in the extensive DNA damage response network. Two papers in this issue (Daniel et al. 2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb201204035; Yamamoto et al. 2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb201204098) strikingly show that, in mice, the presence of a catalytically inactive version of ATM is embryonically lethal. This is surprising because mice completely lacking ATM have a much more moderate phenotype. The findings impact on basic cancer research and cancer therapeutics. PMID:22869592

  12. Deoxycytidine Kinase Augments ATM-Mediated DNA Repair and Contributes to Radiation Resistance

    PubMed Central

    Bunimovich, Yuri L.; Nair-Gill, Evan; Riedinger, Mireille; McCracken, Melissa N.; Cheng, Donghui; McLaughlin, Jami; Radu, Caius G.; Witte, Owen N.

    2014-01-01

    Efficient and adequate generation of deoxyribonucleotides is critical to successful DNA repair. We show that ataxia telangiectasia mutated (ATM) integrates the DNA damage response with DNA metabolism by regulating the salvage of deoxyribonucleosides. Specifically, ATM phosphorylates and activates deoxycytidine kinase (dCK) at serine 74 in response to ionizing radiation (IR). Activation of dCK shifts its substrate specificity toward deoxycytidine, increases intracellular dCTP pools post IR, and enhances the rate of DNA repair. Mutation of a single serine 74 residue has profound effects on murine T and B lymphocyte development, suggesting that post-translational regulation of dCK may be important in maintaining genomic stability during hematopoiesis. Using [18F]-FAC, a dCK-specific positron emission tomography (PET) probe, we visualized and quantified dCK activation in tumor xenografts after IR, indicating that dCK activation could serve as a biomarker for ATM function and DNA damage response in vivo. In addition, dCK-deficient leukemia cell lines and murine embryonic fibroblasts exhibited increased sensitivity to IR, indicating that pharmacologic inhibition of dCK may be an effective radiosensitization strategy. PMID:25101980

  13. ATM localization and gene expression in the adult mouse eye

    PubMed Central

    Leemput, Julia; Masson, Christel; Bigot, Karine; Errachid, Abdelmounaim; Dansault, Anouk; Provost, Alexandra; Gadin, Stéphanie; Aoufouchi, Said; Menasche, Maurice

    2009-01-01

    Purpose High levels of metabolism and oxygen consumption in most adult murine ocular compartments, combined with exposure to light and ultraviolet (UV) radiation, are major sources of oxidative stress, causing DNA damage in ocular cells. Of all mammalian body cells, photoreceptor cells consume the largest amount of oxygen and generate the highest levels of oxidative damage. The accumulation of such damage throughout life is a major factor of aging tissues. Several multiprotein complexes have recently been identified as the major sensors and mediators involved in the maintenance of DNA integrity. The activity of these complexes initially seemed to be restricted to dividing cells, given their ultimate role in major cell cycle checkpoints. However, it was later established that they are also active in post-mitotic cells. Recent findings demonstrate that the DNA damage response (DDR) is essential for the development, maintenance, and normal functioning of the adult central nervous system. One major molecular factor in the DDR is the protein, ataxia telangiectasia mutated (ATM). It is required for the rapid induction of cellular responses to DNA double-strand breaks. These cytotoxic DNA lesions may be caused by oxidative damage. To understand how ATM prevents oxidative stress and participates in the maintenance of genomic integrity and cell viability of the adult retina, we determined the ATM expression patterns and studied its localization in the adult mouse eye. Methods Atm gene expression was analyzed by RT–PCR experiments and its localization by in situ hybridization on adult mouse ocular and cerebellar tissue sections. ATM protein expression was determined by western blot analysis of proteins homogenates extracted from several mouse tissues and its localization by immunohistochemistry experiments performed on adult mouse ocular and cerebellar tissue sections. In addition, subcellular localization was realized by confocal microscopy imaging of ocular tissue

  14. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity

    SciTech Connect

    Roy, Kanaklata; Wang, Lilin; Makrigiorgos, G. Mike; Price, Brendan D. . E-mail: brendan_price@dfci.harvard.edu

    2006-06-09

    Glioblastomas are among the malignancies most resistant to radiation therapy. In contrast, cells lacking the ATM protein are highly sensitive to ionizing radiation. The relationship between ATM protein expression and radiosensitivity in 3 glioma cell lines was examined. T98G cells exhibited normal levels of ATM protein, whereas U118 and U87 cells had significantly lower levels of ATM and increased (>2-fold) sensitivity to ionizing radiation compared to T98G cells. The ATM promoter was methylated in U87 cells. Demethylation by azacytidine treatment increased ATM protein levels in the U87 cells and decreased their radiosensitivity. In contrast, the ATM promoter in U118 cells was not methylated. Further, expression of exogenous ATM did not significantly alter the radiosensitivity of U118 cells. ATM expression is therefore heterogeneous in the glioma cells examined. In conclusion, methylation of the ATM promoter may account for the variable radiosensitivity and heterogeneous ATM expression in a fraction of glioma cells.

  15. The Authenticated Tracking and Monitoring System (ATMS) concept

    SciTech Connect

    Schoeneman, J.L.

    1993-08-01

    The Authenticated Tracking and Monitoring System (ATMS) has been designed to address the need for global monitoring of the status and location of proliferation-sensitive items. Conceived to utilize the proposed Global Verification and Location System (GVLS) satellite link, ATMS could use the existing International Maritime Satellite commercial communication system until GVLS is operational. The ATMS concept uses sensor packs to monitor items and environmental conditions, collects a variety of events data through a sensor processing unit, and transmits the data to a satellite, which then sends data to ground stations. Authentication and encryption algorithms will be used to secure the data. A typical ATMS application would be to track and monitor the safety and security of a number of items in transit along a scheduled shipping route. This paper also discusses a possible proof-of-concept system demonstration.

  16. Implementing and testing ATM in a production LAN

    SciTech Connect

    Naegle, J.; Testi, N.; Tolendino, L.; Zepper, J.

    1995-06-01

    Asynchronous Transfer Mode (ATM) technology is currently receiving extensive attention in the computer networking arena. Many experts predict that ATM will be the future networking technology for both the Local Area Network (LAN) and the Wide Area Network (WAN). This paper presents the results of a collaboration between Sandia National Laboratories` Advanced Networking Department and Engineering Sciences Center to study the implementation of ATM in one of Sandia`s most heavily loaded production networks. The network consists of over 120 Sun Sparc 10s and 20s, two SparcCenter 2000s, a 12 node parallel IBM SP-2, and several other miscellaneous high-end workstations. The existing network was first characterized through extensive traffic measurements to better understand the capabilities and limitations of the existing network technologies and to provide a baseline for comparison to an ATM network. This characterization was used to select a subset of the network elements which would benefit most from conversion to the ATM technology. This subset was then converted to equipment based on the latest ATM standards. With direct OC-3c (155 Mbps) host connections for the workstations and the file and compute servers, we demonstrated as much as 122 Mbps throughput (memory-to-memory TCP/IP transfers) between endpoints. Flow control in the classical many-to-one client server environment was also investigated. Throughout all of our tests, the interaction of the user applications with the network technologies was documented and possible improvements were tested. The performance and reliability of the ATM network was compared to the original network to determine the benefits and liabilities of the ATM technology.

  17. Coordinated Regulation of TIP60 and Poly(ADP-Ribose) Polymerase 1 in Damaged-Chromatin Dynamics.

    PubMed

    Ikura, Masae; Furuya, Kanji; Fukuto, Atsuhiko; Matsuda, Ryo; Adachi, Jun; Matsuda, Tomonari; Kakizuka, Akira; Ikura, Tsuyoshi

    2016-05-15

    The dynamic exchange of histones alleviates the nucleosome barrier and simultaneously facilitates various aspects of cellular DNA metabolism, such as DNA repair and transcription. In response to DNA damage, the acetylation of Lys5 in the histone variant H2AX, catalyzed by TIP60, plays a key role in promoting histone exchange; however, the detailed molecular mechanism still is unclear. Here, we show that the TIP60 complex includes poly(ADP-ribose) polymerase 1 (PARP-1). PARP-1 is required for the rapid exchange of H2AX on chromatin at DNA damage sites. It is known that PARP-1 binds dynamically to damaged chromatin and is crucial for the subsequent recruitment of other repair factors, and its auto-poly(ADP-ribosyl)ation is required for the dynamics. We also show that the acetylation of histone H2AX at Lys5 by TIP60, but not the phosphorylation of H2AX, is required for the ADP-ribosylation activity of PARP-1 and its dynamic binding to damaged chromatin. Our results indicate the reciprocal regulation of K5 acetylation of H2AX and PARP-1, which could modulate the chromatin structure to facilitate DNA metabolism at damage sites. This could explain the rather undefined roles of PARP-1 in various DNA damage responses. PMID:26976643

  18. ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA

    SciTech Connect

    M Langelier; J Planck; S Roy; J Pascal

    2011-12-31

    Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNA interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.

  19. Synthesis and Evaluation of a Radioiodinated Tracer with Specificity for Poly(ADP-ribose) Polymerase-1 (PARP-1) in Vivo.

    PubMed

    Zmuda, Filip; Malviya, Gaurav; Blair, Adele; Boyd, Marie; Chalmers, Anthony J; Sutherland, Andrew; Pimlott, Sally L

    2015-11-12

    Interest in nuclear imaging of poly(ADP-ribose) polymerase-1 (PARP-1) has grown in recent years due to the ability of PARP-1 to act as a biomarker for glioblastoma and increased clinical use of PARP-1 inhibitors. This study reports the identification of a lead iodinated analog 5 of the clinical PARP-1 inhibitor olaparib as a potential single-photon emission computed tomography (SPECT) imaging agent. Compound 5 was shown to be a potent PARP-1 inhibitor in cell-free and cellular assays, and it exhibited mouse plasma stability but approximately 3-fold greater intrinsic clearance when compared to olaparib. An (123)I-labeled version of 5 was generated using solid state halogen exchange methodology. Ex vivo biodistribution studies of [(123)I]5 in mice bearing subcutaneous glioblastoma xenografts revealed that the tracer had the ability to be retained in tumor tissue and bind to PARP-1 with specificity. These findings support further investigations of [(123)I]5 as a noninvasive PARP-1 SPECT imaging agent. PMID:26469301

  20. Synthetic lethality in ATM-deficient RAD50-mutant tumors underlie outlier response to cancer therapy

    PubMed Central

    Al-Ahmadie, Hikmat; Iyer, Gopa; Hohl, Marcel; Asthana, Saurabh; Inagaki, Akiko; Schultz, Nikolaus; Hanrahan, Aphrothiti J.; Scott, Sasinya N.; Brannon, A. Rose; McDermott, Gregory C.; Pirun, Mono; Ostrovnaya, Irina; Kim, Philip; Socci, Nicholas D.; Viale, Agnes; Schwartz, Gary K.; Reuter, Victor; Bochner, Bernard H.; Rosenberg, Jonathan E.; Bajorin, Dean F.; Berger, Michael F.; Petrini, John H.J.; Solit, David B.; Taylor, Barry S.

    2014-01-01

    Metastatic solid tumors are almost invariably fatal. Patients with disseminated small-cell cancers have a particularly unfavorable prognosis with most succumbing to their disease within two years. Here, we report on the genetic and functional analysis of an outlier curative response of a patient with metastatic small cell cancer to combined checkpoint kinase 1 (Chk1) inhibition and DNA damaging chemotherapy. Whole-genome sequencing revealed a clonal hemizygous mutation in the Mre11 complex gene RAD50 that attenuated ATM signaling which in the context of Chk1 inhibition contributed, via synthetic lethality, to extreme sensitivity to irinotecan. As Mre11 mutations occur in a diversity of human tumors, the results suggest a tumor-specific combination therapy strategy whereby checkpoint inhibition in combination with DNA damaging chemotherapy is synthetically lethal in tumor but not normal cells with somatic mutations that impair Mre11 complex function. PMID:24934408

  1. Tropical Cyclone Warm Core Structure Retrieved from ATMS

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Zhu, T.; Weng, F.

    2012-12-01

    The Advanced Technology Microwave Sounder (ATMS) on board Suomi NPP was successfully launched on October 28, 2011. ATMS consists of a microwave radiometer that measures microwave radiances at 22 channels from 23.8 GHz to 183.3 GHz. Combining the capabilities of current Advanced Microwave Sounding Unit (AMSU-A) and Microwave Humidity Sounder (MHS), ATMS provides sounding observations with improved sampling and coverage for retrieving atmospheric vertical temperature and moisture profiles. A new algorithm is developed to retrieve atmospheric temperature profiles for tropical cyclone with ATMS data. The cross-track asymmetric pattern is investigated for ATMS three window channels. It is found that the asymmetric biases are close to the simulations when the polarization alignment angles are set between 91o and 92o. The algorithm is applied for Tropical Cyclone Giovanna case study and compared with the retrievals from NOAA-15 AMSU-A observation. ATMS retrievals clearly depict the cold temperature anomalies in TC spiral rain bands and the storm warm core. More case study results will be provided at the conference.

  2. ATM controls meiotic double-strand-break formation.

    PubMed

    Lange, Julian; Pan, Jing; Cole, Francesca; Thelen, Michael P; Jasin, Maria; Keeney, Scott

    2011-11-10

    In many organisms, developmentally programmed double-strand breaks (DSBs) formed by the SPO11 transesterase initiate meiotic recombination, which promotes pairing and segregation of homologous chromosomes. Because every chromosome must receive a minimum number of DSBs, attention has focused on factors that support DSB formation. However, improperly repaired DSBs can cause meiotic arrest or mutation; thus, having too many DSBs is probably as deleterious as having too few. Only a small fraction of SPO11 protein ever makes a DSB in yeast or mouse and SPO11 and its accessory factors remain abundant long after most DSB formation ceases, implying the existence of mechanisms that restrain SPO11 activity to limit DSB numbers. Here we report that the number of meiotic DSBs in mouse is controlled by ATM, a kinase activated by DNA damage to trigger checkpoint signalling and promote DSB repair. Levels of SPO11-oligonucleotide complexes, by-products of meiotic DSB formation, are elevated at least tenfold in spermatocytes lacking ATM. Moreover, Atm mutation renders SPO11-oligonucleotide levels sensitive to genetic manipulations that modulate SPO11 protein levels. We propose that ATM restrains SPO11 via a negative feedback loop in which kinase activation by DSBs suppresses further DSB formation. Our findings explain previously puzzling phenotypes of Atm-null mice and provide a molecular basis for the gonadal dysgenesis observed in ataxia telangiectasia, the human syndrome caused by ATM deficiency. PMID:22002603

  3. Down-Regulation of EBV-LMP1 Radio-Sensitizes Nasal Pharyngeal Carcinoma Cells via NF-κB Regulated ATM Expression

    PubMed Central

    Xiao, Lanbo; Tang, Min; Liu, Liyu; Li, Zijian; Deng, Mengyao; Sun, Lunquan; Cao, Ya

    2011-01-01

    Background The latent membrane protein 1 (LMP1) encoded by EBV is expressed in the majority of EBV-associated human malignancies and has been suggested to be one of the major oncogenic factors in EBV-mediated carcinogenesis. In previous studies we experimentally demonstrated that down-regulation of LMP1 expression by DNAzymes could increase radiosensitivity both in cells and in a xenograft NPC model in mice. Results In this study we explored the molecular mechanisms underlying the radiosensitization caused by the down-regulation of LMP1 in nasopharyngeal carcinoma. It was confirmed that LMP1 could up-regulate ATM expression in NPCs. Bioinformatic analysis of the ATM ptomoter region revealed three tentative binding sites for NF-κB. By using a specific inhibitor of NF-κB signaling and the dominant negative mutant of IkappaB, it was shown that the ATM expression in CNE1-LMP1 cells could be efficiently suppressed. Inhibition of LMP1 expression by the DNAzyme led to attenuation of the NF-κB DNA binding activity. We further showed that the silence of ATM expression by ATM-targeted siRNA could enhance the radiosensitivity in LMP1 positive NPC cells. Conclusions Together, our results indicate that ATM expression can be regulated by LMP1 via the NF-κB pathways through direct promoter binding, which resulted in the change of radiosensitivity in NPCs. PMID:22096476

  4. p21CDKN1A Regulates the Binding of Poly(ADP-Ribose) Polymerase-1 to DNA Repair Intermediates

    PubMed Central

    Tillhon, Micol; Cazzalini, Ornella; Stivala, Lucia A.; Scovassi, A. Ivana; Lavrik, Olga; Prosperi, Ennio

    2016-01-01

    The cell cycle inhibitor p21CDKN1A was previously found to interact directly with DNA nick-sensor poly(ADP-ribose) polymerase-1 (PARP-1) and to promote base excision repair (BER). However, the molecular mechanism responsible for this BER-related association of p21 with PARP-1 remains to be clarified. In this study we investigate the capability of p21 to influence PARP-1 binding to DNA repair intermediates in a reconstituted BER system in vitro. Using model photoreactive BER substrates containing single-strand breaks, we found that full-length recombinant GST-tagged p21 but not a C-terminal domain truncated form of p21 was able to stimulate the PARP-1 binding to BER intermediates with no significant influence on the catalytic activity of PARP-1. In addition, we investigate whether the activation of PARP-1 through poly(ADP-ribose) (PAR) synthesis, is required for its interaction with p21. We have found that in human fibroblasts and in HeLa cells treated with the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), the interaction of p21 with PARP-1 was greatly dependent on PAR synthesis. In fact, an anti-PAR antibody was able to co-immunoprecipitate p21 and PARP-1 from extracts of MNNG-treated cells, while blocking PAR synthesis with the PARP-1 inhibitor Olaparib, drastically reduced the amount of p21 co-immunoprecipitated by a PARP-1 antibody. Our results provide the first evidence that p21 can stimulate the binding of PARP-1 to DNA repair intermediates, and that this cooperation requires PAR synthesis. PMID:26730949

  5. Assessment of asynchronous transfer mode (ATM) networks for regional teleradiology

    NASA Astrophysics Data System (ADS)

    Duerinckx, Andre J.; Hayrapetian, Alek S.; Valentino, Daniel J.; Grant, Edward G.; Rahbar, Darius; Kiszonas, Mike; Franco, Ricky; Shimabuku, Guy H.; Hagan, Girish T.; Melany, Michelle; Narin, Sherelle L.; Ragavendra, Nagesh

    1996-05-01

    The purpose of this study was to assess the effect of ATM network capabilities on the clinical practice of regional teleradiology, by providing immediate interactive radiology consultations between subspecialists and general radiologists at affiliated academic institutions. PACS installed at three affiliated hospitals (UCLA Medical Center, West LA VAMC and UCLA Olive-View Medical Centers) were connected via an ATM network. Two commercial PACS (Agfa) systems, one at the VAMC and one in an ultrasound outpatient clinic at UCLA were connected via ATM switches (Newbridge, Inc.) and a Santa Monica GTE central office switch. We evaluated this initial system configuration and measured image transfer performance, including memory-to-memory, disk-to-disk, disk-to-archive with and without DICOM protocols. Although the memory-to-memory data rate was 25 Mbps, the average remote disk-to-disk image transfer performance, using DICOM 3.0 communications protocols on SUN SPARCstation 10 servers, was 3 to 5 Mbps. Using these capabilities, timely interactive subspecialty consultations between radiologists was successfully performed while both were at different physical locations. We present the use of ATM technology in a realistic clinical environment and evaluate its impact on patient care and clinical teaching within the radiology departments of 2 institutions. Image communications over a regional PACS using an ATM network can allow interactive consultations between different subspecialist and general radiologists or other specialized radiologist spread over three different medical centers.

  6. Snowfall Rate Retrieval using NPP ATMS Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua; Zhao, Limin

    2014-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2014). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The ATMS SFR product is validated against radar and gauge snowfall data and shows that the ATMS algorithm outperforms the AMSU/MHS SFR.

  7. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    SciTech Connect

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J.

    2014-11-15

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.

  8. A simulation study of TCP performance in ATM networks

    SciTech Connect

    Chien Fang; Chen, Helen; Hutchins, J.

    1994-08-01

    This paper presents a simulation study of TCP performance over congested ATM local area networks. We simulated a variety of schemes for congestion control for ATM LANs, including a simple cell-drop, a credit-based flow control scheme that back-pressures individual VC`s, and two selective cell-drop schemes. Our simulation results for congested ATM LANs show the following: (1) TCP performance is poor under simple cell-drop, (2) the selective cell-drop schemes increase effective link utilization and result in higher TCP throughputs than the simple cell-drop scheme, and (3) the credit-based flow control scheme eliminates cell loss and achieves maximum performance and effective link utilization.

  9. Scalable end-to-end ATM encryption test results

    SciTech Connect

    Pierson, L.G.

    1995-10-01

    Customers of Asynchronous Transfer Mode (ATM) services may need a variety of data authenticity and privacy assurances. Cryptographic methods can be used to assure authenticity and privacy, but are hard to scale for implementation at high speed. The incorporation of these methods into computer networks can severely impact functionality, reliability, and performance. To study these trade-offs, a prototype encryptor/decryptor was developed. This effort demonstrated the viability of implementing certain encryption techniques in high speed networks. The research prototype processes ATM cells in a SONET OC-3 payload. This paper describes the functionality, reliability, security, and performance design trade-offs investigated with the prototype.

  10. Nitric oxide and superoxide anion differentially activate poly(ADP-ribose) polymerase-1 and Bax to induce nuclear translocation of apoptosis-inducing factor and mitochondrial release of cytochrome c after spinal cord injury.

    PubMed

    Wu, Kay L H; Hsu, Chin; Chan, Julie Y H

    2009-07-01

    We reported previously that complete spinal cord transection (SCT) results in depression of mitochondrial respiratory chain enzyme activity that triggers apoptosis via sequential activations of apoptosis-inducing factor (AIF)- and caspase-dependent cascades in the injured spinal cord. This study tested the hypothesis that nitric oxide (NO) and superoxide anion (O(2)(.-)) serve as the interposing signals between SCT and impaired mitochondrial respiratory functions. Adult Sprague-Dawley rats manifested a significant increase in NO or O(2)(.-) level in the injured spinal cord during the first 3 days after SCT. The augmented O(2)(.-) production, along with concomitant reduction in mitochondrial respiratory chain enzyme activity or ATP level, nuclear translocation of AIF, cytosolic release of cytochrome c, and DNA fragmentation were reversed by osmotic minipump infusion of a NO trapping agent, carboxy-PTIO, or a superoxide dismutase mimetic, tempol, into the epicenter of the transected spinal cord. Intriguingly, carboxy-PTIO significantly suppressed upregulation of poly(ADP-ribose) polymerase-1 (PARP-1) in the nucleus, attenuated nuclear translocation of AIF, inhibited mitochondrial translocation of Bax and antagonized mitochondrial release of cytochrome c; whereas tempol only inhibited the later two cellular events after SCT. We conclude that overproduction of NO and O(2)(.-) in the injured spinal cord promulgates mitochondrial dysfunction and triggers AIF- and caspase-dependent apoptotic signaling cascades via differential upregulation of nuclear PARP-1 and mitochondrial translocation of Bax. PMID:19473058

  11. Transition in Survival From Low-Dose Hyper-Radiosensitivity to Increased Radioresistance Is Independent of Activation of ATM SER1981 Activity

    SciTech Connect

    Krueger, Sarah A.; Collis, Spencer J.; Joiner, Michael C.; Wilson, George D.; Marples, Brian

    2007-11-15

    Purpose: The molecular basis of low-dose hyper-radiosensitivity (HRS) is only partially understood. The aim of this study was to define the roles of ataxia telangiectasia mutated (ATM) activity and the downstream ATM-dependent G{sub 2}-phase cell cycle checkpoint in overcoming HRS and triggering radiation resistance. Methods and Materials: Survival was measured using a high-resolution clonogenic assay. ATM Ser1981 activation was measured by Western blotting. The role of ATM was determined in survival experiments after molecular (siRNA) and chemical (0.4 mM caffeine) inhibition and chemical (20 {mu}g/mL chloroquine, 15 {mu}M genistein) activation 4-6 h before irradiation. Checkpoint responsiveness was assessed in eight cell lines of differing HRS status using flow cytometry to quantify the progression of irradiated (0-2 Gy) G{sub 2}-phase cells entering mitosis, using histone H3 phosphorylation analysis. Results: The dose-response pattern of ATM activation was concordant with the transition from HRS to radioresistance. However, ATM activation did not play a primary role in initiating increased radioresistance. Rather, a relationship was discovered between the function of the downstream ATM-dependent early G{sub 2}-phase checkpoint and the prevalence and overcoming of HRS. Four cell lines that exhibited HRS failed to show low-dose (<0.3-Gy) checkpoint function. In contrast, four HRS-negative cell lines exhibited immediate cell cycle arrest for the entire 0-2-Gy dose range. Conclusion: Overcoming HRS is reliant on the function of the early G{sub 2}-phase checkpoint. These data suggest that clinical exploitation of HRS could be achieved by combining radiotherapy with chemotherapeutic agents that modulate this cell cycle checkpoint.

  12. Targeting p38 mitogen-activated protein kinase signaling restores subventricular zone neural stem cells and corrects neuromotor deficits in Atm knockout mouse.

    PubMed

    Kim, Jeesun; Wong, Paul K Y

    2012-07-01

    Ataxia-telangiectasia (A-T) is a progressive degenerative disorder that results in major neurological disability. In A-T patients, necropsy has revealed atrophy of cerebellar cortical layers along with Purkinje and granular cell loss. We have previously identified an oxidative stress-mediated increase in phospho-p38 mitogen-activated protein kinase (MAPK) and the resultant downregulation of Bmi-1 and upregulation of p21 as key components of the mechanism causing defective proliferation of neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm(-/-) mice. However, the in vivo aspect of alteration in SVZ tissue and the functional significance of p38MAPK activation in NSCs for neuropathogenesis of ATM deficiency remain unknown. Here we show that the NSC population was abnormally decreased in the SVZ of 3-month-old Atm(-/-) mice; this decrease was accompanied by p38MAPK activation. However, after a 2-month treatment with the p38MAPK inhibitor SB203580, starting at 1 month old, Atm(-/-) mice showed restoration of normal levels of Bmi-1 and p21 with the rescue of NSC population in the SVZ. In addition, treated Atm(-/-) mice exhibited more Purkinje cells in the cerebellum. Most importantly, motor coordination of Atm(-/-) mice was significantly improved in the treatment group. Our results show for the first time in vivo evidence of depleted NSCs in the SVZ of Atm(-/-) mice and also demonstrate that pharmacologic inhibition of p38MAPK signaling has the potential to treat neurological defects of A-T. This study provides a promising approach targeting the oxidative stress-dependent p38 signaling pathway not only for A-T but also for other neurodegenerative disorders. PMID:23197859

  13. Homeodomain-interacting protein kinase 2 is the ionizing radiation-activated p53 serine 46 kinase and is regulated by ATM.

    PubMed

    Dauth, Ilka; Krüger, Jana; Hofmann, Thomas G

    2007-03-01

    Phosphorylation of p53 at Ser(46) is important to activate the apoptotic program. The protein kinase that phosphorylates p53 Ser(46) in response to DNA double-strand breaks is currently unknown. The identification of this kinase is of particular interest because it may contribute to the outcome of cancer therapy. Here, we report that ionizing radiation (IR) provokes homeodomain-interacting protein kinase 2 (HIPK2) accumulation, activation, and complex formation with p53. IR-induced HIPK2 up-regulation strictly correlates with p53 Ser(46) phosphorylation. Down-regulation of HIPK2 by RNA interference specifically inhibits IR-induced phosphorylation of p53 at Ser(46). Moreover, we show that HIPK2 activation after IR is regulated by the DNA damage checkpoint kinase ataxia telangiectasia mutated (ATM). Cells from ataxia telangiectasia patients show defects in HIPK2 accumulation. Concordantly, IR-induced HIPK2 accumulation is blocked by pharmacologic inhibition of ATM. Furthermore, ATM down-regulation by RNA interference inhibited IR-induced HIPK2 accumulation, whereas checkpoint kinase 2 deficiency showed no effect. Taken together, our findings indicate that HIPK2 is the IR-activated p53 Ser(46) kinase and is regulated by ATM. PMID:17332358

  14. Skylab ATM/S-056 X-ray event analyzer observations versus solar flare activity: An event compilation. [tables (data)

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1977-01-01

    An event compilation is presented which correlates ATM/S-056 X-ray event analyzer solar observations with solar flare activity. Approximately 1,070 h of pulse height analyzed X-ray proportional counter data were obtained with the X-ray event analyzer during Skylab. During its operation, 449 flares (including 343 flare peaks) were observed. Seventy events of peak X-ray emission or = Cl were simultaneously observed by ground based telescopes, SOLRAD 9 and/or Vela, and the X-ray event analyzer. These events were observed from preflare through flare rise to peak and through flare decline.

  15. Mutant IDH1 Downregulates ATM and Alters DNA Repair and Sensitivity to DNA Damage Independent of TET2.

    PubMed

    Inoue, Satoshi; Li, Wanda Y; Tseng, Alan; Beerman, Isabel; Elia, Andrew J; Bendall, Sean C; Lemonnier, François; Kron, Ken J; Cescon, David W; Hao, Zhenyue; Lind, Evan F; Takayama, Naoya; Planello, Aline C; Shen, Shu Yi; Shih, Alan H; Larsen, Dana M; Li, Qinxi; Snow, Bryan E; Wakeham, Andrew; Haight, Jillian; Gorrini, Chiara; Bassi, Christian; Thu, Kelsie L; Murakami, Kiichi; Elford, Alisha R; Ueda, Takeshi; Straley, Kimberly; Yen, Katharine E; Melino, Gerry; Cimmino, Luisa; Aifantis, Iannis; Levine, Ross L; De Carvalho, Daniel D; Lupien, Mathieu; Rossi, Derrick J; Nolan, Garry P; Cairns, Rob A; Mak, Tak W

    2016-08-01

    Mutations in the isocitrate dehydrogenase-1 gene (IDH1) are common drivers of acute myeloid leukemia (AML) but their mechanism is not fully understood. It is thought that IDH1 mutants act by inhibiting TET2 to alter DNA methylation, but there are significant unexplained clinical differences between IDH1- and TET2-mutant diseases. We have discovered that mice expressing endogenous mutant IDH1 have reduced numbers of hematopoietic stem cells (HSCs), in contrast to Tet2 knockout (TET2-KO) mice. Mutant IDH1 downregulates the DNA damage (DD) sensor ATM by altering histone methylation, leading to impaired DNA repair, increased sensitivity to DD, and reduced HSC self-renewal, independent of TET2. ATM expression is also decreased in human IDH1-mutated AML. These findings may have implications for treatment of IDH-mutant leukemia. PMID:27424808

  16. Performance evaluation of response time in ATM LANs

    SciTech Connect

    Chen, H.; Brandt, J.

    1995-12-11

    This contribution compares the response-time performance of ATM LANs using ABR EFCI, UBR FIFO, and UBR with per VC queuing switches. Our study is based on experimental as well as simulation results. We found that, with or without congestion, UBR switches with per VC queuing provide the best response times.

  17. Comparison of congestion controls for data services on ATM networks

    NASA Astrophysics Data System (ADS)

    Choi, Yonshik; Campbell, Graham

    1999-11-01

    The Internet consists of a network of networks. Internet users and service provides want to provide and receive multiple services. The legacy networks till now have provided narrow bandwidth that has restricted the range of services. Asynchronous Transfer Mode (ATM) can simultaneously deliver multiple services over one network and today ATM has become a component of the Internet. An ATM switch can deliver current Internet data using UBR or ABR services. Unspecified Bit Rate (UBR) using AAL5 is the most common offering these days for data transport. Because UBR does not guarantee any QoS categories and it is a `best effort' service, cell-discarding protocols must coexist. Congestion control is always a host topic for data networks. In data networks many flow mechanisms to resolve network congestion have been proposed. Cell loss is one of the most important and critical categories for traffic management of data networking. We compare the well-known Early Packet Discard for UBR with Quantum Flow Control for ABR services with TCP over ATM. Simulation results are provided that allow a comparison of both techniques.

  18. Using ATM over hybrid fiber-coax networks

    NASA Astrophysics Data System (ADS)

    Laubach, Mark

    1995-11-01

    Cable TV companies and regional Bell operating companies, e.g. PacBell, are preparing for the future by installing or rebuilding existing all-coaxial cable plants into hybrid-fiber coaxial plants and by offering a wide range of interactive services which they feel will be most attractive to their subscriber base. These new-to-cable services span a wide range of performance attributes, each placing its own demands on the capabilities of the broadband bearer service system. These services include, but are not limited to: video-on-demand, digital video, video telephony, voice telephony, and a suite of interactive digital data services ranging from traditional Internet and information service access (e.g., Compuserve and Prodigy) to multi-player gaming. The future broadband infrastructure challenge can be met by developing a novel family of integrated bearer service products which communicate using asynchronous transfer mode protocols over the cable TV network. This paper summarizes the ATM over HFC definition work taking place in the ATM Forum's Residential Broadband Working Group and the standards progress in the IEEE P802.14 Cable TV Media Access Control and Physical Protocol Working Group. Finally, an example of bridging Ethernet packets over ATM over HFC is discussed. This paper focuses on the aspects of ATM and the MAC layer and does not detail the rf or physical environment.

  19. The ATM signaling network in development and disease

    PubMed Central

    Stracker, Travis H.; Roig, Ignasi; Knobel, Philip A.; Marjanović, Marko

    2013-01-01

    The DNA damage response (DDR) rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence (Jackson and Bartek, 2009). DNA double-strand breaks (DSBs) represent one of the most cytotoxic DNA lesions and defects in their metabolism underlie many human hereditary diseases characterized by genomic instability (Stracker and Petrini, 2011; McKinnon, 2012). Patients with hereditary defects in the DDR display defects in development, particularly affecting the central nervous system, the immune system and the germline, as well as aberrant metabolic regulation and cancer predisposition. Central to the DDR to DSBs is the ataxia-telangiectasia mutated (ATM) kinase, a master controller of signal transduction. Understanding how ATM signaling regulates various aspects of the DDR and its roles in vivo is critical for our understanding of human disease, its diagnosis and its treatment. This review will describe the general roles of ATM signaling and highlight some recent advances that have shed light on the diverse roles of ATM and related proteins in human disease. PMID:23532176

  20. Self-healing ATM network based on multilink principles

    NASA Astrophysics Data System (ADS)

    Vanlandegem, Thierry; Vankwikelberge, Patrick; Vanderstreaten, Hans

    1994-01-01

    Self-healing is the ability of a network to reconfigure itself around failures such that calls in progress are not dropped and suffer of no almost no degradation in quality of service. Providing self-healing capabilities in all parts of the future ATM network in a cost effective way is therefore a key challenge. In this paper a new self-healing method based on the multilink concept is presented for dedicated parts of the ATM network, such as, for instance, feeder networks. In the multilink concept that is proposed here, the cells of an ATM connection carried by a multilink are distributed over several physical links. If a physical link supporting the multilink fails, the cells will be distributed among the remaining physical links thus providing self-healing capacity. In this way the quality of service can be maintained at the expense of a higher load on the remaining physical links. The speed of restoration only realize on the detection and signaling of the failure since spare capacity is available on the very multilink. The sharing of spare capacity in addition to the statistical multiplexing gain provides a cost effective self-healing method and leads to a simplified network resource management. The proposed multilink concept is based on extension of the multipath self-routing concept, which is currently applied by Alcatel in its ATM switching fabric.

  1. Characterization of spent fuel approved testing material--ATM-104

    SciTech Connect

    Guenther, R.J.; Blahnik, D.E.; Jenquin, U.P.; Mendel, J.E.; Thomas, L.E.; Thornhill, C.K.

    1991-12-01

    The characterization data obtained to date are described for Approved Testing Material 104 (ATM-104), which is spent fuel from Assembly DO47 of the Calvert Cliffs Nuclear Power Plant (Unit 1), a pressurized-water reactor. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory (PNL) on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well-characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) Program. ATM-104 consists of 128 full-length irradiated fuel rods with rod-average burnups of about 42 MWd/kgM and expected fission gas release of about 1%. A variety of analyses were performed to investigate cladding characteristics, radionuclide inventory, and redistribution of fission products. Characterization data include (1) fabricated fuel design, irradiation history, and subsequent storage and handling history; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) special fuel studies involving analytical transmission electron microscopy (AEM) and electron probe microanalyses (EPMA); (6) calculated nuclide inventories and radioactivities in the fuel and cladding; and (7) radiochemical analyses of the fuel and cladding.

  2. Observing and recording instantaneous images on ATM television monitors

    NASA Technical Reports Server (NTRS)

    Patterson, N. P.; Delamere, W. A.; Tousey, R.

    1977-01-01

    A persistent image-converter device was utilized to make visible to the astronaut solar images that were isolated, instantaneous flashes on the ATM TV monitors. In addition, these instantaneous images, as well as normal TV images, were recorded with a Polaroid SX-70 camera for study by the astronauts.

  3. High-performance testbed network with ATM technology for neuroimaging

    NASA Astrophysics Data System (ADS)

    Huang, H. K.; Arenson, Ronald L.; Dillon, William P.; Lou, Shyhliang A.; Bazzill, Todd M.; Wong, Albert W. K.; Gould, Robert G.

    1995-05-01

    Today's teleradiology transmits images with telephone lines (from 14400 to 1.5 Mbits/sec). However, the large amount of data commonly produced during an MR or CT procedure can limit some applications of teleradiology. This paper is a progress report of a high speed (155 Mbits/sec) testbed teleradiology network using asynchronous transfer mode (ATM OC 3) technology for neuroradiology. The network connects radiology departments of four affiliated hospitals and one MR imaging center within the San Francisco Bay Area with ATM switches through the Pacific Bell ATM main switch at Oakland, California; they are: University of California at San Francisco Hospital and Medical School (UCSF), Mt. Zion Hospital (MZH), San Francisco VA Medical Center (SFVAMC), San Francisco General Hospital (SFGH), and San Francisco Magnetic Resonance Imaging Center (SFMRC). UCSF serves as the expert center and the ATM switch is connected to its PACS infrastructure, the others are considered as satellite sites. Images and related patient data are transmitted from the four satellite sites to the expert canter for interpretation and consultation.

  4. U-View: Student Access to Information Using ATMs.

    ERIC Educational Resources Information Center

    Springfield, John J.

    1990-01-01

    A discussion of Boston College's system allowing students to display and print their campus records at automated teller machines (ATMs) around the institution looks at the system's evolution, current operations, human factors affecting system design and operation, shared responsibility, campus acceptance, future enhancements, and cost…

  5. Characterization of spent fuel approved testing material---ATM-105

    SciTech Connect

    Guenther, R.J.; Blahnik, D.E.; Campbell, T.K.; Jenquin, U.P.; Mendel, J.E.; Thomas, L.E.; Thornhill, C.K.

    1991-12-01

    The characterization data obtained to data are described for Approved Testing Material 105 (ATM-105), which is spent fuel from Bundles CZ346 and CZ348 of the Cooper Nuclear Power Plant, a boiling-water reactor. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory (PNL) on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well-characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) Program. ATM-105 consists of 88 full-length irradiated fuel rods with rod-average burnups of about 2400 GJ/kgM (28 MWd/kgM) and expected fission gas release of about 1%. Characterization data include (1) descriptions of as-fabricated fuel design, irradiation history, and subsequent storage and handling; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) special fuel studies involving analytical transmission electron microscopy (AEM); (6) calculated nuclide inventories and radioactivities in the fuel and cladding; and (7) radiochemical analyses of the fuel and cladding. Additional analyses of the fuel are being conducted and will be included in planned revisions of this report.

  6. HIPPI, Fibre Channel, and ATM as gigabit/s LANs

    SciTech Connect

    Tolmie, D.

    1993-12-31

    Computer networks that operate in the gigabit per second speed range are becoming very important for interconnecting supercomputers and other high end equipment. Some trends and applications are examined and criteria for selecting an interconnection technology are developed. HIPPI is the current interface of choice, while Fibre Channel and ATM are emerging standards. These systems are examined as to their backgrounds, advantages, and shortcomings.

  7. Gigabit LAN issues: HIPPI, Fibre Channel, or ATM?

    SciTech Connect

    Tolmie, D.E.

    1994-12-01

    Computer networks that operate in the gigabit per second speed range are becoming very important for interconnecting supercomputers, clusters of workstations, and other high end equipment. HIPPI is the current interface of choice, while Fibre Channel and ATM are emerging standards. These systems are examined as to their backgrounds, advantages, and shortcomings.

  8. Adaptive Restoration of Airborne Daedalus AADS1268 ATM Thermal Data

    SciTech Connect

    D. Yuan; E. Doak; P. Guss; A. Will

    2002-01-01

    To incorporate the georegistration and restoration processes into airborne data processing in support of U.S. Department of Energy's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images.

  9. Global Transcriptome Analysis Reveals That Poly(ADP-Ribose) Polymerase 1 Regulates Gene Expression through EZH2

    PubMed Central

    Martin, Kayla A.; Cesaroni, Matteo; Denny, Michael F.; Lupey, Lena N.

    2015-01-01

    Posttranslational modifications, such as poly(ADP-ribosyl)ation (PARylation), regulate chromatin-modifying enzymes, ultimately affecting gene expression. This study explores the role of poly(ADP-ribose) polymerase (PARP) on global gene expression in a lymphoblastoid B cell line. We found that inhibition of PARP catalytic activity with olaparib resulted in global gene deregulation, affecting approximately 11% of the genes expressed. Gene ontology analysis revealed that PARP could exert these effects through transcription factors and chromatin-remodeling enzymes, including the polycomb repressive complex 2 (PRC2) member EZH2. EZH2 mediates the trimethylation of histone H3 at lysine 27 (H3K27me3), a modification associated with chromatin compaction and gene silencing. Both pharmacological inhibition of PARP and knockdown of PARP1 induced the expression of EZH2, which resulted in increased global H3K27me3. Chromatin immunoprecipitation confirmed that PARP1 inhibition led to H3K27me3 deposition at EZH2 target genes, which resulted in gene silencing. Moreover, increased EZH2 expression is attributed to the loss of the occupancy of the transcription repressor E2F4 at the EZH2 promoter following PARP inhibition. Together, these data show that PARP plays an important role in global gene regulation and identifies for the first time a direct role of PARP1 in regulating the expression and function of EZH2. PMID:26370511

  10. Global Transcriptome Analysis Reveals That Poly(ADP-Ribose) Polymerase 1 Regulates Gene Expression through EZH2.

    PubMed

    Martin, Kayla A; Cesaroni, Matteo; Denny, Michael F; Lupey, Lena N; Tempera, Italo

    2015-12-01

    Posttranslational modifications, such as poly(ADP-ribosyl)ation (PARylation), regulate chromatin-modifying enzymes, ultimately affecting gene expression. This study explores the role of poly(ADP-ribose) polymerase (PARP) on global gene expression in a lymphoblastoid B cell line. We found that inhibition of PARP catalytic activity with olaparib resulted in global gene deregulation, affecting approximately 11% of the genes expressed. Gene ontology analysis revealed that PARP could exert these effects through transcription factors and chromatin-remodeling enzymes, including the polycomb repressive complex 2 (PRC2) member EZH2. EZH2 mediates the trimethylation of histone H3 at lysine 27 (H3K27me3), a modification associated with chromatin compaction and gene silencing. Both pharmacological inhibition of PARP and knockdown of PARP1 induced the expression of EZH2, which resulted in increased global H3K27me3. Chromatin immunoprecipitation confirmed that PARP1 inhibition led to H3K27me3 deposition at EZH2 target genes, which resulted in gene silencing. Moreover, increased EZH2 expression is attributed to the loss of the occupancy of the transcription repressor E2F4 at the EZH2 promoter following PARP inhibition. Together, these data show that PARP plays an important role in global gene regulation and identifies for the first time a direct role of PARP1 in regulating the expression and function of EZH2. PMID:26370511

  11. Delivery of very high bandwidth with ATM switches and SONET

    SciTech Connect

    Gossage, S.A.

    1992-10-01

    The choice of technologies for the delivery of very high bandwidth throughout a facility capable of ultimately achieving gigabits per second performance, is a crucial one for any high technology facility. The components of a high bandwidth delivery system include high performance sources and sinks in the form of central facilities (major mainframes, large file storage and specialized peripherals) and powerful, full bandwidth distributed local area networks (LANs). In order to deliver bandwidth among the sources and sinks, a ubiquitous inter-/intra-building cable plant consisting of single mode and multimode fiber as well as twisted pair copper is required. The selection of the ``glue`` to transport and interconnect the LANs with the central facility over the pervasive cable plant is the focus of this paper. A design philosophy for high performance communications systems is proposed. A description of the traditional problems that must be overcome to provide very high bandwidth beyond the narrow confines of a computer center is given. The advantages of ATM switching and SONET physical transport are explored in the structured design presentation. The applicability of Asynchronous Transfer Mode (ATM) switching (interconnection) and Synchronous Optical NETwork (SONET) (transport) for high bandwidth delivery is described using the environment and requirements of Sandia National Laboratories as a context to examine the suitability of those technologies. The synergy and utility of ATM and SONET in the campus network are explored. Other methods for distributing high data rates are compared and contrasted to ATM and SONET with respect to cable plant impact, reliability/availability, maintainability, and capacity. Sandia is implementing a standards based foundation utilizing a pervasive single mode fiber cable plant, SONET transport, and ATM switching to meet the goals of gigabit networking.

  12. ATM is required for rapid degradation of cyclin D1 in response to {gamma}-irradiation

    SciTech Connect

    Choo, Dong Wan; Baek, Hye Jung; Motoyama, Noboru; Cho, Kwan Ho; Kim, Hye Sun; Kim, Sang Soo

    2009-01-23

    The cellular response to DNA damage induced by {gamma}-irradiation activates cell-cycle arrest to permit DNA repair and to prevent replication. Cyclin D1 is the key molecule for transition between the G1 and S phases of the cell-cycle, and amplification or overexpression of cyclin D1 plays pivotal roles in the development of several human cancers. To study the regulation of cyclin D1 in the DNA-damaged condition, we analyzed the proteolytic regulation of cyclin D1 expression upon {gamma}-irradiation. Upon {gamma}-irradiation, a rapid reduction in cyclin D1 levels was observed prior to p53 stabilization, indicating that the stability of cyclin D1 is controlled in a p53-independent manner. Further analysis revealed that irradiation facilitated ubiquitination of cyclin D1 and that a proteasome inhibitor blocked cyclin D1 degradation under the same conditions. Interestingly, after mutation of threonine residue 286 of cyclin D1, which is reported to be the GSK-3{beta} phosphorylation site, the mutant protein showed resistance to irradiation-induced proteolysis although inhibitors of GSK-3{beta} failed to prevent cyclin D1 degradation. Rather, ATM inhibition markedly prevented cyclin D1 degradation induced by {gamma}-irradiation. Our data indicate that communication between ATM and cyclin D1 may be required for maintenance of genomic integrity achieved by rapid arrest of the cell-cycle, and that disruption of this crosstalk may increase susceptibility to cancer.

  13. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR.

    PubMed

    Winter, Melanie; Sombroek, Dirk; Dauth, Ilka; Moehlenbrink, Jutta; Scheuermann, Karin; Crone, Johanna; Hofmann, Thomas G

    2008-07-01

    The tumour suppressor HIPK2 is an important regulator of cell death induced by DNA damage, but how its activity is regulated remains largely unclear. Here we demonstrate that HIPK2 is an unstable protein that colocalizes and interacts with the E3 ubiquitin ligase Siah-1 in unstressed cells. Siah-1 knockdown increases HIPK2 stability and steady-state levels, whereas Siah-1 expression facilitates HIPK2 polyubiquitination, degradation and thereby inactivation. During recovery from sublethal DNA damage, HIPK2, which is stabilized on DNA damage, is degraded through a Siah-1-dependent, p53-controlled pathway. Downregulation of Siah-1 inhibits HIPK2 degradation and recovery from damage, driving the cells into apoptosis. We have also demonstrated that DNA damage triggers disruption of the HIPK2-Siah-1 complex, resulting in HIPK2 stabilization and activation. Disruption of the HIPK2-Siah-1 complex is mediated by the ATM/ATR pathway and involves ATM/ATR-dependent phosphorylation of Siah-1 at Ser 19. Our results provide a molecular framework for HIPK2 regulation in unstressed and damaged cells. PMID:18536714

  14. The Relationships between Selected Organizational Variables and ATM Technology Adoption in Campus Networking.

    ERIC Educational Resources Information Center

    Yao, Engui

    1998-01-01

    Determines the relationships between ATM (Asynchronous Transfer Mode) adoption and four organizational variables: university size, type, finances, and information-processing maturity. Identifies the current status of ATM adoption in campus networking in the United States. Contains 33 references. (DDR)

  15. Delivery of very high bandwidth with ATM switches and SONET. [Asynchronous Transfer Mode (ATM), Synchronous Optical NETwork (SONET)

    SciTech Connect

    Gossage, S.A.

    1992-10-01

    The choice of technologies for the delivery of very high bandwidth throughout a facility capable of ultimately achieving gigabits per second performance, is a crucial one for any high technology facility. The components of a high bandwidth delivery system include high performance sources and sinks in the form of central facilities (major mainframes, large file storage and specialized peripherals) and powerful, full bandwidth distributed local area networks (LANs). In order to deliver bandwidth among the sources and sinks, a ubiquitous inter-/intra-building cable plant consisting of single mode and multimode fiber as well as twisted pair copper is required. The selection of the glue'' to transport and interconnect the LANs with the central facility over the pervasive cable plant is the focus of this paper. A design philosophy for high performance communications systems is proposed. A description of the traditional problems that must be overcome to provide very high bandwidth beyond the narrow confines of a computer center is given. The advantages of ATM switching and SONET physical transport are explored in the structured design presentation. The applicability of Asynchronous Transfer Mode (ATM) switching (interconnection) and Synchronous Optical NETwork (SONET) (transport) for high bandwidth delivery is described using the environment and requirements of Sandia National Laboratories as a context to examine the suitability of those technologies. The synergy and utility of ATM and SONET in the campus network are explored. Other methods for distributing high data rates are compared and contrasted to ATM and SONET with respect to cable plant impact, reliability/availability, maintainability, and capacity. Sandia is implementing a standards based foundation utilizing a pervasive single mode fiber cable plant, SONET transport, and ATM switching to meet the goals of gigabit networking.

  16. Targeting the kinase activities of ATR and ATM exhibits antitumoral activity in mouse models of MLL-rearranged AML.

    PubMed

    Morgado-Palacin, Isabel; Day, Amanda; Murga, Matilde; Lafarga, Vanesa; Anton, Marta Elena; Tubbs, Anthony; Chen, Hua-Tang; Ergan, Aysegul; Anderson, Rhonda; Bhandoola, Avinash; Pike, Kurt G; Barlaam, Bernard; Cadogan, Elaine; Wang, Xi; Pierce, Andrew J; Hubbard, Chad; Armstrong, Scott A; Nussenzweig, André; Fernandez-Capetillo, Oscar

    2016-01-01

    Among the various subtypes of acute myeloid leukemia (AML), those with chromosomal rearrangements of the MLL oncogene (AML-MLL) have a poor prognosis. AML-MLL tumor cells are resistant to current genotoxic therapies because of an attenuated response by p53, a protein that induces cell cycle arrest and apoptosis in response to DNA damage. In addition to chemicals that damage DNA, efforts have focused on targeting DNA repair enzymes as a general chemotherapeutic approach to cancer treatment. Here, we found that inhibition of the kinase ATR, which is the primary sensor of DNA replication stress, induced chromosomal breakage and death of mouse AML(MLL) cells (with an MLL-ENL fusion and a constitutively active N-RAS independently of p53. Moreover, ATR inhibition as a single agent exhibited antitumoral activity, both reducing tumor burden after establishment and preventing tumors from growing, in an immunocompetent allograft mouse model of AML(MLL) and in xenografts of a human AML-MLL cell line. We also found that inhibition of ATM, a kinase that senses DNA double-strand breaks, also promoted the survival of the AML(MLL) mice. Collectively, these data indicated that ATR or ATM inhibition represent potential therapeutic strategies for the treatment of AML, especially MLL-driven leukemias. PMID:27625305

  17. Identification of poly(ADP-ribose) polymerase-1 as the OXPHOS-generated ATP sensor of nuclei of animal cells

    SciTech Connect

    Kun, Ernest Kirsten, Eva; Hakam, Alaeddin; Bauer, Pal I.; Mendeleyev, Jerome

    2008-02-08

    Our results show that in the intact normal animal cell mitochondrial ATP is directly connected to nuclear PARP-1 by way of a specific adenylate kinase enzymatic path. This mechanism is demonstrated in two models: (a) by its inhibition with a specific inhibitor of adenylate kinase, and (b) by disruption of ATP synthesis through uncoupling of OXPHOS. In each instance the de-inhibited PARP-1 is quantitatively determined by enzyme kinetics. The nuclear binding site of PARP-1 is Topo I, and is identified as a critical 'switchpoint' indicating the nuclear element that connects OXPHOS with mRNA synthesis in real time. The mitochondrial-nuclear PARP-1 pathway is not operative in cancer cells.

  18. Radiosensitization of Pancreatic Cancer Cells In Vitro and In Vivo through Poly (ADP-ribose) Polymerase Inhibition with ABT-888

    PubMed Central

    Tuli, Richard; Surmak, Andrew J.; Reyes, Juvenal; Armour, Michael; Hacker-Prietz, Amy; Wong, John; DeWeese, Theodore L.; Herman, Joseph M.

    2014-01-01

    OBJECTIVES To determine whether poly (ADP-ribose) polymerase-1/2 (PARP-1/2) inhibition enhances radiation-induced cytotoxicity of pancreatic adenocarcinoma in vitro and in vivo, and the mechanism by which this occurs. Methods Pancreatic carcinoma cells were treated with ABT-888, radiation, or both. In vitro cell viability, apoptosis, and PARP activity were measured. Orthotopic xenografts were generated in athymic mice and treated with ABT-888 (25 mg/kg), radiation (5 Gy), both, or no treatment. Mice were monitored with bioluminescence imaging. RESULTS In vitro, treatment with ABT-888 and radiation led to higher rates of cell death after 8 days (P < .01). Co-treatment with 5 Gy and 1, 10 or 100 μmol/l of ABT-888 led to dose enhancement factors of 1.29, 1.41 and 2.36, respectively. Caspase activity was not significantly increased when treated with ABT-888 (10 μmol/l) alone (1.28-fold, P = .08), but became significant when radiation was added (2.03-fold, P < .01). PARP activity increased post-radiation and was abrogated following co-treatment with ABT-888. In vivo, treatment with ABT-888, radiation or both led to tumor growth inhibition (TGI) of 8, 30 and 39 days, and survival at 60 days of 0%, 0% and 40%, respectively. CONCLUSIONS ABT-888 with radiation significantly enhanced tumor response in vitro and in vivo. ABT-888 inhibited PAR protein polymerization resulting in dose-dependent feedback up-regulation of PARP and p-ATM suggesting increased DNA damage. This translated into enhancement in TGI and survival with radiation in vivo. In vitro PAR levels correlated with levels of tumor apoptosis suggesting potential as a predictive biomarker. These data are being used to support a Phase I study in locally advanced pancreatic cancer. PMID:24836647

  19. Synthesis and SAR of novel tricyclic quinoxalinone inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1)

    SciTech Connect

    Miyashiro, Julie; Woods, Keith W.; Park, Chang H.; Liu, Xuesong; Shi, Yan; Johnson, Eric F.; Bouska, Jennifer J.; Olson, Amanda M.; Luo, Yan; Fry, Elizabeth H.; Giranda, Vincent L.; Penning, Thomas D.

    2010-09-03

    Based on screening hit 1, a series of tricyclic quinoxalinones have been designed and evaluated for inhibition of PARP-1. Substitutions at the 7- and 8-positions of the quinoxalinone ring led to a number of compounds with good enzymatic and cellular potency. The tricyclic quinoxalinone class is sensitive to modifications of both the amine substituent and the tricyclic core. The synthesis and structure-activity relationship studies are presented.

  20. Application of Computer Simulation to Teach ATM Access to Individuals with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Davies, Daniel K.; Stock, Steven E.; Wehmeyer, Michael L.

    2003-01-01

    This study investigates use of computer simulation for teaching ATM use to adults with intellectual disabilities. ATM-SIM is a computer-based trainer used for teaching individuals with intellectual disabilities how to use an automated teller machine (ATM) to access their personal bank accounts. In the pilot evaluation, a prototype system was…

  1. Discovery and Structure–Activity Relationship of Novel 2,3-Dihydrobenzofuran-7-carboxamide and 2,3-Dihydrobenzofuran-3(2H)-one-7-carboxamide Derivatives as Poly(ADP-ribose)polymerase-1 Inhibitors

    PubMed Central

    2015-01-01

    Novel substituted 2,3-dihydrobenzofuran-7-carboxamide (DHBF-7-carboxamide) and 2,3-dihydrobenzofuran-3(2H)-one-7-carboxamide (DHBF-3-one-7-carboxamide) derivatives were synthesized and evaluated as inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). A structure-based design strategy resulted in lead compound 3 (DHBF-7-carboxamide; IC50 = 9.45 μM). To facilitate synthetically feasible derivatives, an alternative core was designed, DHBF-3-one-7-carboxamide (36, IC50 = 16.2 μM). The electrophilic 2-position of this scaffold was accessible for extended modifications. Substituted benzylidene derivatives at the 2-position were found to be the most potent, with 3′,4′-dihydroxybenzylidene 58 (IC50 = 0.531 μM) showing a 30-fold improvement in potency. Various heterocycles attached at the 4′-hydroxyl/4′-amino of the benzylidene moiety resulted in significant improvement in inhibition of PARP-1 activity (e.g., compounds 66–68, 70, 72, and 73; IC50 values from 0.718 to 0.079 μM). Compound 66 showed selective cytotoxicity in BRCA2-deficient DT40 cells. Crystal structures of three inhibitors (compounds (−)-13c, 59, and 65) bound to a multidomain PARP-1 structure were obtained, providing insights into further development of these inhibitors. PMID:24922587

  2. ATM germline heterozygosity does not play a role in chronic lymphocytic leukemia initiation but influences rapid disease progression through loss of the remaining ATM allele

    PubMed Central

    Skowronska, Anna; Austen, Belinda; Powell, Judith E.; Weston, Victoria; Oscier, David G.; Dyer, Martin J.S.; Matutes, Estella; Pratt, Guy; Fegan, Christopher; Moss, Paul; Taylor, Malcolm A.; Stankovic, Tatjana

    2012-01-01

    Ataxia telangiectasia patients, with constitutional bi-allelic ATM mutations, have a marked risk of lymphoid tumors and ATM mutation carriers have a smaller risk of cancer. Sporadic ATM mutations occur in 10–20% of chronic lymphocytic leukemia and are often associated with chromosome 11q deletions which cause loss of an ATM allele. The role of constitutional ATM mutations in the pathogenesis of chronic lymphocytic leukemia is unknown. Here we investigated the frequency of constitutional ATM mutations in either of two chronic lymphocytic leukemia cohorts, those with and without a chromosome 11q deletion. We found that in comparison to controls, constitutional pathogenic ATM mutations were increased in patients with chromosome 11q deletions (6 of 140 vs. 0 of 281, P=0.001) but not in those without 11q deletions (2 of 178 vs. 0 of 281, P=0.15). These results suggest that ATM germline heterozygosity does not play a role in chronic lymphocytic leukemia initiation but rather influences rapid disease progression through ATM loss. PMID:21933854

  3. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1.

    PubMed

    Dong, Jing; Zhang, Xian; Zhang, Lei; Bian, Hui-Xi; Xu, Na; Bao, Bin; Liu, Jian

    2014-03-01

    Adipose tissue macrophage (ATM) plays a central role in obesity-associated inflammation and insulin resistance. Quercetin, a dietary flavonoid, possesses anti-inflammation and anti-insulin resistance properties. However, it is unclear whether quercetin can alleviate high-fat diet (HFD)-induced ATM infiltration and inflammation in mice. In this study, 5-week-old C57BL/6 mice were fed low-fat diet, HFD, or HFD with 0.l% quercetin for 12 weeks, respectively. Dietary quercetin reduced HFD-induced body weight gain and improved insulin sensitivity and glucose intolerance in mice. Meanwhile, dietary quercetin enhanced glucose transporter 4 translocation and protein kinase B signal in epididymis adipose tissues (EATs), suggesting that it heightened glucose uptake in adipose tissues. Histological and real-time PCR analysis revealed that quercetin attenuated mast cell and macrophage infiltration into EATs in HFD-fed mice. Dietary quercetin also modified the phenotype ratio of M1/M2 macrophages, lowered the levels of proinflammatory cytokines, and enhanced adenosine monophosphate-activated protein kinase (AMPK) α1 phosphorylation and silent information regulator 1 (SIRT1) expression in EATs. Further, using AMPK activator 5-aminoimidazole-4-carboxamide-1-β4-ribofuranoside and inhibitor Compound C, we found that quercetin inhibited polarization and inflammation of mouse bone marrow-derived macrophages through an AMPKα1/SIRT1-mediated mechanism. In conclusion, dietary quercetin might suppress ATM infiltration and inflammation through the AMPKα1/SIRT1 pathway in HFD-fed mice. PMID:24465016

  4. Alterations in cellular energy metabolism associated with the antiproliferative effects of the ATM inhibitor KU-55933 and with metformin.

    PubMed

    Zakikhani, Mahvash; Bazile, Miguel; Hashemi, Sina; Javeshghani, Shiva; Avizonis, Daina; St Pierre, Julie; Pollak, Michael N

    2012-01-01

    KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM), an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT), we examined energy metabolism of cells treated with KU-55933. The compound increased AMPK activation, glucose uptake and lactate production while reducing mitochondrial membrane potential and coupled respiration. The stimulation of glycolysis by KU-55933 did not fully compensate for the reduction in mitochondrial functions, leading to decreased cellular ATP levels and energy stress. These actions are similar to those previously described for the biguanide metformin, a partial inhibitor of respiratory complex I. Both compounds decreased mitochondrial coupled respiration and reduced cellular concentrations of fumarate, malate, citrate, and alpha-ketogluterate. Succinate levels were increased by KU-55933 levels and decreased by metformin, indicating that the effects of ATM inhibition and metformin are not identical. These observations suggest a role for ATM in mitochondrial function and show that both KU-55933 and metformin perturb the TCA cycle as well as oxidative phosphorylation. PMID:23185347

  5. Alterations in Cellular Energy Metabolism Associated with the Antiproliferative Effects of the ATM Inhibitor KU-55933 and with Metformin

    PubMed Central

    Zakikhani, Mahvash; Bazile, Miguel; Hashemi, Sina; Javeshghani, Shiva; Avizonis, Daina; Pierre, Julie St; Pollak, Michael N.

    2012-01-01

    KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM), an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT), we examined energy metabolism of cells treated with KU-55933. The compound increased AMPK activation, glucose uptake and lactate production while reducing mitochondrial membrane potential and coupled respiration. The stimulation of glycolysis by KU-55933 did not fully compensate for the reduction in mitochondrial functions, leading to decreased cellular ATP levels and energy stress. These actions are similar to those previously described for the biguanide metformin, a partial inhibitor of respiratory complex I. Both compounds decreased mitochondrial coupled respiration and reduced cellular concentrations of fumarate, malate, citrate, and alpha-ketogluterate. Succinate levels were increased by KU-55933 levels and decreased by metformin, indicating that the effects of ATM inhibition and metformin are not identical. These observations suggest a role for ATM in mitochondrial function and show that both KU-55933 and metformin perturb the TCA cycle as well as oxidative phosphorylation. PMID:23185347

  6. Molecular Characterization and Subcellular Localization of Arabidopsis Class VIII Myosin, ATM1*

    PubMed Central

    Haraguchi, Takeshi; Tominaga, Motoki; Matsumoto, Rie; Sato, Kei; Nakano, Akihiko; Yamamoto, Keiichi; Ito, Kohji

    2014-01-01

    Land plants possess myosin classes VIII and XI. Although some information is available on the molecular properties of class XI myosins, class VIII myosins are not characterized. Here, we report the first analysis of the enzymatic properties of class VIII myosin. The motor domain of Arabidopsis class VIII myosin, ATM1 (ATM1-MD), and the motor domain plus one IQ motif (ATM1-1IQ) were expressed in a baculovirus system and characterized. ATM1-MD and ATM1-1IQ had low actin-activated Mg2+-ATPase activity (Vmax = 4 s−1), although their affinities for actin were high (Kactin = 4 μm). The actin-sliding velocities of ATM1-MD and ATM1-1IQ were 0.02 and 0.089 μm/s, respectively, from which the value for full-length ATM1 is calculated to be ∼0.2 μm/s. The results of actin co-sedimentation assay showed that the duty ratio of ATM1 was ∼90%. ADP dissociation from the actin·ATM1 complex (acto-ATM1) was extremely slow, which accounts for the low actin-sliding velocity, low actin-activated ATPase activity, and high duty ratio. The rate of ADP dissociation from acto-ATM1 was markedly biphasic with fast and slow phase rates (5.1 and 0.41 s−1, respectively). Physiological concentrations of free Mg2+ modulated actin-sliding velocity and actin-activated ATPase activity by changing the rate of ADP dissociation from acto-ATM1. GFP-fused full-length ATM1 expressed in Arabidopsis was localized to plasmodesmata, plastids, newly formed cell walls, and actin filaments at the cell cortex. Our results suggest that ATM1 functions as a tension sensor/generator at the cell cortex and other structures in Arabidopsis. PMID:24637024

  7. Digital Coin Business Model Using the Coin ATM

    NASA Astrophysics Data System (ADS)

    Jung, Won-Gyo; Park, Sang-Sung; Shin, Young-Geun; Jang, Dong-Sik

    2009-08-01

    Because about 83.6 billion won worth coins are not collected annually, 35 billion won of government money is being wasted for producing new coins in Korea. In order to improve unnecessary government money leakage, we now have to develop a proper way of managing small valued money such as coins. We have already developed the coin ATM to solve such problem in the previous study. In this study, we proposed business model, which enables users to deposit or consume such small amount of money with the coin ATM. The proposed business model has advantages that enable to connect various payment system and is efficient to consume such small amount of money. This business model improves not only the way of managing small valued money but also the way of consuming small valued money. Furthermore, our business model can contribute to activating circulation of coins as well as preventing leakage of government money.

  8. ATM-based cluster computing for multi-problem domains

    SciTech Connect

    Chen, H.Y.; Brandt, J.M.; Armstrong, R.C.

    1996-08-01

    This study evaluates the performance of an Asynchronous Transfer Mode (ATM) local area network (LAN) for general as well as parallel distributed computing. General distributed computing uses client-server based applications that employ Remote Procedure Call (RPC) on top of the TCP/UDP/IP protocol. These applications typically require high throughput, good response time, and fairness. In contrast, parallel applications favor much simpler models of computation which require more direct access to data among processors. To efficiently run these programs, the network needs to achieve hardware speed. This paper describe our experience in building a multi-programmed distributed computing environment using Digital Equipment Corporation`s (DEC) AN2 ATM switch and Alpha workstations. We extend our study to include more elaborate network using simulation results.

  9. Delivery of very high bandwidth with ATM switches and SONET

    SciTech Connect

    Gossage, S.A.

    1993-08-01

    To deliver high bandwidth, a ubiquitous inter-/intra-building cable plant consisting of single mode and multimode fiber as well as twisted pair copper is required. The selection of the ``glue`` to transport and interconnect distributed LANs with central facility resources over a pervasive cable plant is the focus of this paper. A description of the traditional problems that must be overcome to provide very high bandwidth beyond the narrow confines of a computer center is given. The applicability of Asynchronous Transfer Mode (ATM) switching (interconnection) and Synchronous Optical NETwork (SONET) (transport) for high bandwidth delivery is described using the environment and requirements of Sandia National Laboratories. Other methods for distributing high data rates are compared and contrasted. Sandia is implementing a standards based foundation utilizing a pervasive single mode fiber cable plant, SONET transport, and ATM switching to meet the goals of gigabit networking.

  10. ATM Coastal Topography-Texas, 2001: UTM Zone 15

    USGS Publications Warehouse

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 15, from Matagorda Peninsula to Galveston Island, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant

  11. ATM Coastal Topography-Texas, 2001: UTM Zone 14

    USGS Publications Warehouse

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 14, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used

  12. ATM Coastal Topography-Florida 2001: Western Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the western Florida panhandle coastline, acquired October 2-4 and 7-10, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used

  13. ATM Coastal Topography-Florida 2001: Eastern Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the eastern Florida panhandle coastline, acquired October 2, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create

  14. Performance of ATM/OC-12 on the Intel Paragon

    SciTech Connect

    Dunigan, T.H.

    1996-05-01

    This report summarizes communication performance of GigaNet`s OC12 ATM interface for the Intel Paragon. One-way latency of 41 {micro}s and bandwidth of 68 MB/s (full OC12) are measured using GigaNet`s AAL5 API between two Paragons. Performance is compared with Ethernet, HiPPI, and the Paragon`s native message-passing facility.

  15. Acute Megakaryoblastic Leukemia with Myelodysplasia-related Changes Associated with ATM Gene Deletion.

    PubMed

    Ureshino, Hiroshi; Tanabe, Momoka; Kurogi, Kazuya; Miyahara, Masaharu; Kimura, Shinya

    2016-01-01

    Ataxia telangiectasia mutated (ATM) is a tumor suppressor gene, and its somatic inactivation plays a role in the pathogenesis of lymphoid malignancies. However, the role of ATM in patients with myeloid malignancies is still unknown. We herein report a case of acute megakaryoblastic leukemia (AMKL) with ATM gene deletion. An 84-year-old Japanese woman presenting with a pale face and pancytopenia was admitted to our institution and diagnosed to have AMKL with ATM gene deletion. She was treated with intravenous azacitidine. The azacitidine treatment was effective for approximately 1 year. Somatic inactivation of the ATM gene may therefore be involved in the pathogenesis of AMKL. PMID:27301517

  16. Very long baseline connected interferometry via the ATM network

    NASA Astrophysics Data System (ADS)

    Kiuchi, Hitoshi; Takahashi, Yukio; Kaneko, Akihiro; Amagai, Jun; Yoshino, Taizoh; Kawaguchi, Noriyuki; Kobayashi, Hideyuki; Fujisawa, Kenta; Uose, Hisao; Iwamura, Sotetsu; Hoshino, Takashi; Nakajima, Junichi; Kondo, Tetsuro

    2000-06-01

    The Communications Research Laboratory (CRL), the National Astronomical Observatory (NAO), the Institute of Space and Astronautical Science (ISAS), and the Telecommunication Network Laboratory Group of Nippon Telegraph and Telephone Corporation have developed a real-time VLBI array, maximum baseline-length was 208 km. The very long baseline interferometry (VLBI) observed data is transmitted through a high-speed asynchronous transfer mode (ATM) network (2,488- Gbps [STM-16/OC-48] ATM network) instead of being recorded onto magnetic tapes. The system was composed of two real-time VLSI networks: the Keystone Project network of CRL (which is used for measuring crustal deformation in the Tokyo metropolitan area), and the OLIVE (optically linked VLBI experiment) network of NAO and ISAS which is used for astronomy (space-VLBI). The acquired VLBI data were corrected via the ATM network and the cross-correlation processing were done simultaneously. A radio flares on the weak radio source (HR1099) and weak radio sources were detected.

  17. Call admission algorithms in multiservice and multiclass ATM network

    NASA Astrophysics Data System (ADS)

    Hamma, Salima; Hebuterne, Gerard

    2004-09-01

    The introduction of new ATM service categories increases the benefits of ATM, making the technology suitable for a virtually unlimited range of applications. Connection Admission Control (CAC) is defined as the set of actions taken by the network during the call (virtual connection) set-up phase, or during call re-negotiation phase, to determine whether a connection request can be accepted or rejected. Network resources (port bandwidth and buffer space) are reserved to the incoming connection at each switching element traversed, if so required, by the service category. The major focus of this paper is call admission in the context of multi-service, multi-class ATM networks. Several strategies suggesting rules on bandwidth sharing are found in the litterature. This study investigates particularly the Complete Sharing approach. Two service categories are concerned, namely, Constant Bit rate/Deterministic Bit Rate (CBR/DBR) and Variable Bit Rate/Statistical Bit Rate (VBR/SBR). Each service category is represented by a set of call classes corresponding to different bandwidth needs. We propose two algorithms to solve the underlying Markovian system: Product-form and Recursive solutions. A performance study based on the latter algorithm is implemented. We analyze the results of this very sharing strategy and set the not-to-violate limits for a beneficial use of it.

  18. Final report for the protocol extensions for ATM Security Laboratory Directed Research and Development Project

    SciTech Connect

    Tarman, T.D.; Pierson, L.G.; Brenkosh, J.P.

    1996-03-01

    This is the summary report for the Protocol Extensions for Asynchronous Transfer Mode project, funded under Sandia`s Laboratory Directed Research and Development program. During this one-year effort, techniques were examined for integrating security enhancements within standard ATM protocols, and mechanisms were developed to validate these techniques and to provide a basic set of ATM security assurances. Based on our experience during this project, recommendations were presented to the ATM Forum (a world-wide consortium of ATM product developers, service providers, and users) to assist with the development of security-related enhancements to their ATM specifications. As a result of this project, Sandia has taken a leading role in the formation of the ATM Forum`s Security Working Group, and has gained valuable alliances and leading-edge experience with emerging ATM security technologies and protocols.

  19. Phosphorylation of p300 by ATM controls the stability of NBS1

    SciTech Connect

    Jang, Eun Ryoung; Choi, Jae Duk; Jeong, Gajin; Lee, Jong-Soo

    2010-07-09

    Acetyltransferase, p300 is a transcriptional cofactor of signal-responsive transcriptional regulation. The surveillance kinase ataxia-telangiectasia mutated (ATM) plays a central role in regulation of a wide range of cellular DNA damage responses. Here, we investigated whether and how ATM mediates phosphorylation of p300 in response to DNA damage and how p300 phosphorylation is functionally linked to DNA damage. ATM-phosphorylated p300 in vitro and in vivo, in response to DNA damage. Phosphorylation of p300 proteins was observed upon {gamma}-irradiation in ATM{sup +} cells but not ATM{sup -} cells. Importantly, expression of nonphosphorylatable serine to alanine form of p300 (S106A) destabilized both p300 and NBS1 proteins, after DNA damage. These data demonstrate that ATM transduces a DNA damage signal to p300, and that ATM-dependent phosphorylation of p300 is required for stabilization of NBS1 proteins in response to DNA damage.

  20. The effect of algorithm-agile encryption on ATM quality of service

    SciTech Connect

    Sholander, P.; Tarman, T.; Pierson, L.; Hutchinson, R.

    1997-04-01

    Asynchronous Transfer Mode (ATM) users often open multiple ATM Virtual Circuits (VCs) to multiple ATM users on multiple ATM networks. Each network and user may implement a different encryption policy. Hence ATM users may need shared, flexible hardware-based 3encryption that supports multiple encryption algorithms for multiple concurrent ATM users and VCs. An algorithm-agile encryption architecture, that uses multiple, parallel encryption-pipelines, is proposed. That algorithm-agile encryptor`s effect on the ATM Quality of Service (QoS) metrics, such as Cell Transfer Delay (CTD) and Cell Delay Variation (CDV), is analyzed. Bounds on the maximum CDV and the CDV`s probability density are derived.

  1. Transcriptional Reprogramming and Resistance to Colonic Mucosal Injury in Poly(ADP-ribose) Polymerase 1 (PARP1)-deficient Mice.

    PubMed

    Larmonier, Claire B; Shehab, Kareem W; Laubitz, Daniel; Jamwal, Deepa R; Ghishan, Fayez K; Kiela, Pawel R

    2016-04-22

    Poly(ADP-ribose) polymerases (PARPs) synthesize and bind branched polymers of ADP-ribose to acceptor proteins using NAD as a substrate and participate in the control of gene transcription and DNA repair. PARP1, the most abundant isoform, regulates the expression of proinflammatory mediator cytokines, chemokines, and adhesion molecules, and inhibition of PARP1 enzymatic activity reduced or ameliorated autoimmune diseases in several experimental models, including colitis. However, the mechanism(s) underlying the protective effects of PARP1 inhibition in colitis and the cell types in which Parp1 deletion has the most significant impact are unknown. The objective of the current study was to determine the impact of Parp1 deletion on the innate immune response to mucosal injury and on the gut microbiome composition. Parp1 deficiency was evaluated in DSS-induced colitis in WT, Parp1(-/-), Rag2(-/-), and Rag2(-/-)×Parp1(-/-) double knock-out mice. Genome-wide analysis of the colonic transcriptome and fecal 16S amplicon profiling was performed. Compared with WT, we demonstrated that Parp1(-/-) were protected from dextran-sulfate sodium-induced colitis and that this protection was associated with a dramatic transcriptional reprogramming in the colon. PARP1 deficiency was also associated with a modulation of the colonic microbiota (increases relative abundance of Clostridia clusters IV and XIVa) and a concomitant increase in the frequency of mucosal CD4(+)CD25(+) Foxp3(+) regulatory T cells. The protective effects conferred by Parp1 deletion were lost in Rag2(-/-) × Parp1(-/-) mice, highlighting the role of the adaptive immune system for full protection. PMID:26912654

  2. Development of a global flood monitoring system using ATMS data

    NASA Astrophysics Data System (ADS)

    Temimi, M.; Tesfagiorgis, K. B.; Lacava, T.; Khanbilvardi, R.

    2013-12-01

    The objective of this study is to develop an operational global flood monitoring system using NPP-ATMS microwave brightness temperature measurements. The operational tool is based on a microwave-based soil wetness index (SWI). Swath-wise brightness temperatures (BT) of ATMS 89 GHz and 23 GHz channels are routinely downloaded from NOAA's CLASS. Each swath data is resampled to a regular grid of 35 km by 35 km using the nearest neighborhood technique to produce daily global brightness temperature maps. Global values of SWI are calculated using the difference in BT between the 89 and 23 GHz channels. Using these daily SWI values, we implemented the Robust Satellite Technique (RST) to calculate the Soil Wetness Variational Index (SWVI) which is dependent on the mean and standard deviation of SWIs of the same months of previous years using ATMS data. These SWVI values are influenced by changes in surface conditions. The determined mean and standard deviation values of SWI that were used to estimate the SWVI were determined on a monthly basis to mitigate the impact of the seasonal variation of the vegetation cover and surface conditions on the microwave signal. The determined SWVI using ATMS data showed significant sensitivity to inundation and allows for capturing changes in wet areas (inundation, flooding or very wet surface) across the globe. Snow and ice on the ground were masked out using a threshold-based approach that uses microwave brightness temperature observations. The advantage of the new ATMS sensor with respect to the older AMSU sensor that has similar channels consists of narrower orbit gaps and better spatial coverage and resolution. We nevertheless adapted the developed tool to AMSU data to investigate time series of inundation records across the globe since 2002. The obtained maps were verified against historical flood events in Australia and other parts of the world. Relationship between determined inundation and measured discharge was analyzed. A

  3. Multiple receptor conformation docking, dock pose clustering and 3D QSAR studies on human poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors.

    PubMed

    Fatima, Sabiha; Jatavath, Mohan Babu; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-10-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) functions as a DNA damage sensor and signaling molecule. It plays a vital role in the repair of DNA strand breaks induced by radiation and chemotherapeutic drugs; inhibitors of this enzyme have the potential to improve cancer chemotherapy or radiotherapy. Three-dimensional quantitative structure activity relationship (3D QSAR) models were developed using comparative molecular field analysis, comparative molecular similarity indices analysis and docking studies. A set of 88 molecules were docked into the active site of six X-ray crystal structures of poly(ADP-ribose)polymerase-1 (PARP-1), by a procedure called multiple receptor conformation docking (MRCD), in order to improve the 3D QSAR models through the analysis of binding conformations. The docked poses were clustered to obtain the best receptor binding conformation. These dock poses from clustering were used for 3D QSAR analysis. Based on MRCD and QSAR information, some key features have been identified that explain the observed variance in the activity. Two receptor-based QSAR models were generated; these models showed good internal and external statistical reliability that is evident from the [Formula: see text], [Formula: see text] and [Formula: see text]. The identified key features enabled us to design new PARP-1 inhibitors. PMID:25046176

  4. Low-dose irradiation prior to bone marrow transplantation results in ATM activation and increased lethality in Atm-deficient mice.

    PubMed

    Pietzner, J; Merscher, B M; Baer, P C; Duecker, R P; Eickmeier, O; Fußbroich, D; Bader, P; Del Turco, D; Henschler, R; Zielen, S; Schubert, R

    2016-04-01

    Ataxia telangiectasia is a genetic instability syndrome characterized by neurodegeneration, immunodeficiency, severe bronchial complications, hypersensitivity to radiotherapy and an elevated risk of malignancies. Repopulation with ATM-competent bone marrow-derived cells (BMDCs) significantly prolonged the lifespan and improved the phenotype of Atm-deficient mice. The aim of the present study was to promote BMDC engraftment after bone marrow transplantation using low-dose irradiation (IR) as a co-conditioning strategy. Atm-deficient mice were transplanted with green fluorescent protein-expressing, ATM-positive BMDCs using a clinically relevant non-myeloablative host-conditioning regimen together with TBI (0.2-2.0 Gy). IR significantly improved the engraftment of BMDCs into the bone marrow, blood, spleen and lung in a dose-dependent manner, but not into the cerebellum. However, with increasing doses, IR lethality increased even after low-dose IR. Analysis of the bronchoalveolar lavage fluid and lung histochemistry revealed a significant enhancement in the number of inflammatory cells and oxidative damage. A delay in the resolution of γ-H2AX-expression points to an insufficient double-strand break repair capacity following IR with 0.5 Gy in Atm-deficient splenocytes. Our results demonstrate that even low-dose IR results in ATM activation. In the absence of ATM, low-dose IR leads to increased inflammation, oxidative stress and lethality in the Atm-deficient mouse model. PMID:26752140

  5. ATM function and its relationship with ATM gene mutations in chronic lymphocytic leukemia with the recurrent deletion (11q22.3-23.2).

    PubMed

    Jiang, Y; Chen, H-C; Su, X; Thompson, P A; Liu, X; Do, K-A; Wierda, W; Keating, M J; Plunkett, W

    2016-01-01

    Approximately 10-20% of chronic lymphocytic leukemia (CLL) patients exhibit del(11q22-23) before treatment, this cohort increases to over 40% upon progression following chemoimmunotherapy. The coding sequence of the DNA damage response gene, ataxia-telangiectasia-mutated (ATM), is contained in this deletion. The residual ATM allele is frequently mutated, suggesting a relationship between gene function and clinical response. To investigate this possibility, we sought to develop and validate an assay for the function of ATM protein in these patients. SMC1 (structural maintenance of chromosomes 1) and KAP1 (KRAB-associated protein 1) were found to be unique substrates of ATM kinase by immunoblot detection following ionizing radiation. Using a pool of eight fluorescence in situ hybridization-negative CLL samples as a standard, the phosphorylation of SMC1 and KAP1 from 46 del (11q22-23) samples was analyzed using normal mixture model-based clustering. This identified 13 samples (28%) that were deficient in ATM function. Targeted sequencing of the ATM gene of these samples, with reference to genomic DNA, revealed 12 somatic mutations and 15 germline mutations in these samples. No strong correlation was observed between ATM mutation and function. Therefore, mutation status may not be taken as an indicator of ATM function. Rather, a direct assay of the kinase activity should be used in the development of therapies. PMID:27588518

  6. Cucurbitacin B induced ATM-mediated DNA damage causes G2/M cell cycle arrest in a ROS-dependent manner.

    PubMed

    Guo, Jiajie; Wu, Guosheng; Bao, Jiaolin; Hao, Wenhui; Lu, Jinjian; Chen, Xiuping

    2014-01-01

    Cucurbitacins are a class of triterpenoids widely distributed in plant kingdom with potent anti-cancer activities both in vitro and in vivo by inducing cycle arrest, autophagy, and apoptosis. Cucurbitacin B (Cuc B), could induce S or G2/M cell cycle arrest in cancer cells while the detailed mechanisms remain to be clear. This study was designed to precisely dissect the signaling pathway(s) responsible for Cuc B induced cell cycle arrest in human lung adenocarcinoma epithelial A549 cells. We demonstrated that low concentrations of Cuc B dramatically induced G2/M phase arrest in A549 cells. Cuc B treatment caused DNA double-strand breaks (DSBs) without affecting the signal transducer and activator of transcription 3 (STAT3), the potential molecular target for Cuc B. Cuc B triggers ATM-activated Chk1-Cdc25C-Cdk1, which could be reversed by both ATM siRNA and Chk1 siRNA. Cuc B also triggers ATM-activated p53-14-3-3-σ pathways, which could be reversed by ATM siRNA. Cuc B treatment also led to increased intracellular reactive oxygen species (ROS) formation, which was inhibited by N-acetyl-l-cysteine (NAC) pretreatment. Furthermore, NAC pretreatment inhibited Cuc B induced DNA damage and G2/M phase arrest. Taken together, these results suggested that Cuc B induces DNA damage in A549 cells mediated by increasing intracellular ROS formation, which lead to G2/M cell phase arrest through ATM-activated Chk1-Cdc25C-Cdk1 and p53-14-3-3-σ parallel branches. These observations provide novel mechanisms and potential targets for better understanding of the anti-cancer mechanisms of cucurbitacins. PMID:24505404

  7. Cucurbitacin B Induced ATM-Mediated DNA Damage Causes G2/M Cell Cycle Arrest in a ROS-Dependent Manner

    PubMed Central

    Guo, Jiajie; Wu, Guosheng; Bao, Jiaolin; Hao, Wenhui; Lu, Jinjian; Chen, Xiuping

    2014-01-01

    Cucurbitacins are a class of triterpenoids widely distributed in plant kingdom with potent anti-cancer activities both in vitro and in vivo by inducing cycle arrest, autophagy, and apoptosis. Cucurbitacin B (Cuc B), could induce S or G2/M cell cycle arrest in cancer cells while the detailed mechanisms remain to be clear. This study was designed to precisely dissect the signaling pathway(s) responsible for Cuc B induced cell cycle arrest in human lung adenocarcinoma epithelial A549 cells. We demonstrated that low concentrations of Cuc B dramatically induced G2/M phase arrest in A549 cells. Cuc B treatment caused DNA double-strand breaks (DSBs) without affecting the signal transducer and activator of transcription 3 (STAT3), the potential molecular target for Cuc B. Cuc B triggers ATM-activated Chk1-Cdc25C-Cdk1, which could be reversed by both ATM siRNA and Chk1 siRNA. Cuc B also triggers ATM-activated p53-14-3-3-σ pathways, which could be reversed by ATM siRNA. Cuc B treatment also led to increased intracellular reactive oxygen species (ROS) formation, which was inhibited by N-acetyl-l-cysteine (NAC) pretreatment. Furthermore, NAC pretreatment inhibited Cuc B induced DNA damage and G2/M phase arrest. Taken together, these results suggested that Cuc B induces DNA damage in A549 cells mediated by increasing intracellular ROS formation, which lead to G2/M cell phase arrest through ATM-activated Chk1-Cdc25C-Cdk1 and p53-14-3-3-σ parallel branches. These observations provide novel mechanisms and potential targets for better understanding of the anti-cancer mechanisms of cucurbitacins. PMID:24505404

  8. Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM and ATR

    PubMed Central

    Liu, Qingsong; Xu, Chunxiao; Kirubakaran, Sivapriya; Zhang, Xin; Hur, Wooyoung; Liu, Yan; Kwiatkowski, Nicholas P.; Wang, Jinhua; Westover, Kenneth D.; Gao, Peng; Ercan, Dalia; Niepel, Mario; Thoreen, Carson C.; Kang, Seong A.; Patricelli, Matthew P.; Wang, Yuchuan; Tupper, Tanya; Altabef, Abigail; Kawamura, Hidemasa; Held, Kathryn D.; Chou, Danny M.; Elledge, Stephen J.; Janne, Pasi A.; Wong, Kwok-Kin; Sabatini, David M.; Gray, Nathanael S.

    2013-01-01

    mTOR is a highly conserved serine/threonine protein kinase that serves as a central regulator of cell growth, survival and autophagy. Deregulation of the PI3K/Akt/mTOR signaling pathway occurs commonly in cancer and numerous inhibitors targeting the ATP-binding site of these kinases are currently undergoing clinical evaluation. Here we report the characterization of Torin2, a second generation ATP-competitive inhibitor that is potent and selective for mTOR with a superior pharmacokinetic profile to previous inhibitors. Torin2 inhibited mTORC1-dependent T389 phosphorylation on S6K (RPS6KB1) with an EC50 of 250 pM with approximately 800-fold selectivity for cellular mTOR versus PI3K. Torin2 also exhibited potent biochemical and cellular activity against PIKK family kinases including ATM (EC50 28 nM), ATR (EC50 35 nM) and DNA-PK (EC50 118 nM) (PRKDC), the inhibition of which sensitized cells to Irradiation. Similar to the earlier generation compound Torin1 and in contrast to other reported mTOR inhibitors, Torin2 inhibited mTOR kinase and mTORC1 signaling activities in a sustained manner suggestive of a slow dissociation from the kinase. Cancer cell treatment with Torin2 for 24 hours resulted in a prolonged block in negative feedback and consequent T308 phosphorylation on Akt. These effects were associated with strong growth inhibition in vitro. Single agent treatment with Torin2 in vivo did not yield significant efficacy against KRAS-driven lung tumors, but the combination of Torin2 with MEK inhibitor AZD6244 yielded a significant growth inhibition. Taken together, our findings establish Torin2 as a strong candidate for clinical evaluation in a broad number of oncological settings where mTOR signaling has a pathogenic role. PMID:23436801

  9. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion

    PubMed Central

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-01-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression. DOI: http://dx.doi.org/10.7554/eLife.07270.001 PMID:26030852

  10. Impaired insulin-stimulated glucose transport in ATM-deficient mouse skeletal muscle.

    PubMed

    Ching, James Kain; Spears, Larry D; Armon, Jennifer L; Renth, Allyson L; Andrisse, Stanley; Collins, Roy L; Fisher, Jonathan S

    2013-06-01

    There are reports that ataxia telangiectasia mutated (ATM) plays a role in insulin-stimulated Akt phosphorylation, although this is not the case in some cell types. Because Akt plays a key role in insulin signaling, which leads to glucose transport in skeletal muscle, the predominant tissue in insulin-stimulated glucose disposal, we examined whether insulin-stimulated Akt phosphorylation and (or) glucose transport would be decreased in skeletal muscle of mice lacking functional ATM, compared with muscle from wild-type mice. We found that in vitro insulin-stimulated Akt phosphorylation was normal in soleus muscle from mice with 1 nonfunctional allele of ATM (ATM+/-) and from mice with 2 nonfunctional alleles (ATM-/-). However, insulin did not stimulate glucose transport or the phosphorylation of AS160 in ATM-/- soleus. ATM protein level was markedly higher in wild-type extensor digitorum longus (EDL) than in wild-type soleus. In EDL from ATM-/- mice, insulin did not stimulate glucose transport. However, in contrast to findings for soleus, insulin-stimulated Akt phosphorylation was blunted in ATM-/- EDL, concomitant with a tendency for insulin-stimulated phosphatidylinositol 3-kinase activity to be decreased. Together, the findings suggest that ATM plays a role in insulin-stimulated glucose transport at the level of AS160 in muscle comprised of slow and fast oxidative-glycolytic fibers (soleus) and at the level of Akt in muscle containing fast glycolytic fibers (EDL). PMID:23724874

  11. Regulation of Epstein-Barr virus OriP replication by poly(ADP-ribose) polymerase 1.

    PubMed

    Tempera, Italo; Deng, Zhong; Atanasiu, Constandache; Chen, Chi-Ju; D'Erme, Maria; Lieberman, Paul M

    2010-05-01

    Poly(ADP-ribose) polymerase (PARP) is an abundant, chromatin-associated, NAD-dependent enzyme that functions in multiple chromosomal processes, including DNA replication and chromatin remodeling. The Epstein-Barr virus (EBV) origin of plasmid replication (OriP) is a dynamic genetic element that confers stable episome maintenance, DNA replication initiation, and chromatin organization functions. OriP function depends on the EBV-encoded origin binding protein EBNA1. We have previously shown that EBNA1 is subject to negative regulation by poly(ADP-ribosyl)ation (PARylation). We now show that PARP1 physically associates with OriP in latently EBV-infected B cells. Short hairpin RNA depletion of PARP1 enhances OriP replication activity and increases EBNA1, origin recognition complex 2 (ORC2), and minichromosome maintenance complex (MCM) association with OriP. Pharmacological inhibitors of PARP1 enhance OriP plasmid maintenance and increase EBNA1, ORC2, and MCM3 occupancy at OriP. PARylation in vitro inhibits ORC2 recruitment and remodels telomere repeat factor (TRF) binding at the dyad symmetry (DS) element of OriP. Purified PARP1 can ribosylate EBNA1 at multiple sites throughout its amino terminus but not in the carboxy-terminal DNA binding domain. We also show that EBNA1 linking regions (LR1 and LR2) can bind directly to oligomers of PAR. We propose that PARP1-dependent PARylation of EBNA1 and adjacently bound TRF2 induces structural changes at the DS element that reduce EBNA1 DNA binding affinity and functional recruitment of ORC. PMID:20219917

  12. ATM Alters the Otherwise Robust Chromatin Mobility at Sites of DNA Double-Strand Breaks (DSBs) in Human Cells

    PubMed Central

    Becker, Annabelle; Durante, Marco; Taucher-Scholz, Gisela; Jakob, Burkhard

    2014-01-01

    Ionizing radiation induces DNA double strand breaks (DSBs) which can lead to the formation of chromosome rearrangements through error prone repair. In mammalian cells the positional stability of chromatin contributes to the maintenance of genome integrity. DSBs exhibit only a small, submicron scale diffusive mobility, but a slight increase in the mobility of chromatin domains by the induction of DSBs might influence repair fidelity and the formation of translocations. The radiation-induced local DNA decondensation in the vicinity of DSBs is one factor potentially enhancing the mobility of DSB-containing chromatin domains. Therefore in this study we focus on the influence of different chromatin modifying proteins, known to be activated by the DNA damage response, on the mobility of DSBs. IRIF (ionizing radiation induced foci) in U2OS cells stably expressing 53BP1-GFP were used as a surrogate marker of DSBs. Low angle charged particle irradiation, known to trigger a pronounced DNA decondensation, was used for the defined induction of linear tracks of IRIF. Our results show that movement of IRIF is independent of the investigated chromatin modifying proteins like ACF1 or PARP1 and PARG. Also depletion of proteins that tether DNA strands like MRE11 and cohesin did not alter IRIF dynamics significantly. Inhibition of ATM, a key component of DNA damage response signaling, resulted in a pronounced confinement of DSB mobility, which might be attributed to a diminished radiation induced decondensation. This confinement following ATM inhibition was confirmed using X-rays, proving that this effect is not restricted to densely ionizing radiation. In conclusion, repair sites of DSBs exhibit a limited mobility on a small spatial scale that is mainly unaffected by depletion of single remodeling or DNA tethering proteins. However, it relies on functional ATM kinase which is considered to influence the chromatin structure after irradiation. PMID:24651490

  13. ER-Dependent Ca++-mediated Cytosolic ROS as an Effector for Induction of Mitochondrial Apoptotic and ATM-JNK Signal Pathways in Gallic Acid-treated Human Oral Cancer Cells.

    PubMed

    Lu, Yao-Cheng; Lin, Meng-Liang; Su, Hong-Lin; Chen, Shih-Shun

    2016-02-01

    Release of calcium (Ca(++)) from the endoplasmic reticulum (ER) has been proposed to be involved in induction of apoptosis by oxidative stress. Using inhibitor of ER Ca(++) release dantrolene and inhibitor of mitochondrial Ca(++) uptake Ru-360, we demonstrated that Ca(++) release from the ER was associated with generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential, and apoptosis of human oral cancer (OC) cells induced by gallic acid (GA). Small interfering RNA-mediated suppression of protein kinase RNA-like endoplasmic reticulum kinase inhibited tunicamycin-induced induction of 78 kDa glucose-regulated protein, C/EBP homologous protein, pro-caspase-12 cleavage, cytosolic Ca(++) increase and apoptosis, but did not attenuate the increase in cytosolic Ca(++) level and apoptosis induced by GA. Ataxia telangiectasia mutated (ATM)-mediated c-Jun N-terminal kinase (JNK) phosphorylation and apoptosis by GA was blocked by dantrolene. The specificity of ROS-mediated ATM-JNK activation was confirmed by treatment with N-acetylcysteine, a ROS scavenger. Blockade of ATM activation by specific inhibitor KU55933, short hairpin RNA, or kinase-dead ATM overexpression suppressed JNK phosphorylation but did not completely inhibit cytosolic ROS production, mitochondrial cytochrome c release, pro-caspase-3 cleavage, and apoptosis induced by GA. Taken together, these results indicate that GA induces OC cell apoptosis by inducing the activation of mitochondrial apoptotic and ATM-JNK signal pathways, likely through ER Ca(++)-mediated ROS production. PMID:26851027

  14. Targeting poly(ADP-ribose)polymerase1 in neurological diseases: A promising trove for new pharmacological interventions to enter clinical translation.

    PubMed

    Sriram, Chandra Shekhar; Jangra, Ashok; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Bezbaruah, Babul Kumar

    2014-10-01

    The highly conserved abundant nuclear protein poly(ADP-ribose)polymerase1 (PARP1) functions at the center of cellular stress response and is mainly implied in DNA damage repair mechanism. Apart from its involvement in DNA damage repair, it does sway multiple vital cellular processes such as cell death pathways, cell aging, insulator function, chromatin modification, transcription and mitotic apparatus function. Since brain is the principal organ vulnerable to oxidative stress and inflammatory responses, upon stress encounters robust DNA damage can occur and intense PARP1 activation may result that will lead to various CNS diseases. In the context of soaring interest towards PARP1 as a therapeutic target for newer pharmacological interventions, here in the present review, we are attempting to give a silhouette of the role of PARP1 in the neurological diseases and the potential of its inhibitors to enter clinical translation, along with its structural and functional aspects. PMID:25049175

  15. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors

    PubMed Central

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-01-01

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (AtmKD/-) is more oncogenic than loss of ATM (Atm-/-) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate AtmKD/-, but not Atm-proficientor Atm-/- leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy. DOI: http://dx.doi.org/10.7554/eLife.14709.001 PMID:27304073

  16. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    NASA Astrophysics Data System (ADS)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  17. RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress.

    PubMed

    Kanu, N; Zhang, T; Burrell, R A; Chakraborty, A; Cronshaw, J; DaCosta, C; Grönroos, E; Pemberton, H N; Anderton, E; Gonzalez, L; Sabbioneda, S; Ulrich, H D; Swanton, C; Behrens, A

    2016-07-28

    The DNA replication machinery invariably encounters obstacles that slow replication fork progression, and threaten to prevent complete replication and faithful segregation of sister chromatids. The resulting replication stress activates ATR, the major kinase involved in resolving impaired DNA replication. In addition, replication stress also activates the related kinase ATM, which is required to prevent mitotic segregation errors. However, the molecular mechanism of ATM activation by replication stress is not defined. Here, we show that monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA), a marker of stalled replication forks, interacts with the ATM cofactor ATMIN via WRN-interacting protein 1 (WRNIP1). ATMIN, WRNIP1 and RAD18, the E3 ligase responsible for PCNA monoubiquitination, are specifically required for ATM signalling and 53BP1 focus formation induced by replication stress, not ionising radiation. Thus, WRNIP1 connects PCNA monoubiquitination with ATMIN/ATM to activate ATM signalling in response to replication stress and contribute to the maintenance of genomic stability. PMID:26549024

  18. Pilot Performance on New ATM Operations: Maintaining In-Trail Separation and Arrival Sequencing

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Yankosky, L. J.; Johnson, Walter (Technical Monitor)

    1999-01-01

    Cockpit Display of Traffic Information (CDTI) may enable new Air Traffic Management (ATM) operations. However, CDTI is not the only source of traffic information in the cockpit; ATM procedures may provide information, implicitly and explicitly, about other aircraft. An experiment investigated pilot ability to perform two new ATM operations - maintaining in-trail separation from another aircraft and sequencing into an arrival stream. In the experiment, pilots were provided different amounts of information from displays and procedures. The results are described.

  19. Design Issues for Traffic Management for the ATM UBR + Service for TCP Over Satellite Networks

    NASA Technical Reports Server (NTRS)

    Jain, Raj

    1999-01-01

    This project was a comprehensive research program for developing techniques for improving the performance of Internet protocols over Asynchronous Transfer Mode (ATM) based satellite networks. Among the service categories provided by ATM networks, the most commonly used category for data traffic is the unspecified bit rate (UBR) service. UBR allows sources to send data into the network without any feedback control. The project resulted in the numerous ATM Forum contributions and papers.

  20. Real-time VLBI system using ATM network

    NASA Astrophysics Data System (ADS)

    Kiuchi, H.; Imae, M.; Kondo, T.; Sekido, M.; Hama, S.; Hoshino, T.; Uose, H.; Yamamoto, T.

    2000-05-01

    The Communications Research Laboratory (CRL), Tokyo, Japan, and the Telecommunication Network Laboratory Group, Nippon Telegraph and Telephone Corp., Tokyo, Japan, have developed a highly precise, very long baseline interferometry (VLBI) system using a high speed asynchronous transfer mode (ATM) network. The observed data is transmitted through a 2.488-Gbps ATM network [STM-16/OC-48] instead of being recorded onto magnetic tape. The system was specially designed for the Key Stone Project (KSP), a project begun in 1994 to measure crustal deformation in the Tokyo metropolitan area. Cross-correlation processing and data observations are carried out simultaneously by one operator. It takes about one hour to analyze the data after the observations and correlations are completed. In regular geodetic VLBI experiments run every other day for 24 h, a horizontal position uncertainty of about 2 mm and a vertical position uncertainty of about 10 mm were achieved. The system was designed to enable automated operation throughout the entire process. The results obtained are available to the public via the Internet at http:ksp.crl.go.jp. This system is a significant advance in VLBI and should provide more precise information about crustal deformation in the Tokyo metropolitan area.

  1. ATM-distributed PACS server for ICU application

    NASA Astrophysics Data System (ADS)

    Lee, Joseph K.; Wong, Albert W. K.; Huang, H. K.; Bazzill, Todd M.; Zhang, Jianguo; Andriole, Katherine P.

    1996-05-01

    In order for PACS (Picture Archiving and Communications System) to better serve our intensive care units (ICUs), we, at University of California, San Francisco, have designed and developed a client/server application that is specifically tailored to provide fast, reliable access to our PACS data from diagnostic viewing stations in the ICUs. One of our utmost design criteria is to ensure consistent delivery of high speed, high performance data throughput, and yet, the system should be cost-effective and render minimal maintenance. As high technology advances, we are able to utilize powerful mass storage device such as raid disk, which serves as a central image repository, to store images and data. We are also able to utilize Asynchronous Transfer Mode (ATM) technology, which is regarded as the prevailing technology for reliable, high speed data communications, to transfer large imagery data sets across systems and networks. This paper describes the design and mechanism of how ICU viewing stations take advantages of sharing a high performance raid disk, and ATM technology in data transfer for timely delivery of images in a clinical setting.

  2. Performance analysis of reactive congestion control for ATM networks

    NASA Astrophysics Data System (ADS)

    Kawahara, Kenji; Oie, Yuji; Murata, Masayuki; Miyahara, Hideo

    1995-05-01

    In ATM networks, preventive congestion control is widely recognized for efficiently avoiding congestion, and it is implemented by a conjunction of connection admission control and usage parameter control. However, congestion may still occur because of unpredictable statistical fluctuation of traffic sources even when preventive control is performed in the network. In this paper, we study another kind of congestion control, i.e., reactive congestion control, in which each source changes its cell emitting rate adaptively to the traffic load at the switching node (or at the multiplexer). Our intention is that, by incorporating such a congestion control method in ATM networks, more efficient congestion control is established. We develop an analytical model, and carry out an approximate analysis of reactive congestion control algorithm. Numerical results show that the reactive congestion control algorithms are very effective in avoiding congestion and in achieving the statistical gain. Furthermore, the binary congestion control algorithm with pushout mechanism is shown to provide the best performance among the reactive congestion control algorithms treated here.

  3. Achieving High Throughput for Data Transfer over ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.; Townsend, Jeffrey N.

    1996-01-01

    File-transfer rates for ftp are often reported to be relatively slow, compared to the raw bandwidth available in emerging gigabit networks. While a major bottleneck is disk I/O, protocol issues impact performance as well. Ftp was developed and optimized for use over the TCP/IP protocol stack of the Internet. However, TCP has been shown to run inefficiently over ATM. In an effort to maximize network throughput, data-transfer protocols can be developed to run over UDP or directly over IP, rather than over TCP. If error-free transmission is required, techniques for achieving reliable transmission can be included as part of the transfer protocol. However, selected image-processing applications can tolerate a low level of errors in images that are transmitted over a network. In this paper we report on experimental work to develop a high-throughput protocol for unreliable data transfer over ATM networks. We attempt to maximize throughput by keeping the communications pipe full, but still keep packet loss under five percent. We use the Bay Area Gigabit Network Testbed as our experimental platform.

  4. Functional studies on the ATM intronic splicing processing element

    PubMed Central

    Lewandowska, Marzena A.; Stuani, Cristiana; Parvizpur, Alireza; Baralle, Francisco E.; Pagani, Franco

    2005-01-01

    In disease-associated genes, the understanding of the functional significance of deep intronic nucleotide variants may represent a difficult challenge. We have previously reported a new disease-causing mechanism that involves an intronic splicing processing element (ISPE) in ATM, composed of adjacent consensus 5′ and 3′ splice sites. A GTAA deletion within ISPE maintains potential adjacent splice sites, disrupts a non-canonical U1 snRNP interaction and activates an aberrant exon. In this paper, we demonstrate that binding of U1 snRNA through complementarity within a ∼40 nt window downstream of the ISPE prevents aberrant splicing. By selective mutagenesis at the adjacent consensus ISPE splice sites, we show that this effect is not due to a resplicing process occurring at the ISPE. Functional comparison of the ATM mouse counterpart and evaluation of the pre-mRNA splicing intermediates derived from affected cell lines and hybrid minigene assays indicate that U1 snRNP binding at the ISPE interferes with the cryptic acceptor site. Activation of this site results in a stringent 5′–3′ order of intron sequence removal around the cryptic exon. Artificial U1 snRNA loading by complementarity to heterologous exonic sequences represents a potential therapeutic method to prevent the usage of an aberrant CFTR cryptic exon. Our results suggest that ISPE-like intronic elements binding U1 snRNPs may regulate correct intron processing. PMID:16030351

  5. Drug repurposing screen identifies lestaurtinib amplifies the ability of the poly (ADP-ribose) polymerase 1 inhibitor AG14361 to kill breast cancer associated gene-1 mutant and wild type breast cancer cells

    PubMed Central

    2014-01-01

    Introduction Breast cancer is a devastating disease that results in approximately 40,000 deaths each year in the USA. Current drug screening and chemopreventatitive methods are suboptimal, due in part to the poor specificity of compounds for cancer cells. Poly (ADP-ribose) polymerase 1 (PARP1) inhibitor (PARPi)-mediated therapy is a promising approach for familial breast cancers caused by mutations of breast cancer-associated gene-1 and -2 (BRCA1/2), yet drug resistance frequently occurs during the treatment. Moreover, PARPis exhibit very little effect on cancers that are proficient for DNA repair and clinical efficacy for PARPis as single-agent therapies has yet to be illustrated. Methods Using a quantitative high-throughput screening approach, we screened a library containing 2,816 drugs, most of which are approved for human or animal use by the Food and Drug Administration (FDA) or other countries, to identify compounds that sensitize breast cancer cells to PARPi. After initial screening, we performed further cellular and molecular analysis on lestaurtinib, which is an orally bioavailable multikinase inhibitor and has been used in clinical trials for myeloproliferative disorders and acute myelogenous leukemia. Results Our study indicated that lestaurtinib is highly potent against breast cancers as a mono-treatment agent. It also strongly enhanced the activity of the potent PARPi AG14361 on breast cancer cell growth both in vitro and in vivo conditions. The inhibition of cancer growth is measured by increased apoptosis and reduced cell proliferation. Consistent with this, the treatment results in activation of caspase 3/7, and accumulation of cells in the G2 phase of the cell cycle, irrespective of their BRCA1 status. Finally, we demonstrated that AG14361 inhibits NF-κB signaling, which is further enhanced by lestaurtinib treatment. Conclusions Lestaurtinib amplifies the ability of the PARP1 inhibitor AG14361 to kill BRCA1 mutant and wild-type breast cancer

  6. ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts

    PubMed Central

    Qi, Yongmei; Qiu, Qian; Gu, Xueyan; Tian, Yihong; Zhang, Yingmei

    2016-01-01

    The ATM (ataxia telangiectasia mutated) protein has recently been proposed to play critical roles in the response to mitochondrial dysfunction by initiating mitophagy. Here, we have used ATM-proficient GM00637 cells and ATM-deficient GM05849 cells to investigate the mitophagic effect of spermidine and to elucidate the role of ATM in spermdine-induced mitophagy. Our results indicate that spermidine induces mitophagy by eliciting mitochondrial depolarization, which triggers the formation of mitophagosomes and mitolysosomes, thereby promoting the accumulation of PINK1 and translocation of Parkin to damaged mitochondria, finally leading to the decreased mitochondrial mass in GM00637 cells. However, in GM05849 cells or GM00637 cells pretreated with the ATM kinase inhibitor KU55933, the expression of full-length PINK1 and the translocation of Parkin are blocked, and the colocalization of Parkin with either LC3 or PINK1 is disrupted. These results suggest that ATM drives the initiation of the mitophagic cascade. Our study demonstrates that spermidine induces mitophagy through ATM-dependent activation of the PINK1/Parkin pathway. These findings underscore the importance of a mitophagy regulatory network of ATM and PINK1/Parkin and elucidate a novel mechanism by which ATM influences spermidine-induced mitophagy. PMID:27089984

  7. Drosophila ATM and ATR checkpoint kinases control partially redundant pathways for telomere maintenance

    PubMed Central

    Bi, Xiaolin; Srikanta, Deepa; Fanti, Laura; Pimpinelli, Sergio; Badugu, RamaKrishna; Kellum, Rebecca; Rong, Yikang S.

    2005-01-01

    In higher eukaryotes, the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) checkpoint kinases play distinct, but partially overlapping, roles in DNA damage response. Yet their interrelated function has not been defined for telomere maintenance. We discover in Drosophila that the two proteins control partially redundant pathways for telomere protection: the loss of ATM leads to the fusion of some telomeres, whereas the loss of both ATM and ATR renders all telomeres susceptible to fusion. The ATM-controlled pathway includes the Mre11 and Nijmegen breakage syndrome complex but not the Chk2 kinase, whereas the ATR-regulated pathway includes its partner ATR-interacting protein but not the Chk1 kinase. This finding suggests that ATM and ATR regulate different molecular events at the telomeres compared with the sites of DNA damage. This compensatory relationship between ATM and ATR is remarkably similar to that observed in yeast despite the fact that the biochemistry of telomere elongation is completely different in the two model systems. We provide evidence suggesting that both the loading of telomere capping proteins and normal telomeric silencing requires ATM and ATR in Drosophila and propose that ATM and ATR protect telomere integrity by safeguarding chromatin architecture that favors the loading of telomere-elongating, capping, and silencing proteins. PMID:16203987

  8. ATM Quality of Service Parameters at 45 Mbps Using a Satellite Emulator: Laboratory Measurements

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Bobinsky, Eric A.

    1997-01-01

    Results of 45-Mbps DS3 intermediate-frequency loopback measurements of asynchronous transfer mode (ATM) quality of service parameters (cell error ratio and cell loss ratio) are presented. These tests, which were conducted at the NASA Lewis Research Center in support of satellite-ATM interoperability research, represent initial efforts to quantify the minimum parameters for stringent ATM applications, such as MPEG-1 and MPEG-2 video transmission. Portions of these results were originally presented to the International Telecommunications Union's ITU-R Working Party 4B in February 1996 in support of their Draft Preliminary Recommendation on the Transmission of ATM Traffic via Satellite.

  9. Results from CrIS/ATMS Obtained Using an "AIRS Version-6 Like" Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2015-01-01

    A main objective of AIRS/AMSU on EOS is to provide accurate sounding products that are used to generate climate data sets. Suomi NPP carries CrIS/ATMS that were designed as follow-ons to AIRS/AMSU. Our objective is to generate a long term climate data set of products derived from CrIS/ATMS to serve as a continuation of the AIRS/AMSU products. We have modified an improved version of the operational AIRS Version-6 retrieval algorithm for use with CrIS/ATMS. CrIS/ATMS products are of very good quality, and are comparable to, and consistent with, those of AIRS.

  10. Premeiotic germ cell defect in seminiferous tubules of Atm-null testis

    SciTech Connect

    Takubo, Keiyo . E-mail: keiyot@gmail.com; Hirao, Atsushi; Ohmura, Masako; Azuma, Masaki; Arai, Fumio; Nagamatsu, Go; Suda, Toshio . E-mail: sudato@sc.itc.keio.ac.jp

    2006-12-29

    Lifelong spermatogenesis is maintained by coordinated sequential processes including self-renewal of stem cells, proliferation of spermatogonial cells, meiotic division, and spermiogenesis. It has been shown that ataxia telangiectasia-mutated (ATM) is required for meiotic division of the seminiferous tubules. Here, we show that, in addition to its role in meiosis, ATM has a pivotal role in premeiotic germ cell maintenance. ATM is activated in premeiotic spermatogonial cells and the Atm-null testis shows progressive degeneration. In Atm-null testicular cells, differing from bone marrow cells of Atm-null mice, reactive oxygen species-mediated p16{sup Ink4a} activation does not occur in Atm-null premeiotic germ cells, which suggests the involvement of different signaling pathways from bone marrow defects. Although Atm-null bone marrow undergoes p16{sup Ink4a}-mediated cellular senescence program, Atm-null premeiotic germ cells exhibited cell cycle arrest and apoptotic elimination of premeiotic germ cells, which is different from p16{sup Ink4a}-mediated senescence.